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Abstract
Numerical simulations of a complete laser powder bed fusion (LPBF) additive manufacturing (AM) process are extremely 
challenging, or even impossible, to achieve without a radical model reduction of the complex physical phenomena occur-
ring during the process. However, even when we adopt a reduced model with simplified physics, the complex geometries 
of parts usually produced by the LPBF AM processes make this kind of analysis computationally expensive. In fact, small 
geometrical features—which might be generated when the part is designed following the principle of the so-called design 
for AM, for instance, by means of topology optimization procedures—often require complex conformal meshes. Immersed 
boundary methods offer an alternative to deal with this kind of complexity, without requiring complicated meshing strate-
gies. The two-level method lies within this family of numerical methods and presents a flexible tool to deal with multi-scale 
problems. In this contribution, we apply a modified version of the recently introduced two-level method to part-scale thermal 
analysis of LPBF manufactured components. We first validate the proposed part-scale model with respect to experimental 
measurements from the literature. Then, we apply the presented numerical framework to simulate a complete LPBF process 
of a topologically optimized structure, showing the capability of the method to easily deal with complex geometrical features.

Keywords  Laser powder bed fusion · Two-level method · Multi-scale analysis · Part-scale thermal model · Immersed 
boundary method · SS-316L

1  Introduction

Laser powder bed fusion (LPBF) is an additive manufactur-
ing (AM) process consisting of either a laser or an electron 
beam selectively melting a bed of metal powder in a layer-
by-layer fashion. LPBF technology has grown exponentially 
over the last several decades thanks to its ability to pro-
duce components with small geometrical features covering 
a large range of scales [1]. LPBF allows close-to-freeform 
production and has radically changed the approach to design, 
moving from the so-called design for manufacturing to func-
tional design, where the functionality of the component is 
optimized with very few constraints coming from the man-
ufacturing process [2]. While several metal alloys can be 

processed by means of LPBF technology, the most common 
are iron, titanium, nickel, and aluminum alloys [3]. In the 
present work, an LPBF process of stainless steel 316L is 
considered.

Despite the above-mentioned potentiality, widespread 
adoption of LPBF technology is hindered by the lack of 
standardization and repeatability associated with the com-
plexity of the LPBF process. Nowadays, one of the main 
issues that the research community is trying to address is 
to understand the process–structure–property–performance 
relationship occurring in LPBF products [4]. Several studies 
have investigated the effects of LPBF process parameters at 
different scales [5–8], from micro-structure to part-deflec-
tion, but a deterministic, holistic model has not yet been 
developed.

Since the process is principally thermally driven, most 
of the process-induced flaws in the final structures are influ-
enced by the thermal history of the part, i.e., by the spatio-
temporal evolution of the temperature field within the struc-
ture [9, 10]. In fact, a specific region of the structure can lead 
to higher residual heat compared to others and thus to locally 
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varying micro-structural properties which directly affect the 
final performance (e.g., yield stress, fatigue life, etc.) of the 
component [11, 12]. Therefore, a purely empirical process 
parameter optimization might be ineffective and lead to very 
high costs, in terms of machine time, powder consumption, 
and energy usage.

Numerical modeling and simulations can play an impor-
tant role enabling prediction of the thermal history in LPBF 
components without undergoing long and expensive trial-
and-error campaigns. Due to the extreme spatio-temporal 
ranges involved and the complexity of the physical process, 
LPBF simulations are challenging from both a modeling and 
a numerical perspective. For detailed reviews on LPBF pro-
cess simulations, interested readers are referred to [13–15].

The finite element method (FEM) is often used to perform 
numerical analysis of LPBF problems. Some authors have 
tried to employ adaptive mesh refinement and coarsening 
[16–19]; however, the most widespread solution is to adopt 
reduced/surrogate models of the thermal problem, which in 
the following we refer to as part-scale models.

Many different part-scale thermal models have been 
developed and validated, but this area of research is far from 
complete. These models play a key role in both thermo-
mechanical and microstructural predictions. In fact, even if 
residual stresses and microstructural properties are gener-
ated at the local scale and have a strong dependency on the 
cooling rates, they are also influenced by the geometry of 
the structure due to the complex process–structure–prop-
erty–performance relationship in AM processes discussed 
above.

The so-called pragmatic approach, first presented by [20], 
activates blocks of agglomerated layers at a given tempera-
ture (e.g., the melting temperature in [20] and a material-
dependent relaxation temperature in [21]). Results obtained 
using this method are in good agreement with experimental 
measurements of part deflection, but no validation is pro-
vided for the thermal model. Moreover, this method requires 
a conformal mesh. This may lead to very large systems when 
complex geometries are investigated, since the generated 
mesh may be over-refined in parts of the domain, where 
critical geometrical features (e.g., sharp corners, small holes, 
etc.) are present.

[22] develop a quasi-static thermo-mechanical model for 
the fast prediction of thermal distortion in LPBF processes 
using a thermal circuit network on a voxelized representation 
of the part domain. In such a model, Hoelzel and co-workers 
also neglect thermal inertia effects. Such a choice is justified 
as the mechanical problem is quasi-static at part-scale, and 
no validation is provided for the thermal model.

A part-scale thermal model employing the virtual 
domain approximation is presented by [23], allowing for 
a domain reduction, since heat losses through the powder 
and the base plate are modeled by means of an equivalent 

heat transfer coefficient. Such a model shows a relative 
error below 15% with respect to temperature measurements 
obtained by means of thermocouples on an oblique square 
prism of 30 × 30 × 80 mm3 printed using Ti-6Al-4V.

Another part-scale thermal model based on a highly 
efficient matrix-free GPU computation is introduced by 
[24] leading to a speed-up factor higher than ×4 with 
respect to classical CPU-based implementations. The base 
plate temperature of a 20 × 20 × 20 mm3 cubic specimen 
is measured by means of a K-type thermocouple embed-
ded in the center of the build plate. To and co-workers 
assume adiabatic boundary conditions at the solid/powder 
interface and conduct a thorough sensitivity analysis with 
respect to the other calibrated parameters.

[25] propose a part-scale thermal model using graph-
theoretic approach. The model is validated with respect 
to experimental thermal measurements for a 250 cm3 vol-
ume impeller. Good agreement among the results obtained 
using the graph-theoretic approach and experimental 
measurements is reported. However, the authors assume 
linear thermal parameters and their results strongly depend 
on the chosen number of nodes, as well as a gain factor 
which controls the rate of heat diffusion through the nodes. 
Both these parameters have been calibrated in a previous 
work [26] for the same material and AM machine as in 
[25] but, since they have no direct physical meaning, turn 
out to be rather complex to calibrate accurately.

In [27] an immersed boundary method, the Finite Cell 
Method, is employed to implement a part-scale thermo-
mechanical model. The model is then validated with 
respect to experimental measurements on part deflection 
and residual strains carried out at the National Institute 
of Standards and Technology (NIST) for the AM 2018 
Benchmark Series [28]. However, no temperature meas-
urements were provided to validate the accuracy of the 
predicted temperature field.

Avoiding a conformal mesh discretization by means of 
an implicit representation of the part geometry, the numeri-
cal method adopted in the present work follows the line of 
thought presented in [27, 29]. However, in the present con-
tribution, we introduce a local–global approach, which may 
better capture the multi-scale feature of LPBF processes, 
employing different thermal models at the small and large 
spatial scales.

In particular, a part-scale thermal model is developed 
and experimentally validated using a modified version of 
the two-level method first presented by [30] and analyzed in 
detail in [31]. Such a numerical approach is a local–global 
methodology which allows one to couple the results of a 
local, finer discretization with a coarser, global representa-
tion of the problem solutions. One of the main advantages 
of this approach is its ability to keep both the local and the 
global discretization on a structured Cartesian grid, making 
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the mesh generation process computationally inexpensive 
and, at the same time, avoiding continuous re-meshing [32].

Compared to other immersed boundary approaches, the 
proposed two-level method allows for different treatment of 
the spatial scales on two separate meshes. In contrast, the 
Finite Cell Method (FCM) [33–35], the Cut-FEM [36], as 
well as the other popular immersed boundary approaches 
require, at least in their traditional formulation, refinement 
and coarsening schemes to address multi-scale problems. 
Considering multi-material problems, in [37], a similar 
approach based on the weak coupling of two non-boundary 
conformal meshes at the material interface has been pre-
sented and successfully employed for biomedical applica-
tions. Moreover, in the two-level method, the scale separa-
tion can be achieved not only in space, but also in time. In 
fact, the simple structure of both the local and the global 
mesh makes a full parallelization of the code possible. How-
ever, both these possibilities are left to future studies and not 
included in the present contribution.

[38] demonstrated that the dwell temperature, i.e., the 
temperature of the powder-bed upper surface at the instance 
of laser activation, plays a crucial role in the resulting melt-
pool shape during the layer printing process, leading to dif-
ferent microstructure and porosity in the final part. Start-
ing from this observation, we aim at the development of a 
part-scale thermal model which—exploiting the multi-scale 
nature of the two-level method—delivers an accurate pre-
diction of the dwell temperature. One of the key features 
of the proposed model is that the powder-bed is included 
in the computational domain. As demonstrated by the pre-
sented results, this assumption allows us to easily calibrate 
the physical parameters of our model and, at the same time, 
achieve a remarkable agreement with respect to the meas-
ured experimental data.

The outline of this paper is as follows. In Sect. 2, the 
governing equations of the considered physical problem at 
the local and global scale are presented. Section 3 describes 
the numerical implementation details of the part-scale two-
level approach. In Sect. 4, the proposed methodology is first 
validated with respect to experimental measurements taken 
from [38] for an AM cylindrical component, and then is 
applied to simulate the complete LPBF process of a topo-
logically optimized beam structure. Finally, in Sect. 5 we 
draw the main conclusions and possible further extensions 
to the present contribution.

2 � Governing equations

In the present section, a thermal model for LPBF process 
simulation based on the two-level method at part-scale is 
presented. More details on thermal models in welding and 

additive manufacturing can be found by the interested readers 
in [39–41].

2.1 � Thermal problem

Considering a material obeying Fourier’s law of heat con-
duction, the LPBF thermal process can be modeled by 
means of the heat transfer diffusion equation:

where T indicates the temperature field, � = �(T) the tem-
perature-dependent density of the material, c = c(T) the 
temperature-dependent specific heat capacity, � = �(T) the 
temperature-dependent thermal conductivity, t the time, and 
Q an equivalent heat source. The latent heat term associated 
to the material phase-change is neglected in the presented 
work, due to its negligible influence when macroscopic, 
part-scale thermal effects are investigated (see, e.g., [42]). 
Boundary conditions will be discussed in detail in Sect. 2.4.

2.2 � The two‑level method

The two-level method is based on a re-formulation of the 
heat transfer equation (1) as two coupled problems referred 
in the following as the local and the global problem. Let us 
consider a global domain Ω+ and a local domain Ω− ⊂ Ω+ , 
such that, following the notation introduced in [30], T+ and 
T− are the local and the global solution, respectively. The 
thermal conductivity � is defined as

with �+ , �− , c+ , and c− defined analogously. We note some 
or all of these parameters may depend on time, space, or 
temperature. This dependence is understood if not explicitly 
denoted.

Let � denote the interface between local and global 
problems, across which information is exchanged. For 
� ∈ H

−1∕2(�) , ��� ∈ H−1
(
Ω+

)
= H1(Ω+)

� is defined as the 
linear functional such that:

consistent with the notation used in [43–45].
To achieve a more efficient numerical solution, which is 

necessary to deal with the LPBF thermal problem at part-
scale, the original formulations of the global and local prob-
lem as presented by [30–32] are slightly changed, such as

(1)�c
�T

�t
− ∇ ⋅ (�∇T) = Q,

(2)� ∶=

{
�+ in Ω+ ⧵Ω−

�− in Ω−

(3)∫Ω+

(
���

)
w = ∫

�

�w ∀w ∈ H1

ΓD

(
Ω+

)
,

(4)
c+�+

�T+

�t
− ∇ ⋅

(
�+∇T

+
)
= Q +

(
�+ − �−

)�T−

�n
�� in Ω+



	 Engineering with Computers

1 3

with boundary conditions defined as in a following section. 
The problems (4) and (5) are then solved in an iterative man-
ner until convergence is satisfied.

When compared to the two-level method as implemented 
in [30, 32], this formulation greatly simplifies and reduces 
the cost of the assembly and evaluation process. More spe-
cifically, this novel formulation reduces the number of nec-
essary integral evaluations, no longer needs the storage and 
evaluation of the derivatives of � , and avoids the necessity of 
evaluating volumetric integrals non-conformal to the mesh 
discretization, which may ultimately require the application 
of an adaptive integration scheme, such as the ones adopted 
in other immersed boundary approaches (e.g., the Finite Cell 
Method [33] or the Cut Finite Element Method [36]).

As a consequence, one incurs a minor loss of consistency 
in the following sense: Let T∗ ∈ H1(Ω+) denote the exact 
solution of (1), T+ ∈ H1(Ω+) the exact solution of (4), and 
T− ∈ H1(Ω−) the exact solution of (5). Then the following 
consistency conditions are satisfied:

However, the more stringent condition on T+:

which holds for the formulation shown in [30–32], no longer 
applies. In practice, we find this error is small, provided that 
the jump across � is not overly large (following the theory 
for the related Fat-boundary method given in [44]). Indeed, 
for many problems, the scale separation between the global 
and local mesh is sufficiently large such that the discretiza-
tion error dominates over this region, and any additional 
error incurred by the loss of consistency is negligible in 
comparison.

2.3 � Two‑level method derivation

We now provide a brief derivation for the modified two-level 
method (4)–(5). We consider the steady version of (1):

The derivation for the unsteady problem follows from simi-
lar arguments, and we have chosen to consider the steady 

(5)c−�−
�T−

�t
− ∇ ⋅

(
�−∇T

−
)
= Q in Ω−,

(6)∫Ω+⧵Ω−

(
T∗ − T+

)
v = 0 for all v in H1

(
Ω+

)
,

(7)∫Ω−

(T∗ − T−)q = 0 for all q in H1
(
Ω−

)
.

(8)∫Ω+∩Ω−

(
T∗ − T+

)
v = 0 for all v in H1

(
Ω+

)
,

(9)
−∇ ⋅ (�∇T) = Q in Ω+,

�
�T

�n
= 0 on �Ω+.

problem here in the interest of clarity. Assume that T∗ is 
a strong solution of (9) in a domain Ω+ , with the local 
domain Ω− ⊂ Ω+ , and the interface between Ω+ ⧵Ω− and 
Ω− denoted as � . Define � as in (2) and let T+ , and T− be 
such that (6), (7) hold. Assume additionally that T∗ is regular 
enough near � such that:

where n+∕− denote the outward-pointing normals from either 
side of �.

Multiplying (9) by a test function v ∈ H1(Ω+) gives:

From (6), (7):

Integration by parts yields:

where we have defined the normal vector n on � such that 
it is outward-pointing on Ω+ ⧵Ω− . Rearranging (13) gives:

By the assumption (10):

We then observe that:

for an arbitrary extension h in H1(Ω−) , sufficiently regular 
such that, for all v in H1(Ω−):

(10)
�T∗

�n+
||� = −

�T∗

�n−
||� ,

(11)−∫Ω+

∇ ⋅ (�∇T∗)v = ∫Ω+

Qv

(12)

−∫Ω+

∇ ⋅ (�∇T∗)v = −∫Ω+⧵Ω−

∇ ⋅

(
�+∇T

+
)
v − ∫Ω−

∇ ⋅

(
�−∇T

−
)
v.

(13)
∫Ω+

�∇T∗
⋅ ∇v = ∫Ω+⧵Ω−

�+∇T
+
⋅ ∇v + ∫Ω−

�−∇T
−
⋅

∇v − ∫
�

�+
�T+

�n
v + ∫

�

�−
�T−

�n
v,

(14)

∫Ω+⧵Ω−

�+∇T
+
⋅ ∇v − ∫

�

�+
�T+

�n
v + ∫

�

�−
�T−

�n
v

= ∫Ω+

�∇T∗
⋅ ∇v − ∫Ω−

�−∇T
−
⋅ ∇v

= ∫Ω+⧵Ω−

�∇T∗
⋅ ∇v.

(15)
∫Ω+⧵Ω−

�+∇T
+
⋅ ∇v + ∫

�

(
�− − �+

)�T−

�n
v = ∫Ω+⧵Ω−

�∇T∗
⋅ ∇v.

(16)
∫Ω+

�+∇T
+
⋅ ∇v + ∫

�

(
�− − �+

)�T−

�n
v = ∫Ω+⧵Ω−

�∇T∗
⋅ ∇v + ∫Ω−

hv,

(17)∫Ω−

�−∇T
+
⋅ ∇v = ∫Ω−

hv.
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From (16), we may derive the modified two-level formula-
tion (4)–(5).

Remark  Equation (16) and the subsequent modified two-
level formulation (4)–(5) assume that T∗ is sufficiently 
regular near � such that (10) holds, at least approximately. 
From this, we may assume that �T+∕�n = −�T−∕�n on � to 
arrive at (4), (16). However, if (10) does not hold, then (4) 
no longer applies. In such a case, one may use the following 
formulation instead:

with the term highlighted in red to show the difference 
between (4) and (18). In the simulations performed in the pre-
sent work, we have sufficient regularity along � such that we 
may apply (4), and this formulation will be assumed hereafter. 
In our computations (not shown), we found the two methods 
differed by less than .1%. For cases in which it is possible to 
employ (4)–(5), it is generally preferable over (18)–(19), as 
the convergence of the corresponding numerical scheme is 
typically faster. We add that a full theoretical investigation of 
(4)–(5), (18)–(19) is beyond the scope of the current work and 
will be explored in detail in an upcoming work.

2.4 � Local and global problem boundary conditions

To capture the multi-scale nature of the LPBF process, the 
two-level method distinguishes between a local domain Ω− 

(18)
c+�+

�T+

�t
− ∇ ⋅

(
�+∇T

+
)
= Q + �+

�T+

�n
�� − �−

�T−

�n
�� in Ω+

(19)c−�−
�T−

�t
− ∇ ⋅

(
�−∇T

−
)
= Q in Ω−,

and a global domain Ω+ , which we model differently in 
the proposed thermal model. Figure 1 depicts the bound-
ary conditions (BCs) on the local and global domain. The 
temperature continuity with the global solution is enforced 
by means of Dirichlet BCs on the lateral and lower surfaces, 
while on the lower surface of the global domain, Fig. 1b, 
the temperature is fixed to the build plate temperature Tbp 
and adiabatic BCs are applied on the lateral surfaces of 
the build plate. Finally, a zero-jump condition is imposed 
on the fluxes on the immersed local domain boundaries. 
As can be observed in Fig. 1, the local domain dissipates 
heat by convection and radiation through the upper surface 
(see Fig. 1a) by means of a heat loss flux term defined as 
follows:

where hconv is the heat transfer coefficient by convection 
due to the inert gas (Argon) flow present in the chamber, 
Tamb is the ambient temperature of the building chamber, 
�SB = 5.87 × 10−8 [ W/m

2∕K4 ] is the Stefan–Boltzmann con-
stant, and � the emissivity of the powder bed. The global 
domain dissipates heat by conduction through the lateral 
surfaces of the powder bed and by convection through the 
upper surface. These two heat dissipation modes are mod-
eled by means of two heat loss flux terms defined as:

where hpow is the heat transfer coefficient by conduction 
through the powder.

(20)�∇T− = hconv(T− − Tamb) + �SB�(T
4

−
− T4

amb
),

(21)�∇T+ = hconv(T+ − Tamb),

(22)�∇T+ = hpow(T+ − Tamb),

Fig. 1   Thermal problem boundary conditions (BCs) in the local a global b domains
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Most of these quantities are unknown and not readily 
measurable, and thus required a calibration procedure to 
be estimated. Radiation effects are neglected in the global 
domain, since they play a minor role in regions far from 
the heat affected region, which we consider lying entirely 
within the local domain. As described in Fig. 1b, global 
domain BCs are completed by adiabatic and Dirichlet BCs 
on the lateral and lower surfaces of the build plate, respec-
tively. Finally, to avoid jumps among the local and the global 
domain temperature fields, a zero-jump temperature con-
dition is imposed in the local problem on the lateral and 
bottom surfaces of Ω− , while, in the global problem, a zero-
jump temperature flux condition is enforced on the lateral 
and bottom surfaces of Ω− which are immersed in the global 
domain.

Due to the specific features of the two-level method as 
presented in [30], the powder-bed is directly included in our 
thermal model. In general, immersed boundary methods do 
not require one to model the powder bed at part-scale [27]. 
However, to impose temperature and flux continuity on the 
immersed local domain boundaries, the two-level method 
needs a physical solution on such boundaries, thus powder is 
included in our physical model. Modeling the powder surely 
increases the accuracy of the thermal model, but, on the 
other hand, it introduces potential numerical instabilities due 
to the discontinuous integration in the elements cut by the 
boundaries of the solidified domain.

3 � Numerical implementation

In the present work, we employ the two-level method [30, 
32], an immersed boundary finite element method employ-
ing a local–global approach, together with an agglomerated 
layer activation procedure to solve the thermal problem 
defined in Sect. 2 for an LPBF problem at part-scale.

3.1 � Two‑level algorithms

The application of the two-level method may be done in 
several ways. Here, we consider two particular implemen-
tations, which we will refer to as the sequential two-level 
method and as the parallel two-level method, with details 
in the following.

We consider an iteration k at a generic time step n. We 
note that all variables indexed with k refer to the current 
iteration, while those indexed with n are from the preceding 
time step. For simplicity, we assume a standard Backward 
Euler time-stepping scheme, though we stress that the algo-
rithm may be employed with any time integration technique. 
The two approaches are described in the following:

Sequential two-level method:
Step k: Obtain local solution T−

k
:

Step k+1: Obtain global solution T+
k

:

Step k+2: Relaxation: T+
k
= �T+

k
+ (1 − �)T+

k−1
 , 0 < 𝜃 ≤ 1.

Step k+3: Check convergence. If reached, terminate. 
Else, return to step k.

Parallel two-level method:
Step k: Obtain local solution T−

k
:

Step k+1: Obtain global solution T+
k

:

Step k+2: Relaxation: T+
k
= �T+

k
+ (1 − �)T+

k−1
 , 0 < 𝜃 ≤ 1.

Step k+3: Check convergence. If reached, terminate. 
Else, return to step k.

In Eqs. (24) and (26) ΓD is the Dirichlet boundary which 
in our case corresponds to the lower surface of the base plate 
and T0 = Tbp . In the following, the relaxation parameter � is 
set equal to 1, i.e., no relaxation is applied.

The sequential and parallel formulations are similar, with 
a key distinction: in step k + 1 , the sequential method utilizes 
the output T+

k
 of step k on the right hand side of Eq. (24), 

while the parallel method uses the value T−
k−1

 computed at 
the previous iteration as force term in Eq. (26). While this 
means that the parallel method may require more iterations 
to converge, it also means that steps k and k + 1 are inde-
pendent of each other, and hence may be computed in par-
allel. Depending on the computational resources available, 
the greater parallelism offered by this approach may provide 
faster computation when compared to the fewer necessary 
iterations when using the sequential approach. We note 
that these different algorithms can be seen as Gauss–Seidel 

(23)

c−|T−
k−1

�−|T−
k−1

T
−
k
− Δt∇ ⋅

(
�−|T−

k−1
∇T−

k

)
= ΔtQ + c−|T−

k−1
�−|T−

k−1
T
−
n−1

in Ω−,

T
−
k
= T

+
k−1

on � .

(24)

c+|T+
k−1
�+|T+

k−1
T
+
k
− Δt∇ ⋅

(
�+|T+

k−1
∇T+

k

)

= ΔtQ + c+|T+
k−1
�+|T+

k−1
T
+
n−1

+ Δt
(
�+|T+

k−1
− �−|T−

k

)�T−
k

�n
�� in Ω+,

T
+
k
= T

0
on Γ

D
.

(25)

c−|T−
k−1
�−|T−

k−1
T
−
k
− Δt∇ ⋅

(
�−|T−

k−1
∇T−

k

)

= ΔtQ + c−|T−
k−1
�−|T−

k−1
T
−
n−1

in Ω−,

T
−
k
= T

+
k−1

on � .

(26)

c+|T+
k−1
�+|T+

k−1
T
+
k
− Δt∇ ⋅

(
�+|T+

k−1
∇T+

k

)

= ΔtQ + c+|T+
k−1
�+|T+

k−1
T
+
n−1

+ Δt
(
�+|T+

k−1
− �−|T−

k−1

)�T−
k−1
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(sequential) or Jacobi (parallel) versions of domain decom-
position schemes [46–48]. In the following, we adopt the 
sequential implementation of the two-level method. In fact, 
due to the limited number of computational cores on our 
machine, we prefer to exploit the faster convergence rate of 
the former solution, but for different architectures, the latter 
might lead to a remarkable computational speed-up.

3.2 � Agglomerated layers activation

Figure 2 depicts the layer-by-layer activation scheme adopted 
in our implementation. To compute an entire LPBF process 
at part-scale, we employ an agglomerated layer activation 
strategy (see, e.g., [20, 27, 49]). As in Fig. 2(a), we start first 
solving a steady-state thermal problem on the build-plate to 
define our initial conditions before the first layer is activated. 
In the present implementation, at each layer activation step, 
a set of 20 physical layers is inserted into the problem, add-
ing a new layer of global domain elements into the system. 
The local domain discretization is then shifted upward by 
the agglomerated layer thickness. Once this mesh update 
is performed, we compute a layer diffusion step (Fig. 2b), 
where the residual heat of the previous solution diffuses into 
the newly activated agglomerated layer. In our implementa-
tion, we initialize the new nodes of the newly activated layer 
at the ambient temperature, and allow one time step to let 
the heat diffuse into the new layer; however, we note that the 
solution in the area covered by the local domain, within the 
global domain, does not correspond to a physical tempera-
ture. Successively, a heating step occurs, Fig. 2c, where a 
heat source is applied uniformly at the Gauss points of the 
new layers lying within the geometry of the part. Such a set 
of Gauss point is evaluated by means of an inside–outside 
test performed directly on the original .stl file of the part as 
acquired from a CAD environment. Finally, the solidified 
domain is obtained during the cooling step, Fig. 2d. Such a 
thermal cycle is repeated until the final part is completed.

In the present work, we define the equivalent heat source 
Q as

with � the absorptivity of the material, P the nominal power 
of the laser beam, ld the laser spot size, and ta the thickness 
of the activated layer. This definition corresponds to a local, 
high-intensity heat source instantly activated over the entire 
portion of the printed geometry in the new agglomerated 
layer, as depicted in Fig. 2c. Therefore, in our implementa-
tion the heating activation step lasts few microseconds due 
to the high energy input resulting from the adopted physical 
model. In the following, we evaluate the heating activation 
time step increment ΔtA as follows:

with v the laser velocity. The time step in Eq. (28) is defined 
to provide an instantaneous application of the heat power. 
In fact, the heat power source in Eq. (27) is not scaled to the 
activation layer but instead is a concentrated heat source.

The last step of our thermal cycle is the cooling step, 
wherein the heat source is set equal to zero and the heat is 
dissipated by conduction through the solidified domain and 
the surrounding powder and by convection and radiation 
through the upper surface as described in Sect. 2.4. In the 
following numerical analysis, a backward Euler implicit time 
integration scheme is adopted to integrate over time, Eq. (1).

We employ the so-called birth–death element activation 
scheme ([50]). In fact, new elements in the global domain 
are generated as each agglomerated layer is activated. The 
birth–death element activation scheme is chosen, since in a 
structured, cartesian grid-like discretization—such as the one 
employed by the two-level method—the new element layer 
generation procedure is straightforward [27]. About half of the 

(27)Q =
4�P

�l2
d
ta

(28)ΔtA =
2ld

v

Fig. 2   Two level activation strategy: Two level activation strategy: a beginning of the analysis, b layer diffusion step, c heating step, d cooling 
step
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computational resources are thereby saved during the course 
of a complete analysis, since no space has to be previously 
allocated for inactive elements, as required, e.g., by the quiet 
element method [51].

3.3 � Material properties

In the following, we consider components printed with stain-
less steel 316L (SS 316L). Such a metal alloy is one of the most 
widespread materials for metal AM products, thus its material 
properties are well-known and readily available, even for the high 
temperatures involved in LPBF processes. In Table 1, we report 
the temperature-dependent material properties for solid SS 316L 
as measured by [52]. Since we include powder in the compu-
tational domain, we need to define thermal properties for the 
powder domain region as well. The relationship between powder 
and solid density and heat capacity is then defined as follows:

whereas assuming spherical particles, the relationship 
between powder and solid thermal conductivity is given 
by [53]:

where �gas is the conductivity of the inert gas (Argon) pre-
sent in the build chamber, and dpow is the average diameter of 
the powder particles. The adopted values of the above quan-
tities are described in Sect. 4. Due to the immersed nature of 
the two-level method, in both local and global domain there 
are elements cut by the boundaries of the solidified domain.

The immersed boundary method can efficiently deal with 
discontinuous integration at void–material interfaces [33, 
54], whereas numerical instabilities occur when we need to 
integrate across an interface between two different materi-
als, such as the powder–solid interface in the thermal model 
described in Sect. 2. To overcome such a numerical issue, 
we introduce a smoothing factor S multiplying kpow and 
defined as follows:

(29)�pow = (1 − �)�sol,

(30)cpow = csol,

(31)

�pow

�gas
=
�
1 −

√
1 − �

�⎛⎜⎜⎜⎝
1 +

4

3
�SBT

3
dpow

�gas

⎞
⎟⎟⎟⎠
+
√
1 − �

2

1 −
�gas

�sol

⎛
⎜⎜⎜⎝

2

1 −
�gas

�sol

ln

�
�sol

�gas

�
− 1

⎞⎟⎟⎟⎠

+
√
1 − �

4

3
�SBT

3
dpow

�gas
,

(32)S = (1 +
√
∇TT∇Thel�),

where hel is the nominal element length and � a scaling factor 
which we set equal to 0.2. As can be noticed, the smoothing 
factor S defined in Eq. 32 depends on the temperature gradi-

ent, and thus it almost vanishes when temperature gradients 
are close to zero as occurs in the layer diffusion and cooling 
steps. In contrast, it plays an important role in stabilizing 
the solution during the heating step, when high temperature 
gradients are involved. Such a kind of numerical instabili-
ties are well known in the literature on immersed boundary 
methods, e.g., in [37] to alleviate such a numerical issue, it is 
introduced a penalty term penalizing the jump at the material 
interface within the same element.

3.4 � Domain discretization

The core idea behind the two-level method is to separate the 
local and the global scales using two different domains, both 
of which are discretized separately using potentially very dif-
ferent element length. Moreover, the immersed nature of this 
numerical approach allows us to employ simple cartesian grids 

Table 1   Temperature-dependent material properties of solid SS 316L 
from [52]. Values at temperatures higher than the maximum tempera-
ture ( 1400 ◦

C ) have been extrapolated

Temperature 
( ◦C)

Conductivity k
sol

 
(W/m/K)

Heat capacity c
sol

 
(J/kg/K)

Den-
sity �

sol
 

( kg/m3)

20 14.12 492 7954
100 15.26 502 7910
200 16.69 514 7864
300 18.11 526 7818
400 19.54 538 7771
500 20.96 550 7723
600 22.38 562 7674
700 23.81 575 7674
800 25.23 587 7574
900 26.66 599 7523
1000 28.08 611 7471
1100 29.5 623 7419
1200 30.93 635 7365
1300 32.35 647 7311
1400 33.78 659 6979
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to discretize both the local and the global domain. These gen-
eral concepts of the method can be also applied in the context 
of part-scale AM thermal process analyses. In particular, in the 
article at hand, we employ tetrahedral linear elements with a 
nominal element length hel of 4mm for the global domain and 
1mm for the local domain.

3.5 � Error metrics

To quantify the accuracy of our simulated results with respect 
to the experimental measurements, we employ two metrics, 
namely, the maximum relative percentage error on the dwell 
temperature �max and the sample Pearson correlation coeffi-
cient P defined as follows:

where Tm,i and Tn,i are the average dwell temperature values 
of measured and simulated results, respectively, at the ith 
agglomerated layer on the local domain upper surface, Nagg 
is the number of agglomerated layers, M and N are Nagg × 1 
vectors containing the average measured and simulated 

(33)�max% = max
Tn,i − Tm,i

Tm,i
× 100% i = 1, ..,Nagg,

(34)

P(N,M)% =

∑Nagg

i=1
(Tn,i − T̄n)(Tm,i − T̄m)�∑Nagg

i=1
(Tn,i − T̄n)

2
∑Nagg

i=1
(Tm,i − T̄m)

2

× 100%,

dwell temperatures at each agglomerated layer, and T̄m and 
T̄n are defined as

Therefore, a correlation P = 100% indicates a perfect cor-
relation between the numerical results and the experimental 
measurements.

4 � Results and discussion

All the numerical analyses discussed in this section have 
been obtained using an in-house developed code written in 
FreeFEM++ [55] on a desktop computer provided with 
Intel

Ⓡ  XeonTM  W-2123, CPU@3.9GHz, RAM 256Gb.

4.1 � Model validation on a 3D printed cylinder

To calibrate and validate the accuracy of the proposed 
numerical method, we consider the LPBF printing process of 
a cylinder as reported by Williams et al. [38] and depicted in 
Fig. 3a. Williams and co-workers measure the average tem-
perature on the upper powder layer before laser activation, 
which they refer to as dwell temperature. According to their 
experimental findings, the dwell temperature is controlled 
by the interlayer cooling time (ILCT) and plays a crucial 

T̄m =
1

Nagg

Nagg∑
i=1

Tm,i, T̄n =
1

Nagg

Nagg∑
i=1

Tn,i.

Fig. 3   3D virtual model and thermal simulation results of a cylinder
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role in defining the microstructure and thus the mechanical 
properties of AM parts.

We have replicated their experiment using the previously 
presented part-scale two-level method. The simulated dwell 
temperature evolution at the last layer of the LPBF process 
is shown in Fig. 3b using the model parameters reported in 

Table 2, which have been calibrated following a procedure 
similar to the one described in [56]. In Fig. 4, we report 
the simulated and the measured dwell temperatures dur-
ing the entire 3D printing process. The dwell temperature 
results obtained by means of the two-level part-scale model 
shows good agreement with the experimental measurements 
reported in [38]. The maximum relative error �max is equal 
to 13.95% and occors at the second agglomerated layer, i.e., 
in a transitory step, while the relative error is kept always 
below 2.5% after the 15th activation step. The Pearson cor-
relation coefficient as defined in Sect. 3.5 is equal to 99.74% , 
indicating an almost perfect correlation among the meas-
ured and the predicted dwell temperature results, providing 
strong evidence for the reliability of the proposed part-scale 
thermal model.

4.2 � Thermal analysis of a topologically optimized 
structure

To test the capability of the proposed numerical framework 
to deal with complex geometries, we compute the part-scale 
thermal analysis of a topologically optimized beam struc-
ture. The optimized structure depicted in Fig. 5 was obtained 

Table 2   LPBF process and model parameters

Parameters (unit) Values Sources

laser power (W) 200 [38]
laser spot size ( μm) 65 ”
laser velocity (mm/s) 800 ”
powder layer thickness ( μm) 50 ”
build chamber temperature ( ◦C) 25 ”
build plate temperature ( ◦C) 80 ”
gas conductivity �gas (W/m/K) 0.0172 Calibrated
porosity � (–) 0.35 Calibrated
hpow ( W∕m2∕K) 25 Calibrated

hconv ( W∕m2∕K) 0.1 Calibrated
emissivity � (–) 0.25 Calibrated
absorptivity � (–) 0.7 Calibrated

Fig. 4   Simulated and measured 
surface temperature of the cyl-
inder taken just before the laser 
passes over each layer consider-
ing an ILCT of 11s

Fig. 5   3D virtual model of topologically optimized beam structure taken from [57] (measures are in millimeters)
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Fig. 6   Temperature distribution 
at different layers. On the left 
it is reproduced the simulated 
temperature field on both the 
growing printed geometry and 
the local domain; on the right 
the top view showing the local 
domain temperature distribution 
and the corresponding domain 
discretization
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in [57] using a phase-field-based topology optimization 
procedure as presented in [58, 59]. In Fig. 6, we report the 
temperature field distribution on the topologically optimized 
part and on the local domain at three different steps of the 
process as well as the corresponding local domain mesh. 
Observing the results reported in Fig. 6, we can observe the 
two-level domain concept in action. We observe that the 
local domain is able to capture the small geometrical details 
of the optimized structure with a very high resolution. Mean-
while, the coupled global domain solution approximates the 
temperature field in the remaining regions of the part, sub-
stantially accounting for the thermal history at the scale of 
the entire component. The approach does not require any 
meshing of the considered geometry, since the domain is 
treated in an implicit fashion, making the analysis setup 
straightforward and suitable to deal with geometric flaws 
and complex geometries.

5 � Conclusions

In the present contribution, we have applied the two-level 
framework, first introduced in [30, 32] for high-fidelity 
thermal models, to the analysis at the scale of an entire 3D 
printed component. The extension of the physical model in 
the implemented two-level framework allows us to simu-
late the complete printing process of parts with complex 
geometries, without requiring any conformal mesh genera-
tion step. In turn, we obtain a smooth workflow from the 
CAD model to the thermal analysis of AM components. The 
presented numerical results show the effectiveness of the 
proposed approach.

There are several potential perspectives for the present 
work. First, the structured discretization grids of both the 
local and the global domain call for a massive code par-
allelization. Such a code optimization step would lead to 
a remarkable speed-up in the overall computational time, 
fully exploiting the potentiality of the proposed numerical 
framework and opening the possibility to compute thermal 
analysis of an entire build plate. Second, we aim at extend-
ing the proposed part-scale thermal model to a multi-physics 
setting, considering a weakly coupled thermo-mechanical 
problem formulation.

As shown in our numerical examples, there is ample 
potential to use the machinery shown here to better unify 
the development and analysis of topologically optimized 
components, as the potential reduction in cost afforded by 
the two-level method can greatly accelerate forward solves 
during the optimization process. In fact, the optimization 
routine may require the numerical solution of many thou-
sands of problems. In this aim, the extension of the machin-
ery shown here to include data-driven and reduced order 

methods, including POD- and DMD-based methods, as well 
as concepts from scientific machine learning, may allow for 
even more efficient numerical solutions.
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