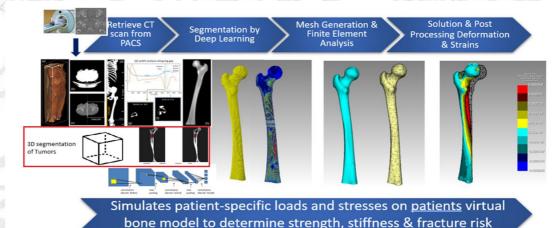


Università degli Studi di Pavia Computational Mechanics & Advanced Materials Group - DICAr



Automatic Segmentation of Lytic Tumors in the Femurs with nnU-net

SEMINAR

Metastatic tumors in a femur may weaken it to the stage at which a pathological fracture may occur under daily activity. The strength of a patient's femur with metastatic tumors may be assessed by a finite element analysis (FEA) based on patient's CT scan and patient's weight. Such analyses may assist orthopedic-oncology surgeons in deciding whether a prophylactic fixation is required.

To improve the FEA accuracy and assist radiologists in identifying such tumors we aim at developing a deep neural network algorithm that may automatically classify and segment lytic metastatic tumors in the femur. This talk will describe the overall autonomous FE algorithm which analyzes patient-specific stiffness and strength of femurs, and will specifically concentrate on the nnU-net used to segment metastatic tumors (the red box part in the Figure below).

Oren Rachmil and Zohar Yosibash

Computational Mechanics and Experimental Biomechanics Lab School of Mechanical Engineering The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Israel **23/01/2023, 11:30 Aula MS1, DICAr** Via Ferrata, 3 – Pavia