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Abstract

To exploit the advantageous properties of isogeometric analysis (IGA) in a scan-based setting, it is important to extract a
mooth geometric domain from the scan data (e.g., voxel data). IGA-suitable domains can be constructed by convoluting the
rayscale data using B-splines. A negative side-effect of this convolution technique is, however, that it can induce topological
hanges in the process of smoothing when features with a size similar to that of the voxels are encountered. This manuscript
resents an enhanced B-spline-based segmentation procedure using a refinement strategy based on truncated hierarchical (TH)B-
plines. A Fourier analysis is presented to explain the effectiveness of local grayscale function refinement in repairing topological
nomalies. A moving-window-based topological anomaly detection algorithm is proposed to identify regions in which the
rayscale function refinements must be performed. The criterion to identify topological anomalies is based on the Euler
haracteristic, giving it the capability to distinguish between topological and shape changes. The proposed topology-preserving
HB-spline image segmentation strategy is studied using a range of test cases. These tests pertain to both the segmentation
rocedure itself, and its application in an immersed IGA setting.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Computational analyses based on volumetric scan data are of interest in many fields of research, such as
iomechanics, geomechanics, material science, microstructural analysis, and many more. Scan-based simulations
re inherently three-dimensional and, frequently, the computational domains are complex, both in terms of geometry
nd in terms of topology. In addition, the data sets obtained from, e.g., tomography or photogrammetry techniques

are large in size and represented in data formats which are not directly suitable for analysis (e.g., DICOM,1 NIfTI2).
For these reasons, performing high-fidelity simulations at practical computational costs is still very challenging.
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Over the past decade, the use of Isogeometric Analysis (IGA) [1] to perform accurate scan-based simulations at
cceptable computational costs has been explored. Originally, IGA was proposed as an analysis paradigm to better
ntegrate analysis and design by employing the spline basis functions from Computer Aided Design (CAD) directly
or the analysis, without intermediate geometry clean-up and meshing operations [2], as required in traditional finite
lement analyses. The advantageous properties of spline basis functions, in particular their higher-order regularity,
ave made IGA also attractive for simulations where the geometry is not represented by a CAD model [3–6]. In
he context of scan-based isogeometric analysis, the usage of standard discretization techniques such as the voxel

ethod [7] or (unstructured) conforming mesh approaches (e.g., generated using a marching cube algorithm [8,9])
is not possible, as this deteriorates the favorable properties of IGA. Therefore, various enhanced isogeometric
techniques for scan-based analysis have been developed. These can be summarized as follows:

• Template-fitting techniques construct a spline-based template geometry (typically consisting of multiple
patches) that captures the essential features of the scanned object, and subsequently apply fitting procedures to
reposition the control points of the template to match the scan data. An advantage of such techniques is that an
explicit parametrization of the scan object is retrieved, which is beneficial from an analysis point of view. The
downside of template fitting techniques is that they are not useful in cases where the topology of the object
is not known a priori. For cases where the topology of the object is known but complex, template fitting
techniques are typically laborsome. Template fitting techniques using IGA have, for example, been applied
to fluid–structure interaction analyses of arterial blood flow [10,11], patient-specific blood-flow analyses in
arteries [3,12] (see [13] for a review), the mechanical behavior of a femur (consisting of both hard outer
cortical bone and inner trabecular bone) [14], the mechanical behavior of a carotid artery stent [15], damage
in composite laminates [16], the human heart [17], and fluid–structure interactions of a heart valve [18].

• Immersed methods construct a structured mesh for the entire scan domain, typically a box, and then represent
the scanned object by an inside/outside relation to indicate whether a specific point in the box is part of
the object. In the context of scan-based analysis, the inside/outside relation can directly be retrieved from
the scan data (intensity) in the form of a level set function [19], but the immersed concept can also be
applied to obtain volumetric representations of objects identified by boundary representations (e.g., BREP [20–
25], STL3 [26–30]) and to represent trimming operations in CAD models (e.g., [31–33]). The advantage of
immersed techniques is their versatility with respect to the geometry and topology of the scanned objects, in
the sense that the analysis procedure is not essentially affected by increasing the complexity of the objects.
From an analysis perspective, the immersed approach poses additional challenges compared to mesh-fitting
analyses. Most notably, numerical integration of trimmed elements is challenging from an efficiency point
of view, application of boundary conditions can be non-standard, and the system of equations is generally
ill-conditioned without dedicated treatment. Immersed scan-based IGA has, for example, been applied for the
analysis of trabecular bone [19,22,34], coated metal foams [35], porous media [36], metal castings [37] and
in additive manufacturing [38].

The choice for either a template-fitting technique or an immersed technique is to a large extent dictated by
the topological complexity of the scanned object. If a template with a reasonably low number of control points
can be constructed for the object of interest, template-fitting is generally favorable. If the creation of a template
is impractical, immersed methods are preferred. It should be noted that it can be favorable to combine the two
techniques for particular scan-based analyses, to exploit the advantages of both of them. A noteworthy example in
this regard is the heart-valve problem by Kamensky et al. [39–41], where the heart chambers are modeled through
a template-fitting approach, and the moving valves through an immersed approach.

In this work we build on the immersed scan-based analysis framework originally proposed in Ref. [19]. In
recent years, significant progress has been made to tackle the above-mentioned challenges associated with immersed
methods. A myriad of advanced integration techniques has been developed to reduce the computational burden
associated with the integration of trimmed elements; see, e.g., Refs. [42–45]. Nitsche’s method [46] has been
demonstrated to be a reliable technique to impose essential boundary conditions along immersed boundaries, e.g.,
[23,47–49], and various techniques have been developed to construct a parametrization of immersed boundaries
to impose boundary conditions [49–52]. With respect to the stability and conditioning, fundamental understanding

3 Standard Triangle Language or Standard Tessellation Language.
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was obtained in Refs. [23,53], and various types of remedies have been demonstrated to be effective, see, e.g.,
[5,36,37,50,51,54–58]. The various advancements of immersed techniques have made it into a versatile technique for
scan-based analyses, being able to model problems in different physical domains (solid mechanics, fluid dynamics),
considering high-performance computing problems [19,26,34,36,37,42,59,60], and being applicable in the context
of highly nonlinear problems [61–64].

Although immersed isogeometric analysis is very flexible with respect to capturing topologically complex
volumetric objects, topological anomalies associated with the image segmentation procedure can occur [65–69].
This is specifically the case when the resolution of the scan data is only nearly sufficient to capture the smallest
features in the scanned object. Image smoothing operations, in the case of the procedure of Ref. [19] associated with
the order of the spline level set construction, can trigger undesirable topology alterations (e.g., closure of a channel,
(dis)connection of structures). The occurrence of topological anomalies associated with smoothing operations is
well understood in the field of image segmentation (e.g., [70–73]). Various enhanced image-segmentation techniques
have been proposed in order to ameliorate such problems, like homology-based preservation techniques [74–80],
topology-derivative-based techniques [81–85], and adaptive refinement techniques [72,86–91].

In this contribution we propose an enhancement of the immersed isogeometric analysis framework of Ref. [19]
that rigorously avoids the occurrence of topological anomalies associated with the B-spline-based image seg-
mentation procedure. The filtering analysis in Ref. [19] is extended to include the effect of the level set mesh
size. Based on this analysis, it is proposed to employ truncated hierarchical B-splines (THB-splines) [92–94] to
discretize the grayscale intensity of the scan data. Inspired by topology characteristics (e.g., Betti numbers, Euler
characteristic) to detect local topology anomalies [77,78,95–97], this local refinement capability for the level set
representation is complemented with an Euler characteristic evaluation and moving-window technique to detect
local topology anomalies. The resulting topology-preserving immersed isogeometric analysis is demonstrated using
prototypical test cases in two and three dimensions, considering both the image-segmentation problem and the
complete (stabilized) immersed isogeometric analysis problem [36]. A scan-based analysis on a representative data
set is considered to demonstrate the practical applicability of the proposed technique. In this contribution, we restrict
ourselves to user-specified locally-refined meshes, keeping in mind the extension to an adaptive analysis framework
as a possible further development.

This paper is organized as follows. In Section 2 we first extend the filtering analysis of Ref. [19]. Based on
this analysis, in Section 3 we introduce the topology-preserving extension of the spline-based image segmentation
technique. This technique comprises the moving-window technique to detect topological anomalies (Section 3.1)
and a THB-spline-based discretization of the level set function (Section 3.2). The adopted immersed isogeometric
analysis framework, including stabilization techniques, is introduced in Section 4. Numerical examples are then
presented in Section 5 to test the proposed technique. Finally, conclusions and recommendations are drawn in
Section 6.

2. Spline-based image segmentation

In this section we review the spline-based image segmentation procedure of Ref. [19]. The occurrence of
topological anomalies on relatively coarse voxel grids is illustrated and explained using a Fourier analysis. Based
on this analysis, a solution strategy to avoid topological anomalies is proposed.

2.1. B-spline level set construction

Consider an nd -dimensional image domain, Ωimg = [0, L1] × · · · × [0, Lnd ], which is partitioned by a set of
voxels, as illustrated in Fig. 1. We denote the voxel mesh by

Vvox = {Ωvox ⊂ Ωimg | ∃i ∈ Znd
≥0, s.t. Ωvox = Ti ◦ [0, 1]nd }, (1)

where the transformation Ti : [0, 1]nd → Ωvox is defined as

Ti(ξ ) = diag(∆)(ξ + i), (2)

with ∆ the voxel size in each direction and i = (i1, . . . , ind ) the nd -dimensional voxel index. We denote the
umber of voxels in the voxel image by mvox = #Vvox. The grayscale intensity function, illustrated in Fig. 1(b), is
hen defined as
g : Vvox → G , (3)

3
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Fig. 1. Representative two-dimensional geometry to illustrate the spline-based segmentation procedure. (a) The assumed geometry, which in
a real-life scan-based analysis setting is evidently not available. (b) The grayscale data on a 75 × 75 voxel grid, which we derived from
he exact geometry by computing the volume fraction of each voxel. In the scan-based analysis setting this voxel image is obtained directly
rom the scan data. (c) The segmented geometry for a grayscale threshold corresponding to 50% of the volume fraction.

ith G the range of the grayscale data (e.g., from 0 to 255 for 8 bit unsigned integers). An approximation of the
bject Ω can be obtained by thresholding the gray scale data,

Ω ≈ {x ∈ Ωimg|g(x) > gcrit} ⊂ Ωimg, (4)

here gcrit is the threshold value (see Fig. 1(c)). As a consequence of the piecewise definition of the grayscale data
n Eq. (3), the boundary of the segmented object is non-smooth when the grayscale data is segmented directly. In
he context of analysis, the non-smoothness of the boundary can be problematic, as irregularities in the surface may
ead to non-physical singularities in the solution to the problem.

The B-spline segmentation procedure in Ref. [19] – the behavior of which in the case of linear basis functions
losely corresponds with that of marching volume algorithms [8] – enables the construction of a smooth boundary
pproximation based on voxel data. The key idea of this B-spline segmentation technique is to smoothen the
rayscale function (3) by convoluting it using a B-spline basis of size n, {Ni,k(Vh)}n

i=1, defined over a regular
esh, Vh , with fixed element size, hd , per direction. Note that this mesh size can be different from the voxel size.
he B-spline basis can be constructed using the Cox-de Boor algorithm [98]. We consider full-regularity (Ck−1-
ontinuous) B-splines of order k, with the order assumed to be constant and isotropic. By convoluting the grayscale
unction (3), a smooth level set approximation is obtained as

f (x) =

n∑
i=1

Ni,k(x)ai , ai =

∫
Ωimg

Ni,k(x)g(x)dx∫
Ωimg

Ni,k(x)dx
, (5)

here the coefficients {ai }
n
i=1 are the control point level set values.

The B-spline level set function corresponding to the voxel data in Fig. 1(b) is illustrated in Fig. 2 for the
ase where the regular mesh, Vh , coincides with the voxel grid (i.e., ∆d = hd for d = 1, . . . , nd ) and second
rder (k = 2) B-splines. As can be seen, the object retrieved from the convoluted level set function more closely
esembles the original geometry in Fig. 1(a) compared to the voxel segmentation in Fig. 1(c). Also, the boundaries
f the domain are smooth as a consequence of the higher-order continuity of the B-spline basis (see Fig. 2(c)). The
egmented geometry in Fig. 2(c) is constructed using the midpoint tessellation procedure proposed in Refs. [19,45],
hich constructs a partitioning of the elements that intersect the domain boundary and results in an accurate
arametrization of the interior volume. The reader is referred to Ref. [19] for a detailed discussion of the properties
f the employed B-spline segmentation technique, and, additionally, to Ref. [45] for details regarding the midpoint
essellation procedure.
4
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Fig. 2. Illustration of the B-spline based segmentation procedure on a 70 × 70 voxel grid using second-order B-splines constructed on a
regular mesh that coincides with the voxels. (a) Grayscale data, g(x), of Fig. 1(b) shown on the 8 bit signed integer range. (b) Level set
unction, f (x), computed by Eq. (5). (c) Segmented domain extracted using the midpoint tessellation procedure outlined in Refs. [19,45].

.2. The occurrence of topological anomalies

The spline-based segmentation technique reviewed above has been demonstrated to yield computational domains
hat are very well suited for isogeometric analysis (see, e.g., [36,58,72]). However, although the smoothing
haracteristic of the technique is frequently beneficial, it may lead to the occurrence of topological anomalies when
he features of the object to be described are not significantly larger in size than the voxels (i.e., the Nyquist criterion
s not satisfied [19]).

For the object in Fig. 1(a) this occurs when a voxel grid of 35 × 35 is considered, as illustrated in Fig. 3 for a
econd-order (k = 2) B-spline basis defined on the 35 × 35 voxels mesh. As can be seen, small and slender features,
uch as the regions highlighted in green in Fig. 3(c), are detectable in the original grayscale data, albeit with a very
oarse representation. The corresponding level set function is smoother, but introduces topological anomalies in the
orm of the disappearance of some of the small and slender features. When we consider the same voxel data, but
ow define the B-spline basis for the convolution of the level set function on a twice as fine mesh (see Fig. 3(d)),
.e., hd = ∆d/2 for d = 1, . . . , nd , a topologically correct segmented domain is again obtained, but still with
moothed boundaries (see Fig. 3(e)) compared to the direct segmentation.

To elucidate the smoothing behavior of the B-spline segmentation technique, we generalize the filtering analysis
or a univariate B-spline (nd = 1) presented in Ref. [19] to the case of non-coinciding voxel and B-spline grid
izes, i.e., h ̸= ∆. Note that, in the univariate setting considered here, we drop the index for the geometric direction
o simplify our notation. The goal of our analysis is to provide insight into the filtering properties by considering
he level set approximation in the frequency domain. Additionally, we will obtain an analytical expression for the
moothed level set function in the spatial domain with a parametrization that provides insight into the smoothing
roperties of the level set construction.

We commence our analysis with rewriting the operation (5) as an integral transform

f (x) =

∫
Ωimg

K(x, y)g(y) dy, K(x, y) =

n∑
i=1

Ni,k(x)Ni,k(y)
Vi

, (6)

where K(x, y) is the kernel of the transformation and where Vi =
∫
Ωimg

Ni,k(x) dx is the integral of the basis
unction Ni,k . Following the derivation in Ref. [19] – in which the essential step is to approximate the B-spline
asis functions by rescaled Gaussians [99] – the integration kernel (6) can be approximated by

K(x, y) ≈ κ(x − y) =
1

√ exp

(
−

(x − y)2

2σ 2

)
, (7)
σ 2π

5
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Fig. 3. Illustration of the B-spline-based segmentation procedure for 35 × 35 voxel grayscale data (panel a). Using second-order B-splines
constructed on a regular mesh that coincides with the voxels (panel b) leads to topological changes in the segmented domain (panel c)
compared to the 70 × 70 voxels case in Fig. 2. When the B-spline basis is constructed on a mesh that is twice as fine as the voxel grid,
a smooth level set function is obtained (panel d) which, after segmentation, correctly represents the topology of the object (panel e).

where the width of the smoothing kernel is given by

σ = h

√
k + 1

6
. (8)

his result is very similar to that obtained in Ref. [19], with the important difference that the width of the kernel
epends on the mesh size, h, on which the B-spline is defined, and not on the voxel size, ∆. Note that the
pproximate kernel κ depends on the difference between the coordinates x and y only, this in contrast to the kernel
. Consequently, when the approximate kernel κ is considered, the integral transform (6) becomes a convolution

peration.
The dependence of the convolution kernel on the mesh size and on the order of the B-spline interpolation is

llustrated in Figs. 4(a) and 4(b). The B-spline integral transform around x = 0 computed on a domain of size 10
ith a voxel size 1 is shown for reference, indicating that the Gaussian approximation improves with an increasing
-spline order. Fig. 4 conveys that, following Eq. (8), increasing the mesh size and the B-spline order both increase

he zone over which the grayscale data is averaged. The smoothing width scales linearly with the mesh size, and,
or sufficiently large B-spline orders, with the square root of k.

To provide detailed insights into how the filter properties lead to topological anomalies, we express the
onvolution operation (6) with the approximate kernel (7) in the frequency domain as

F(ξ ) = K (ξ )G(ξ ), (9)
6
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T

Fig. 4. The convolution kernel (7) in the spatial domain (panels (a) and (b)), and in the frequency domain (panels (c) and (d)) for k = 2, 3, 4
using different mesh sizes. The integration kernel (6) is plotted in the spatial domain for reference (dashed lines).

where F(ξ ) and G(ξ ) are the Fourier transforms of the original grayscale data and the convoluted level set function,
respectively, and where the Fourier transform of the convolution kernel (7) is given by

K (ξ ) = exp
(
−2π2ξ 2σ 2). (10)

This frequency-domain form of the kernel is shown in Figs. 4(c) and 4(d). The Fourier-form of the convolution
operation in Eq. (9) conveys that features corresponding to frequencies for which K (ξ ) is close to unity are preserved
in the smoothing operations, whereas features corresponding to frequencies for which 0 < K (ξ ) ≪ 1 are filtered.

To further clarify the preservation of features, we consider a one-dimensional object of size ℓ, represented by
the grayscale function (in both the spatial and in the frequency domain)

g(x) =

{
1 |x | < ℓ/2
0 otherwise,

G(ξ ) = ℓ sinc(ℓξ) =
sin (πℓξ)

πξ
. (11)

he smooth approximation of this feature in the frequency domain follows from Eq. (9) as

F(ω) = ℓ sinc ℓξ exp
(
−2π2ξ 2σ 2). (12)
( )

7
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The corresponding function in the spatial domain can be determined by expressing the sinc function as [100]

sinc(ℓξ ) = lim
m→∞

1
m

m∑
n=1

cos (2µ(m, n)πξ), (13)

ith µ(m, n) =
(2n−1)ℓ

4m , such that the final form of the approximated convolution operation (6) can be written as

f (x) =
ℓ

σ
√

2π
lim

m→∞

1
2m

m∑
n=1

[
exp

(
−

(x − µ(m, n))2

2σ 2

)
+ exp

(
−

(x + µ(m, n))2

2σ 2

)]
. (14)

The approximate level set function (14) is illustrated in Fig. 5 for various feature-size-to-mesh ratios, ℓ̂ =

/h = 2, 1, 1
2 , and B-spline degrees, k = 2, 3, 4. For the considered range of feature-size-to-mesh ratios, the

imit in Eq. (14) is already approximated well with m = 1, such that

f (hx̂) ≈ f̂1(x̂) =

√
3ℓ̂2

4π (k + 1)

⎡⎢⎣exp

⎛⎜⎝−

3
(

4x̂ − ℓ̂
)2

16(k + 1)

⎞⎟⎠+ exp

⎛⎜⎝−

3
(

4x̂ + ℓ̂
)2

16(k + 1)

⎞⎟⎠
⎤⎥⎦ , (15)

here x̂ = x/h. The value of the smoothed level set function at x̂ = 0 follows as

f̂1(0) =

√
3ℓ̂2

π (k + 1)
exp

(
−

3ℓ̂2

16(k + 1)

)
≈ ℓ̂

√
3

π (k + 1)
, (16)

hich conveys that the maximum value of the smoothed level set depends linearly on the relative feature size ℓ̂,
nd decreases with increasing B-spline order.

The top row in Fig. 5 shows the case for which the considered feature is twice as large as the mesh size, i.e.,
ˆ = 2. Fig. 5(a) illustrates that the sharp boundaries of the original grayscale function are significantly smoothed,

hich is also apparent from the frequency domain plot in Fig. 5(b), which shows that the high frequency modes
equired to represent the sharp boundary are filtered out by the smoothing operation. In Fig. 5(a), the decrease in the
aximum level set value as given by Eq. (16) is observed. When the level set function is segmented by a threshold

f gcrit = 0.5, a geometric feature that closely resembles the original one is recovered.
The middle and bottom rows of Fig. 5 illustrate cases where the feature width is not significantly larger than

he mesh size. For the case where the feature size is equal to the size of the mesh, the maximum of the level set
unction drops significantly compared to the case of ℓ̂ = 2. When considering second-order B-splines, the maximum
s still marginally above gcrit = 0.5. Although the recovered feature is considerably smaller than the original one,
t is still detected in the segmentation procedure. When increasing the B-spline order, the maximum value of the
evel set drops below the segmentation threshold, however, indicating that the feature will no longer be detected.
s a consequence, the B-spline segmentation procedure then induces a topological alteration. When decreasing

he feature length further, as illustrated in the bottom row of Fig. 5, topological changes are encountered at lower
egmentation thresholds. For the case of gcrit = 0.5, also the quadratic B-splines would lead to a loss of the feature.

The above analysis shows that topological anomalies occur when the relative feature length scale, ℓ̂ = ℓ/h,
ecomes so small that the smoothed level set function drops below the segmentation threshold (following Eq. (16)).
he smallest features in a voxel data file are of the size of a single voxel, i.e., ℓ ≈ ∆. Hence, topological features
re lost when the mesh size on which the B-spline level set is constructed, h, leads to a relative feature size,
ˆ = ℓ/h ≈ ∆/h, small enough to drop the level set value below the threshold. For practical choices of the
arameters of the segmentation procedure (i.e., moderate B-spline orders and a segmentation threshold halfway
etween the intensities indicating the material and the void spaces), anomalies are expected when the mesh size
or the B-spline level set is taken equal to the voxel size. From Eq. (16) it is observed that these anomalies can
e avoided by increasing the relative feature length scale, ℓ̂. Since the voxel size is fixed, the relative feature size
an only be increased by reducing the mesh size of the smoothed level set function. Reducing the level set mesh
ize by a factor of two (i.e., a bisectioning of the voxel mesh) approximately doubles the maximum level set value
n Eq. (16) (see also Figs. 4(a) and 4(b)). Therefore, in the considered practical setting, a single refinement can be

xpected to be effective in avoiding topological anomalies.

8
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v
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Fig. 5. Smoothed level set approximation (14) of a geometric feature in the spatial domain (left) and in the frequency domain (right) for
arious feature-size-to-mesh ratios, ℓ̂ = ℓ/h, and B-spline degrees. The B-spline level set function (6) is shown in the spatial domain for
eference (dashed lines).
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Using mesh refinement to restore topological anomalies, the resulting level set function will still be Ck−1-
continuous, but higher-frequent modes are present in the refined level set function. In places where the geometric
features are sufficiently large, this is in principle not desirable. Ideally, one only should refine the B-spline level
set function in places where this is needed to preserve the topology, i.e., around small features. In the next section,
we propose a fully-automated topology-preserving B-spline segmentation strategy that refines the B-spline level set
function in such a manner that topological anomalies are avoided.

3. Topology-preserving image segmentation using THB-splines

In this section we present a topology-preserving B-spline-based image segmentation strategy relying on the
technique proposed in Ref. [19]. The proposed strategy consists of two steps (schematically illustrated in Fig. 6).
In the first step, which we will discuss in detail in Section 3.1, a moving-window strategy is applied to locally
compare the topology of the original voxel data and its smoothly segmented counterpart. The result of this first
step is a function that indicates regions where topological anomalies occur. In the second step, which is discussed
in Section 3.2, truncated hierarchical B-splines are employed to locally repair the topology by mesh refinement,
following the analysis presented in Section 2. It is noted that if the mesh in the vicinity of a topological anomaly
is uniformly refined, the insights resulting from the Fourier analysis discussed above for B-splines do also hold
for THB-splines. To demonstrate the proposed image segmentation technique, various test cases, including the
problematic scenario considered in Section 2, will be discussed in Section 3.3.

3.1. Moving-window topological anomaly detection

In this section we detail the moving-window strategy to detect topological anomalies. In Section 3.1.1 we
commence with the definition of the moving window concept, as is commonly used in image processing techniques
(e.g., [101–103]). Subsequently, in Section 3.1.2 we introduce the window-comparison operator used to identify
topological changes. A masking operation is finally introduced in Section 3.1.3 to distinguish between boundary
changes and topological changes.

3.1.1. The moving window
To detect local topological changes, local views on the original voxel data and its smoothed counterpart will be

compared. The windows are created by considering the r -neighborhood of each voxel in the original image, i.e.,

Ωwin = Nr (Ωvox) ∀Ωvox ∈ Vvox. (17)

The 0-neighborhood of a voxel is defined as the voxel itself, i.e., N0(Ωvox) := Ωvox, and the r -neighborhood for
≥ 1 is defined recursively as the union of all voxels that share a vertex with the (r − 1)-neighborhood. This

window definition is illustrated in Fig. 7 for a 10 × 10 voxel grid.
As discussed in Section 2, it is desirable to keep the mesh refinement to repair topological anomalies as local

as possible. To detect topological changes to a geometric feature, there should be a (moving) window that has the
feature in full sight. From the analysis in Section 2.2 it follows that topological changes are expected for features
with a size similar to that of the voxels, i.e., ℓ ≈ ∆. To detect topological anomalies, it is therefore required to select
the moving window size such that features of the size of a single voxel are in the complete view of at least one
window. Since such features generally do not reside completely inside a single voxel, the moving window size must
be larger than the voxel size (r ≥ 1). Features of the size of a single voxel will, however, be observable in a window
of the size of the 1-neighborhood of a voxel (r = 1). Selecting the window to be larger than the 1-neighborhood
will still capture the topological anomalies, but will lead to an undesirable broader refinement zone. The influence
of the window size will be studied for the example discussed in Section 3.3.

3.1.2. Window image comparison
The moving-window technique indicates whether, for the window focused at every voxel, a topological difference

is observed between the directly segmented image, V , and the geometry related to the smoothed image, S (see
Fig. 6). We herein employ the midpoint tessellation strategy proposed in Ref. [45] to construct a geometry
parametrization, as illustrated in Fig. 8(a). Details of this procedure will be discussed in the context of the immersed

isogeometric analysis framework discussed in Section 4. To enable the window topology comparison, it is convenient

10
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(

Fig. 6. Illustration of the topology-preserving image segmentation procedure. The original grayscale image (panel a) is segmented in two
ways, viz., directly by thresholding the voxel data (panel b), and through the B-spline smoothing strategy (panels f and g). A moving-window
technique then locally compares the topology between the two segmented images, which results in an indicator function (panel d) to mark
topological differences. THB-spline-based refinements are then introduced to locally increase the resolution of the smooth level set function
(panel i), thereby preserving the topology of the original image.

Fig. 7. Illustration of the moving window Ωwin centered at a voxel Ωvox, with (a) a one-neighborhood (r = 1) and (b) a two-neighborhood
r = 2).
11
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Fig. 8. Schematic of (a) the midpoint tessellation procedure of Refs. [19,45] and (b) the voxelization on a grid that is refined to match the
recursion depth of the tessellation procedure.

to employ the same representation concept for both images, V and S. Therefore, the tessellated geometry is first
oxelized by segmentation of the B-spline level set function on a grid that is nsub-times uniformly refined with
espect to the original voxel grid, as shown in Fig. 8(b). This refinement level should be chosen such that the
oxelization of the smoothed image does not induce topological changes compared to the geometry on which the
imulation is performed. Since the employed midpoint tessellation strategy also relies on a recursive subdivision
pproach (of the computational cells), the number of voxel subdivisions, nsub, can be related directly to the number
f recursive refinements used for the midpoint tessellation (see Fig. 8).

To characterize topological similarity, we define the window topology-comparison operator:

C (V, S) =

{
true if V and S are topologically equivalent,
false if V and S are topologically different.

(18)

To compute this boolean operator, the filled voxels in the images V and S are divided into connected regions. For
he image V , for example, the regions are denoted by R ∈ RV , where RV is the set of all connected regions.

e herein employ vertex-connectivity, meaning that voxels sharing a vertex are considered to be connected, but
he same procedure can be applied using face-connectivity. For each connected region, R, we determine the Euler
haracteristic, χ (R), which is defined as one minus the number of connected holes, #VR , in that region. Following
he definition in Ref. [104], the Euler characteristic of the window image is given by

χ (V ) =

∑
R∈RV

χ (R) =

∑
R∈RV

(1 − #VR) = #RV −

∑
R∈RV

#VR . (19)

e note that various methods of evaluating the Euler characteristic have been rigorously studied in the field of
omology, see, e.g., Refs. [105–108]. In our work we consider the method of Ref. [104] which has been implemented
n scikit-image [109], an open-source image processing library for Python.

To construct the boolean operator , we define sets of regions with a specific Euler characteristic, χ̄ ∈ χV =

χ (R) | R ∈ RV } ⊂ Z, in an image as

Rχ̄

V = {R ∈ RV | χ (R) = χ̄}. (20)

ig. 9 shows illustrative examples of these region sets. Using the region sets (20), the following indicator function
or topological anomalies is proposed:

C (V, S) =

⎡⎣ ⋀
χ̄∈χV ∪χ S

(
#Rχ̄

V ≡ #Rχ̄

S

)⎤⎦⋀⎡⎣ ⋀
χ̄∈χV ′∪χ S′

(
#Rχ̄

V ′ ≡ #Rχ̄

S′

)⎤⎦ (21)

his indicator states that the number of regions with a particular Euler characteristic is equal in the images V
nd S, as well as in their complements V ′ and S′. Note that, by construction, the operator (21) is invariant to the
omplement operation, i.e., C (V, S) = C (V ′, S′), which makes the comparison operator objective with respect to
he definition of the solid and void regions. One may note that if χV ̸= χS or χV ′ ̸= χS′ , then C (V, S) automatically

everts to false.

12
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Fig. 9. Illustration of the comparison operator (21) for the images V and V ′ (original gray scale data) in the first and fourth column and
the image S and S′ (B-spline-based segmented domain extracted using the midpoint tessellation procedure with ϱmax = 3) in the second
and fifth column. The third and sixth column are the nsub = 3 voxelizations of the segmented domain. The images in the first row result
in C (V, S) = C (V ′, S′) = 1 as V and S are topologically equivalent. The images in the second row results C (V, S) = C (V ′, S′) = 0 as V
nd S are topologically different. The images in the third row results in C (V, S) = C (V ′, S′) = 0 as V and S are topologically different

due to a boundary spill over.

Fig. 9 illustrates the comparison operator (21), where use has been made of a nsub = 3 sampling of the B-spline-
based segmented domain extracted using the midpoint tessellation procedure with ϱmax = 3. The first row in Fig. 9
shows a case where the topology matches, despite the substantial changes in geometry. The second row in Fig. 9
shows a case where the elliptical region is missing, which is a typical case of a topological anomaly. The third
row in Fig. 9 shows a case in which the comparison operator returns false, which is caused by the appearance of a
boundary spillover due to the smoothing procedure at the right bottom border. From the perspective of the window,
the observed change indeed classifies as a topological change. However, when considering the change from the
perspective of the complete image, the observed difference comes from a boundary that moves into the view of
the window under consideration. This boundary movement classifies as a shape (geometry) change, and not as a
topological change. To correctly account for this type of changes, in the next section we propose an image masking
operation.

3.1.3. Window image masking
To mask the window changes associated with moving boundaries, as a preprocessing step to the comparison

operation (21), the smoothed image S is masked using

F = F(V, S) = (M ∩ V ) ∪ (M ′
∩ S), (22)

where F is the masked image and the mask M depends on arguments V and S, i.e., M = M(V, S). This mask
corresponds to a set-indication function which is one in places where a boundary change is detected and zero
everywhere else. The mask is illustrated in Fig. 10 for the case considered in the third row of Fig. 9. The key idea
behind this masking operation is that in regions where shape changes occur, the masked image F is replaced by
the original voxel image V so that the changes associated with boundary movement are effectively reverted.

To identify the locations of the changes between the images V and S, we consider the mask to be a subset of
he symmetric difference between the original and the smoothed image, i.e., M ⊆ V∆S =

(
V ∩ S′

)
∪
(
S ∩ V ′

)
(see
Fig. 10). We now only mask the regions in the symmetric difference which reside completely in the outer ring of

13
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Fig. 10. The symmetric difference (24) between the images V and S in Fig. 9, with the boundary mask M = M(V, S) shown in red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the window and have an Euler characteristic of one (there are no voids), that is,

M(V, S) =
{

R ∈ R1
V∆S | R ∩ Wr−1 = ∅

}
, (23)

here Wr−1 is equal to zero in the outer voxel ring of the window and one everywhere else. Note that since the
ymmetric difference is unchanged when the complement images are considered, i.e.,

(V ′)∆(S′) =
(
V ′

∩ S
)
∪
(
S′

∩ V
)

= V∆S, (24)

or the mask (23) it holds that

M(V ′, S′) = M(V, S) = M. (25)

rom this property of the mask it then follows that the complement of the masked image F is equal to the masked
omplement images V ′ and S′:

F ′
= F(V, S)′ = (M ∩ V )′ ∩ (M ′

∩ S)′ = (M ′
∪ V ′) ∩ (M ∪ S′)

=
[
M ′

∩ (M ∪ S′)
]
∪
[
V ′

∩ (M ∪ S′)
]

= (M ′
∩ S′) ∪ (V ′

∩ M) ∪ (V ′
∩ S′)

= (M ′
∩ S′) ∪ (V ′

∩ M) ∪ (V ′
∩ S′

∩ M) ∪ (V ′
∩ S′

∩ M ′) = (M ∩ V ′) ∪ (M ′
∩ S′)

= F(V ′, S′)

(26)

The choice to identify shape changes associated with moving boundaries by definition (23) is based on the
idea that if one considers a boundary in the global image with small curvature relative to the voxel size, i.e., with
the radius of curvature ρ ≫ ∆, the image smoothing operation discussed in Section 2 will typically confine the
displacement of the boundary within one voxel spacing. When the curvature of the boundary is locally high, i.e.,
with the radius of curvature similar to the voxel size, ρ ∼ ∆, the boundary movement can be larger than a single
voxel, which would lead to falsely identifying a shape change as a topological change. In our algorithm this would
lead to a refinement of the level set function which would not be strictly required to preserve topology. Avoiding
such auxiliary refinements would, however, severely complicate the algorithm (note that methods to compute local
surface curvatures in voxel data are available [110,111]). Moreover, since they generally result in an improved
geometry representation at high-curvature boundaries, the additional computational effect incurred by the auxiliary
refinement is effectively spent.

The masking operation (22) is illustrated in Fig. 11 for an exemplifying image V and its smoothed version S (as
defined in Fig. 12), as well as for the complements of these images. The symmetric difference between the images
V and S is shown in Fig. 12(c), which, in agreement with Eq. (24), is identical to the symmetric difference between
V ′ and S′ in Fig. 12(f). The masked regions are color coded in red, indicating that only completely solid regions
in the outer ring are considered in the mask. The masked images F = F(V, S) and F ′

= F(V ′, S′) are shown in
Figs. 11(a) and 11(d), from which it is observed that, in accordance with Eq. (26), the complement of the masked

′ ′
image F is equal to the masked complement image F(V , S ).

14
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Fig. 11. An illustration of the filtering operation (22) for an image V and the corresponding smoothed image S (see Fig. 12) and for their
omplements.

Fig. 12. An example of (a) the original segmented image V , (b) the spline-based segmented image S, and (c) the symmetric difference.
Panels (d) and (e) are the complements of V and S, respectively. Panel (f) is the symmetric difference of the complements, which is identical
o that in panel (c).
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Fig. 13. An illustration of the boundary masking procedure applied to the case in the third row of Fig. 9. The image V in panel (a) is
ompared with the masked image F in panel (c) to obtain the indicator function C (V, S). In contrast to the result in Fig. 9, the masking
peration results in a C (V, S) = 1, indicating that the images V and S are topologically equivalent.

In Fig. 13 we consider the case of the third row of Fig. 9. As discussed above, when the images V and S are
ompared directly, the comparison operator (21) marks these images to be topologically different on account of
he shape change associated with the boundary movement. When comparing the image V with the masked image
F = F(V, S), as shown in Fig. 13, the images are considered to be topologically equivalent, which, in this case, is
onsidered as the correct indicator result.

.2. THB-spline-based refinement strategy

After identification of the windows in which topological changes occur, the mesh on which the level set function
s constructed is locally refined to resolve these anomalies (see Fig. 6). More specifically, a support-based refinement
rocedure is employed, in which all basis functions that are supported on a voxel that displays a topological anomaly
re replaced by basis functions from the next higher hierarchical level.

We herein employ truncated hierarchical B-splines [92–94] to construct a spline basis over locally refined meshes.
he THB-spline construction is illustrated in Fig. 14, which, for the sake of generality, considers the case of multiple

efinement levels, with the level ℓ = 0 corresponding to the coarsest elements, and the level ℓ = ℓmax to the most
efined elements. We denote the region covered by elements that are at least ℓ times refined by Ω ℓ (note that the
efinement regions are nested, i.e., Ω ℓ

⊆ Ω ℓ−1
⊆ . . . ⊆ Ω0

= Ωvox). The locally refined mesh corresponding to
hese refinement regions is denoted by Vvox.

To construct the truncated hierarchical B-spline basis, we consider ℓmax uniform refinements, Vℓ
vox, of the original

oxel mesh V0
vox. The mesh size of the original voxel mesh is denoted by h and that of its refinements by 2−ℓh.

ith each level we associate a mesh

Vℓ
=
{
v ∈ Vℓ

vox | v ∩ Ω ℓ
̸= ∅

}
. (27)

We define a B-spline basis of degree k and regularity α over each of these meshes as

B(Vℓ) = {N ∈ B(Vℓ
vox) | supp (N ) ∩ Ω ℓ

̸= ∅}, (28)

here B(Vℓ
vox) is the B-spline basis on Vℓ

vox.
To construct the truncated hierarchical B-spline basis, splines from the bases over the uniform meshes (28) are

elected and truncated. On the most refined level, i.e., at ℓ = ℓmax, all basis functions that are completely inside
ℓmax
vox are selected:

H(Vℓmax ) = {N ∈ B(Vℓmax ) | supp (N ) ⊆ Ω ℓmax}. (29)

t coarser levels, i.e., 0 ≤ ℓ < ℓmax, the functions that are completely inside the domain Ω ℓ, but not completely
nside the refined domain Ω ℓ+1, are selected and truncated:

H(Vℓ) = {trunc(N ) | N ∈ B(Vℓ), supp (N ) ⊆ Ω ℓ, supp (N ) ⊈ Ω ℓ+1
} (30)
16
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Fig. 14. An illustration of truncated hierarchical B-splines. The left column shows the hierarchical levels of a mesh Vvox, while the right
column illustrates the concept for a one-dimensional voxel domain Ωvox.

The truncation operation reduces the support of the B-spline functions by projecting away basis functions retained
from the refined levels (see Ref. [92,112] for details). The THB-spline basis then follows as

H(V) =

ℓmax⋃
ℓ=0

H(Vℓ). (31)

This selection and truncation procedure is illustrated in Fig. 14. It is noted that THB-splines satisfy the partition
of unity property (in contrast to non-truncated hierarchical B-splines), which is an important property from
the perspective of the image smoothing procedure (5) as it guarantees that the average grayscale intensity is
preserved [19]. In this work we employ the THB-spline implementation in the Python-based open source numerical
library Nutils [113], which is based on the element-wise construction discussed in Ref. [114].

3.3. Examples

To illustrate the topology preserving segmentation strategy presented above we consider the example presented
in the workflow in Fig. 6. The voxelized smooth image with nsub = 2 is shown in Fig. 6(g), which closely resembles
the tessellated image with a bi-sectioning depth of ϱmax = 3 in Fig. 3(c). By comparison with the voxel segmentation
in Fig. 6(b), it is clearly observed that topological changes occur at two locations. These locations are highlighted
in green in Fig. 15(c).

Fig. 6(d) presents the comparison indicator for a window size of 3 × 3 (r = 1). It is observed that the topological
changes are indeed detected and restored by a single mesh refinement step (Fig. 6(i)). Note that for this example,
the mask operation is also active. As an example of the mask operation, Fig. 6(h) shows a region with a boundary
change before the mask operation. It is observed that the indicator function for topological anomalies (21) results
17
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Fig. 15. Example of the moving window strategy with a 3 × 3 window. Topological changes are correctly detected in the green boxes. In
he red window, an L-shaped exclusion which extends beyond the outer ring of the window is falsely detected as a topological change. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

n zero (false) when compared to the voxel region in Fig. 6(c). Fig. 6(e) shows the region after the mask operation.
fter application of the mask, the comparison operator results in one (true).
In Fig. 6(d) it is seen that an additional region, highlighted in red in Fig. 15(c), is also marked as a topological

hange. Strictly speaking, this would not be necessary, as in both images a hole is present in that region. Fig. 15(b)
hows the window causing this behavior. In the voxel image, the L-shaped exclusion is not detected as a hole in a
egion, but as a void region splitting two solid regions. On the level of the window, this is a topologically ambiguous
ase in the sense that one needs to look outside of the window to see whether the exclusion extends beyond the
indow. As shown in Fig. 6(i) and in the zoom in Fig. 15(e), the effect of refining the level set in this region is

hat the voxel geometry is better captured.
In Fig. 16 the influence of the window size is examined. As can be seen, the refinement regions increase in size

ith increasing window size. Since the 3 × 3 window already adequately corrects the topological anomalies, the
rowth of the refinement regions is unnecessary. As can be seen, the effect of a larger window size on the corrected
mages is minimal, as elaborated in Section 2.2. In Figs. 16(b) and 16(c) we also observe a case where a shape
hange is marked as a topological change, which, as discussed in Section 3.1.3, is caused by the high curvature
f the boundary. A zoom of a typical window in which this occurs is shown in Fig. 17. It is also observed in
ig. 16(c) that for the incorrectly identified topology change discussed above, increasing the window size results

n an indicator function in the form of a ring. This situation is not further explored in this work, but would require
ailoring of the refinement marking strategy to ensure that the interior of the ring is refined.

. The isogeometric finite cell method

To provide a basis for the boundary value problems considered in Section 5, in this section the abstract
ormulation for the isogeometric finite cell method [61] is introduced. We consider a physical domain, Ω , formed by
18
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Fig. 16. The comparison indicator function for the case considered in Fig. 6 with a window size of (a) 3 × 3 (r = 1), (b) 5 × 5 (r = 2),
and (c) 7 × 7 (r = 3).

Fig. 17. A 5 × 5 window showing an example of a shape change associated with a high curvature region. Since this shape change extends
eyond the outer ring of the window, it is not masked and hence it is (incorrectly) detected as a topological change.

he topology-preserving segmentation procedure outlined above. The domain and its boundary, ∂Ω , are immersed
nto an ambient domain A ⊃ Ω as shown in Fig. 18. In the remainder we consider the ambient domain to coincide
ith the image (scan) domain, i.e., A = Ωimg.
We suppose that the problem under consideration is described by a field variable u – which can be scalar-valued

r vector-valued – and the weak formulation{
Find u ∈ W such that:
a(u, v) = f (v) ∀v ∈ V,

(32)

here W is the trial (solution) space, V is the test space, a : W × V → R is a continuous bilinear form and
: V → R is a continuous linear form. The (isogeometric) finite cell method provides a general framework for

onstructing the finite dimensional subspaces W h
⊂ W and V h

⊂ V , where the superscript h refers to the mesh
arameter associated with the ambient domain mesh, T h

A, on which the approximation to the field variable u is
omputed. Note that the mesh T h

A can be different from the level set mesh Vh discussed in Section 2, as the mesh
resolution requirements following from the approximation of the field variable u generally differ from those for the
level set function.

We define the background mesh as all elements in the ambient domain that touch the physical domain, i.e.,
h h
T := {K ∈ TA : K ∩ Ω ̸= ∅}, (33)
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Fig. 18. Schematic representation of (a) the physical domain Ω (gray) with boundary ∂Ω which is embedded in the ambient domain A, and
b) the ambient domain mesh T h

A and the background mesh T h (yellow), with mesh size parameter h. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)

nd the interior mesh of the domain Ω as

T h
Ω := {K ∩ Ω : K ∈ T h

A}, (34)

here the elements in the background mesh are trimmed to the physical domain (see Ref. [45] for details). The
hysical domain boundary mesh is defined as

T h
∂Ω := {K ∩ ∂Ω : K ∈ T h

A}. (35)

he finite dimensional subspaces W h and V h are then constructed using THB-splines (as elaborated in Section 3.2).
e denote the THB-spline space of degree k and regularity α, constructed over the locally-refined ambient domain
h
A, by

Sk
α(A) = {N ∈ Cα(A) : N |K ∈ Pk(K ), ∀K ∈ T h

A}, (36)

here Pk(K ) is the collection of nd -variate polynomials on the element K ⊂ Rnd . The approximation spaces are
hen obtained by restricting the THB-splines in Sk

α(A) to the physical domain Ω :

W h
= V h

= {N |Ω : N ∈ Sk
α(A)}. (37)

ue to the non-mesh-conforming character of the (isogeometric) finite cell method, it is infeasible to impose
irichlet boundary conditions by (strongly) constraining functions in the spaces (37). Instead, Dirichlet conditions

re imposed weakly through Nitsche’s method [46,48]. By employing a mesh-dependent consistent stabilization
erm, a well-posed Galerkin problem is obtained:{

Find uh
∈ W h such that:

ah(uh, vh) = bh(vh) ∀vh
∈ V h (38)

n this problem the bilinear form ah
: W h

× V h
→ R and linear form bh

: V h
→ R are the finite dimensional

ersions of the operators in (32), augmented with the above-mentioned Nitsche terms (which will be specified in
ection 5).

Although the Galerkin problem (38) closely resembles that of mesh-conforming finite element formulations, the
mmersed setting requires a dedicated consideration of various computational aspects. In the context of this work,

he following aspects are particularly noteworthy:
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Ghost-penalty and skeleton-penalty stabilization. To avoid ill-conditioning associated with small volume-fraction
trimmed cells, we apply ghost-penalty stabilization [54]. The idea behind this stabilization technique is to penalize
the jump in the (higher-order) normal gradients of the solution along all edges in the ghost mesh

Fh
ghost = {∂K ∩ ∂K ′

|K , K ′
∈ T h, K ∩ ∂Ω ̸= ∅, K ̸= K ′

}, (39)

by augmenting the bilinear form with an additional ghost-penalty term. This ghost-penalty term, which will be
detailed for the specific problems considered in Section 5, also enables scaling of the Nitsche penalty term by the
reciprocal mesh size parameter of the background mesh (independent of the trimmed-element configurations) [50].

For the flow problems considered in this work, we employ equal-order discretizations. To make the considered
mixed velocity/pressure-discretizations inf-sup stable, we apply skeleton-stabilization [36] to the pressure space
along all edges in the skeleton mesh

Fh
skeleton = {∂K ∩ ∂K ′

|K , K ′
∈ T h, K ̸= K ′

}. (40)

he skeleton-penalty term with which the bilinear form is augmented will be specified in Section 5.

umerical integration on trimmed elements. To evaluate integrals over the trimmed elements, we consider a
ecursive octree bisectioning strategy (see, e.g., Ref. [19,20]), with the maximum number of bisections equal to
max. On the lowest level of bisectioning, i.e., ϱ = ϱmax, the midpoint tessellation procedure detailed in Ref. [45] is
mployed to construct an explicit parametrization of the trimmed boundary. An illustration of the octree bisectioning
rocedure with the midpoint tessellation is shown in Fig. 8(a).

Considering equal-order (Gauss) integration schemes on all sub-cells in the tessellated trimmed elements
eads to high computational costs, in particular when three-dimensional simulations are considered [45]. Various

ethods have been proposed to reduce the computational cost, e.g., smart octree methods [43], moment fitting
techniques [44], and error-estimate-based adaptive integration [45]. We herein consider the error-informed manual
selection strategy proposed in Ref. [45]. At the coarsest level (ϱ = 1) in the octree tessellation we set the integration
order to kmax. We then decrease the order between two levels in such a way that the degree is zero (a single
integration point) at the finest octree levels ϱ ≥ ϱmax.

5. Immersed isogeometric analysis simulations

In this section we consider three applications of the topology-preserving image-based immersed isogeometric
analysis technique presented above. In Section 5.1 we start with the case of a single-field problem in two dimensions
by considering an elasticity problem. Subsequently, in Section 5.2 we consider a multi-field problem in the form
of a Stokes flow through a carotid artery geometry. For this flow case we first consider a representative two-
dimensional test case. The third application pertains to the extension of the Stokes flow case to a three-dimensional
patient-specific geometry based on scan data. Let us note in advance that the carotid artery test case realistically
pertains to moderate Reynolds number flows [115], but that a Stokes flow setting is here considered to focus on
the topology-preserving analysis scheme developed in this work.

5.1. Uniaxial extension of a two-dimensional structure: a linear elasticity problem

We consider the two-dimensional specimen shown in Fig. 19, which is represented by 32 × 32 grayscale voxels.
The physical domain, Ω , with boundary ∂Ω , is immersed into an ambient domain A of (dimensionless) size L × L
(with L = 1), with boundary ∂A; see Fig. 19(c) (with ϱmax = 3). We consider a linear elasticity problem for which
the displacement field, u, is prescribed on the exterior (top and bottom) boundary, while the interior (immersed)
boundary is traction free. In the absence of inertia effects and body forces, the boundary value problem reads as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u such that:
div( σ (u) ) = 0 in Ω

u = 0 on ∂A0

u = ūn on ∂Aū

u · n = 0 on ∂A \ (∂A0 ∪ ∂Aū)
[I − n ⊗ n] σ n = 0 on ∂A \ (∂A0 ∪ ∂Aū)

(41)
σ n = 0 on ∂Ω \ ∂A
21
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Fig. 19. Illustration of (a) the original grayscale image, g(x), (b) the voxel-segmentation of the image, i.e, g(x) > 0, and (c) the computational
domain (using ϱmax = 3) with the boundary conditions.

The various boundaries are specified in Fig. 19(b). The top boundary is displaced in normal direction by ū = 0.2
20%). In the above problem definition, the stress is related to the strain by Hooke’s law, i.e., σ (u) = λdiv(u)I +

µ∇
s u, where ∇

s denotes the symmetric gradient operator. Throughout this section, the non-dimensionalized Lamé
arameters are set to λ =

1
2 and µ =

1
2 . In our analyses, as quantities of interest we consider the stress state in the

pecimen and the effective elastic modulus

Q =
L
ū

1
Vimg

∫
Ω

σ22 dV . (42)

In our simulations, the Dirichlet conditions on the external boundary are applied strongly, i.e., by constraining
the degrees of freedom related to the boundary displacements. This is enabled by the fact that the top and bottom
boundaries are mesh conforming. The Galerkin problem corresponding to (41) then follows as⎧⎨⎩

Find uh
∈ W h(Ω ) such that for all vh

∈ W h
0 (Ω ):∫

Ω

∇
svh

: σ (uh) dV = 0
(43)

with the discrete spaces being subsets of H 1(Ω ) satisfying the Dirichlet boundary conditions. The spaces are
discretized using second-order (k = 2) B-spline basis functions defined on a background mesh with uniform element
size h. For this setting, immersed analysis results can be obtained without additional stabilization terms.

In Fig. 20 we present the results using a mesh size of h = L/32, which is equal to the voxel size. As can be seen
in Fig. 20, without application of the topology-correction algorithm (first column), the left connection (marked in
green) is not reconstructed by the image segmentation procedure. As a result, the left side of the specimen carries
only a small portion of the load, in the sense that (the vertical component of) the stress is equal to zero in the
left part connected to the top boundary, and relatively small in the left section that is connected to the bottom
boundary. When the topology-preservation algorithm is applied (second column in Fig. 20), the left part of the
structure remains connected, and the left side of the specimen is appropriately loaded.

From Fig. 20 it is observed that the topological anomaly drastically affects the simulation results. When
considering the effective elastic modulus (42), as shown in Fig. 21 for various mesh sizes, it is observed that this
quantity of interest shows fundamentally different behavior between the two considered cases. Since the topological
anomaly occurs independently of the background-mesh element size, mesh refinement for the determination of
the approximate solution does not repair this problem. Both solutions with and without the topological anomaly
converge under mesh refinement, but the problem with the anomaly converges to an erroneous result on account of

the incorrect geometry representation.
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v

Fig. 20. Comparison of the segmented geometry obtained from the grayscale image without (a) and with (b) topology preservation. The
ertical (dimensionless) stress component for the two cases, computed using h = L/32, is shown in the panels (c) and (d).

Fig. 21. The effective elasticity modulus (42) computed with and without application of the topology-preservation technique for different
mesh sizes h.
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5.2. Flow through a carotid artery: a Stokes flow problem

We now consider Stokes flow through a domain Ω ⊂ Rnd (nd = 2, 3), representative of a carotid artery. This
omain is constructed using the topology-preserving segmentation procedure presented in Section 3, and is immersed
n an ambient domain A. We consider a pressure-driven incompressible flow of a Newtonian fluid, with viscosity
, through the carotid artery. The fluid velocity, u, and pressure, p, satisfy the strong formulation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u and p such that:

−∇ ·
(
2µ∇

s u
)
+ ∇ p = 0 in Ω

∇ · u = 0 in Ω

u = 0 on ΓD = ∂Ω \ ∂A(
2µ∇

s u − p I
)

n = 0 on ∂A0(
2µ∇

s u − p I
)

n = − p̄n on ∂A p̄

(44)

here p̄ denotes the pressure applied at the inflow (bottom) boundary.
The no-slip boundary condition on the immersed boundary ΓD is imposed weakly through Nitsche’s method.

host- and skeleton-stabilizations are used to avoid oscillations in the velocity and pressure fields (see Section 4).
he mixed Galerkin form is given by⎧⎪⎨⎪⎩

Find uh
∈ V h and ph

∈ Qh such that:

a(uh, vh) + b(ph, vh) + sghost(uh, vh) = l(vh) ∀vh
∈ V h

b(qh, uh) − sskeleton(ph, qh) = 0 ∀qh
∈ Qh,

(45)

here the bilinear and linear operators are defined as [36]

a(uh, vh) := 2µ(∇s uh, ∇svh) − 2µ
[
⟨∇

s uh
· n, vh

⟩ΓD + ⟨∇
svh

· n, uh
⟩ΓD

]
+ ⟨µβh−1uh, vh

⟩ΓD (46a)

b(ph, vh) := −(ph, div vh) (46b)

l(vh) := −⟨ p̄, vh
· n⟩∂A p̄ (46c)

sskeleton(ph, qh) :=

∑
F∈Fskeleton

∫
F

γµ−1h2k+1[[∂k
n ph]][[∂k

n qh]] dS (46d)

sghost(uh, vh) :=

∑
F∈Fghost

∫
F

γ̃ µh2k−1[[∂k
n uh]] · [[∂k

n vh]] dS, (46e)

nd (·, ·) denotes the inner product in L2(Ω ), ⟨·, ·⟩ΓD denotes the inner product in L2(ΓD), and [[·]] is the jump
perator. The parameters β, γ , and γ̃ denote the penalty constants for the Nitsche term, the Skeleton-stabilization
erm, and the Ghost-stabilization term, respectively. We consider second-order (k = 2) B-splines constructed on a
ariety of uniform background meshes with element size h. Let us note that we use equal-order approximations for
he velocity and pressure fields, which is admissible by virtue of the skeleton-penalization acting on the pressure
eld.

.2.1. Two-dimensional test case
To demonstrate the developed methodology in the Stokes flow case, we first consider the idealized two-

imensional geometry shown in Fig. 22 (constructed from 32 × 32 grayscale voxels). In this two-dimensional case,
e consider the ambient domain to be a unit square (with L = 1), and we set the non-dimensionalized parameters

o µ = 1 and p̄ = 1; see Fig. 22(c) (constructed with ϱmax = 3). For the penalty parameters we take, β = 100,
= 0.05, and γ̃ = 0.0005, which have been determined empirically.
Fig. 23 shows the pressure and velocity contour plots for the case where a topological anomaly occurs in the

orm of a pinched-off channel (top row), and in the case where the topology-preservation algorithm is applied
bottom row). The topological anomaly evidently obstructs fluid from flowing through the left branch, resulting
n a zero pressure and zero fluid velocity solution in the top left disconnected domain. The topology-correction

trategy proposed in this work avoids the left channel from being closed and results in a different flow profile. It
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Fig. 22. Illustration of (a) the original grayscale image, g(x), (b) the voxel-segmentation of the image, i.e, g(x) > 0, and (c) the computational
omain (using ϱmax = 3) with the boundary conditions.

s noteworthy that, if Dirichlet conditions were imposed on the top boundary, the pathological case without the
opology-correction would have become singular.

The influence of the mesh size is studied in Fig. 24, which, similar to the elasticity problem considered
bove, conveys that both simulation cases converge under mesh refinement. However, without application of the
opology-correction strategy, the solution converges to an erroneous result.

.2.2. Three-dimensional scan-based simulation
To demonstrate the developed methodology in a real scan-based setting, we consider a Stokes flow through a

arotid artery. The geometry of the carotid artery is obtained from a CT-scan (see Fig. 25). The scan data consists
f 80 slices of 85 × 70 voxels. The size of the voxels is 300 × 300 µm2 and the distance between the slices

is 400 µm. Hence, the total size of the scan domain is 25.6 × 21.1 × 32.0 mm3. The original grayscale data,
represented in DICOM format [115], is pre-processed using ITK-SNAP (open-source medical image processing
tool [116]) from which binary voxel data is exported and read into our Python-based implementation of the
developed topology-correction strategy.

The direct, non-smooth, segmentation of the image data is visualized in Fig. 25(a). When applying the spline-
based segmentation procedure using second-order B-splines, the stenotic part of the artery in the original voxel
image is lost (Fig. 25(b)). As discussed in Section 2.2, this topological anomaly resulting from the spline-based
segmentation procedure is expected on account of the feature-to-mesh-size ratio in that particular area.

In Fig. 26 a zoom of the stenotic part of the artery is shown. Fig. 26(c) shows the indicator function (21) as
determined by the topology-correction strategy. This image conveys that the topological anomaly in the form of the
missing stenotic part of the artery is appropriately detected. Fig. 26(d) shows the smoothly segmented geometry after
THB-spline refinement. From this figure it is observed that the topological anomaly is corrected by the proposed
strategy. In the case of the complete topology (see Fig. 25(c)), it is observed that additional boundary regions are
tagged for refinement on account of the high-curvature of the boundary surface in these regions.

To simulate the flow through the stenotic artery we consider a viscosity of µ = 4 mPa s and a pressure drop of
17.3 kPa (130 mm of Hg). These parameters are selected based on Ref. [115]. The penalty parameters associated
with the weak formulation (45) are set to β = 100, γ = 0.05, and γ̃ = 0.0005, which have been determined
mpirically to yield a stable formulation without adversely affecting the accuracy of the approximation.

The results for the velocity and pressure fields computed on a uniform mesh with h = 1.75 mm in the directions
erpendicular to the pressure gradient and h = 2 mm in the direction of the pressure gradient are shown in Fig. 27.
imilar to the two-dimensional case, the topological anomaly evidently obstructs fluid from flowing through the
tenotic part of the artery, resulting in a zero pressure and zero fluid velocity solution in the right artery (see
ig. 27). The topology-correction strategy avoids the stenotic part from being closed and results in a meaningful flow
rofile. Although the mesh considered here is relatively coarse, the flux through the stenotic region of approximately

3
00 mm /s (corresponding to an average velocity of approximately 1.3 m/s, see Fig. 27(f)) corresponds reasonably
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Fig. 23. Comparison of the pressure, p, and velocity magnitude, |u|, for the segmented domain constructed without (top row) and with
bottom row) topology-preservation using h = L/64.

ell with the flow through a circular tube (Hagen–Poiseuille flow) of length 8 mm and diameter 0.35 mm subject
o the above-mentioned pressure drop, which corroborates that the computed speed is meaningful.

In Fig. 28 the outflow through the stenotic branch of the artery is depicted for various uniform meshes, ranging
rom a very coarse mesh with 8,760 (active) degrees of freedom to a refined mesh with 96,196 degrees of freedom.
imilar to the problems studied above, this mesh verification study conveys that both simulation cases converge
nder mesh refinement, but that an erroneous result is obtained in the case that the topology is not corrected.
ote that, due to the employed uniform meshes, the number of degrees of freedom increases rapidly under mesh

efinement, which will limit the size of the domain that can be considered by this type of analysis in practice. It
s important to note, however, that mesh refinements throughout most of the domain do not substantially improve
he accuracy of the simulation (in particular for the considered quantity of interest). Therefore, to properly leverage

he property of immersed techniques that the mesh resolution can be controlled independently of the geometry
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Fig. 24. Total outflow from the left branch of the carotid artery, computed using different mesh sizes h, with and without the use of the
opology-correction strategy.

Fig. 25. Illustration of (a) the directly segmented scan-data, g(x). The computational domain of the stenotic carotid artery extracted by
he B-spline-based segmentation procedure (b) before and (c) after application of the topology preservation algorithm. The smooth level set
unction, f (x), is segmented using the midpoint tessellation procedure with a subdivision level of ϱmax = 2.

and topology) representation, significant improvements in computational efficiency can be obtained by means of
daptive local mesh refinement. The combination of the proposed technique with an error-estimation-and-adaptivity
trategy is an important topic of further study.

. Concluding remarks

To leverage the advantageous properties of isogeometric analysis in a scan-based setting, a smooth representation
f the computational domain must be obtained. This can be achieved by applying a smoothing operation on the
oxel-based gray-scale data and subsequently applying an octree-based tessellation procedure. A negative side-effect
f this smoothing procedure is that it can induce topological changes when the scan data contains features with a
haracteristic length scale similar to the voxel size.

Based on a Fourier analysis of the B-spline-based smoothing operation, it is proposed to repair smoothing-induced
opological anomalies by locally refining the smoothed gray-scale function using THB-splines. In combination
ith a moving-window strategy to detect topological changes, the local refinement technique is used to develop

topology-preserving image segmentation technique. Based on a comparison of the Euler characteristic between
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Fig. 26. Illustration of the topology-preserving procedure focused on the stenotic part of the carotid artery. Panel (a) shows the original
egmentation obtained directly by thresholding the voxel data, and panel (b) shows the segmentation through the B-spline-based smoothing
trategy. A moving-window technique then locally compares the topology between the two segmentations, which results in the indicator
unction (c) that marks topological differences. THB-spline-based refinements are then introduced to locally increase the resolution of the
mooth level set function, thereby preserving the topology of the original scan-data (d).

he window view on the original voxel data and that on the smoothed representation, the proposed technique
ystematically distinguishes shape changes from topological changes. The algorithm is fail-safe in that it detects and
epairs topological changes, and does not essentially change the geometry in the (rare) case that a shape change is
ccidentally marked for refinement. The proposed location-based masking strategy to detect shape changes is very
ffective for the considered test cases, but it is envisioned that further robustness improvements can be made by the
evelopment of a more advanced masking procedure.

The developed algorithm works for two- and three-dimensional scan data. Numerical simulations demonstrate the
ffectivity of the algorithm in both settings. For all considered test cases, a topologically consistent smoothed image
s obtained after a single topology-correction step. Based on the presented Fourier analysis this is to be expected,
s refining the mesh for the B-spline grayscale function has a strong effect on the filtering properties. It can, in
28
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Fig. 27. Comparison of the pressure, p, and velocity magnitude, |u|, for the segmented domain constructed without (top row) and with
bottom row) topology-preservation using a mesh size of h = 2 mm in the vertical direction, and h = 1.75 mm in the other directions.

rinciple, occur that topological changes are not repaired after a single correction step. Although not considered
n this work, the presented algorithm has the potential to be extended so that it can be applied recursively in such
cenarios.

We have opted to use a support-based refinement procedure, in which all basis functions are refined that are
upported on a voxel for which an anomaly is detected. This refinement strategy is conservative, in the sense that
t leads to a relatively broad refinement zone. Optimized refinement strategies leading to smaller refinement zones
an likely be developed. We consider this an interesting aspect for further study.

In this work we have restricted ourselves to immersed isogeometric analyses based on uniform meshes. In order
o optimally benefit from the fact that the computational mesh is decoupled from the segmented geometry in the
29
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Fig. 28. Total outflow from the right branch of the carotid artery, computed using different degrees of freedom (DOFs), with and without
he use of the topology-correction strategy.

mmersed setting, use should be made of (adaptive) local refinements for the analysis mesh. Combination of the
roposed topology-preservation technique with an adaptive meshing strategy is therefore an important topic of
urther study.
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