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ABSTRACT

‘We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous
flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the in-
corporation of appropriately scaled stabilization and boundary terms. Element-wise error indicators are elaborated for the Laplace and Stokes
problems, and a THB-spline-based local mesh refinement strategy is proposed. The error estimation and adaptivity procedure are applied to a
series of benchmark problems, demonstrating the suitability of the technique for a range of smooth and non-smooth problems. The adaptivity
strategy is also integrated into a scan-based analysis workflow, capable of generating error-controlled results from scan data without the need for
extensive user interactions or interventions.
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1. INTRODUCTION

Immersed finite element methods, such as the finite cell method [1-3] and CutFEM [4-6], are a natural companion to isogeometric
analysis [7, 8]. The combination of immersed methods with the spline-based discretization strategy provided by the isogeometric
analysis paradigm is recognized as a valuable extension of isogeometric analysis because the immersed analysis concept provides a
cogent framework for the consideration of trimmed CAD objects [9-14]. Moreover, immersed isogeometric analysis enables the
construction of spline-based discretization spaces for geometrically and topologically complex volumetric domains [10, 11, 15], a
simulation strategy referred to as immersogeometric analysis [16,17].

In comparison to boundary-fitting isogeometric analysis, the immersed isogeometric analysis strategy requires consideration of
three (categories of) non-standard computational aspects. First, the geometry of elements that intersect with the boundary of the
computational domain must be resolved by a dedicated integration procedure; see, e.g. [18-23]. Second, Dirichlet boundary condi-
tions on immersed boundaries can generally not be imposed through basis function constraints. Instead, such boundary conditions
are frequently imposed weakly; see, e.g. [4, 24-26]. Third, unfavorably trimmed elements are notorious for causing ill-conditioning
problems and, along Dirichlet boundaries, large unphysical gradients [3, 12, 27-31]. This problem is amplified in the higher-order
discretization setting of isogeometric analysis [30]. Prominent computational remedies to overcome these problems are to supple-
ment the weak formulation with stabilization terms, see, e.g. [S, 6, 27], or to constrain, extend or aggregate basis functions, see e.g.
[14, 32-38] or to apply dedicated preconditioning techniques, see, e.g. [30, 39, 40].

For mixed formulations, such as standard weak forms of the Stokes and Navier—Stokes equations, the immersed isogeometric anal-
ysis setting imposes an additional challenge. In order to satisfy the inf-sup condition [41, 42] in boundary-fitting (isogeometric)
analyses, generally use is made of stable pairs of basis functions (e.g. Taylor-Hood [43-46] or Raviart-Thomas [4S, 47-49]). Alter-
natively, stabilization techniques, such as GLS [50-52], VMS [53-55] or projection methods [ 56, $7] can be used. Direct utilization
of these elements or stabilization techniques in the immersed setting can lead to non-physical spurious oscillations in the solution,
even with relatively large and regular cut element configurations [58, 59]. One remedy for tackling this issue is to employ a skeleton-
stabilized immersed isogeometric technique [$9]. The fundamental idea of this stabilization technique is to penalize (high-order)
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pressure derivative jumps over the edges/faces of the background mesh, resulting in stable discretizations using equal-order spline
spaces. The technique proposed in [59] is inspired by the (continuous) interior penalty ((C)IP) and the ghost penalty (GP) meth-
ods [27], extending these techniques to the case of high-regularity isogeometric analysis.

An appraised property of immersed methods in general, and immersed isogeometric analysis in particular, is that the discretization
resolution can be controlled independently of the geometry parameterization. The immersed analysis concept avoids the need for
geometry-induced mesh refinements in the vicinity of geometric details that are irrelevant in relation to the objective of an analysis.
This decoupling of the discretization resolution from the geometry makes it natural to consider immersed finite elements in combi-
nation with adaptive discretization strategies. In fact, adaptivity in the form oflocal p- and hp-refinements has always been an integral
part of the finite cell method [60-63].

A posteriori error estimation and adaptivity techniques are well established in the context of finite element methods; see, e.g. the
reviews [64—66]. A variety of error estimation and adaptivity techniques have been studied in isogeometric analysis, such as residual-
based error estimators for T-splines [67] and hierarchical splines [68-70], and goal-oriented techniques [71]. The contemporary
overview [72] is also noteworthy, as is the advanced industrial application considered in [73]. In the context of Nitsche-based finite
element methods (see [74, 75] for an overview), studies on a posteriori error estimators have been conducted [4, 76-79]. Local
refinement strategies in immersed methods are predominantly feature based, i.e. either based on geometric features such as boundaries
or based on solution features such as sharp gradients in the solution fields; see, e.g. [11, 80, 81], for examples of local refinement
capabilities in finite cell simulations. Goal-oriented error estimation and adaptivity for immersed methods have also been studied [71,
82-84]. In the context of stabilized immersed finite elements, reference [85] considered a posteriori element-wise error estimation
and adaptivity to improve boundary approximations.

Although the computational setting of immersed isogeometric analysis enables the use of volumetric spline patches, the standard
h, p and k-type refinement strategies in patch-based isogeometric analysis [ 7] are not suitable because of the non-local propagation of
refinements. Various alternative refinement strategies have been proposed over the last decade to construct local spline refinements,
the most prominent of which are T-splines [11, 16, 86-90], LRB-splines [91, 92], U-splines [93] and (Truncated) Hierarchical B-
splines [94]. In the context of immersed isogeometric analysis on volumetric domains, hierarchical splines are particularly suitable,
as they optimally leverage the advantages offered by the geometrically simple background mesh.

In this contribution, we propose a computational strategy for the application of residual-based a posteriori error estimation and
mesh adaptivity to stabilized immersed isogeometric analyses. We study various computational aspects of the framework that are
non-standard in comparison to error estimation and adaptivity for boundary-fitting analyses, viz.

(1) Inimmersed analyses, the discretization basis is constructed over a mesh comprised of all elements in an ambient mesh that
intersect with the computational domain. As a direct consequence of this setting, the support of the computational basis in
general changes under refinement operations. The same holds for the mesh skeleton, which is a key ingredient of the con-
sidered stabilization methods. The considered computational strategy preserves the geometry of the computational domain
under local mesh refinements, despite the change of the background mesh;

(2) Weak formulations in stabilized immersed isogeometric analysis generally involve operators with an explicit dependence on
the mesh size. While this mesh size is unambiguously defined in the case of a uniform background mesh, the local mesh
refinements considered in the adaptive setting warrant careful consideration of the scaling of the stabilization terms. We herein
propose and study a scaling of the stabilization terms based on the local element sizes.

We demonstrate the performance of the proposed computational strategy using a series of test cases for steady heat conduction
problems (Poisson problem) and steady viscous flow problems (Stokes problem). We consider the application of the proposed adap-
tivity technique in a scan-based isogeometric analysis setting, and demonstrate that a robust automatic simulation workflow is realized
when the methodology presented herein is combined with the topology-preserving image segmentation algorithm presented in [22].

This paper is outlined as follows: Section 2 introduces the immersed isogeometric analysis framework, along with a detailed stability
analysis for the considered model problems. This analysis focuses particularly on the scaling relations for the stabilization terms. In
Section 3, the residual-based error estimator is introduced, and a mesh-refinement strategy is proposed. Benchmark simulation results
are then presented in Section 4 for both the steady heat conduction problem and the viscous flow problem, after which the developed
framework is applied in a scan-based setting in Section 5. Conclusions are finally drawn in Section 6.

2. STABILIZED IMMERSOGEOMETRIC ANALYSIS WITH LOCAL MESH REFINEMENTS

In this section, we introduce the stabilized immersed isogeometric analysis formulations for the steady heat conduction (Laplace)
problem and steady viscous flow (Stokes) problem. We commence with presenting the general setting of the problems in Section 2.1,
after which the stabilized formulations are presented in Section 2.2. In preparation of the a posteriori error estimation concept dis-
cussed in Section 3, in Section 2.3, we study the stability of the considered formulations.
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Figure 1 (a) A physical domain €2, with boundary 32, is embedded in an ambient domain .A. The background mesh 7, which consists of all
elements that intersect the physical domain, is constructed by locally refining the ambient domain mesh 7 4. The zoom illustrates the employed
bisectioning procedure to capture the immersed boundaries. The integration subcells are marked in blue, whereas the background cells are
marked in black. The skeleton mesh, Fiyeleton, and ghost mesh, Fypost, are shown in panels (b) and (c), respectively.

2.1 The finite cell setting

We consider a physical domain Q € R? (with d € {2, 3}) with boundary 9%, as illustrated in Fig. 1. The boundary is composed of
a Neumann part, 0€2y, and a Dirichlet part, d$2p, such that AN U I = 92 and IQ N I = @. The outward-pointing unit
normal vector to the boundary is denoted by n.

The physical domain is immersed in a geometrically simple ambient domain, i.e. A D €2, on which alocally refined ambient mesh
T4 with elements K is defined. In this work, the ambient domain is chosen to be rectangular or cuboid to facilitate simple, tensor-
product, spline discretizations. The locally refined meshes are constructed by sequential bisectioning of (selections of) elements in
the mesh, starting from a Cartesian mesh. Truncated hierarchical B-splines can be formed on such meshes, as will be elaborated in
Section 2.2.

Elements that do not intersect with the physical domain can be omitted from the ambient mesh, resulting in the locally refined
(active) background mesh

T :={K|Ke Ta, KN # R (1)
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In the remainder, with the abuse of notation, we will use 7 (and other meshes) to denote both the set of elements in the mesh and
the geometry obtained from the union of these elements. The local mesh size of the locally refined background mesh is denoted by

hy : K = hg = /meas(K), (2)

where meas(K) denotes the area or volume of the element K. By cutting the elements that are intersected by the immersed boundary
02, a mesh that conforms to the physical domain €2 is obtained

To:={KNQ|KeTh 3)
The collection of elements in the background mesh that are crossed by the immersed boundary 9€2 is defined as
G:={KeT|KNaiQ # 0}. 4

Note that the elements K are assumed to be open sets. Neglecting the limiting case of the immersed boundary coinciding with the
edges of a trimmed background element, with abuse of notation we refer to the immersed boundary inside an element as KN 0€2.

In immersed methods, the geometry of the physical domain is captured by the integration procedure on the cut elements, i.e. el-
ements that are intersected by the immersed boundary 3€2. We herein employ an octree integration procedure [22, 82], which we
close at the lowest level of bisectioning with a tessellation procedure. The considered integration procedure is illustrated in Fig. 1 (in
blue) for a typical cut element; see [22] for further details. Note that the subcells are only used to perform integration in the im-
mersed setting and not to construct basis functions. The employed tessellation provides an explicit parameterization of a polygonal
approximation of the immersed boundary 9€2 through the set of boundary faces

Too :={E COQ|E=0KNJL, K € Ty}. (5)

Allfaces E C 92y (respectively E C 9Q2p ) are assigned to a set of Neumann faces Tyq,, (respectively Dirichlet faces T5q, ). In general,
a single polygon face can overlap with both the Neumann and the Dirichlet boundaries. Let us note that in an adaptive refinement
procedure, the refinements can serve to provide an increasingly accurate approximation of the transition between the Neumann and
Dirichlet boundaries.

The formulations considered in the remainder of this work incorporate stabilization terms formulated on the edges of the back-
ground mesh (see Section 2.2), which we refer to as the skeleton mesh

-Fskeleton = {8K N 81<, | K7 K/ € T7 K 7é I</} (6)

Note that the boundary of the background mesh is not part of the skeleton mesh. In addition to the skeleton mesh, we define the ghost
mesh as the subset of the skeleton mesh that contain a face of an element intersected by the domain boundary

Fehost = {0KNIK'|K e G, K €T,K#K}. (7)

As will be detailed in Section 2.3, the stabilization terms formed on the skeleton and ghost mesh account for stability and ill-
conditioning effects related to unfavorably cut elements, as well as for preventing pressure oscillations in equal-order discretizations
of the Stokes problem. Note that the skeleton and ghost mesh are defined such that the stability terms are applied to specific edges of
the background mesh (see Figs 1b and c).

2.2 Immersogeometric analysis

‘We consider the immersogeometric analysis of a single-field steady heat-conduction problem and of a two-field viscous flow problem.
Both problems are represented by the abstract Galerkin problem

Find 4" € U" such that: (8)
a'(u V) = b (W) Vo' e VH,

with mesh-dependent bilinear and linear forms, a" and b, respectively. Note that the superscript h is used to indicate mesh-
dependence. The finite dimensional trial and test spaces, U" and V", respectively, are spanned by truncated hierarchical B-spline
(THB-spline) [69, 94] basis functions of degree k and regularity & constructed over the locally refined background mesh, viz.

SKT)={(NeC*(T):Nlx € P(K), VK € T}, (9)

with P*(K) the set of d-variate polynomials on the element K constructed by the tensor-product of univariate polynomials of order
k. Truncated hierarchical B-splines, which are illustrated in Fig. 2, form a partition of unity and have a reduced support compared to
their non-truncated counterpart, which is advantageous from the perspective of system matrix sparsity. Our implementation is based
on the open source finite element library Nutils [95].

Since the imposition of strong Dirichlet boundary conditions over the immersed boundary 92 is intractable in the immersogeo-
metric analysis setting, such boundary conditions are imposed weakly through Nitsche’s method; see, e.g. [26]. A mesh-dependent
consistent stabilization term is introduced in order to ensure the well-posedness of the Galerkin problem (8).
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Figure 2 Ilustration of truncated hierarchical B-splines [69, 94] in the immersogeometric analysis setting. The left column shows the
hierarchical levels of the mesh 7 in Fig. 1, while the right column illustrates the concept for a one-dimensional immersed domain 2. The
background mesh at the level £ =0, ..., £y (With £,0 = 3 in this illustration) is defined as 7* = {K € T | K N Q # @}, where T isa
regular mesh with a mesh size parameter 2 ‘. Note that the meshes are nested, in the sense that the domain covered by the physical mesh at
level £, T, is completely inside that of level £ — 1, 71, i.e. T¢ C T*~!. The THB-spline basis, H.(T'), is constructed by selection and
truncation of the basis functions in the B-spline basis B(T*) = {N € B (7;{) | supp(N) € T} defined at each level. At the most refined
level, i.e. at £ = £y, all basis functions that are completely inside 7 ‘> are selected: H.(7 ) = {N € B(T*=) | supp(N) C T}, At the
coarser levels, i.e. £ < £, the functions that are completely inside the domain T but not completely inside the refined domain T are
selected and truncated: H(7") = {trunc(N) | N € B(T"), supp(N) € T*"'}. The truncation operation reduces the support of the
B-spline functions by projecting away basis functions retained from the refined levels. The THB-spline basis then follows as

H(T) = UE:B’H( T). The reader is referred to [69] for details of THB-spline basis and [94] for THB-spline basis construction.

.l

SEN

2.2.1 Steady heat conduction

Steady heat conduction is governed by the Poisson problem, which, in dimensionless form, can be formulated as

—Au=f inQ,
u=g on 0Q2p, (10)
=g on 02y,

where u is the scalar temperature field, fis a heat source term, g represents the prescribed heat flux on the Neumann boundary and g
is the prescribed temperature on the Dirichlet boundary. The normal gradient is defined as d,u = Vu - n.

The discretized solution to the strong formulation (10) with the Dirichlet conditions enforced by Nitsche’s method is denoted by
e Uh = Sé (T) c H'(T), with the corresponding test functions given by " € V" = U". We herein consider maximum regularity
B-splines, i.e. @ = k — 1. The bilinear and linear forms in Eq. (8) are

a'(uh, V") = / Vi Vv — / ((Bnuh)vh + uh(anv)) ds
Q 9

+ Z /Eﬁu‘*v“ds+ Z /;7g[[aj;uh]][[afv]] ds, (11a)

E€Thap FeFghost
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bh(vh)szvth+/ qvhdS—f gods+ /Bgvhds, (11b)
Q QN aQ2p E

E€Tsap

where f is the Nitsche stabilization parameter. This parameter should be selected and scaled (with the mesh size) appropriately, being
large enough to ensure stability, while not being too large to cause a reduction in accuracy (see, e.g. [31, 37]). The GP operator in
(11a) controls the kth-order normal derivative jumps, indicated by [ - ]|, over the interfaces of the elements, which are intersected by
the domain boundary 3$2. Since in this contribution B-splines of degree k with C* ~ !-continuity are considered, only the kth normal
derivative is non-vanishing at the ghost mesh. As will be discussed in detail in Section 2.3, upon appropriate selection and scaling
(with the mesh size) of 7, a Nitsche stabilization parameter, B, can be selected in such a way that stability of the formulation can be
assured independent of the cut-cell configurations. To avoid loss of accuracy, the GP parameter J, should also not be too large [96].

2.2.2 Steady viscous flow
Steady viscous flow can be modeled by the Stokes equations
—V.-Q2uVu)+Vp=f in Q,
V-u=0 in 2,
u=g on 0Q2p, (12)
2u (Va)n—pn =t on I,
with velocity u, pressure p, constant viscosity i, body force f, Dirichlet data g and Neumann data t. By consideration of the so-
lution in the abstract Galerkin problem (8) as a velocity—pressure pair, i.e. " = (u, ph) eUl= Uf X U: = [8,’:71]‘1 X S{; . C
[H'(2)]¢ x L*(2) and the corresponding test functions as V=V q") eV = Vuh X Vph = U", the aggregate bilinear and lin-
ear forms corresponding to (12) follow as

) = b V) i) + (g e — (e ). (130)
V(v =/f-vh dV—i—/ t~vhdS+/ (qhn—Z/L(sth)n)-gdS—f— Z Bg - v"ds, (13b)
Q a9 9 BTy U

where

al(u",v") = / PYTAVA LI VAL |74 —/ 2 ((Vsuh)n v+ (V'V')n - uh) ds
Q ;

Y
+ 3 | Bun v as+ Y[ pulofe'] - [0)v'] s, (14a)
E€Thg, * E FeFgon T
a(p' V") = —/ PV Vv +/ p'v" - nds, (14b)
Q o
he h hy ~ =1 qk h k_h
(' qd")= > | nu 195" 1[05q" ] ds. (14c)
FeFeleton

For the selection of the Nitsche parameter, 4, and ghost stabilization constant, Vg the same arguments apply as for the steady heat
conduction problem discussed above. A discussion on the selection and scaling of these parameters for the Stokes problem is presented
in Section 2.3.2.

An additional stability issue is encountered for the immersed Stokes flow problem (13) on account of the selected equal-order
optimal regularity spline spaces of degree k. In the conforming setting, inf-sup stability is achieved by adopting a suitable velocity—
pressure pair, e.g. Taylor-Hood [43-46] or Raviart-Thomas [45, 47-49]. In the immersed setting, such pairs can still lead to pressure
oscillations in the vicinity of cut elements [58]. To resolve these pressure oscillations, the immersogeometric skeleton stabilization
technique developed in [59] is applied. This stabilization technique can be regarded as the higher-order continuous version of the
method proposed in [97], which has also been applied in the conforming isogeometric analysis setting [ 58].

From Eq. (14c), it is seen that the skeleton stabilization term penalizes jumps in higher-order pressure gradients, where the pa-
rameter J; should be selected such that oscillations are suppressed, while the influence of the additional term on the accuracy of the
solution remains limited. The purpose of the skeleton stabilization method is to avoid pressure oscillations induced by inf-sup stabil-
ity problems, allowing for the utilization of identical spaces for the velocity components and the pressure. Since the inf-sup stability
problem is not restricted to the immersed boundary, the skeleton stabilization pertains to all interfaces of the background mesh. The
appropriate selection and scaling of the skeleton stability parameter is discussed in detail in Section 2.3.2.
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2.3 Selection of the stabilization parameters: continuity and coercivity of the formulation

Before considering a posteriori error estimation in Section 3, we first study the continuity and coercivity of the immersed formulations
introduced earlier. We commence with the introduction of the following inequalities:

(1)

()

(3)

Using Young’s inequality, it follows that for any constant & > 0 it holds that
1
2ozl 1> < ellu® 7 + - 1|7 vu' e U, Vi e U". (15)
In combination with the Cauchy-Schwarz inequality, this inequality can be applied to obtain

1
2 (0u")u"dS < elldt I g,y + =112 g, V' € U (16)
aQp £

For any background element K crossed by the boundary 92, with E = K N 9€2, under the assumption of shape regularity (i.e.
provided with an upper bound on the length of the intersection of the boundary within one single element meas (K N 9$2)),
it holds that (see, e.g. ([98 Lemma 4.2])

#1175y < Crlihe " ?pll% ey Vo € P* (17)
(E) (K)

where it is noted that this inequality holds for the finite-dimensional space P* of tensor-product polynomials of order k (not for
functions in H' in general). The constant Cr > 0, referred to as the trace inequality constant, is independent of the size of the
element, but dependent on the order k. Note that the right part of the inequality contains the norm over the full background
element K, and not just its intersection with the physical domain.

Using inequality (17), the following bound for the normal gradient of " on the immersed boundary is obtained:

19,4172 0y < IV ooy = D IV o)
E€Tha

<Y Crl PVl o < Crllhr PVt W e UP, (18)
Keg

with h7 defined in Eq. (2) and where, with abuse of notation, the constant Cr is used to both represent the local trace inequality
constant (second line) and its global maximum (third line).

Norms of functions over the entire background domain 7 can be bounded by norms over the physical domain €2 and the
GP. Using the GDP, the gradients on the background mesh are bounded by those in the physical domain. To demonstrate this
bound, we split the norm over the background mesh as

VW 132y = IV 12 gy + 1V 1 g

< Vi) + 1V 15 gy = IV oy + D IV I5 ) V' € UM (19)
Keg

To show this inequality, we consider an element K € G, which shares the interface Fwith an element K’ ¢ G that completely
lies inside €2, such that the volume integral over the background element K is included in the norm over 2. We will first
demonstrate that the gradients on K are controlled by the GP and the norms on the physical domain. Later on, elements in
G that do not share an interface with an element in 7 \ G will be considered by means of recursion. To demonstrate that
the gradients on K are bound by those in the physical domain, we define the polynomial extension of u”" |K, as the global

polynomial 12?( € P* (see Fig. 3). Using this extension, the spline function u" on the element K can be decomposed as
h —h —h
u }K = U + tg. (20)
Let us consider x as a projection of & on the straight or flat interface F, such that x can be written as ¢ + x,np, where
x, = (x — xr) - np. Here, the interface coordinate xr € F isinterpreted to be on the side of the element K, and related to the

coordinate x € K. The function i, has no support on K and has vanishing normal derivatives up to order k at the interface
F. By Taylor-series expansion one can infer

1 1
i (x) = Ea,f(uh (xp) — b (xp) )k = Eaj[[uh (xp)]aE Vx e K, Vi" e U". (21)
This splitting is very natural through the use of maximum regularity splines (i.e. i, contains all degrees of freedom of K that
are independent of K).

For the polynomial extension it”, it holds that

IVt 7o) < Coll Vi llfagey  Vu* € U, (22)
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Figure 3 Panel (a) is an illustration of a second order B-spline on an element K € G and its adjacent element K with an interface F. Panel (b) is
its second order gradient in the direction normal to the interface (with e, the unit vector in the normal direction). Panels (c) and (d) show the
dependence of the constants in (22) and (23) on the order k.

where the constant Cg, is independent of the mesh size, but dependent on the order of the approximation and the ratio of the
size of the elements at either side of the interface. The order-dependence of this constant is illustrated in Fig. 3c. The presented
results have been computed by solving the generalized eigenvalue problem corresponding to Eq. (22).

From the definition of the expansion ﬁlh<, in Eq. (21) it follows that

1 k
~h k-h\ .k k ~h
||VuK/||§Z(K)=||—,(VF8nu)xn+ o @) 2

= (kl)z (” (VFaflzh) xﬁlliZ(K) + ||k (afﬁh) xﬁ_l”IZJ(K))

< - (k')2 (”VFakuh”LZ(p)(2k+ 1) 1h2k+l +k2”8k~h”L2(F)(2k 1) thk 1)

IA

Cr 2k—1 ) qk~h2 Cr 2k—1 k, hT12
ThF ”anu ”LZ(F) = Thp ”I]:anu :I]”LZ(F)’ (23)
with hp = max (hg, hi ) the size of K in the direction normal to the interface and where V denotes the surface gradient in

the interface F and where use has been made of the polynomial inequality ||V fh 12 nE) S < hy 22 fh || for all f e Pk [99].
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The dependence of the constant Cr. in the inequality (23) on the order is illustrated in Fig. 3d. This constant is independent
of the mesh size.
Substituting the decomposition (20) in Eq. (19) yields

IV 2 gy = D IVl + Vil 2 <2 (||Va§’</||i2(K) + ||Va§g||§2(K)) V' e U (24)
Keg Keg
Using the inequalities (22) and (23) and noting that since K’ € T \ G itfollows that || Vﬁfhg ||iz(1<,) = ||Vu" ||]2_2 ) then results
in
IV < (Co = DIV I7ag) + D Coh IS Ty Vo' € U, (29)

FeF
where Cg = 1 + 2 maxgeg(Cq ). To obtain this result, the inequality is first applied to the layer of elements in G that share

an interface with the interior mesh 7\ G. With control over the gradients in this first layer, the inequality is then applied to
a second layer of elements. This recursive application is repeated until all elements in G have been considered. As a result of
this recursive application of the ghost inequality, the constant C; depends on the number of layers, which in turn depends on
the mesh size.

The boundedness of the gradients on the background mesh finally follows by substitution of (25) in (19):

IV 527y < Call Vil I gy + Y CehE IO Ty Vi € U™ (26)

FeF

(4) Forany ph € U;’ , there exists aw” € Vuh such that

—dy (" w") = Gl PP I — G Y / T ok p" 1105 p T ds, (272)
FEF eleton
h —1/2 h
W[l < Csllw™p" 2 (7). (27b)
with ag according to (14b) and ||| - ||l the velocity energy norm (see Section 2.3.2), for certain positive constants C;, C3 >

0 and a non-negative constant C, > 0. The existence of a velocity field w' in accordance with (27) is established in (Lemma
3.11] for piecewise linear (k = 1) polynomials. However this result generalizes to polynomial orders k > 1 and increases the
continuity of the pressure and velocity spaces. Proof of (27) in the general case is, however, extensive and beyond the scope
of the present manuscript.

2.3.1 Steady heat conduction

Continuity of the bilinear form (11a) cannot be shown in the H'-norm on account of the immersed boundary terms, and coercivity
cannot be shown in the infinite-dimensional space. However, with an appropriate selection of the stabilization parameters, continuity
and coercivity can be established with respect to the mesh-dependent norm

2 Qa— 2 ~
11 s = 0V 1y + 18720, Iy + 1B W gy + D 17 P[0 Ty V" € UM (28)

FeFghost

which we refer to as the energy norm.
The bilinear form (11a) is continuous on U" x V" if there exists a constant, C > 0, independent of the mesh size, such that

ah(uh, vh) <C H|uhH| |||vh||| V' e UM, W' e V. (29)
Using the Cauchy-Schwarz inequality, for all «" € U, v" € V" one obtains
d" (' V") < IVl @) IV @) + 18720, e oan) 1B 0" 12 g

+ 1B e an 1B 0 e + Y 1B 26 e 1B e

E€Thay,
+ > 17 P L5 D ey 17 2L Tl )
Fe&Fghost
Since each of the norms in this expression is bounded from above by the energy norm (28), it follows that a'(u",v") < § | || ul H| |th || |

Hence, the bilinear form is continuous.
The bilinear form (11a) is uniformly (i.e. independent of i) coercive on U" if there exists a constant, ¢ > 0, such that

ah(uh, uh) > c}”uhmz u" e U (30)
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To demonstrate that this is indeed the case, we apply the inequalities (16) and (26) to obtain

1 Cr _ _
a'(u, ) > (C—Gnvuhuizm -y C—G/th" 1[[8,’fuh]]2ds> — (e||a,,uh||i2(a%) + e 1||u"||§z<mn))

FE&Fghost

+ 2 B gy + D / 7el05 ] ds.
F

EE'F)QD FE]:ghost

Application of the trace inequality (18) and collecting terms then yields

1 : 2 . 2
he h h ~1 h Lon
a(u',u") > — — @Crh Vu —f—H —&)2 0,u
( ) H (CG v T ) L2(T) ((/) ) L2(0Q2p)
+ H G-eu| 4 > / 7 — 1) [0 TP ds,
L2(8%2p) F § Cg "

FE&Fghost

. . . cg' . e
for arbitrary ¢ > 0. By selecting element-wise constants 0 < ¢ < @ and 0 < ¢ < CLThT’ one can infer that coercivity is ensured

provided that
5 _ 1 - _ Cr o
B =Bh' = CrCoh' 7= yehiy ™' = C_h%:k L (31)
G

for all elements K and interfaces F, where the positive constants 8 > CrCg and y, > CrCy Vare independent of the mesh size. The
interface length scale is defined as hr = max (hy, hx') with Kand K being the elements on either side of the interface F. The rational
behind this choice is that the ghost stabilization term scales with h%;kil (k> 1) and that hence, the larger element size ensures that the
stability constant is sufficiently large.

2.3.2 Steady viscous flow
Recalling that for the Stokes problem ut = (4, p"), we define the mesh-dependent energy norm as

117 = (11 oI = flw I + 21 (32)
with
I = 120 12 oy + 1B 21 20 2 gy + 1B 2 1
+ D 7P L T g, (33a)
FeFghost
M7 = 2 ey + D0 1720 2T D (33b)

FE€Fgeleton
Continuity of the bilinear form (13a) with respect to this energy norm in the sense of (29) follows directly by application of the
Cauchy-Schwarz inequality to all terms in (13a).
With an appropriate selection of the stability parameters for the Stokes problem, it holds that the bilinear form (13a) is inf-sup stable
in accordance with

sup ah(uh’ vh)

S evi\{o} >

el

where ¢* > 0 is referred to as the inf-sup stability constant. To demonstrate this stability property, we recall the splitting of the bilinear
form a" according to (13a) and (14). We now take a function ¢" = (v', ¢") = (u" — aw", —p") € V", where w" depends on p" in
accordance with (27), and with some constant & > 0, such that

sup h(uh Vh) ah(uh (ph)
hevingoy L) S ’
VO I = T

. a;ll(uhmh) _ Oml{(uh’wh) —aag(ph,wh) + ag(ph’ ph)
- "

el vu' e U, (34)

vi' e U (35)
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Following Section 2.3.1, a” (u", u") is coercive (with constant ¢*) and a (u", w") is continuous (with constant C*) with respect to
the velocity energy norm (33a) in accordance with Egs. (29) and (30), respectively. Hence,

by £ | I o L I, k) £
g VI + 202 [ I+ 111
where use has been made of
"Il =/l = w2+ 2117 < /2 (el + 202 [[[we] + 1. (37)

From the inequalities (27) it follows that

O O e L A R e A
v =
e 2RI + (1 202 [
e P (L~ “C;"/sflhlzﬂkﬂ) | 151/2“71/1[85‘” T o, (38)
V2 + (20 [
which, using Young’s inequality (15) with & = 1, can be reformulated as
b ) (c2 = G9) Il +er (2 = 52 w2002
mEO T 2 Gl
. (- acm_lhik:l) A U L ) (39)
Co[[Ju
Inf-sup stability as in (34) then holds, provided that
2 *
o< c;cé’ 7o =y > QG (40)

We note that the skeleton penalty has two purposes: (i) It extends the stability of the pressure field to the background grid 7 as
in (27), in the same way as for the GP discussed in Section 2.3.1. Since stability is here defined with respect to the L*-norm of the
pressure field, the skeleton stability constant J scales with k1) following the same reasoning as in Eq. (26); and (ii) It ensures
the inf-sup stability for equal-order discretizations, essentially meaning that pressure oscillations in the interior are penalized. This is
the reason why this term is applied over the complete skeleton and not only the ghost interfaces.

3. ERROR ESTIMATION AND ADAPTIVITY

We study a posteriori error estimation and adaptivity for immersogeometric analysis. In Section 3.1, we first introduce a residual-
based error indicator and elaborate it for the heat conduction problem and viscous flow problem introduced in the previous section.
In Section 3.2, the refinement strategy is discussed.

3.1 Residual-based error estimation

We propose an error estimator pertaining to the background mesh, 7, of the form

E= Y nk (41)
KeT

where the element-wise error indicators, 7k, will serve to guide an adaptive refinement procedure. The derivations of the indicators
for the heat conduction problem and viscous flow problem will be elaborated in the following sections.
From an abstract perspective, the element-wise error indicators are defined in such a way that the estimator (41) bounds the residual
from above as
EZ g (42)
In this expression, the residual and its (dual) norm are defined as

AENY = WE = Ve = W, (43a)
sup h(h
I lpm == 7"V "\ {0} M, (43b)

7]
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The function space Visyh corresponds to a suitable extension of V" in such a manner that V' contains an approximation of the
solution (possibly the solution itself) that is sufficiently accurate to estimate the error in the approximation «”" € V. An example of
such an extended space is an order elevated approximation space on the same mesh and with the same regularity as the space V", or
an approx1mat10n space with the same order and the same regularity on a hierarchically refined mesh. The Galerkin approximation
problem in V ! writes

PR hevh. at@h, oty = @") Vol eV (44)
The bilinear form@” : V" x V" — Ris an extension of the original bilinear form a" according to
al@h vt =a'@ vt + S @), (43)

where the auxiliary symmetric bilinear form s" contains additional stabilization terms. For instance, for an order-elevated space the

bilinear form s” contains jumps of higher-order normal derivatives (cf. (11a) and see [100-102)), and for a hierarchically refined mesh
s" contains the stabilization terms on the supplementary faces of the mesh. The additional stabilization terms vanish on the original
approximation space V' e
hovhx V= o). (46)
We equip V " with the extended energy norm according to
h
M-S = M-+ 5" CL ), (47)
With a suitable choice of the stabilization parameters in a" and s, the bilinear form 2" is weakly coercive and continuous. It is to be

noted that this may require that the stabilization parameters in a” are larger than would be required for weak coercivity of a" on V" x
V. By virtue of (44)—(46) and the weak coercivity and linearity of a", the following chain of inequalities holds:

il\lp bh ~h _ h h,Ah
£ 2 [P @l =7 o) LI LT
sllp ~h(~h =~h _Ah W~k
:;;hef/‘h\{o} a"(u ’UH)|T)\h|‘|1| (u",v™)
sup mhfmh ko
||IV"|||
h

with the error in the ultimate expression accordingtoe := u" — u". The chain of inequalities in (48) implies that the error estimator £
controls the error in the extended energy norm, [||el|5 .

The reason for defining the residual as a map from V" to V" is that the stabilization terms in the residual are generally unbounded
in the ambient space of the continuum problem, viz. H'($2) for the steady heat equation and H' (2, RY) x L?(R2) for the steady
viscous-flow equation. As we will elaborate in Sections 3.1. 1 and 3.1.2, the refined approximation " is not required for the calculation

of the residual-based estimator (41). The extended space vh merely serves to establish the error-control relation (48).

3.1.1 Steady heat conduction

To derive the error indicators for the steady heat conduction problem introduced in Section 2.2.1, it is first noted that because of the
Galerkin orthogonality

M) = @ - 1) = H(5), (49)
where 5 =" —T1"" € VP and 1" : V' — Vh are an interpolation operator [103, 104]. Note that, for notational convenience,
we will drop the diacritic and superscript from 7" € V " in the remainder of this section, i.e. 7" = v.

Using the definition of the residual (43b) in combination with the definitions of the bilinear and linear forms (11a) and (11b),
(reverse) integration by parts yields

rh (1;) = Z / volumev dV + / neumannu dS + / ( mtsche) a v dS + / hﬂ mtschev dS
KNQ KNaQy KNap KNaQRp MK

KeT

+ f ( ]ump>vdS+ / yghik‘1< g}m) [8ks]dst, (50)
OKNF gkeleton OKN Fghost

where

rh = f—|— Auh, (513)

volume

" =q— A", (51b)

neumann
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rﬁitsche =8 uh’ (SIC)
1

rjﬁlmp = E[[anuh]]a (Sld)
1

rghost = E[I:arllcuh:n (Sle)

The factor % in the jump and ghost terms accounts for the presence of the associated interfaces in two elements. Using the Cauchy—

Schwarz inequality, it then follows that

Wy~
[ (9)| < E Il olume”Lz KmQ)”V”LZ xkne) + ”rneumann”Lz(KOBQN)”V”LZ (KN )
KeT

h ~ —1y.h -
+ 17 niesche 122 (kNo2) 1007l L2 (kM9 2 ) F Bl issche l22 (ko) 1711 L2 (kna 2 )

+ D Whmplleoxnm 19l grnm + D VehE ™ Ikl oxom NTOS T2 o) | - (52)

FeFgeleton F&Fghost

The various norms on the interpolation error # can be bounded by the energy norm (28) on v, where both functions are considered
to be piecewise polynomials. Using the cut-element specific inequalities discussed in Section 2.3 (see also [76]) in combination with
standard volumetric and boundary interpolation inequalities (e.g. Clément interpolation [105]) it follows that

92 Kmsz)< ||V||L2(K) S ||V||L2(K) S hK”VV”LZ(E) 5 hi vl (533)
1902 (kroe) S by : 1902 (k) S hz vl (53b)

10,9112 (kno20) S h;%”Vﬁ”LZ(K) N h;% lvlllz (53¢)
||V||L2(aKmF) S h : ol (K) ~ S hz vl (53d)

IOS T2 oy S 105k llizoxnr) + 08k 2 (orrney S héik Ivllzuz » (53e)

where K is the support extension [44] of the element K and K is the element that shares the interface F with element K. The residual
can then be bounded as

1
h- I 30
() < E Bl otame 12 (kn@) F B 1 seumann 122 (kNa©y)
KeT

1 1
a2, a0
+ hK ’ ”rnitschel'LZ(KmaQD) + ﬁhK ’ ”rnitsche “Lz(KﬁaQD)

Z h [E2 ]ump”LZ aKﬁF)+ Z )/g ||rgh05t||L2 (0KNF) |||V|||Ku1<f (54)

FE&Fyeleton Fe&Fghost

which, using the discrete Cauchy-Schwarz inequality, can be rewritten as

LAOIS o IR - el
iz~ Z kI otume 172 (k) T i neumann 172 (kna0)
KeT

1y h 2 27— h 2
+ hg ”rnitsche”Lz(KﬂaQD) + B hg ”rnitsche”Lz(KﬁaQD)

k=1, h
Z hF” ]ump||LZ(3KﬂF) + Z ygzhlz'7 1||rghost||%,z(8KﬂF) . (55)

FeFgeleton F&Fghost
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Using the definition of the residual norm (43b), it follows that

I lps SE= |y nk, (56)

KeT

with the element error indicators defined as

2
nK - h ”rvolume”Lz(KﬂQ) + hK”rneumann”Ll(Kﬂ{)QN) + h( ”rmtsche”LZ(Kﬂ()QD) + ,3 h( ”rmtsche”Ll(Kﬂ{)QD)

k=1 h
+ Z he|r ]ump”LZ(aKmp)+ Z nghzzz 1||rghost”iz(8KﬂF)' (57)

Fe&Feleton F&Fghost

This error indicator reflects that the total element error for all elements that do not intersect the boundary of the domain is composed
of the interior residual and the residual term for the jump in the solution normal derivative across the element interfaces. It is noted
that for higher-order continuous discretizations, i.e. @ > 0, the jump contribution vanishes. For elements that intersect the Neumann
boundary, additional error contributions are obtained from the Neumann residual and the GP residual, while additional Nitsche-
related contributions appear for elements intersecting the Dirichlet boundary.

3.1.2 Steady viscous flow

For the Stokes problem introduced in Section 2.2.2, using (reverse) integration by parts, the error indicators in Eq. (41) are obtained
by considering the residual (43b) as

h(=~ h P h = h -
r (V) = Z f 1‘int,u v + rint,pq dV + /KDBQ l-rneurnann : VdS
N

KeT KNS

IBIth

T itsche

+ [ (1" ne) - ((20V¥)n + Gn) dS + / .vdS
KNoL2p K

nop hx

t 3 [ o vast B[ it ) Toas

Fe Faaeron * OKOF FeFgho
h2k+ .
+ skeletonﬂ:a ]]ds ’ (58)
FeFateton * OKOF
where 7 = v — [T"v = (¥, ) and
. =f+ V- (2uvat) — vl (59a)
Mg p =V -’ (59b)
rflleumarm =t (Zuvsuh) n -+ phnv (59C)
1‘ﬁitsche =g uh’ (Sgd)
A 1[[ 2uviu')n], (59)
l‘]ump ( 1< e
ghost = ﬂ:ak h]] (59f)
rilkeleton = E”:arlfph]] (59g)

Application of the Cauchy-Schwarz inequality gives

hi= h - h -
|” (V)| = Z ||1‘im,u||L2(Kmsz)||V||LZ(KnQ) + “rint,p”L’-(KﬁQ)”q“Lz(KﬂQ)
KeT

I 5
+ % eumann 122 (kna ) 11122 (kN9 Q)

+ e sene 2 (ko) (221 (V9) mlli2knoan) + 1112 (kno0s))
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—1 h ~
+ MﬂhK ”rnitsche”Lz(KﬁaQD)”V”L?—(KDBQD)

h -
+ Z ||1',-ump||L2(3KﬂF)||V||L2(3KmF)

Fe&Feleton

+ D e Il oxem | OS] 2 ok

Fef-'g,Ost
+ D 1T I M geon 2 o) 1L95GD 2 ok (60)

FEF fuon

which, using the inequalities (53) and
lqll:xkne) S Nalle ) (61a)
Il kroe) S b ldllea) S b gl @) (61b)
) ) _ -

||[[3fq]]||L2(aKmF) 5 ||3,1f£1K||L2(3KmF) =+ ”aylf‘]K’”LZ(aK’ﬂF) S hp ||¢1||L2(1?Uf<‘f), (61C)

can be rewritten as

h- -1 h Lok —L 50k
@] Y A el @) + 22 Ik lewne) + 172 It 2 @ony)
KeT

1 1 1 1
1 h 1 h
+ 3z b el (knon) T+ 42 Bhy * 1fniehe l12 (kna90)

11 1 k=1
- h h
+ E w2 bl 22 (oxnr) + E w2 Yehe * lIxgnoq Iz (oxnr)

Fe&Foeleton FE‘FgKhost
R
+ Y v W eenllizokor) ¢ IVIIROR - (62)
FeFK

skeleton

Note that the factor 3 in front of the Nitsche residual results from the fact that both terms 2| (V*V) n|l12(xnoey) and 1141112 (knogn)
are bound by the same norm. Following the same steps as for the heat conduction problem, we then obtain the element error indicators
as

2,112 b 2 h 2 -1 h 2
Nk =M hK”rint,u”Lz(KﬁQ) + I’L“rint.,p”Lz(KﬁQ) +tu hK”rneumann”Lz(Kl"ISQN)
—1|h 2 27 —1h 2
+ 9lu’hK ”rnitsche”Lz(KﬁaQD) + V“IB hK ”rnitsche”Lz(KﬁaQD)

- hoo2 22k 2
+ Z T T L [ Z 1Y hy egow T2 oxrr)

Fe&Feleton FE]:inmt
-1 2h2k+l” h ”2 (63)
noyeng Tskeleton Il 12 (0KNEF)*
FeFK

skeleton
Compared to the error indicators for the heat conduction problem, we here get one additional term to represent the error in the
balance of mass, i.e. || rﬁm P l.2(kng), and one term related to the skeleton-stabilization, i.e. || rﬁ‘keleton | 22 (9xnF)- Moreover, note that the

mass and momentum balance terms are scaled with ,u_% and > , respectively, in order to be dimensionally consistent with the energy
norm (32).

3.2 Adaptive solution procedure

We employ the residual-based error estimator introduced earlier in an iterative mesh refinement procedure. In each iteration, for
the given mesh, we solve the Galerkin problem (8) and subsequently compute the element-wise error indicators (41) (and the
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Cut elements V7777 Uncut elements Void elements
L

Figure 4 Ilustration of the refinement procedure for cut elements. The original element is subdivided into integration subcells (blue borders)
using the recursive bisectioning procedure detailed in [22]. At the lowest level of bisectioning a triangulation procedure is employed. After one
refinement of the original element the original element is split into four elements, of which one is now an uncut element and the other three are
cut elements. The bisectioning depth for the determination of the integration subcells is reduced by one level compared to the original element,
so that the subcells remain identical under the element refinement operation. After one further refinement step, each of the four elements in the
first refinement is further refined, resulting now also in elements that are void and are hence discarded from the background mesh.

corresponding estimator). Based on the indicators, certain elements are then refined, after which the procedure is repeated on the
refined mesh. These iterations are continued until a stopping criterion is satisfied.
We consider Dérfler marking [106] to select the elements to be refined. In this marking strategy the marked set, M, is defined as a

minimal set of elements such that
Yom=a Y uk=2E, (64)
KeM KeT

with A a selected fraction of the error estimator. For the considered (truncated) hierarchical spline meshes, refining elements does not
necessarily result in a refinement of the approximation space [71,94]. To ensure that the approximation space is refined, an additional
step is required in which a refinement mask M DO M is defined. To determine the refinement mask, for each element K in the marked
set M we determine the support extension

K = {supp(N) | supp(N) NK # &, N € H(T)}. (65)

and then refine the elements in each support extension, which are not smaller than the element K i.e.

M= K ek K eusT KeTH], (66)
KeM

During the element refinement procedure, the geometry approximation is not altered, as illustrated in Fig. 4. In our implementation,
the bisectioning depth used to determine the integration subcells is lowered under refinement, resulting in the preservation of the
integration subcells under refinement. This ensures that the boundary of the segmented geometry is invariant under mesh refinement.
A consequence of this choice is that an element can only be refined up to the level of the integration subcells. Elements requiring
refinement beyond the level of the integration subcells are discarded from the refinement list, and the adaptive refinement procedure
is stopped if there are no more elements that can be refined.

4. BENCHMARK SIMULATIONS

In this section, we assess the developed residual-based adaptive refinement technique on a range of numerical experiments. For both
the heat conduction problem (Section 4.1) and the viscous flow problem (Section 4.2), both singular and non-singular test cases are
considered. For all simulations, exact reference solutions are available, allowing for a rigorous study of the stability and accuracy of the
developed adaptive immersed isogeometric analysis framework. For all simulations, the octree subdivision depth is set equal to the
desired maximum number of refinements (see Section 3.2), and the refinement threshold is set to A = 0.8. Throughout this section,
the problems are considered to be in dimensionless form.



220 « Journal of Mechanics, 2022, Vol. 38

(-0.5,0.5)  9Qp  (0.5,0.5)
0.4
1:5
1.0
0.2
o092 p Q 00 p 0.5
0.0 0.0
-0.5
(-0.5,-0.5) 90 p  (0.5,-0.5) -0.2
-1.0
Yy 2
_04 1:5
L} x -0.4 -0.2 0.0 0.2 0.4

(a) (b)

Figure S (a) Problem setup, and (b) the exact solution u(x, ), Eq. (67), for the Laplace problem on the unit square domain.
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Figure 6 Error convergence results for the Laplace problem on the unit square domain under residual-based adaptive refinement (solid) and
uniform refinement (dashed) for linear (k = 1) and quadratic (k = 2) basis functions.

4.1 Steady heat conduction

We consider the two-dimensional heat conduction problem on a unit square, on a star-shaped domain with a smooth exact solution,
and on a domain with a re-entrant corner, for which the exact solution has a reduced regularity (Section 4.1.3). The problems are
discretized with linear (k = 1) and quadratic (k =2) (TH)B-splines using both uniform and adaptive refinement. All examples con-
sider a non-conforming ambient mesh positioned at an angle of 20° (see Figs S a and 9a), unless specified otherwise. The empirically
selected Nitsche and GP parameters are set to f = 50 and y, = 10-(k+2), respectively.

4.1.1 Unitsquare
LetQ =[— %, % % be a unit square with the Dirichlet boundary d$2p, (see Fig. Sa). We define the exact solution of the problem (10)
as
u(x, y) = sin(mx) + sin(mry), (67)
which is shown in Fig. Sb. The heat source f corresponding to this exact solution is equal to 0, and the Dirichlet datais setto g = u|yq,,
matching the exact solution.
Figure 6 shows error-analysis results using both uniform and adaptive refinements for the linear case (Fig. 6a) and for the quadratic
case (Fig. 6b). Both refinement procedures start from an initial mesh consisting of 8 x 8 elements covering the ambient domain [ — 1,

1]*. Optimal convergence rates are obtained for both the error in the L?-norm (i.e. O(n~ 3 (k1) )) andin the H'-norm (i.e. O (n~ 3k ),
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Figure 7 (a) Problem setup, and (b)-(f) contour plots of the error, u — u", for the Laplace problem on the star-shaped domain at the end of six
adaptive refinement steps for different angles of mesh rotation 9.

with n denoting the number of degrees of freedom. Moreover, as the number of refinement steps increases, the energy norm and H'-
norm of the error coincide, indicating that the error is dominated by the H'-semi-norm contribution in Eq. (28). The estimator (41)
is observed to converge at the same rate as the energy norm, bounding the energy norm from above, consistent with Eq. (48). Be-
cause of the smooth solution (67), the refinement pattern following the adaptive refinement procedure closely resembles the uniform
refinements, as observed from the close correspondence between the error results for the uniform and adaptive simulations in Fig. 6.
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Figure 9 (a) Problem setup, and (b) the exact solution u(x, ), Eq. (68), for the Laplace problem on the re-entrant corner domain.

4.1.2 Star-shaped domain

To study the sensitivity of the adaptive simulation framework to the cut-cell configurations, we consider the star-shaped domain shown
in Fig. 7a for various orientation angles 9. The star-shaped domain is constructed using the level set function

¥ (x,y) = Ry + Ry sin(ngq arctan2(y, x)) — v/« + 52,

with R; = 0.6, R, = 0.2 and n¢,)g = 5 [107]. On the boundary of the domain the Dirichlet data is set equal to the same exact solution
(67) as in the previous example. For all orientations, an initial mesh of 10 X 10 elements covering the ambient domain [—1, 1]*
is considered, after which local refinements using second-order THB-splines are performed until the smallest elements have been
refined six times.

Figure 7b—f shows the error u — u" after completion of the refinement procedure. These figures convey that both the error and the
refinement pattern are similar for all orientations. This is corroborated by the results in Fig. 8, which indicates that both the number
of degrees of freedom and the errors (in various norms) are insensitive to the orientation angle.

4.1.3 Re-entrant corner

To study the behavior of the adaptive simulation strategy for problems with (weakly) singular solutions, we consider a domain with
a re-entrant corner, as shown in Fig. 9a. The data on the Dirichlet and Neumann boundaries, u|3o, = g = 0 and d,u|yq, = g, is set
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Figure 10 Error convergence results for the Laplace problem on the re-entrant corner domain under residual-based adaptive refinement (solid)
and uniform refinement (dashed) for linear (k = 1) and quadratic (k = 2) basis functions.

to match the exact solution [62, 71],
1 2
u(x, y) = (x> +y*)5 cos (garctanZ(x —y,x +y)> . (68)

The convergence behavior of the L*-error, H'-error, energy norm error (28) and the residual-based estimator (57) is studied for
uniform refinement and residual-based adaptive refinement. Both refinement procedures start from an initial mesh of 10 x 10 ele-
ments formed on the ambient domain [— %, % 2 The convergence results for first- and second-order B-splines are shown in Figs 10
a and b, respectively. Evolution of the adaptive mesh is shown in Fig. 11.

Under uniform refinement, the convergence rates are impeded by the weak singularity at the re-entrant corner. For the L*-error and
H'-error, suboptimal rates of O (n‘é )and O (n_% ) are observed, which is in agreement with the expected rates [ 108]. These rates are
independent of the order of the approximation as the regularity of the exact solution limits the rate already for the linear case. As for
the cases considered above, the energy error and estimator follow the convergence of the H'-error. The effectivity of the estimator—
defined as the ratio between the error estimate and the actual error in the energy norm—is shown in Fig. 16a. This result conveys that
the effectivity index is essentially independent of the mesh size and that there is a close correspondence between the estimator and
the error in the energy norm.

Using the adaptive refinement strategy with linear basis functions, the optimal rates of O(n™!) and O (nfé ) are recovered for the
L*-error and H'-error, respectively. For the quadratic case, rates that are substantially higher than the theoretical rates are observed.
We attribute this to pre-asymptotic behavior, in which the refinement pattern as shown in Fig. 10 is strongly focused on the re-entrant
corner singularity. After the first two steps, the errors become dominated by the singularity at the re-entrant corner, which results in the
further refinement of the few elements in the vicinity of the corner. These refinements do reduce the error, while they only introduce
alimited number of additional degrees of freedom. The observed flattening in the rate of the L*-error in the quadratic case is caused
by the refinement reaching the maximum level in the elements in the corner, which causes the marking strategy to tag elements that
do not carry the largest error contributions.

4.2 Steady viscous flow

We regard the two-dimensional Stokes flow problem on a quarter annulus ring domain with a smooth solution and on the above-
introduced re-entrant corner domain with a singular solution. We consider equal-order discretizations for the velocity and pressure
fields using optimal regularity (TH)B-splines of degree k = 1 and k = 2. For the Nitsche and GP parameters, the same settings are
used as for the Laplace problem considered above, i.e. 8 =50 and y, = 10~ *+2) In addition, a skeleton-penalty parameter of y; =
10~*+1) js used for all simulations.

4.2.1 Quarter annulus ring
We consideran annulus ringdomain @ = {(x, y) € R?, : R* < «* + y* < R}}withinnerradius R; = 1, outer radius R, = 4, Dirich-
let boundary 9€2p and Neumann boundary 9€2y;, as shown in Fig. 12a. The Dirichlet data g and the Neumann data ¢ are prescribed
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Figure 11 Evolution of the mesh using the adaptive refinement procedure for the Laplace problem on the re-entrant corner domain using k = 2.

in accordance with the divergence-free manufactured solution [58]
7 (x,y) = 10_6x2y4(ac2 —|—y2 — l)(ac2 —}—yz —16) (Sx4 + 18x2y2 — 85x% + 13y4 - 153y2 + 80) ,
ur(x,y) = 10 %xy° (o« + 3> — 1) («* +y* — 16) (102x” + 34y> — 10x* — 1247y* — 29" — 32),
px,y) = 10_7xy(y2 N a1Ca +y2 —16)*(x* —|—y2 —1)? exp(14(x2 —{—yz)_]/z). (69)
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Figure 12 (a) Problem setup, and (b)—(d) the exact solution components u; (x, y), u(x, y) and p(x, y), defined in Eq. (69), for the Stokes
problem on the quarter annulus ring domain.

The body force f in the Stokes problem (12) is determined based on this manufactured solution, with the viscosity set to st = 1.

Evolution of the adaptive mesh is shown in Fig. 14. Figure 13 displays the convergence results for the annulus ring problem. Both
the uniform refinement results and the adaptive refinement results are obtained starting from a 9 X 9 uniform mesh on the ambient
domain [0, R,]* = [0, 4]%. A good resemblance with the optimal rates of O (rF%k) in the velocity H'-norm and pressure L*-norm is
observed, and, as expected, the rate of the velocity L*-erroris O (n~ 3 (kD) ). The error in the energy norm (32) is observed to converge
with the same rate as the H' -norm velocity error and L?-norm pressure error, which is in agreement with the definition of the energy
norm. As expected, the error estimator bounds the error in the energy norm from above.

Although optimal convergence rates are obtained using uniform refinements, the adaptive refinement procedure is observed to
substantially improve the error for a fixed number of degrees of freedom. This behavior is explained by the observed refinement
patterns, as shown in Fig. 14. Although the exact solution (69) is smooth, in particular, the steep gradients in the velocity solution
lead to local refinements. This effectively reduces the error when compared to a uniform refinement with a similar number of degrees
of freedom.

4.2.2 Re-entrant corner

As a final benchmark problem, we consider the Stokes problem (12) on the re-entrant corner domain with mixed Dirichlet and Neu-
mann boundaries introduced earlier, as shown in Fig. 9a. The weakly singular exact solution is taken from [109] as

R“[sin(@)aa—w —(1+4+a) cos(@)l/f] Re-1
—R“[cos(@)a—g+(1+Ot)sin(9)1//] p=

31

3
[(1+a)2%+%] (70)

w2 _l—oe
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Figure 13 Error convergence results for the Stokes problem on the quarter annulus ring domain under residual-based adaptive refinement
(solid) and uniform refinement (dashed) for linear (k = 1) and quadratic (k = 2) basis functions.

with constants @ = 856399/1572864 and w = %n’, and with

cos(aw)

M sin((1+a)f) — T o sin((1 —a)f) + cos((1 — a)f) — cos((1 + )0). (71)

Vo) = 1+«
The exact pressure and velocity fields are illustrated in Fig. 15. The corresponding Stokes problem (12) is considered with the viscosity
set to ;t = 1, no body force, f = 0, a no slip condition on I'p, such that up = 0, and the Neumann data g on I'y matching the exact
solution.

Evolution of the adaptive mesh is shown in Fig. 18. Figure 17 displays the error convergence results obtained using uniform and
adaptive refinements, for both linear and quadratic (TH)B-splines. As for the Laplace case, the weak singularity in the exact solution
(70) limits the convergence rate when uniform refinements are considered. Using adaptive mesh refinement results in a recovery of
the optimal rates in the case of linear basis functions, with even higher rates observed for the quadratic splines on account of the highly
focussed refinements resulting from the residual-based error estimator as observed in Fig. 18. The effectivity of the estimator is shown
in Fig. 16b, illustrating the close correspondence between the estimator and the error in the energy norm.

S. SCAN-BASED SIMULATIONS

In this section, we apply the developed adaptive immersed isogeometric analysis framework in the context of scan-based analysis. We
consider the viscous flow problem on a two-dimensional image domain and on a three-dimensional patient-specific problem based
on a 1CT-scan of a carotid artery, represented by grayscale voxels. The primary purpose of the two-dimensional setting is to test the
scan-based analysis framework. For all simulations, the octree subdivision depth is set equal to 8 in two dimensions and 3 in three
dimensions. The refinement threshold related to the Dorfler marking is set to A = 0.8.

Our scan-based analysis workflow is illustrated in Fig. 19. The first step in this workflow is to smoothen the original grayscale voxel
data using a convolution operation on a B-spline basis formed on the voxel grid [82]. Since this smoothing operator behaves as a
Gaussian filter geometric features that are similar in size to the voxels can be lost [110]. To avoid this loss of features the topology-
preservation procedure proposed in [110] is employed. This procedure locally refines the convolution basis to retain small geometric
features in the smoothing procedure. Once the smooth level set representation has been obtained the octree segmentation procedure
with mid-point tessellation of [22] is used to obtain the immersed geometry represented on an ambient domain mesh. It is important
to note that this ambient domain mesh on which the solution to the flow problem is computed, can be chosen independently of the
voxel size, and hence, it is independent of the mesh on which the level set function is constructed.

The considered computational domain isillustrated in Fig. 20a. Neumann conditions are imposed on the inflow and outflow bound-
aries with the traction on the inflow boundary acting in the normal direction with a traction data, ¢ = —pn, where p is the pressure
magnitude. Homogeneous Dirichlet conditions are imposed along the immersed boundaries in accordance with the no slip condi-
tion. It is to be noted that a Neumann condition at an inflow boundary generally leads to an ill-posed boundary value problem for the
Navier—Stokes equations, but the Stokes problem is well-posed. In all simulations, we consider second-order (k = 2) (TH)B-splines
and set the stabilization parameters to 8 = 100, y, = 10-*+2 and y, = 10~ ** 1, which have been determined empirically.
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(a) Initial mesh (b) Step 1

(c) Step 2 (d) Step 3

HEE
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Figure 14 Evolution of the mesh using the adaptive refinement procedure for the Stokes problem on the quarter annulus ring domain using
k=2.

5.1 Two-dimensional prototypical geometry

To test the developed methodology in the scan-based setting, we first consider the prototypical two-dimensional geometry shown in
Fig. 20a, which is constructed from 32 x 32 grayscale voxel data. The ambient domain, which matches the scan window; is taken as
a unit square (L = 1), which is covered by an 8 x 8 elements ambient mesh. The viscosity is set equal to . = 1 and the pressure to
p=1

Various steps in the adaptive refinement procedure are depicted in Fig. 21. In the first step virtually all elements covering the flow
domain are refined, indicating that the initial mesh of only 8 X 8 elements is too coarse to resolve the solution globally. After the
first refinement step, the refinement strategy starts to focus on the regions where the errors are largest, i.e. near boundaries and narrow
sections, as also illustrated in Fig. 20b. Under further refinement, the procedure resolves prominent solution details, most importantly
the (Poiseuille-like) profile in the carotid part of the artery and the velocity profiles at the inflow and outflow boundaries.
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Figure 15 (a) Velocity magnitude and streamlines, and (b) pressure for the exact solution (70) to the Stokes problem on the re-entrant corner
domain. Because of the singular solution, the pressure color bar is truncated to the range —10 and 10.
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and uniform refinement (dashed) for linear (k = 1) and quadratic (k = 2 basis functions.
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(a) Initial mesh (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4 (f) Step 5

Figure 18 Evolution of the mesh using the adaptive refinement procedure for the Stokes problem on the re-entrant corner domain using k = 2.

Further results of the viscous flow problem solved using uniform and adaptive refinements are shown in Fig. 22 in the form of the
flux through the left and right outflow channels. The minor difference in results on the initial mesh (left-most points) is caused by
a different selection of the octree-depth for the uniform and adaptive simulations. Both methods are observed to converge to the
same fluxes under refinement, but an excellent approximation of the reference solution (computed on a uniform overkill refinement,
consistent with the result reported in [110]) is obtained by means of the adaptive mesh refinement procedure using substantially
tewer degrees of freedom than for uniform refinements. This is consistent with the observations on the velocity field discussed above
where in particular, the ability of the adaptive refinement procedure to resolve the flow in the carotid part is essential.
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Figure 19 Illustration of the scan-based analysis workflow. The original grayscale image in panel (a) is converted to a level set function, shown
in panel (b), which is constructed using the topology-preserving segmentation algorithm of [110]. The trimmed geometry shown in panel (c),
is then extracted using the recursive bisectioning strategy with mid-point tessellation of [22].
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Figure 20 (a) Illustration of the domain and boundary conditions for the scan-based viscous flow problem, and (b) a typical locally refined
mesh resulting from the adaptive procedure.

5.2 Three-dimensional patient-specific geometry

To demonstrate the residual-based adaptivity procedure in a real scan-based setting, we consider the patient-specific carotid artery
usedin [110]. The geometry of the carotid artery is obtained from CT-scan data containing 80 slices of 85 x 70 voxels. The size of each
voxel is 300 x 300 ;um?, and the distance between the slices is 400 pm. The total size of the scan domainis 25.6 x 21.1 x 32.0 mm?.
We set the viscosity to 4 mPa s and the pressure to 17.3 kPa (130 mm of Hg).

Simulation results for this problem are shown in Fig. 23. Note that for the considered scan data, the application of the topology-
preservation algorithm in [110] is essential as otherwise the narrow channel section in the right artery would disappear. The simu-
lation results are based on a 24 x 24 x 24 ambient domain mesh of 25.6 x 21.1 x 32.0 mm?® and an octree depth of three. In this
setting, after two refinements, an element is of a similar size as the voxels. The need to substantially refine beyond the voxel size is,
from a practical perspective, questionable, as the dominant error in the analysis will then be related to the scan resolution and the
segmentation procedure. In this sense, the constraint of not being able to refine beyond the octree depth is not a crucial problem in
the considered simulations.

Different steps in the adaptive refinement procedure are illustrated in Figs 23 and 24. In all the refinement steps, the re-
finement strategy starts to focus on the regions where the errors are largest, i.e. near the stenosed section (ie. the nar-
row region at the right artery) and at the outflow section of the left artery. Under local mesh refinement, the procedure re-
solves prominent solution details, most importantly the velocity field in the left artery and near the stenotic part of the right
artery.
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Figure 21 Evolution of the mesh and (magnitude of the) velocity field during the adaptive refinement process for the viscous flow in two
dimensions.
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Figure 22 Mesh convergence of the outflow flux at the (a) left and (b) right channel of the domain in Fig. 20a using adaptive (solid) and
uniform (dashed) mesh refinements.
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Figure 23 Velocity magnitude during the adaptive refinement process for the patient-specific viscous flow problem.

The flux at the outlet of the arteries is shown in Fig. 25, which is computed with the velocity field obtained by solving the flow
problem using adaptive refinements. The solution of the flux in the left artery is observed to gradually converge toward a value
of just over 5100 [mm?/s]. For the right artery, the maximum refinement depth is reached after the second refinement step. As
a result, the flux in the right artery does not substantially change anymore. At this point, the element sizes in the vicinity of the
stenotic artery are similar in size to the voxels. The error then becomes dominated by the geometry reconstruction procedure,
which also explains why the observed flux in the right artery deviates from the uniform mesh results in [110] viz. Qs = 2 in-
stead of the presently applied Qima.x = 3. It is observed that the adaptive procedure terminates after four refinement steps because
of reaching the maximum refinement level in all the elements tagged for refinement. At this point, the adaptive simulation uses 12
816 DOFs, which is substantially lower than the number of DOFs required using uniform refinements [110] which amounts to
approximately 10°.

220z 1snbny L g uo Jasn eined Jo Alsieniun Ag 261 E€659/S L 02BIN/WOlE60L 0 L/10p/8]01e/Wwol/woo dnoolwepeoae//:sdiy woly pspeojumoq



Residual-based error estimation and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical B-splines

(a) Initial mesh with 3158 #DOFs (b) Step 1 with 4161 #DOFs

(c) Step 2 with 8784 #DOFs (d) Step 3 with 12467 #DOFs

Figure 24 Evolution of the mesh during the adaptive refinement process for the patient-specific viscous flow problem.
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Figure 25 Mesh convergence of the flux at the left and right outflow boundaries using adaptive mesh refinements for the patient-specific
viscous flow problem.

6. CONCLUDING REMARKS

In the immersed (isogeometric) analysis framework, the geometry representation is decoupled from the discretization. This enables
the consideration of spline basis functions on complex volumetric domains, for which boundary-fitting discretizations cannot easily be
obtained. Moreover, the decoupling of the geometry and the discretization allows one to have a globally accurate representation of the
geometry, but only to refine the mesh in places where the errors are large. Such local mesh refinements have the potential to provide a
significant efficiency gain compared to uniform meshes. The adaptive simulation strategy proposed in this work automatically refines
the elements in places that significantly contribute to the error in the energy norm.

The developed error estimation and adaptivity strategy is based on residual-based error estimation, which is well established in tra-
ditional finite elements and has been successfully applied in boundary-fitting isogeometric analysis. In the considered immersed set-
ting, the residual-based error estimation and adaptivity framework require the incorporation of the stabilization terms for the weakly
imposed Dirichlet boundary conditions and, in the case of the (mixed) Stokes flow problem, for the treatment of equal-order dis-
cretizations of the velocity—pressure pair. Adequate scaling of the stabilization constants with the mesh size is essential for the adaptive
procedure to be effective. In particular, the order dependence of the stabilization constants and the definition of the local element sizes
must be treated adequately. An approach to evaluate the Nitsche stabilization parameter has been proposed in [26]. The development
of a similar computational strategy to determine the additional stabilization parameters considered in this work is an interesting topic
for further study.

In contrast to residual-based error estimation for boundary-fitting finite elements and isogeometric analysis, in the stabilized im-
mersed setting, it is not evident that the residual-based error estimator bounds the error in the energy norm from above. This is a
consequence of the absence of an h-independent weak formulation. In this work, it is reasoned, however, that under the assumption
of sufficient smoothness, the residual is expected to be useful in the setting of an adaptive refinement strategy. For all numerical simu-
lations considered, including simulations with reduced regularity, it is observed that the error estimator does provide an upper bound
to the error in the energy norm. A rigorous study regarding the relation between the residual and the actual error is warranted.

It is demonstrated that the developed adaptive simulation strategy is particularly useful in a scan-based analysis setting, where man-
ual selection of refinement zones is impractical. When used in combination with advanced image segmentation procedures to obtain
a smooth geometry representation while preserving small geometric features, the developed adaptive refinement strategy optimally
leverages the advantageous approximation properties of splines for geometrically and topologically complex domains. The adaptivity
strategy results in a simulation workflow that is capable of obtaining error-controlled results with limited user interaction.

The developed adaptive solution strategy is elaborated for the Laplace problem and the Stokes problem. For other problems, such
as, for example, Navier—Stokes or Cahn-Hilliard problems, the starting point of the derivation of the error-estimator remains the
same. The estimators are problem-specific, however, and hence need to be elaborated for such problems. The same holds for the
consideration of additional or alternative stabilization techniques, specifically when these alter the Galerkin form of the problem.
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