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ABSTRACT  

We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous 
flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the in- 
corporation of appropriately scaled stabilization and boundary terms. Element-wise error indicators are elaborated for the Laplace and Stokes 
problems, and a THB-spline-based local mesh refinement strategy is proposed. The error estimation and adaptivity procedure are applied to a 
series of benchmark problems, demonstrating the suitability of the technique for a range of smooth and non-smooth problems. The adaptivity 
strategy is also integrated into a scan-based analysis workflow, capable of generating error-controlled results from scan data without the need for 
extensive user interactions or interventions. 
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1.  INTRODUCTION 

Immersed finite element methods, such as the finite cell method [ 1 –3 ] and CutFEM [ 4 –6 ], are a natural companion to isogeometric
analysis [ 7 , 8 ]. The combination of immersed methods with the spline-based discretization strategy provided by the isogeometric
analysis paradigm is recognized as a valuable extension of isogeometric analysis because the immersed analysis concept provides a
cogent framework for the consideration of trimmed CAD objects [ 9 –14 ]. Moreover, immersed isogeometric analysis enables the
construction of spline-based discretization spaces for geometrically and topologically complex volumetric domains [ 10 , 11 , 15 ], a
simulation strategy referred to as immersogeometric analysis [ 16 , 17 ]. 
In comparison to boundary-fitting isogeometric analysis, the immersed isogeometric analysis strategy requires consideration of

three ( categories of ) non-standard computational aspects. First, the geometry of elements that intersect with the boundary of the
computational domain must be resolved by a dedicated integration procedure; see, e.g. [ 18 –23 ]. Second, Dirichlet boundary condi-
tions on immersed boundaries can generally not be imposed through basis function constraints. Instead, such boundary conditions
are frequently imposed weakly; see, e.g. [ 4 , 24 –26 ]. Third, unfavorably trimmed elements are notorious for causing i l l-conditioning
problems and, along Dirichlet boundaries, large unphysical gradients [ 3 , 12 , 27 –31 ]. This problem is amplified in the higher-order
discretization setting of isogeometric analysis [ 30 ]. Prominent computational remedies to overcome these problems are to supple-
ment the weak formulation with stabilization terms, see, e.g. [ 5 , 6 , 27 ], or to constrain, extend or aggregate basis functions, see e.g.
[ 14 , 32 –38 ] or to apply dedicated preconditioning techniques, see, e.g. [ 30 , 39 , 40 ]. 
For mixed formulations, such as standard weak forms of the Stokes and Navier–Stokes equations, the immersed isogeometric anal-

ysis setting imposes an additional challenge. In order to satisfy the inf-sup condition [ 41 , 42 ] in boundary-fitting ( isogeometric )
analyses, generally use is made of stable pairs of basis functions ( e.g. Taylor–Hood [ 43 –46 ] or Raviart–Thomas [ 45 , 47 –49 ] ) . Alter-
natively, stabilization techniques, such as GLS [ 50 –52 ], VMS [ 53 –55 ] or projection methods [ 56 , 57 ] can be used. Direct utilization
of these elements or stabilization techniques in the immersed setting can lead to non-physical spurious osci l lations in the solution,
even with relatively large and regular cut element configurations [ 58 , 59 ]. One remedy for tackling this issue is to employ a skeleton-
stabilized immersed isogeometric technique [ 59 ]. The fundamental idea of this stabilization technique is to penalize ( high-order )
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ressure derivative jumps over the edges/faces of the background mesh, resulting in stable discretizations using equal-order spline
paces. The technique proposed in [ 59 ] is inspired by the ( continuous ) interior penalty ( ( C ) IP ) and the ghost penalty ( GP ) meth-
ds [ 27 ], extending these techniques to the case of high-regular ity isogeometr ic analysis. 
An appraised property of immersed methods in general, and immersed isogeometric analysis in particular, is that the discretization
esolution can be controlled independently of the geometry parameterization. The immersed analysis concept avoids the need for
eometry-induced mesh refinements in the vicinity of geometric details that are irrelevant in relation to the objective of an analysis.
his decoupling of the discretization resolution from the geometry makes it natural to consider immersed finite elements in combi-
ation with adaptive discretization strategies. In fact, adaptivity in the form of local p - and hp -refinements has always been an integral
art of the finite cell method [ 60 –63 ]. 
A poster ior i error estimation and adaptivity techniques are well established in the context of finite element methods; see, e.g. the
eviews [ 64 –66 ]. A variety of error estimation and adaptivity techniques have been studied in isogeometric analysis, such as residual-
ased error e stimators for T-splines [ 67 ] and hierarchical splines [ 68 –70 ], and goal-oriented techniques [ 71 ]. The contemporary
verview [ 72 ] is also noteworthy, as is the advanced industrial application considered in [ 73 ]. In the context of Nitsche-based finite
lement methods ( see [ 74 , 75 ] for an overview ) , studies on a poster ior i error estimators have been conducted [ 4 , 76 –79 ]. Local
efinement strategies in immersed methods are predominantly feature based, i.e. either based on geometric features such as boundaries
r based on solution features such as sharp gradients in the solution fields; see, e.g. [ 11 , 80 , 81 ], for examples of local refinement
apabilities in finite cell simulations. Goal-oriented error estimation and adaptivity for immersed methods have also been studied [ 71 ,
2 –84 ]. In the context of stabilized immersed finite elements, reference [ 85 ] considered a poster ior i element-wise error estimation
nd adaptivity to improve boundary approximations. 
Although the computational setting of immersed isogeometric analysis enables the use of volumetric spline patches, the standard
 , p and k -type refinement strategies in patch-based isogeometric analysis [ 7 ] are not suitable because of the non-local propagation of
efinements. Various alternative refinement strategies have been proposed over the last decade to construct local spline refinements,
he most prominent of which are T-splines [ 11 , 16 , 86 –90 ], LRB-splines [ 91 , 92 ], U-splines [ 93 ] and ( Truncated ) Hierarchical B-
plines [ 94 ]. In the context of immersed isogeometric analysis on volumetric domains, hierarchical splines are particularly suitable,
s they optimally leverage the advantages offered by the geometrically simple background mesh. 
In this contribution, we propose a computational strategy for the application of residual-based a poster ior i error estimation and
esh adaptivity to stabilized immersed isogeometric analyses. We study various computational aspects of the framework that are
on-standard in comparison to error estimation and adaptivity for boundary-fitting analyses, viz. 

( 1 ) In immersed analyses, the discretization basis is constructed over a mesh comprised of all elements in an ambient mesh that
intersect with the computational domain. As a direct consequence of this setting, the support of the computational basis in
general changes under refinement operations. The same holds for the mesh skeleton, which is a key ingredient of the con-
sidered stabilization methods. The considered computational strategy preserves the geometry of the computational domain
under local mesh refinements, despite the change of the background mesh; 

( 2 ) Weak formulations in stabilized immersed isogeometric analysis generally involve operators with an explicit dependence on
the mesh size. While this mesh size is unambiguously defined in the case of a uniform background mesh, the local mesh
refinements considered in the adaptive setting warrant careful consideration of the scaling of the stabilization terms. We herein
propose and study a scaling of the stabilization terms based on the local element sizes. 

We demonstrate the performance of the proposed computational strategy using a series of test cases for steady heat conduction
roblems ( Poisson problem ) and steady viscous flow problems ( Stokes problem ) . We consider the application of the proposed adap-
ivity technique in a scan-based isogeometric analysis setting, and demonstrate that a robust automatic simulation workflow is realized
hen the methodology presented herein is combined with the topology-preserving image segmentation algorithm presented in [ 22 ].
This paper is outlined as follows: Section 2 introduces the immersed isogeometric analysis framework, along with a detailed stability
nalysis for the considered model problems. This analysis focuses particularly on the scaling relations for the stabilization terms. In
ection 3 , the residual-based error estimator is introduced, and a mesh-refinement strategy is proposed. Benchmark simulation results
re then presented in Section 4 for both the steady heat conduction problem and the viscous flow problem, after which the developed
ramework is applied in a scan-based setting in Section 5 . Conclusions are finally drawn in Section 6 . 

2.  STABILIZED  IMMERSOGEOMETRIC  ANALYSIS  WITH  LO C  AL  M ESH  REFINEM ENTS  

n this section, we introduce the stabilized immersed isogeometric analysis formulations for the steady heat conduction ( Laplace )
roblem and steady viscous flow ( Stokes ) problem. We commence with presenting the general setting of the problems in Section 2.1 ,
fter which the stabilized formulations are presented in Section 2.2 . In preparation of the a poster ior i error estimation concept dis-
ussed in Section 3 , in Section 2.3 , we study the stability of the considered formulations. 
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Figure 1 ( a ) A physical domain �, with boundary ∂�, is embedded in an ambient domain A . The background mesh T , which consists of all 
elements that intersect the physical domain, is constructed by locally refining the ambient domain mesh T A 

. The zoom i l lustrates the employed 
bisectioning procedure to capture the immersed boundaries. The integration subcells are marked in blue, whereas the background cells are 
marked in black. The skeleton mesh, F skeleton , and ghost mesh, F ghost , are shown in panels ( b ) and ( c ) , respectively. 
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2.1 The finite cell setting 
We consider a physical domain � ∈ R 

d ( with d ∈ {2, 3} ) with boundary ∂�, as i l lustrated in Fig. 1 . The boundary is composed of
a Neumann part, ∂�N 

, and a Dirichlet part, ∂�D 

, such that ∂�N 

∪ ∂�D 

= ∂ � and ∂ �N 

∩ ∂ �D 

= ∅ . The outward-pointing unit
normal vector to the boundary is denoted by n . 
The physical domain is immersed in a geometrically simple ambient domain, i.e. A ⊃ �, on which a locally refined ambient mesh

T A 

with elements K is defined. In this work, the ambient domain is chosen to be rectangular or cuboid to facilitate simple, tensor-
product, spline discretizations. The locally refined meshes are constructed by sequential bisectioning of ( selections of ) elements in
the mesh, starting from a Cartesian mesh. Truncated hierarchical B-splines can be formed on such meshes, as wi l l be elaborated in
Section 2.2 . 
Elements that do not intersect with the physical domain can be omitted from the ambient mesh, resulting in the locally refined

( active ) background mesh 

T := { K | K ∈ T A 

, K ∩ � � = ∅} . ( 1 )



Residual-based error estimation and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical B-splines • 207 

I  

t

w  

∂

T

N  

e
 

e  

c  

b  

m  

a

A  

a  

p  

D
 

g

N  

m

A  

c  

o  

t

W  

B

w  

d  

(

w  

k  

t  

o
 

m  

c

D
ow

nloaded from
 https://academ

ic.oup.com
/jom

/article/doi/10.1093/jom
/ufac015/6593152 by U

niversity of Pavia user on 31 August 2022
n the remainder, with the abuse of notation, we wi l l use T ( and other meshes ) to denote both the set of elements in the mesh and
he geometry obtained from the union of these elements. The local mesh size of the locally refined background mesh is denoted by 

h T : K → h K = 

d 
√ 

meas (K) , ( 2 ) 

here meas ( K ) denotes the area or volume of the element K . By cutting the elements that are intersected by the immersed boundary
�, a mesh that conforms to the physical domain � is obtained 

T � := { K ∩ � | K ∈ T } . ( 3 ) 

he collection of elements in the background mesh that are crossed by the immersed boundary ∂� is defined as 

G := { K ∈ T | K ∩ ∂� � = ∅} . ( 4 ) 

ote that the elements K are assumed to be open sets. Neglecting the limiting case of the immersed boundary coinciding with the
dges of a trimmed background element, with abuse of notation we refer to the immersed boundary inside an element as K ∩ ∂�. 
In immersed methods, the geometry of the physical domain is captured by the integration procedure on the cut elements, i.e. el-
ments that are intersected by the immersed boundary ∂�. We herein employ an octree integration procedure [ 22 , 82 ], which we
lose at the lowest level of bisectioning with a tessellation procedure. The considered integration procedure is i l lustrated in Fig. 1 ( in
lue ) for a typical cut element; see [ 22 ] for further details. Note that the subcells are only used to perform integration in the im-
ersed setting and not to construct basis functions. The employed tessellation provides an explicit parameterization of a polygonal
pproximation of the immersed boundary ∂� through the set of boundary faces 

T ∂� := { E ⊂ ∂� | E = ∂ K ∩ ∂ �, K ∈ T �} . ( 5 ) 

ll faces E ⊂ ∂�N 

( respectively E ⊂ ∂�D 

) are assigned to a set of Neumann faces T ∂�N ( respectively Dirichlet faces T ∂�D ) . In general,
 single polygon face can overlap with both the Neumann and the Dirichlet boundaries. Let us note that in an adaptive refinement
rocedure, the refinements can serve to provide an increasingly accurate approximation of the transition between the Neumann and
irichlet boundaries. 
The formulations considered in the remainder of this work incorporate stabilization terms formulated on the edges of the back-
round mesh ( see Section 2.2 ) , which we refer to as the skeleton mesh 

F skeleton = { ∂ K ∩ ∂ K 

′ | K , K 

′ ∈ T , K � = K 

′ } . ( 6 ) 

ote that the boundary of the background mesh is not part of the skeleton mesh. In addition to the skeleton mesh, we define the ghost
esh as the subset of the skeleton mesh that contain a face of an element intersected by the domain boundary 

F ghost = { ∂ K ∩ ∂ K 

′ | K ∈ G, K 

′ ∈ T , K � = K 

′ } . ( 7 ) 

 s w i l l be detai led in Section 2.3 , the stabilization terms formed on the skeleton and ghost mesh account for stability and i l l-
onditioning effects related to unfavorably cut elements, as well as for preventing pressure osci l lations in equal-order discretizations
f the Stokes problem. Note that the skeleton and ghost mesh are defined such that the stability terms are applied to specific edges of
he background mesh ( see Figs 1 b and c ) . 

2.2 Immersogeometric analysis 
e consider the immersogeometric analysis of a single-field steady heat-conduction problem and of a two-field viscous flow problem.
oth problems are represented by the abstract Galerkin problem {

Find u h ∈ U 

h such that: 
a h ( u h , v h ) = b h ( v h ) ∀ v h ∈ V 

h , 
( 8 ) 

ith mesh-dependent bilinear and linear forms, a h and b h , respectively. Note that the superscript h is used to indicate mesh-
ependence. The finite dimensional trial and test spaces, U 

h and V 

h , respectively, are spanned by truncated hierarchical B-spline
 THB-spline ) [ 69 , 94 ] basis functions of degree k and regularity α constructed over the locally refined background mesh, viz. 

S 

k 
α(T ) = { N ∈ C 

α(T ) : N| K ∈ P k (K) , ∀ K ∈ T } , ( 9 ) 

ith P k ( K ) the set of d -variate polynomials on the element K constructed by the tensor-product of univariate polynomials of order
 . Truncated hierarchical B-splines, which are i l lustrated in Fig. 2 , form a partition of unity and have a reduced support compared to
heir non-truncated counterpart, which is advantageous from the perspective of system matrix sparsity. Our implementation is based
n the open source finite element library Nutils [ 95 ]. 
Since the imposition of strong Dirichlet boundary conditions over the immersed boundary ∂� is intractable in the immersogeo-
etric analysis setting, such boundary conditions are imposed weakly through Nitsche’s method; see, e.g. [ 26 ]. A mesh-dependent
onsistent stabilization term is introduced in order to ensure the well-posedness of the Galerkin problem ( 8 ) . 
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Figure 2 Illustration of truncated hierarchical B-splines [ 69 , 94 ] in the immersogeometric analysis setting. The left column shows the 
hierarchical levels of the mesh T in Fig. 1 , while the right column i l lustrates the concept for a one-dimensional immersed domain �. The 
background mesh at the level � = 0, …, � max ( with � max = 3 in this i l lustration ) is defined as T � = { K ∈ T � A 

| K ∩ � � = ∅} , where T � A 

is a 
regular mesh with a mesh size parameter 2 −� h . Note that the meshes are nested, in the sense that the domain covered by the physical mesh at 
level � , T � , is completely inside that of level � − 1, T � −1 , i.e. T � ⊆ T � −1 . The THB-spline basis, H(T ) , is constructed by selection and 
truncation of the basis functions in the B-spline basis B(T � ) = { N ∈ B(T � A 

) | supp (N) ⊆ T � } defined at each level. At the most refined 
level, i.e. at � = � max , all basis functions that are completely inside T � max are selected: H(T � max ) = { N ∈ B(T � max ) | supp (N) ⊆ T � max } . At the 
coarser levels, i.e. � < � max , the functions that are completely inside the domain T � but not completely inside the refined domain T � +1 are 
selected and truncated: H(T � ) = { trunc (N) | N ∈ B(T � ) , supp (N) � T � +1 } . The truncation operation reduces the support of the 
B-spline functions by projecting away basis functions retained from the refined levels. The THB-spline basis then follows as 
H(T ) = ∪ 

� max 
� =0 H(T � ) . The reader is referred to [ 69 ] for details of THB-spline basis and [ 94 ] for THB-spline basis construction. 
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2.2.1 Steady heat conduction 
Steady heat conduction is governed by the Poisson problem, which, in dimensionless form, can be formulated as ⎧ ⎨ ⎩ 

−�u = f in �, 

u = g on ∂�D 

, 

∂ n u = q on ∂�N 

, 

( 10 )

where u is the scalar temperature field, f is a heat source term, q represents the prescribed heat flux on the Neumann boundary and g
is the prescribed temperature on the Dirichlet boundary. The normal gradient is defined as ∂ n u = ∇u · n . 
The discretized solution to the strong formulation ( 10 ) with the Dirichlet conditions enforced by Nitsche’s method is denoted by

u h ∈ U 

h = S 

k 
α(T ) ⊂ H 

1 (T ) , with the corresponding test functions given by v h ∈ V 

h = U 

h . We herein consider maximum regularity
B-splines, i.e. α = k − 1. The bilinear and linear forms in Eq. ( 8 ) are 

a h ( u h , v h ) = 

∫ 
�

∇ u h · ∇ v h d V −
∫ 

∂�D 

(
(∂ n u h ) v h + u h (∂ n v ) 

)
d S 

+ 

∑ 

E∈T ∂�D 

∫ 
E 

˜ βu h v h d S + 

∑ 

F ∈F ghost 

∫ 
F 
˜ γg [[ ∂ k n u 

h ]][[ ∂ k n v ]] d S, ( 11a )
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b h ( v h ) = 

∫ 
�

f v h d V + 

∫ 
∂�N 

q v h d S −
∫ 

∂�D 

g∂ n v h d S + 

∑ 

E∈T ∂�D 

∫ 
E 

˜ βg v h d S, ( 11b ) 

here ˜ β is the Nitsche stabilization parameter. This parameter should be selected and scaled ( with the mesh size ) appropriately, being
arge enough to ensure stabi lity, whi le not being too large to cause a reduction in accuracy ( see, e.g. [ 31 , 37 ] ) . The GP operator in
 11a ) controls the k th-order normal derivative jumps, indicated by [[ ·]] , over the interfaces of the elements, which are intersected by
he domain boundary ∂�. Since in this contribution B-splines of degree k with C 

k − 1 -continuity are considered, only the k th normal
erivative is non-vanishing at the ghost mesh. A s w i l l be discussed in detail in Section 2.3 , upon appropriate selection and scaling
 with the mesh size ) of ˜ γg , a Nitsche stabilization parameter, ˜ β , can be selected in such a way that stability of the formulation can be
ssured independent of the cut-cell configurations. To avoid loss of accuracy, the GP parameter ˜ γg should also not be too large [ 96 ]. 

2.2.2 Steady viscous flow 

teady viscous flow can be modeled by the Stokes equations ⎧ ⎪ ⎨ ⎪ ⎩ 

−∇ · (2 μ∇ 

s u ) + ∇ p = f in �, 

∇ · u = 0 in �, 

u = g on ∂�D 

, 

2 μ ( ∇ 

s u ) n − pn = t on ∂�N 

, 

( 12 ) 

ith velocity u , pressure p , constant viscosity μ, body force f , Dirichlet data g and Neumann data t . By consideration of the so-
ution in the abstract Galerkin problem ( 8 ) as a velocity–pressure pair, i.e. u h = (u h , p h ) ∈ U 

h = U 

h 
u ×U 

h 
p = [ S 

k 
k−1 ] 

d × S 

k 
k−1 ⊂

 H 

1 (�)] d × L 

2 (�) and the corresponding test functions as v h = (v h , q h ) ∈ V 

h = V 

h 
u ×V 

h 
p = U 

h , the aggregate bilinear and lin-
ar forms corresponding to ( 12 ) follow as 

a h ( u h , v h ) = a h 1 (u 
h , v h ) + a h 2 (p 

h , v h ) + a h 2 (q 
h , u h ) − a h 3 (p 

h , q h ) , ( 13a ) 

b h ( v h ) = 

∫ 
�

f · v h d V + 

∫ 
∂�N 

t · v h d S + 

∫ 
∂�D 

(
q h n − 2 μ(∇ 

s v h ) n 

) · g d S + 

∑ 

E∈T ∂�D 

∫ 
E 

˜ βg · v h d S, ( 13b ) 

here 

a h 1 (u 
h , v h ) = 

∫ 
�

2 μ∇ 

s u h : ∇ 

s v h d V −
∫ 

∂�D 

2 μ
(
(∇ 

s u h ) n · v h + (∇ 

s v h ) n · u h ) d S 
+ 

∑ 

E∈T ∂�D 

∫ 
E 

˜ βμu h · v h d S + 

∑ 

F ∈F ghost 

∫ 
F 
˜ γg μ[[ ∂ k n u 

h ]] · [[ ∂ k n v h ]] d S, ( 14a ) 

a h 2 (p 
h , v h ) = −

∫ 
�

p h ∇ · v h d V + 

∫ 
∂�D 

p h v h · n d S, ( 14b ) 

a h 3 (p 
h , q h ) = 

∑ 

F ∈F skeleton 

∫ 
F 
˜ γs μ

−1 [[ ∂ k n p 
h ]][[ ∂ k n q 

h ]] d S. ( 14c ) 

or the selection of the Nitsche parameter, ˜ β , and ghost stabilization constant, ˜ γg , the same arguments apply as for the steady heat
onduction problem discussed above. A discussion on the selection and scaling of these parameters for the Stokes problem is presented
n Section 2.3.2 . 
An additional stability issue is encountered for the immersed Stokes flow problem ( 13 ) on account of the selected equal-order
ptimal regularity spline spaces of degree k . In the conforming setting, inf-sup stability is achieved by adopting a suitable velocity–
ressure pair, e.g. Taylor–Hood [ 43 –46 ] or Raviart–Thomas [ 45 , 47 –49 ]. In the immersed setting, such pairs can sti l l lead to pressure
sci l lations in the vicinity of cut elements [ 58 ]. To resolve these pressure osci l lations, the immersogeometric skeleton stabilization
echnique developed in [ 59 ] is applied. This stabilization technique can be regarded as the higher-order continuous version of the
ethod proposed in [ 97 ], which has also been applied in the conforming isogeometric analysis setting [ 58 ]. 
From Eq. ( 14c ) , it is seen that the skeleton stabilization term penalizes jumps in higher-order pressure gradients, where the pa-
ameter ˜ γs should be selected such that osci l lations are suppressed, while the influence of the additional term on the accuracy of the
olution remains limited. The purpose of the skeleton stabilization method is to avoid pressure osci l lations induced by inf-sup stabil-
ty problems, al lowing for the uti lization of identical spaces for the velocity components and the pressure. Since the inf-sup stability
roblem is not restricted to the immersed boundary, the skeleton stabilization pertains to all interfaces of the background mesh. The
ppropriate selection and scaling of the skeleton stability parameter is discussed in detail in Section 2.3.2 . 
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2.3 Selection of the stabilization parameters: continuity and coercivity of the formulation 
Before considering a poster ior i error estimation in Section 3 , we first study the continuity and coercivity of the immersed formulations
introduced earlier. We commence with the introduction of the following inequalities: 

( 1 ) Using Young’s inequality, it follows that for any constant ε > 0 it holds that 

2 ‖ u h ‖ L 2 ‖ ̃

 u h ‖ L 2 ≤ ε‖ u h ‖ 

2 
L 2 + 

1 
ε 
‖ ̃

 u h ‖ 

2 
L 2 ∀ u h ∈ U 

h , ∀ ̃

 u h ∈ U 

h . ( 15 )

In combination with the Cauchy–Schwar z inequalit y, this inequalit y can be applied to obtain 

2 
∫ 

∂�D 

(∂ n u h ) u h d S ≤ ε‖ ∂ n u h ‖ 

2 
L 2 (∂�D ) + 

1 
ε 
‖ u h ‖ 

2 
L 2 (∂�D ) ∀ u h ∈ U 

h . ( 16 )

( 2 ) For any background element K crossed by the boundary ∂�, with E = K ∩ ∂�, under the assumption of shape regularity ( i.e.
prov ided w ith an upper bound on the length of the intersection of the boundary within one single element meas (K ∩ ∂�) ) ,
it holds that ( see, e.g. ( [ 98 Lemma 4.2] ) 

‖ φ‖ 

2 
L 2 (E) ≤ C T ‖ h K −1 / 2 φ‖ 

2 
L 2 (K) ∀ φ ∈ P k ( 17 )

where it is noted that this inequality holds for the finite-dimensional space P k of tensor-product polynomials of order k ( not for
functions in H 

1 in general ) . The constant C T > 0, referred to as the trace inequality constant, is independent of the size of the
element, but dependent on the order k . Note that the right part of the inequality contains the norm over the full background
element K , and not just its intersection with the physical domain. 
Using inequality ( 17 ) , the following bound for the normal gradient of u h on the immersed boundary is obtained: 

‖ ∂ n u h ‖ 

2 
L 2 (∂�) ≤ ‖∇ u h ‖ 

2 
L 2 (∂�) = 

∑ 

E∈T ∂�

‖∇ u h ‖ 

2 
L 2 (E) 

≤
∑ 

K∈G 
C T ‖ h K −1 / 2 ∇u h ‖ 

2 
L 2 (K) ≤ C T ‖ h T −1 / 2 ∇u h ‖ 

2 
L 2 (T ) ∀ u h ∈ U 

h , ( 18 )

with h T defined in Eq. ( 2 ) and where, with abuse of notation, the constant C T is used to both represent the local trace inequality
constant ( second line ) and its global maximum ( third line ) . 

( 3 ) Norms of functions over the entire background domain T can be bounded by norms over the physical domain � and the
GP. Using the GP, the gradients on the background mesh are bounded by those in the physical domain. To demonstrate this
bound, we split the norm over the background mesh as 

‖∇u h ‖ 

2 
L 2 (T ) = ‖∇ u h ‖ 

2 
L 2 (T \G) + ‖∇ u h ‖ 

2 
L 2 (G) 

≤ ‖∇ u h ‖ 

2 
L 2 (�) + ‖∇ u h ‖ 

2 
L 2 (G) = ‖∇ u h ‖ 

2 
L 2 (�) + 

∑ 

K∈G 
‖∇ u h ‖ 

2 
L 2 (K) ∀ u h ∈ U 

h . ( 19 )

To show this inequality, we consider an element K ∈ G, which shares the interface F with an element K 

′ / ∈ G that completely
lies inside �, such that the volume integral over the background element K 

′ is included in the norm over �. We wi l l first
demonstrate that the gradients on K are controlled by the GP and the norms on the physical domain. Later on, elements in
G that do not share an interface with an element in T \ G wi l l be considered by means of recursion. To demonstrate that
the gradients on K are bound by those in the physical domain, we define the polynomial extension of u h 

∣∣
K ′ as the global

polynomial ū h K ′ ∈ P k ( see Fig. 3 ) . Using this extension, the spline function u h on the element K can be decomposed as 

u h 
∣∣
K = ū h K ′ + 

˜ u h K ′ . ( 20 )

Let us consider x F as a projection of x on the straight or flat interface F , such that x can be written as x F + x n n F , where
x n = ( x − x F ) · n F . Here, the interface coordinate x F ∈ F is interpreted to be on the side of the element K , and related to the
coordinate x ∈ K. The function ˜ u h K ′ has no support on K 

′ and has vanishing normal derivatives up to order k at the interface
F . By Taylor-series expansion one can infer 

˜ u h K ′ ( x ) = 

1 
k! 

∂ k n (u 
h ( x F ) − ū h K ′ ( x F )) x 

k 
n = 

1 
k! 

∂ k n [[ u 
h ( x F )]] x k n ∀ x ∈ K , ∀ u h ∈ U 

h . ( 21 )

This splitting is very natural through the use of maximum regularity splines ( i.e. ˜ u h K ′ contains all degrees of freedom of K that
are independent of K 

′ ) . 
For the polynomial extension ū h K ′ it holds that 

‖∇ ̄u h K ′ ‖ 

2 
L 2 (K) ≤ C Q ‖∇ ̄u h K ′ ‖ 

2 
L 2 (K ′ ) ∀ u h ∈ U 

h , ( 22 )
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Figure 3 Panel ( a ) is an i l lustration of a second order B-spline on an element K ∈ G and its adjacent element K 

′ with an interface F . Panel ( b ) is 
its second order gradient in the direction normal to the interface ( with e n the unit vector in the normal direction ) . Panels ( c ) and ( d ) show the 
dependence of the constants in ( 22 ) and ( 23 ) on the order k . 
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where the constant C Q is independent of the mesh size, but dependent on the order of the approximation and the ratio of the
size of the elements at either side of the interface. The order-dependence of this constant is i l lustrated in Fig. 3 c. The presented
results have been computed by solving the generalized eigenvalue problem corresponding to Eq. ( 22 ) . 
From the definition of the expansion ˜ u h K ′ in Eq. ( 21 ) it follows that 

‖∇ ̃

 u h K ′ ‖ 

2 
L 2 (K) = ‖ 

1 
k! 
(∇ F ∂ 

k 
n ̃  u h 

)
x k n + 

k 
k! 
(
∂ k n ̃  u h 

)
x k−1 
n ‖ 

2 
L 2 (K) 

≤ 2 
(k!) 2 

(
‖ 

(∇ F ∂ 
k 
n ̃  u h 

)
x k n ‖ 

2 
L 2 (K) + ‖ k 

(
∂ k n ̃  u h 

)
x k−1 
n ‖ 

2 
L 2 (K) 

)
≤ 2 

(k!) 2 
(
‖∇ F ∂ 

k 
n ̃  u h ‖ 

2 
L 2 (F ) (2 k + 1) −1 h 2 k+1 

F + k 2 ‖ ∂ k n ̃  u h ‖ 

2 
L 2 (F ) (2 k − 1) −1 h 2 k−1 

F 

)
≤ C F 

2 
h 2 k−1 
F ‖ ∂ k n ̃  u h ‖ 

2 
L 2 (F ) = 

C F 

2 
h 2 k−1 
F ‖ [[ ∂ k n u 

h ]] ‖ 

2 
L 2 (F ) , ( 23 ) 

with h F = max (h K , h K ′ ) the size of K in the direction normal to the interface and where ∇ F denotes the surface gradient in
the interface F and where use has been made of the polynomial inequality ‖∇ F f h ‖ 

2 
L 2 (F ) � h −2 

F ‖ f h ‖ 

2 
L 2 (F ) for all f 

h ∈ P k [ 99 ].
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The dependence of the constant C F in the inequality ( 23 ) on the order is i l lustrated in Fig. 3 d. This constant is independent
of the mesh size. 
Substituting the decomposition ( 20 ) in Eq. ( 19 ) yields 

‖∇ u h ‖ 

2 
L 2 (G) = 

∑ 

K∈G 
‖∇ ̄u h K ′ + ∇ ̃

 u h K ′ ‖ 

2 
L 2 (K) ≤ 2 

∑ 

K∈G 

(
‖∇ ̄u h K ′ ‖ 

2 
L 2 (K) + ‖∇ ̃

 u h K ′ ‖ 

2 
L 2 (K) 

)
∀ u h ∈ U 

h . ( 24 )

Using the inequalities ( 22 ) and ( 23 ) and noting that since K 

′ ∈ T \ G it follows that ‖∇ ̄u h K ′ ‖ 

2 
L 2 (K ′ ) = ‖∇u h ‖ 

2 
L 2 (K ′ ) then results

in 
‖∇ u h ‖ 

2 
L 2 (G) ≤ (C G − 1) ‖∇ u h ‖ 

2 
L 2 (�) + 

∑ 

F ∈F 

C F h 2 k−1 
F ‖ [[ ∂ k n u 

h ]] ‖ 

2 
L 2 (F ) ∀ u h ∈ U 

h , ( 25 )

where C G = 1 + 2 max K∈G (C Q ) . To obtain this result, the inequality is first applied to the layer of elements in G that share
an interface with the interior mesh T \ G. With control over the gradients in this first layer, the inequality is then applied to
a second layer of elements. This recursive application is repeated until all elements in G have been considered. As a result of
this recursive application of the ghost inequality, the constant C G depends on the number of layers, which in turn depends on
the mesh size. 
The boundedness of the gradients on the background mesh finally follows by substitution of ( 25 ) in ( 19 ) : 

‖∇ u h ‖ 

2 
L 2 (T ) ≤ C G ‖∇ u h ‖ 

2 
L 2 (�) + 

∑ 

F ∈F 

C F h 2 k−1 
F ‖ [[ ∂ k n u 

h ]] ‖ 

2 
L 2 (F ) ∀ u h ∈ U 

h . ( 26 )

( 4 ) For any p h ∈ U 

h 
p , there exists a w 

h ∈ V 

h 
u such that 

−a h 2 (p 
h , w 

h ) ≥ C 1 ‖ μ−1 / 2 p h ‖ 

2 
L 2 (T ) −C 2 

∑ 

F ∈F skeleton 

∫ 
F 
h 2 k+1 
F μ−1 [[ ∂ k n p 

h ]][[ ∂ k n p 
h ]] d S, ( 27a )∣∣∣∣∣∣w 

h ∣∣∣∣∣∣
u ≤ C 3 ‖ μ−1 / 2 p h ‖ L 2 (T ) , ( 27b )

with a h 2 according to ( 14b ) and | | | · | | | u the velocity energy norm ( see Section 2.3.2 ) , for certain positive constants C 1 , C 3 >

0 and a non-negative constant C 2 ≥ 0. The existence of a velocity field w 

h in accordance with ( 27 ) is established in ( Lemma
3.11] for piecewise linear ( k = 1 ) polynomials. However this result generalizes to polynomial orders k ≥ 1 and increases the
continuity of the pressure and velocity spaces. Proof of ( 27 ) in the general case is, however, extensive and beyond the scope
of the present manuscript. 

2.3.1 Steady heat conduction 
Continuity of the bilinear form ( 11a ) cannot be shown in the H 

1 -norm on account of the immersed boundary terms, and coercivity
cannot be shown in the infinite-dimensional space. However, with an appropriate selection of the stabilization parameters, continuity
and coercivity can be established with respect to the mesh-dependent norm ∣∣∣∣∣∣u h ∣∣∣∣∣∣2 : = ‖∇ u h ‖ 

2 
L 2 (T ) + ‖ ̃

 β−1 / 2 ∂ n u h ‖ 

2 
L 2 (∂�D ) + ‖ ̃

 β1 / 2 u h ‖ 

2 
L 2 (∂�D ) + 

∑ 

F ∈F ghost 

‖ ̃

 γ 1 / 2 
g [[ ∂ k n u 

h ]] ‖ 

2 
L 2 (F ) ∀ u h ∈ U 

h , ( 28 )

which we refer to as the energy norm . 
The bilinear form ( 11a ) is continuous on U 

h × V 

h if there exists a constant, C > 0, independent of the mesh size, such that 

a h (u h , v h ) ≤ C 

∣∣∣∣∣∣u h ∣∣∣∣∣∣ ∣∣∣∣∣∣v h ∣∣∣∣∣∣ ∀ u h ∈ U 

h , ∀ v h ∈ V 

h . ( 29 )

Using the Cauchy–Schwarz inequality, for all u h ∈ U 

h , v h ∈ V 

h one obtains 

a h (u h , v h ) ≤ ‖∇ u h ‖ L 2 (�) ‖∇ v h ‖ L 2 (�) + ‖ ̃

 β−1 / 2 ∂ n u h ‖ L 2 (∂�D ) ‖ ̃

 β1 / 2 v h ‖ L 2 (∂�D ) 

+ ‖ ̃

 β1 / 2 u h ‖ L 2 (∂�D ) ‖ ̃

 β−1 / 2 ∂ n v h ‖ L 2 (∂�D ) + 

∑ 

E∈T ∂�D 

‖ ̃

 β1 / 2 u h ‖ L 2 (E) ‖ ̃

 β1 / 2 v h ‖ L 2 (E) 

+ 

∑ 

F ∈F ghost 

‖ ̃

 γ 1 / 2 
g [[ ∂ k n u 

h ]] ‖ L 2 (F ) ‖ ̃

 γ 1 / 2 
g [[ ∂ k n v 

h ]] ‖ L 2 (F ) 

Since each of the norms in this expression is bounded from above by the energy norm ( 28 ) , it follows that a h (u h , v h ) ≤ 5 
∣∣∣∣∣∣u h ∣∣∣∣∣∣ ∣∣∣∣∣∣v h ∣∣∣∣∣∣.

Hence, the bilinear form is continuous. 
The bilinear form ( 11a ) is uniformly ( i.e. independent of h ) coercive on U 

h if there exists a constant, c > 0, such that 

a h (u h , u h ) ≥ c 
∣∣∣∣∣∣u h ∣∣∣∣∣∣2 u h ∈ U 

h . ( 30 )
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o demonstrate that this is indeed the case, we apply the inequalities ( 16 ) and ( 26 ) to obtain 

a h (u h , u h ) ≥
( 

1 
C G 

‖∇u h ‖ 

2 
L 2 (T ) −

∑ 

F ∈F ghost 

C F 

C G 

∫ 
F 
h 2 k−1 
F [[ ∂ k n u 

h ]] 2 d S 

) 

−
(
ε‖ ∂ n u h ‖ 

2 
L 2 (∂�D ) + ε −1 ‖ u h ‖ 

2 
L 2 (∂�D ) 

)

+ 

∑ 

E∈T ∂�D 

‖ ̃

 β
1 
2 u h ‖ 

2 
L 2 (E) + 

∑ 

F ∈F ghost 

∫ 
F 
˜ γg [[ ∂ k n u 

h ]] 2 d S. 

pplication of the trace inequality ( 18 ) and collecting terms then yields 

a h (u h , u h ) ≥
∥∥∥∥( 1 

C G 
− ϕC T h −1 

T 

) 1 
2 

∇u h 
∥∥∥∥2 
L 2 (T ) 

+ 

∥∥∥ ( ϕ − ε ) 
1 
2 ∂ n u h 

∥∥∥2 
L 2 (∂�D ) 

+ 

∥∥∥ ( ˜ β − ε −1 ) 1 
2 u h 

∥∥∥2 
L 2 (∂�D ) 

+ 

∑ 

F ∈F ghost 

∫ 
F 

(
˜ γg − C F 

C G 
h 2 k−1 
F 

)
[[ ∂ k n u 

h ]] 2 d S, 

or arbitrary ϕ > 0. By selecting element-wise constants 0 < ε ≤ ϕ and 0 < ϕ ≤ C −1 
G 
C T 

h T , one can infer that coercivity is ensured
rovided that 

˜ β = βh −1 
K ≥ C T C G h −1 

K ˜ γg = γg h 2 k−1 
F ≥ C F 

C G 
h 2 k−1 
F . ( 31 ) 

or all elements K and interfaces F , where the positive constants β ≥ C T C G and γg ≥ C F C 

−1 
G are independent of the mesh size. The

nterface length scale is defined as h F = max (h K , h K ′ ) with K and K 

′ being the elements on either side of the interface F . The rational
ehind this choice is that the ghost stabilization term scales with h 2 k−1 

F ( k ≥ 1 ) and that hence, the larger element size ensures that the
tability constant is sufficiently large. 

2.3.2 Steady viscous flow 

ecalling that for the Stokes problem u h = ( u h , p h ) , we define the mesh-dependent energy norm as ∣∣∣∣∣∣u h ∣∣∣∣∣∣2 = 

∣∣∣∣∣∣( u h , p h ) ∣∣∣∣∣∣2 = 

∣∣∣∣∣∣u h ∣∣∣∣∣∣2 u + 

∣∣∣∣∣∣p h ∣∣∣∣∣∣2 p , ( 32 ) 

ith 

∣∣∣∣∣∣u h ∣∣∣∣∣∣2 u := ‖ μ1 / 2 ∇ 

s u h ‖ 

2 
L 2 (T ) + ‖ ̃

 β−1 / 2 μ1 / 2 ∂ n u h ‖ 

2 
L 2 (∂�D ) + ‖ ̃

 β1 / 2 μ1 / 2 u h ‖ 

2 
L 2 (∂�D ) 

+ 

∑ 

F ∈F ghost 

‖ ̃

 γ 1 / 2 
g μ1 / 2 [[ ∂ k n u 

h ]] ‖ 

2 
L 2 (F ) , ( 33a ) 

∣∣∣∣∣∣p h ∣∣∣∣∣∣2 p := ‖ μ−1 / 2 p h ‖ 

2 
L 2 (T ) + 

∑ 

F ∈F skeleton 

‖ ̃

 γ 1 / 2 
s μ−1 / 2 [[ ∂ k n p 

h ]] ‖ 

2 
L 2 (F ) . ( 33b ) 

ontinuity of the bilinear form ( 13a ) with respect to this energy norm in the sense of ( 29 ) follows directly by application of the
auchy–Schwar z inequalit y to all terms in ( 13a ) . 
With an appropriate selection of the stability parameters for the Stokes problem, it holds that the bilinear form ( 13a ) is inf-sup stable

n accordance with 
sup 

v h ∈ V 

h \{ 0 } a 
h (u h , v h ) ∣∣∣∣∣∣v h ∣∣∣∣∣∣ ≥ c � 

∣∣∣∣∣∣u h ∣∣∣∣∣∣ ∀ u h ∈ U 

h , ( 34 ) 

here c � > 0 is referred to as the inf-sup stability constant. To demonstrate this stability property, we recall the splitting of the bilinear
orm a h according to ( 13a ) and ( 14 ) . We now take a f unction ϕ 

h = (v h , q h ) = (u h − αw 

h , −p h ) ∈ V 

h , where w 

h depends on p h in
ccordance with ( 27 ) , and with some constant α > 0, such that 

sup 
v h ∈ V 

h \{ 0 } a 
h (u h , v h ) ∣∣∣∣∣∣v h ∣∣∣∣∣∣ ≥ a h (u h , ϕ 

h ) ∣∣∣∣∣∣ϕ 

h 
∣∣∣∣∣∣

≥ a h 1 (u 
h , u h ) − αa h 1 (u 

h , w 

h ) − αa h 2 (p 
h , w 

h ) + a h 3 (p 
h , p h ) ∣∣∣∣∣∣ϕ 

h 
∣∣∣∣∣∣ ∀ u h ∈ U 

h . ( 35 ) 
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Following Section 2.3.1 , a h 1 (u 
h , u h ) is coercive ( with constant c � u ) and a 

h 
1 (u 

h , w 

h ) is continuous ( with constant C 

� 
u ) with respect to

the velocity energy norm ( 33a ) in accordance with Eqs. ( 29 ) and ( 30 ) , respectively. Hence, 
sup 

v h ∈ V 

h \{ 0 } a 
h (u h , v h ) ∣∣∣∣∣∣v h ∣∣∣∣∣∣ ≥ c � u 

∣∣∣∣∣∣u h ∣∣∣∣∣∣2 u − αC 

� 
u 

∣∣∣∣∣∣u h ∣∣∣∣∣∣u ∣∣∣∣∣∣w 

h 
∣∣∣∣∣∣

u − αa h 2 (p 
h , w 

h ) + a h 3 (p 
h , p h ) √ 

2 
∣∣∣∣∣∣u h ∣∣∣∣∣∣2 u + 2 α2 

∣∣∣∣∣∣w 

h 
∣∣∣∣∣∣2 

u + 

∣∣∣∣∣∣p h ∣∣∣∣∣∣2 p ∀ u h ∈ U 

h , ( 36 )

where use has been made of ∣∣∣∣∣∣ϕ 

h ∣∣∣∣∣∣ = 

√ ∣∣∣∣∣∣u h − αw 

h 
∣∣∣∣∣∣2 

u + 

∣∣∣∣∣∣p h ∣∣∣∣∣∣2 p ≤ √ 

2 
∣∣∣∣∣∣u h ∣∣∣∣∣∣2 u + 2 α2 

∣∣∣∣∣∣w 

h 
∣∣∣∣∣∣2 

u + 

∣∣∣∣∣∣p h ∣∣∣∣∣∣2 p . ( 37 )

From the inequalities ( 27 ) it follows that 
sup 

v h ∈ V 

h \{ 0 } a 
h (u h , v h ) ∣∣∣∣∣∣v h ∣∣∣∣∣∣ ≥

c � u 
∣∣∣∣∣∣u h ∣∣∣∣∣∣2 u − αC 

� 
u C 3 

∣∣∣∣∣∣u h ∣∣∣∣∣∣u ‖ μ−1 / 2 p h ‖ L 2 (T ) + αC 1 ‖ μ−1 / 2 p h ‖ 

2 
L 2 (T ) √ 

2 
∣∣∣∣∣∣u h ∣∣∣∣∣∣2 u + (1 + 2 α2 C 

2 
3 ) 
∣∣∣∣∣∣p h ∣∣∣∣∣∣2 p 

+ 

∑ 

F ∈F skeleton 

(
1 − αC 2 ̃  γ −1 

s h 2 k+1 
F 

) ‖ ̃

 γ 1 / 2 
s μ−1 / 2 [[ ∂ k n p 

h ]] ‖ 

2 
F √ 

2 
∣∣∣∣∣∣u h ∣∣∣∣∣∣2 u + (1 + 2 α2 C 

2 
3 ) 
∣∣∣∣∣∣p h ∣∣∣∣∣∣2 p ∀ u h ∈ U 

h , ( 38 )

which, using Young’s inequality ( 15 ) with ε = 1, can be reformulated as 

sup 
v h ∈ V 

h \{ 0 } a 
h (u h , v h ) ∣∣∣∣∣∣v h ∣∣∣∣∣∣ ≥

(
c � u − αC � u C 3 

2 

) ∣∣∣∣∣∣u h ∣∣∣∣∣∣2 u + α
(
C 1 − C � u C 3 

2 

)
‖ μ−1 / 2 p h ‖ 

2 
L 2 (T ) 

C 4 
∣∣∣∣∣∣u h ∣∣∣∣∣∣

+ 

∑ 

F ∈F skeleton 

(
1 − αC 2 ̃  γ −1 

s h 2 k+1 
F 

) ‖ ̃

 γ 1 / 2 
s μ−1 / 2 [[ ∂ k n p 

h ]] ‖ 

2 
F 

C 4 
∣∣∣∣∣∣u h ∣∣∣∣∣∣ ∀ u h ∈ U 

h . ( 39 )

Inf-sup stability as in ( 34 ) then holds, provided that 

α < 

2 c � u 
C 

� 
u C 3 

, ˜ γs = γs h 2 k+1 
F ≥ αC 2 h 2 k+1 

F . ( 40 )

We note that the skeleton penalty has two pur poses: ( i ) It ex tends the stability of the pressure field to the background grid T as
in ( 27 ) , in the same way as for the GP discussed in Section 2.3.1 . Since stability is here defined with respect to the L 

2 -norm of the
pressure field, the skeleton stability constant ˜ γs scales with h 2 k + 1 , following the same reasoning as in Eq. ( 26 ) ; and ( ii ) It ensures
the inf-sup stability for equal-order discretizations, essentially meaning that pressure osci l lations in the interior are penalized. This is
the reason why this term is applied over the complete skeleton and not only the ghost interfaces. 

3.  ERROR ESTIMATION  AND  ADAPTIVITY  

We study a poster ior i error estimation and adaptivity for immersogeometric analysis. In Section 3.1 , we first introduce a residual-
based error indicator and elaborate it for the heat conduction problem and viscous flow problem introduced in the previous section.
In Section 3.2 , the refinement strategy is discussed. 

3.1 Residual-based error estimation 
We propose an error estimator pertaining to the background mesh, T , of the form 

E = 

√ ∑ 

K∈T 
η2 
K , ( 41 )

where the element-wise error indicators, ηK , wi l l serve to guide an adaptive refinement procedure. The derivations of the indicators
for the heat conduction problem and viscous flow problem wi l l be elaborated in the following sections. 
From an abstract perspective, the element-wise error indicators are defined in such a way that the estimator ( 41 ) bounds the residual

from above as 
E � ‖ r h ‖ ̂ V h ∗ . ( 42 )

In this expression, the residual and its ( dual ) norm are defined as 

r h ( ̂  v h ) := r h (u h )( ̂  v h ) := b h ( ̂  v h ) − a h (u h , ̂  v h ) , ( 43a )

‖ r h ‖ ̂ V h ∗ := 

sup ̂ v h ∈ ̂

 V 

h \{ 0 } r 
h ( ̂  v h ) ∣∣∣∣∣∣̂

 v h 
∣∣∣∣∣∣ , ( 43b )
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he function space ̂  V 

h ⊃ V 

h corresponds to a suitable extension of V 

h in such a manner that ̂  V 

h contains an approximation of the
olution ( possibly the solution itself ) that is sufficiently accurate to estimate the error in the approximation u h ∈ V 

h . An example of
uch an extended space is an order elevated approximation space on the same mesh and with the same regularity as the space V 

h , or
n approximation space with the same order and the same regularity on a hierarchically refined mesh. The Galerkin approximation
roblem in ̂  V 

h writes ̂ u h ∈ ̂

 V 

h : ̂ a h ( ̂  u h , ̂  v h ) = b h ( ̂  v h ) ∀ ̂  v h ∈ ̂

 V 

h . ( 44 ) 
he bilinear form ̂  a h : ̂  V 

h ×̂ V 

h → R is an extension of the original bilinear form a h according to ̂ a h ( ̂  u h , ̂  v h ) = a h ( ̂  u h , ̂  v h ) + s h ( ̂  u h , ̂  v h ) , ( 45 ) 
here the auxiliary symmetric bilinear form s h contains additional stabilization terms. For instance, for an order-elevated space the
ilinear form s h contains jumps of higher-order normal derivatives ( cf. ( 11a ) and see [ 100 –102 ) ) , and for a hierarchically refined mesh
 

h contains the stabilization terms on the supplementary faces of the mesh. The additional stabilization terms vanish on the original
pproximation space V 

h , i.e. 
s h : V 

h ×̂ V 

h → { 0 } . ( 46 ) 
e equip ̂  V 

h with the extended energy norm according to 

| | | · | | | 2 ̂ V h = 

| | | · | | | 2 + s h (·, ·) , ( 47 ) 

ith a suitable choice of the stabilization parameters in a h and s h , the bilinear form ̂  a h is weakly coercive and continuous. It is to be
oted that this may require that the stabilization parameters in a h are larger than would be required for weak coercivity of a h on V 

h ×
 

h . By virtue of ( 44 ) –( 46 ) and the weak coercivity and linearity of ̂  a h , the following chain of inequalities holds: 

E � 

∣∣∣∣∣∣r h ( ̂  v h ) 
∣∣∣∣∣∣̂ V h ∗ = 

sup ̂ v h ∈ ̂

 V 

h \{ 0 } b 
h ( ̂  v h ) − a h (u h , ̂  v h ) ∣∣∣∣∣∣̂

 v h 
∣∣∣∣∣∣

= 

sup ̂ v h ∈ ̂

 V 

h \{ 0 } ̂ a h ( ̂  u h , ̂  v h ) −̂ a h (u h , ̂  v h ) ∣∣∣∣∣∣̂
 v h 
∣∣∣∣∣∣

= 

sup ̂ v h ∈ ̂

 V 

h \{ 0 } ̂ a h ( ̂  u h − u h , ̂  v h ) ∣∣∣∣∣∣̂
 v h 
∣∣∣∣∣∣ � 

| | | e | | | ̂ V h , ( 48 ) 

ith the error in the ultimate expression according to e := ̂  u h − u h . The chain of inequalities in ( 48 ) implies that the error estimator E
ontrols the error in the extended energy norm, | | | e | | | ̂ V h . 
The reason for defining the residual as a map from V 

h to ̂  V 

h ∗ is that the stabilization terms in the residual are generally unbounded
n the ambient space of the continuum problem, viz. H 

1 ( �) for the steady heat equation and H 

1 (�, R 

d ) × L 

2 (�) for the steady
iscous-flow equation. As we wi l l elaborate in Sections 3.1.1 and 3.1.2 , the refined approximation ̂  u h is not required for the calculation
f the residual-based estimator ( 41 ) . The extended space ̂  V 

h merely serves to establish the error-control relation ( 48 ) . 

3.1.1 Steady heat conduction 
o derive the error indicators for the steady heat conduction problem introduced in Section 2.2.1 , it is first noted that because of the
alerkin orthogonality 

r h ( ̂  v h ) = r h ( ̂  v h − �h ̂ v h ) = r h ( ̃  v ) , ( 49 ) 
here ˜ v = ̂  v h − �h ̂ v h ∈ ̂

 V 

h and �h : ̂  V 

h → V 

h are an interpolation operator [ 103 , 104 ]. Note that, for notational convenience,
e wi l l drop the diacritic and superscript from ̂  v h ∈ ̂

 V 

h in the remainder of this section, i.e. ̂  v h = v . 
Using the definition of the residual ( 43b ) in combination with the definitions of the bilinear and linear forms ( 11a ) and ( 11b ) ,

 reverse ) integration by parts yields 

r h ( ̃  v ) = 

∑ 

K∈T 

{ ∫ 
K∩ �

r h volume ̃  v d V + 

∫ 
K∩ ∂�N 

r h neumann ̃  v d S + 

∫ 
K∩ ∂�D 

(−r h nitsche 
)
∂ n ̃  v d S + 

∫ 
K∩ ∂�D 

β

h K 
r h nitsche ̃  v d S 

+ 

∫ 
∂K∩F skeleton 

(
−r h jump 

)
˜ v d S + 

∫ 
∂K∩F ghost 

γg h 2 k−1 
F 

(
−r h ghost 

)
[[ ∂ k n ̃  v ]] d S 

} 

, ( 50 ) 

here 

r h volume := f + �u h , ( 51a ) 

r h neumann := q − ∂ n u h , ( 51b ) 
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r h nitsche := g − u h , ( 51c )

r h jump := 

1 
2 
[[ ∂ n u h ]] , ( 51d )

r h ghost := 

1 
2 
[[ ∂ k n u 

h ]] . ( 51e )

The factor 1 2 in the jump and ghost terms accounts for the presence of the associated interfaces in two elements. Using the Cauchy–
Schwar z inequalit y, it then follows that 

| r h ( ̃  v ) | ≤
∑ 

K∈T 

{ 

‖ r h volume ‖ L 2 (K∩ �) ‖ ̃

 v ‖ L 2 (K∩ �) + ‖ r h neumann ‖ L 2 (K∩ ∂�N ) ‖ ̃

 v ‖ L 2 (K∩ ∂�N ) 

+ ‖ r h nitsche ‖ L 2 (K∩ ∂�D ) ‖ ∂ n ̃  v ‖ L 2 (K∩ ∂�D ) + βh −1 
K ‖ r h nitsche ‖ L 2 (K∩ ∂�D ) ‖ ̃

 v ‖ L 2 (K∩ ∂�D ) 

+ 

∑ 

F ∈F skeleton 

‖ r h jump ‖ L 2 (∂K∩ F ) ‖ ̃

 v ‖ L 2 (∂K∩ F ) + 

∑ 

F ∈F ghost 

γg h 2 k−1 
F ‖ r h ghost ‖ L 2 (∂K∩ F ) ‖ [[ ∂ k n ̃  v ]] ‖ L 2 (∂K∩ F ) 

} 

. ( 52 )

The various norms on the interpolation error ̃  v can be bounded by the energy norm ( 28 ) on v , where both functions are considered
to be piecewise polynomials. Using the cut-element specific inequalities discussed in Section 2.3 ( see also [ 76 ] ) in combination with
standard volumetric and boundary interpolation inequalities ( e.g. Clément interpolation [ 105 ] ) it follows that 

‖ ̃

 v ‖ L 2 (K∩ �) � ‖ ̃

 v ‖ L 2 (K) � ‖ ̃

 v ‖ L 2 (K) � h K ‖∇v ‖ L 2 ( ̃  K ) � h K | | | v | | | ˜ K , ( 53a )

‖ ̃

 v ‖ L 2 (K∩ ∂�) � h −
1 
2 

K ‖ ̃

 v ‖ L 2 (K) � h 
1 
2 
K | | | v | | | ˜ K , ( 53b )

‖ ∂ n ̃  v ‖ L 2 (K∩ ∂�D ) � h −
1 
2 

K ‖∇ ̃

 v ‖ L 2 (K) � h −
1 
2 

K | | | v | | | ˜ K , ( 53c )

‖ ̃

 v ‖ L 2 (∂K∩ F ) � h −
1 
2 

F ‖ ̃

 v ‖ L 2 (K) � h 
1 
2 
F | | | v | | | ˜ K , ( 53d )

‖ [[ ∂ k n ̃  v ]] ‖ L 2 (∂K∩ F ) � ‖ ∂ k n ̃  v K ‖ L 2 (∂K∩ F ) + ‖ ∂ k n ̃  v K ′ ‖ L 2 (∂K ′ ∩ F ) � h 
1 
2 −k 
F | | | v | | | ˜ K ∪ ̃

 K ′ , ( 53e )

where ̃  K is the support extension [ 44 ] of the element K and K 

′ is the element that shares the interface F with element K . The residual
can then be bounded as 

| r h ( ̃  v ) | � 

∑ 

K∈T 

{ 

h K ‖ r h volume ‖ L 2 (K∩ �) + h 
1 
2 
K ‖ r h neumann ‖ L 2 (K∩ ∂�N ) 

+ h −
1 
2 

K ‖ r h nitsche ‖ L 2 (K∩ ∂�D ) + βh −
1 
2 

K ‖ r h nitsche ‖ L 2 (K∩ ∂�D ) 

+ 

∑ 

F ∈F skeleton 

h 
1 
2 
F ‖ r h jump ‖ L 2 (∂K∩ F ) + 

∑ 

F ∈F ghost 

γg h 
k− 1 

2 
F ‖ r h ghost ‖ L 2 (∂K∩ F ) 

} 

| | | v | | | ˜ K ∪ ̃

 K ′ ( 54 )

which, using the discrete Cauchy–Schwar z inequalit y, can be rewritten as 

| r h (v ) | 2 
| | | v | | | 2 � 

∑ 

K∈T 

{ 

h 2 K ‖ r h volume ‖ 

2 
L 2 (K∩ �) + h K ‖ r h neumann ‖ 

2 
L 2 (K∩ ∂�N ) 

+ h −1 
K ‖ r h nitsche ‖ 

2 
L 2 (K∩ ∂�D ) + β2 h −1 

K ‖ r h nitsche ‖ 

2 
L 2 (K∩ ∂�D ) 

+ 

∑ 

F ∈F skeleton 

h F ‖ r h jump ‖ 

2 
L 2 (∂K∩ F ) + 

∑ 

F ∈F ghost 

γ 2 
g h 

2 k−1 
F ‖ r h ghost ‖ 

2 
L 2 (∂K∩ F ) 

} 

. ( 55 )
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sing the definition of the residual norm ( 43b ) , it follows that 

‖ r h ‖ ̂ V h � E = 

√ ∑ 

K∈T 
η2 
K , ( 56 ) 

ith the element error indicators defined as 
η2 
K := h 2 K ‖ r h volume ‖ 

2 
L 2 (K∩ �) + h K ‖ r h neumann ‖ 

2 
L 2 (K∩ ∂�N ) + h −1 

K ‖ r h nitsche ‖ 

2 
L 2 (K∩ ∂�D ) + β2 h −1 

K ‖ r h nitsche ‖ 

2 
L 2 (K∩ ∂�D ) 

+ 

∑ 

F ∈F skeleton 

h F ‖ r h jump ‖ 

2 
L 2 (∂K∩ F ) + 

∑ 

F ∈F ghost 

γ 2 
g h 

2 k−1 
F ‖ r h ghost ‖ 

2 
L 2 (∂K∩ F ) . ( 57 ) 

his error indicator reflects that the total element error for all elements that do not intersect the boundary of the domain is composed
f the interior residual and the residual term for the jump in the solution normal derivative across the element interfaces. It is noted
hat for higher-order continuous discretizations, i.e. α > 0, the jump contribution vanishes. For elements that intersect the Neumann
oundary, additional error contributions are obtained from the Neumann residual and the GP residual, while additional Nitsche-
e lated contributions appear for elements intersecting the Dirichlet boundary. 

3.1.2 Steady viscous flow 

or the Stokes problem introduced in Section 2.2.2 , using ( reverse ) integration by parts, the error indicators in Eq. ( 41 ) are obtained
y considering the residual ( 43b ) as 

r h ( ̃  v ) = 

∑ 

K∈T 

{ ∫ 
K∩ �

r h int , u · ˜ v + r h int ,p ̃  q d V + 

∫ 
K∩ ∂�N 

r h neumann · ˜ v d S 

+ 

∫ 
K∩ ∂�D 

(−r h nitsche ) · ( ( 2 μ∇ 

s ˜ v ) n + 

˜ q n ) d S + 

∫ 
K∩ ∂�D 

βμ

h K 
r h nitsche · ˜ v d S 

+ 

∑ 

F ∈F skeleton 

∫ 
∂K∩ F 

(−r h jump ) · ˜ v d S + 

∑ 

F ∈F ghost 

∫ 
∂K∩ F 

γg μh 2 k−1 
F (−r h ghost ) · [[ ∂ k n ̃  v ]] d S 

+ 

∑ 

F ∈F skeleton 

∫ 
∂K∩ F 

γs h 2 k+1 
F 

μ
r h skeleton [[ ∂ 

k 
n ̃  q ]] d S 

} 

, ( 58 ) 

here ̃  v = v − �h v = ( ̃  v , ̃  q ) and 

r h int , u := f + ∇ · (2 μ∇ 

s u h 
)− ∇ p h , ( 59a ) 

r h int ,p := ∇ · u h , ( 59b ) 

r h neumann := t − (
2 μ∇ 

s u h 
)
n + p h n , ( 59c ) 

r h nitsche := g − u h , ( 59d ) 

r h jump := 

1 
2 
[[ 
(
2 μ∇ 

s u h 
)
n ]] , ( 59e ) 

r h ghost := 

1 
2 
[[ ∂ k n u 

h ]] , ( 59f ) 

r h skeleton := 

1 
2 
[[ ∂ k n p 

h ]] . ( 59g ) 

Application of the Cauchy–Schwarz inequality gives ∣∣r h ( ̃  v ) ∣∣ ≤
∑ 

K∈T 

{ 

‖ r h int , u ‖ L 2 (K∩ �) ‖ ̃

 v ‖ L 2 (K∩ �) + ‖ r h int ,p ‖ L 2 (K∩ �) ‖ ̃

 q ‖ L 2 (K∩ �) 

+ ‖ r h neumann ‖ L 2 ( K∩ ∂�N ) ‖ ̃

 v ‖ L 2 ( K∩ ∂�N ) 

+ ‖ r h nitsche ‖ L 2 ( K∩ ∂�D ) 
(
2 μ‖ ( ∇ 

s ˜ v ) n ‖ L 2 ( K∩ ∂�D ) + ‖ ̃

 q ‖ L 2 ( K∩ ∂�D ) 
)
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+ μβh −1 
K ‖ r h nitsche ‖ L 2 (K∩ ∂�D ) ‖ ̃

 v ‖ L 2 (K∩ ∂�D ) 

+ 

∑ 

F ∈F skeleton 

‖ r h jump ‖ L 2 ( ∂K∩ F ) ‖ ̃

 v ‖ L 2 ( ∂K∩ F ) 

+ 

∑ 

F ∈F 

K 
ghost 

μγg h 2 k−1 
F ‖ r h ghost ‖ L 2 (∂K∩ F ) ‖ [[ ∂ k n ̃  v ]] ‖ L 2 (∂K∩ F ) 

+ 

∑ 

F ∈F 

K 
skeleton 

μ−1 γs h 2 k+1 
F ‖ r h skeleton ‖ L 2 (∂K∩ F ) ‖ [[ ∂ k n ̃  q ]] ‖ L 2 (∂K∩ F ) 

} 

, ( 60 )

which, using the inequalities ( 53 ) and 

‖ ̃

 q ‖ L 2 (K∩ �) � ‖ q ‖ L 2 (K) , ( 61a )

‖ ̃

 q ‖ L 2 (K∩ ∂�) � h −
1 
2 

K ‖ ̃

 q ‖ L 2 (K) � h −
1 
2 

K ‖ q ‖ L 2 (K) , ( 61b )

‖ [[ ∂ k n ̃  q ]] ‖ L 2 (∂K∩ F ) � ‖ ∂ k n ̃  q K ‖ L 2 (∂K∩ F ) + ‖ ∂ k n ̃  q K ′ ‖ L 2 (∂K ′ ∩ F ) � h −
1 
2 −k 

F ‖ q ‖ L 2 ( ̃  K ∪ ̃

 K ′ ) , ( 61c )

can be rewritten as ∣∣r h ( ̃  v ) ∣∣ � 

∑ 

K∈T 

{ 

μ− 1 
2 h K ‖ r h int , u ‖ L 2 (K∩ �) + μ

1 
2 ‖ r h int ,p ‖ L 2 (K∩ �) + μ− 1 

2 h 
1 
2 
K ‖ r h neumann ‖ L 2 ( K∩ ∂�N ) 

+ 3 μ
1 
2 h −

1 
2 

K ‖ r h nitsche ‖ L 2 ( K∩ ∂�D ) + μ
1 
2 βh −

1 
2 

K ‖ r h nitsche ‖ L 2 (K∩ ∂�D ) 

+ 

∑ 

F ∈F skeleton 

μ− 1 
2 h 

1 
2 
K ‖ r h jump ‖ L 2 ( ∂K∩ F ) + 

∑ 

F ∈F 

K 
ghost 

μ
1 
2 γg h 

k− 1 
2 

F ‖ r h ghost ‖ L 2 (∂K∩ F ) 

+ 

∑ 

F ∈F 

K 
skeleton 

μ− 1 
2 γs h 

k+ 

1 
2 

F ‖ r h skeleton ‖ L 2 (∂K∩ F ) 

} 

| | | v | | | ˜ K ∪ ̃

 K ′ . ( 62 )

Note that the factor 3 in front of the Nitsche residual results from the fact that both terms 2 μ‖ ( ∇ 

s ˜ v ) n ‖ L 2 ( K∩ ∂�D ) and ‖ ̃

 q ‖ L 2 ( K∩ ∂�D )
are bound by the same norm. Following the same steps as for the heat conduction problem, we then obtain the element error indicators
as 

η2 
K = μ−1 h 2 K ‖ r h int , u ‖ 

2 
L 2 (K∩ �) + μ‖ r h int ,p ‖ 

2 
L 2 (K∩ �) + μ−1 h K ‖ r h neumann ‖ 

2 
L 2 ( K∩ ∂�N ) 

+ 9 μh −1 
K ‖ r h nitsche ‖ 

2 
L 2 ( K∩ ∂�D ) + μβ2 h −1 

K ‖ r h nitsche ‖ 

2 
L 2 (K∩ ∂�D ) 

+ 

∑ 

F ∈F skeleton 

μ−1 h K ‖ r h jump ‖ 

2 
L 2 ( ∂K∩ F ) + 

∑ 

F ∈F 

K 
ghost 

μγ 2 
g h 

2 k−1 
F ‖ r h ghost ‖ 

2 
L 2 (∂K∩ F ) 

∑ 

F ∈F 

K 
skeleton 

μ−1 γ 2 
s h 

2 k+1 
F ‖ r h skeleton ‖ 

2 
L 2 (∂K∩ F ) . ( 63 )

Compared to the error indicators for the heat conduction problem, we here get one additional term to represent the error in the
balance of mass, i.e. ‖ r h int ,p ‖ L 2 (K∩ �) , and one term related to the skeleton-stabilization, i.e. ‖ r h skeleton ‖ L 2 (∂K∩ F ) . Moreover, note that the
mass and momentum balance terms are scaled with μ− 1 

2 and μ
1 
2 , respectively, in order to be dimensionally consistent with the energy

norm ( 32 ) . 

3.2 Adaptive solution procedure 
We employ the residual-based error estimator introduced earlier in an iterative mesh refinement procedure. In each iteration, for
the given mesh, we solve the Galerkin problem ( 8 ) and subsequently compute the element-wise error indicators ( 41 ) ( and the
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Figure 4 Illustration of the refinement procedure for cut elements. The original element is subdivided into integration subcells ( blue borders ) 
using the recursive bisectioning procedure detailed in [ 22 ]. At the lowest level of bisectioning a triangulation procedure is employed. After one 
refinement of the original element the original element is split into four elements, of which one is now an uncut element and the other three are 
cut elements. The bisectioning depth for the determination of the integration subcells is reduced by one level compared to the original element, 
so that the subcells remain identical under the element refinement operation. After one further refinement step, each of the four elements in the 
first refinement is further refined, resulting now also in elements that are void and are hence discarded from the background mesh. 
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orresponding estimator ) . Based on the indicators, certain elements are then refined, after which the procedure is repeated on the
efined mesh. These iterations are continued until a stopping cr iter ion is satisfied. 
We consider Dörfler marking [ 106 ] to select the elements to be refined. In this marking strategy the marked set, M , is defined as a
inimal set of elements such that √ ∑ 

K∈M 

η2 
K ≥ λ

√ ∑ 

K∈T 
η2 
K = λE, ( 64 ) 

ith λ a selected fraction of the error estimator. For the considered ( truncated ) hierarchical spline meshes, refining elements does not
ecessarily result in a refinement of the approximation space [ 71 , 94 ]. To ensure that the approximation space is refined, an additional
tep is required in which a refinement mask ˜ M ⊃ M is defined. To determine the refinement mask, for each element K in the marked
et M we determine the support extension ˜ K = 

⋃ {
supp (N) | supp (N) ∩ K � = ∅ , N ∈ H(T ) 

}
, ( 65 ) 

nd then refine the elements in each support extension, which are not smaller than the element K , i.e. 

˜ M = 

⋃ 

K∈M 

{ 

K 

′ ∈ 

˜ K | K 

′ ∈ ∪ 

� K 
� =0 T 

� , K ∈ T 

� K 

} 

. ( 66 ) 

During the element refinement procedure, the geometry approximation is not altered, as i l lustrated in Fig. 4 . In our implementation,
he bisectioning depth used to determine the integration subcells is lowered under refinement, resulting in the preservation of the
ntegration subcells under refinement. This ensures that the boundary of the segmented geometry is invariant under mesh refinement.
 consequence of this choice is that an element can only be refined up to the level of the integration subcells. Elements requiring
efinement beyond the level of the integration subcells are discarded from the refinement list, and the adaptive refinement procedure
s stopped if there are no more elements that can be refined. 

4. BENCH  MARK SI  MULATIONS  

n this section, we assess the developed residual-based adaptive refinement technique on a range of numer ical exper iments. For both
he heat conduction problem ( Section 4.1 ) and the viscous flow problem ( Section 4.2 ) , both singular and non-singular test cases are
onsidered. For all simulations, exact reference solutions are available, allowing for a rigorous study of the stability and accuracy of the
eveloped adaptive immersed isogeometric analysis framework. For all simulations, the octree subdivision depth is set equal to the
esired maximum number of refinements ( see Section 3.2 ) , and the refinement threshold is set to λ = 0.8. Throughout this section,
he problems are considered to be in dimensionless form. 
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Figure 5 ( a ) Problem setup, and ( b ) the exact solution u ( x , y ) , Eq. ( 67 ) , for the Laplace problem on the unit square domain. 

Figure 6 Error convergence results for the Laplace problem on the unit square domain under residual-based adaptive refinement ( solid ) and 
uniform refinement ( dashed ) for linear ( k = 1 ) and quadratic ( k = 2 ) basis functions. 
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4.1 Steady heat conduction 
We consider the two-dimensional heat conduction problem on a unit square, on a star-shaped domain with a smooth exact solution,
and on a domain with a re-entrant corner, for which the exact solution has a reduced regularity ( Section 4.1.3 ) . The problems are
discretized with linear ( k = 1 ) and quadratic ( k = 2 ) ( TH ) B-splines using both uniform and adaptive refinement. All examples con-
sider a non-conforming ambient mesh positioned at an angle of 20 ◦ ( see Figs 5 a and 9 a ) , unless specified otherwise. The empirically
selected Nitsche and GP parameters are set to β = 50 and γ g = 10 −( k + 2 ) , respectively. 

4.1.1 Unit square 
Let � = [ − 1 

2 , 
1 
2 ] 

2 be a unit square with the Dirichlet boundary ∂�D 

( see Fig. 5 a ) . We define the exact solution of the problem ( 10 )
as 

u (x, y ) = sin (πx ) + sin (πy ) , ( 67 )
w hich is show n in Fig. 5 b. The heat source f corresponding to this exact solution is equal to 0, and the Dirichlet data is set to g = u | ∂�D ,
matching the exact solution. 
Figure 6 shows error-analysis results using both uniform and adaptive refinements for the linear case ( Fig. 6 a ) and for the quadratic

case ( Fig. 6 b ) . Both refinement procedures start from an initial mesh consisting of 8 × 8 elements covering the ambient domain [ − 1,
1] 2 . Optimal convergence rates are obtained for both the error in the L 

2 -norm ( i.e. O(n −
1 
2 (k+1) ) ) and in the H 

1 -norm ( i.e. O(n −
1 
2 k ) ) ,
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Figure 7 ( a ) Problem setup, and ( b ) –( f ) contour plots of the error, u − u h , for the Laplace problem on the star-shaped domain at the end of six 
adaptive refinement steps for different angles of mesh rotation ϑ. 
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ith n denoting the number of degrees of freedom. Moreover, as the number of refinement steps increases, the energy norm and H 

1 -
orm of the error coincide, indicating that the error is dominated by the H 

1 -semi-norm contribution in Eq. ( 28 ) . The estimator ( 41 )
s observed to converge at the same rate as the energy norm, bounding the energy norm from above, consistent with Eq. ( 48 ) . Be-
ause of the smooth solution ( 67 ) , the refinement pattern following the adaptive refinement procedure closely resembles the uniform
efinements, as observed from the close correspondence between the error results for the uniform and adaptive simulations in Fig. 6 .
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Figure 8 ( a ) Degrees of freedom, and ( b ) error norms for the Laplace problem on the star-shaped domain after six adaptive refinement steps 
for different angles of mesh rotation ϑ. 

Figure 9 ( a ) Problem setup, and ( b ) the exact solution u ( x , y ) , Eq. ( 68 ) , for the Laplace problem on the re-entrant corner domain. 
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4.1.2 Star-shaped domain 
To study the sensitivity of the adaptive simulation framework to the cut-cell configurations, we consider the star-shaped domain shown
in Fig. 7 a for various orientation angles ϑ. The star-shaped domain is constructed using the level set function 

ψ(x, y ) = R 1 + R 2 sin (n fold arctan2 (y, x )) −
√ 

x 2 + y 2 , 

with R 1 = 0.6, R 2 = 0.2 and n fold = 5 [ 107 ]. On the boundary of the domain the Dirichlet data is set equal to the same exact solution
( 67 ) as in the previous example. For all orientations, an initial mesh of 10 × 10 elements covering the ambient domain [ −1, 1] 2
is considered, after which local refinements using second-order THB-splines are performed unti l the smal lest elements have been
refined six times. 
Figure 7 b–f shows the error u − u h after completion of the refinement procedure. These figures convey that both the error and the

refinement pattern are similar for all orientations. This is corroborated by the results in Fig. 8 , which indicates that both the number
of degrees of freedom and the errors ( in various norms ) are insensitive to the orientation angle. 

4.1.3 Re-entrant corner 
To study the behavior of the adaptive simulation strategy for problems with ( weakly ) singular solutions, we consider a domain with
a re-entrant corner, as shown in Fig. 9 a. The data on the Dirichlet and Neumann boundaries, u | ∂�D = g = 0 and ∂ n u | ∂�N = q , is set
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Figure 10 Error convergence results for the Laplace problem on the re-entrant corner domain under residual-based adaptive refinement ( solid ) 
and uniform refinement ( dashed ) for linear ( k = 1 ) and quadratic ( k = 2 ) basis functions. 
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o match the exact solution [ 62 , 71 ], 

u (x, y ) = (x 2 + y 2 ) 
1 
3 cos 

(
2 
3 
arctan2 (x − y, x + y ) 

)
. ( 68 ) 

The convergence behavior of the L 

2 -error, H 

1 -error, energy norm error ( 28 ) and the residual-based estimator ( 57 ) is studied for
niform refinement and residual-based adaptive refinement. Both refinement procedures start from an initial mesh of 10 × 10 ele-
ents formed on the ambient domain [ − 3 

2 , 
3 
2 ] 

2 . The convergence results for first- and second-order B-splines are shown in Figs 10
 and b, respectively. Evolution of the adaptive mesh is shown in Fig. 11 . 
Under uniform refinement, the convergence rates are impeded by the weak singularity at the re-entrant corner. For the L 

2 -error and
 

1 -error, suboptimal rates of O (n −
2 
3 ) and O (n −

1 
3 ) are observed, which is in agreement with the expected rates [ 108 ]. These rates are

ndependent of the order of the approximation as the regularity of the exact solution limits the rate already for the linear case. As for
he cases considered above, the energy error and estimator follow the convergence of the H 

1 -error. The effectivity of the estimator—
efined as the ratio between the error estimate and the actual error in the energy norm—is shown in Fig. 16 a. This result conveys that
he effectivity index is essentially independent of the mesh size and that there is a close correspondence between the estimator and
he error in the energy norm. 
Using the adaptive refinement strategy with linear basis functions, the optimal rates of O (n −1 ) and O (n −

1 
2 ) are recovered for the

 

2 -error and H 

1 -error, respectively. For the quadratic case, rates that are substantially higher than the theoretical rates are observed.
e attribute this to pre-asymptotic behavior, in which the refinement pattern as shown in Fig. 10 is strongly focused on the re-entrant
orner singularity. After the first two steps, the errors become dominated by the singularity at the re-entrant corner, which results in the
urther refinement of the few elements in the vicinity of the corner. These refinements do reduce the error, while they only introduce
 limited number of additional degrees of freedom. The observed flattening in the rate of the L 

2 -error in the quadratic case is caused
y the refinement reaching the maximum level in the elements in the corner, which causes the marking strategy to tag elements that
o not carry the largest error contributions. 

4.2 Steady viscous flow 

e regard the two-dimensional Stokes flow problem on a quarter annulus ring domain with a smooth solution and on the above-
ntroduced re-entrant corner domain with a singular solution. We consider equal-order discretizations for the velocity and pressure
elds using optimal regularity ( TH ) B-splines of degree k = 1 and k = 2. For the Nitsche and GP parameters, the same settings are
sed as for the Laplace problem considered above, i.e. β = 50 and γ g = 10 −( k + 2 ) . In addition, a skeleton-penalty parameter of γ s =
0 −( k + 1 ) is used for all simulations. 

4.2.1 Quarter annulus ring 
e consider an annulus ring domain � = { (x, y ) ∈ R 

2 
> 0 : R 

2 
1 < x 2 + y 2 < R 

2 
2 } with inner radiusR 1 =1, outer radiusR 2 =4, Dirich-

et boundary ∂�D 

and Neumann boundary ∂�N 

, as shown in Fig. 12 a. The Dirichlet data g and the Neumann data t are prescribed
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Figure 11 Evolution of the mesh using the adaptive refinement procedure for the Laplace problem on the re-entrant corner domain using k = 2. 
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in accordance with the divergence-free manufactured solution [ 58 ] 

u 1 (x, y ) = 10 −6 x 2 y 4 (x 2 + y 2 − 1)(x 2 + y 2 − 16) 
(
5 x 4 + 18 x 2 y 2 − 85 x 2 + 13 y 4 − 153 y 2 + 80 

)
, 

u 2 (x, y ) = 10 −6 xy 5 (x 2 + y 2 − 1)(x 2 + y 2 − 16) 
(
102 x 2 + 34 y 2 − 10 x 4 − 12 x 2 y 2 − 2 y 4 − 32 

)
, 

p(x, y ) = 10 −7 xy (y 2 − x 2 )(x 2 + y 2 − 16) 2 (x 2 + y 2 − 1) 2 exp (14(x 2 + y 2 ) −1 / 2 ) . ( 69 )
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Figure 12 ( a ) Problem setup, and ( b ) –( d ) the exact solution components u 1 ( x , y ) , u 2 ( x , y ) and p ( x , y ) , defined in Eq. ( 69 ) , for the Stokes 
problem on the quarter annulus ring domain. 
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he body force f in the Stokes problem ( 12 ) is determined based on this manufactured solution, w ith the v iscosity set to μ = 1. 
Evolution of the adaptive mesh is shown in Fig. 14 . Figure 13 displays the convergence results for the annulus ring problem. Both
he uniform refinement results and the adaptive refinement results are obtained starting from a 9 × 9 uniform mesh on the ambient
omain [0, R 2 ] 2 = [0, 4] 2 . A good resemblance with the optimal rates of O(n −

1 
2 k ) in the velocity H 

1 -norm and pressure L 

2 -norm is
bserved, and, as expected, the rate of the velocity L 

2 -error is O(n −
1 
2 (k+1) ) . The error in the energy norm ( 32 ) is observed to converge

ith the same rate as the H 

1 -norm velocity error and L 

2 -norm pressure error, which is in agreement with the definition of the energy
orm. As expected, the error estimator bounds the error in the energy norm from above. 
Although optimal convergence rates are obtained using uniform refinements, the adaptive refinement procedure is observed to
ubstantially improve the error for a fixed number of degrees of freedom. This behavior is explained by the observed refinement
atterns, as shown in Fig. 14 . Although the exact solution ( 69 ) is smooth, in particular, the steep gradients in the velocity solution
ead to local refinements. This effectively reduces the error when compared to a uniform refinement with a similar number of degrees
f freedom. 

4.2.2 Re-entrant corner 
s a final benchmark problem, we consider the Stokes problem ( 12 ) on the re-entrant corner domain with mixed Dirichlet and Neu-
ann boundaries introduced earlier, as shown in Fig. 9 a. The weakly singular exact solution is taken from [ 109 ] as 

u 1 = R 

α
[
sin (θ ) ∂ψ 

∂θ
− (1 + α) cos (θ ) ψ 

]
u 2 = −R 

α
[
cos (θ ) ∂ψ 

∂θ
+ (1 + α) sin (θ ) ψ 

]
p = − R 

α−1 

1 − α

[ 
(1 + α) 2 

∂ψ 

∂θ
+ 

∂ 3 ψ 

∂θ 3 

] 
( 70 ) 
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Figure 13 Error convergence results for the Stokes problem on the quarter annulus ring domain under residual-based adaptive refinement 
( solid ) and uniform refinement ( dashed ) for linear ( k = 1 ) and quadratic ( k = 2 ) basis functions. 
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with constants α = 856399/1572864 and ω = 

3 
2 π , and with 

ψ(θ ) = 

cos (αω) 
1 + α

sin ( ( 1 + α) θ ) − cos (αω) 
1 − α

sin ((1 − α) θ ) + cos ((1 − α) θ ) − cos ((1 + α) θ ) . ( 71 )

The exact pressure and velocity fields are i l lustrated in Fig. 15 . The corresponding Stokes problem ( 12 ) is considered with the viscosity
set to μ = 1, no body force, f = 0 , a no slip condition on �D 

, such that u D 

= 0 , and the Neumann data g on �N 

matching the exact
solution. 
Evolution of the adaptive mesh is shown in Fig. 18 . Figure 17 displays the error convergence results obtained using uniform and

adaptive refinements, for both linear and quadratic ( TH ) B-splines. As for the Laplace case, the weak singularity in the exact solution
( 70 ) limits the convergence rate when uniform refinements are considered. Using adaptive mesh refinement results in a recovery of
the optimal rates in the case of linear basis functions, with even higher rates observed for the quadratic splines on account of the highly
focussed refinements resulting from the residual-based error estimator as observed in Fig. 18 . The effectivity of the estimator is shown
in Fig. 16 b, i l lustrating the close correspondence between the estimator and the error in the energy norm. 

5. SCAN-BASED  SIMULATIONS  

In this section, we apply the developed adaptive immersed isogeometric analysis framework in the context of scan-based analysis. We
consider the viscous flow problem on a two-dimensional image domain and on a three-dimensional patient-specific problem based
on a μCT-scan of a carotid artery, represented by grayscale voxels. The primary purpose of the two-dimensional setting is to test the
scan-based analysis framework. For all simulations, the octree subdivision depth is set equal to 8 in two dimensions and 3 in three
dimensions. The refinement threshold related to the Dörfler marking is set to λ = 0.8. 
Our scan-based analysis workflow is i l lustrated in Fig. 19 . The first step in this workflow is to smoothen the original grayscale voxel

data using a convolution operation on a B-spline basis formed on the voxel grid [ 82 ]. Since this smoothing operator behaves as a
Gaussian filter geometric features that are similar in size to the voxels can be lost [ 110 ]. To avoid this loss of features the topology-
preservation procedure proposed in [ 110 ] is employed. This procedure locally refines the convolution basis to retain small geometric
features in the smoothing procedure. Once the smooth level set representation has been obtained the octree segmentation procedure
with mid-point tessellation of [ 22 ] is used to obtain the immersed geometry represented on an ambient domain mesh. It is important
to note that this ambient domain mesh on which the solution to the flow problem is computed, can be chosen independently of the
voxel size, and hence, it is independent of the mesh on which the level set function is constructed. 
The considered computational domain is i l lustrated in Fig. 20 a. Neumann conditions are imposed on the inflow and outflow bound-

aries with the traction on the inflow boundary acting in the normal direction with a traction data, t = − p̄ n , where p̄ is the pressure
magnitude. Homogeneous Dirichlet conditions are imposed along the immersed boundaries in accordance with the no slip condi-
tion. It is to be noted that a Neumann condition at an inflow boundary generally leads to an i l l-posed boundary value problem for the
Navier–Stokes equations, but the Stokes problem is well-posed. In all simulations, we consider second-order ( k = 2 ) ( TH ) B-splines
and set the stabilization parameters to β = 100, γ g = 10 −( k + 2 ) a nd γ s = 10 −( k + 1 ) , which have been determined empirically. 
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Figure 14 Evolution of the mesh using the adaptive refinement procedure for the Stokes problem on the quarter annulus ring domain using 
k = 2. 
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5.1 Two-dimensional prototypical geometry 
o test the developed methodology in the scan-based setting, we first consider the prototypical two-dimensional geometry shown in
ig. 20 a, which is constructed from 32 × 32 grayscale voxel data. The ambient domain, which matches the scan window, is taken as
 unit square ( L = 1 ) , which is covered by an 8 × 8 elements ambient mesh. The viscosity is set equal to μ = 1 and the pressure to
p̄ = 1 . 
Various steps in the adaptive refinement procedure are depicted in Fig. 21 . In the first step virtually all elements covering the flow
omain are refined, indicating that the initial mesh of only 8 × 8 elements is too coarse to resolve the solution globally. After the
rst refinement step, the refinement strategy starts to focus on the regions where the errors are largest, i.e. near boundaries and narrow
ections, as also i l lustrated in Fig. 20 b. Under further refinement, the procedure resolves prominent solution details, most importantly
he ( Poiseui l le-li ke ) profile in the carotid part of the artery and the velocity profiles at the inflow and outflow boundaries. 
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Figure 15 ( a ) Velocity magnitude and streamlines, and ( b ) pressure for the exact solution ( 70 ) to the Stokes problem on the re-entrant corner 
domain. Because of the singular solution, the pressure color bar is truncated to the range −10 and 10. 

Figure 16 Effectivity of the estimator for the ( a ) Laplace and ( b ) Stokes problems on the re-entrant corner domain under residual-based 
adaptive refinement for both linear ( k = 1 ) and quadratic ( k = 2 ) basis functions. 

Figure 17 Error convergence results for the Stokes problem on the re-entrant corner domain under residual-based adaptive refinement ( solid ) 
and uniform refinement ( dashed ) for linear ( k = 1 ) and quadratic ( k = 2 ) basis functions. 
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Figure 18 Evolution of the mesh using the adaptive refinement procedure for the Stokes problem on the re-entrant corner domain using k = 2. 
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Further results of the viscous flow problem solved using uniform and adaptive refinements are shown in Fig. 22 in the form of the
ux through the left and right outflow channels. The minor difference in results on the initial mesh ( left-most points ) is caused by
 different selection of the octree-depth for the uniform and adaptive simulations. Both methods are observed to converge to the
ame fluxes under refinement, but an excellent approximation of the reference solution ( computed on a uniform overki l l refinement,
onsistent with the result reported in [ 110 ] ) is obtained by means of the adaptive mesh refinement procedure using substantially
ewer degrees of freedom than for uniform refinements. This is consistent with the observations on the velocity field discussed above
here in particular, the ability of the adaptive refinement procedure to resolve the flow in the carotid part is essential. 
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Figure 19 Illustration of the scan-based analysis workflow. The original grayscale image in panel ( a ) is converted to a level set function, shown 
in panel ( b ) , which is constructed using the topology-preserving segmentation algorithm of [ 110 ]. The trimmed geometry shown in panel ( c ) , 
is then extracted using the recursive bisectioning strategy with mid-point tessellation of [ 22 ]. 

Figure 20 ( a ) Illustration of the domain and boundary conditions for the scan-based viscous flow problem, and ( b ) a typical locally refined 
mesh resulting from the adaptive procedure. 
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5.2 Three-dimensional patient-specific geometry 
To demonstrate the residual-based adaptivity procedure in a real scan-based setting, we consider the patient-specific carotid artery
used in [ 110 ]. The geometry of the carotid artery is obtained from CT-scan data containing 80 slices of 85 ×70 voxels. The size of each
voxel is 300 × 300 μm 

2 , and the distance between the slices is 400 μm . The total size of the scan domain is 25 . 6 × 21 . 1 × 32 . 0 mm 

3 .
We set the viscosity to 4 mPa s and the pressure to 17.3 kPa ( 130 mm of Hg ) . 
Simulation results for this problem are shown in Fig. 23 . Note that for the considered scan data, the application of the topology-

preservation algorithm in [ 110 ] is essential as otherwise the narrow channel section in the right artery would disappear. The simu-
lation results are based on a 24 × 24 × 24 ambient domain mesh of 25 . 6 × 21 . 1 × 32 . 0 mm 

3 and an octree depth of three. In this
setting, after two refinements, an element is of a similar size as the voxels. The need to substantially refine beyond the voxel size is,
from a practical perspective, questionable, as the dominant error in the analysis wi l l then be related to the scan resolution and the
segmentation procedure. In this sense, the constraint of not being able to refine beyond the octree depth is not a crucial problem in
the considered simulations. 
Different steps in the adaptive refinement procedure are i l lustrated in Figs 23 and 24 . In all the refinement steps, the re-

finement strategy starts to focus on the regions where the errors are largest, i.e. near the stenosed section ( i.e. the nar-
row region at the right artery ) and at the outflow section of the left artery. Under local mesh refinement, the procedure re-
solves prominent solution details, most importantly the velocity field in the left artery and near the stenotic part of the right
artery. 
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Figure 21 Evolution of the mesh and ( magnitude of the ) velocity field during the adaptive refinement process for the viscous flow in two 
dimensions. 

Figure 22 Mesh convergence of the outflow flux at the ( a ) left and ( b ) right channel of the domain in Fig. 20 a using adaptive ( solid ) and 
uniform ( dashed ) mesh refinements. 
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Figure 23 Velocity magnitude during the adaptive refinement process for the patient-specific viscous flow problem. 
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The flux at the outlet of the arteries is shown in Fig. 25 , which is computed with the velocity field obtained by solving the flow
problem using adaptive refinements. The solution of the flux in the left artery is observed to gradually converge toward a value
of just over 5100 [mm 

3 /s]. For the right artery, the maximum refinement depth is reached after the second refinement step. As
a result, the flux in the right artery does not substantially change anymore. At this point, the element sizes in the vicinity of the
stenotic artery are similar in size to the voxels. The error then becomes dominated by the geometry reconstruction procedure,
which also explains why the observed flux in the right artery deviates from the uniform mesh results in [ 110 ] viz. ϱmax = 2 in-
stead of the presently applied ϱmax = 3. It is observed that the adaptive procedure terminates after four refinement steps because
of reaching the maximum refinement level in all the elements tagged for refinement. At this point, the adaptive simulation uses 12
816 DOFs, which is substantially lower than the number of DOFs required using uniform refinements [ 110 ] which amounts to
approximately 10 5 . 
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Figure 24 Evolution of the mesh during the adaptive refinement process for the patient-specific viscous flow problem. 
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Figure 25 Mesh convergence of the flux at the left and right outflow boundaries using adaptive mesh refinements for the patient-specific 
viscous flow problem. 
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6. CONCLUDING  REMARKS  

In the immersed ( isogeometric ) analysis framework, the geometry representation is decoupled from the discretization. This enables
the consideration of spline basis functions on complex volumetric domains, for which boundary-fitting discretizations cannot easily be
obtained. Moreover, the decoupling of the geometry and the discretization allows one to have a globally accurate representation of the
geometry, but only to refine the mesh in places where the errors are large. Such local mesh refinements have the potential to provide a
significant efficiency gain compared to uniform meshes. The adaptive simulation strategy proposed in this work automatically refines
the elements in places that significantly contribute to the error in the energy norm. 
The developed error estimation and adaptivity strategy is based on residual-based error estimation, which is well established in tra-

ditional finite elements and has been successfully applied in boundary-fitting isogeometric analysis. In the considered immersed set-
ting, the residual-based error estimation and adaptivity framework require the incorporation of the stabilization terms for the weakly
imposed Dirichlet boundary conditions and, in the case of the ( mixed ) Stokes flow problem, for the treatment of equal-order dis-
cretizations of the velocity–pressure pair. Adequate scaling of the stabilization constants with the mesh size is essential for the adaptive
procedure to be effective. In particular, the order dependence of the stabilization constants and the definition of the local element sizes
must be treated adequately. An approach to evaluate the Nitsche stabilization parameter has been proposed in [ 26 ]. The development
of a similar computational strategy to determine the additional stabilization parameters considered in this work is an interesting topic
for further study. 
In contrast to residual-based error estimation for boundary-fitting finite elements and isogeometric analysis, in the stabilized im-

mersed setting, it is not evident that the residual-based error estimator bounds the error in the energy norm from above. This is a
consequence of the absence of an h -independent weak formulation. In this work, it is reasoned, however, that under the assumption
of sufficient smoothness, the residual is expected to be useful in the setting of an adaptive refinement strategy. For all numerical simu-
lations considered, including simulations with reduced regularity, it is observed that the error estimator does provide an upper bound
to the error in the energy norm. A rigorous study regarding the relation between the residual and the actual error is warranted. 
It is demonstrated that the developed adaptive simulation strategy is particularly useful in a scan-based analysis setting, where man-

ual selection of refinement zones is impractical. When used in combination with advanced image segmentation procedures to obtain
a smooth geometry representation while preserving small geometric features, the developed adaptive refinement strategy optimally
leverages the advantageous approximation properties of splines for geometrically and topologically complex domains. The adaptivity
strategy results in a simulation workflow that is capable of obtaining error-controlled results with limited user interaction. 
The developed adaptive solution strategy is elaborated for the Laplace problem and the Stokes problem. For other problems, such

as, for example, Navier–Stokes or Cahn–Hi l liard problems, the starting point of the derivation of the error-estimator remains the
same. The estimators are problem-specific, however, and hence need to be elaborated for such problems. The same holds for the
consideration of additional or alternative stabilization techniques, specifically when these alter the Galerkin form of the problem. 
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