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Abstract

Heterogeneous materials are nowadays used in several �elds of structural en-

gineering. Such materials, regarded as composites, have a heterogeneous mi-

crostructure in which two or more constituents are combined in order to reach

improved mechanical properties. Most of the composites include constituents

characterized by a nonlinear behaviour, hence, it is important to consider the

inelastic phenomena arising at the microscale, to accurately predict the macro-

scopic response of the heterogeneous material.

A modeling approach allowing for the heterogeneous nature of the composite to

be considered during the design process is provided by the Multiscale Analysis,

in which both the macroscopic scale and the microscopic scale are involved. At

the microscale, a Unit Cell, being a representaive sample of the heterogeneous

nonlinear material, is studied in order to derive the behaviour of an equivalent

homogeneous macroscopic material. In the scale transition process, usually re-

garded as homogenization, e�cient numerical tools are needed in order to reduce

the computational cost due to the large quantity of internal variables, coming

from the evaluation of the elastoplastic material models at the microscopic level.

Reduced Order Models (ROM) are introduced with the aim of lowering the num-

ber of internal variables of the problem and to provide accurate solutions with

reasonable computational cost and time.

This thesis is mainly dedicated to the development of a ROM for the homogeniza-

tion of nonlinear heterogeneous materials; starting from the Hashin-Shtrikman

analytical homogenization scheme, a piecewise uniform distribution of the mi-

croscopic quantities is assumed, and thus, the proposed ROM is referred as

PieceWise Uniform Hashin-Shtrikman (PWUHS) technique. In particular, the

PWUHS is developed for the solution of homogenization problems of nonlinear

composites and extended, in comparison the literature, to Mises plasticity with

linear hardening.

Numerical results demonstrate the accuracy of the proposed homogenization
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scheme, which is compared to the well known PieceWise Uniform Transforma-

tion Field Analysis (PWUTFA) in order to investigate the similarities and the

advantages of both reduced order models. PWUHS is implemented in the frame-

work of Multiscale Analysis for studying the response of auxetic composites and

numerical results are compared to the experimental counterpart to assess the

e�ciency of the proposed multiscale scheme.
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Chapter 1

Introduction

Over the last decades heterogeneous materials have been increasingly used in

engineering applications, especially in the �eld of constructions, aerospace, and

automotive. Materials having heterogeneous microstructures are generally man-

ufactured with the aim of improving the performances in terms of properties like

the �nal strength or an optimized weight-strength ratio. Most of the compos-

ites include constituents having a nonlinear behaviour, thus, during the design

process, it is relevant to consider the microscopic structure, performing accurate

and e�cient numerical analysis in order to understand how the nonlinearities oc-

curring in the microstructure in�uence the overall behavior of the heterogeneous

material.

In order to take into account the microscopic scale, several modeling ap-

proaches are proposed in literature, depending on the observation scale.

At the macroscopic scale, the structural elements can be considered as a homo-

geneous material, thus, the mechanical properties at this scale mimic the overall

properties of the composite material.

On the contrary, at the microscopic scale, the di�erent materials are clearly

recognizable and the mechanical properties of the single constituents are used.

The interaction between the di�erent constituents are studied and the inelastic

phenomena are well captured.

Depending on the scale of analysis, three di�erent approaches can be pursued:

� Macroscopic modeling: this is the simplest and generally most inaccurate,

modeling approach. The heterogeneous structure is modeled as a �ctitious

homogeneous continuum, stress and strain �elds are considered as average

�elds. The constitutive law of the �ctituous homogeneous continuum is

experimentally derived, this means that the modeling approach can be

regarded as a phenomenological approach. The main advantage is that
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macroscopic modeling can be easily implemented in the framework of FEA,

discretizing the domain in a relatively coarse mesh, making the calculations

not expensive. The main disadvantage comes from the impossibility of

taking into account the di�erent costituents of the heterogeneous material.

� Microscopic modeling: this approach consists in modeling the heteroge-

neous material considering the discontinuities between the di�erent con-

stituents. This modeling approach implies a �ne discretizetion of the do-

main in elements being at least as small as the heterogeneities. Microscopic

modeling captures the local phenomena and delivers the most accurate

global response but leads to a very high computational burden and to

memory and time issues.

� Multiscale Analysis: this modeling approach considers both the material

or microscale, and the structural or macroscale, thus, it is also known as

two-scale technique. At the material scale a micromechanical analysis is

performed in order to obtain the overall response of the composite material;

the results obtained from the solution of the constitutive problem at the

microscale are adopted during the structural analyses. Multiscale analysis

overcomes the low accuracy issue tipycal of macroscopic modeling and the

prohibitive computational cost of microscopic modeling.

In the framework of two-scale techniques, at the material scale, several ana-

lytical homogenization schemes have been proposed in order to obtain the aver-

age properties of heterogeneous materials. Initial analytical schemes are based

on the solution of auxiliary problems [1, 2]; even if originally introduced for

polycrystals, have been successfully extended to composites in general via the

self-consistent scheme by Hill [3]. Some analytical approaches provide for varia-

tional principles requiring the introduction of elastic reference materials in order

to solve linear elastic equivalent problems [4, 5]. These principles were extended

to nonlinear problems by Talbot and Willis [6], Ponte Castañeda and Suquet

[7, 8, 9], for homogenization of nonlinear materials.

The main advantage of the analytical methods is the very low number of

unknowns, coming at the expense of a limited accuracy in prediction of the

nonlinear response of heterogeneous materials.

An alternative is given by numerical approaches; a representative volume

element (RVE) of the heterogeneous material, is identi�ed and studied to obtain
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the overall material response at the structural level. The �nite element method

can be used both at the macroscale and microscale, leading to the well known

FE2 [10, 11, 12, 13]. This computational homogenization scheme is appreciated

for the high accuracy that comes at the expense of a very high computational

e�ort, due to the large quantity of unknowns. Even the generation of meshes,

discretizing the complex microstructure geometry, can be very time consuming

and for this reason simpli�ed geometries are usually preferred.

Various attempts for reducing the computational burden of the microme-

chanical analyses have been done developing Reduced Order Models (ROM),

whose goal is to obtain a computationally e�cient homogenization scheme. A

large class of reduced order models is based on data-clustering ; the solution of

the problem is achieved combining the results of simpli�ed computational ex-

periments carried out during an o�ine phase in order to reduce the number of

unknowns. One of the most recent techniques is the Proper Generalized De-

composition (PGD) based on the separated representation of the unknown �elds

[14]. During an o�ine stage the problem is solved for every possible value of

the free parameters. This allows for a parametric solution of the complex prob-

lem that is solved on the �y during the online stage, setting the desired values

for the parameters. Even if PGD particularly �ts to high-dimensional problems

[15, 16, 17], it provides an alternative approach for classical problems [18]. The

main drawback of such a powerful approach is the huge quantity of data that

must be computed, stored, and combined.

In the eigenstrains or eigenstresses based [19] Reduced Order Models, a

numerical counterpart of the localization tensors of the analytical schemes is

adopted in order to associate structural and local quantities. Among them,

the Transformation Field Analysis (TFA), originally proposed by Dvorak [20]

for the homogenization of nonlinear composites, employs eigenstrains in order

to account for the inelastic deformation arising from the material nonlinearity.

Numerical experiments are carried out on the microsctructure during an o�ine

phase in order to build the localization matrices. Applications of the TFA ap-

proach to derive the response of nonlinear composites di�er in considering the

inelastic strain distribution uniform [20], piecewise uniform [21, 22, 23] or nonuni-

form [24, 25, 26, 27, 28, 29, 30, 31] throughout the microscopic UC. The more

complex the inelastic strain distribution is considered, the better is the accuracy

of the homogenization scheme that leads, however, to a larger computational
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e�ort. Some applications, based on the piecewise uniform transformation anal-

ysis (PWUTFA) [22, 23], rely upon the RVE subdivision in clusters, or subsets,

where the inelastic strain �elds are considered uniform.

Some interesting computational homogenization approaches have been de-

rived from Hashin-Shtrikman (HS) variational principle. Luciano and Willis

[32] proposed a method of analysis consisting in a FE implementation of the

Hashin-Shtrikman variational principle to approximate the elastic behavior of

random composites. Recently, a reduced order homogenization scheme has been

proposed by Wul�ngho� et al. [33] to study the mechanical response of nonlin-

ear elastic composites. The mechanical problem at the microscale is formulated

in terms of the Hashin-Shtrikman variational principle and a homogeneous ref-

erence material, coupled to the real nonlinear microstructure by a polarization

stress (an eigenstress), is introduced to solve the problem at the microscale. This

eigenstress based method is combined with an analytical homogenization scheme

[34, 35, 36], thus, it results in hybrid method. As for piecewise TFA [22, 23],

HS based methods allow for a progressive re�nement of the RVE division into

subsets, regions where the polarization stress �elds are considered uniform.

The scope of this thesis is to present a novel multiscale technique for study-

ing the response of composite materials, characterized by elastoplastic response.

In particular, a Piecewise Uniform Hashin-Shtrikman (PWUHS) reduced order

homogenization scheme is developed and adopted at the microscale to get the

average response of the heterogeneous material. The problem is formulated for

periodic composites and a Unit Cell (UC) representative of the heterogeneous

material is studied. A homogeneous elastic reference media is introduced and a

piecewise uniform distribution of the polarization stress is considered to couple

the reference material to the real material, which is divided in subsets according

to the constituents distribution.

In Chapter 2 Multiscale analysis is introduced. General considerations are made

on the formulation of the problem at both the structural scale and microscopic

scale, focusing on the transition between the two levels. Furthermore, the two

main groups of homogenization schemes, namely the analytical and computa-

tional homogenization, are introduced. Chapter 3 is dedicated to the presenta-

tion of Reduced Order Models, being the main topic of this thesis, as a tool for

lowering the computational e�ort in two-scale homogenization schemes. Among

them, the PWUTFA homogenization scheme is illustrated. Chapter 4 presents
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the PWUHS homogenization and the governing equations are given. The nu-

merical procedure, adopting an implicit Backward Euler scheme, is developed

and the typical time step is solved using a predictor-corrector algorithm where

the iterative Newton-Raphson method is used for solving the nonlinear system of

equations. Two kind of inelastic material models are considered: Mises plasticity

with history variables and elastoplasticity with power law hardening. Di�erent

choices for the elastic sti�ness matrix of the reference materials are presented:

the elastic matrix derived from the homogenization theory by Voigt and the

numerically computed overall elastic matrix of the composite material. A se-

cant approach for PWUHS, also for non isotropic homogenized materials, is

developed in Section 4.2.1 in order to update the reference material during the

analyses. Numerical applications on simpli�ed microstructures, having di�er-

ent material properties and geometries, are carried out in order to investigate

the accuracy of the reduced order model. In Chapter 5 the Piecewise Uniform

Transformation Field Analysis (PWUTFA) is compared to Piecewise Uniform

Hashin-Shtrikman (PWUHS) homogenization technique. The e�ectiveness of

both procedures is evaluated in di�erent cases. In fact, several two-dimensional

numerical applications, in plane-strain condition, are carried out, also for com-

plex loading histories. A comparative convergence study is illustrated and the

proofs of the equivalence between PWUTFA and PWUHS for composites with

homogeneous elastic properties, are given. In Chapter 6 multiscale analysis

adopting the PWUHS homogenization technique is used to study the response

of heterogeneous materials. In particular, auxetic materials are introduced and

a foam-�lled honeycomb, belonging to the class of meta-materials, is studied via

multiscale analysis. Experimental validation of the numerical results is pursued

in order to assess the e�ciency of the two-scale technique.
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Chapter 2

Multiscale Analysis: Theoretical

Foundations

In this Chapter the fundamentals of multiscale analysis are presented for stydy-

ing the behaviour of heterogeneous materials, which characteristics are strictly

related to the observation scale. The formulation of both the structural and

microscopic problem is illustrated with a focus on the choice of suitable scale

transition law, allowing for the coupling of the di�erent scales and the de�nition

of the microstructural Boundary Value Problem. The notions of Homogenization

and Localization are introduced and an overview of the most relevant analytical

and computational homogenization schemes is given.

2.1 Multiscale problem

The behaviour of heterogeneous materials strongly depends on the scale anal-

ysis: at the structural or macroscopic scale, having characteristic dimension L,

the material appears like an homogeneous medium which behaviour can be de-

scribed considering overall mechanical properties. On the other hand, at the

microscopic scale or microscale, having characteristic size l, the micro-structural

constituents can be easily identi�ed (Fig. 2.1). The material phases are usually

arranged in complex geometries and are characterized by di�erent properties.

Furthermore, di�erent constituents may exhibit di�erent behaviours, so that

most of the mechanical and kinematic phenomena arises at this scale.

In order to take into account the phenomena occurring throughout the inner

structure, multiscale analysis can be used. This method is based on the Principle

of Scale Separation claiming that, if the characteristic size at the macroscale
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Figure 2.1: Characteristic scales.

in much bigger than the miscroscopic lenght scale (L >> l), a Representative

Volume Element (RVE) containing the heterogeneities of the composite material,

can be identi�ed at the smaller scale in order to be considered as statistically

representative of the macroscopic homogeneous medium [12].

The choice of a RVE is not an easy task; in the case of random microstructures,

which geometries are not known a priori, a suitable RVE can be generated

following the statistically relevant information of the microstructure such as

constituents volume fractions, inclusions shape and orientation. In other cases

the observation of the microscopic structure helps in identifying a regular pattern

which allows for the detection of a periodic Unit Cell (UC) that can be adopted

as RVE in the scheme of multiscale modeling of heterogeneous materials.

After the identi�cation of a suitable RVE, the structural problem can be solved

exploiting the multiscale analysis which is based on the interaction between

the macroscopic and microscopic scales, as described in the following, in the

framework of small strain regime.

At the macroscale, the homogeneous body B is subjected to body forces b,

surface tractions t on the boundary St and prescribed displacements U∗ on the

boundary Su, such that S = Su ∪ St and Su ∩ St = ∅.
The displacement �eld is denoted as U (X) = {U1, U2}T , where X = {X1, X2}T

is the position vector of the typical point of B. Under the hypothesis of small

strain regime, the strain �eld E = {E11, E22,Γ12}T at the macroscale, according

the Voigt notation, is:
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E = B U with B =

 ∂/∂X1 0

0 ∂/∂X2

(∂/∂X2) (∂/∂X1)

 . (2.1)

The stress �eld is denoted as Σ = {Σ11,Σ22,Σ12}T , so that the equilibrium

equations and the associated boundary conditions are written as:

BT Σ + b = 0 in B
N Σ = t on St
U = U∗ on Su

. (2.2)

where N is the matrix associated to the unit normal vector to St.
In a two-scale scheme, Σ is not directly derived from E evaluating a constitutive

law but it is obtained solving a Boundary Value Problem (BVP) at the micro-

scopic level.

The macroscopic response is usually evaluated at material points, as the average

response of a microstructural UC representing the heterogeneous material; to

this end structural and microscopic scale have to be coupled.

2.2 Micromechanical Problem

A periodic material is considered at the microscale, thus a two-dimensional repet-

itive UC, denoted by Ω is identi�ed at each macroscopic material point of the

macroscopic body B.
At this level, all the di�erent constituents of the composite are distinguishable

in the heterogeneous domain Ω, having assigned shape, dimensions and area A.

The displacement �eld is denoted as u(x) = {u1, u2}T , where x = {x1, x2}T

is the position vector of the typical point of Ω. Under the hypothesis of small

strain regime, the strain �eld ε = {ε11, ε22, γ12}T at microscale is:

ε = D u with D =

 ∂/∂x1 0

0 ∂/∂x2

(∂/∂x2) (∂/∂x1)

. (2.3)

The equilibrium equations are written in absence of body forces, leading to:

DTσ = 0. (2.4)



10 Chapter 2. Multiscale Analysis: Theoretical Foundations

Concerning the material response at the microscale, no consideration are here

made on the relation between strain and stress. In order to solve the microscopic

BVP appropriate boundary conditions have to be provided.

2.3 Micro-Macro Scale Transition

A consistent transition law is introduced to perform the coupling between the

macroscopic amd microscopic scales. This operation is equivalent to a scale

transition between the macro and micro level, or rather the transition from the

macroscopic loads, de�ned at each structural material point to the evaluation of

the microscopic BC, to be applied on the UC.

The scale transition law is expressed according to Hill's lemma [37]:

〈Σ : δE〉 =
1

A

∫
Ω
σ : δε dA, (2.5)

where 〈•〉 denotes the average. Hill's lemma states that the virtual work density

at the macroscopic scale corresponds to the volume average of virtual work over

the microscopic UC. This means that it is possible to substitute the equilibrium

of the macroscopic structure with the solution of the BVP at the microscopic

level, if suitable BC are provided.

A macroscopic property can be de�ned as the volume average over the RVE.

Accordingly, the relation between the strain at di�erent scales is:

E =
1

A

∫
Ω
ε dA, (2.6)

so that the average strain �eld over the UC is equal to the macroscopic strain.

Equation (2.6) is valid only if there are no voids or cracks over the UC.

On the basis of the average relationship (2.6), the displacement �eld at microscale

can be represented as sum of two contributions, in the form:

u = ū + û, (2.7)

where ū is the displacement map:

ū =

{
E11 x1 + 1

2Γ12 x2

1
2Γ12 x1 + E22 x2

}
, (2.8)
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and û is the displacement (periodic) �uctuation due to the presence of hetero-

geneities in the UC. Because of the equations (2.3), (2.7) and (2.8), the strain

�eld takes the form:

ε = E + ε̂ with ε̂ = D û. (2.9)

Taking into account the average relationship (2.6) and equation (2.9), the peri-

odic part of the displacement gradient must have null average over the domain:

〈ε̂〉 = 0. (2.10)

According to equation (2.6), the kinematical BC can be prescribed at the mi-

croscale considering the macroscopic deformation tensor E calculated at the

associated material point of the structural scale. In the framework of strain

driven problems, linear displacements can be prescribed at the boundaries ∂Ω:

u = Ex, ∀x ∈ ∂Ω. (2.11)

If repetitive RVE's are considered, it is possible to indentify periodicity directions

[38] and periodic boundary conditions can be imposed.

To this end, periodic strain are applied to pair of points x− and x+, lying at

opposite boundaries ∂Ω− and ∂Ω+ of the UC, having typical dimension ∆x (see

Fig. 2.2):

u+ = u− + E∆x, ∀x ∈ ∂Ω. (2.12)

Both the described BC satisfy equation (2.5); periodic BC are considered deliver-

ing more accurate response and reasonable estimates of the statistically relevant

properties.

2.4 Homogenization Problem

With a well posed micromechanical BVP and provided a coherent scale transition

law, the constitutive problem is solved at the microscale in order to derive an

homogenized macroscopic response (Fig. 2.3).

The macroscopic stress is evaluated calculating the average of the microscopic

stress over the domain Ω, so that the Hill condition is satis�ed:
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Figure 2.2: Linear boundary conditions (left) and periodic boundary conditions
(right).

Σ =
1

A

∫
Ω
σ dA. (2.13)

Considering an elastic material and according to equations (2.6) and (2.13), the

constitutive behaviour at the macroscale can be written as:

Σ = C̄E, (2.14)

where the overall elastic matrix of the composite material C̄ is introduced, hav-

ing compliance S̄ = C̄−1.

Since in linear elasticity the stress and strain �elds depend linearly on the load-

ing, a relation between macroscopic and local �elds can be obtained considering

the so called localization (or conentration) matrices:

ε(x) = A(x)E(X)

σ(x) = B(x)Σ(X)
, (2.15)

which depend on the microscopic geometry and constituents volume fractions.
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Figure 2.3: Multiscale analysis scheme.

Many schemes for the solution of the homogenization (and localization) prob-

lems have been developed in oder to predict the overall material response of both

linear and nonlinear heterogeneous materials, as shown in the following Section.

2.5 Homogenization Schemes

Homogenization schemes can be classi�ed in three main categories, according to

their main characteristics:

� Analytical homogenization schemes, which calculate the mean �elds of

heterogeneous materials averaging the properties of the constituents;

� Computational homogenization schemes, involving numerical tools as the

FE to derive the miscoscopic behaviour of heterogeneous RVEs;

� Reduced Order Models (ROMs), which aim is to solve the microscopic

problem reducing the total amount of unknowns. ROMs, being the main

topic of this dissertation, are illustrated in Chapter 3.

2.5.1 Analytical Homogenization

Various theories for the analytical determination of mean �elds of composites

have been developed during the past decades.

Mean �eld homogenization schemes are able to predict the behaviour of hetero-

geneous materials starting from basic informations such as constituents' shape,

volume fractions, and strain-stress state. A severe limitation of this class of
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methods, in comparison with computational approaches, is that they are not

able to consider size e�ects, strain or stress localization.

In the following a selection of the most important analytical homogenization

schemes is presented starting from the self-consistent scheme, originally pro-

posed by Hill [3]. This homogenization scheme extends the seminal works based

on the solution of auxiliary problems [1, 2], originally introduced for homoge-

nization of elementary geometries, to composites in general. Other approaches,

based on the introduction of a reference material, provide for suitable variational

principles which allow to predict the overall macroscopic characteristics and their

bounds [4, 5]. A generalization for inelastic problems is due to Talbot and Willis

[6] and further investigations are due to Ponte Castaneda [7, 8, 9].

In comparison with computational honogenization schemes, the analytical meth-

ods presented in the following are dramatically faster. Furthermore, some theo-

retical bounds of the e�ective material response are reported; these bounds allow

for evaluating the quality of the approximated material properties.

2.5.1.1 The self-consistent theory

The self-consistent theory [3, 39, 40, 41] helps in estimating the overall sti�ness

tensor C̄ of a composite made by a matrix containing n distinct types of inclu-

sions, each with elastic matrix Cj , having volume fractions cj , (j = 1, 2, ..., n).

The elasticity tensor of the matrix, with volume fraction cn+1, is denoted by

Cn+1. The limiting case of a polycrystal is included in this framework by taking

cn+1 = 0 and allowing an high number for n.

The self-consistent model assumes that each inclusion is isolated and embedded

in a �ctitious homogeneous matrix, namely the reference material, possessing the

composite unknown overall sti�ness C̄. The homogeneous matrix is subjected

to a uniform strain E far from the inclusion.

Let's de�ne the average strain and stress in the j-th subset as:

σj = Cjεj . (2.16)

It follows that the far �eld strain and stress, corresponding to the average values

in the composite, are:

E =
n+1∑
j=1

cjεj , (2.17)
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Σ =
n+1∑
j=1

cjσj , (2.18)

or, excluding the matrix phase:

Σ = Cn+1E +
n∑
j=1

cj
(
Cj −Cn+1

)
εj . (2.19)

In order to evaluate the phase-wise average strain, each inclusion is supposed

to be embedded in a matrix with sti�ness C̄ subjected to the overall strain in

equation (2.17), so that:

εj = AjE, (2.20)

where the introduction of a localization tensor Aj , depending on Cj and C̄,

implies that:

Σ =

Cn+1 +
n∑
j=1

cj
(
Cj −Cn+1

)
Aj

E. (2.21)

With equation (2.21) at hand, is now possible to get the overall elasticity tensor,

bonding the average stress and strain, using the following equation:

C̄ = Cn+1 +

n∑
j=1

cj
(
Cj −Cn+1

)
Aj . (2.22)

For ellipsoidal inclusions, the localization tensors Aj can be explicitly obtained

according to the works from Eshelby [2] or Willis [42].

The self-consistent scheme, regarded to deliver good predictions of the average

properties of polycristals, is also applied for two-phases composites.

2.5.1.2 The Hashin Shtrikman variational formulation

Hashin and Shtrikman [4] introduced a variational procedure in the linear the-

ory of elasticity that can be applied to the theory of the elastic behaviour of

multiphase materials in order to estimate the e�ective elasticity tensor of linear

isotropic composites.

The method introduces a homogeneous elastic reference material and does not

relate total stress and strain �elds, but polarization quantities, representing the

deviation of the composite problem from the reference solution, namely the stress

polarization τ (x) and the strain �uctuation ε̂(x).
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Consider a heterogeneous domain Ω, composed by two or more materials having

elasticity matrices C(x) and assume that diplacements u(S) are prescribed on

the boundary S and no body forces are present. Let u(x), ε(x) and σ(x) be the

unknown displacements, strain and local stress in the domain.

Consider now another domain Ω0, with elasticity matrix C0, having identical

geometry and prescribed boundary displacements u0(S), being elastic, isotropic

and homogeneous. Assume u0, ε0 and σ0 being respectively the known displace-

ments, strain and stress, with the strain given in terms of the displacements by

the usual small strain expression:

ε0 = Du0. (2.23)

Stresses and strain in this domain are related by the Hooke's law, so that:

σ0 = C0ε0, (2.24)

with the elasticity matrix of the isotropic homogeneous material de�ned as:

C0 =

[
λ (1⊗ 1) + 2µ

(
I − 1

3
1⊗ 1

)]
, (2.25)

in terms of the Lamè constants λ and µ. The already mentioned stress polariza-

tion, being a eigenstress �eld, is now introduced:

τ (x) = (C(x)−C0) ε(x). (2.26)

This unknown quantity represents the stress gap between the inhomogeneous

material and the elastic homogeneous reference material. Taking into account

the stress polarization �eld, a new form of the stress tensor can be obtained as:

σ(x) = C0ε(x) + τ (x). (2.27)

A further additional unknown of the Hashin-Shtrikman formulation is the strain

�uctuation �eld, de�ned as:

ε̂(x) = ε(x)− ε0. (2.28)
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If τ(x) were given, the strain ε(x) solving the equilibrium:

DTσ(x) = DT (C0ε(x)) + DTτ (x) = 0, (2.29)

could be expressed as:

ε(x) = ε0 − Γτ (x), (2.30)

with Γ being a linear operator producing a strain �uctuation ε̂(x) from τ (x),

allowing for the equilibrium in equation (2.29) to be satis�ed. It can be noted

that the problem on the heterogeneous material is basically tranferred to a prob-

lem on a homogeneous material with a �ctitious body force τ (x).

Combining (2.26) and (2.30) an equation for the polarization stress τ ful�lling

the BVP is obtained:

(C(x)−C0)−1 τ (x) + Γτ (x) = ε0, (2.31)

which is equivalent to the variational principle:

δUp = δ

(
1

2
τ (x) (C(x)−C0)−1 τ (x) +

1

2
τ (x)Γτ (x)− τ (x)ε0

)
= 0. (2.32)

The stationary value of the functional in (2.32), according to [4, 43], is equal to:

Up = U0−U = U0−
1

2

∫
Ω
τ (x) (C(x)−C0)−1 τ (x) +

1

2
τ (x)Γτ (x)−τ (x)ε0 dΩ,

(2.33)

where U0 is the strain energy density of the homogeneous reference material:

U0 =
1

2

∫
Ω0

σ0ε0 dΩ0. (2.34)

2.5.1.3 Bounds

Analytical homogenization schemes have proved to be an e�cient tool for ap-

proximation of the e�ective behaviour of composites. Anyway, even for linear

constituents, to determine the overall characteristics of heterogeneous material

is not an easy task. The approximations are strongly in�uenced from the initial

assumptions (e.g. phase-wise constant �elds) so that it is di�cult to assess the

quality of the results.

An useful approach to determine the quality of the approximation is to bound
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the possible material response, which is supposed to span the interval between

an upper and a lower bound.

First-order bounds

A �rst attempt in bounding the behaviour of heterogeneous materials is due to

Voigt [44] and Reuss [45], which independently de�ned an upper and a lower

bound for the elastic strain energy and complementary energy, respectively, of

composites with given materials elasticity matrix and volume fractions.

Voigt assumed homogeneous strain ε(x) = E throughout both the inclusion Ω1

and the matrix Ω2 such that, if 〈ε1〉 = 〈ε2〉 = E, according to equation (2.20),

the strain localization matrices are:

A1 = A2 = I. (2.35)

According to Voigt, the composite overall sti�ness is:

CV = c1C1 + c2C2. (2.36)

The Voigt average for the overall elasticity tensor is an upper bound on the

composite modulus in which kinematic compatibility is ful�lled at the expense

of the equilibrium.

Viceversa, the Reuss average considers both material constituents experiencing

the same uniform stress σ(x) = Σ, satisfying the equilibrium at the expense of

the compatibility. As a consequence, with the dual equation of (2.20) equal to:

σj = ZjΣ, (2.37)

the stress-concentration tensor Zj are:

Z1 = Z2 = I. (2.38)

The overall compliance tensor of the composite material, according to Reuss

assumption of uniform stress �eld, is:

SR = c1S1 + c2S2. (2.39)



19

This represents a lower bound on the sti�ness of the composite.

Voigt and Reuss bounds are obtained provided that both inclusion and matrix

are isotropic. Furthermore, when the sti�ness of the constituents are far each

other, the gap between the upper and the lower bounds is quite big, deliver-

ing not accurate information about the overall composite sti�ness. This is the

reason why more accurate bounds were developed afterwards from Hashin and

Shtrikman, as illustrated in the following.

The Hashin-Shtrikman bounds

The variational principle in (2.32) has been used from Hashin and Shtrikman [5]

and similarly from Walpole [40] and Willis [43] to �nd optimal bounds for the

overall properties of composite materials made of several inclusions embedded

in a matrix.

In order to determine the bounds, the average of equation (2.32) must reach

stationarity, such that δŪp = 〈δUp〉 = 0. Furthermore, the second variation of

the average strain energy δ2Ūp determines if the stationary values correspond to

a maximum or a minimum:

δ2Ūp = 〈δτ (x) (C(x)−C0)−1 + δΓτ (x)〉

{
> 0 Ūp min

< 0 Ūp max
. (2.40)

With the functional Up representing the di�erence between the strain energy

in the real composite and the strain energy in the reference material, being

R = (C(x)−C0) the sti�ness gap, the following relation for the stationary

values are obtained:

R

{
positive de�nite, δ2Ūp > 0, Ū = Ūmax

negative de�nite, δ2Ūp < 0, Ū = Ūmax
. (2.41)

It is known that optimal Hashin-Shtrikman bounds are found for composites

with isotropic constituents or for polycrystals with speci�c crystal symmetries

[46]; an extension for optimal bounds in composites composed by arbitrarily

anistropic constituents is due to Walpole [40].

In contrast with the �rst order bounds, the Hashin-Shtrikman formulation de-

livers both the upper and lower bounds by an accurate choice of the reference

material sti�ness. To derive the upper bound the reference material must be as
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sti� as the sti�er constituent of the composite; on the contrary, the lower bound

is derived if the reference material is as sti� as the weaker constituent in the

composite.

The Hashin-Shtrikman variational formulation gives tighter bounds in compar-

ison to the ones derived by Voigt and Reuss which, moreover, can be recovered

from the HS formulation giving in�nite or null sti�ness to the reference material

[47].

These bounds, originally derived for polycrystals, are have been mainly used for

isotropic composites with isotropic constituents, for both 2D and 3D models,

containing sphericle particles or randomly oriented �bers.

In the following �rst and second order bounds are used to investigate the evo-

lution of mean �eld moduli in a two-phase elastic composite with varying ge-

ometries. In particular, the considered bounds refer to the plane strain bulk

modulus λ and shear modulus µ of an isotropic composite made of a circular

inclusion with elastic modulus E1 embedded in a matrix with elastic modulus

E2. Both constituents, which volume fractions are respectively c1 and c2, have

Poisson ratio ν = 0.25. The composite material is assumed to be well ordered

[48], in the sense that both the bulk modulus λ1 and the shear modulus µ1 of the

inclusion are greater than the respective values in the matrix (λ1 ≥ λ2, µ1 ≥ µ2).

With a �xed value for E2 = 70GPa, three di�erent increasing values are given

to the inclusion elastic modulus: E1 = 140GPa (Fig. 2.4, a, b), E1 = 210GPa

(Fig. 2.4, c, d) and E1 = 210GPa (Fig. 2.4, e, f).

As expected, Voigt and Reuss formulations deliver larger bounds in compari-

son to the Hashin-Shtrikman estimates. Furthermore, is possible to note that

both �rst and second order bounds are sensitive to the increasing gap between

the phases elastic properties: the lower is the di�erence between inclusions and

matrix elastic moduli, the tighter are the upper and lower bounds.
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Figure 2.4: Bulk modulus λ and shear modulus µ bounds as a function of
the inclusion volume fraction c1 in a two-phases composite: Voigt (isostrain)
bound, Reuss (isostress) bound, Hashin-Shtrikman upper (HS+) and lower (HS−)
bounds obtained considering E1=140 GPa (a and b), E1=210 GPa (c and d),

E1=280 GPa (e and f).
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2.5.2 Computational Homogenization

Analytical homogenization schemes are considered to be e�ective in the mean

�eld prediction of random microstructures, as polycrystals. Such schemes are

easy to implement in the framework of two-scales analyses and are numerically

inexpensive but show some limits in the applications on ordered microstructures

[49]; in particular, is impossible to take into account the interactions between

the di�erent material constituents at the microscale and they cannot provide

informations about local phenomena, i.e. strain localization.

A possibility to overcome this limitations is provided from the so called multi-

level �nite element methods [50, 51, 52] that are basically nested FE analysis,

therefore, outer and inner scales are approached using the FE method. Even if

this computational method allows for multiple levels of analysis, two levels are

usually taken in consideration so that it is usually referred to as FE2 [10, 13, 53].

In the framework of computational homogenization methods each integration

point (GP) of the macroscopic mesh has an associated RVE on which a separate

�nite element analysis is performed. An appropriate transition law is provided

so that suitable boundary conditions are imposed at the microscopic scale ac-

cording to the macroscopic strain tensor. Once the micromechanical FE analysis

is completed, the macroscopic stress tensor is recovered according to equation

(2.13).

Figure 2.5: First-Order Computational Homogenization.

Early FE2 schemes assume the average strain over the RVE being equal to

the macroscopic strain E (see equation (2.6)): these homogenization approaches,
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illustrated in Fig. 2.5, are usually regarded as �rst order computational homoge-

nization schemes, based on the general assumpions of multiscale problems, con-

sidering the characteristic size of the microscopic model neglectable if compared

to the structural scale.

A direct consequence of this assumption is that only global deformation modes

(tension, compression, shear) are captured at the microscale regardless of the

RVE dimensions. Increasing the size of the miscoscopic model does not in�u-

ence the averaged results, meaning that the dimensional properties of the RVE

are not relevant and size e�ects are not captured.

The limitations of the �rst order CH schemes are relevant if localization phenom-

ena or softening behaviour occur at the microscopic scale. In order to avoid the

disadvantages of the �rst order CH methods, another class of numerical meth-

ods usually regarded as second order compuational homogenization schemes, has

been developed in the framework of large strain regime [11, 54, 55].

The main di�erence is that also the second order gradient G(X) of the macro-

scopic displacements is involved in the de�nition of the microscopic BC, as shown

in Fig. 2.6. At the microscopic scale, if body forces are neglected, the equilibrium

equation reads:

DTp = 0, (2.42)

where p is the �rst Piola-Kircho� stress tensor [56] at the microscopic level.

After the microscopic BVP is solved, the macroscopic Piola-Kircho� stress tensor

P(X) and a higher-order stress tensor Q(X) are obtained and passed at the

macroscopic material point.

The main advantage of computational homogenization schemes is that the

evaluation of the constitutive behaviour is carried out at the microscopic level,

which is treated in the framework of FEA, thus, RVE with complex geometries

can be considered.

However, this leads to the main disadvantage of FE2 methods, requiring a large

number of unknowns evaluations at the microscopic level, where a FE analysis

is carried out at each macroscopic integration point.

Furthermore, when nonlinear behaviour are considered at the RVE level, a large

amount of history variables has to be stored at each load step, leading to a pro-

hibitive computational burden and, when large deformations occur, a remeshing

of the geometry could be required.
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Figure 2.6: Second-Order Computational Homogenization.

One of the possible aid in overcoming the CH disadvantages is provided by

Reduced Order Models, which aim is to decrease the numerical e�ort of compu-

tational homogenization schemes.
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Chapter 3

Reduced Order Models

In this Chapter Reduced Order Models (ROMs), being the main topic of this

thesis, are presented as an e�ective tool to reduce time consuming and storage

requirements, in the framework of multiscale analysis. As reported in Chapter

2, the microscopic �elds are obtained by mean of a localization process and the

solution of the microscopic BVP allows for the computation of the homogenized

macroscopic quantities.

In the framework of CH, these two concatenad processes have two di�erent com-

plexity levels: while the homogenization corresponds to averaging the micro-

scopic �elds, the localization requires the solution of a nonlinear BVP for each

macroscopic material point.

In the eigenstrain based [19] ROMs, a numerical counterpart of the localization

tensors in 2.15 is adopted in order to associate structural and local quantities.

Among the ROMs the Transformation Field Analysis, initially proposed in [20]

for homogenization problems of nonlinear composites, is presented in this Chaper,

focusing on the numerical procedure of the Piecewise Uniform Transformation

Field Analysis (PWUTFA).

3.1 The Transformation Field Analysis

One of the most interesting ROM techniques is the Transformation Field Anal-

ysis (TFA), based on the use of eigenstrains in order to consider the inelastic

deformation arising from the material nonlinearity.

The applications of this technique for studying the behaviour of nonlinear com-

posites di�er in considering the inelastic strain distribution uniform [23], piece-

wise uniform [22, 23] or nonuniform [23, 24, 25, 26, 27, 29, 31] inside the RVE.

These possible assumptions lead, respectively, to the diversi�cation of the method
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in Uniform Transformation Field Analysis (UTFA), Piecewise Uniform Transfor-

mation Field Analysis (PWUTFA) and Nonuniform Transformation Field Anal-

ysis (NTFA).

3.1.1 General Idea

In order to obtain accurate solutions of the micromechanical problem with a

reduced computational e�ort, TFA consider a subdivision of the domain Ω in a

number of m subsets Ωj with j = 1, ..,m, so that:

Ω =
m⋃
j=1

Ωj , (3.1)

with the j-th subset Ωj having area Aj and volume fraction cj = (Aj/A).

Note that the discretization of the UC in subsets is performed ensuring that

each subset is homogeneous, thus, it contains only one of the constituents. Con-

cerning the material response at the microscale, it is assumed that the UC con-

stituents are characterized by a nonlinear behavior. Di�erent kind of inelastic

material models can be adopted. Here is only assumed that the considered small

strain plasticity model admits a decomposition in elastic and inelastic parts:

εj = εje + πj , (3.2)

with εj being the total strain, εje being the elastic strain and πj the inelastic

strain in the subset Ωj .

It is assumed that the inelastic strain πj (eigenstrain) is uniform, i.e. con-

stant, within each subset Ωj leading to the piecewise uniform TFA (PWUFTA)

[23].

Taking into account equation (2.9), the total strain εj in the subset Ωj is the

sum of the average strain E and the periodic �uctuation ε̂j , that can be written

as:

ε̂j(x) = ej(x) + pj(x), (3.3)

where the �uctuation strain ej(x) is the e�ect of the prescribed macroscopic

strain E arising in each subset Ωj and the �uctuation strain pj(x) is the e�ect

of the piecewise uniform distribution of the inelastic strains alternately acting

in all the subsets de�ned by the discretization of Ω.
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The �uctuation strain ej(x) arising in the subset Ωj , due to the macroscopic

strain E, results:

ej(x) = LjE(x)E, (3.4)

where LjE is a 3× 3 localization matrix.

Collecting the inelastic strains πs = {πs11, π
s
22, π

s
12}

T , de�ned in the subsets

Ωs with s = 1, ..,m, in a unique vector Π =
{
π1, ...,πm

}T
, the �uctuation strain

pj(x) arising in each subset Ωj , is:

pj(x) = Ljπ(x)Π, (3.5)

with Ljπ the 3× 3m localization matrix of the piecewise uniform distribution of

inelastic strains.

Due to equation (3.3), the total �uctuation strain in the j-th subset is �nally

obtained as the sum of the e�ects of the macroscopic strain E and of the inelastic

strain Π:

ε̂j(x) = LjE(x)E + Ljπ(x)Π. (3.6)

Following equation (3.6), the average �uctuation strain ¯̂εj in the subset Ωj

is:
¯̂εj = L̄jEE + L̄jπΠ, (3.7)

with the average localization operators de�ned as:

L̄jE =
1

Aj

∫
Ωj

LjEdA, L̄jπ =
1

Aj

∫
Ωj

LjπdA. (3.8)

A total amount of m matrices L̄jE and m matrices L̄jπ have to be de�ned and

computed. The construction of the aforementioned localization matrices is per-

formed developing an o�ine stage, namely the precomputations, according the

following scheme:

� the columns of the matrices L̄jE are obtained running 3 micromechanical

elastic analyses. In each solution the UC is subjected to an overall strain

E in which a unit value is assigned to only one of the three macrostrain

components. The vector collecting the average local strain in the j-th

subset forms a column of the corresponding localization matrix L̄jE;
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� the columns of the matrices L̄jπ are obtained running 3×mmicromechanical

linear elastic analyses. In each solution, a unit component of the inelastic

strain is assigned to a single subset Ωj , hence, a unit value is assigned to

only one of the 3×m inelastic strain components in Π, under the assump-

tion of null average strain in the UC (E = 0). The vector collecting the

average total strain in the j-th subset forms a column of the corresponding

localization matrix L̄jπ.

Figure 3.1: PWUTFA preanalyses: UC decomposition in subsets Ωj in which
the inelastic strain is assumed uniform.

3.2 PWUTFA in elastoplasticity with linear harden-

ing

Although di�erent kind of inelastic material models can be adopted, the classical

associated Mises plasticity [57] is herein considered.

The stress-strain relation for the plastic material is written as:

σ = C (ε− π) , (3.9)

with C being a 3 × 3 elastic matrix, function of the position vector x because

of the heterogeneity of Ω, and π being the inelastic strain due to the plastic

response. The Mises yield criterion, accounting for isotropic hardening, is con-

sidered; thus, the elastic region is de�ned by the activation function:

f = q − σy −Kα, (3.10)

where σy is the yield stress, K is the isotropic hardening parameter, the von

Mises stress q =
√

3
2‖σ̄

′‖, with σ′ being the deviatoric stress, can be rewritten

as:



29

q =

√
3

2
σTMσ where M =

1

3

 2 −1 0

−1 2 0

0 0 6

, (3.11)

and α is a time dependent function describing the amount of accumulated plastic

strain:

α =

t∫
0

‖π̇‖dt. (3.12)

The equations governing the evolution of the plastic strain and of the accumu-

lated plastic strain are:

π̇ = γ̇
∂f

∂σ
, α̇ = γ̇, (3.13)

with γ̇ being the plastic multiplier. The following relations, usually known as

Kuhn-Tucker conditions, are introduced for the evaluation of the plastic multi-

plier:

γ̇ ≥ 0, f ≤ 0, γ̇f = 0. (3.14)

The plastic multiplier γ̇ is evaluated via the consistency condition:

γ̇ḟ = 0. (3.15)

3.2.1 Numerical procedure

With the localization matrices L̄jE and m L̄jπ computed during the o�ine stage,

and after the de�nition of the nonlinear constitutive law for the elastoplastic ma-

terial (here Mises plasticity with isotropic hardening is considered, see equations

(3.9) - (3.15)), it is possible to evaluate the average stress σ̄j in each subset,

which i sassumed governing the evolution of the inelastic strain πj .

The time integration of the evolutive problem is performed adopting a Backward

Euler implicit scheme.

At the beginning of each time step a macroscopic strain E is prescribed and

a predictor-corrector approach is used to determine the unknowns; the history

variables de�ned at the previous time step are considered as frozen:

Π = Πn, α = αn, (3.16)
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where α is the m component vector of the average accumulated plastic strain in

each subset of the domain discretization. Then, the trial state is calculated for

all the subsets Ωj with j = 1, ..,m, as:

¯̂εj = L̄jEE + L̄jπΠ (3.17)

σ̄j = Cj
(
E + ¯̂ε− πj

)
(3.18)

f j =

√
3

2
‖σ̄′j‖ − σy −Kαj . (3.19)

If, for all the activation functions, it results f j ≤ 0, the step is elastic and

the trial state is solution of the micromechanical problem. On the contrary, if

f j > 0 at least for one subset Ωj , the step is plastic and a correction phase

is needed; to this end, equations (3.17), (3.18), (3.19) and the inelastic strain

evolution equation (3.13), in the �nite time step, are rewritten in residual form

in each subset as:

rjε = ¯̂ε− L̄jEE− L̄jπΠ = 0 (3.20)

rjσ = σ̄j −Cj
(
E + ¯̂ε− πj

)
= 0 (3.21)

rjπ = πj − πjn −∆γj
∂f j

∂σ̄j
= 0 (3.22)

rjf =

〈√
3

2
‖σ̄′ j‖ − σy −K(αjn + ∆γj)

〉
+

= 0 , (3.23)

where the Macaulay brackets 〈·〉+ denote the positive part of the number. This

is a system of (3 + 3 + 3 + 1)×m nonlinear equations that is solved via Newton-

Raphson method with a return-mapping technique [58] considering ¯̂ε, σ̄j , π̄j

and ∆γj with j = 1, ..,m as unknowns. Introducing the residual vector R ={
(r1)T (r2)T ... (rm)T

}T
and the unknowns vector S =

{
(s1)T (s2)T ... (sm)T

}T
with rj =

{
(rjε)T (rjσ)T (rjπ)T (rjf )T

}T
and sj =

{
(¯̂ε)T (σ̄j)T (πj)T ∆γj

}T
, for

j = 1, ..,m, the linearized form of the problem, at the k + 1-th iteration, leads

to the updated increment of the unknowns at the iteration k + 1:

∆S(k+1) = ∆S(k) −

([
∂R

∂S

]
(k)

)−1

R(k) (3.24)

The iterative procedure stops when the norm of the residual vector is lower

that a pre�xed tolerance. It can be remarked that for the elastic subsets, where
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the activation function is lower than zero, equation (3.23) becomes trivial, thus,

the solver algorithm have to properly take into account this eventuality [23].
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Chapter 4

The PWUHS Reduced Order

Model

In this Chapter the PWUHS technique is introduced. It is a Reduced Order

Model combining the Hashin-Shtrikman analytical homogenization scheme and

a FE2-like computational homogenization approach, thus, it can be regarded as

a hybrid homogenization approach. In the following, both the theoretical aspects

and the numerical procedure are illustrated. The homogenization procedure is

applied to microstructures characterized by nonlinear stress-strain relationships:

plasticity with isotropic hardening and power-law plasticity are considered. Nu-

merical results are shown for di�erent periodic RVEs.

4.1 General Idea

The PWUHS is a ROM which aim is to solve the micromechanical problem

with a reasonable computational burden. To this end, similarly to the TFA, the

RVE domain Ω is assumed to be divided in a low number m of subsets Ωj with

j = 1, ..,m, according to 3.1.

Each subset is considered containing only one of the constituents, thus, a piece-

wise representation of the stresses is assumed, allowing for a independent ap-

proximation over each region.

In the framework of HS homogenization, as seen in the analytical approach

proposed by Hashin and Shtrikmann [4, 5] and illustrated in section 2.5.1.2, an

elastic and homogeneous reference material, characterized by an elasticity matrix

C0, is introduced. To associate the reference material to the heterogeneous
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Figure 4.1: Computational RVE with circular inclusions: comparison between
FE discretization (left) and division in subsets (right).

material, the polarization stress τ j in the subset Ωj , is de�ned:

τ j(x) = σj(x)−C0 ε
j(x), (4.1)

where σj(x, ε) is assumed following a nonlinear stress-strain relationship accord-

ing to an elasto-plastic constitutive law.

This means that the polarization stress represents the stress gap between the

heterogeneous material and the elastic homogeneous reference material, due not

only to the di�erence in terms of sti�ness between the real material and the

reference one, but also to the inelastic phenomena occurring in the nonlinear

material.

It is assumed that the polarization stress τ j (an eigenstress) is uniform, i.e. con-

stant, in each subset, representing its average value in Ωj . This assumption leads

to the piecewise uniform HS (PWUHS) approach [33]. Averaging the polariza-

tion stress (4.1) and the stresses σj(x, ε) in the subsets, taking into account

equation (2.9) and (3.9), it results:

τ̄ j = σ̄j −C0 (E + ¯̂εj) (4.2)

σ̄j = Cj
(
E + ¯̂ε− πj

)
. (4.3)

Collecting the polarization stresses τ s = {τ s11, τ
s
22, τ

s
12}

T , de�ned in the sub-

sets Ωs with s = 1, ..,m, in a unique vector T =
{
τ̄ 1, ..., τ̄m

}T
, the periodic

�uctuation strain ε̂j , arising in each subset Ωj , is:

ε̂j(x) = Γj(x)T, (4.4)
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where Γj is the 3 × 3m localization matrix due to the subset-wise uniform dis-

tribution of the polarization stresses. The average strain �uctuation �eld can be

obtained by averaging the terms in equation (4.4), resulting:

¯̂εj = Γ̄
j
T with Γ̄

j
=

1

Aj

∫
Ωj

Γj(x)dA . (4.5)

being Γ̄
j
the average localization matrix.

The construction of the aforementioned localization matrix Γ̄
j
is performed

developing an o�ine stage.

The columns of the matrices Γ̄
j
are obtained running 3×m micromechanical

elastic analyses on the homogeneous reference material. In each solution, a unit

component of the polarizaton stress is assigned to a single subset Ωj ; a unit value

is assigned to only one of the 3 ×m polarization stress components in T. The

vectors collecting the average strain �uctuations in the j-th subset due to the

polarization stress in Ωs with s = 1, ..,m, form the columns of the corresponding

localization matrix Γ̄
j
.

Figure 4.2: PWUHS preanalyses: UC decomposition in subsets Ωj in which
the polarization stress is assumed uniform.

4.2 Choice of the reference sti�nes matrix C0

The PWUHS is formulated introducing a reference material, characterized by

a suitable elastic sti�ness matrix C0, whose choice represents a crucial point.

Typically, the Hashin-Strickman theory assumes the matrix or the inclusion as

reference material. Of course, di�erent choices can be done for the reference ma-

terial, that can signi�cantly in�uence the e�ectiveness of the PWUHS approach

described above. A rational choice is to assume the homogenized material as

the reference material, i.e. C0 = C̄, where C̄ is the overall elastic matrix of the
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composite material. Several di�erent techniques can be adopted to derive the

homogenized properties of the material. A very simple possibility is to consider

the elastic matrix derived by the Voigt homogenization theory [44, 59], which

evaluates the equivalent elastic matrix assuming an homogeneous strain �eld

throughout the composite material components.

It is well-known that the evaluation of the homogenized elastic matrix derived

by the Voigt theory could be quite inaccurate and more satisfactory techniques

can be adopted to determine C̄. In fact, a further and, maybe, e�cient possible

choice is to evaluate the overall elasticity matrix C̄ of the composite material

using numerical techniques, such as the �nite element method. In such a case,

the overall elasticity matrix is evaluated averaging the stress components when

the composite is subjected to an average strain. In particular, the three columns

of C̄ are computed prescribing the overall strain E = {1 0 0}T , E = {0 1 0}T

and E = {0 0 1}T , respectively. For the PWUHS reduced order model, the

three precomputations needed to assemble C̄ are added to the precomputations

required to derive the localization matrices Γ̄
j
.

Using the homogenized elastic matrix for the reference material allows to

derive the response of the composite, activating a polarization �eld character-

ized by null average in the UC. When inelastic strains arise in the material the

polarization �eld looses its property of null average, thus a di�erent evaluation

of the homogenized elastic matrix may be convenient.

4.2.1 Updated secant modulus approach

In order to improve the PWUHS method, new reference material can be de�ned

during the inelasticity evolution, updating the elastic matrix during the non-

linear analysis. To this end, it is convenient to consider an isotropic reference

material, as shown in the following. When the homogenized material, charac-

terized by an overall elastic matrix C̄, is non isotropic, the reference material

can be obtained considering an isotropic material with elastic properties related

to the homogenized ones. A possible procedure to derive the elasticity matrix

of the isotropic reference material C0 from a homogenized non isotropic one C̄

consists in evaluating C0 as the isotropic matrix closest to C̄. Hence, for the

isotropic reference material it is possible to evaluate the elastic modulus E0, the

Poisson's ratio ν0 and the shear modulus µ0 = E0/2(1 + ν0), so that the plane
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strain elasticity matrix is represented in the form:

C0 = µ0



1− ν0

1− 2ν0

ν0

1− 2ν0
0

ν0

1− 2ν0

1− ν0

1− 2ν0
0

0 0
1

2


. (4.6)

A correction of the elasticity matrix C0 can be implemented introducing a

scaling factor describing the evolution of the shear modulus µ0 that has to be

updated in order to take into account the nonlinearity arising in the material

components, according to a secant modulus approach that has been proved to

be very e�cient [60, 61, 62, 63].

At the typical time step, the updated (secant) value of the overall shear

modulus µt0 is determined as the ratio of the norm of the deviatoric stress ||Σ′‖
and the norm of the deviatoric strain ‖E′‖:

µt0 =
1

2

‖Σ′‖
‖E′‖

. (4.7)

Then, the scaling factor f0 is introduced as:

f0 =
µt0

µ0
. (4.8)

and the correction of the elastic reference matrix is de�ned as:

Ct
0 = f0C0. (4.9)

representing an evaluation of the secant reference elastic matrix.

The correction strategy a�ects also the localization matrix obtained in equa-

tion (4.5), for the initial reference material. During the precomputations the

matrix Γ̄ is obtained using a value for C0. The correction in equation (4.9)

implies a equivalent rescaling of the localization matrix using the same factor

f0 de�ned in equation (4.8). Hence, the corrected average localization matrix is

obtained as:

Γ̄
t

=
1

f0
Γ̄ . (4.10)



38 Chapter 4. The PWUHS Reduced Order Model

4.3 PWUHS in elastoplasticity with linear hardening

After the evaluation of the localization matrices Γ̄
j
computed during the pre-

computations, and after the de�nition of the nonlinear constitutive law for the

elastoplastic material (here Mises plasticity with isotropic hardening is consid-

ered, see equations (3.9)-(3.15)), it is possible to evaluate the average stress σ̄j

in each subset, governing the evolution of the inelastic strain πj .

4.3.1 Numerical Procedure

A Backward Euler technique is adopted for the time integration of the evolution

problem and a predictor-corrector approach is used to solve the time step.

The quantities at the actual time step tn+1 are denoted with no pedex while the

quantities at the previous time step tn are denoted with n.

At the beginning of each time step a macroscopic strain E is prescribed and a

predictor-corrector approach is used to determine the unknowns. A trial state

is calculated for all the subsets Ωj with j = 1, ..,m, evaluating the equations

(4.2), (4.5), (3.10) and (4.3), in the unknowns ¯̂εj , τ̄ j and σ̄j , with j = 1, ..,m

and considering the history variables as frozen at the previous time step:

Π = Πn (4.11)

α = αn (4.12)

τ̄ j = σ̄j −C0 (E + ¯̂εj) (4.13)

¯̂εj = Γ̄
j
T (4.14)

σ̄j = Cj
(
E + ¯̂ε− πj

)
(4.15)

f j = q − σy −Kαj (4.16)

qj =

√
3

2
σ̄TMσ̄ (4.17)

Note that this trial state cannot be computed at subset level, but it is deter-

mined solving the problem involving all the subsets of the discretization. Once

the trial stress σ̄j is computed, the value of the activation function is calculated.

If, for all the activation functions, it results f j ≤ 0 with j = 1, ..,m, the step is

elastic and the trial state is solution of the micromechanical problem. On the

contrary, if f j > 0 at least in one subset Ωj , the step is plastic and a correction

phase is needed; to this end, equations (4.2), (4.3), (4.5), (3.13) and (3.10), in
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the �nite time step, are rewritten in residual form in each subset as:

rjτ = τ̄ j −
[
σ̄j −C0 (E + ¯̂εj)

]
= 0 (4.18)

rjσ = σ̄j −Cj
(
E + ¯̂ε− πj

)
= 0 (4.19)

rjε = ε̂j(x)− Γj(x)T = 0 (4.20)

rjπ = πj − πjn −∆γj
∂f j

∂σ̄j
= 0 (4.21)

rjf =
〈
qj − σy −K(αjn + ∆γj)

〉
+

= 0 , (4.22)

where the Macaulay brackets 〈·〉+ denote the positive part of the number. This

is a system of (3 + 3 + 3 + 3 + 1) × m nonlinear equations that is solved via

Newton-Raphson method, introducing the residual and unknowns vectors:

R =
{

(r1)T (r2)T · · · (rm)T
}T

, (4.23)

S =
{

(s1)T (s2)T · · · (sm)T
}T

, (4.24)

where:

rj =
{

(rjτ )T (rjσ)T (rjε)T (rjπ)T rjf

}T
, (4.25)

sj =
{

(¯̂ε)T (τ̄ j)T (σ̄j)T (πj)T ∆γj
}T

. (4.26)

The linearized form of the system 4.18-4.22 at the tipycal k+ 1-th iteration,

in global form, reads:

R(k) +
∂R

∂S

∣∣∣∣
(k)

dS(k+1) = 0, (4.27)

with dS being the unknowns variation with respect to the k-th iteration.

The extended form of the linearized problem is:



r1

r2

...

rm


(k)

+



∂r1

∂s1

∂r1

∂s2
· · ·

∂r1

∂sm

∂r2

∂s1

∂r2

∂s2
· · ·

∂r2

∂sm
...

· · · · · · · · · · · ·
∂rm

∂s1

∂rm

∂s2
· · ·

∂rm

∂sm


(k)



ds1

ds2

...

dsm


(k+1)

=



0

0

...

0


, (4.28)
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where the j-th component of the unknowns variation vector is:

dsj =
{

(d¯̂ε)T (dτ̄ j)T (dσ̄j)T (dπj)T d∆γj
}T

, (4.29)

and the explicit form of the components in the [(13×m)× (13×m)] tangent

matrix is:

∂rj

∂sl
=



∂rjτ

∂τ̄ l
∂rjτ

∂σl
∂rjτ

∂¯̂ε
l

∂rjτ

∂πl
∂rjτ

∂f l

∂rjσ

∂τ̄ l
∂rjσ

∂σ̄l
∂rjσ

∂¯̂ε
l

∂rjσ

∂πl
∂rjσ

∂f l

∂rjε

∂τ̄ l
∂rjε

∂σ̄l
∂rjε

∂¯̂ε
l

∂rjε

∂πl
∂rjε

∂f l

∂rjπ

∂τ̄ l
∂rjπ

∂σ̄l
∂rjπ

∂¯̂ε
l

∂rjπ

∂πl
∂rjπ

∂f l

∂rjf
∂τ̄ l

∂rjf
∂σ̄l

∂rjf

∂¯̂ε
l

∂rjf
∂πl

∂rjf
∂f l



. (4.30)

The variation of the unknowns are obtained solving the system of equations

in (4.28):



ds1

ds2

...

dsm


(k+1)

= −



∂r1

∂s1

∂r1

∂s2
· · ·

∂r1

∂sm

∂r2

∂s1

∂r2

∂s2
· · ·

∂r2

∂sm
...

· · · · · · · · · · · ·
∂rm

∂s1

∂rm

∂s2
· · ·

∂rm

∂sm



−1

(k)



r1

r2

...

rm


(k)

, (4.31)

and the updated increment of the unknowns in the time step, at the iteration

k + 1, is �nally obtained:

∆S(k+1) = ∆S(k) + dS(k+1), (4.32)

allowing for a re-evaluation of the residual; the iterative procedure stops when

the norm of the residual vector is lower that a pre�xed tolerance.

The numerical procedure of the proposed PWUHS scheme is summarized in the

pseudo-algorithm 1.



41

Algorithm 1 PWUHS Homogenization Scheme

� O�ine stage (Precomputations):

Perform 3×m elastic analyses, get localization tensors Γ̄
j

� Online stage at the typical time step t:

1: Assign E

2: With the history variables Πn and αn at tn, a trial state is

evaluated in all the subsets via equations (4.11) (prediction)

3: if f j ≤ 0 for j = 1, ...,m then

4: exit (elastic step)

5: else

6: Get residual R via equations (4.18)-(4.22) (correction)

7: if |R| > tol then (Newton loop)

8: Solve the linearized problem in equation (4.27) and get the

variation of the unknows dS with respect to k-th iteration

9: Update the unknowns S via equation (4.32);

go to line 6 for next iteration

10: else

11: store σ̄j and the history variable Π and α

12: end if

13: update C0 and Γ̄
j
via the secant modulus approach (optional)

14: end if
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4.3.2 Numerical Results

In this section, some 2D numerical applications are developed to assess the e�-

ciency of the presented PWUHS homogenization technique, in the framework of

elastoplasticity with history variables.

Due to the periodicity of the material at the microscopic level, a repetitive UC

Ω having, for simplicity, a rectangular shape with dimensions l1× l2 and area A

is considered subjected to periodic boundary conditions.

Taking into account the average relationship (2.6) and equation (2.9), the peri-

odic part of the displacement gradient must have null average over the domain.

This conditions is ensured prescribing the following conditions on the boundary

of Ω:

û (l1, x2) = û (0, x2) ∀x2,

û (x1, l2) = û (x1, 0) ∀x1.
(4.33)

Note that, in order to eliminate rigid displacement of the UC, it is necessary

(and su�cient) to constrain the displacement of one point of Ω.

In order to get the localization tensors Γ̄
j
the precomputations are carried out

using the software FEAP (Finite Element Analysis Program): 3 × m elastic

analyses are performed as illustrated in section 4.1, on the reference material

UC; a 2D four-nodes plane strain linear elastic element has been implemented

and used for the �nite elements mesh.

The online stage of PWUHS homogenization scheme has been both implemented

in Fortran and MATLAB® languages and two di�erent geometries of the UC,

with two possible material properties of the constituents, are considered sub-

jected to prescribed load histories.

The UC's are here studied considering only two subsets corresponding to the

material constituents, this means that both the elastic and plastic constituents

are discretized in only one subsets.

A simple application adopting a single inclusion UC is followed by a a second

application considering a more complex geometry. Two di�erent load cases are

considered: a uniaxial loading and a pure shear loading. The homogenized

responses are compared to results of nonlinear �nite elements micromechani-

cal analyses, considered as reference solutions. A two-dimensional plane strain

four-node quad elastoplastic element has been implemented to perform the com-

parison nonlinear analyses in FEAP.
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Ceramic inclusions in a metal matrix composite

A periodic UC composed by an elastic inclusion embedded in an elasto-plastic

matrix [33], denoted by UC-1 and represented in Fig.4.3, is introduced. This UC

has dimensions l1 = 10mm and l2 = 10mm and is characterized by an inclusion

volume fractions c2 = 0.54. The constituents material properties reported in

Table 4.1, resemble a composite made of sti� ceramics inclusions embedded in a

metal plastic matrix.

A low number of elements (104) is used in the FE discretization of the UC,

considered in both precomputations and FE reference solution. Please note that

with the UC discretized in two subsets Ω1 and Ω2, corresponding respectively to

the matrix and the inclusion, the number of internal variables in the PWUHS

scheme is equal to 2 × 4 = 8 (considering the three components of the plastic

strain and the accumulated plastic strain), that is much lower in comparison to

the internal variables involved in the nonlinear FEA (4× 104 = 416).

The relative error measure equation (4.34) is introduced to estimate the di�er-

ence between the macroscopic stress prediction Σ and the �nite element macro-

scopic stress ΣFE :

err =
‖Σt −ΣFE

t ‖
‖ΣFE

t ‖
. (4.34)

Figure 4.3: Single inclusion Microstructure (UC-1).

Two di�erent loading histories are considered. First, the UC is subjected to a

monotonic loading history in terms of the average macroscopic strain E11, until
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the value of 0.002 (Load Case 1, LC-1) is reached. PWUHS is used to determine

the macroscopic stresses to compare with the average stress obtained from a

FE micromechanical analysis. The overall nonlinear response of the composite

material in terms of the macroscopic stress Σ11 versus E11 is reported in Fig.4.4.

The PWUHS perfectly predicts the microscopic stress response of the composite

in the elastic branch. On the contrary, the PWUHS su�er sti�ness overpredic-

tion in the plastic branch in comparison to the FE solution, disregarding the

choice of the reference material elasticity matrix C0. Indeed, better results are

obtained adopting the correction of the reference material, according to the se-

cant modulus approach 4.2.1, as can be observed in Fig. 4.4, even with a low

number of subsets.

Since only two subsets are considered in the computations, the results can be

sensibly improved adopting a �nest subsets discretization as shown in Fig. 4.5.

E1 [GPa] ν1 k [MPa] σy [MPa] E2 [GPa] ν2

210 0.3 100 300 300 0.25

Table 4.1: Material parameters of the ceramic inclusions in a metal matrix
composite.

0 0.5 1 1.5 2

10 -3

0

50

100

150

200

250

300

350

400

450

500

Figure 4.4: Macroscopic stress Σ11, UC-1 with parameters in Table 4.1.
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Figure 4.5: Macroscopic stress Σ11, UC-1 with parameters in Table 4.1, divided
in 2, 5, 9 subsets.

The UC-1 is then subjected to a loading history in terms of the average shear

strain Γ12 that monotonically increases until the value of 0.01 is reached (Load

Case 2, LC-2). In Fig. 4.6, the response of the UC is reported plotting the

macroscopic stress component Σ12 with respect to the average strain Γ12. This

loading history con�rms the previous observations regarding the di�erence with

the FE solution. Anyway it can be remarked that computations performed using

the proposed secant correction for the reference material leads to a signi�cant

improvement of the solution which results, indeed, very close to the FE refer-

ence solution, in fact the maximum relative error encountered at the �nal load

step is equal to 0.193 using the computationally derived C0, 0.191 considering

the elasticity matrix calculated according to Voigt. This is due to the similarity

between the elastic matrices obtained analytically or numerically with this ma-

terial properties and constituents volume fractions.
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Figure 4.6: Macroscopic stress Σ12, UC-1 with parameters in Table 4.1.

Another two dimensional UC is here introduced (UC-2, see Fig. 4.7); it is

composed by elastic inclusions embedded in an elasto-plastic matrix and has

dimensions l1 = 10mm and l2 = 10mm. In this UC a random distribution of

the inclusions is simulated and periodic boundary conditions are applied for the

numerical applications.

The volume fractions of the inclusions, corresponding to the sub-domain Ω2, is

c2 = 0.12. With UC-2 discretized in two subsets, the number of internal variable

involved in the PWUHS is still 2× 4 = 8 while the internal variables involved in

the nonlinear FEA is 4× 1214 = 2428.

Figure 4.7: Periodic Microstructure UC-2.
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Also in this application the UC is �rst subjected to a monotonic extension in

x1 direction (LC-1). The prediction of the macroscopic stress Σ11 with respect

to E11 is reported in Fig.4.8.

In this application the PWUHS gives results close to the reference FE solution,

wheter the correction of the reference elasticity matrix in adopted or not. This

is due to the reduced volume fraction of the elastic phase that barely a�ects the

overall response of the UC. Despite the coarse subsets division, the ROM tech-

nique delivers a good stress approximation disregarding the adopted elasticity

matrix of the reference material (with C0 = C̄(FE), the maximum errors, ob-

tained with and without the secant correction, are respectively 0.024 and 0.023).
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Figure 4.8: Macroscopic stress Σ11, UC-2 with parameters in Table 4.1.

UC-2 is then subjected to monotonic shear loading LC-2. The considerations

made for the previous application are here con�rmed; using the secant correction

of C0 is a big advantage in terms of accuracy, sensibly reducing the error when

plasticity occurs.
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Figure 4.9: Macroscopic stress Σ12, UC-2 with parameters in Table 4.1.

Fiber reinforced epoxy resin

The UCs introduced in the previous section are here studied using di�erent

material properties which can be traced back to a �ber reinforced epoxy resin

composite. The characteristic material properties of the matrix and inclusions,

corresponding to the subdomain Ω1 and Ω2, are reported in Table 4.2. The aim

of these investigations is to understand how a bigger sti�ness gap between the

material phases a�ects the accuracy of the proposed PWUHS homogenization

scheme.

E1 [GPa] ν1 k [MPa] σy [MPa] E2 [GPa] ν2

21 0.3 100 30 210 0.25

Table 4.2: Material parameters of �ber reinforced epoxy resin composite.

In Figs. 4.10 and 4.11 are respectively reported the macroscopic stress Σ11

averaged on UC-1 subjected to the loading history LC-1 and the macroscopic

stress Σ12 averaged on UC-1 subjected to the loading history LC-2.

With a signi�cant sti�ness gap between the constituents, the computationally

derived elastic reference matrix delivers a far better stress prediction in compar-

ison to the Voigt derived matrix, especially if a �xed C0 is considered. If the

secant modulus approximation is adopted, the accuracy improvement is relevant

disregarding the applied strain. In particular, when LC-2 is applied, the FE
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reference shear strain is captured with both the FE C̄ (err= 0.422) and Voigt C̄

(err= 0.664).
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Figure 4.10: Macroscopic stress Σ11, UC-1 with parameters in Table 4.2.
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Figure 4.11: Macroscopic stress Σ12, UC-1 with parameters in Table 4.2.

In Figs. 4.12 and 4.13 the overall stress-strain relationships for LC-1 and

LC-2 are reported for UC-2, respectively. Similar consideration can be made in

comparison with the previous applications, con�rming the e�ectiveness of the

secant modulus correction and of the numerical reference elasticity matrix.
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Figure 4.12: Macroscopic stress Σ11, UC-2 with parameters in Table 4.2.

0 0.002 0.004 0.006 0.008 0.01
0

5

10

15

20

25

30

35

40

45

50

Figure 4.13: Macroscopic stress Σ12, UC-2 with parameters in Table 4.2.

Furthermore, the computational time of the PWUHS scheme is compared

to that of the FE analyses, considering the applications on UC-2, in Table 4.3.

Using the C0 calculated according to Voigt gives a big advantage in terms of

computational time, with a speed-up factor that is the highest, whether the

secant modulus approach is considered or not. The numerically derived elas-

tic reference matrix leads to a lower speed-up of the computation but with the

higher accuracy.
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Load Case C0 CPU time FE [s] PWUHS speed-up

LC-1

C̄ (Voigt)

711.07

4182.76

C̄ (FE) 582.84

C̄ (Voigt), secant 1341.64

C̄ (FE), secant 470.90

LC-2

C̄ (Voigt)

855.31

4072.90

C̄ (FE) 562.70

C̄ (Voigt), secant 425.52

C̄ (FE), secant 409.23

Table 4.3: Comparison between FE and PWUHS computational time: UC-2
UC-2 subjected to LC-1 and LC-2.

4.4 PWUHS in elastoplasticity with power law hard-

ening

A very common deformation model with power law hardening is the Ramberg-

Osgood law. According to this model, the total strain is obtained as sum of two

components as:

ε = εe + εp, (4.35)

in which εe is the elastic part of the strain, following the Hooke's law, and εp is

the plastic part of the strain. The power-law relation implies that the plastic part

of the strain is bigger than zero even for low level of stresses, and is negligible in

comparison to the elastic part.

Higher values for the inelastic strain are encountered when the stresses exceed a

reference value, namely σ0.

Ramberg-Osgood relation between stress and strain, having no history variables,

reads:

ε =
1

9λ
(σ • 1) 1 +

σ′

2µ
+

3ε0

2

(
q

σ0

)p
σ′

q
, (4.36)
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where λ and µ are the bulk and shear modulus of the plastic material, ε0, σ0, p

are constant parameters typical of the material, being respectively the reference

strain, reference stress and hardening exponent (p > 1).

The von Mises stress q =
√

3
2‖σ̄

′‖, with σ′ being the deviatoric stress, can be

calculated according to equation (3.11).

Is important to note that the �rst and second terms in equation (4.36) repre-

sent the elastic part of the strain while the third term corresponds to the plastic

strain.

This relation cannot be explicited with respect to the stresses but provides a

continous curve in the strain �eld.

According to the subsetswise constant �eld approximation (3.1), the constitutive

law is rewritten as:

εj =
1

9λ

(
σj • 1

)
1 +

σ′j

2µ
+

3ε0

2

(
qj

σ0

)p
σ′j

qj
, (4.37)

4.4.1 Numerical Procedure

With the localization matrices Γ̄
j
at hand, the nonlinear system of equation to

be solved during the online phase is assembled in order to evaluate the average

stress σ̄ in the subsets.

A discrete time discretization is adopted for the evaluation of the incremental

nonlinear stress-strain relation (4.37), where incremental means that the stress

and strain �elds are evaluated at the end of each time step, with the implicitly

considered internal variables depending on ε.

A Backward Euler technique is adopted for the time integration of the problem

and a predictor-corrector approach is used to solve the time step.

At the beginning of each time step a macroscopic strain E is prescribed and a

predictor-corrector approach is used to determine the unknowns.

An elastic prediction of the stress state σ̄j is carried out for all the subsets Ωj

with j = 1, ..,m, and the additional unknowns ¯̂εj , τ̄ j and σ̄j , with j = 1, ..,m,

are evaluated via the equations (4.2), (4.5), (4.37):
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τ̄ j = σ̄j −C0 (E + ¯̂εj) (4.38)

¯̂εj = Γ̄
j
T (4.39)

εj =
1

9λ

(
σj • 1

)
1 +

σ′j

2µ
+

3ε0

2

(
qj

σ0

)p
σ′j

qj
, (4.40)

The elastic prediction is operated at the global level, solving the problem for

all the subsets. Due to the implicit representation of the internal variables, a

correction phase is needed at each time step. To this end the equations (4.38),

(4.39), (4.40) are rewritten in their residual form in all the subsets:

rjτ = τ̄ j −
[
σ̄j −C0 (E + ¯̂εj)

]
= 0 (4.41)

rjσ =
1

9λ

(
σj • 1

)
1 +

σ′j

2µ
+

3ε0

2

(
qj

σ0

)p
σ′j

qj
− (E + ¯̂εj) = 0 (4.42)

rjε = ε̂j(x)− Γj(x)T = 0. (4.43)

A global system of (3+3+3)×m nonlinear equations is obtained and solved via

the Newton-Raphson method. To this end the residual and unknowns vectors

(4.23)-(4.24) are introduced, with their components respectively equal to:

rj =
{

(rjτ )T (rjσ)T (rjε)T
}T

, (4.44)

and:

sj =
{

(¯̂ε)T (τ̄ j)T (σ̄j)T
}T

. (4.45)

In order to evaluate the unknowns variations vector dS with respect to the

k-th iterations, the linearized form (4.27) of the system 4.41-4.43 at the tipycal

k+1-th iteration is introduced, with the extended form of the linearized problem

equal to equation (4.28).

In the extended form of the linearized problem (4.28), the j-th component of the

unknowns variation vector is:

dsj =
{

(d¯̂ε)T (dτ̄ j)T (dσ̄j)T
}T

, (4.46)
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and the explicit form of the components in the [(9×m)× (9×m)] tangent ma-

trix is:

∂rj

∂sl
=



∂rjτ

∂τ̄ l
∂rjτ

∂σl
∂rjτ

∂¯̂ε
l

∂rjσ

∂τ̄ l
∂rjσ

∂σ̄l
∂rjσ

∂¯̂ε
l

∂rjε

∂τ̄ l
∂rjε

∂σ̄l
∂rjε

∂¯̂ε
l


. (4.47)

The variation of the unknowns are obtained solving the system of equations:

dS(k+1) = −
∂R

∂S

∣∣∣∣
(k)

R(k), (4.48)

and the updated increment of the unknowns in the time step, at the iteration

k + 1 is evaluated as:

∆S(k+1) = ∆S(k) + dS(k+1). (4.49)

The updated residual is evaluated and the iterative procedure continues until

the norm of the residual vector is lower than the prescribed tolerance.

4.4.2 Numerical Results

Some numerical applications considering di�erent microstructures, are here re-

ported considering a di�erent stress-strain relationship for the matrix phase: the

power law plasticity, introduced in the previous section is assigned to one of the

material constituents.

Periodic boundary conditions are assigned to the studied UCs, according to equa-

tion (4.33) and, again, the repetitive UCs are discretized in two subsets Ω1 and

Ω2, corresponding respectively to the matrix and the inclusions.

Ceramic inclusions in a metal matrix composite

The UCs previously introduced in Figs. 4.3 and 4.7 are studied in the following.

The constituents material properties of the Ramberg-Osgood matrix Ω1 and the

elastic inclusions Ω2, are reported in Table 4.4, where the reference strain, the

reference stress and the hardening exponent are typical of a metal matrix.
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In Fig. 4.14 are reported the curves Σ11 − E11 for loading history LC-1 applied

on UC-1. As already seen for Mises plasticity, the PWUHS su�er sti�ness over-

prediction using both the FE or Voigt elastic reference matrix C0. A better

stress prediction is obtained using the secant modulus correction, however a re-

�nement of the subsets seems to be necessary.

Similar considerations can be made applying LC-2 and plotting the curves Σ12−
Γ12, as in Fig. 4.15. The secant correction of the elastic matrix C0 leads to an

excellent stress prediction even with the lowest number of subsets, lowering the

error until 0.237 (C0 = C̄(Voigt)).

E1 [GPa] ν1 p σ0 [MPa] ε0 E2 [GPa] ν2

210 0.3 5 200 0.001 300 0.25

Table 4.4: Material parameters of the elastic inclusion embedded in a power-
law hardening plastic matrix.
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Figure 4.14: Macroscopic stress Σ11, UC-1 with parameters in Table 4.4.
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Figure 4.15: Macroscopic stress Σ12, UC-1 with parameters in Table 4.4.

The UC-2 in then subjected to monotonic increasing uniaxial strain and

the predicted macroscopic stress Σ11 is reported in Fig. 4.16. In this case the

PWUHS homogenization shows high accuracy even using a �xed C0, wheter the

used elastic reference matrix is analitycally or numerically derived. The larger

error is obtained considering a �xed C0 = C̄(Voigt).
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Figure 4.16: Macroscopic stress Σ11, UC-2 with parameters in Table 4.4.

When LC-2 is applied to UC-2, a reasonable accuracy is obtained only if the

secant modulus correction is implemented, otherwise the error increases until
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the maximum value of 0.888 (C0 = C̄, Voigt).
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Figure 4.17: Macroscopic stress Σ12, UC-2 with parameters in Table 4.4.

In order to understand how a change in the elastic constituents volume frac-

tion a�ects the accuracy of the proposed PWUHS, a third UC, namely UC-3

(see Fig. 4.18) is introduced.

This UC has an elastic phase volume fraction c2 = 0.28 and is divided in two

subsets corresponding to the constituents. The results of the PWUHS are com-

pared to the reference FE solution obtained discretizing the geometry in 1230

elements.

Figure 4.18: Periodic Microstructure UC-3.
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Figure 4.19: Macroscopic stress Σ11, UC-3 with parameters in Table 4.4.

In Figs. 4.19 and 4.20 are respectively reported the curves Σ11 − E11 for

loading history LC-1 and Σ12 − Γ12 for LC-2 on UC-3.

In comparison with the results obtained considering UC-2, the accuracy is gen-

erally lower, con�rming that the elastic phase volume fraction in�uences the

average response of the UC, causing an overprediction of the overall sti�ness.

Furthermore, the secant modulus approach con�rms its e�ciency, always lead-

ing to a drastical reduction of the error.
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Figure 4.20: Macroscopic stress Σ12, UC-3 with parameters in Table 4.4.
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Fiber reinforced epoxy resin

The UCs composed by elastic inclusions and a Ramberg-Osgood matrix are also

studied with material properties tipycal of a �ber reinforced epoxy resin, as

reported in Table 4.5.

E1 [GPa] ν1 p σ0 [MPa] ε0 E2 [GPa] ν2

21 0.3 5 20 0.001 210 0.25

Table 4.5: Material parameters of the elastic inclusions embedded in a power-
law hardening plastic matrix.

UC-1 is again subjected to the loading histories LC-1 and LC-2 and the

respective curves Σ11 − E11 and Σ12 − Γ11 are reported in Figs. 4.21 and 4.22.

As already seen in Figs. 4.10 and 4.11, when LC-1 is considered, PWUHS

evidently lacks of accuracy, but if power law plasticity is considered, even the

secant modulus correction is une�ective. On the other hand the C0 correction

delivers a good prediction of the shear stress when LC-2 is applied (see Fig.

4.22).
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Figure 4.21: Macroscopic stress Σ11, UC-1 with parameters in Table 4.5.
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Figure 4.22: Macroscopic stress Σ12, UC-1 with parameters in Table 4.5.

Considering UC-2, hence, lowering the volume fraction of the elastic con-

stituents, the PWUHS allows for a stress prediction close to the reference FE

solution as long as the secant modulus approach is applied to the numerical ref-

erence elastic matrix C̄(FE), as reported in Fig. 4.23 for LC-1 and Fig. 4.24

for LC-2.
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Figure 4.23: Macroscopic stress Σ11, UC-2 with parameters in Table 4.5.
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Figure 4.24: Macroscopic stress Σ12, UC-2 with parameters in Table 4.5.

Similar consideration can be made considering the UC-3, having a slightly

higher elastic volume fraction in comparison to UC-2, exposed to a uniaxial load-

ing (Fig. 4.25) and a shear loading (Fig. 4.26). The secant modulus approach

is con�rmed to be a fundamental tool in lowering the error in comparison to

the FE solution. A reasonable macroscopic stress prediction is obtained with

no need of an higher number of subsets. Anyway, in the following section, the

perfomances of the PWUHS scheme are illustrated with an increasing number

of subsets, in order to �nd a resonable equilibrium between computational cost

and accuracy.
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Figure 4.25: Macroscopic stress Σ11, UC-3 with parameters in Table 4.5.
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Figure 4.26: Macroscopic stress Σ12, UC-3 with parameters in Table 4.5.

Load Case C0 CPU time FE [s] PWUHS speed-up

LC-1

C̄ (Voigt)

1183.75

4757.83

C̄ (FE) 1594.70

C̄ (Voigt), secant 986.45

C̄ (FE), secant 917.63

LC-2

C̄ (Voigt)

1107.83

2702.02

C̄ (FE) 1007.11

C̄ (Voigt), secant 390.08

C̄ (FE), secant 388.71

Table 4.6: Comparison between FE and PWUHS computational time: UC-3
subjected to LC-1 and LC-2.

Some considerations regarding the compuational time in PWUHS applica-

tions on UC-3 composed by a Ramberg-Osgood matrix are made. Speed-up

factors of the homogenization scheme in comparison to the FE reference anal-

yses are reported in Table 4.6, where the analytical derived elastic reference

matrix demonstrates to be the best option in terms of computational time (see

Fig. 4.25 and 4.26).
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Numerical applications on di�erent UCs show that, lowering the elastic in-

clusions volume fractions, the error decreases even considering more complex

geometries. Furthermore, increasing the number of subsets, PWUHS results

clearly tend toward to FE solution mantaining a big advantage in the low num-

ber of internal variables.

Numerical evidence of the reliability of the secant approach in the framework of

PWUHS is given in all the applications; it can signi�cantly improve the method

accuracy with a neglectable increase of the computation time. This consider-

ations are made disregarding the considered inelastic material model and both

considering the Voigt or the �nite element elastic reference material.
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Chapter 5

Comparison between PWUHS

and PWUTFA

Aim of this chapter is to compare the PWUTFA, which numerical procedure is

presented in Section 3.2, with the PWUHS scheme presented in Chapter 4, for

the homogenization of nonlinear composites. It is �rst proved that PWUTFA

and PWUHS coincide in particular cases. Afterwards, the results of numerical

applications on composites with di�erent characteristics are discussed.

5.1 On the Equivalence between PWUTFA and PWUHS

in special cases

In this section, it is proved that the PWUTFA and the PWUHS techniques

coincide in particular cases. A UC composed by two materials is considered.

Two subsets, denoted by Ω1 and Ω2, are introduced so that each material de�nes

one subset. It is assumed that:

1. the material 1, occupying the subset Ω1, is elastic, so that π1 = 0;

2. the material 2, occupying the subset Ω2, is elasto-plastic, so that π2 6= 0;

3. the two materials are characterized by the same elastic properties, i.e.

E1 = E2, ν1 = ν2 and hence C1 = C2 = C.

In the following, the main steps of both reduced order homogenization tech-

niques are shown for the calculation of the average macroscopic stress Σ.

PWUTFA



66 Chapter 5. Comparison between PWUHS and PWUTFA

Because of the third condition, the localization matrices in the two subsets

become identities, i.e. L1
E = L2

E = I, i.e. it is the trivial matrix, so that recalling

equation (3.7), the average �uctuation strains in the subsets are:

¯̂ε1 = L̄1
πΠ,

¯̂ε2 = L̄2
πΠ,

(5.1)

where Π =
{
0,π2

}T
.

The total average stresses obtained via the local stress-strain relationship

are:

σ̄1 =C
(
E + L̄

1
πΠ
)
,

σ̄2 =C
(
E + L̄2

πΠ− π2
)
.

(5.2)

The evolutive problem is governed by the average stress σ̄2 allowing to eval-

uate the inelastic strain π2 at the load step.

Finally, the macroscopic stress is obtained as:

Σ = c1σ̄1 + c2σ̄2. (5.3)

where c1 and c2 are the volume fractions of the two materials in the composite.

PWUHS

The third condition implies that:

C1 = C2 = C = C0, (5.4)

with C0 being the elasticity matrix of the elastic reference material. This has

important consequences on the evaluation of the average stress polarizations τ̄ 1

and τ̄ 2 describing the stress gap between the heterogeneous materials and the

homogeneous elastic reference material. Because of equation (4.2), the average

polarization stresses assume the values:

τ̄ 1 = 0,

τ̄ 2 =−Cπ2,
(5.5)
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According to equation (4.5), the average strain �uctuations ¯̂ε1 and ¯̂ε2 in each

subset are:

¯̂ε1 = Γ̄
1
T,

¯̂ε2 = Γ̄
2
T,

(5.6)

with T =
{
0, τ̄ 2

}T
, hence the average stresses in the subsets obtained via the

local stress-strain relationship are:

σ̄1 =C
(
E + Γ̄

1
T
)
,

σ̄2 =C
(
E + Γ̄

2
T− π2

)
.

(5.7)

Finally, the macroscopic stress is obtained by equation (5.3).

Equations (5.5) and (5.6) allow to determine the average strain �uctuations

in terms of the inelastic strain Π, resulting:

¯̂ε1 = Γ̄
1
T = −Γ̄

1CΠ

¯̂ε2 = Γ̄
2
T = −Γ̄

2CΠ
with C =

[
C 0

0 C

]
(5.8)

Comparing these results with the expression of the average strain �uctuations

given in equation (5.1) for the PWUFTA, it is:

L̄1
π = −Γ̄

1C

L̄2
π = −Γ̄

2C
(5.9)

proving that the two localization operators are the same, net of the sign and

constitutive matrix contribution. Thus, the average stresses in the subsets ob-

tained according to (5.2) and (5.8) coincide, and both the procedures give the

same macroscopic stress via equation (5.3).
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5.2 Numerical applications

In this section, some 2D plane strain numerical applications are developed to

assess the e�ciency of the PWUTFA reduced order model and compare it to the

PWUHS homogenization technique. In particular, results are compared with the

ones obtained using nonlinear �nite element (FE) micromechanical analyses.

Computations are performed for di�erent geometries and material properties

of the UC, comparing the main features of the two procedures. In particular,

the computations concern:

� a homogeneous composite material, in order to verify the equivalence be-

tween the two ROM;

� convergence study of the PWUHS and PWUTFA schemes;

� heterogeneous composites with di�erent mechanical properties, with the

aim to estimate the accuracy of both reduced order models subjected to

complex loading histories and increasing the number of subsets.

5.2.1 Homogeneous composite

Aim of this �rst application is to numerically verify the equivalence of the

PWUTFA and PWUHS for a composite whose components are characterized

by the same elastic properties, but one of them is plastic, as demonstrated in

section 5.1.

The UC adopted for this ivestigation is the UC-1 reported in Fig 4.3. The

elastic material properties are the same for the two subsets, thus E1 = E2 and

ν1 = ν2, whose values are reported in Table 5.1.

The elasticity matrix of the reference material is C0 = C1 = C2, in agree-

ment with equation (5.4).

E1 [GPa] ν1 k [GPa] σy [MPa] E2 [GPa] ν2

210 0.3 100 300 210 0.3

Table 5.1: Material parameters of plastic matrix '1' and elastic inclusion '2'.

The UC-1 is analyzed considering only two subsets Ω1 and Ω2, corresponding

to the elastic inclusion and the plastic matrix, for the ROM approaches. The

loading cases LC-1 and LC-2 introduced in section 4.3.2 are adopted in the
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following applications.

Both homogenization procedures, PWUTFA and PWUHS, are used to determine

the macroscopic stresses to compare with the average stress obtained from a

FE micromechanical analysis. The overall nonlinear response of the composite

material in terms of the macroscopic stress Σ11 versus E11 is reported in Fig.

5.1.

The results of the PWUTFA and PWUHS techniques perfectly match each

other leading to the same overall response of the composite in both the elastic

and plastic branches. It can be noted that both PWUTFA and PWUHS su�er

sti�ness overprediction, with respect to the FE reference solution, when plasticity

occurs. Results given in Fig. 5.1 are, indeed, not in very good agreement with the

FE reference solution, as only two subsets are considered in the computations.

An improvement of the results can be achieved by increasing the number of

subsets in the plastic matrix.

Then, computations are also performed adopting the PWUHS technique with

the correction of the reference material during the nonlinear analysis. In Fig. 5.1

the results of the PWUHS with correction is also reported, demonstrating that

the correction of C0 by means of the secant modulus approach is e�ective with a

slight improvement of the macroscopic stress prediction, without increasing the

number of subsets in the plastic matrix.
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Figure 5.1: Overall response of the UC-1 in terms of Σ11 vs E11.

Then, the UC in Fig. 4.3 is considered subjected to a loading history LC-2.
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In Fig. 5.2, the shear response of the UC is reported plotting the overall stress

Σ12, obtained via PWUTFA and PWUHS, versus the average strain Γ12. Also in

this case, PWUTFA and PWUHS give exactly the same results, which are quite

di�erent from the FE reference solution. It can be remarked that computations

performed using the proposed secant correction for the reference material leads

to a signi�cant improvement of the solution which results, indeed, very close to

the FE reference solution.
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Figure 5.2: Macroscopic stress Σ12 in UC-1.

5.2.2 Convergence study

By increasing the number of subsets in the UC discretization it is, of course,

expected that the solution converges towards the reference solution. In order to

numerically investigate the rate of convergence of the PWUTFA and PWUHS

techniques to the FE solution, two types of studies are developed for the cell UC-

1, increasing the number of subsets to get a discretization that exactly matches

the �nite element mesh. Taking into account that the FE mesh consists in

60 elements for the inclusion and 45 elements for the matrix, the �rst study

considers the inclusion as a unique subset and an increasing number of subsets

is adopted for the matrix, up to 45; the second study considers 60 subsets for

the inclusion and, again, an increasing number of subsets for the matrix, up to

45.
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In Fig. 5.3 convergences curves for the two investigations above described

are reported in terms of the overall stress Σ11 evaluated at the end of the loading

phase versus the number of subsets in the matrix. As demonstrated above, the

solutions obtained by the PWUTFA and PWUHS with initial reference mate-

rial, coincide. For PWUHS, on the left the results are evaluated considering

the elastic material properties as the reference material, while on the right the

results are obtained updating the reference material adopting the secant sti�-

ness approach. Figures demonstrate that both the approaches and inclusion

discretizations converge towards the FE solution.
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Figure 5.3: Convergence of PWUHS for the UC-1, using the initial C0 (left)
and the secant modulus (right) approaches.

When the elastic reference matrix C0 is constant during the homogenization

procedure (Fig. 5.3, left) no bene�ts arise increasing the number of subsets in

the inclusion, but just the drawback of a higher computational time compared to

the single subset for the inclusion. For the PWUHS this is due to the fact that

the polarization stress is zero in all the elastic subsets representing the inclusion

as, in this particular case, the reference material has the same elastic properties

for the matrix and for the inclusion. For the PWUTFA the increasing of the

number of subsets of the elastic inclusion does not lead to any bene�t, as no

further inelastic strains are activated. It can be remarked that the solutions

of the homogenization techniques tend toward the reference solution without

reaching it, even when the number of subsets is equal to the number of �nite

elements. In fact, both the techniques assume uniform inelastic e�ects in the

subsets, while the FE considers nonuniform distribution of in elastic strain in

each element.
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When the secant modulus is used for C0 correction in the PWUHS, a fast

convergence of the procedure clearly appears from Fig. 5.3 (right), obtaining

almost the FE solution when about 25 matrix subsets are adopted. These results

con�rm the e�ectiveness of the secant modulus approach.

Very good results are obtained considering the fully re�nement of the inclu-

sion, i.e. introducing 60 subsets in the inclusion. In fact, a good macroscopic

stress prediction is obtained even when the matrix is discretized by only one

subset, corresponding to a discretization of the UC with 61 subsets. To obtain

a better value of the macroscopic stress considering a unique subset for the in-

clusion, it is necessary to introduce at least 8 subsets for the matrix, leading to

a UC discretization of 9 subsets. This results clearly remarks that it is more

convenient from a computational point of view to increase the discretization of

the matrix, where the nonlinear e�ects arise, with respect to the inclusion.

It is important to keep in mind that the number of unknowns of the problem

is proportional to the number of subsets, as a consequence the more are the

subsets, the more the computational burden increases.

Some considerations are made on the integration scheme used during the

precomputations, in the framework of PWUHS and PWUTFA, and in the FE

analyses.

It is known that a fully integrated 4-nodes element may exhibit locking and this

is clearly con�rmed in the present study. If a 4-GP integration scheme is adopted

during the precomputations, the FEA results are not recovered even with the

�nest subset re�nement (Fig. 5.4) disregarding the considered Reduced Order

Model. On the other hand, the hypothesis of subset-wise constant variables

suggests that a single Gauss point integration could be adopted to emulate the

uniform quantities in the subsets: this integration scheme, usually known as Uni-

form Reduced Interation (URI) [64] avoids locking phenomena but introduces

the possible arising of spurious modes, also known as hourglass deformation pat-

terns.

Another reduced integration scheme is the so-called Selective Reduced Integra-

tion (SRI) technique [65, 66]. In comparison with URI, only the volumetric part

of the material response is underintegrated, leaving the full integration scheme

for the deviatoric part. These formulation do not su�er the appearance of hour-

glass modes, anyway only the volumetric locking is eliminated and a residual

sti�ness overprediction persists.
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Further stabilization strategies may be applied to avoid non physical e�ects any-

way this is not within the scope of the present work and further developements

are left to future research.
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Figure 5.4: Convergence study on UC-1, comparison between PWUTFA and
PWUHS using di�erent integration schemes.

5.2.3 Heterogeneous composite material

Aim of this section is to investigate the mechanical behavior of a two phase com-

posite material with di�erent mechanical properties of the constituents, com-

paring the results obtained by PWUTFA and PWUHS reduced order models

with the FE ones. This application is carried out in order to verify the e�ec-

tiveness of the two procedures for composites characterized by di�erent elastic

properties, investigating the e�ect of the sti�ness ratio of the constituents on the

performances of the two ROM techniques.

The analyzed composite materials are made by a plastic matrix and elastic

inclusions.

The considered UC's geometries are UC-1 and UC-3 (see Fig. 4.18) in-

troduced in Chapter 4. Periodic boundary conditions are applied for all the

numerical applications. Each UC is subjected to di�erent loading histories, be-

ing monotonic or complex. Both the UCs are �rst discretized in two subsets

representing the plastic matrix and the elastic inclusions; afterwards the plas-

tic matrix is progressively re�ned, adopting a discretization in four and eight

subsets.
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Computations are performed adopting the PWUTFA, PWUHS with C0 =

C̄ evaluating C̄ by Voigt or FE homogenization; moreover, PWUHS results

obtained by the secant modulus approach are also carried out. Finally, all the

ROM results are compared with the FE ones that are considered as a reference

solution.

5.2.3.1 Ceramic inclusions in a metal matrix composite

A metal matrix composite with ceramic inclusions, whose material parameters

are reported in Table 4.1, is considered for the two introduced UCs.

First, UC-1 is subjected to the loading history LC-1 and both homogeniza-

tion procedures are adopted, comparing the macroscopic stresses, obtained from

ROM techniques, with the average stress recovered by the micromechanical FE

analysis.

Results in terms of the macroscopic stress Σ11 versus the average strain E11

are reported in Fig. 5.5. Both the methods su�er high sti�ness overprediction

in the nonlinear branch, even due to a rough subset discretization, as expected.

the macroscopic stress obtained with the two methods are di�erent from each

other and from the micromechanical results.

In the PWUHS evaluating the overall elasticity matrix C̄ by Voigt or FE

homogenization does lead to negligible di�erences in the results.

The PWUTFA results are slightly better than the PWUHS solution when

the reference material is kept constant during the analysis, while a signi�cant

improvement of the PWUHS average stress evaluation is achieved adopting the

secant approach to update the reference material.
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Figure 5.5: Macroscopic stress Σ11, UC-1 with parameters in Table 4.1.

Then, UC-1 is studied considering LC-2 and the overall shear response is rep-

resented in Fig. 5.6. The same considerations reported for the previous loading

condition can be made; the PWUTFA gives a slightly better macroscopic stress

Σ12 prediction compared to PWUHS. The secant modulus approach sensibly

increases the accuracy of the PWUHS approach giving results very close to the

reference solution. This satisfactory results is mostly due to e�ect of the shear

modulus correction of the reference material during the analyses.
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Figure 5.6: Macroscopic stress Σ12, UC-1 with parameters in Table 4.1.

Then, the response of the UC-3 is investigated for the two loading histories
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LC-1 and LC-2. The results in terms of the macroscopic stress components Σ11

and Σ12 are illustrated in Figs.5.7 and 5.8, respectively.

As for the results of UC-1 the PWUTFA and PWUHS give close results,

where the �rst approach leads to a slight improvement. No advantages come

computing the overall elasticity matrix C̄ by FE homogenization with respect to

Voigt approach. The secant approach for updating the reference material allows

to obtain more reliable results than a constant reference material approach for

both the considered loading cases. Some other additional considerations are

made comparing the numerical investigations on UC-1 and UC-3. Both methods,

PUTFA and PWUHS, show similar results; increasing the elastic phase volume

fraction causes loss of accuracy in both reduced order approaches. Furthermore,

a sti�ness correction approach like the secant modulus is e�cient regardless the

volume fractions of the material constituents.
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Figure 5.7: Macroscopic stress Σ11, UC-3 with parameters in Table 4.1.
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Figure 5.8: Macroscopic stress Σ12, UC-3 with parameters in Table 4.1.

5.2.3.2 Fiber reinforced epoxy resin composite

A �ber reinforced epoxy resin composite, whose material properties are reported

in Table 4.2, is studied considering the two UCs introduced in the previous

sections.

In Figs. 5.9 and 5.10 the curves Σ11 − E11 for loading history LC-1 and

Σ12 − Γ12 for LC-2 are plotted for UC-1, respectively.
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Figure 5.9: Macroscopic stress Σ11, UC-1 with parameters in Table 4.2.
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Figure 5.10: Macroscopic stress Σ12, UC-1 with parameters in Table 4.2.

In these applications, where the di�erence between the constituents elastic

parameters is signi�cant (see Table 4.2), the PWUTFA leads to a signi�cantly

better macroscopic stress prediction in comparison with PWUHS when the ref-

erence material is kept constant during the analysis. The PWUHS results are

improved by evaluating the reference elastic matrix C0 = C̄ by the FE homog-

enization, mainly for LC-1. Furthermore, when the secant modulus approach is

used, the PWUHS results are in very good agreement with the micromechanical

analyses, especially for the shear loading case LC-2.

In �gure 5.11 and 5.12 the overall stress-strain relationships for LC-1 and

LC-2 are reported for UC-3, respectively.
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Figure 5.11: Macroscopic stress Σ11. UC-3 with parameters in Table 4.2.
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Figure 5.12: Macroscopic stress Σ12, UC-3 with parameters in Table 4.2

Similar considerations can be made. The PWUTFA results are more accu-

rate with respect to PWUHS ones when the reference material is kept constant.

The best results with respect to FE solution are achieved adopting the PWUHS

with the secant approach.

Then, the response of UC-1 subjected to loading/unloading strain history,

with constant strain rate, is investigated. To this end two loading cases, namely
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LC-3 and LC-4 are introduced. In LC-3 both axial and shear strain are consid-

ered, as shown in Table 5.2; a biaxial loading history is considered in LC-4, as

shown in 5.3.

Results obtained via the two ROM approaches, with an increasing number of

inelastic subsets, are reported in Fig. 5.14 for LC-3 and in Fig. 5.15 for LC-4,

where the evolution of the macroscopic stress components, with respect to the

loading history, is illustrated.

The error estimates of PWUHS and PWUTFA, captured in the time steps

of major interest via equation (4.34), are given in Tables 5.4-5.6 for LC-3 and in

Tables 5.7-5.8 for LC-4, for all the macroscopic stress components Σ11,Σ22,Σ12

with the UC discretized in 2,5,9 subsets; only the maximum relative errors are

reported and when constant null values of the macroscopic FE stresses are en-

countered, the evaluation of the error is ignored.

With the UC discretized in only two subsets corresponding to the material con-

stituents, results are in agreement with the previous investigations; PWUHS

with �xed reference material elastic matrix is slightly less accurate if compared

to PWUTFA.

Additional information are obtained when the number of subsets is increased.

A re�nement of the plastic matrix division bene�ts both ROM approaches; the

results of the PWUHS are in general more accurate in comparison to PWUTFA,

for the same subsets amount.

The evolution of the macroscopic stress is captured along the whole loading/unloading

path especially via the PWUHS with the �nest subsets discretization. In this

case, all the macroscopic stress components predictions are close to the FE re-

sults, disregarding the considered loading history.

The relative error dicreases dividing the matrix material in both ROM tech-

niques, reaching its minimum when PWUHS is applied to a 9 subsets UC.

The best results in comparison to FE solution are obtained adopting the secant

approach in the framework of the PWUHS. Even considering the coarsest sub-

sets division the macroscopic stress prediction is close to the FE recovered values

with low error estimates, barely exceeding the 1%.

Furthermore, the error get close to null values for all the stress components and

disregarding the considered loading history, if a re�ned discretization of the UC

is adopted. The secant modulus approach allows for a accurate stress prediction

along both the loading and unloading branches.
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t [s] E11 E12

0 0 0

1 0.002 0

2 0.002 0.01

3 -0.002 0.01

4 -0.002 0

Table 5.2: Loading case 3, LC-3.

t [s] E11 E22

0 0 0

1 0.002 0

2 0.002 0.002

3 -0.002 0.002

4 -0.002 0

Table 5.3: Loading case 4, LC-4.

(a) (b)

Figure 5.13: (a) UC-1 divided in 5 subsets, (b) UC-1 divided in 9 subsets.
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Figure 5.14: Macroscopic stress of UC-1 discretized in 2, 5, 9 subsets, having
material parameters in Table 4.2 and subjected to loading history LC-3: (a) Σ11

with �xed C0 = C̄; (b) Σ11 with secant updated C0 = C̄; (c) Σ22 with �xed
C0 = C̄; (d) Σ22 with secant updated C0 = C̄; (e) Σ12 with �xed C0 = C̄; (f)

Σ12 with secant updated C0 = C̄.
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Figure 5.15: Macroscopic stress of UC-1 discretized in 2, 5, 9 subsets, having
material parameters in Table 4.2 and subjected to loading history LC-4: (a) Σ11

with �xed C0 = C̄; (b) Σ11 with secant updated C0 = C̄; (c) Σ22 with �xed
C0 = C̄; (d) Σ22 with secant updated C0 = C̄.

t = 1 t = 2 t = 3 t = 4

subsets 2 5 9 2 5 9 2 5 9 2 5 9

PWUHS, C0 = C̄ 2.216 0.659 0.069 199.099 63.095 4.288 1.997 0.491 0.075 47.951 12.532 0.665

PWUHS, C0 = C̄, secant 0.301 0.167 0.017 5.790 2.251 0.250 0.038 0.006 0.009 6.066 2.363 0.586

PWUTFA 1.194 1.053 0.383 107.205 105.600 32.084 1.067 0.758 0.324 25.458 20.865 6.600

Table 5.4: Relative Error of PWUHS and PWUTFA with respect of FE analy-
ses, UC-1 discretized in 2-5-9 subsets and subjected to loading/unloading history

LC-3, stress component Σ11.
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t = 1 t = 2 t = 3 t = 4

subsets 2 5 9 2 5 9 2 5 9 2 5 9

PWUHS, C0 = C̄ 0.486 0.120 0.176 134.447 219.465 16.600 0.409 0.271 0.119 316.208 114.960 92.263

PWUHS, C0 = C̄, secant 0.188 0.206 0.213 24.106 4.502 2.906 0.134 0.151 0.194 163.867 67.057 42.529

PWUTFA 0.082 0.087 0.080 241.957 449.935 42.721 0.063 0.302 0.050 447.873 301.884 79.570

Table 5.5: Relative Error of PWUHS and PWUTFA with respect of FE analy-
ses, UC-1 discretized in 2-5-9 subsets and subjected to loading/unloading history

LC-3, stress component Σ22.

t = 1 t = 2 t = 3 t = 4

subsets 2 5 9 2 5 9 2 5 9 2 5 9

PWUHS, C0 = C̄ − − − 1.824 0.388 0.079 160.854 23.243 4.378 0.079 0.053 0.001

PWUHS, C0 = C̄, secant − − − 0.074 0.002 0.018 8.944 0.717 0.278 0.048 0.005 0.024

PWUTFA − − − 1.034 0.825 0.670 91.878 56.333 54.449 0.059 0.078 0.027

Table 5.6: Relative Error of PWUHS and PWUTFA with respect of FE analy-
ses, UC-1 discretized in 2-5-9 subsets and subjected to loading/unloading history

LC-3, stress component Σ12.

t = 1 t = 2 t = 3 t = 4

subsets 2 5 9 2 5 9 2 5 9 2 5 9

PWUHS, C0 = C̄ 2.234 0.659 0.069 2.921 0.547 0.004 2.008 0.706 0.077 2.616 0.619 0.030

PWUHS, C0 = C̄, secant 0.301 0.167 0.017 0.084 0.066 0.129 0.175 0.102 0.005 0.085 0.073 0.185

PWUTFA 1.194 1.053 0.383 1.184 0.997 0.354 1.264 1.144 0.393 1.283 1.130 0.373

Table 5.7: Relative Error of PWUHS and PWUTFA with respect of FE analy-
ses, UC-1 discretized in 2-5-9 subsets and subjected to loading/unloading history

LC-4, stress component Σ11.

t = 1 t = 2 t = 3 t = 4

subsets 2 5 9 2 5 9 2 5 9 2 5 9

PWUHS, C0 = C̄ 0.493 0.120 0.176 2.318 0.612 0.069 14.577 3.416 0.860 0.063 0.112 0.003

PWUHS, C0 = C̄, secant 0.159 0.206 0.213 0.271 0.155 0.019 1.168 1.908 2.235 0.047 0.016 0.0003

PWUTFA 0.082 0.087 0.080 1.043 0.923 0.489 7.869 7.163 2.921 0.227 0.223 0.064

Table 5.8: Relative Error of the PWUHS with respect of FE analyses, UC-1
discretized in 2-5-9 subsets and subjected to loading/unloading history LC-4,

stress component Σ22.
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Chapter 6

Multiscale Analysis using

PWUHS

In this Chapter the PWUHS homogenization technique introduced in Chapter

4 is used in the framework of a Multiscale Analysis, as presented in Chapter

2. In particular, the behaviour of a nonlinear heterogeneous structure having

auxetic properties is investigated. To this end a brief introduction to this class

of Metamaterials is made �rst. In the following, the PWUHS homogenization

scheme is used in a multiscale analysis of a foam-�lled auxetic honeycomb. A

detailed description of the multiscale procedure is made. Material and geomet-

rical properties of the adopted microstructure are then presented and numerical

applications are carried out. Finally, an experimental validation, with a focus

on the specimens manufacturing process, is presented.

6.1 Auxetic materials

A large amount of composite materials have been developed during the past

decades in order to meet the requirements of many structural engineering ap-

plications. The increasing interest in composite materials has resulted in their

usage in aerospace, automotive, sports and leisure sectors. Nevertheless, com-

posite materials show some disadvantages in relation to mechanical properties

such as shear modulus, impact resistance, and energy absorption capabilities

[67]. Thus, a new class of materials, regarded as auxetic materials [68], have

been designed since the middle 80's in order to achieve the desired requirements

[69, 70, 71, 72, 73]. Auxetic materials are characterized by a negative Poisson

ratio : in short, this means that if strectched longitudinally they expand in the

perpendicular direction.
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Materials with auxetic properties exist in nature (i.e. arsenic and cadmium crys-

tals, cat or cow skins) and plenty of them have been produced in industry, from

PU foams to polymers and metals. This class of metamaterials is especially

used to enhance the mechanical properties of crash absorbers [74]. In particular,

auxetic materials can be the cellular core of crash absorbers or a �ller material,

e.g. in sandwich panels, where a low sti�ness �ller material is bounded by rigid

plates.

The several types of auxetic cellular materials can be classi�ed in three main

categories [75]: auxetic honeycombs, being the conventional and most common

types, polymers with auxetic microstructures, obtained from conventional foams

or speci�cally designed (e.g. PTFE, UHMWPE) and auxetic composites, ob-

tained laminating unidirecrional composites or embedding rod and hinge struc-

tures in a matrix.

Auxetic honeycombs can be further divided according to the deformation mech-

anism [76] in three main groups:

� Re-entrant type: this kind of auxetic structures were the �rst to be devel-

oped. The most common geometry was introduced by Gibson et al. [77]

and is commonly regarded as Inverted hexagons (see Fig. 6.1, a). The

geometry is designed so that when a load is applied in a direction, the

diagonal ribs move in the perpendicular direction leading to the auxetic

behaviour. Other kind of re-entrant geometries having a common defoma-

tion mechanism are the double-arrow and star shaped geometries;

� Chiral type: these auxetic structures are composed of bars tangentially

connected to circular or polygonal rings (see Fig. 6.1, b). The term chiral

indicates non-mirroring and non-superimposable geometries. The auxetic

behaviour is caused from the rotation of the rings, and the consequent

wrapping-unwrapping of the rigidly connected bars, due to the applica-

tion of an external load. Chiral auxetic structures are usually considered

delivering a Poisson ratio close to −1.

� Rotating polygons: these auxetic geometries are composed by rigid poly-

gons (squares, rectangles, rhombi or others) that are connected each other

by hinges. On the other hand, this kind of geometries can be interpreted,

according to their manufacturing process, as perforated sheets, having, for

example, rhomboidal holes (see Fig. 6.1, c). The auxetic behaviour is

clearly caused from the rotation of the connected polygons.
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Figure 6.1: Auxetic structures: (a) re-entrant type, (b) chiral type, (c) rotating
polygons.

Many experimental and numerical investigations have been carried out in

order to study the response of materials with auxetic behaviour. In particular,

research has focused on the energy absorption capabilities of cellular auxetic

materials under compressive loads in dynamic [73, 78, 79] or quasi static [80, 81]

conditions.

Various material properties of the cellular structure have been considered: in

[78]-[80] a hollow auxetic core is adopted for the investigations. On the contrary,

foam-�lled auxetic structures are considered in [81, 82]; the foam �ller, being

a polymeric, aluminium or concrete based material, is proven to improve the

energy dissipation capabilities of the auxetic cores.

Re-entrant hexagonal and chiral geometries are mostly considered for both nu-

merical and experimental investigations. In [81], a concrete foam �lled auxetic

aluminium honeycomb is experimentally and numerically investigated if sub-

jected to low velocity compression; the response of a chiral auxetic structure is

studied by empirical and numerical tests for both static loads [83] and impact

loads [84].

Further research is oriented in determine the average properties of auxetic struc-

tures with various geometrical and material properties.

Many analytical and computational tecniques for the determination of the e�ec-

tive properties of hollow or foam-�lled cores have been proposed. First, theoret-

ical [85] and FE-based approaches [86] were used to determine the homogenized

response of hollow non-auxetic honeycomb structures.

In [87] a computational homogenization scheme is used to determine the ef-

fective material properties of aluminium re-entrant hexagonal honeycomb with

PVC foam �ller. A FE-homogenization technique for periodic materials is used

to compute e�ective elastic properties of auxetic microstructures and compare
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di�erent geometries [72].

Both computational and analytical predictions of the elastic modulus are made

in [88], where a parametric study of a re-entrant hexagonal honeycomb with

varying geometrical properties is carried out.

6.2 Foam-Filled Auxetic Honeycomb

Honeycomb structures are usually combined with a �ller material, e.g. polymer,

concrete or metallic foams, in order to enhance the mechanical capabilities of

�nal product, as sandwich panels. In particular, using a foam �ller leads to a

sensible increment of the energy absorption capabilities of frames made of ductile

materials.

A large amount of research has focused on the properties prediction of hollow

honeycombs. A small number of investigations have been carried out on �lled

honeycombs structures: among them, aluminium honeycomb frames have been

considered �lled by a PVC foam [87] or a concrete foam [81].

In other very recent studies, hollow 3D-printed auxetic cores have been numer-

ically and empirically investigated under di�erent load conditions [89, 90]. At

best of author's knowledge, only in Airoldi et al. [82] a polymeric 3D printed

chiral topology auxetic structrure �lled with urethane pre-cut foam inserts have

been investigated, performing numerical and experimental studies. No consider-

ation on the homogenized response of the composite auxetic material were made.

A similar combination of materials is here considered: a 3D Printed polymeric

frame �lled with a Polyurethane (PU) foam is considered in the framework of

Multiscale analysis, in order to derive the homogenized response of the composite

material.

6.2.1 3D-Printed Polymeric Frame

The auxetic re-entrant hexagonal frame is considered made of PA12, a 3D print-

able Polyamide, also known as nylon. PA12 is the most common material in

additive manufacturing; it is an high performance alternative in comparison to

ABS or PA6 and it is usually preferred due to the higher tensile modulus [91]

allowing for manufacturing of robust, durable and resistant parts.

Its chemical and physical properties make it extremely versatile: applications
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in industry go from prototyping to series production parts, especially in the

electrical, automotive industries as well as in mechanical engineering, moulding,

sports, biological and food related uses.

PA 12 is a thermoplastic material usually commercialized in powder, having a

characteristic particle size of 60µm and a melting point of 176−187◦C. It is pri-

marily used in the additive Powder Bed Fusion (PBF) processes to form objects

with high strength and sti�ness. It is used for production of robust high-density

parts with uniform properties and long-term reliable behaviour. The obtained

parts have excellent chemical resistance to greases, oils and alkalies.

The main advantage in using PA 12 in manufacturing relies in the possibility to

recicle up to the 80% of the unused powder and process resulting wastes, leading

to a big advantage in terms of costs per produced part.

It is generally considered as the best option in terms of costs and performances,

and is engineered for production of �nal parts with smooth details and high di-

mensional accuracy.

The properties of interest of the PA 12 can be easily found thanks to the large

availability on the market; this means that no characterization of the material is

needed. In the following numerical and experimental applications the �3D High

Reusability PA 12� produced by HP is referred for the material properties.

Although di�erent kind of inelastic material models can be adopted, the classical

associated Mises perfect plasticity is considered for PA 12 and the Mises yield

criterion is adopted. The material properties of interest for the next applications

are extrapolated from the techical datasheet provided from the producer [92] and

are reported in Table 6.1.

E [MPa] ν σy [MPa]

1700 0.41 48

Table 6.1: Mechanical properties of HP 3D High Reusability PA 12.

6.2.2 Rigid Polyurethane Foam Filler

Polyurethanes are a group of polymers obtained from the interaction between

two ingredients, a polyol and an isocyanate. For the production of PU foams,

water is intentionally added to the mixture; the isocyanate reacts with the water

in the compound and forms a urea linkage and carbon dioxide gas. The resulting

polymer contains urethane and urea linkages. The reaction is heavily exothermic
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and the time depends on the stechiometric ratio and the catalyst.

With an accurate selection and calibration of the reactants is possible to desing

products having the desired characteristics, going from soft expanded foams to

high mechanical perfomances rigid polyurethanes.

The auxetic Polymeric frame is here considered �lled by a rigid PU foam which

adheres to the 3D printed PA 12 walls. A material characterization of PU foams

is required in order to obtain the mechanical properties herein considered for the

numerical investigation of the foam-�lled auxetic honeycomb.

The commercial materials chosen for the characterization are two bi-component

pourable PU foams provided by BCI Polyurethane Europe S.R.L. (VA, Italy).

In both cases the resulting product is an high density rigid foam, with an high

percentage of closed cells and a considerable strenght in both compression and

tension.

The two materials, coming in two components (Fig. 6.5, a), adopt the same

isocyanate which commercial name is Isotem® P200. The polyols suggested for

the scope are the Promol® DP 25/10B1 [93] and Promol® VA 50/6A3 [94], de-

livering respectively foams with a �nal density of 25 kg/m3 and 145 kg/m3.

The mechanical characterization of the rigid PU foams is performed according

to the standards prescribed by the American Society for Testing and Materials

(ASTM). In particular, the `�Standard Test Method for Compressive Properties

of Rigid Cellular Plastics� [95] is considered.

This standard prescribes the procedure for determining the compressive mechan-

ical porperties of rigid cellular materials (e.g. rigid foams) by using universal

testing machines to study the response of specimens to the movement of the

cross head. The main goal is to obtain a complete load-deformation curve from

which relevant informations are derived for the numerical investigations on the

foam �lled auxetic honeycomb; in this case the aim is to compute the modulus

of elasticity and the yield stress.

The apparatus used for the compression tests is the MTS Insight Testing Sys-

tem (MTS System Corporation) equipped with a 10KN load cell and two steel

compression plates 6.2.

The specimens are circular in cross section (φ = 60 mm) and 40 mm high,

with the loaded faces parallel to each other and perpendicular to the sides. In

order to produce specimens which surfaces are free from imperfections, custom
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Figure 6.2: The MTS Insight Testing System used for the compression tests.

made 3D printed molds are designed and produced, having the desired dimen-

sions and a easy unmolding system (see Fig. 6.5, c and d). Furthermore, when

the foam is cast into the mold, a 3D printer with heated chamber is used to

mantain the optimal reaction temperature of 40◦C.

Four specimens for each of the two samples are prepared (Fig. 6.5, e and f) and

tested. The specimens are uniformly loaded over the top surface with a loading

rate of 5 mm/min, until 40% deformation is reached. The cross-head diplace-

ments are assumed as measure of de�ection and an automatic recorder is used;

a load-displacement curve is directly obtained.

A suitable point is chosen along the straight portion of the of the load-displacement

curves for the calculation of the apparent elastic modulus, as:

E =
Fh

Aεh
(6.1)

where F (N) is the load, h (mm) is the height of the specimen, A is the initial

horizontal cross-sectional area (mm2) and εh is the axial strain along the loading

direction.
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The load-displacements curves used for the determination of the material prop-

erties of DP 25/10B1 and VA 50/6A3 foams, are respectively reported in Figs.

6.3 and 6.4. Responses are characterized by an initial elastic behaviour followed

by yielding and plastic deformation.
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Figure 6.3: Load-displacements curves of the compression tests on DP 25/10B1
specimens.
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Figure 6.4: Load-displacements curves of the compression tests on VA 50/6A3
specimens.

The characteristic dimensions of the specimens and results in terms of the

measured apparent Elastic Modulus E are reported in Table 6.3 for DP 25/10B1

foam and in Table 6.4 for VA 50/6A3 foam.

The results, combined with the experimental load-displacements curves, allow for
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a complete characterization of the foams that exhibit an elastoplastic behaviour.

The average elastic modulus of the low and high density foams are, respectively,

3.22± 0.13 and 37.82± 3.02 MPa.

The low density PU foam (DP 25/10B1 - Isotem P200) is adopted in the following

numerical and experimental applications on the foam �lled auexetic honeycomb.

To this end, additional information are required in order to consider the PU foam

following a Mises plasticity law with linear isotropic hardening. In particular,

average yield stress and an hardening parameter are obtained from the curves

in Fig. 6.3 and reported in Table 6.2.

E [MPa] ν σy [MPa] k [MPa]

3.22 0.27 0.13 0.1

Table 6.2: Mechanical properties of low-density DP 25/10B1 foam.
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DP 25/10B1 - Isotem P200

Diameter φ [mm]

Measurement n 1 2 3 Average

Specimen 1 59.48 60.07 59.89 59.81

Specimen 2 59.55 59.58 59.99 59.71

Specimen 3 59.84 59.4 59.44 59.56

Specimen 4 59.59 59.71 59.78 59.69

Height h [mm]

Measurement n 1 2 3 Average

Specimen 1 40.09 40.09 40.22 40.13

Specimen 2 39.88 39.99 40.10 39.99

Specimen 3 40.11 40.30 40.56 40.32

Specimen 4 41.05 40.99 40.76 40.93

Base Area A [mm2] Elastic Modulus E [MPa]

Specimen 1 2809.87 3.34

Specimen 2 2799.85 3.12

Specimen 3 2786.12 3.09

Specimen 4 2798.60 3.32

Table 6.3: DP 25/10B1 Foam: dimensions of the specimens and apparent
Elastic Modulus E calculated according to equation (6.1).
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VA 50/6A3 - Isotem P200

Diameter φ [mm]

Measurement n 1 2 3 Average

Specimen 1 60.05 60.42 60.04 60.17

Specimen 2 59.84 59.85 59.83 59.84

Specimen 3 60.51 60.55 60.55 60.54

Specimen 4 59.71 59.77 60.28 59.92

Height h [mm]

Measurement n 1 2 3 Average

Specimen 1 39.72 40.08 40.30 40.03

Specimen 2 40.92 40.00 40.16 40.36

Specimen 3 40.27 39.97 40.11 40.12

Specimen 4 40.48 40.51 40.56 40.52

Base Area A [mm2] Elastic Modulus E [MPa]

Specimen 1 2843.48 34.43

Specimen 2 2812.37 36.15

Specimen 3 2878.24 39.93

Specimen 4 2819.90 40.76

Table 6.4: VA 50/6A3 Foam: dimensions of the specimens and apparent Elastic
Modulus E calculated according to equation (6.1).
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(a)
(b)

(c) (d)

(e) (f)

Figure 6.5: Foam specimen preparation: (a) a bi-component foam sample; (b)
heated chamber; (c) 3D printed molds; (d) hinge of the mold; (e) foam specimen

after expansion; (f) trimmed specimen ready for testing.
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6.3 Multiscale Procedure

In the following, the numerical procedure of two-scale scheme involving PWUHS

is illustrated. As already mentioned in Chapter 2, in a multiscale analysis, the

macroscopic stress Σ is not calculated from E via a constitutive law but it is

obtained solving the microscopic (BVP).

In this procedure the macroscopic stress is obtained from the macroscopic strain

E exploiting the PWUHS scheme illustrated in Chapter 4.

The multiscale procedure can be decomposed in two main parts.

During the precomputations, the average localization matrices Γ̄
j
are built ac-

cording to Section 4.1. To this end a periodic UC of the heterogeneous mi-

crostructure is introduced and it is divided in a prescribed amount of m subsets.

Three micromechanical linear elastic analyses for each of the m subsets of the

UC are performed on the homogeneous elastic reference material with elastic

matrix C̄, being the overall elastic matrix of the composite material. The three

micromechanical problems to solve for the typical s-th subset consist in applying

a unit value to each of the polarization stress components, which is homogeneous

in the subset according to equation (4.1).

The vectors collecting the average strain �uctuations in the j-th subset due to

the polarization stress in Ωs, according to the approximation in equation (4.5),

are stored in the corresponding localization matrix Γ̄
j
.

The online stage of the multiscale procedure correspond to the solution of the

structural problem. To this end the PWUHS scheme is implemented in a �nite

element code. In this case the ROM homogenization technique has been imple-

mented in a �nite element routine in FEAP [96].

The macroscopic structure is discretized in Ne quadrilateral elements with 4

Gauss Points, suitable loads and boundary conditions are assigned.

At the generic time step t the problem is solved simultaneosly at the macro-

scopic scale and at the coupled microscopic scale, as represented in Fig. 6.6. A

UC, divided in subsets, is associated to each macroscopic integration point. The

macroscopic strain E is calculated at each GP and assigned to the corresponding

UC as periodic BC, operating the scale transition in equation (2.6).

The microscopic BVP is solved via the PWUHS scheme providing the macro-

scopic stress value Σ at the integration point and the history variables that have

to be stored and passed to the next step.

At this point the global equilibrium at the macroscopic scale can be computed
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according to the usual FE scheme:

KU = F, (6.2)

where K and F are respectively the global sti�ness matrix at the structural scale

and the nodal forces vector. The latter can be expresses as:

F = −
Ne∑
e=1

∫
Ωe

BTΣ dA, (6.3)

with B being the strain matrix and Σ being the average stress obtained using

the PWUHS scheme; in a usual FE scheme, the stress would have been obtained

calling the local constitutive law.

In the present work, a constant tangent sti�ness C̄ is adopted at the macroscale

during the loading process. A di�erent approach can be to compute the consis-

tent e�ective tangent sti�ness or the algorithmic tangent sti�ness at the end of

each time step.

Figure 6.6: Multiscale procedure scheme.

6.4 Numerical applications

In this Section, numerical applications are developed in order to evaluate the

accuracy of the proposed multiscale scheme.
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The two-scale technique described in the previous subsection is tested on a pe-

riodic auxetic structure composed by two di�erent constituents; in particular, a

foam-�lled auxetic honeycomb with a re-entrant hexagonal frame is considered.

First, a focus on the microstructure is made in order to identify a UC satis-

fying the periodicty conditions, allowing the application of periodic boundary

conditions. The response of the UC, divided in subsets and subjected to simple

loading cases, is studied adopting the PWUHS approximation. Results are com-

pared to the FEA reference solution.

A homogeneous macroscopic model is then introduced in order evaluate the

performaces of the two-scale procedure. The auxetic UC is associated to each

structural integration point and the multiscale analysis are carried out using the

software FEAP, in which a �user element� for the solution of the microstructural

BVP on the UC via the PWUHS approach, has been implemented.

The results of the Multi-Scale analyses are compared to the results of Nonlinear

Finite Element Analyses carried out on the heterogeneous auxetic honeycomb

model.

6.4.1 UC Homogenization

The identi�cation of the UC strongly depends on the geometry of the composite

material. In order to identify a periodic UC, a periodicity direction running

through the microstructure, must be provided.

In the case of re-entrant hexagonal honeycombs, non-orthogonal periodicity di-

rections can be identi�ed for the generation of a generic auxetic pattern, that

is obtained by the periodic repetion of a single re-entrant hexagon along the

skewed directions x1 and x2:

x1 = h1e1 + h2e2, x2 = He2, (6.4)

where h1 is the UC translation in the horizontal direction, h2 is the vertical

overlapping between the UC's, H il the height of the UC, as shown in Fig. 6.7.

Similar approaches for the generation of repetitive patterns are commonly used

in the framework of masonry structures homogenization [97, 98].

In order to do not violate the material continuity along the skewed periodicity

directions, the UC is considered having half the wall thickness of the auxetic

frame (see Fig. 6.8).
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Figure 6.7: UC identi�cation in re-entrant hexagonal auxetic honeycomb pat-
tern; skewed periodicity directions x1 and x2.

The re-entrant hexagonal UC has been modeled according to the geometrical pa-

rameters in [76]: the resulting characteristic lengths of the UC in the longitudinal

and transversal directions, the wall thickness of the frame and the inclination

angles of the oblique rods are reported in Fig. 6.8.

The re-entrant hexagonal periodic unit cell with auxetic behaviour, denoted

by UC-A, is represented in Fig. 6.9. It is composed by a plastic re-entrant hexag-

onal frame with volume fraction c1 = 0.09, having the characteristic material

properties of a 3D printable PA 12 reported in Table. 6.1 and the geometrical

properties in Fig. 6.8, �lled with an elastoplastic PU Foam having material

properties reported in Table. 6.2 and volume fraction c2 = 0.91.

The two constituents are respectively discretized in 6 subsets, corresponding to

the external elastoplastic rods, and a single subset for the foam �ller, thus, the

total amount of internal variables for the single UC is (3 + 1)× 7 = 28.

UC-A is analyzed under both plane strain and plane stress condition, considering

a monotonic loading history in terms of the average macroscopic strain E22, until

the value of 0.1 (Load Case 5, LC-5) is reached. Results obtained via PWUHS

are compared to the FE reference solution, obtained discretizing the UC-A in a
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Figure 6.8: Geometrical properties of the Foam-�lled Auxetic Honeycomb UC-
A.

Figure 6.9: UC-A discretized in 7 subsets.
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mesh of 1790 elements (4× 1790 = 7160 history variables).

The overall nonlinear response of the auxetic composite material in terms of the

macroscopic stress Σ22 versus E22 and Σ11 versus E22, in plane strain frame-

work, are respectively illustrated in Figs. 6.10-6.11. Results are compared to a

FE reference solution adopting 2D plane strain four-nodes elements implemented

in FEAP.

Numerical results show that the PWUHS homogenization technique, using the

computationally derived reference elastic matrix C0 = C̄, succeeds in predicting

the auxetic behaviour of the foam �lled honeycomb; the stress response of the

UC in x1 direction (Fig. 6.11), have opposite sign in comparison to the stress

in the loading direction, being perpendicular to x1, due to the overall negative

poisson's ratio of the composite material.

The stresses along the loading direction are underestimated in the initial linear

phase, while in the plastic branch stresses converge to FE solution.

The stresses along x1 direction are roughly predicted during the whole loading

history. Even if a sensible relative error occurs at the �nal step (0.148), the

overall trend is captured with a considerable reduction of the degrees of free-

dom, which amount are respectively 13 × 7 = 91 in the PWUHS scheme and

2× 4× 1790 = 14320 in the FE model.
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Figure 6.10: Macroscopic stress Σ22 in auxetic UC-A considering plane strain
condition.
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Figure 6.11: Macroscopic stress Σ11 in auxetic UC-A considering plane strain
condition.

UC-A is then considered, under the hypothesis of plane stress condition,

subjected to LC-5; results are compared to a FE solution adopting 2D plane

stress four nodes quadrilateral user de�ned element in FEAP. Similar considera-

tions can be made in comparison to the plane strain problem. A slight increase

of the error is observed in the elastic response for the approximation of both

macroscopic stress components Σ11 and Σ22.
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Figure 6.12: Macroscopic stress Σ22 in auxetic UC-A considering plane stress
condition.
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Figure 6.13: Macroscopic stress Σ11 in auxetic UC-A considering plane stress
condition.

6.4.2 Multiscale Analysis of Auxetic Honeycomb

A structural problem is here introduced and solved according to the multiscale

procedure illustrated in Section 6.3. In particular, the two-dimensional aux-

etic honeycomb structure in Fig. 6.14, is considered subjected to a uniformly

distributed vertical displacement on the top edge, with the bottom edge fully

constrained.

The structural model is composed by 99 re-entrant hexagonal honeycomb

which dimensions are reported in Fig. 6.15, left.

In order to solve the multiscale analysis of the auxetic structure, an homogeneous

macroscopic model discretized in 100 elements is introduced (Fig. 6.15, right).

The UC-A microstructure introduced in the previous section (Fig. 6.9), which

is made of a PA 12 auxetic frame �lled with PU foam, is discretized in 7 subsets

and associated to each integration point of the homogeneous macroscopic model

(400 Gauss Points). At each Gauss point, the history variables of the UC-A are

stored, thus, the total number of history variables is 7 × 4 × 400 = 11200. The

macroscopic model is subjected to a uniformly distributed vertical displacement

U0 = −10 mm (7.5% of deformation in compression), applied on the top edge

during a quasi-static analysis. The results of the multiscale analysis, alternately

assuming plane strain and stress condition, are compared to a reference nonlin-

ear FE solution, obtained using the commercial software Abaqus®.
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Figure 6.14: Heterogeneous structure composed by a foam �lled auxetic frame
and its FE discretization in 320286 quad elements; a close-up view of the reference

mesh generated in Abaqus is shown.

Figure 6.15: Heterogeneous structure dimensions (left); homogeneous macro-
scopic model dimensions and discretization in a mesh of 10× 10 elements.
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In order to obtain a proper discretization, the reference mesh has been progres-

sively re�ned in order to avoid elements' excessive distortion and to ensure mesh

independency. Finally, the structural geometry (Fig. 6.14, left) has been dis-

cretized in a mesh of 320286 quadrilateral �nite elements.

Considering 4 history variables for each Gauss point, the total number of history

variables of the FE model is 4× 4× 320286 = 5124576. The number of history

variables that have to be stored at each time step is reduced up to 99.781 % and

the number of equations which de�nes the computational e�ort, is signi�cantly

lower in the multiscale approach.

Results in terms of the resultant force F, obtained under plane strain hypothesis

as of the sum of the nodal reactions on the constrained top edge, are plotted in

Fig. 6.16 with respect to the prescribed displacement U0 .
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Figure 6.16: Comparison between FE analysis and the proposed Multiscale
Analysis scheme: force-displacements curve in plane strain condition.

The results of the Multiscale analysis are in agreement with the reference

nonlinear FE analysis. A low sti�ness underestimation is observed in the �nal

part of the loading history, with a maximum relative error equal to 0.07. The

overall response of the heterogeneous structure is de�netely captured, with the

bene�t of a drastic reduction of the degrees of freedom and, hence, of the com-

putational cost.

Figures 6.17 and 6.18 show the distributions of displacements along the X1

direction at the �nal step, respectively obtained from Multiscale analysis and
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nonlinear FE analysis. In both cases a concentration of the horizontal displace-

ments, in correspondence of the unconstrained vertical edges, is observed. Due

to the axial symmetry of the geometry, opposite values of the displacements are

observed along the vertical parallel edges, leading to the consequent reduction

of the middle horizontal section, according to the auxetic behaviour. Maximum

values of the horizontal displacements, got via the Multiscale analysis, are com-

parable to the FE reference results.

Figure 6.17: Distribution of the horizontal displacements U1 at the end of
Multiscale analysis.
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Figure 6.18: Distribution of the horizontal displacements U1 at the end of
nonlinear FE analysis.

The multiscale analysis of the auxetic structure is then performed assuming

plane stress condition and results in terms of the resultant force F, versus the

prescribed displacement U0, are plotted in Fig. 6.19.
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Figure 6.19: Comparison between FE analysis and the proposed Multiscale
Analysis of auxetic structure: force-displamcements curve in plane stress condi-

ton.

The accuracy of the proposed multiscale scheme is lower in comparison to the
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equivalent application under plane strain condition; as seen in the homogeniza-

tion of the UC-A (see Fig. 6.12), the response in the elastic regime is coarsely

approximated and, in addition, the smooth increase of the plastic deformation of

the reference FE analysis is not captured due to an overprediction of the overall

sti�ness. The results are probably in�uenced from the arising of locking phenom-

ena, limiting the deformation of the auxetic structure and causing the element

to reach the equilibrium with smaller displacements, as can be noted comparing

the displacement maps of the structure at the last step of the multiscale analysis

6.20 and of the FE reference analysis 6.21.

Figure 6.20: Distribution of the horizontal displacements U1 at the end of
Multiscale analysis.
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Figure 6.21: Distribution of the horizontal displacements U1 at the end of
nonlinear FE analysis.

Equal and opposite results are obtained subjecting the macroscopic model to

a uniformly distributed vertical displacement U0 = 10 mm (7.5% of deformation

in tension), alternately assuming plane strain (Fig. 6.22 a, c, e) and plane stress

(Fig. 6.22 b, d, f) conditions; the main di�erence lies in the deformation mode

of the auxetic structure, which expand at right angles to the applied tension.
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Figure 6.22: Comparison between FE analysis and the proposed Multiscale
Analysis scheme: force-displacements curve in plane strain (a) and plane stress
(b) condition; maximum horizontal displacements U1 of Multiscale and FE anal-

yses in plane strane condition (c, e) and plane stress condition (d, f).
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In order to numerically demonstrate mesh independency of the proposed

model, an additional computation, under plane strain hypothesis is performed

adopting a coarser discretization at the structural level (see Fig. 6.23). The

macroscopic model in Fig. 6.15, left, is discretized in 25 quadrilateral elements

with 4 Gauss Points, thus, the total number of history variables is 7×4×4×25 =

2800. This macroscopic discretization, having a total amount of 100 GP with

each point associated to a single UC, reproduce to the fullest the geometry of

the structural model composed by 99 re-entrant hexagonal honeycombs.

Despite the further reduction in the number of degrees of freedom, the result of

the multiscale analysis is close enough to the FE reference solution (Fig. 6.24),

proving that the proposed multiscale scheme is not a�ected by mesh-dependency

issues.

According to results in Fig. 6.24 it is possible to state that in multiscale analyses,

in the limit of the principle of scale separation, a relative coarse mesh in relation

to the overall structural dimensions can be adopted without a�ecting the method

accuracy.

(a)
(b)

Figure 6.23: Homogeneous macroscopic model elements dimensions and dis-
cretization in a mesh of 5×5 elements (left); maximum horizontal displacements
U1 of Multiscale analysis in plane strane condition, obtained using a 25 elements

discetization (right).
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Figure 6.24: Comparison between FE analysis and the proposed Multiscale
Analysis of auxetic structure under compression: force-displamcements curve
(in plane strain conditon) obtained performing Multicale Analyses using di�erent

discretizations at the structural level.

Numerical validation of the proposed multiscale scheme is given comparing

the structural behaviour of a macroscopic model to the response of a single ho-

mogenized UC (Fig. 6.9). In particular, a large macroscopic composite structure

(271x271 mm), discretized in 400 quadrilateral 4 GP elements, is considered un-

dergoing a prescribed displacement in compression (U0 = −20mm, 0.074 strain);

the obtained stress-strain curve is compared to the results obtained considering

UC-A (Fig.6.10) periodically constrained, thus, consistent BC are chosen at the

macroscopic level. In this case the structure is horizontally constrained along the

vertical edges. The results shown in Fig. 6.25 prove that results of multiscale

analysis of an auxetic composite structure are in agreement with the response of

a homogenized UC.
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Figure 6.25: Comparison between the stress-strain curves obtained from Mul-
tiscale analysis of a composite structure (foam-�lled auxetic haneycomb) with
dimensions 271x271mm, discretized in 400 elements and the PWUHS homoge-

nization on the underlying UC with periodic BC.

6.5 Experimental Validation

The response of the auxetic structure considered in Section 6.4.2, is experi-

mentally evaluated, with the aim of validating the proposed Multiscale analysis

scheme. A focus on the manufacturing process of the composite specimen is �rst

made. Then, the results of the experimental investigations are presented and

compared to the numerical counterpart.

6.5.1 Design and manufacturing of Foam-�lled Auxetic Honey-

comb

A 3D printed polymeric honeycomb with re-entrant hexagonal geometry, �lled

with the DP 25/10B1 elastoplastic foam characterized in Section 6.2.2, is sub-

jected to uniaxial compression and tension in quasi-static regime. The specimen

geometry is obtained from extrusion of the planar model in Fig. 6.14 (left),

resulting in a �primastic� body with a length of 135.24 mm, a height of 135.5

mm and a depth of 31 mm (Fig. 6.26).
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Figure 6.26: Dimensions of the 3D specimen.

The polymeric honeycomb frame is 3D-printed using the HP Multi Jet Fusion

(MJF) technology, a Powder Bed Fusion (PBF) additive manufacturing (AM)

technique for the manufacture of polymeric components made of PA 12 (see Sec-

tion 6.2.1), having the mechanical properties reported in Table 6.1. In contrast

to the other most common PBF technolgies, such as Selective Laser Sintering,

the energy source in MJF is a group of infrared lamps which activate the fus-

ing agent, previously applied on the interest areas in combination to a de�ning

agent, which is applied on the surrounding areas in order to prevent the fusion

of the polyamide. This technique allows for the production of smooth and sharp

edges with a dimensional accuracy of ±0.2%, a fundamental requirement for the

production of the desired thin-walled frame having a thickness of 0.5 mm.

In order to replicate the numerical boundary conditions employed in the multi-

scale analysis of the foam-�lled honeycomb, where the horizontal displacements

at both the upper and lower limits of the specimen are constrained, attention is

payed to the design of the upper and lower faces of the specimen. In particu-

lar, the auxetic frame is 3D printed with the addition of two solid undeformable

bars at the top and bottom ends of the specimen (Fig. 6.27) which role is to

uniformly distibute the imposed vertical displacement all over the horizontal

faces, constraining the displacements in X1 direction. Two cylindrical elements,
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designed for the collocation of the specimen in the testing machine, are solidly

printed at the top and bottom ends.

Hole for the blocking pin

Solid undeformable bar

Specimen upper limit

Specimen lower limit

Connection element

Figure 6.27: Design of the polymeric frame for the experimental tests.

6.5.2 Results and Discussion

Two specimens of the 3D printed auxetic honeycomb are manufactured and

�lled with the rigid DP 25/10B1 PU foam, having material properties reported

in Table 6.2. The specimens are used for the experimental evaluation of the

proposed multiscale procedure: aim of the tests is to compare the experimental

results with the numerical counterpart, in terms of the resultant force F, obtained

as of the sum of the reactions on the top edge, and in terms of the maximum

displacements along the X1 direction, detected at the end of the loading process.

The specimens are respectively tested in compression and tension, using the MTS

Insight Testing System (MTS System Corporation), equipped with a 10KN load

cell and presented in section 6.2.2.

The �rst specimen (Specimen-1) undergoes a prescribed vertical displacement

U0 = −10 mm (7.5% of deformation in compression) with constant load-rate 8

mm/min.
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Figure 6.28: Specimen-1 tested in compression: undeformed con�guration
(left), deformed con�guration at the end of the loading process (middle), com-
parison between the undeformed con�guration, in green, and the deformed con-

�guration at the end of the loading process (right).

Experimental investigation of the foam-�lled auxetic honeycomb under com-

pression shows the arising of buckling phenomena, in�uencing the collapse of

the structure. First, the specimen cross-section undergoes a progressive thinning

along the X1 direction, according to the auxetic behaviour. As the imposed dis-

placements increase, the inelastic deformations concentrate at points along the

specimen sides, causing the formation of plastic hinges (Fig. 6.28, middle). Two

non-aligned hinges (one per side) approximately located in the central part of

the specimen, become dominant, causing the relaxation of the loads at the other

locations of the specimen.

It follows that a comparison of the experimental results with the numerical coun-

terpart, which is obtained assuming small strain regime, is unnecessary. Further

research is needed for the formulation of the proposed ROM technique and Mul-

tiscale analysis scheme in the framework of �nite strain.

The second specimen (Specimen-2) undergoes a prescribed vertical displacement

U0 = 10 mm (7.5% of deformation in tension) with constant load-rate 8 mm/min.
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Figure 6.29: Specimen-2 tested in tension: undeformed con�guration (left),
deformed con�guration at U0 = 4.6 mm (middle), comparison between the un-
deformed con�guration, in green, and the deformed con�guration at U0 = 4.6

mm (right).

Experimental investigation of the foam-�lled auxetic honeycomb subjected to

uniaxial tension delivers results for a comparison with the numerical counterpart.

The deformation of Specimen-2 is in agreement with the numerical analysis and

shows auxetic behaviour during the �rst part of the loading process, as shown in

Fig. 6.29; when the value of U0 = 4.6 mm is reached, the failure of the composite

honeycomb occurs due to the decohesion at the interphase between the PA12

frame and the foam �ller. Forces converge in the auxetic frame that brakes due

to the concentrated loads.

A comparison between the numerical and experimental results in terms of the

resultant force F, obtained as of the sum of the reactions on the top edge, is il-

lustrated considering the experimetal output collected before failure at U0 = 4.6

mm. In Fig. 6.30 experimental results in terms of the resultant force F, versus

the prescribed displacement U0, are compared to the Multiscale analysis results

and to the FE reference solution, assuming plane stress condition (Fig. 6.30,

left) and plane strain condition (Fig. 6.30, right). Since the thickness of the

model is far smaller in comparison to the planar dimensions (see Fig. 6.26), the

specimen can be imagined as thin plate with stresses acting along its plane, thus,

a comparison with numerical results obtained in the framework of plane stress

may be assumed the most suitable. The maximum gap between the experimen-

tally derived reaction force F and the Multiscale analysis results in plane stress

condition, measured as a relative error, is equal to 0.084. Is interesting to note

that the results of Multiscale analysis are even closer to the tensile test output

in comparison to the FE reference solution (error equal to 0.108).
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Similar considerations are made considering the plane strain numerical counter-

part. In this case the maximum gap between Multiscale analysis and the tensile

test results is just 0.072, even lower of the gap regarding the FE reference solu-

tion (0.107).
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Figure 6.30: Comparison between experimental results of tensile test on
Specimen-2 and numerical results obtained via Multiscale analysis and FE anal-

ysis assuming plane stress (a) and plane strain (b) condition.

Further considerations are made comparing the maximum displacements

along the horizontal direction at the last available experimental loading step

(U0 = 4.6 mm), detected at prescribed points referred as A and B in the un-

deformed con�guration (see Fig. 6.31, a), with the displacement maps of the

numerical FE analysis (Figs. 6.32 and 6.33).

The distances between the couple of points A-A' and B-B', along X1 direction,

are respectively equal to 3.3 mm and 3.2 mm, hence in agreement with the FE

reference solution.
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Figure 6.31: Position of the points for horizontal displacements measure on
Specimen-2, in the undeformed con�guration (A, B) and in the deformed con�g-

uration (A', B').

Figure 6.32: Displacement map at U0 = 4.6mm, 2D FE analysis of the auxetic
honeycomb in plane stress condition.

Figure 6.33: Displacement map at U0 = 4.6mm, 2D FE analysis of the auxetic
honeycomb in plane strain condition.
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Both the values of the maximum reaction force F and of the pointwise hor-

izontal displacements in A and B, have values in between the numerical coun-

terparts, obtained via Multiscale Analysis, in plane strain and plane stress con-

dition. This suggests that neither the �rst nor the second assumption suit the

experimental layout; a possible solution could be provided from 3D analysis of

the auxetic foam-�lled honeycomb, considering the true thickness of the speci-

men.

Experimental investigations prove the e�ciency of the proposed PWUHS homog-

enization in the framework of Multiscale analysis; the behaviour of composite

materials is approximated with a drastically reduced number of internal vari-

ables and computational cost, coming at the expense of a reasonable error in

comparison to the FE analyses.
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Chapter 7

Conclusions

In line with the increasing usage and performance requirements of structures

made of heterogeneous materials, the need of e�cient numerical tools to adopt

during the design process has became an open issue in both scienti�c and in-

dustrial research. Multiscale modeling has gained popularity in the analysis of

heterogeneous materials, also referred as composites, as a powerful tool con-

sidering two coexisting scales: the macroscale at the structural level and the

microscale tipycal of the material level. With the structural response strongly

depending from the inelastic phenomena arising at the microscale, an e�cient

homogenization scheme is needed, in the framework of multiscale analysis of

composite material, in order to obtain the macroscopic response of an equiv-

alent homogeneous material from the solution of a micromechanical problem.

Among the homogenization schemes, Reduced Order Models combine the ac-

curacy of the computational homogenization schemes and the e�ciency of the

analytical homogenization schemes.

The main scope of the research reported in this dissertation is to provide an

e�cient tool for the multiscale analysis of composite materials characterized

by nonlinear response. A reduced order homogenization scheme, namely the

Piecewise Uniform Hashin-Shtrikman (PWUHS) has been introduced in Chap-

ter 4 with the aim of developing a novel multiscale scheme in which PWUHS is

adopted for the solution of the problem at the microscopic level. The problem is

formulated for a large class of periodic composites and di�erent Unit Cells, repre-

sentative of randomly distributed heterogeneous material, are studied. Following

the Hashin-Shtrikman variational formulation, a homogeneous elastic reference

media is introduced together with a polarization stress (an eigenstress) describ-

ing the stress gap between the heterogeneous material and the reference material.

A novel approach for the calculation of the elastic reference matrix during an
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o�ine phase is proposed, adopting the FE homogenization of the composite. A

piecewise uniform distribution of the eigenstress is considered for the coupling

of the reference material with the heterogeneous material, which is divided in

subsets according to the constituents distribution. The evolution of the inelastic

strain is governed by the average stress in each subset and it is solved simultane-

ously in all the subsets via a Newton Raphson procedure for the correction phase

in the predictor-corrector algorithm within the �nite step. With the dimension

of the problem depending on the low number of subsets, a noticeable advan-

tage in terms of computational cost and time is provided for the homogenization

of composite materials, in comparison to FE analyses. The advantages of the

proposed PWUHS are con�rmed from various numerical applications even for

complex loading-unloading histories. The main novelty of the proposed ROM

technique is the possibility to consider materials which behaviour is in agreement

with the Mises plasticity model with linear isotropic hardening. The PWUHS

presents another great advantage as it can be signi�cantly improved by imple-

menting the secant approach to update the reference material, leading to a very

fast convergence towards the FE solutions and to very accurate numerical results

in all the performed applications.

In Chapter 5 a comparative study between the proposed PWUHS and the

PWUTFA homogenization schemes is illustrated, starting from the similarities

between the two techniques. In both homogenization procedures the UC is

discretized in subsets, inside which the PWUTFA assumes the inelastic strain

constant, while the PWUHS assumes the polarization stress constant. In both

PWUTFA and PWUHS an o�ine calculation is required for the construction

of the localization matrices and, during the online phase, the evolution of the

inelastic strain is governed by the average stress in each subset and it is simulta-

neously solved in all the subsets. The equivalence between the two approaches is

proven and veri�ed through numerical investigations, furnishing numerical evi-

dences of the equivalence between the two reduced order methods for composites

having the same elastic properties. To the author knowledge, no such evidences

are found in the literature. For the same composite material a convergence

study is carried out for both model order reduction techniques highlighting that

increasing the number of subsets PWUTFA and PWUHS results tend toward to

FE solution. Numerical applications have been carried out on composites having

di�erent material properties; all the presented numerical results show that for a

low number of subsets, the PWUTFA results are more accurate with respect to
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the PWUHS solution, while increasing the subset number the PWUHS is more

e�ective. Furthermore, implementing the secant modulus correction of the refer-

ence elastic matrix, leads to very accurate numerical results in all the performed

applications in comparison to the PWUTFA, at the expense of a negligible in-

crease of the computational time. In Chapter 6 the proposed PWUHS is used

in the framework of Multiscale analysis to derive the overall response of aux-

etic composites, in order to assess the e�ciency of the proposed homogenization

technique. The PWUHS homogenization is implemented in a �nite element code

(FEAP). The macroscopic structure is discretized in quadrilateral elements and

at each time step the problem is solved simultaneosly at the macroscopic scale

and at the coupled microscopic scale. A UC, divided in subsets, is associated

to each macroscopic integration point and the microscopic problem is solved via

the PWUHS scheme, providing the homogenized response at the coresponding

macroscopic material point. The composite material considered for the numeri-

cal applications is made by a 3D printed auxetic honeycomb frame, �lled with a

polyurethane foam being much less sti� in comparison to the outer frame. The

results of the numerical applications show the accuracy of the proposed Multi-

scale analysis scheme. The overall response of the auxetic structure is predicted

with the bene�t of a drastically reduced number of the degrees of freedom and

computational cost, at the expense of a reasonable error, in comparison to the

FE reference solution. The results of the Multiscale scheme are validated via

experimental tests made on foam-�lled auxetic honeycomb. The response of

the investigations are compared to the results of the two dimensional Multiscale

analyses, proving the capability of the two-scale scheme in predicting the failure

in composite materials.

The agreement between numerical and experimental �ndings is a valuable tar-

get for the proposed reduced order homogenization scheme and for the research

presented in this dissertation. A reliable tool for the Multiscale analysis of com-

posite materials is provided; it represents a resanonable compromise between

e�ciency and numerical accuracy but indeed additional improvements may be

introduced in both respect. Future developments may include:

� introduction of a clustering technique during the precomputations for the

divison of the RVE in optimized subsets;

� further research regarding the integration scheme used during the precom-

putations, in the framework of both PWUHS and PWUTFA, in order to
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investigate the locking related issues arising using full integration elements;

� investigating the in�uence of UC's dimensions, with respect to the struc-

tural size, on the model capability to naturally account for size e�ects;

� extension of the FE code with implemented PWUHS homogenization to

parallel computing;

� extension to �nite-strain at both the macroscopic and microscopic level.
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