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dr.rer.nat. M. Möller (Technische Universiteit Delft)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.



Preface

C omputational mechanics deals with the development of computational mod-
els for simulating the physical and mechanical behavior of materials, struc-

tures, fluids and fluid-structure interactions. Efficient algorithms, robust solvers
and advanced discretization techniques play a vital role in these simulations. In
order to strengthen the theoretical understanding of these aspects, the Euro-
pean Commission under the European Education and Culture Executive Agency
(EACEA) initiated the Erasmus Mundus joint doctorate program, called Simu-
lation in Engineering and Entrepreneurship Development (SEED), coordinated
by the International Centre for Numerical Methods in Engineering (CIMNE).

The SEED program brings universities, research institutes and companies
together to collaborate and increase the horizon of research in the field of com-
putational mechanics. This dissertation is part of this program and records the
research that I have conducted between 2017 and 2021, as a joint doctoral can-
didate of the Energy Technology and Fluid Dynamics group at Eindhoven Uni-
versity of Technology (TU/e) and the Computational Mechanics and Advanced
Materials group at the University of Pavia (UniPv). This work is supervised by
Clemens Verhoosel, Harald van Brummelen, Alessandro Reali and Ferdinando
Auricchio.

I was first introduced to computational mechanics at the Indian Institute of
Technology Madras (IITM) in 2013, when I had to choose a topic for my summer
internship under the supervision of Ratna Kumar Annabattula. Initially, I was
attracted by the prediction of mechanical behaviour using colorful simulation
results produced by commercial software (e.g., Ansys, Abaqus). This interest
made me continue the summer internship project as my bachelor’s thesis project.
During this phase, I gained experience in performing simulations and predicting
mechanical behavior of materials. However, I did not have a theoretical un-
derstanding of the methodology at the back-end of the commercial packages I
employed.

Due to my desire for learning about the numerical aspects behind simulations,
I was enthused to pursue a joint Master’s program in computational mechanics
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at Swansea University and Universitat Politècnica de Catalunya under the Eras-
mus Mundus scholarship program. During the Master program, I realized that
research work on biomedical applications with an emphasis on methodology is
something that keeps me curious and content. While writing my Master’s Thesis,
I received an Erasmus Mundus joint doctorate fellowship to pursue this disserta-
tion at TU/e and UniPv. In 2017, after obtaining my Master’s degree, I started a
PhD position on addressing certain challenges of immersed isogeometric analysis
in the context of scan-based simulations.

Over the last four years, the potential of immersed isogeometric analysis has
become obvious to me. Through this dissertation, I have been lucky enough to
be able to cover a few aspects of the field with Clemens and Harald. Collabo-
ration is an inherent part of the SEED program giving me the chance to have
discussions with experts at Pavia, i.e., Ale and Auricchio, and to understand the
biomechanical aspect of this project with the help of biomedical experts in Pavia.

Pursuing a PhD has been a great step to improve myself professionally and
personally. My PhD ends with this dissertation, however, my research work in
the field of computational mechanics continues beyond this.

Sai Chandana Divi
08-12-2021
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Chapter 1

Introduction

O ver the past decades, the rapid developments in the field of scientific com-
puting have provided the computational mechanics community with power-

ful means to develop and apply numerical techniques for mathematical-physical
modeling. Since the 1960s, the Finite Element Method (FEM) has been a nu-
merical technique that lies at the frontier of current industrial applications for a
myriad of problems, for example in solid mechanics, fluid dynamics, and multi-
physics modeling [1–8].

One of the reasons for the success of the finite element method is that its
application to the discretization of (partial) differential equations (PDEs) through
Galerkin’s method is supported by rigorous mathematical understanding of the
technique [9–11]. As a result, approximation inaccuracies (i.e., the difference
between the finite element solution and the exact solution to the PDE) – resulting
from, for example, geometry simplifications because of meshing, the choice of
basis functions, and implementation aspects such as numerical integration – are
very well understood. This, in combination with a good understanding of how
such aspects influence the computational effort, makes that the FEM provides a
robust workflow for high-fidelity simulations of complex problems.

1.1 Scan-based immersed isogeometric analysis
In design-based computational analyses, the geometric model is most frequently
constructed by a Computer Aided Design (CAD) tool (e.g., AutoCAD, Solid-
works, CATIA). There are also many applications – for example in biomechan-
ics, geomechanics, material science, microstructural analysis, and many more –
where the analysis pertains to the non-engineered physical geometry, which can
be modeled through scan data obtained using advanced scanning technologies
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2 Introduction

(e.g., tomography or photogrammetry). For such scan-based simulations, the
data sets from which the geometric model is to be constructed are typically very
large, and the obtained models can be very complex in terms of both geometry
and topology (see Fig. 1.1). In the context of standard finite element analy-
ses, scan-based simulations require an image segmentation technique to produce
high-quality analysis-suitable meshes that fit to the boundaries of the domain of
interest. The construction of a FEM-suitable computational domain can be an
error-prone and laborious process, involving geometry clean-up and mesh repair-
ing and optimization operations. Such operations can account for the majority of
the total computational analysis time and form a bottleneck in the automation
of the scan-based simulation workflow [12–14].

The challenges associated with the simulation workflow for complex prob-
lems sparked the development of the IsoGeometric Analysis (IGA) paradigm by
Hughes and co-workers in 2005 [16]. The pivotal idea of IGA is to directly em-
ploy the geometry interpolation functions used in computer-aided design for the
discretization of partial differential equations, thereby circumventing the prob-
lems associated with the construction of (high-quality) meshes. In terms of ba-
sis function technology, IGA builds on fundamental contributions in the field
of CAD, such as B-splines [17], Non-uniform Rational B-splines (NURBS) [18],
and subdivision surfaces [19, 20]. In IGA, the traditional FEM basis functions
(C0-continuous Lagrange functions) are replaced by higher-order (continuous)
splines. Besides the advantage of eliminating mesh-approximation errors, for
many (smooth) problems, the use of higher-order continuous splines for the ap-
proximation of the solution has been demonstrated to yield efficient isogeometric
discretizations, in the sense that the same accuracy as for traditional finite ele-
ments is obtained using fewer degrees of freedom [21, 22]. Prominent successful
applications of IGA can be found in, for example, Refs. [22–32].

While isogeometric analysis has been successfully applied to complex three-
dimensional problems based on multi-patch CAD objects [33–41], the direct ap-
plication of spline discretizations to scan-based simulations is hindered by the
absence of a boundary-fitting volumetric spline object. Although spline pre-
processors have been developed over the years for a range of applications [42–46],
the robust generation of analysis-suitable mesh-fitting volumetric splines for scan-
based analyses is beyond the scope of the current tools on account of the geomet-
ric and topological complexity typically inherent to scan data. To still be able
to leverage the advantageous approximation properties of splines in scan-based
simulations, IGA has been used in combination with immersed methods. In im-
mersed methods – introduced by Peskin in 1972 [47] – a non-boundary-fitting
mesh is considered, in which the computational domain is submersed. Since
the immersed domain does not align with the computational grid, some of the
elements in the grid are cut by the immersed boundary and require a special



Scan-based immersed isogeometric analysis 3

(a) (b)

(c) (d)

Figure 1.1: Illustration of a scan-based simulation workflow for a sintered glass spec-
imen. The grayscale scan data for a specimen of 200 × 100 × 100 voxels is shown in
panel (a). The directly segmented voxel image (i.e., all voxels above a certain grayscale
threshold) representing the void space is shown in panel (b). A smooth reconstruction
of the geometry based on a B-spline segmentation is shown in panel (c). This immersed
geometry is constructed by the application of a recursive bisectioning strategy on a
32 × 16 × 16 mesh, with the octree depth set equal to one. The pressure field from an
immersed isogeometric Stokes flow simulation is shown in panel (d). See Ref. [15] for
details.
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treatment. The immersed approach has been considered in the setting of the
finite element method by, for example, the Finite Cell Method (FCM) [14,48,49]
and CutFEM [50,51]. The immersed concept has also been used in combination
with IGA [52–55], a strategy which is sometimes referred to as immersogeometric
analysis [56, 57]. The versatility of immersed isogeometric analysis techniques
with respect to the geometry representation – in the sense that the analysis pro-
cedure is not strongly affected by the complexity of the physical domain – makes
it particularly attractive in the scan-based analysis setting. Applications can be
found in, for example, the modeling of trabecular bone [58–60], porous media [15],
coated metal foams [61], metal castings [62] and in additive manufacturing [63].

1.2 Challenges and recent advancements in im-
mersed isogeometric analysis

Although immersed (isogeometric) analysis fits well in the general framework of
Galerkin methods, compared to the traditional finite element method or boundary-
fitting isogeometric analysis, various aspects require special treatment. Below we
discuss the three most prominent challenges with respect to immersed (isogeo-
metric) analysis, viz.: (i) the integration of cut elements; (ii) the imposition of
Dirichlet boundary conditions on the immersed boundary; and (iii) the stability
and conditioning of the discrete system of equations.

1.2.1 Intergration of cut elements
A well known computational challenge that is inherent to non-boundary-fitting
finite element methods is the integration over cut elements, which is also a promi-
nent problem in enriched finite element methods such as XFEM and GFEM due
to the presence of discontinuous integrands (see Ref. [64] for a review). In im-
mersed methods, the integrands over the computational domain are computed
by the integration procedure on a mesh replicating the geometry rather than on
the ambient mesh in which the domain is immersed.

Various integration procedures addressing the integration aspect have been
developed over the years in the context of immersed FEM (see Ref. [14] for a
review). The most prominent solution for the integration of cut elements is to
employ an octree subdivision strategy. The concept of octree (or quadtree in two
dimensions) integration is to recursively bisect a cut element, resulting in a set of
sub-cells that covers the computational domain and its immersed boundary. The
number of recursions is a user input parameter which influences the geometric
approximation. This method was proposed in Ref. [49] in the context of the
finite cell method. Due to its simplicity and robustness, it has been widely used
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in immersed methods, e.g., Refs. [14,15,56,58,65]. Despite various enhancements
to the procedure (e.g., the consideration of tetrahedral cells [66, 67], tessellation
of the lowest level of bisectioning [58], adaptive integration schemes for sub-
cells [68]), the main downside of the octree strategy is the computational effort
associated with the large number of integration points that are typically required,
especially in three-dimensional problems.

A common alternative integration strategy for cut elements is to perform
(higher-order accurate) integration by projecting a reference element onto the
(possibly curved) immersed boundary. This strategy has been exploited in the
NURBS-enhanced finite element method (NEFEM) [69], in the context of im-
plicitly defined geometries through a level set function [70], and in the finite cell
method as part of a smart octree integration technique [71]. It is also possible
to construct efficient integration rules for polynomial functions on cut elements.
The moment fitting method [72] and the equivalent polynomial technique [73]
are prominent examples of integration solutions based on this idea. Finally, in
some cases it is possible to convert volumetric integrals into boundary integrals,
which can reduce the required number of integration points. This technique has
been exploited in the immersed setting in Refs. [74, 75]. All these alternative
integration strategies can outperform the octree strategy in terms of efficiency
(accuracy versus computational complexity), but, in general, they are less ver-
satile and robust than the octree strategy, and their implementation is more
involved.

1.2.2 Imposition of Dirichlet boundary conditions

In the boundary-fitting FEM setting, Dirichlet (or essential) boundary condi-
tions are typically strongly imposed, i.e., the degrees of freedom at the Dirichlet
boundary are constrained to match the boundary data and the corresponding
test functions are eliminated from the system of equations. Due to the dis-
parity between the background grid and the physical domain in the immersed
setting, the degrees of freedom are not associated with basis functions that are
interpolatory on the immersed boundary. This prevents the strong imposition of
Dirichlet conditions as used for boundary-fitting discretizations. Provided that
a parametrization of the immersed boundary is available, Neumann (or natural)
conditions can be imposed in the standard way, i.e., through boundary integrals
in the weak formulation.

In immersed finite element methods, Dirichlet boundary conditions are typ-
ically enforced weakly. One of the prominent approaches for this is the penalty
method, in which one penalizes the difference between the evaluated discrete so-
lution and the prescribed boundary data by adding a term to the weak form
operator. This method has been used extensively to impose Dirichlet conditions
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in the finite cell method (e.g., Ref. [49]). In its standard form, the penalty method
results in an inconsistent formulation, in the sense that the approximate solution
generally does not converge to the exact solution. However, with an appropriate
selection of the penalty parameter, the modeling error induced by this incon-
sistency can often be kept acceptable. The selection of an appropriate penalty
parameter can be challenging, however, as a too small value does not adequately
enforce the prescribed boundary condition, while a too large value can lead to
ill-conditioning and non-physical gradients on cut elements [76].

An alternative approach for the weak imposition of Dirichlet boundary con-
ditions is Nitsche’s method [77], which can be interpreted as a consistent en-
hancement of the penalty method. Nitsche’s method is typically the method of
choice in CutFEM [50], for which it is shown that a stable and optimally conver-
gent formulation is obtained, provided that the stabilization parameter is selected
and scaled (with the mesh size) appropriately (see Ref. [78]). When combined
with ghost-penalty stabilization [79], Nitsche’s method is capable of obtaining
high-fidelity solutions in the immersed (isogeometric) analysis setting.

1.2.3 Stability and conditioning
In the immersed setting, small (i.e., with a small volume fraction) or unfavor-
ably cut (e.g., sliver-like cut) elements affect the stability and conditioning of the
discrete immersed formulation. One reason for this is that, without special treat-
ment, the stabilization parameter for Nitsche’s method scales inversely with the
size of a cut element. This results in very high (element-wise) Nitsche parameters,
deteriorating the accuracy and conditioning of the discrete problem [76]. More-
over, basis functions that are only supported on small cut elements become nearly
linearly dependent when restricted to the computational domain. This leads to
small eigenvalues in the system matrix, resulting in a scaling of the condition
number with the smallest cut volume fraction, with the scaling deteriorating as
the order of the basis increases [80].

Dedicated preconditioning techniques have been developed for immersed meth-
ods, e.g., Refs. [80–82], enabling the application of iterative solvers to immersed
finite element problems. In this regard, the multi-grid preconditioner developed
in Ref. [60] is particularly noteworthy, as it does not only make the condition
number (and the number of solver iterations) independent of the cut element
configurations, but also insensitive to the element size of the background mesh.
This is an important step in unlocking the potential of high-performance com-
puting for immersed finite element methods [62].

Although the above-mentioned preconditioning techniques enable the treat-
ment of ill-conditioned systems of equations resulting from immersed formula-
tions, they do not resolve the underlying stability problems. The most promi-
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nent strategy for resolving the stability problems emerging from the scaling of the
Nitsche parameter is to extend the solution obtained on the physical domain to
all the elements in the background mesh containing the boundary of the physical
domain. This extension can be constructed weakly by the consideration of ad-
ditional stabilization terms, of which ghost-penalty stabilization is a prominent
example [79, 83]. This method requires the selection of an additional (ghost-
penalty) stabilization parameter [84]. Alternatively, the extension of the solution
to the background grid can be accomplished in a strong manner, by altering the
function spaces through the aggregation of (problematic) basis functions [85].
Both the weak and strong extensions enable scaling of the Nitsche stabilization
parameter by the size of the background elements, rather than by the cut element
size, thereby resolving the stability issues related to unfavorably cut elements. In
addition, upon appropriate selection of the additional parameters, the condition
number of the system of equations can be bound independent of the cut element
volume fraction [79,83].

1.3 Aims and scope
Immersed isogeometric analysis provides a natural framework for high-fidelity
scan-based simulations on account of its ability to: (i) accurately represent geo-
metrically and topologically complex volumetric domains; (ii) provide a smooth
representation of immersed boundaries to optimally benefit from the approxi-
mation power of splines; and (iii) create an analysis workflow for scan-based
geometries with a high degree of automation. To exploit the full potential of
immersed isogeometric analysis for scan-based simulations, various innovations
with respect to the computational workflow are required:

• Scan-based immersed isogeometric analyses typically employ a robust image
segmentation procedure based on a recursive octree subdivision strategy.
When used with a sufficiently large octree subdivision depth, this proce-
dure is capable of accurately reconstructing complex geometries. However,
with the increase in subdivision depth, the number of sub-cells used to
represent the geometry of a trimmed element is typically very large, es-
pecially in the three-dimensional setting inherent to practical scan-based
analyses. This results in a high number of quadrature points, making inte-
gration operations one of the critical components of the analysis workflow
from an efficiency point of view. An efficient integration quadrature scheme
for trimmed elements is required to make immersed isogeometric analysis a
competitive simulation technique in terms of computational performance.

• The octree subdivision recursion can be closed with a tessellation proce-
dure to construct an explicit parametrization of the immersed boundary.
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For a sufficiently large subdivision depth, a relatively smooth (continuous
piecewise-linear) boundary representation can be obtained. This enables
the immersed analysis strategy to exploit the advantageous approximation
properties of higher-order regular spline discretizations, especially for flow
problems. To obtain a smooth boundary representation, the grayscale voxel
data, that generally forms the primitive output of imaging devices, must
be smoothed, for example by a B-spline-based convolution operation. A
consequence of such a smoothing operation is that for features with a size
similar to the voxels topological changes can occur, which can be detrimen-
tal to the simulation results. A segmentation algorithm that preserves the
topology of the original voxel data is required to enhance the robustness of
the scan-based analysis workflow.

• The immersed simulation concept enables the construction of an approxi-
mation basis independent of the geometry representation, which is essential
to the automation of the scan-based analysis workflow. In order to leverage
this advantageous characteristic of immersed methods, especially for prob-
lems with multi-scale geometries or non-smooth solutions, an adaptive local
mesh-refinement strategy is required to obtain an accurate solution with a
minimal number of degrees of freedom.

The overarching goal of the research work presented in this dissertation is
to progress the state of the art in scan-based simulations in the context of
immersed isogeometric analysis.

Each chapter in this (paper-based) dissertation addresses one of the challenges
mentioned above:

In Chapter 2 (Ref. [86]) the development of an error-estimate-based adaptive
integration procedure for immersed (isogeometric) analysis is presented. This
chapter includes a rigorous investigation of the accuracy and computational effort
of the octree subdivision strategy, with a quantification of the integration error
based on Strang’s first lemma. A detailed numerical analysis of the developed
adaptive integration algorithm is presented, and its application to scan-based
problems is demonstrated.

In Chapter 3 of this dissertation (Ref. [87]) a topology-preserving truncated
hierarchical B-spline-based image-segmentation strategy is proposed. This com-
putational strategy rigorously checks for the occurrence of topological alterations
due to the B-spline-based voxel-data smoothing procedure. A detailed analysis
of the B-spline smoothing procedure provides a basis for the development of a
THB-spline-based local level set refinement strategy, which recovers features that
are topologically altered by the smoothing procedure. The locations at which to
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apply the level set refinement procedure are detected by analyzing local topol-
ogy characteristics (specifically the Euler characteristic) using a moving-window
technique. The proposed algorithm is applied to a series of scan-based test cases,
both in two- and three-dimensions, and is applied in the context of stabilized
immersed isogeometric analysis.

In Chapter 4 (Ref. [88]) a dedicated THB-spline-based mesh refinement
strategy using a residual-based error estimator is developed for immersed isoge-
ometric analysis. This adaptive simulation procedure is applied to Laplace and
Stokes problems. The presented element-wise error-estimator is derived for the
immersed setting with a vigilant treatment of the required stabilization terms.
The developed error estimation and adaptivity procedure is applied to a set of
benchmark problems for steady heat conduction and viscous flows. The au-
tomated scan-based analysis workflow is demonstrated using a patient-specific
carotid artery flow problem.

Finally, in Chapter 5 conclusions are drawn regarding the overarching objec-
tive of this dissertation, and recommendations for further research are discussed.





Chapter 2

Error-estimate-based
adaptive integration for
immersed isogeometric
analysis

I n this chapter we conduct a thorough investigation of the accuracy and com-
putational effort of the octree integration scheme in the context of immersed

isogeometric analysis. We quantify the contribution of the integration error us-
ing the theoretical basis provided by Strang’s first lemma. Based on this study
we propose an error-estimate-based adaptive integration procedure for immersed
isogeometric analysis. Additionally, we present a detailed numerical investigation
of the proposed optimal integration algorithm and its application to immersed
isogeometric analysis using two- and three-dimensional linear elasticity problems.

This chapter is reproduced from [86]: S.C. Divi, C.V. Verhoosel, F. Auricchio, A. Reali,
and E.H. van Brummelen. Error-estimate-based adaptive integration for immersed isogeometric
analysis. Computers & Mathematics with Applications, 2020. The (co-)promotors confirm that
S.C. Divi is the primary author of this publication, i.e., she was responsible primarily for the
planning, execution and preparation of the work.
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2.1 Introduction
Immersed finite element methods – such as, e.g., the finite cell method (FCM)
[49], CutFEM [50] and immersogeometric analysis [52,55,89] – have been demon-
strated to be suitable for computational problems for which the performance of
mesh-fitting finite element methods is impeded by complications in the meshing
procedure. In recent years, immersed finite element methods have been suc-
cessfully combined with isogeometric analysis (IGA) [16], a spline-based higher-
order finite element framework targeting the integration of finite element analysis
(FEA) and computer aided design (CAD). On the one hand, immersed methods
provide the possibility to conduct IGA on volumetric domains based on a CAD
boundary surface representations [89] or voxelized geometry data [58]. On the
other hand, immersed methods provide a natural framework for the consider-
ation of trimming curves in IGA [37–39, 52–54, 81, 90, 91]. Immersed IGA has
been applied successfully to various problems in, amongst others, structural and
solid mechanics [14, 65], fluid-structure interactions [56, 57, 92] and scan-based
analysis [58,59].

In comparison to mesh-fitting finite element methods, immersed methods re-
quire special treatment of various computational aspects. A prominent compu-
tational challenge that is inherent to immersed finite element methods is the
integration over cut-cells, a problem that closely relates to the special treatment
of discontinuous integrands in enriched finite element methods such as XFEM
and GFEM. Since the geometry of the computational problem is captured by the
integration procedure rather than by the ambient mesh in which the domain is
immersed, cut-cell integration techniques must be capable of adequately captur-
ing a wide range of cut-cell configurations. A myriad of dedicated integration
procedures with this capability has been developed over the years in the context
of immersed FEM (see [14] for a review) and enriched FEM (see [64]), which can
be categorized as:

• Octree subdivision: The general idea of octree (or quadtree in 2D) integra-
tion is to capture the geometry of a cut-cell by recursively bisecting sub-cells
that intersect with the boundary of the domain. At every level of this recur-
sion, sub-cells that are completely inside the domain are preserved, while
sub-cells that are completely outside of the domain are discarded. This
cut-cell subdivision strategy was initially proposed in the context of the
finite cell method in Ref. [49] and is generally appraised for its simplicity
and robustness with respect to cut-cell configurations. Octree integration
has been widely adopted in immersed FEM, see, e.g., Refs. [14, 56, 58, 65].
Various generalizations and improvements to the original octree procedure
have been proposed, of which the consideration of tetrahedral cells [66,67],
the reconstruction of the immersed boundary by tessellation of the low-
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est level of bisectioning [58], and the consideration of variable integration
schemes for the sub-cells [68], are particularly noteworthy. Despite the
various improvements to the original octree strategy, a downside of the
technique remains the number of integration sub-cells that results from the
procedure, especially in three-dimensional cases.

• Cut-cell reparametrization: Accurate cut-cell integration schemes can be
obtained by modifying the geometry parametrization of cut-cells in such a
way that the immersed boundary is fitted. This strategy was original de-
veloped in the context of XFEM by decomposing cut elements into various
sub-cells containing cut-cells with only one curved side and then to alter the
geometry mapping related to the curved sub-cell to obtain a higher-order
accurate integration scheme [93]. This concept has also been considered in
the context of implicitly defined geometries (level sets) [70], the NURBS-
enhanced finite element method (NEFEM) [69, 94] and the Cartesian grid
finite element method (cgFEM) [95]. In the context of the finite cell method
the idea of cut element reparametrization has been adopted as part of the
smart octree integration strategy [71, 96], where a boundary fitting pro-
cedure is employed at the lowest level of octree bisectioning in order to
obtain higher-order integration schemes for cut-cells with curved bound-
aries. Reparametrization procedures have the potential to yield accurate
integration schemes at a significantly lower computational cost than octree
procedures, but generally compromises in terms of robustness with respect
to cut-cell configurations.

• Polynomial integration: Provided that one can accurately evaluate inte-
grals over cut-cells (for example using octree integration), it is possible
to construct computationally efficient integration rules for specific classes
of integrands. In the context of immersed finite element methods it is of
particular interest to derive efficient cut-cell integration rules for polyno-
mial functions. The two most prominent methods to integrate polynomial
functions over cut-cells are moment fitting techniques [72, 96–99], in which
integration point weights and (possibly) positions are determined in order
to yield exact quadrature rules, and equivalent polynomial methods [73,100],
in which a non-polynomial (e.g., discontinuous) integrand is represented by
an equivalent polynomial which can then be treated using standard integra-
tion procedures. Such methods have been demonstrated to yield efficient
quadrature rules for a range of scenarios. A downside of such techniques is
the need for the evaluation of the exact integrals (using an adequate cut-
cell integration procedure) in order to determine the optimized integration
rules. This can make the construction of such quadrature rules computa-
tionally expensive, which makes that they are of particular interest mainly
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in the context of time-dependent and non-linear problems, for which the
construction of the integration rule is only considered as a preprocessing
operation (for each cut-cell) and the optimized integration rule can then be
used throughout the simulation.

• Boundary integral representation: Depending on the problem under consid-
eration, it can be possible to reformulate volumetric integrals over cut-cells
by equivalent boundary integrals. This reformulation, which has been pro-
posed in the context of XFEM in Ref. [101] and in the immersed FEM set-
ting in Ref. [74], is advantageous from a computational effort point of view,
as the equivalent boundary integrals are generally less costly to evaluate.
Moreover, provided that an adequate description of the boundary surface
is available, higher-order accurate integration evaluations are obtained. A
downside of integration techniques of this kind is that they require reformu-
lation of the volume integrals, which makes them less general than standard
quadrature rules.

In the selection of an appropriate cut-cell integration scheme one balances inte-
gration between robustness, accuracy and expense with respect to cut-cell con-
figurations. If one requires a method that automatically treats a wide range of
cut-cell configurations and is willing to pay the price in terms of (higher-order)
accuracy and computational effort, octree integration is the compelling option.
If constraints are imposed from an accuracy and computational expense point of
view and one has some control over the range of configurations to be considered,
alternative techniques such as cut-cell reparametrization are attractive. The need
to balance between robustness, accuracy and expense has driven the development
of hybrid integration schemes, such as smart octree integration [71] and adaptive
moment-fitting [72], which allow one to attain an integration procedure with the
desired properties.

Balancing accuracy with computational effort does not necessarily require
the consideration of hybrid integration procedures, but can also be achieved by
controlling the parameters of the integration procedures (listed above). This
is particularly the case for octree integration, the accuracy of which can be con-
trolled by the bisectioning depth and the integration orders used on the sub-cells.
Optimization of these parameters to reduce the computational expense of octree
integration without compromising its robustness with respect to configurations
was proposed in Ref. [68], where an algorithm is proposed to select the integration
order on the different levels of sub-cells. It is demonstrated that reducing the in-
tegration order with increasing bisection depth significantly reduces the number
of integration points, without unacceptably compromising the accuracy.

The idea of Ref. [68] to reduce integration orders on certain levels of the oc-
tree subdivision is in agreement with the theory of finite elements. Strang’s first
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lemma [9, 11, 102] provides a framework to incorporate integration effects in the
error analysis of finite element methods. This lemma indicates that integration
does not need to be exact in order to attain (optimal) convergence [9]1. This
lemma has been considered for the analysis of CutFEM, see, e.g., Refs. [103,104].
In fact, the idea of reduced integration in finite element methods has been stud-
ied extensively over the last decades, with applications in the analysis of plates
and shells [105] and mixed finite element methods [106, 107] being prominent
examples.

In this manuscript we propose an error-estimation-based adaptive algorithm
to obtain optimal octree integration rules for cut-cells. A sub-cell evaluation of
the integration error in accordance with Strang’s first lemma [9, 11, 102] is com-
bined with a computational-cost estimate based on the number of integration
cells to obtain a refinement indicator that optimally balances computational ef-
fort and accuracy. The proposed algorithm deviates from the one proposed in
Ref. [68] in that it is directly based on integration error evaluations. The ef-
fectiveness of the adaptive integration procedure is demonstrated in the context
of the isogeometric finite-cell framework. Besides the ability to obtain optimal
integration rules for cut-cells, the developed adaptive integration procedure pro-
vides a tool to postulate rules of thumb for the selection of integration orders
at different levels of bisectioning, and to assess the quality of integration rules
derived using alternative algorithms such as that proposed in Ref. [68, 108].

The paper outline is as follows. In Section 2.2 we introduce the finite cell
method, with a focus on the application of Strang’s lemma to estimate integration
errors. In Section 2.3 we study the influence of the octree integration scheme on
the computational cost, and we define and evaluate the integration error of a
sub-cell in a cut element. Based on the evaluated integration error, we present
an optimization algorithm. The optimal integration procedure is investigated
for two- and three-dimensional numerical test cases with various cut element
configurations in Section 2.4. The developed algorithm is then applied to a two-
and three-dimensional immersed isogeometric analysis problem in Section 2.5.
Finally, concluding remarks are presented in Section 2.6.

2.2 The finite cell method
Because the integration procedure proposed in this work applies to a wide range
of finite-cell simulations, in Section 2.2.1 we first introduce the finite cell method
in abstract form. Based on this abstract problem setting, Section 2.2.2 presents

1As formulated by Strang and Fix in 1973 [9]: “What degree of accuracy in the integration
formula is required for convergence? It is not required that every polynomial which appears be
integrated exactly.”
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an error analysis that incorporates integration errors. In Section 2.2.3 the Poisson
problem is considered to exemplify the abstract derivations.

2.2.1 Formulation
We consider a domain Ω ⊂ Rd (d ∈ {2, 3}) with boundary ∂Ω as shown in Fig-
ure 2.1. The boundary is split into a part on which Dirichlet conditions are
imposed, denoted by ∂ΩD, and a complementary part to which Neumann condi-
tions apply, denoted by ∂ΩN . We consider a problem described by a field variable
u. Let W ∋ u denote a suitable ambient space for the solution, equipped with a
Hilbert structure corresponding to the inner product (·, ·)W and the association
norm ∥ · ∥W . Similarly, V is a Hilbert space with inner product (·, ·)V and norm
∥ · ∥V , which encompasses the test space for the weak formulation of the problem
under consideration. To accommodate the Dirichlet boundary conditions, let the
spaces W0 ⊂ W and V0 ⊂ V be composed of functions that vanish at the Dirich-
let boundary in a suitable manner. Moreover, let ℓg ∈ W denote a lift of the
Dirichlet data. We consider a weak formulation of the generic form:{

Find u ∈ ℓg +W0 such that:
a(u, v) = b(v) ∀v ∈ V0,

(2.1)

We assume that the bilinear form a : W × V → R is continuous on W × V and
weakly coercive on W0 × V0, and the linear form b : V → R is continuous. The
weak formulation (2.1) is then well-posed; see, e.g., [11].

The finite cell method provides a general framework for constructing finite
dimensional subspaces Wh ⊂ W and V h ⊂ V , where the superscript h refers
to a mesh parameter. The subspaces Wh, V h are subordinate to a regular mesh
T h

A , covering an ambient (embedding) domain A ⊃ Ω. The collection of elements
K ∈ T h

A that intersect with the physical domain comprise the background mesh:

T h := {K ∈ T h
A : K ∩ Ω ̸= ∅} (2.2)

By trimming the elements in the background mesh, a mesh for the interior of the
domain Ω is obtained:

T h
Ω := {K ∩ Ω : K ∈ T h} (2.3)

Similarly, meshes for the Dirichlet and Neumann boundaries are defined as:

T h
∂ΩD

:= {K ∩ ∂ΩD : K ∈ T h} and T h
∂ΩN

:= {K ∩ ∂ΩN : K ∈ T h} (2.4)

Note that elements in T h
∂ΩD

and T h
∂ΩN

are manifolds of co-dimension 1.
We consider a B-spline basis of degree k and regularity α constructed over

the ambient domain using the Cox-De Boor recursion formula [18]. The span of
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Figure 2.1: Schematic representation of (a) the physical domain Ω (gray) with bound-
ary ∂Ω which is embedded in the ambient domain A, and (b) the ambient domain mesh
T h

A and background mesh T h (yellow), with mesh size parameter h.

this B-spline basis is denoted as

Sk
α(A) = {N ∈ Cα(A) : N |K ∈ P k(K), ∀K ∈ T h

A } (2.5)

with P k(K) the collection of d-variate polynomials on K. The approximation
spaces in the finite cell method are obtained by restricting the B-splines in Sk

α(A)
to the domain Ω:

Wh = V h = {N |Ω : N ∈ Sk
α(A)} (2.6)

A basis for Wh, V h follows immediately from the restriction of the B-spline basis
for Sk

α(A).
It is generally infeasible to impose restrictions on Wh, V h according to (2.6) to

form subspaces of W0, V0 that retain suitable approximation properties. Hence,
the finite cell method generally relies on weak imposition of the Dirichlet bound-
ary conditions, typically by means of Nitsche’s method [77]. Accordingly, the
bilinear and linear forms for the approximation problem are adapted to weakly
incorporate the Dirichlet boundary conditions, giving rise to a Galerkin formula-
tion of the form: {

Find uh ∈ Wh such that:
ah(uh, vh) = bh(vh) ∀vh ∈ V h,

(2.7)

where the superscript h on the bilinear form ah : Wh × V h → R and linear
form bh : V h → R indicate an explicit dependence on the mesh parameter. In
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general, the bilinear and linear forms in the finite cell method comprise contribu-
tions from both the interior and the boundaries. Corresponding to this typical
setting, in the remainder of this work we assume the operators to be of the form

ah(uh, vh) =
∫

Ω
Ah

Ω(uh, vh)(x) dV +
∫

∂ΩD

Ah
∂ΩD

(uh, vh)(x) dS, (2.8a)

bh(vh) =
∫

Ω
Bh

Ω(vh)(x) dV +
∫

∂ΩD

Bh
∂ΩD

(vh)(x) dS

+
∫

∂ΩN

Bh
∂ΩN

(vh)(x) dS, (2.8b)

where the integrands Ah
Ω and Ah

∂ΩD
map Wh × V h into integrable functions on

the domain Ω and the Dirichlet boundary section, ∂ΩD, respectively. Similarly,
Bh

Ω, Bh
∂ΩD

and Bh
∂ΩN

map V h into integrable functions on the domain Ω and its
boundary sections, ∂ΩD and ∂ΩN . In the setting of (2.7), the spaces Wh, V h

are equipped with (generally mesh-dependent) norms ∥ · ∥W h , ∥ · ∥V h . Assuming
that the bilinear form ah is continuous and weakly coercive on Wh × V h and
the linear form bh is continuous on V h, the approximation problem (2.7) is well
posed [11, ch. 2].

In practice, the integrals in equation (2.8) are approximated by means of
quadrature rules, leading to the definition of the quadrature-dependent bilinear
and linear forms

ah
Q(uh, vh) =

∑
K∈T h

Ω

lK∑
l=1

ωl
KA

h
Ω(uh, vh)(xl

K)

+
∑

K∈T h
∂ΩD

lK∑
l=1

ωl
KA

h
∂ΩD

(uh, vh)(xl
K), (2.9a)

bh
Q(vh) =

∑
K∈T h

Ω

lK∑
l=1

ωl
KB

h
Ω(vh)(xl

K) +
∑

K∈T h
∂ΩD

lK∑
l=1

ωl
KB

h
∂ΩD

(vh)(xl
K)

+
∑

K∈T h
∂ΩN

lK∑
l=1

ωl
KB

h
∂ΩN

(vh)(xl
K), (2.9b)

where for each (interior or boundary) element K, the set {(xl
K , ω

l
K)}lK

l=1 repre-
sents a quadrature rule, i.e., a suitable collection of pairs of integration points
in K and corresponding weights. We denote by Q the complete integration
scheme, i.e., the collection of all the (interior and boundary) element-wise quadra-
ture rules. The Galerkin problem corresponding to the approximate (bi-)linear
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forms ah
Q and bh

Q then writes:{
Find uh

Q ∈ Wh such that
ah

Q(uh
Q, v

h) = bh
Q(vh) ∀vh ∈ V h.

(2.10)

We assume that the integration scheme Q transfers the coercivity and bounded-
ness properties of ah, bh to ah

Q, b
h
Q, so that (2.10) is well posed. We note that the

solution uh
Q generally deviates from that of (2.7) on account of the inexactness

of the integration rules.

2.2.2 Finite cell error analysis
The error of the approximated finite cell solution, uh

Q, computed using the Galerkin
problem (2.10) is composed of two parts, viz.: i) the discretization error, defined
as the difference between the exact solution to (2.1), u, and the approximate so-
lution to (2.7) in the absence of integration errors, uh; and ii) the inconsistency
error related to the integration procedure, which is defined as the difference be-
tween the approximate solution in the absence of integration errors, uh, and the
approximate solution to (2.10) with integration errors, uh

Q. In this section we
present the error analysis in an abstract setting. A concrete example is pro-
vided in Section 2.2.3. To provide a setting for the error analysis, we denote by
W (h) = span {u} ⊕ Wh the linear space containing the actual solution to (2.1)
and the approximation space Wh. We equip W (h) with a norm ∥ · ∥W (h) such
that ∥wh∥W (h) = ∥wh∥W h for all wh ∈ Wh and ∥u∥W (h) ≤ c ∥u∥W , i.e., the solu-
tion of (2.1) is continuously embedded in W (h); cf. [11, Ch. 2]. We assume that
the solution u of (2.1) is suitably regular, so that the bilinear form ah admits a
continuous extension to W (h), i.e., there exists a constant C > 0 such that:

∥ah∥W (h),V h := sup
(w,vh)∈W (h)×V h

|ah(w, vh)|
∥w∥W (h)∥v∥V h

≤ C . (2.11)

In this setting, an upper bound for the error u− uh
Q is provided by Strang’s first

lemma [102]:

∥∥u− uh
Q
∥∥

W (h) ≤

(
1 +

∥∥ah
∥∥

W (h),V h

αh

)∥∥u− Ihu
∥∥

W (h)

+ 1
αh

(
sup

vh∈V h

∣∣bh(vh) − bh
Q(vh)

∣∣
∥vh∥V h

+ sup
vh∈V h

∣∣ah(Ihu, vh) − ah
Q(Ihu, vh)

∣∣
∥vh∥V h

)
, (2.12)
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where Ihu represents the best approximation of u in Wh, i.e.,

Ihu = arg min
wh∈W h

∥u− wh∥ (2.13)

and αh denotes the inf-sup constant of the bilinear form ah : Wh × V h → R:

αh = inf
wh∈W h

sup
vh∈V h

ah(wh, vh)
∥wh∥W h∥vh∥V h

. (2.14)

Proof of (2.12) is standard; see, for instance, [11, Lemma 2.27]. The first term
in (2.12) represents an upper bound to the discretization error. The second term
in (2.12) bounds the consistency error, i.e., the integration error.

Equation (2.8) conveys that, in principle, integration errors emerge for both
the volume integrals and the surface integrals. Since the focus of this work is on
the optimization of the integration orders over octree sub-cells, in the remainder
of this work we will restrict our considerations to the integration errors associ-
ated with the volume integrals, thereby implicitly assuming that the boundary
integrals are evaluated exactly. When neglecting the integration errors associated
with the boundary integrals, the error term in (2.12) associated with the inexact
integration of the linear form is bounded by

sup
vh∈V h

∣∣bh(vh) − bh
Q(vh)

∣∣
∥vh∥V h

= sup
vh∈V h

∣∣∣∣∣ ∑
K∈T h

Ω

(∫
K
Bh

Ω(vh)(x) dV −
lK∑
l=1

ωl
KB

h
Ω(vh)(xl

K)
)∣∣∣∣∣

∥vh∥V h

≤
∑

K∈T h
Ω

sup
vh∈V h

∣∣∣∣∫K
Bh

Ω(vh)(x) dV −
lK∑
l=1

ωl
KB

h
Ω(vh)(xl

K)
∣∣∣∣

∥vh∥V h

. (2.15)

Note that the supremum is always considered over a function space with the
zero function excluded, e.g., vh ∈ V h \ {0}. For notational brevity we omit the
zero exclusion in the remainder of this manuscript. Under the (non-restrictive)
assumption that Bh

Ω is a local operator in the sense that(
Bh

Ω(vh|K)
)∣∣∣

K
is well defined and

(
Bh

Ω(vh)
)∣∣∣

K
=
(
Bh

Ω(vh|K)
)∣∣∣

K
, (2.16)

e.g., if Bh
Ω corresponds to a differential operator, the summands in the ultimate
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expression in (2.15) are bounded by the element-integration-error indicators

eb
K = sup

vh
K

∈V h
K

∣∣∣∣∫K
Bh

Ω(vh
K)(x) dV −

lK∑
l=1

ωl
KB

h
Ω(vh

K)(xl
K)
∣∣∣∣∥∥vh

K

∥∥
V h

K

, (2.17)

where V h
K = {vh|K , vh ∈ V h} is the restriction of V h to the element K, equipped

with a norm ∥ · ∥V h
K

such that ∥vh|K∥V h
K

≤ ∥vh∥V h for all vh ∈ V h. The element-
integration-error indicators eb

K can be computed element-wise and provide a
bound for the integration error in the linear form:

sup
vh∈V h

∣∣bh(vh) − bh
Q(vh)

∣∣
∥vh∥V h

≤
∑

K∈T h
Ω

eb
K (2.18)

Similarly, the integration error for the bilinear form in (2.12) is bounded as

sup
vh∈V h

∣∣ah(Ihu, vh) − ah
Q(Ihu, vh)

∣∣
∥vh∥V h

≤
∑

K∈T h
Ω

ea
K (2.19)

with the element-integration-error indicators defined as

ea
K = sup

vh
K

∈V h
K

∣∣∣∣∫K
Ah

Ω(Ihu, vh)(xK) dV −
lK∑
l=1

ωl
KA

h
Ω(Ihu, vh)(xl

K)
∣∣∣∣∥∥vh

K

∥∥
V h

K

. (2.20)

Substitution of the bounds (2.18) and (2.19) into the error estimate (2.12) then
yields

∥∥u− uh
Q
∥∥

W (h) ≤

(
1 +

∥∥ah
∥∥

W (h),V h

αh

)∥∥u− Ihu
∥∥

W (h)

+ 1
αh

∑
K∈T h

Ω

(
eb

K + ea
K

)
, (2.21)

which conveys that the element-integration-error indicators (2.17) and (2.20)
yield control over the inconsistency error. This motivates the development of an
algorithm to minimize the element-integration-error indicators; see Section 2.3.2.
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2.2.3 Application to the Poisson problem
We apply the general theory presented in Sections 2.2.1–2.2.2 to the particular
case of the Dirichlet–Poisson problem:{

−∆u = f in Ω,
u = g on ∂Ω,

(2.22)

with f : Ω → R and g : ∂Ω → R exogenous data. A suitable ambient space for
the weak formulation of (2.22) is provided by W = H1(Ω), equipped with the
usual H1-norm and inner product. Denoting by ℓg ∈ H1(Ω) a lift of the Dirichlet
data such that ℓg|∂Ω = g and by W0 = H1

0 (Ω) the subspace of functions in H1(Ω)
that vanish at the boundary in the trace sense, the weak formulation of (2.22)
assumes the form (2.1) with

a(u, v) =
∫

Ω
∇u · ∇v dV, b(v) =

∫
Ω
f v dV. (2.23)

We denote by V h a finite-dimensional subspace of H1(Ω) according to the con-
struction in Section 2.2.1. We equip V h with the mesh-dependent norm

∥vh∥2
V h =

∫
Ω

|∇vh|2 dV + c0

h

∫
∂Ω

(vh)2 dS. (2.24)

The symmetric Galerkin formulation in V h with weak enforcement of the Dirich-
let conditions by means of Nitsche’s method conforms to (2.7) with ah : V h ×
V h → R and bh : V h → R:

ah(uh, vh) =
∫

Ω
∇uh · ∇vh dV −

∫
∂Ω
vh∂nu

h dS

−
∫

∂Ω
uh∂nv

h dS + c1

h

∫
∂Ω
uhvh dS, (2.25a)

bh(vh) =
∫

Ω
f vh dV −

∫
∂Ω
g ∂nv

h dS + c1

h

∫
∂Ω
g vh dS. (2.25b)

For suitably chosen constants c0 and c1, the bilinear form is bounded and coercive
on V h ×V h and the linear form bh is bounded on V h. The bilinear form ah does
not admit a continuous extension to all H1(Ω), owing to the fact that the nor-
mal derivatives ∂n(·) that appear in ah are not properly defined for all functions
in H1(Ω). We therefore assume that the solution of the Dirichlet–Poisson prob-
lem (2.22) is suitably regular, e.g., such that ∂nu ∈ L2(∂Ω). We introduce the
composite space W (h) = span{u} ⊕V h and equip W (h) with the norm ∥ · ∥W (h),
corresponding to the extension of the norm in (2.24) to W (h). Trace theory
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conveys that ∥u∥W (h) ≤ ch∥u∥H1(Ω) for some (h-dependent) constant ch > 0
and, hence, the embedding of span{u} into W (h) is continuous. Under the afore-
mentioned regularity assumption on u, the bilinear form ah admits a continuous
extension to W (h) × V h, and (2.11)–(2.14) apply. To elucidate the notation
for the quadrature-dependent bilinear and linear forms for the Dirichlet–Poisson
problem, we note that in this case:

Ah
Ω(uh, vh)(x) = ∇uh(x) · ∇vh(x), Bh

Ω(vh)(x) = f(x) vh(x). (2.26)

One easily verifies that both Ah
Ω and Bh

Ω satisfy the locality condition (2.16).

2.3 Optimized octree cut-cell integration
Based on the error analysis discussed in Section 2.2.2, in this section we de-
velop an algorithm to optimize the distribution of integration points over octree-
subdivided cut-cells. In Section 2.3.1 we first introduce the considered octree
procedure and study its complexity with respect to the most relevant param-
eters. In Section 2.3.2 we then express the integration-error estimate in an
operator-independent form, making it applicable to a class of operators. The
per-cut-element evaluation of the operator-independent integration error is also
discussed in this section. Finally, the developed optimization procedure in the
form of Algorithm 2.1 is presented in Section 2.3.3.

2.3.1 Octree partitioning

To construct an explicit parametrization of the geometry (including its boundary)
we herein consider the octree procedure proposed in Ref. [58], which is illustrated
in Figure 2.2 for a two-dimensional cut-cell. In this procedure an element in the
background mesh that intersects the boundary of the domain is bisected into 2d

sub-cells. If a sub-cell is completely inside the domain, it is preserved in the
partitioning of the cut-cell, whereas a sub-cell is discarded if it is completely
outside of the domain. This bisectioning procedure is recursively applied to
the sub-cells that intersect the boundary, until ϱmax-times bisected sub-cells are
obtained. At the lowest level of bisectioning, i.e., for the ϱmax-times bisected
sub-cells, a tessellation procedure is applied to construct a partitioning of the
sub-cells that intersect with the domain boundary, resulting in an additional
level, i.e., ϱmax + 1. On the one hand, this tessellation procedure provides an
O(h2/22ϱmax) accurate parametrization of the interior volume [58], while, on the
other hand, it provides a parametrization for the trimmed surface. See Appendix
A for details regarding the employed tessellation procedure.
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Figure 2.2: Schematic representation of the octree integration procedure with tessel-
lation at the lowest level of bisectioning (see Appendix A).

Since the octree procedure provides a parametrization of the cut-cell and
integration rules are generally available for all sub-cells [68,108], cut-cell integra-
tion can be performed by agglomeration of all sub-cell quadrature points. The
accuracy of the cut-cell integration scheme can then be controlled through the se-
lection of the quadrature rules on the sub-cells. In particular, polynomials can be
integrated exactly over the cut-cell when Gauss quadrature of the appropriate or-
der is used on all sub-cells. An example of a cut-cell integration scheme based on
Gauss quadrature for third order polynomials is illustrated in Figure 2.2, where
the gray squares represent the Gauss points, and the relative size of the squares
is representative for the integration weights.

Selection of Gauss points of optimal order on all sub-cells is evidently very
attractive, in the sense that an adequate cut-cell integration scheme can be con-
structed by specification of the bisectioning depth ϱmax and the order of poly-
nomials to be integrated exactly. However, as observed from Figure 2.2, the ob-
tained cut-cell integration rule is generally not computationally efficient, in the
sense that the majority of integration points is formed on small sub-cells, as a
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Figure 2.3: Schematic illustration of the sub-cell formation using the octree partition-
ing for a single cut-element. The green color represents the sub-cells at level ϱ that are
completely inside the domain, m+

ϱ , and the blue cells represent the intersected sub-cells
of the level ϱ, m0

ϱ.

consequence of which their relative contribution to the overall integral (observed
from the size of the squares) is generally limited. As studied in Ref. [68], the
computational efficiency of the cut-cell integration scheme can be improved by
reducing the number of integration points on lower bisectioning levels. Although
this reduction decreases the accuracy of the integration scheme, the obtained
improvement in computational effort associated with the lower number of inte-
gration points outweighs this disadvantage. The algorithm proposed in Ref. [68]
targets the optimization of this balance between accuracy and computational
effort.

Since the balance between accuracy and computational effort also forms the
basis of the error-estimation-based optimization procedure in this work it is im-
portant to understand the distribution of the number of octree sub-cells over the
levels of bisectioning. To establish a scaling relation for the number of sub-cells
we consider a random cut-cell of size h with trimmed surface area S, as illus-
trated in Figure 2.3a. The octree subdivision approximates the surface area at
the maximum octree depth as

S ≈ m0
ϱmax

s̄

(
h

2ϱmax

)d−1
ϱmax ≥ ϱmin ≥ 1 (2.27)
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where m0
ϱmax

denotes the average number of sub-cells at octree depth ϱmax that
is intersected by the trimmed boundary, and where s̄ is the average surface area
of a randomly cut unit cube in d dimensions. This surface approximation is valid
under the condition that

ϱmax ≥ ϱmin = ceil
(

log2 (ς)
1 − d

)
≥ 1, (2.28)

with surface fraction ς = S
s̄hd−1 . For example, for the cut-cell illustrated in

Figure 2.3, ϱmax ≥ ϱmin = 1.
From (2.27) the number of intersected elements at level ϱmax follows to be:

m0
ϱmax

≈

{
1 0 ≤ ϱmax < ϱmin

ς2ϱmax(d−1) ϱmax ≥ ϱmin ≥ 1
(2.29)

Denoting the number of sub-cells at level ϱ that are completely inside of the
domain by m+

ϱ (see Figure 2.3), and noting that the average volume of a randomly
cut unit cube is v̄ = 1

2 , the cut-cell volume can be approximated as

V ≈ m0
ϱmax

1
2

(
h

2ϱmax

)d

+
ϱmax∑
ϱ=1

m+
ϱ

(
h

2ϱ

)d

ϱmax ≥ 1, (2.30)

which is divided by the volume of the background cell to obtain the cut-cell
volume fraction: insubequations

η ≈ ηϱmax = m0
ϱmax

2−(ϱmaxd+1) +
ϱmax∑
ϱ=1

m+
ϱ

(
1
2ϱ

)d

ϱmax ≥ 1, (2.31)

= ς2−(ϱmax+1) +
ϱmax∑
ϱ=1

m+
ϱ

(
1
2ϱ

)d

ϱmax ≥ ϱmin ≥ 1. (2.32)

subequations Assuming that ϱmax adequately resolves the volume fraction of the
cut-cell, it holds that ηϱmax ≈ ηϱmax−1 with ϱmax ≥ ϱmin + 1 and

ηϱmax − ηϱmax−1 = −ς2−(ϱmax+1) +m+
ϱmax

2−ϱmaxd ≈ 0. (2.33)

For the number of sub-cells at bisectioning level ϱmax, we then obtain

m+
ϱmax

≈ ς2ϱmax(d−1)−1 ϱmax > ϱmin. (2.34)

Since it follows from (2.29) that the interface localizes in a single sub-cell if
ϱ ≤ ϱmin (m0

ϱ = 1 ϱ < ϱmin,m
0
ϱmin

= ς2ϱmin(d−1) ≈ 1), the number of preserved
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sub-cells across all levels is given by

m+
ϱ ≈


0 ϱ ≤ ϱmin ∧ η ≤ 1

2
2d − 1 ϱ ≤ ϱmin ∧ η > 1

2
ς2ϱ(d−1)−1 ϱ > ϱmin

(2.35)

where the volume fraction η dictates which side of the interface corresponds to
the interior domain. For example, for the cut element displayed in Figure 2.3
the volume fraction is larger than a half, which implies that all but one of the
sub-cells at level ϱ = 1 are preserved. If the complement of the element would be
considered, none of the level ϱ = 1 sub-cells would be included in the partitioning.

If we denote the average number of integration points per octree sub-cell by
q̄ϱ, the total number of integration points per level follows as

nϱ ≈


0 ϱ ≤ ϱmin ∧ η ≤ 1

2
q̄ϱ(2d − 1) ϱ ≤ ϱmin ∧ η > 1

2
q̄ϱς2ϱ(d−1)−1 ϱmin < ϱ ≤ ϱmax

q̄ϱt̄dς2ϱmax(d−1) ϱ = ϱmax + 1

(2.36)

where t̄d is the number of sub-cells in which the lowest bisectioning level ϱ =
ϱmax + 1 is tessellated (see Appendix A). The total number of integration points
for a level ϱmax octree partitioning then follows as

Nϱmax ≈



ς

(
q̄ϱmax+1t̄d2ϱmax(d−1) +

ϱmax∑
ϱ=ϱmin+1

q̄ϱ2ϱ(d−1)−1

)
η ≤ 1

2 ,

ς

(
q̄ϱmax+1t̄d2ϱmax(d−1) +

ϱmax∑
ϱ=ϱmin+1

q̄ϱ2ϱ(d−1)−1

)

+
ϱmin∑
ϱ=1

q̄ϱ

(
2d − 1

) η > 1
2 .

(2.37)

This approximation reflects the strong dependence of the number of integration
points on the surface fraction ς. When ς is very small, ϱmin is very large, as
a result of which a significant number of integration points for non-intersected
sub-cells can be present (depending on the volume fraction). When ς is large,
or, more generally when ϱmax ≫ ϱmin, the number of non-intersected sub-cells
is negligible. For the case that the Gauss order is selected equal on all levels,
i.e., q̄ϱ = qd

line for ϱ ≤ ϱmax (with qline the number of integration points along
a one-dimensional line segment) and q̄ϱmax+1 = qtes,d, the number of integration
points (2.37) reduces to:

Nϱmax ≈ ς

(
qtes,dt̄d + qd

line
2 − 22−d

)
2ϱmax(d−1) ϱmax ≫ ϱmin. (2.38)
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This estimate conveys that the number of integration points scales linearly with
the surface fraction, and exponentially with the octree depth. This exponential
scaling depends on the number of spatial dimensions. In two dimensions the num-
ber of integration points doubles while increasing the octree depth by one, while
in three dimensions it quadruples. Hence, in comparison to the two-dimensional
setting, the number of integration points in three dimensions scales much more
dramatically with the octree depth. A numerical study of the number of integra-
tion points in relation to the scaling relations presented in this section is provided
in Section 2.4.

2.3.2 Cut-cell integration errors
In Section 2.2.2 the application of Strang’s first lemma to the quantification of
integration errors in the finite-cell method was discussed. Equations (2.18) and
(2.19) convey that the integration error can be estimated by the summation of the
operator-dependent element-integration-error indicators eb

K and ea
K . This section

discusses the evaluation of these errors and their localization to the integration
sub-cells. In order to evaluate the cell-wise integration error, in Section 2.3.2
the integration errors are expressed as the product of an operator-independent
integration error and a scaling term depending on the operator. Subsequently,
in Section 2.3.2 the numerical evaluation of the operator-independent cut-cell
integration error is discussed.

Integration error definition

The element-integration-error indicators eb
K and ea

K , expressed by equations (2.17)
and (2.20) respectively, depend on the operations Ah

Ω and Bh
Ω. It is generally de-

sirable to apply a single integration scheme for all terms and, hence, to have
uniform control over ea

K and eb
K . To enable a uniform treatment of both ea

K

and eb
K , we first note that the integrals in the numerators of (2.17) and (2.20)

constitute linear functionals on V h
K . By the Riesz-representation theorem, there

exist elements T a, T b ∈ V h
K such that∫

K

T avh
K dV =

∫
K

Ah
Ω
(
Ihu, vh

K

)
(xK) dV, (2.39a)

∫
K

T bvh
K dV =

∫
K

Bh
Ω
(
vh

K

)
(xK) dV, (2.39b)

for all vh
K ∈ V h

K . We now proceed under the assumption that the error introduced
in the numerical integration is equivalent for the original functionals and their
Riesz-representation, i.e., the difference in applying the integral rate to the left-
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and right-hand-side members of (2.39a) and (2.39b) is negligible. It then holds
that

ea
K ≤ sup

vh
K

∈V h
K

∣∣∣∣∫K
T avh

K dV −
lK∑
l=1

ωl
K

(
T avh

K

)
(xl

K)
∣∣∣∣

∥vh
K∥V h

K

≤ ∥T a∥L2(K) sup
T a,vh

K
∈V h

K

∣∣∣∣∫K
T avh

K dV −
lK∑
l=1

ωl
K

(
T avh

K

)
(xl

K)
∣∣∣∣

∥T a∥L2(K)∥vh
K∥V h

K

, (2.40)

for (2.20) and the following similar expression applies to (2.17)

eb
K ≤ ∥T b∥L2(K) sup

T b,vh
K

∈V h
K

∣∣∣∣∫K
T bvh

K dV −
lK∑
l=1

ωl
K

(
T bvh

K

)
(xl

K)
∣∣∣∣

∥T b∥L2(K)∥vh
K∥V h

K

. (2.41)

For T a, vh
K in the polynomial space V h

K , the product T avh
K resides in the double-

degree polynomial space PK . By virtue of the equivalence of norms in finite
dimensional spaces, PK can be equipped with a norm ∥ · ∥PK

such that

∥T a∥L2(K)∥vh
K∥V h

K
≥ 1

CK
∥T avh

K∥PK
, (2.42)

for a constant CK ≥ 1. A similar inequality holds for T b. Defining Ca
K =

CK∥T a∥L2(K) and Cb
K = CK∥T b∥L2(K), it follows from (2.40) and (2.41) that

ea
K ≤ Ca

Ke
p
K and eb

K ≤ Cb
Ke

p
K with

ep
K = sup

pK∈PK

∣∣∣∣∫K
pK(xK) dV −

lK∑
l=1

ωl
KpK(xl

K)
∣∣∣∣

∥pK∥PK

. (2.43)

Substitution of the operation-independent element integration errors (2.43) in
the global error bound (2.21) yields

∥∥u− uh
Q
∥∥

W (h) ≤

(
1 +

∥∥ah
∥∥

W (h),V h

αh

)∥∥u− Ihu
∥∥

W (h)

+ 1
αh

∑
K∈T h

Ω

(
Cb

K + Ca
K

)
ep

K . (2.44)

The error bound (2.44) conveys that the integration errors can be controlled
through the operator-independent elemental integration errors ep

K .
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Integration error evaluation

The element integration error (2.43) can be approximated by discretization of
the space PK . We select the finite dimensional space PK as the tensor-product
space of univariate polynomials of order k over the element K, i.e.,

pK(xK) =
d∏

i=1

k∑
j=0

αi,jx
j
K,i = Φ(xK)T a, (2.45)

with Φ(xK) ∈ Rnp the basis of monomials of size np = (k + 1)d and a ∈ Rnp

the corresponding coefficients. The space PK is equipped with the Sobolev norm
∥ · ∥Hr with r ≥ 0. Using the polynomial basis (2.45), the element integration
error (2.43) can be expressed as

ep
K = sup

pK∈PK

∣∣∣∣∫K
pK(xK) dV −

lK∑
l=1

ωl
KpK(xl

K)
∣∣∣∣

∥pK∥Hr(K)

=

√√√√√√ sup
pK∈PK

∣∣∣∣∫K
pK(xK) dV −

lK∑
l=1

ωl
KpK(xl

K)
∣∣∣∣2

∥pK∥2
Hr(K)

=

√
sup

a∈Rnp

aT (ξ − ξ̄)(ξ − ξ̄)T a
aT Ga

=
√
λmax. (2.46)

where λmax is the largest eigenvalue of the generalized eigenvalue problem[(
ξ − ξ̄

) (
ξ − ξ̄

)T
]

vi = λiGvi i = 1, . . . , np, (2.47)

with eigenvalues λi and eigenvectors vi, and with the vectors ξ and ξ̄ defined as

ξ =
∫

K

Φ dV (2.48a)

ξ̄ =
lK∑
l=1

ωl
KΦ(xl

K). (2.48b)

The matrix G in (2.47) is defined as the Gramian matrix for the basis functions
Φ associated with the Hr(K) Sobolev space.
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Since the left-hand-side matrix in the eigenvalue problem (2.47) is the dyadic
product of two vectors its rank is equal to one. As a consequence, the eigenvalue
problem (2.47) only has one non-zero eigenvalue, with the corresponding eigen-
vector being in the direction G−1(ξ − ξ̄). Since the Gramian matrix is positive
definite, this single non-zero eigenvalue is positive and therefore equal to the max-
imum eigenvalue. This maximum eigenvalue and its corresponding eigenvector
are equal to

λmax = ∥ξ − ξ̄∥2
G−1 , (2.49a)

vmax =
G−1(ξ − ξ̄)
∥ξ − ξ̄∥G−1

, (2.49b)

with

∥ξ − ξ̄∥G−1 =
√

(ξ − ξ̄)T G−1(ξ − ξ̄). (2.50)

Substitution of λmax in equation (2.46) expresses the element integration error
in terms of the vector ξ − ξ̄ as:

ep
K = ∥ξ − ξ̄∥G−1 . (2.51)

The polynomial corresponding to this error, i.e., the function in PK yielding the
largest integration error follows directly from the maximum eigenvector vmax as

pK,max = ΦT vmax

=
ΦT G−1(ξ − ξ̄)

∥ξ − ξ̄∥G−1
. (2.52)

Note that the scaling of this function with respect to the norm (2.50) is chosen
such that

∥pK,max∥2
Hr(K) = vT

maxGvmax

=
(ξ − ξ̄)T G−1(ξ − ξ̄)

∥ξ − ξ̄∥2
G−1

= 1, (2.53)

and hence

ep
K =

∣∣∣∣∣
∫

K

pK,max(xK) dV −
lK∑
l=1

ωl
KpK,max(xl

K)
∣∣∣∣∣ . (2.54)



32 Error-estimate-based adaptive integration

2.3.3 The cut element quadrature optimization algorithm
The ability to evaluate the maximal cut-cell integration error and the corre-
sponding integrand that leads to this error serves as the basis for the quadrature-
optimization procedure developed in this work. The error (2.54) is, in general,
controlled by the octree depth, ϱmax, and the quadrature rules selected on all
sub-cells. In the remainder of this work we assume the octree depth to be fixed
at a level where the partitioning error is negligible.

For the space of polynomials considered above, i.e., those of equation (2.45),
the vector ξ of basis function integrals can be evaluated exactly on the exact
or approximated geometry and by appropriate selection of the Gauss integration
order. As discussed in Section 2.3.1, the usage of exact Gauss integration on all
sub-cells is impractical from a computational effort point of view in large scale
finite-cell simulations. The conceptual idea behind the quadrature optimization
procedure developed here is to determine integration rules with a significantly
smaller number of integration points, and to use the evaluable integration error
(2.54) to find the optimal distribution of these points over the sub-cells.

The developed optimization procedure is intended as a per-element prepro-
cessing operation, which results in optimized quadrature rules for all cut elements
in a finite cell simulation. In order to conduct this preprocessing operation, for
each cut element the exact shape function integrals ξ and the Gramian G must be
determined. These computations are relatively expensive, but especially in time-
dependent or non-linear problems – where the optimised quadrature scheme will
be re-used many times – the computational gain in the simulations outweighs the
effort in this preprocessing operation. The computational effort will be studied
in Section 2.4.3.

In Section 2.3.3 we first formalize the integration error minimization problem
that serves as the basis for the optimization algorithm. In Section 2.3.3 the
algorithm is then introduced and various algorithmic aspects are discussed.

The minimization problem

We consider an octree partitioning of the element K as described in Section 2.3.1

and denote this partitioning by P =
ϱmax+1⋃

ϱ=0
Pϱmax

K,ϱ , with Pϱmax
K,ϱ the sub-cells corre-

sponding to the octree level ϱ. On each sub-cell ℘ ∈ P a sequence of quadrature
rules is defined: {

Qı
℘ | ı = 0, 1, 2, . . .

}
. (2.55)

We assume that the quadrature rules Qı
℘ are nested, in the sense that the set

of polynomials on ℘ that are integrated exactly by Qı+1
℘ includes all polynomi-

als that are integrated exactly by Qı
℘. The quadrature rule for the complete
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partitioning is defined as

Qı
P =

⋃
℘∈P

Qı℘
℘ , (2.56)

with ı = {ı℘ | ℘ ∈ P} a list of length m = #P with sub-cell quadrature rule
indices. For a given type of integration rule, e.g., Gauss integration, the index
list ı ∈ Nm fully determines the quadrature rule for the partitioned cut-cell K.

Both the total number of integration points in the cut element, defined by
#Qı

℘, and the integration error (2.54) can be expressed as functions of the quadra-
ture index list ı:

ep,ı
K =

∣∣∣∣∣∣
∫

K

pK,max(xK) dV −
∑
℘∈P

∑
(ωK ,xK )∈Qı℘

℘

ωKpK,max(xK)

∣∣∣∣∣∣ , (2.57a)

with pK,max according to (2.52) for the integration rule Qı
P . Using these func-

tions the intended quadrature optimization procedure can be formulated as the
constrained minimization problem

minimize
ı∈Nm

ep,ı
K subject to #Qı

P = q⋆, (2.58)

with q⋆ the specified number of integration points. Conversely, we can express the
optimization problem in terms of the minimization of the number of integration
points for a fixed error

minimize
ı∈Nm

#Qı
P subject to ep,ı

K = e⋆
K , (2.59)

with e⋆
K the intended error level.

Remark 2.1 (Quadrature refinement strategy). In this work, the integration
quadrature per sub-cell is refined by increasing the order of the integration scheme.
Alternatively, refinement would be possible by subdivision of a sub-cell and then
constructing quadrature rules over the refined sub-cells. Since we consider the
integration of smooth functions over the cut-cells, improving the quadrature by
increasing its order is more efficient than spatial refinement of the sub-cells.

The optimization algorithm

The developed algorithm to obtain the optimal distribution of integration points
over all sub-cells is presented in Algorithm 2.1. This algorithm approximates the
minimization problem (2.58) through the generation of a sequence of refinement
schemes, {ı0, ı1, · · · , ı⋆}, where for the initial quadrature rule the lowest order of
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integration on each sub-cell is considered, i.e., ı0 = 0, and where the optimized
quadrature rule (approximately) satisfying the constraint condition is denoted by
i⋆.

Given the r-th iterate in the optimization procedure, ır, the next integration
rule in the sequence, ır+1, is determined in three steps:

1. The function corresponding to the maximum integration error, pK,max, is
determined for an integration rule ır using equation (2.52). The correspond-
ing integration error can be found using (2.57a). This step corresponds to
the lines (3) – (11) in Algorithm 2.1.

2. The integration error (2.57a) is localized to the sub-cells in order to form
indicator functions representing the sub-cell-wise error reduction per added
integration point. The definition of the sub-cell indicators, which is dis-
cussed in detail below, ensures that the algorithm approximates the mini-
mization problem (2.58). This step corresponds to the lines (11) – (12) in
Algorithm 2.1.

3. The integration rule index of the sub-cells with the largest indicators, i.e.,
with the largest reduction in error per added integration point, is increased
by one as to reduce the integration error in these sub-cells. The employed
marking strategies are discussed below. This step corresponds to the line
(14) in Algorithm 2.1.

These steps are repeated until the specified number of integration points is
reached, i.e., when #Qı

℘ ≥ q⋆. The algorithm is stopped prematurely when
the integration rule sequence (2.55) is depleted. Specifically, in the considered
implementation [109] the maximum quadrature orders for the lowest level tessel-
lation is equal to 6 (12 points) for triangles and 7 (31 points) for tetrahedrons.
The algorithm termination conditions correspond to line (17) in Algorithm 2.1.

Sub-cell indicators To form the sub-cell indicators we consider a uniform
refinement of the integration indices, i.e., ır+1 = ır + 1 for each sub-cell. The
error reduction per added integration point in the case of this uniform refinement
can be expressed as

−
ep,ır+1

K − ep,ır

K

#Qır+1
P − #Qır

P
≤

ep,ır

K

#Qır+1
P − #Qır

P
. (2.60)

Using the sub-cell integration error according to

ep,ı
℘ =

∣∣∣∣∣∣
∫

℘

pK,max(xK) dV −
∑

(ωK ,xK)∈Qı
℘

ωKpK,max(xK)

∣∣∣∣∣∣ , (2.61)
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and the reduction in the number of integration points1, the error reduction (2.60)
is bounded as:

ep,ır

K

#Qır+1
P − #Qır

P
≤

∑
(ı,℘)∈(ı,P)

ep,ır

℘

#Qır+1

P − #Qır

P

≤ 1
m

max
(ı,℘)∈(ı,P)

(
#Qır+1

℘ − #Qır

℘

)
min

(ı,℘)∈(ı,P)

(
#Qır+1

℘ − #Qır

℘

)
∑

(ı,℘)∈(ı,P)

ep,ır

℘(
#Qır+1

℘ − #Qır

℘

)
≤ c

m

∑
(ı,℘)∈(ı,P)

Rır

℘ , (2.62)

with the sub-cell indicator function defined as

Rı
℘ =

ep,ı
℘

#Qı+1
℘ − #Qı

℘

. (2.63)

The sub-cell indicator (2.63) weighs the local integration error by the cost of
increasing the integration order. Under the assumption that the sub-cell inte-
gration error reduces significantly when increasing the order of the integration
scheme by one, the numerator in (2.63) can be interpreted as the error reduction
rather than the error itself. This assumption of local error reduction is, however,
in general, not satisfied. As a consequence, in the proposed algorithm sub-cells
whose integration error does not decrease significantly (or even increases) by rais-
ing the order of integration by one would be underrated in the indicator function.
Considering the error rather than the error reduction in the indicator provides a
more robust measure of the potential to decrease the error in a sub-cell.

Sub-cell marking strategy Based on the upper bound (2.62) of the error
reduction per added integration point, sub-cells are marked for refinement. We

1
#Qır+1

P − #Qır

P ≥ m min
(

#Qır+1
℘ − #Qır

℘

)
≥ m

min
(

#Qır+1
℘ − #Qır

℘

)
max

(
#Qır+1

℘ − #Qır
℘

) max
(

#Qır+1
℘ − #Qır

℘

)
≥ m

min
(

#Qır+1
℘ − #Qır

℘

)
max

(
#Qır+1

℘ − #Qır
℘

) (#Qır+1
℘ − #Qır

℘

)
.
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herein consider two marking strategies, with M denoting the set of sub-cells
marked for increasing the integration order:

• Sub-cell marking: In this marking strategy we increase the integration order
of the single sub-cell with the largest indicator:

M = arg max
(ı,℘)∈(ı,P)

(
Rı

℘

)
. (2.64)

• Octree level marking: Sub-cell marking involves refinement of individual
sub-cell in each refinement step. This generally leads to a large number of
optimization steps, which is undesirable from a computational effort point
of view. In order to expedite the optimization procedure, it is possible to
mark multiple sub-cells simultaneously. A natural way of marking multiple
sub-cells is to agglomerate all sub-cells in a particular level. This leads to
a marking strategy in which we increase the integration order for the level
(in the octree partitioning) with the largest indicator:

M = arg max
{Pϱ

K
}ϱmax+1

ϱ=0

 ∑
(ı,℘)∈(ı,Pϱ

K)
Rı

℘

 . (2.65)

Remark 2.2 (Global adaptive integration). The algorithm presented above is
framed in an element-by-element setting, i.e., each cut element is considered sepa-
rately in the preprocessing operation to determine the integration schemes. Since
the evaluation of the integration error and its indicators involves the repeated
computation of solutions to a linear system with the size equal to the number of
supported basis functions, i.e., equation (2.54), global application of the algorithm
is impractical from a computational effort point of view.

It should be noted that the element-by-element setting considered here does
not account for the fact that the operator-dependent constants in the multiplica-
tive decomposition (2.43) in principle vary per element. For example, a source
term might be negligibly small on an element that is challenging to integrate, and
hence improving quadrature on that element would be inefficient from the error
approximation point of view. Additional integration points are, however, assigned
to such a cut element in the element-by-element strategy employed here, as the
operator is not considered in the marking strategy.

Global adaptive integration is feasible, however, by computing the indicators
on all elements individually ( i.e., solving multiple relatively small local linear
systems, rather than a large global system), and then to apply a global mark-
ing strategy. Both the sub-cell marking and the level marking strategy can then
be applied globally. The potential benefit of such a global marking strategy is
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that it automatically accounts for the fact that not all cut elements are equally
hard to integrate. However, in principle, the operator-dependent constants should
then be incorporated in the error indicators. Moreover, one should be aware that
parallelization of the preprocessing operation, which is trivial in the per-element
setting, is more challenging using the global marking strategy, as communication
between the elements is required. The development of a rigorous global integration
optimization routine, which would consider the above-mentioned complications, is
considered beyond the scope of the current work.

2.4 Numerical study of the adaptive integration
procedure

To assess the performance of the developed adaptive integration technique, in
this section we study its behavior in terms of integration accuracy versus the
number of integration points. We here consider the case of a single cut-cell. The
effect of the integration accuracy on actual finite-cell simulations will be studied
subsequently in Section 2.5.

We consider a d-dimensional unit cube [0, 1]d in two and three dimensions as
a single element of the background mesh. Throughout this section we exclude
an ellipsoid with semi-major axis r1 and semi-minor axes r2 (with the sphere as
the special case r1 = r2) that is centered at the origin of the background element
and with its major axis residing in the x1 − x2 plane at an inclination of φ with
respect to the x1 axis. The resulting cut-element corresponds to the subdomain
for which the level set function

l(x) =
(
x̄1

r1

)2
+

d∑
δ=2

(
x̄δ

r2

)2
(2.66)

is positive, where x̄1 = x1 cosφ− x2 sinφ, x̄2 = x1 sinφ+ x2 cosφ, and, if d = 3,
x̄3 = x3. Schematics of various cut-elements generated using the octree proce-
dure, discussed in Section 2.3.1, with a maximum octree depth of ϱmax = 3 for
a spherical exclusion and ϱmax = 4 for an elliptical exclusion are displayed in
Figure 2.4. Here, the maximum octree depth is chosen such that the geometric
error is negligible.

2.4.1 Equal-order degree integration
Before we proceed with the presentation of the results obtained using the adap-
tive integration procedure, we first consider the case for which the order of the
integration scheme is chosen to be same over all integration sub-cells. We consider
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Algorithm 2.1: Adaptive integration algorithm.
Input: P = ∪ϱmax+1

0 Pϱ
K = ∪℘, k, marking strategy

Output: Qı⋆

P # optimized quadrature rule

# Initialization
1 ı = 0 # quadrature index
2 Φ =get monomial basis(k) # monomial basis

# Reference integrals
3 ξi =

∫
P Φi dV # basis function integral vector

4 Gij = (Φi,Φj)H1 # Gramian matrix

5 while not terminate :
# Quadrature rule

6 Qı
P = get quadrature(P) # quadrature rule

7 ξ̄ =
∑

(ωP ,xP )∈Qı
P

ωPΦ(xP) # approximate basis function

integral vector

# Worst possible function to integrate

8 vmax = G−1(ξ − ξ̄)
∥ξ − ξ̄∥G−1

# eigenvector

9 pmax = ΦT vmax # eigenfunction

# Sub-cell errors and indicators
10 for ℘ in P:

11 e
p,ı℘
℘ =

∣∣∣∣∣∫℘
pmax(xP) dV −

∑
(ω℘,x℘)∈Qı℘

℘

ω℘pmax(x℘)
∣∣∣∣∣ # error

12 Rı℘
℘ = e

p,ı℘
℘

#Qı℘+1
℘ −#Qı℘

℘

# indicator

13 end
# Sub-cells marked for refinement

14 M = mark sub cells({Rı℘
℘ }℘∈P , marking strategy)

15 for ℘ in M:
16 ı℘ → ı℘ + 1

# stopping criterion
17 if not Qı

℘ then terminate = True
18 end
19 end
20 return Qı⋆

P
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Schematic representation of the two-dimensional (top row) and three-
dimensional (bottom row) cut-element corresponding to the level set function (2.66)
with r1 = r2 = 0.6 for panel (a), r1 = 0.6, r2 = 0.1, φ = 45◦ for panel (b), r1 = 0.6,
r2 = 0.1, φ = 0◦ for panel (c), r1 = r2 = r3 = 0.6 for panel (d), r1 = 0.6, r2 = 0.1,
φ = 45◦ for panel (e) and r1 = 0.6, r2 = 0.1, φ = 0◦ for panel (f).

the case of a spherical exclusion with r1 = r2 = 0.6. In Figure 2.5 the integra-
tion error (2.54) is plotted for the cases of ϱmax = 3, 4, 5 in two dimensions and
ϱmax = 2, 3, 4 in three dimensions. In each of the sub plots the integration index
ı is increased uniformly over all sub-cells. For all presented results the polyno-
mial order k = 8 is considered for two dimensions and k = 5 is considered for
three dimensions. The error (2.54) is defined with respect to the H1 norm. The
integration error is in all cases computed with respect to the exact integral over
the considered partitioning, and hence the geometric error corresponding to the
octree partitioning is not represented in the results.

Figure 2.5 displays integration errors based on both equal-order Gauss quadra-
ture and equal-order uniform quadrature on all sub-cells. It is observed that for
all ϱmax the observed errors for a particular integration order are similar, which
is explained by the fact that the integration error is dominated by contributions
from the sub-cells that are already present at the lowest ϱmax and that the er-
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rors are computed with respect to the considered partitioning. In terms of the
number of integration points, the octree depth does, however, have a substantial
effect. The observed increase in number of integration points is studied in detail
in Figure 2.6 for the case of a uniform scheme with 42 points per sub-cell in
two dimensions and 43 points per sub-cell in three dimensions and for a Gauss
scheme of order 4 on each sub-cell. This figure conveys that the total number of
integration points scales in agreement with the relation (2.37). In particular the
doubling of the number of points in two dimensions and the quadrupling in three
dimensions while increasing the octree by a single level is clearly observed.

From Figure 2.5 it is observed that for Gauss orders that are significantly be-
low the order required for exact integration there is not a substantial difference
with uniform integration. Once the Gauss order reaches that needed for exact
integration, the error observed for Gauss integration is substantially smaller than
that using uniform integration. When considering the same integration order on
all sub-cells, this advantage is, however, only attained at the expense of intro-
ducing a large number of integration points, in particular in cases of high octree
depths.

2.4.2 Adaptive integration

We now consider the adaptive-integration procedure for the circular exclusion
setting considered in Section 2.4.1. In Figure 2.7 various steps in the quadrature-
optimization procedure are shows, displaying for each step the number of inte-
gration points per sub-cell (left column), error and the function leading to that
error (middle column), and the sub-cell error indicators (2.54) (right column).
The presented results are generated using the per sub-cell marking strategy. The
sequence of steps demonstrates that in each step the worst possible function in
terms of integration is determined. In the first step, this corresponds to a func-
tion that is large in magnitude at the largest sub-cell. This function leads to an
indicator that is highest in that sub-cell, and hence the order of integration on
that cell is increased. As a result, in the second step a function that is large in
magnitude on the sub-cells surrounding the largest sub-cell is found to be the
worst possible in terms of integration error. The larger volume of the ϱ = 1 inte-
gration cell makes, however, that the largest indicator is still found for that cell.
After another increase in integration order on that sub-cell, in the subsequent
steps the largest indicators are found on the ϱ = 2 sub-cells, which are therefore
gradually increased in order.

Figure 2.8 displays the integration error versus the total number of integra-
tion points as evolving during the optimization procedure. The displayed results
pertain to ϱmax = 3 in both two and three dimensions, displaying the equal-order
results discussed in Section 2.4.1 for reference. As can be seen, the error per inte-
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(a) d = 2, ϱmax = 3

(b) d = 2, ϱmax = 4

(c) d = 2, ϱmax = 5

(d) d = 3, ϱmax = 2

(e) d = 3, ϱmax = 3

(f) d = 3, ϱmax = 4

Figure 2.5: Integration errors for a spherical exclusion with radius 0.6 using the same
integration scheme on all sub-cells.
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(a) Uniform, d = 2 (b) Gauss, d = 2

(c) Uniform, d = 3 (d) Gauss, d = 3

Figure 2.6: Dependence of the number of integration points on the octree depth for
the case of uniform integration (with 4 point per dimension) on all sub-cells (top row)
and Gauss quadrature of order 4 for all sub-cells (bottom row).
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gration point is substantially lower using the adaptive integration procedure. For
example, in two dimensions, the error corresponding to the equal second order
Gauss scheme is equal to 2.52 × 10−2, while that particular integration scheme
involves 144 points. For the same number of points, the error corresponding
to the optimized quadrature is equal to 1.00 × 10−3, i.e., a factor 25 reduction
in error. Figure 2.9 displays the distribution of the integration points over the
sub-cells for the equal-order Gauss scheme and the optimized case, which clearly
demonstrates that the significant reduction in error is achieved by assigning more
integration points to the larger sub-cells before introducing additional points in
the smaller sub-cells.

In general, for a fixed integration error, the number of integration points is
substantially lower using the adaptive integration procedure than when using the
equal-order schemes. For example, in two dimensions, the error corresponding to
the equal fourth order Gauss scheme is equal to 7.35 × 10−3, which involves 303
points. For a similar error, the number of points for the optimized quadrature
is equal to 83, i.e., a reduction by a factor of approximately 4. Figure 2.10
displays the distribution of integration points over the sub-cells for the equal-order
Gauss scheme and the optimized quadrature, which clearly shows the reduction
in number of points for a fixed error. This figure also conveys that the observed
reduction factor of 4 is significantly influenced by the initial integration order in
the adaptive procedure, which in this case has been set to 1 (for this case the
minimum number of points is equal to 43).

Figure 2.8b displays the error versus the number of integration points for the
three-dimensional spherical exclusion with ϱmax = 3. The integration error cor-
responding to the equal second order Gauss schemes is equal to approximately
1.14 × 10−2 and pertains to 7168 integration points. For the same number of
points, the adaptive procedure reduces the error to 2.67 × 10−5, which consti-
tutes a reduction factor of approximately 450. This reduction factor is signifi-
cantly higher than that observed in the two-dimensional case, despite the simi-
larity in asymptotic scaling rate between the integration error and the number
of integration points in the two- and three-dimensional cases. The larger reduc-
tion factor in three dimensions is attributed to the significant reduction in error
that is achieved during the first integration point optimization steps, in which
the integration order on the ϱ = 1 sub-cells is increased. The difference between
the two-dimensional and three-dimensional setting in this regard is the fact that
in three dimensions there is a significant number of such sub-cells, whereas in
two dimensions there is only one sub-cell of level ϱ = 1. For an integration er-
ror 1.139 × 10−2, the adaptive procedure requires only 1646 points, which, as in
the two-dimensional case, is a reduction by a factor of approximately 4. As for
the two-dimensional case, this reduction factor is significantly influenced by the
integration order with which the adaptive procedure is initiated.
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(a) Step 1

(b) Step 2

(c) Step 115

Figure 2.7: Selection of steps in the quadrature optimization procedure for a circular
exclusion. (left column) The number of integration points per sub-cell and the total
number of points on the cut-element. (middle column) The integration error and the
function leading to that error. (right column) The sub-cell integration error indicators.
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(a) d = 2 (b) d = 3

Figure 2.8: Evolution of the integration error and number of integration points using
the per sub-cell marking strategy. The results for equal-order quadrature are shown for
reference.

(a) Equal-order Gauss (b) Optimal integration

Figure 2.9: Distribution of integration points over the cut-element for 144 points in
two dimensions, which corresponds to the number of points attained using a second
order Gauss scheme on all sub-cells. Note that the error is reduced by a factor of 25 in
two dimensions by using the per sub-cell marking strategy.
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(a) Equal-order Gauss (b) Optimal integration

Figure 2.10: Distribution of integration points over the cut-element for an error of
approximately 7.3 × 10−3. Note that the number of integration points is reduced by a
factor of 4 in two dimensions by using the per sub-cell marking strategy.

2.4.3 Influence of algorithmic settings and cut-cell config-
urations

In the previous section the performance of the adaptive integration routine has
been studied using representative settings for the cut-cell geometry and algorith-
mic parameters. In this section we will study the influence of the most prominent
parameters on the performance of the adaptive integration technique.

The marking strategy

From the refinement patterns that emerge from the per sub-cell refinement strate-
gies – such as the ones discussed in the previous section – it is observed that,
as a general trend, integration orders are increased on a per-level basis, i.e., the
number of integration points is increased from level ϱ to ϱmax + 1. This is ex-
plained by the fact that the indicators scale with the volume of the sub-cells.
Based on this observation it is anticipated that the level-based marking strategy
discussed in Section 2.3.3 can be very efficient, in the sense that it yields a similar
refinement pattern as the per-cell marking, but that it needs fewer iterations by
virtue of marking a larger number of sub-cells per step.

In Figure 2.11 the per-level and per-cell marking strategies are compared
for the test case introduced above. In both two and three dimensions it is ob-
served that the per-level marking strategy closely follows the per-cell marking.
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(a) d = 2 (b) d = 3

Figure 2.11: Comparison of the evolution of the integration error and number of
integration points using the per-sub-cell and per-octree-level marking strategy.

In particular in the initial steps of the optimization a very close agreement is
observed between the marking strategies. In Figure 2.12 we inspect the distri-
bution of points corresponding to the two marking strategies with 204 points (in
the two-dimensional setting). This figure conveys that, indeed, the distribution
of integration points between the two markings is very similar.

Although the observed point distributions in Figure 2.12 are similar, the num-
ber of iterations required to attain these distributions is significantly different.
The per-cell marking strategy requires 54 iterations, whereas the corresponding
result using the per-level marking is achieved in 9 iterations. Evidently, this re-
duction in number of iterations translates into a computational-effort advantage
for the per-level marking strategy.

In Table 2.1 we study the computational effort for both marking strategies
corresponding to the optimization procedure to attain the results in Figure 2.11a.
The reported CPU times are based on a Python implementation using the open
source finite element toolbox Nutils [109], which is executed on a four core CPU
with a 2.60 GHz 7th generation Intel Core i5 processor. Although the reported
CPU times are highly dependent on a myriad of aspects, it is noted that the
computation time of the Gramian matrix (0.4–0.45 s) is representative for the
computational effort involved in the construction of the element contribution to
the system matrix. By relating the reported CPU times to this element system
matrix construction time, a more meaningful notion of the computational effort
is obtained, although, of course, also this relative notion of performance is subject
to implementation and architecture considerations.

Table 2.1 conveys that the optimization algorithm has a similar initialization
time for both marking strategies. This initialization time pertains to the com-
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(a) Sub-cell marking (b) Level marking

Figure 2.12: Distribution of integration points over a cut-element with 204 integration
points in two dimensions using both sub-cell and level marking.

Table 2.1: Analysis of the CPU time to attain the results displayed in Figures 2.11a.

Marking strategy sub-cell octree level
ncall t/call[s] ncall t/call[s]

Initialization 1 0.5 1 0.55
Reference basis function integral (ξ) 1 0.1 1 0.1

Gramian matrix (G) 1 0.4 1 0.45
Iterations 115 0.33 17 0.35

Approximate basis function integral (ξ̄) 115 0.12 17 0.1
Maximum eigenvalue (vmax) 115 0.004 17 0.005

Localized integration errors (epk

℘ ) 115 0.15 17 0.15
Integration error indicator (R) 115 0.01 17 0.01
Integration error marker (M) 115 0.0005 17 0.005

Post-process 115 0.05 17 0.05
Total CPU time [s] 39 7
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putation of the reference basis function integrals (2.48) and the Gramian matrix
(G). Moreover, it is observed that the CPU time per step is also very similar
between the two marking strategies. The majority of the computational effort
per step resides in the computation of the basis function integrals, ξ̄, and in the
evaluation of the integration error localized to the sub-cells. In total, the per-level
marking strategy is, however, computationally more efficient on account of the
significant reduction in number of iterations.

The computation time for the determination of the optimized integration
scheme depends primarily on the number of sub-cells and on the dimension of
the considered polynomial space. In principle, the computation time of the in-
tegral evaluations in the algorithm – i.e., the computation of the basis function
integrals, the Gramian, and the localized errors – scales linearly with the number
of sub-cells. It should be noted that the number of sub-cells is highly depen-
dent on the bisectioning level and on the number of dimensions; see equation
(2.35). For example, for the two-dimensional case reported in Figure 2.11a and
Table 2.1 the number of sub-cells is equal to 43, whereas the three-dimensional
case in Figure 2.11b has 341 sub-cells. Since the integral evaluations dominate
the overall CPU time of the initialization phase and that of an optimization step,
these operations become proportionally more expensive. It is important to note,
however, that the number of iterations scales with the number of sub-cells in
the case of the per sub-cell marking, whereas it scales with the number of octree
levels in the case of the per-level marking. This implies that, with a growing
number of sub-cells, the per-level marking strategy becomes more favorable from
a computational effort point of view.

In terms of computational effort, the dimension of the polynomial space pri-
marily has an effect on the computation time for the basis function integrals and
that for the Gramian. In particular the Gramian computation becomes more
expensive with an increase in basis size, as the number of terms to be integrated
scales quadratically with this size. The linear system solving step involved in the
computation of the worst possible function also increases with an increase in sys-
tem size, but for all considered systems the computational effort involved in the
employed direct solver remains negligible compared to the integral evaluations.

Influence of the functional setting

From the functional-setting point of view, the distribution of integration points
is influenced by both the approximation order of the polynomial space (2.45)
and by the norm (2.52) in which the integrands are considered, encoded by the
Gramian G.

In Figure 2.13 we study the influence of the integration error for various or-
ders of the integrands. Note that the lower bound on the error at approximately
10−16 corresponds to machine precision errors, and hence these integrands can
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(a) d = 2 (b) d = 3

Figure 2.13: Comparison of the evolution of the integration error versus the number
of integration points using the octree level marking strategy for various polynomial
functions of order k as an integrand.

(a) k = 2 (b) k = 8 (c) k = 10

Figure 2.14: Distribution of approximately 90 integration points over the cut-element
in two dimensions using the octree level marking strategy for various polynomial orders
k.
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(a) d = 2 (b) d = 3

Figure 2.15: Comparison of the evolution of the integration error versus the number
of integration points using the octree level marking strategy and different settings of
the integrand space norms.

be interpreted to be exact. As expected, with an increase of the integrand order,
a larger number of points is required to attain a certain accuracy. From the rela-
tively low order settings, in particular the case of linear functions, it is observed
that the algorithm quickly reaches machine precision, as all sub-cells are marked
up until the degree required for exact polynomial integration. Note that in the
initial setting, i.e., one point per sub-cell, the k = 1 integrands are not resolved
exactly, because the cross term x1x2 (in two dimensions) is not integrated exactly
on the triangulated sub-cells. The same applies to the three-dimensional setting.

In Figure 2.14 the point distributions for the two dimensional case correspond-
ing to approximately 90 points are shown for various orders. It is observed that
the distribution of the points over the levels is initially rather uniform for the
k = 2 case, but becomes more dispersed as the order increases. The reason for
this is that the higher-order integrands encompass functions that are more local-
ized to the bigger sub-cells than the lower-order integrands. For a fixed number
of integration points, the distribution of integration points over the elements is
observed to converge with increasing integrand orders.

In Figure 2.15 the influence of the function space norm (2.52) is studied.
Although the normalization does affect the overall magnitude of the error, the
difference in norm is observed to have a minor effect on the distribution of the
integration points. This is confirmed in Figure 2.16 for the two-dimensional
setting, where it is observed that for a total number of 90 points, the distribution
using either the L2-norm or the H1-norm is virtually identical.
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(a) H1-normalized (b) L2-normalized

Figure 2.16: Distribution of 90 integration points over a two-dimensional cut-element
using the octree level marking strategy and integration errors normalized by the H1

and L2 norms.

Influence of the cut-element geometry

The studies presented above were all conducted for cut-elements with spherical
exclusions. To study the influence of the geometry of the cut-elements, we here
consider the effect of variations in the ellipticity of the exclusions, and in the
orientation of the excluded ellipsoids.

In Figure 2.17 we consider a range of exclusions in a two-dimensional cut-
element with differing ellipticity. The corresponding error per integration point
using the per-level adaptive integration procedure is displayed in Figure 2.18. It
is noted that the rate with which the error decreases is similar for all geometries,
but that the number of points to attain a particular error is geometry dependent.
This behavior is explained by the fact that although the distribution of the orders
over the levels is very similar for each of the geometries, the number of sub-
cells in each level is geometry dependent. As elaborated in Section 2.3.1 the
number of cells on each level scales with the surface fraction. This scaling is
reflected in the results in Figure 2.17. For example, the surface-to-volume ratio
of Figure 2.17c is approximately two times that of Figure 2.17a. An increase in
number of integration points by a factor of approximately 2 is also observed from
the offset of the corresponding curves in Figure 2.18.

Figure 2.19 shows the integration error versus the number of integration points
for a cut-cell with r1 = 0.6 and r2 = 0.1 for various inclination angles φ. This
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(a) r1 = 0.5 (b) r1 = 0.7 (c) r1 = 0.8

Figure 2.17: Distribution of integration points over cut-elements with various surface
to volume ratios ς. The inclination angle for all cases is equal to φ = 45◦.

study confirms the scaling relation with the surface to volume ratio as observed
for the ellipticity variations considered above.

2.4.4 Manually selected quadrature rules
Although the computational effort involved in the construction of the optimized
quadrature rules is in general acceptable when one wants to re-use a quadrature
rule multiple times, some computational effort is involved in this construction. In
addition, one has to set up a suitable code to determine the optimal distributions
for arbitrary cut-cells. Considering this, one may not be interested in obtaining
the optimized distributions of the points, but may instead want a simple rule of
thumb to select the quadrature on a cut-cell; see, e.g., Refs. [68, 73].

The per-level selection of the integration order makes it practical to manually
select integration rules that outperform full order integration on all octree levels.
We here consider two manual selection strategies based on Gauss integration of
the sub-cells:

A. Minimal degree lowering: In this strategy we set the order of the Gauss
scheme on the level ϱ = 1 sub-cells to kmax. We then reduce the number
of Gauss points per direction by one for each level, which implies that for
ϱ ≤ ϱmax the Gauss degree is decreased by two between two octree levels.
The integration order of the tessellated sub-cells at level ϱmax + 1 is set to
be two orders lower than that at level ϱmax. Once a Gauss degree of zero is
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(a) d = 2 (b) d = 3

Figure 2.18: Comparison of the evolution of the integration error versus the number of
integration points using the octree level marking strategy for various surface to volume
ratios ς.

(a) d = 2 (b) d = 3

Figure 2.19: Comparison of the evolution of the integration error versus the number of
integration points using the octree level marking strategy for various surface to volume
ratios ς related to an exclusion with r1 = 0.6, r2 = 0.1 and varying inclination angle φ.
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(a) d = 2 (b) d = 3

Figure 2.20: Comparison of the integration error and the number of integration points
using various thumb rules.

reached this value is maintained for the underlying levels. For example, for
the case of k = 8 and ϱmax = 3, the Gauss orders over the levels are set to
8 for ϱ = 1, 6 for ϱ = 2, 4 for the ϱ = ϱmax, and 2 for the ϱ = ϱmax + 1 (see
Figure 2.21a). That is, for an octree-depth of ϱmax = 3, the list of levels
[1, 2, 3, 4] contains [8, 6, 4, 2] as the corresponding list of the Gauss orders.

B. Uniform degree lowering: This strategy also starts with selecting the ϱ = 1
integration degree as kmax, but then decreases the degree between two levels
in such a way that the single point (degree is zero) is reached at the levels
ϱmax, and ϱmax+1. For the case considered above, the orders are set to 8 for
ϱ = 1, 4 for ϱ = 2, and 0 for ϱ = ϱmax and ϱ = ϱmax + 1 (see Figure 2.21c).
That is, for an octree-depth of ϱmax = 3, the list of levels [1, 2, 3, 4] contains
[8, 4, 0, 0] as the corresponding list of the Gauss orders.

Evidently, alternative quadrature rules can be formulated, but a detailed study
of such rules is beyond the scope of the current work.

The adaptive algorithm developed in this work allows us to asses the suit-
ability of the rules of thumb defined above. As a preliminary study on the effec-
tiveness of these rules of thumb, we again consider the case of a two-dimensional
circular exclusion with ϱmax = 3 and a polynomial function of order k = 8. In Fig-
ure 2.20a the manually selected schemes are compared to the full order integration
schemes and to the per sub-cell optimized integration schemes. This plot conveys
that although the manually selected schemes are, as expected, outperformed by
the optimized schemes, they generally do provide a dramatic improvement in ac-
curacy per integration point for a fixed number of points. This observed behavior
is explained by consideration of the distributions of orders over the sub-cells as



56 Error-estimate-based adaptive integration

shown in Figure 2.21, from which it is observed that the per-level decrease of
the order of both rules of thumb indeed qualitatively matches the results of the
optimization procedure. Evidently, a difference between the two rules of thumb
is that the minimal degree lowering strategy (A.) results in a larger number of
points and a lower error compared to the uniform degree lowering (B.). Both
schemes do, however, reasonably well resemble the optimized distribution pat-
terns. Similar observations for the three-dimensional setting are obtained, as
illustrated in Figure 2.20b. The displayed three-dimensional results are based on
ϱmax = 3 and k = 5.

2.5 Application to immersed IGA
In this section we assess the suitability of the optimized integration schemes in
the context of immersogeometric analysis. We consider an elasticity problem in
two and three dimensions, which we solve using globally defined values of the
integration degrees for each octree level. The integration degrees are obtained
by application of the optimization procedure to the entire mesh, starting with
a single integration point in all sub-cells. The integration errors computed per
octree level are summed over all elements, after which the level with the high-
est global error is refined in terms of integration degree. It is noted that this
global optimization strategy ignores operator-dependent variations between the
elements, as discussed in Remark 2.2.

We consider a linear elasticity problem on a computational domain that is
immersed into a background mesh of size Ld; see Figure 2.22 for d = 2. Dis-
placements are prescribed on the exterior boundary, while the interior boundary
is traction free. In the absence of inertia effects and body forces, the boundary
value problem reads as

Find u such that:
div( σ(u) ) = 0 in Ω
u = 0 on ∂A0

u = ūn on ∂Aū

u · n = 0 on ∂A \ (A0 ∪ Aū)
[I − n ⊗ n] σn = 0 on ∂A \ (A0 ∪ Aū)
σn = 0 on ∂Ω \ ∂A

(2.67)

with stress tensor σ(u) = λdiv(u)I + 2µ∇su, where ∇s denotes the symmetric
gradient operator. Throughout this section, the Lamé parameters are set to
λ = 1

2 and µ = 1
2 .
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(a) Rule of thumb A. (b) Per-cell optimized

(c) Rule of thumb B. (d) Per-cell optimized

Figure 2.21: Distribution of integration points over the cut-element in two dimensions
using the manual selection of quadrature rules per-level for a polynomial order k = 8.
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The Dirichlet condition on the external boundary is applied strongly, i.e., by
constraining the degrees of freedom related to the boundary displacements. The
Galerkin problem corresponding to (2.67) then follows as

Find uh ∈ Wh(Ω) such that for all vh ∈ Wh
0 (Ω):∫

Ω
∇svh : σ(uh) dV = 0

(2.68)

with the discrete trial space being a subset of H1(Ω) and satisfying the Dirich-
let boundary conditions. The discrete test space is identical to the trial space,
modulo inhomogeneous boundary conditions. All results in this section pertain
to full regularity, Cp−1, B-splines of degree p = 2. The polynomial order used to
compute the optimized integration schemes is taken equal to k = 4.

As a quantity of interest we consider the constrained modulus

M⋆ = σ11

ε11
= L

A

F

ū
, (2.69)

where F is the resultant reaction force in normal direction along the displaced
boundary, and where A is the area (length in two dimensions) at which this
resultant force acts. We normalize the computed constrained modulus by that
of a homogeneous square with the same material properties as the considered
model, i.e., by M = λ+ 2µ.

For both the two and three dimensional test cases we consider three levels of
bisectioning, i.e., ϱmax = 3. We represent the selection of the per level integration
orders as a list of length ϱmax + 2, where the first ϱmax + 1 entries refer to the
bisectioning levels 0 to ϱmax. Note that the level ϱ = 0 in fact pertains to cells
that are not intersected by the boundary. The final entry in the list of orders
pertains to the integration order on the tessellated sub-cells at level ϱmax + 1.

2.5.1 Two-dimensional test case
We consider the two-dimensional test case introduced in Ref. [82], which is illus-
trated in Figure 2.22. The size of the bounding square is set to L = 1, and the
radii of the exclusions are takes as R1 = 0.3 and R2 = 0.2. The right bound-
ary is displaced by ū = 1

2 . Figure 2.23 displays the solution to the elasticity
problem (2.68) in terms of the displacement magnitude and the shear stress.
The displayed result is based on a 10 × 10 ambient domain mesh with uniformly
distributed fourth order Gauss integration scheme.

Figure 2.24a displays the computed constrained modulus for different steps
in the integration optimization procedure. It is observed that by selecting a sec-
ond order Gauss scheme on the untrimmed elements, and a single point in each
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Ω

u = ū

x1

x2

R1

R1

R2

R2

R2

L

∂Aū∂A0

Figure 2.22: Schematic representation of the considered domain and the mechanical
loading conditions.

sub-cell of the trimmed elements, yields a modulus of approximately 0.3484M ,
which is already within 0.1% of the fully resolved integral result. This computa-
tion, however, uses a total of only 1208 points, in comparison to the 6810 points
used for the full integral computation. Upon application of the integration op-
timization procedure the constrained modulus evidently converges to that using
full integration. A virtually identical result as the full integration result is ob-
tained with 3654 points. For this result fourth order Gauss quadrature is used
on the untrimmed cells and on the first bisection level, and second order Gauss
quadrature on all lower levels.

2.5.2 Three-dimensional test case
We consider the elastic deformation of a sintered glass specimen, which is ex-
tracted from µCT-scan data as discussed in Ref. [15]1. The size of the bounding
box is set to L = 1.5, and the right boundary is displaced by ū = 1

2 . Figure 2.25
displays the solution to the elasticity problem (2.68) in terms of the displacement
magnitude and the σxy shear stress. The displayed result is based on a 10×10×10
ambient domain mesh and uniformly distributed fourth order Gauss integration
scheme. As reported in Ref. [58], for coarse meshes the basis functions artificially

1The scan data used for this simulation can be downloaded from:
www.gitlab.tue.nl/20175645/sintered scan data.



60 Error-estimate-based adaptive integration

(a) Displacement magnitude (b) Shear stress σ12

Figure 2.23: Solution of the two-dimensional linear elasticity problem, displayed in
the deformed configuration.

(a) d = 2 (b) d = 3

Figure 2.24: Comparison of the constrained modulus for different quadrature rules
that have evolved from optimization algorithm for both the two-dimensional and three-
dimensional linear elasticity problem.
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(a) Displacement magnitude (b) Shear stress σxy

Figure 2.25: Solution of the three-dimensional linear elasticity problem, displayed in
the deformed configuration.

connect disjoint parts of the geometry. This effect is also observed in the shear
stress displayed in Figure 2.25b. For the purpose of illustrating the performance
of the integration optimization procedure considered in this work, this effect is,
however, not prohibitive.

Figure 2.24b displays the constrained modulus versus the number of integra-
tion points. By using second order quadrature on the untrimmed cells and one
point per sub-cell in the trimmed elements, provides a modulus of approximately
0.0925M , which is within 2.5% of the fully resolved integral result. However,
this result is obtained at the expense of 1.4 × 106 integration points. This is a
factor thirteen lower than the 18.4×106 points used to compute the fully resolved
integral result for a reference. A virtually identical result to the reference result
is obtained at 6.8×106 points, which is still approximately a factor of three lower
than the full integration scheme.

2.6 Concluding remarks
We have developed an algorithm to construct quadrature rules for cut-elements in
which the integration points are distributed over the (cut) element in such a way
that the integration error is minimized. Strang’s first lemma – which provides
an error estimate for the approximate solution including integration errors –
provides a theoretical underpinning of the developed integration procedure. In
the setting of this approximation theory, it is found that the integration error
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is bound by the supremum of integration errors over the considered test space.
When the integration error is localized to the (cut) elements, this supremum
translates to the consideration of a worst possible function to be integrated over
a particular element. By discretizing the space of functions over an element by
means of polynomials, the worst possible function and its associated integration
error become computable.

The ability to evaluate the integration error forms the basis of the proposed
integration optimization procedure for octree subdivision. The pivotal idea be-
hind the proposed algorithm is to gradually increase the number of integration
points by adding integration points to the sub-cells for which the error reduction
per added integration point is highest. As the number of sub-cells increases dra-
matically with an increase in number of dimensions and with the octree depth –
as illustrated by the derived scaling relation for the number of sub-cells – such
an optimization procedure has the potential to significantly reduce the computa-
tional effort involved in the integration procedures for immersed methods. The
presented numerical simulations demonstrate that, for a given number of integra-
tion points, the integration error resulting from the optimization algorithm is, in
general, significantly lower than that of the integration scheme considering the
same integration orders on all sub-cells. Conversely, when fixing the error, the
number of integration points required for the optimized quadrature rule is signif-
icantly lower than that of the equal order schemes. The considered simulations
demonstrate that the developed optimization algorithm efficiently distributes in-
tegration points over cut-elements for a wide range of cut-cell configurations.

The developed algorithm provides insight into the way in which integration
points should be distributed over the cut-elements in order to minimize integra-
tion errors. Based on these insights, it is evident that integration rules for which
the number of points per sub-cell is decreased with increasing octree depth form
a good approximation to the optimized distribution of integration points. The
integration point distribution algorithm presented in Ref. [68] therefore can also
be expected to yield quadrature rules that are a good approximation to the rules
that follow from the theoretical framework considered in this contribution.

Although the costs involved in the quadrature optimization algorithm are
limited on account of the fact that the employed polynomial basis should only be
integrated once using the expensive full order integration scheme, the determined
optimized integration rules are particularly attractive when they can be re-used
for multiple simulations. This is, for example, the case in time-dependent or
non-linear problems. The attained reduction in number of integration points is
also highly advantageous when data is to be stored in integration points, such as
is the case for example with history data in many non-linear constitutive models.

The developed algorithm is highly generic in the sense that one can use the
algorithm to optimize other integration schemes. For example, nested Gauss
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schemes can be attractive on account of the fact that the points (or locations) are
nested in these schemes, which facilitates the re-using of configurations between
integration schemes.

When employing the quadrature optimization algorithm one must choose var-
ious parameters, most importantly the order of the polynomial integrand to be
considered and the norm used for the integrand normalization. In particular the
order of polynomials is important with respect to the obtained distribution of
integration points, in the sense that selecting this order too low will lead to sub-
optimal integration results. In general it is possible to determine the order of the
integrands based on the problem under consideration and the finite element basis
functions being considered.

In this contribution we have restricted ourselves to optimizing the distribu-
tion of integration points over the volumes of the cut-elements. The underlying
theoretical framework is, however, more general in the sense that other parame-
ters controlling the integration error can be incorporated as well. In the context
of the considered octree integration procedure it would be natural to include
the octree depth in the optimization procedure. Since both the error reduction
associated with the increase in octree depth and the associated computational
cost are quantifiable, including this depth as an additional parameter in the op-
timization algorithm is anticipated to be feasible. Inclusion of this parameter is,
however, considered beyond the scope of the current work. The same holds for
the incorporation of errors associated with the boundary integrals, in particular
the Nitsche terms typically considered in finite cell simulations.

The focus in this work has been on the optimization of the integration error
contribution in Strang’s first lemma, not taking into account the approximation
error. It is noted, however, that the need to optimize the integration error de-
pends on the approximation error. If the approximation error is small compared
to the overall error, then there is a need to optimize the integration error. How-
ever, if the approximation error is the dominating contribution to the overall
error, then there is not a strong need to optimize the integration error. Evalua-
tion of the balance between the approximation error and the integration error is
an important topic of further study.





Chapter 3

Topology-preserving
scan-based immersed
isogeometric analysis

T o exploit the advantageous properties of isogeometric analysis (IGA) in a
scan-based setting, it is important to extract a smooth geometric domain

from the scan data (e.g., voxel data). IGA-suitable domains can be constructed
by convoluting the grayscale data using B-splines. A negative side-effect of this
convolution technique is, however, that it can induce topological changes in the
process of smoothing when features with a size similar to that of the voxels are en-
countered. This chapter presents an enhanced B-spline-based segmentation pro-
cedure using a refinement strategy based on truncated hierarchical (TH)B-splines.
A Fourier analysis is presented to explain the effectiveness of local grayscale
function refinement in repairing topological anomalies. A moving-window-based
topological anomaly detection algorithm is proposed to identify regions in which
the grayscale function refinements must be performed. The criterion to identify
topological anomalies is based on the Euler characteristic, giving it the capability
to distinguish between topological and shape changes. The proposed topology-
preserving THB-spline image segmentation strategy is studied using a range of
test cases. These tests pertain to both the segmentation procedure itself, and its
application in an immersed IGA setting.

This chapter is reproduced from [87]: S.C. Divi, C.V. Verhoosel, F. Auricchio, A. Reali,
and E.H. van Brummelen. Topology-preserving scan-based immersed isogeometric analysis.
Computer Methods in Applied Mechanics and Engineering, 2022. The (co-)promotors confirm
that S.C. Divi is the primary author of this publication, i.e., she was responsible primarily for
the planning, execution and preparation of the work.
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3.1 Introduction
Computational analyses based on volumetric scan data are of interest in many
fields of research, such as biomechanics, geomechanics, material science, mi-
crostructural analysis, and many more. Scan-based simulations are inherently
three-dimensional and, frequently, the computational domains are complex, both
in terms of geometry and in terms of topology. In addition, the data sets obtained
from, e.g., tomography or photogrammetry techniques are large in size and repre-
sented in data formats which are not directly suitable for analysis (e.g., DICOM1,
NIfTI2). For these reasons, performing high-fidelity simulations at practical com-
putational costs is still very challenging.

Over the past decade, the use of Isogeometric Analysis (IGA) [110] to perform
accurate scan-based simulations at acceptable computational costs has been ex-
plored. Originally, IGA was proposed as an analysis paradigm to better integrate
analysis and design by employing the spline basis functions from Computer Aided
Design (CAD) directly for the analysis, without intermediate geometry clean-up
and meshing operations [16], as required in traditional finite element analyses.
The advantageous properties of spline basis functions, in particular their higher-
order regularity, have made IGA also attractive for simulations where the ge-
ometry is not represented by a CAD model [29, 30, 33, 111]. In the context of
scan-based isogeometric analysis, the usage of standard discretization techniques
such as the voxel method [112] or (unstructured) conforming mesh approaches
(e.g., generated using a marching cube algorithm [113, 114]) is not possible, as
this deteriorates the favorable properties of IGA. Therefore, various enhanced
isogeometric techniques for scan-based analysis have been developed. These can
be summarized as follows:

• Template-fitting techniques construct a spline-based template geom-
etry (typically consisting of multiple patches) that captures the essential
features of the scanned object, and subsequently apply fitting procedures
to reposition the control points of the template to match the scan data. An
advantage of such techniques is that an explicit parametrization of the scan
object is retrieved, which is beneficial from an analysis point of view. The
downside of template fitting techniques is that they are not useful in cases
where the topology of the object is not known a priori. For cases where the
topology of the object is known but complex, template fitting techniques are
typically laborsome. Template fitting techniques using IGA have, for ex-
ample, been applied to fluid-structure interaction analyses of arterial blood
flow [24,25], patient-specific blood-flow analyses in arteries [33,40] (see [46]
for a review), the mechanical behavior of a femur (consisting of both hard

1Digital Imaging and Communications in Medicine
2Neuroimaging Informatics Technology Initiative
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outer cortical bone and inner trabecular bone) [42], the mechanical behav-
ior of a carotid artery stent [22], damage in composite laminates [115], the
human heart [41], and fluid-structure interactions of a heart valve [31].

• Immersed methods construct a structured mesh for the entire scan do-
main, typically a box, and then represent the scanned object by an in-
side/outside relation to indicate whether a specific point in the box is part
of the object. In the context of scan-based analysis, the inside/outside re-
lation can directly be retrieved from the scan data (intensity) in the form
of a level set function [58], but the immersed concept can also be applied
to obtain volumetric representations of objects identified by boundary rep-
resentations (e.g., BREP [14,52,53,59,89,116], STL1 [49,117–120]) and to
represent trimming operations in CAD models (e.g., [37, 121, 122]). The
advantage of immersed techniques is their versatility with respect to the
geometry and topology of the scanned objects, in the sense that the anal-
ysis procedure is not essentially affected by increasing the complexity of
the objects. From an analysis perspective, the immersed approach poses
additional challenges compared to mesh-fitting analyses. Most notably, nu-
merical integration of trimmed elements is challenging from an efficiency
point of view, application of boundary conditions can be non-standard,
and the system of equations is generally ill-conditioned without dedicated
treatment. Immersed scan-based IGA has, for example, been applied for
the analysis of trabecular bone [58–60], coated metal foams [61], porous
media [15], metal castings [62] and in additive manufacturing [63].

The choice for either a template-fitting technique or an immersed technique
is to a large extent dictated by the topological complexity of the scanned object.
If a template with a reasonably low number of control points can be constructed
for the object of interest, template-fitting is generally favorable. If the creation
of a template is impractical, immersed methods are preferred. It should be noted
that it can be favorable to combine the two techniques for particular scan-based
analyses, to exploit the advantages of both of them. A noteworthy example in
this regard is the heart-valve problem by Kamensky et al. [56, 123, 124], where
the heart chambers are modeled through a template-fitting approach, and the
moving valves through an immersed approach.

In this work we build on the immersed scan-based analysis framework origi-
nally proposed in Ref. [58]. In recent years, significant progress has been made
to tackle the above-mentioned challenges associated with immersed methods. A
myriad of advanced integration techniques has been developed to reduce the
computational burden associated with the integration of trimmed elements; see,
e.g., Refs. [71, 86, 98, 125]. Nitsche’s method [77] has been demonstrated to be

1Standard Triangle Language or Standard Tessellation Language
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a reliable technique to impose essential boundary conditions along immersed
boundaries, e.g., [50, 53, 78, 126], and various techniques have been developed to
construct a parametrization of immersed boundaries to impose boundary condi-
tions [51,76,126,127]. With respect to the stability and conditioning, fundamental
understanding was obtained in Refs. [53,80], and various types of remedies have
been demonstrated to be effective, see, e.g., [15, 30, 51, 62, 79, 82, 84, 85, 127, 128].
The various advancements of immersed techniques have made it into a versa-
tile technique for scan-based analyses, being able to model problems in different
physical domains (solid mechanics, fluid dynamics), considering high-performance
computing problems [15,49,54,58,60,62,65,125], and being applicable in the con-
text of highly nonlinear problems [55,129–131].

Although immersed isogeometric analysis is very flexible with respect to cap-
turing topologically complex volumetric objects, topological anomalies associated
with the image segmentation procedure can occur [132–136]. This is specifi-
cally the case when the resolution of the scan data is only nearly sufficient to
capture the smallest features in the scanned object. Image smoothing opera-
tions, in the case of the procedure of Ref. [58] associated with the order of the
spline level set construction, can trigger undesirable topology alterations (e.g.,
closure of a channel, (dis)connection of structures). The occurrence of topo-
logical anomalies associated with smoothing operations is well understood in
the field of image segmentation (e.g., [45, 137–139]). Various enhanced image-
segmentation techniques have been proposed in order to ameliorate such prob-
lems, like homology-based preservation techniques [140–146], topology-derivative-
based techniques [147–151], and adaptive refinement techniques [45,152–157].

In this contribution we propose an enhancement of the immersed isogeometric
analysis framework of Ref. [58] that rigorously avoids the occurrence of topologi-
cal anomalies associated with the B-spline-based image segmentation procedure.
The filtering analysis in Ref. [58] is extended to include the effect of the level
set mesh size. Based on this analysis, it is proposed to employ truncated hierar-
chical B-splines (THB-splines) [158–160] to discretize the grayscale intensity of
the scan data. Inspired by topology characteristics (e.g., Betti numbers, Euler
characteristic) to detect local topology anomalies [143,144,161–163], this local re-
finement capability for the level set representation is complemented with an Euler
characteristic evaluation and moving-window technique to detect local topology
anomalies. The resulting topology-preserving immersed isogeometric analysis is
demonstrated using prototypical test cases in two and three dimensions, consider-
ing both the image-segmentation problem and the complete (stabilized) immersed
isogeometric analysis problem [15]. A scan-based analysis on a representative
data set is considered to demonstrate the practical applicability of the proposed
technique. In this contribution, we restrict ourselves to user-specified locally-
refined meshes, keeping in mind the extension to an adaptive analysis framework
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as a possible further development.
This paper is organized as follows. In Section 3.2 we first extend the filter-

ing analysis of Ref. [58]. Based on this analysis, in Section 3.3 we introduce
the topology-preserving extension of the spline-based image segmentation tech-
nique. This technique comprises the moving-window technique to detect topo-
logical anomalies (Section 3.3.1) and a THB-spline-based discretization of the
level set function (Section 3.3.2). The adopted immersed isogeometric analysis
framework, including stabilization techniques, is introduced in Section 3.4. Nu-
merical examples are then presented in Section 3.5 to test the proposed technique.
Finally, conclusions and recommendations are drawn in Section 3.6.

3.2 Spline-based image segmentation
In this section we review the spline-based image segmentation procedure of Ref. [58].
The occurrence of topological anomalies on relatively coarse voxel grids is illus-
trated and explained using a Fourier analysis. Based on this analysis, a solution
strategy to avoid topological anomalies is proposed.

3.2.1 B-spline level set construction
Consider an nd-dimensional image domain, Ωimg = [0, L1] × . . .× [0, Lnd

], which
is partitioned by a set of voxels, as illustrated in Figure 3.1. We denote the voxel
mesh by

Vvox = {Ωvox ⊂ Ωimg | ∃i ∈ Znd

≥0, s.t. Ωvox = Ti ◦ [0, 1]nd}, (3.1)

where the transformation Ti : [0, 1]nd → Ωvox is defined as

Ti(ξ) = diag(∆)(ξ + i), (3.2)

with ∆ the voxel size in each direction and i = (i1, . . . , ind
) the nd-dimensional

voxel index. We denote the number of voxels in the voxel image by mvox = #Vvox.
The grayscale intensity function, illustrated in Figure 3.1b, is then defined as

g : Vvox → G , (3.3)

with G the range of the grayscale data (e.g., from 0 to 255 for 8 bit unsigned
integers). An approximation of the object Ω can be obtained by thresholding the
gray scale data,

Ω ≈ {x ∈ Ωimg|g(x) > gcrit} ⊂ Ωimg, (3.4)
where gcrit is the threshold value (see Figure 3.1c). As a consequence of the
piecewise definition of the grayscale data in equation (3.3), the boundary of the
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Figure 3.1: Representative two-dimensional geometry to illustrate the spline-based
segmentation procedure. (a) The assumed geometry, which in a real-life scan-based
analysis setting is evidently not available. (b) The grayscale data on a 75 × 75 voxel
grid, which we derived from the exact geometry by computing the volume fraction of
each voxel. In the scan-based analysis setting this voxel image is obtained directly from
the scan data. (c) The segmented geometry for a grayscale threshold corresponding to
50% of the volume fraction.

segmented object is non-smooth when the grayscale data is segmented directly.
In the context of analysis, the non-smoothness of the boundary can be problem-
atic, as irregularities in the surface may lead to non-physical singularities in the
solution to the problem.

The B-spline segmentation procedure in Ref. [58] – the behavior of which in
the case of linear basis functions closely corresponds with that of marching volume
algorithms [113] – enables the construction of a smooth boundary approximation
based on voxel data. The key idea of this B-spline segmentation technique is to
smoothen the grayscale function (3.3) by convoluting it using a B-spline basis of
size n, {Ni,k(Vh)}n

i=1, defined over a regular mesh, Vh, with fixed element size, hd,
per direction. Note that this mesh size can be different from the voxel size. The
B-spline basis can be constructed using the Cox-de Boor algorithm [164]. We
consider full-regularity (Ck−1-continuous) B-splines of order k, with the order
assumed to be constant and isotropic. By convoluting the grayscale function
(3.3), a smooth level set approximation is obtained as

f(x) =
n∑

i=1
Ni,k(x)ai, ai =

∫
Ωimg

Ni,k(x)g(x)dx∫
Ωimg

Ni,k(x)dx
, (3.5)

where the coefficients {ai}n
i=1 are the control point level set values.

The B-spline level set function corresponding to the voxel data in Figure 3.1b
is illustrated in Figure 3.2 for the case where the regular mesh, Vh, coincides
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(a) Grayscale data (b) B-spline level set function
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Figure 3.2: Illustration of the B-spline based segmentation procedure on a 70 × 70
voxel grid using second-order B-splines constructed on a regular mesh that coincides
with the voxels. (a) Grayscale data, g(x), of Figure 3.1b shown on the 8 bit signed
integer range. (b) Level set function, f(x), computed by equation (3.5). (c) Segmented
domain extracted using the midpoint tessellation procedure outlined in Refs. [58, 86].

with the voxel grid (i.e., ∆d = hd for d = 1, . . . , nd) and second order (k = 2)
B-splines. As can be seen, the object retrieved from the convoluted level set
function more closely resembles the original geometry in Figure 3.1a compared
to the voxel segmentation in Figure 3.1c. Also, the boundaries of the domain
are smooth as a consequence of the higher-order continuity of the B-spline basis
(see Figure 3.2c). The segmented geometry in Figure 3.2c is constructed using
the midpoint tessellation procedure proposed in Refs. [58, 86], which constructs
a partitioning of the elements that intersect the domain boundary and results
in an accurate parametrization of the interior volume. The reader is referred
to Ref. [58] for a detailed discussion of the properties of the employed B-spline
segmentation technique, and, additionally, to Ref. [86] for details regarding the
midpoint tessellation procedure.

3.2.2 The occurrence of topological anomalies
The spline-based segmentation technique reviewed above has been demonstrated
to yield computational domains that are very well suited for isogeometric analysis
(see, e.g., [15, 45, 82]). However, although the smoothing characteristic of the
technique is frequently beneficial, it may lead to the occurrence of topological
anomalies when the features of the object to be described are not significantly
larger in size than the voxels (i.e., the Nyquist criterion is not satisfied [58]).

For the object in Figure 3.1a this occurs when a voxel grid of 35×35 is consid-
ered, as illustrated in Figure 3.3 for a second-order (k = 2) B-spline basis defined
on the 35 × 35 voxels mesh. As can be seen, small and slender features, such



72 Topology-preserving scan-based immersed IGA

as the regions highlighted in green in Figure 3.3c, are detectable in the original
grayscale data, albeit with a very coarse representation. The corresponding level
set function is smoother, but introduces topological anomalies in the form of the
disappearance of some of the small and slender features. When we consider the
same voxel data, but now define the B-spline basis for the convolution of the
level set function on a twice as fine mesh (see Figure 3.3d), i.e., hd = ∆d/2 for
d = 1, . . . , nd, a topologically correct segmented domain is again obtained, but
still with smoothed boundaries (see Figure 3.3e) compared to the direct segmen-
tation.

To elucidate the smoothing behavior of the B-spline segmentation technique,
we generalize the filtering analysis for a univariate B-spline (nd = 1) presented in
Ref. [58] to the case of non-coinciding voxel and B-spline grid sizes, i.e., h ̸= ∆.
Note that, in the univariate setting considered here, we drop the index for the
geometric direction to simplify our notation. The goal of our analysis is to provide
insight into the filtering properties by considering the level set approximation in
the frequency domain. Additionally, we will obtain an analytical expression for
the smoothed level set function in the spatial domain with a parametrization that
provides insight into the smoothing properties of the level set construction.

We commence our analysis with rewriting the operation (3.5) as an integral
transform

f(x) =
∫

Ωimg

K(x, y)g(y) dy, K(x, y) =
n∑

i=1

Ni,k(x)Ni,k(y)
Vi

, (3.6)

where K(x, y) is the kernel of the transformation and where Vi =
∫

Ωimg
Ni,k(x)dx

is the integral of the basis function Ni,k. Following the derivation in Ref. [58]
– in which the essential step is to approximate the B-spline basis functions by
rescaled Gaussians [165] – the integration kernel (3.6) can be approximated by

K(x, y) ≈ κ(x− y) = 1
σ

√
2π

exp
(

−
(x− y)2

2σ2

)
, (3.7)

where the width of the smoothing kernel is given by

σ = h

√
k + 1

6 . (3.8)

This result is very similar to that obtained in Ref. [58], with the important
difference that the width of the kernel depends on the mesh size, h, on which
the B-spline is defined, and not on the voxel size, ∆. Note that the approximate
kernel κ depends on the difference between the coordinates x and y only, this
in contrast to the kernel K. Consequently, when the approximate kernel κ is
considered, the integral transform (3.6) becomes a convolution operation.
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(a) 35 × 35 grayscale data (b) Level set for hd = ∆d

x1

x2

0

Ω

L1

L2

(c) Geometry for hd = ∆d

(d) Level set for hd = ∆d/2

x1

x2

0

Ω

L1

L2

(e) Geometry for hd = ∆d/2

Figure 3.3: Illustration of the B-spline-based segmentation procedure for 35×35 voxel
grayscale data (panel (a)). Using second-order B-splines constructed on a regular mesh
that coincides with the voxels (panel (b)) leads to topological changes in the segmented
domain (panel (c)) compared to the 70×70 voxels case in Figure 3.2. When the B-spline
basis is constructed on a mesh that is twice as fine as the voxel grid, a smooth level
set function is obtained (panel (d)) which, after segmentation, correctly represents the
topology of the object (panel (e)).
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(a) h = 1 (b) h = 0.5

(c) h = 1 (d) h = 0.5

Figure 3.4: The convolution kernel (3.7) in the spatial domain (panels (a) and (b)),
and in the frequency domain (panels (c) and (d)) for k = 2, 3, 4 using different mesh
sizes. The integration kernel (3.6) is plotted in the spatial domain for reference (dashed
lines).
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The dependence of the convolution kernel on the mesh size and on the order
of the B-spline interpolation is illustrated in Figures 3.4a and 3.4b. The B-
spline integral transform around x = 0 computed on a domain of size 10 with a
voxel size 1 is shown for reference, indicating that the Gaussian approximation
improves with an increasing B-spline order. Figure 3.4 conveys that, following
equation (3.8), increasing the mesh size and the B-spline order both increase
the zone over which the grayscale data is averaged. The smoothing width scales
linearly with the mesh size, and, for sufficiently large B-spline orders, with the
square root of k.

To provide detailed insights into how the filter properties lead to topologi-
cal anomalies, we express the convolution operation (3.6) with the approximate
kernel (3.7) in the frequency domain as

F (ξ) = K(ξ)G(ξ), (3.9)

where F (ξ) and G(ξ) are the Fourier transforms of the original grayscale data and
the convoluted level set function, respectively, and where the Fourier transform
of the convolution kernel (3.7) is given by

K(ξ) = exp
(
−2π2ξ2σ2). (3.10)

This frequency-domain form of the kernel is shown in Figures 3.4c and 3.4d. The
Fourier-form of the convolution operation in equation (3.9) conveys that features
corresponding to frequencies for which K(ξ) is close to unity are preserved in the
smoothing operations, whereas features corresponding to frequencies for which
0 < K(ξ) ≪ 1 are filtered.

To further clarify the preservation of features, we consider a one-dimensional
object of size ℓ, represented by the grayscale function (in both the spatial and in
the frequency domain)

g(x) =
{

1 |x| < ℓ/2
0 otherwise

, G(ξ) = ℓ sinc(ℓξ) = sin (πℓξ)
πξ

. (3.11)

The smooth approximation of this feature in the frequency domain follows from
equation (3.9) as

F (ω) = ℓ sinc(ℓξ) exp
(
−2π2ξ2σ2). (3.12)

The corresponding function in the spatial domain can be determined by express-
ing the sinc function as [166]

sinc(ℓξ) = lim
m→∞

1
m

m∑
n=1

cos (2µ(m,n)πξ), (3.13)
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with µ(m,n) = (2n−1)ℓ
4m , such that the final form of the approximated convolution

operation (3.6) can be written as

f(x) = ℓ

σ
√

2π
lim

m→∞

1
2m

m∑
n=1

[
exp

(
− (x− µ(m,n))2

2σ2

)

+ exp
(

− (x+ µ(m,n))2

2σ2

)]
. (3.14)

The approximate level set function (3.14) is illustrated in Figure 3.5 for various
feature-size-to-mesh ratios, ℓ̂ = ℓ/h = 2, 1, 1

2 , and B-spline degrees, k = 2, 3, 4.
For the considered range of feature-size-to-mesh ratios, the limit in equation
(3.14) is already approximated well with m = 1, such that

f(hx̂) ≈ f̂1(x̂) =

√
3ℓ̂2

4π(k + 1)

exp

−
3
(

4x̂− ℓ̂
)2

16(k + 1)


+ exp

−
3
(

4x̂+ ℓ̂
)2

16(k + 1)


 , (3.15)

where x̂ = x/h. The value of the smoothed level set function at x̂ = 0 follows as

f̂1(0) =

√
3ℓ̂2

π(k + 1) exp
(

− 3ℓ̂2

16(k + 1)

)
≈ ℓ̂

√
3

π(k + 1) , (3.16)

which conveys that the maximum value of the smoothed level set depends linearly
on the relative feature size ℓ̂, and decreases with increasing B-spline order.

The top row in Figure 3.5 shows the case for which the considered feature
is twice as large as the mesh size, i.e., ℓ̂ = 2. Figure 3.5a illustrates that the
sharp boundaries of the original grayscale function are significantly smoothed,
which is also apparent from the frequency domain plot in Figure 3.5b, which
shows that the high frequency modes required to represent the sharp boundary
are filtered out by the smoothing operation. In Figure 3.5a, the decrease in the
maximum level set value as given by equation (3.16) is observed. When the level
set function is segmented by a threshold of gcrit = 0.5, a geometric feature that
closely resembles the original one is recovered.

The middle and bottom rows of Figure 3.5 illustrate cases where the feature
width is not significantly larger than the mesh size. For the case where the fea-
ture size is equal to the size of the mesh, the maximum of the level set function
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(a) ℓ̂ = ℓ
h

= 2 (b) ℓ̂ = ℓ
h

= 2

(c) ℓ̂ = ℓ
h

= 1 (d) ℓ̂ = ℓ
h

= 1

(e) ℓ̂ = ℓ
h

= 1
2 (f) ℓ̂ = ℓ

h
= 1

2

Figure 3.5: Smoothed level set approximation (3.14) of a geometric feature in the
spatial domain (left) and in the frequency domain (right) for various feature-size-to-
mesh ratios, ℓ̂ = ℓ/h, and B-spline degrees. The B-spline level set function (3.6) is
shown in the spatial domain for reference (dashed lines).



78 Topology-preserving scan-based immersed IGA

drops significantly compared to the case of ℓ̂ = 2. When considering second-order
B-splines, the maximum is still marginally above gcrit = 0.5. Although the recov-
ered feature is considerably smaller than the original one, it is still detected in
the segmentation procedure. When increasing the B-spline order, the maximum
value of the level set drops below the segmentation threshold, however, indicat-
ing that the feature will no longer be detected. As a consequence, the B-spline
segmentation procedure then induces a topological alteration. When decreasing
the feature length further, as illustrated in the bottom row of Figure 3.5, topo-
logical changes are encountered at lower segmentation thresholds. For the case
of gcrit = 0.5, also the quadratic B-splines would lead to a loss of the feature.

In summary, the above analysis shows that topological anomalies occur when
the relative feature length scale, ℓ̂ = ℓ/h, becomes too small. The smallest
features in a voxel data file are of the size of a single voxel, i.e., ℓ = ∆. Hence,
topological features are lost when the mesh size on which the B-spline level set
is constructed is relatively large compared to the voxel size. For moderate B-
spline orders, this practically means that for features with the size of a single
voxel, the mesh of the B-spline level set should be a uniform refinement of the
voxel mesh, such that the relative feature size ℓ̂ is sufficiently large. With this
mesh refinement, the resulting level set function will still be Ck−1-continuous, but
higher-frequent modes are present in the refined level set function. In places where
the geometric features are sufficiently large, this is in principle not desirable.
Ideally, one only should refine the B-spline level set function in places where this
is needed to preserve the topology, i.e., around small features. In the next section,
we propose a fully-automated topology-preserving B-spline segmentation strategy
that refines the B-spline level set function in such a manner that topological
anomalies are avoided.

3.3 Topology-preserving image segmentation us-
ing THB-splines

In this section we present a topology-preserving B-spline-based image segmen-
tation strategy relying on the technique proposed in Ref. [58]. The proposed
strategy consists of two steps (schematically illustrated in Figure 3.6). In the
first step, which we will discuss in detail in Section 3.3.1, a moving-window strat-
egy is applied to locally compare the topology of the original voxel data and its
smoothly segmented counterpart. The result of this first step is a function that
indicates regions where topological anomalies occur. In the second step, which is
discussed in Section 3.3.2, truncated hierarchical (TH)B-splines are employed to
locally repair the topology by mesh refinement, following the analysis presented
in Section 3.2. To demonstrate the proposed image segmentation technique, var-



Topology-preserving image segmentation using THB-splines 79

ious test cases, including the problematic scenario considered in Section 3.2, will
be discussed in Section 3.3.3.

3.3.1 Moving-window topological anomaly detection
In this section we detail the moving-window strategy to detect topological anoma-
lies. In Section 3.3.1 we commence with the definition of the moving window
concept, as is commonly used in image processing techniques (e.g., [167–169]).
Subsequently, in Section 3.3.1 we introduce the window-comparison operator used
to identify topological changes. A masking operation is finally introduced in Sec-
tion 3.3.1 to distinguish between boundary changes and topological changes.

The moving window

To detect local topological changes, local views on the original voxel data and its
smoothed counterpart will be compared. The windows are created by considering
the r-neighborhood of each voxel in the original image, i.e.,

Ωwin = Nr(Ωvox) ∀Ωvox ∈ Vvox. (3.17)

The 0-neighborhood of a voxel is defined as the voxel itself, i.e., N0(Ωvox) := Ωvox,
and the r-neighborhood for r ≥ 1 is defined recursively as the union of all voxels
that share a vertex with the (r − 1)-neighborhood. This window definition is
illustrated in Figure 3.7 for a 10 × 10 voxel grid.

As discussed in Section 3.2, it is desirable to keep the mesh refinement to repair
topological anomalies as local as possible. This means that the moving window
should be as small as possible, but large enough to detect topological anomalies.
Hence, the window should be larger than the size of the geometric features that
are subject to topological changes. From the analysis in Section 3.2.2 it follows
that features with a size similar to that of the voxels, i.e., ℓ ≈ ∆, can be subject
to topological changes if the smoothing is performed on a mesh with a size similar
to that of the voxels, i.e., h ≈ ∆. Practically this means that a window with only
a few rings, i.e., ℓ ≈ ∆ < (2r + 1)∆ ≪ L, is expected to be an adequate choice.
The influence of the window size will be studied for the example discussed in
Section 3.3.3.

Window image comparison

The moving-window technique indicates whether, for the window focused at ev-
ery voxel, a topological difference is observed between the directly segmented
image, V , and the geometry related to the smoothed image, S (see Figure 3.6).
We herein employ the midpoint tessellation strategy proposed in Ref. [86] to con-
struct a geometry parametrization, as illustrated in Figure 3.8a. Details of this
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(a) Original grayscale (b) Voxel segmentation

(f) Smooth grayscale (g) Smooth segmentation

(c) V

(h) S

(e) F(V, S)

Moving window

(d) Indicator function

(i) Corrected smooth segmentation

g(x) > 0

B-spline smoothing

g(x) > 0

Mask

refinement

Figure 3.6: Illustration of the topology-preserving image segmentation procedure. The
original grayscale image (panel (a)) is segmented in two ways, viz., directly by thresh-
olding the voxel data (panel (b)), and through the B-spline smoothing strategy (panels
(f) and (g)). A moving-window technique then locally compares the topology between
the two segmented images, which results in an indicator function (panel (d)) to mark
topological differences. THB-spline-based refinements are then introduced to locally
increase the resolution of the smooth level set function (panel (i)), thereby preserving
the topology of the original image.
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∆1

∆2

i1

i2

(a)

∆1

∆2

i1

i2

(b)

Ωwin with r = 2

Ωwin with r = 1

Ωvox

Figure 3.7: Illustration of the moving window Ωwin centered at a voxel Ωvox, with (a)
a one-neighborhood (r = 1) and (b) a two-neighborhood (r = 2).

procedure will be discussed in the context of the immersed isogeometric analysis
framework discussed in Section 3.4. To enable the window topology comparison,
it is convenient to employ the same representation concept for both images, V
and S. Therefore, the tessellated geometry is first voxelized by segmentation
of the B-spline level set function on a grid that is nsub-times uniformly refined
with respect to the original voxel grid, as shown in Figure 3.8b. This refinement
level should be chosen such that the voxelization of the smoothed image does not
induce topological changes compared to the geometry on which the simulation
is performed. Since the employed midpoint tessellation strategy also relies on a
recursive subdivision approach (of the computational cells), the number of voxel
subdivisions, nsub, can be related directly to the number of recursive refinements
used for the midpoint tessellation (see Figure 3.8).

To characterize topological similarity, we define the window topology-comparison
operator:

C (V, S) =
{

true if V and S are topologically equivalent,
false if V and S are topologically different.

(3.18)

To compute this boolean operator, the filled voxels in the images V and S are
divided into connected regions. For the image V , for example, the regions are
denoted by R ∈ RV , where RV is the set of all connected regions. We herein
employ vertex-connectivity, meaning that voxels sharing a vertex are considered
to be connected, but the same procedure can be applied using face-connectivity.
For each connected region, R, we determine the Euler characteristic, χ(R), which
is defined as one minus the number of connected holes, #VR, in that region.
Following the definition in Ref. [170], the Euler characteristic of the window
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h1

h2

h1

h2

% = 1
% = 2
% = 3

(a)

nsub = 2

(b)

Figure 3.8: Schematic of (a) the midpoint tessellation procedure (with a recursion
depth of ϱmax = 2) presented in Refs. [58, 86] and (b) the voxelization on a grid (with
nsub = 2) that is refined to match the recursion depth of the tessellation procedure.

image is given by

χ(V ) =
∑

R∈RV

χ(R) =
∑

R∈RV

(1 − #VR) = #RV −
∑

R∈RV

#VR. (3.19)

We note that various methods of evaluating the Euler characteristic have been
rigorously studied in the field of homology, see, e.g., Refs. [171–174]. In our
work we consider the method of Ref. [170] which has been implemented in scikit-
image [175], an open-source image processing library for Python.

To construct the boolean operator (3.18), we define sets of regions with a
specific Euler characteristic, χ̄ ∈ χV = {χ(R) | R ∈ RV } ⊂ Z, in an image as

Rχ̄
V = {R ∈ RV | χ(R) = χ̄}. (3.20)

Figure 3.9 shows illustrative examples of these region sets. Using the region sets
(3.20), the following indicator function for topological anomalies is proposed:

C (V, S) =

 ∧
χ̄∈χV ∪χS

(
#Rχ̄

V ≡ #Rχ̄
S

)
∧ ∧

χ̄∈χV ′ ∪χS′

(
#Rχ̄

V ′ ≡ #Rχ̄
S′

) (3.21)

This indicator states that the number of regions with a particular Euler charac-
teristic is equal in the images V and S, as well as in their complements V ′ and
S′. Note that, by construction, the operator (3.21) is invariant to the comple-
ment operation, i.e., C (V, S) = C (V ′, S′), which makes the comparison operator
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objective with respect to the definition of the solid and void regions. One may
note that if χV ̸= χS or χV ′ ̸= χS′ , then C (V, S) automatically reverts to false.

Figure 3.9 illustrates the comparison operator (3.21), where use has been made
of a nsub = 3 sampling of the B-spline-based segmented domain extracted using
the midpoint tessellation procedure with ϱmax = 3. The first row in Figure 3.9
shows a case where the topology matches, despite the substantial changes in
geometry. The second row in Figure 3.9 shows a case where the elliptical region
is missing, which is a typical case of a topological anomaly. The third row in
Figure 3.9 shows a case in which the comparison operator returns false, which is
caused by the appearance of a boundary spillover due to the smoothing procedure
at the right bottom border. From the perspective of the window, the observed
change indeed classifies as a topological change. However, when considering the
change from the perspective of the complete image, the observed difference comes
from a boundary that moves into the view of the window under consideration.
This boundary movement classifies as a shape (geometry) change, and not as a
topological change. To correctly account for this type of changes, in the next
section we propose an image masking operation.

Window image masking

To mask the window changes associated with moving boundaries, as a prepro-
cessing step to the comparison operation (3.21), the smoothed image S is masked
using

F = F(V, S) = (M ∩ V ) ∪ (M ′ ∩ S), (3.22)

where F is the masked image and the mask M depends on arguments V and S,
i.e., M = M(V, S). This mask corresponds to a set-indication function which
is one in places where a boundary change is detected and zero everywhere else.
The mask is illustrated in Figure 3.10 for the case considered in the third row
of Figure 3.9. The key idea behind this masking operation is that in regions
where shape changes occur, the masked image F is replaced by the original voxel
image V so that the changes associated with boundary movement are effectively
reverted.

To identify the locations of the changes between the images V and S, we
consider the mask to be a subset of the symmetric difference between the original
and the smoothed image, i.e., M ⊆ V∆S = (V ∩ S′)∪(S ∩ V ′) (see Figure 3.10).
We now only mask the regions in the symmetric difference which reside completely
in the outer ring of the window and have an Euler characteristic of one (there
are no voids), that is,

M(V, S) =
{
R ∈ R1

V ∆S | R ∩Wr−1 = ∅
}
, (3.23)
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Figure 3.10: The symmetric difference (3.24) between the images V and S in Fig-
ure 3.9, with the boundary mask M = M(V, S) shown in red.

where Wr−1 is equal to zero in the outer voxel ring of the window and one
everywhere else. Note that since the symmetric difference is unchanged when the
complement images are considered, i.e.,

(V ′)∆(S′) = (V ′ ∩ S) ∪ (S′ ∩ V ) = V∆S, (3.24)

for the mask (3.23) it holds that

M(V ′, S′) = M(V, S) = M. (3.25)

From this property of the mask it then follows that the complement of the masked
image F is equal to the masked complement images V ′ and S′:

F ′ = F(V, S)′ = (M ∩ V )′ ∩ (M ′ ∩ S)′ = (M ′ ∪ V ′) ∩ (M ∪ S′)
= [M ′ ∩ (M ∪ S′)] ∪ [V ′ ∩ (M ∪ S′)]
= (M ′ ∩ S′) ∪ (V ′ ∩M) ∪ (V ′ ∩ S′)
= (M ′ ∩ S′) ∪ (V ′ ∩M) ∪ (V ′ ∩ S′ ∩M) ∪ (V ′ ∩ S′ ∩M ′)
= (M ∩ V ′) ∪ (M ′ ∩ S′)
= F(V ′, S′) (3.26)

The choice to identify shape changes associated with moving boundaries by
definition (3.23) is motivated by the idea that if one considers a boundary in
the global image with small curvature, the image smoothing operation discussed
in Section 3.2 will typically retain the movement of the boundary within one
voxel spacing. When the curvature of the boundary is locally high, the boundary
movement can be larger than a single voxel, which would lead to falsely identifying
a shape change as a topological change. In our algorithm this would lead to
a refinement of the level set function which would not be strictly required to
preserve topology. Avoiding such auxiliary refinements would, however, severely



86 Topology-preserving scan-based immersed IGA

(a) F = F(V, S) (b) M ∩ V (c) M ′ ∩ S

(d) F ′ = F(V ′, S′) (e) M ∩ V ′ (f) M ′ ∩ S′

Figure 3.11: An illustration of the filtering operation (3.22) for an image V and the
corresponding smoothed image S (see Figure 3.12) and for their complements.

complicate the algorithm. Moreover, since they generally result in an improved
geometry representation at high-curvature boundaries, it is considered desirable
not to avoid them.

The masking operation (3.22) is illustrated in Figure 3.11 for an exemplifying
image V and its smoothed version S (as defined in Figure 3.12), as well as for the
complements of these images. The symmetric difference between the images V
and S is shown in Figure 3.12c, which, in agreement with equation (3.24), is iden-
tical to the symmetric difference between V ′ and S′ in Figure 3.12f. The masked
regions are color coded in red, indicating that only completely solid regions in
the outer ring are considered in the mask. The masked images F = F(V, S) and
F ′ = F(V ′, S′) are shown in Figures 3.11a and 3.11d, from which it is observed
that, in accordance with equation (3.26), the complement of the masked image
F is equal to the masked complement image F(V ′, S′).

In Figure 3.13 we consider the case of the third row of Figure 3.9. As discussed
above, when the images V and S are compared directly, the comparison operator
(3.21) marks these images to be topologically different on account of the shape
change associated with the boundary movement. When comparing the image V
with the masked image F = F(V, S), as shown in Figure 3.13, the images are
considered to be topologically equivalent, which, in this case, is considered as the
correct indicator result.
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(a) V (b) S (c) V ∆S

(d) V ′ (e) S′ (f) V ′∆S′

Figure 3.12: An example of (a) the original segmented image V , (b) the spline-
based segmented image S, and (c) the symmetric difference. Panels (d) and (e) are
the complements of V and S, respectively. Panel (f) is the symmetric difference of the
complements, which is identical to that in panel (c).

(a) V (b) Trimmed topology (c) F = F(V, S)

C (V, S) = 1

Figure 3.13: An illustration of the boundary masking procedure applied to the case
in the third row of Figure 3.9. The image V in panel (a) is compared with the masked
image F in panel (c) to obtain the indicator function C (V, S). In contrast to the result
in Figure 3.9, the masking operation results in a C (V, S) = 1, indicating that the images
V and S are topologically equivalent.
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3.3.2 THB-spline-based refinement strategy
After identification of the windows in which topological changes occur, the mesh
on which the level set function is constructed is locally refined to resolve these
anomalies (see Figure 3.6). More specifically, a support-based refinement pro-
cedure is employed, in which all basis functions that are supported on a voxel
that displays a topological anomaly are replaced by basis functions from the next
higher hierarchical level.

We herein employ truncated hierarchical B-splines [158–160] to construct a
spline basis over locally refined meshes. The THB-spline construction is illus-
trated in Figure 3.14, which, for the sake of generality, considers the case of
multiple refinement levels, with the level ℓ = 0 corresponding to the coarsest
elements, and the level ℓ = ℓmax to the most refined elements. We denote the
region covered by elements that are at least ℓ times refined by Ωℓ (note that the
refinement regions are nested, i.e., Ωℓ ⊆ Ωℓ−1 ⊆ . . . ⊆ Ω0 = Ωvox). The locally
refined mesh corresponding to these refinement regions is denoted by Vvox.

To construct the truncated hierarchical B-spline basis, we consider ℓmax uni-
form refinements, Vℓ

vox, of the original voxel mesh V0
vox. The mesh size of the

original voxel mesh is denoted by h and that of its refinements by 2−ℓh. With
each level we associate a mesh

Vℓ =
{
v ∈ Vℓ

vox | v ∩ Ωℓ ̸= ∅
}
. (3.27)

We define a B-spline basis of degree k and regularity α over each of these meshes
as

B(Vℓ) = {N ∈ B(Vℓ
vox) | supp (N) ∩ Ωℓ ̸= ∅}, (3.28)

where B(Vℓ
vox) is the B-spline basis on Vℓ

vox.
To construct the truncated hierarchical B-spline basis, splines from the bases

over the uniform meshes (3.28) are selected and truncated. On the most refined
level, i.e., at ℓ = ℓmax, all basis functions that are completely inside Ωℓmax

vox are
selected:

H(Vℓmax) = {N ∈ B(Vℓmax) | supp (N) ⊆ Ωℓmax}. (3.29)
At coarser levels, i.e., 0 ≤ ℓ < ℓmax, the functions that are completely inside the
domain Ωℓ, but not completely inside the refined domain Ωℓ+1, are selected and
truncated:

H(Vℓ) = {trunc(N) | N ∈ B(Vℓ), supp (N) ⊆ Ωℓ, supp (N) ⊈ Ωℓ+1} (3.30)
The truncation operation reduces the support of the B-spline functions by pro-
jecting away basis functions retained from the refined levels (see Ref. [158, 176]
for details). The THB-spline basis then follows as

H(V) =
ℓmax⋃
ℓ=0

H(Vℓ). (3.31)
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Figure 3.14: An illustration of truncated hierarchical B-splines. The left column shows
the hierarchical levels of a mesh Vvox, while the right column illustrates the concept for
a one-dimensional voxel domain Ωvox.

This selection and truncation procedure is illustrated in Figure 3.14. It is noted
that THB-splines satisfy the partition of unity property (in contrast to non-
truncated hierarchical B-splines), which is an important property from the per-
spective of the image smoothing procedure (3.5) as it guarantees that the average
grayscale intensity is preserved [58]. In this work we employ the THB-spline im-
plementation in the Python-based open source numerical library Nutils [109],
which is based on the element-wise construction discussed in Ref. [177].

3.3.3 Examples

To illustrate the topology preserving segmentation strategy presented above we
consider the example presented in the workflow in Figure 3.6. The voxelized
smooth image with nsub = 2 is shown in Figure 3.6g, which closely resembles
the tessellated image with a bi-sectioning depth of ϱmax = 3 in Figure 3.3c. By
comparison with the voxel segmentation in Figure 3.6b, it is clearly observed
that topological changes occur at two locations. These locations are highlighted
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(a) Voxel segmentation

(c) Smooth segmentation

(b) V

(d) S (e) Corrected S

refinement

Figure 3.15: Example of the moving window strategy with a 3×3 window. Topological
changes are correctly detected in the green boxes. In the red window, an L-shaped
exclusion which extends beyond the outer ring of the window is falsely detected as a
topological change.

in green in Figure 3.15c.
Figure 3.6d presents the comparison indicator for a window size of 3 × 3

(r = 1). It is observed that the topological changes are indeed detected. Note that
for this example, the mask operation is also active. As an example of the mask
operation, Figure 3.6h shows a region with a boundary change before the mask
operation. It is observed that the indicator function for topological anomalies
(3.21) results in zero (false) when compared to the voxel region in Figure 3.6c.
Figure 3.6e shows the region after the mask operation. After application of the
mask, the comparison operator results in one (true).

In Figure 3.6d it is seen that an additional region, highlighted in red in Fig-
ure 3.15c, is also marked as a topological change. Strictly speaking, this would
not be necessary, as in both images a hole is present in that region. Figure 3.15b
shows the window causing this behavior. In the voxel image, the L-shaped ex-
clusion is not detected as a hole in a region, but as a void region splitting two
solid regions. On the level of the window, this is a topologically ambiguous case
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(a) (b) (c)

Figure 3.16: The comparison indicator function for the case considered in Figure 3.6
with a window size of (a) 3 × 3 (r = 1), (b) 5 × 5 (r = 2), and (c) 7 × 7 (r = 3).

in the sense that one needs to look outside of the window to see whether the
exclusion extends beyond the window. As shown in Figure 3.6i and in the zoom
in Figure 3.15e, the effect of refining the level set in this region is that the voxel
geometry is better captured.

In Figure 3.16 the influence of the window size is examined. As can be seen,
the refinement regions increase in size with increasing window size. Since the
3 × 3 window already adequately corrects the topological anomalies, the growth
of the refinement regions is unnecessary. As can be seen, the effect of a larger
window size on the corrected images is minimal, as elaborated in Section 3.2.2.
In Figure 3.16b and 3.16c we also observe a case where a shape change is marked
as a topological change, which, as discussed in Section 3.3.1, is caused by the high
curvature of the boundary. A zoom of a typical window in which this occurs is
shown in Figure 3.17. It is also observed in Figure 3.16c that for the incorrectly
identified topology change discussed above, increasing the window size results in
an indicator function in the form of a ring. This situation is not further explored
in this work, but would require tailoring of the refinement marking strategy to
ensure that the interior of the ring is refined.

3.4 The isogeometric finite cell method
To provide a basis for the boundary value problems considered in Section 3.5, in
this section the abstract formulation for the isogeometric finite cell method [55] is
introduced. We consider a physical domain, Ω, formed by the topology-preserving
segmentation procedure outlined above. The domain and its boundary, ∂Ω, are
immersed into an ambient domain A ⊃ Ω as shown in Figure 3.18. In the
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(a) V (b) S (c) F(V, S)

Figure 3.17: A 5 × 5 window showing an example of a shape change associated with
a high curvature region. Since this shape change extends beyond the outer ring of the
window, it is not masked and hence it is (incorrectly) detected as a topological change.

remainder we consider the ambient domain to coincide with the image (scan)
domain, i.e., A = Ωimg. We suppose that the problem under consideration is
described by a field variable u – which can be scalar-valued or vector-valued –
and the weak formulation {

Find u ∈ W such that:
a(u, v) = f(v) ∀v ∈ V,

(3.32)

where W is the trial (solution) space, V is the test space, a : W × V → R is
a continuous bilinear form and b : V → R is a continuous linear form. The
(isogeometric) finite cell method provides a general framework for constructing
the finite dimensional subspaces Wh ⊂ W and V h ⊂ V , where the superscript
h refers to the mesh parameter associated with the ambient domain mesh, T h

A ,
on which the approximation to the field variable u is computed. Note that the
mesh T h

A can be different from the level set mesh Vh discussed in Section 3.2, as
the mesh resolution requirements following from the approximation of the field
variable u generally differ from those for the level set function.

We define the background mesh as all elements in the ambient domain that
touch the physical domain, i.e.,

T h := {K ∈ T h
A : K ∩ Ω ̸= ∅}, (3.33)

and the interior mesh of the domain Ω as

T h
Ω := {K ∩ Ω : K ∈ T h

A }, (3.34)
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Ω∂Ω

A

(a)

h

Ω∂Ω

T h

T h
A

(b)

Figure 3.18: Schematic representation of (a) the physical domain Ω (gray) with bound-
ary ∂Ω which is embedded in the ambient domain A, and (b) the ambient domain mesh
T h

A and the background mesh T h (yellow), with mesh size parameter h.

where the elements in the background mesh are trimmed to the physical domain
(see Ref. [86] for details). The physical domain boundary mesh is defined as

T h
∂Ω := {K ∩ ∂Ω : K ∈ T h

A }. (3.35)

The finite dimensional subspaces Wh and V h are then constructed using THB-
splines (as elaborated in Section 3.3.2). We denote the THB-spline space of
degree k and regularity α, constructed over the locally-refined ambient domain
T h

A , by
Sk

α(A) = {N ∈ Cα(A) : N |K ∈ P k(K),∀K ∈ T h
A }, (3.36)

where P k(K) is the collection of nd-variate polynomials on the element K ⊂ Rnd .
The approximation spaces are then obtained by restricting the THB-splines in
Sk

α(A) to the physical domain Ω:

Wh = V h = {N |Ω : N ∈ Sk
α(A)}. (3.37)

Due to the non-mesh-conforming character of the (isogeometric) finite cell method,
it is infeasible to impose Dirichlet boundary conditions by (strongly) constraining
functions in the spaces (3.37). Instead, Dirichlet conditions are imposed weakly
through Nitsche’s method [77, 78]. By employing a mesh-dependent consistent
stabilization term, a well-posed Galerkin problem is obtained:{

Find uh ∈ Wh such that:
ah(uh, vh) = bh(vh) ∀vh ∈ V h

(3.38)
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In this problem the bilinear form ah : Wh ×V h → R and linear form bh : V h → R
are the finite dimensional versions of the operators in (3.32), augmented with the
above-mentioned Nitsche terms (which will be specified in Section 3.5).

Although the Galerkin problem, in (3.38), closely resembles that of mesh-
conforming finite element formulations, the immersed setting requires a dedicated
consideration of various computational aspects. In the context of this work, the
following aspects are particularly noteworthy:

Ghost-penalty and skeleton-penalty stabilization To avoid ill-conditioning
associated with small volume-fraction trimmed cells, we apply ghost-penalty sta-
bilization [79]. The idea behind this stabilization technique is to penalize the
jump in the (higher-order) normal gradients of the solution along all edges in the
ghost mesh

Fh
ghost = {∂K ∩ ∂K ′|K,K ′ ∈ T h,K ∩ ∂Ω ̸= ∅,K ̸= K ′}, (3.39)

by augmenting the bilinear form with an additional ghost-penalty term. This
ghost-penalty term, which will be detailed for the specific problems considered
in Section 3.5, also enables scaling of the Nitsche penalty term by the recipro-
cal mesh size parameter of the background mesh (independent of the trimmed-
element configurations) [51].

For the flow problems considered in this work, we employ equal-order dis-
cretizations. To make the considered mixed velocity/pressure-discretizations inf-
sup stable, we apply skeleton-stabilization [15] to the pressure space along all
edges in the skeleton mesh

Fh
skeleton = {∂K ∩ ∂K ′|K,K ′ ∈ T h,K ̸= K ′}. (3.40)

The skeleton-penalty term with which the bilinear form is augmented will be
specified in Section 3.5.

Numerical integration on trimmed elements To evaluate integrals over
the trimmed elements, we consider a recursive octree bisectioning strategy (see,
e.g., Ref. [52,58]), with the maximum number of bisections equal to ϱmax. On the
lowest level of bisectioning, i.e., ϱ = ϱmax, the midpoint tessellation procedure
detailed in Ref. [86] is employed to construct an explicit parametrization of the
trimmed boundary. An illustration of the octree bisectioning procedure with the
midpoint tessellation is shown in Figure 3.8a.

Considering equal-order (Gauss) integration schemes on all sub-cells in the
tessellated trimmed elements leads to high computational costs, in particular
when three-dimensional simulations are considered [86]. Various methods have
been proposed to reduce the computational cost, e.g., smart octree methods [71],
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moment fitting techniques [98], and error-estimate-based adaptive integration
[86]. We herein consider the error-informed manual selection strategy proposed
in Ref. [86]. At the coarsest level (ϱ = 1) in the octree tessellation we set the
integration order to kmax. We then decrease the order between two levels in such
a way that the degree is zero (a single integration point) at the finest octree levels
ϱ ≥ ϱmax.

3.5 Immersed isogeometric analysis simulations
In this section we consider three applications of the topology-preserving image-
based immersed isogeometric analysis technique presented above. In Section 3.5.1
we start with the case of a single-field problem in two dimensions by considering
an elasticity problem. Subsequently, in Section 3.5.2 we consider a multi-field
problem in the form of a Stokes flow through a carotid artery geometry. For this
flow case we first consider a representative two-dimensional test case. The third
application pertains to the extension of the Stokes flow case to a three-dimensional
patient-specific geometry based on scan data. Let us note in advance that the
carotid artery test case realistically pertains to moderate Reynolds number flows
[178], but that a Stokes flow setting is here considered to focus on the topology-
preserving analysis scheme developed in this work.

3.5.1 Uniaxial extension of a two-dimensional structure: a
linear elasticity problem

We consider the two-dimensional specimen shown in Figure 3.19, which is rep-
resented by 32 × 32 grayscale voxels. The physical domain, Ω, with boundary
∂Ω, is immersed into an ambient domain A of (dimensionless) size L × L (with
L = 1), with boundary ∂A; see Figure 3.19c (with ϱmax = 3). We consider a
linear elasticity problem for which the displacement field, u, is prescribed on the
exterior (top and bottom) boundary, while the interior (immersed) boundary is
traction free. In the absence of inertia effects and body forces, the boundary
value problem reads as:

Find u such that:
div( σ(u) ) = 0 in Ω

u = 0 on ∂A0

u = ūn on ∂Aū

u · n = 0 on ∂A \ (∂A0 ∪ ∂Aū)
[I − n ⊗ n] σn = 0 on ∂A \ (∂A0 ∪ ∂Aū)

σn = 0 on ∂Ω \ ∂A

(3.41)
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The various boundaries are specified in Figure 3.19b. The top boundary is dis-
placed in normal direction by ū = 0.2 (20%). In the above problem definition,
the stress is related to the strain by Hooke’s law, i.e., σ(u) = λdiv(u)I +2µ∇su,
where ∇s denotes the symmetric gradient operator. Throughout this section,
the non-dimensionalized Lamé parameters are set to λ = 1

2 and µ = 1
2 . In our

analyses, as quantities of interest we consider the stress state in the specimen
and the effective elastic modulus

Q = L

ū

1
Vimg

∫
Ω

σ22 dV. (3.42)

In our simulations, the Dirichlet conditions on the external boundary are ap-
plied strongly, i.e., by constraining the degrees of freedom related to the boundary
displacements. This is enabled by the fact that the top and bottom boundaries
are mesh conforming. The Galerkin problem corresponding to (3.41) then follows
as 

Find uh ∈ Wh(Ω) such that for all vh ∈ Wh
0 (Ω):∫

Ω
∇svh : σ(uh) dV = 0

(3.43)

with the discrete spaces being subsets of H1(Ω) satisfying the Dirichlet boundary
conditions. The spaces are discretized using second-order (k = 2) B-spline basis
functions defined on a background mesh with uniform element size h. For this set-
ting, immersed analysis results can be obtained without additional stabilization
terms.

In Figure 3.20 we present the results using a mesh size of h = L/32, which
is equal to the voxel size. As can be seen in Figure 3.20, without application of
the topology-correction algorithm (first column), the left connection (marked in
green) is not reconstructed by the image segmentation procedure. As a result, the
left side of the specimen carries only a small portion of the load, in the sense that
(the vertical component of) the stress is equal to zero in the left part connected
to the top boundary, and relatively small in the left section that is connected
to the bottom boundary. When the topology-preservation algorithm is applied
(second column in Figure 3.20), the left part of the structure remains connected,
and the left side of the specimen is appropriately loaded.

From Figure 3.20 it is observed that the topological anomaly drastically affects
the simulation results. When considering the effective elastic modulus (3.42), as
shown in Figure 3.21 for various mesh sizes, it is observed that this quantity
of interest shows fundamentally different behavior between the two considered
cases. Since the topological anomaly occurs independently of the background-
mesh element size, mesh refinement for the determination of the approximate
solution does not repair this problem. Both solutions with and without the
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Figure 3.19: Illustration of (a) the original grayscale image, g(x), (b) the voxel-
segmentation of the image, i.e, g(x) > 0, and (c) the computational domain (using
ϱmax = 3) with the boundary conditions.

topological anomaly converge under mesh refinement, but the problem with the
anomaly converges to an erroneous result on account of the incorrect geometry
representation.

3.5.2 Flow through a carotid artery: a Stokes flow problem
We now consider Stokes flow through a domain Ω ⊂ Rnd (nd = 2, 3), representa-
tive of a carotid artery. This domain is constructed using the topology-preserving
segmentation procedure presented in Section 3.3, and is immersed in an ambient
domain A. We consider a presssure-driven incompressible flow of a Newtonian
fluid, with viscosity µ, through the carotid artery. The fluid velocity, u, and
pressure, p, satisfy the strong formulation

Find u and p such that:
−∇ · (2µ∇su) + ∇p = 0 in Ω

∇ · u = 0 in Ω
u = 0 on ΓD = ∂Ω \ ∂A

(2µ∇su − pI) n = 0 on ∂A0

(2µ∇su − pI) n = −p̄n on ∂Ap̄

(3.44)

where p̄ denotes the pressure applied at the inflow (bottom) boundary.
The no-slip boundary condition on the immersed boundary ΓD is imposed

weakly through Nitsche’s method. Ghost- and skeleton-stabilizations are used to
avoid oscillations in the velocity and pressure fields (see Section 3.4). The mixed
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Figure 3.20: Comparison of the segmented geometry obtained from the grayscale
image without (a) and with (b) topology preservation. The vertical (dimensionless)
stress component for the two cases, computed using h = L/32, is shown in the panels
(c) and (d).
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Figure 3.21: The effective elasticity modulus (3.42) computed with and without ap-
plication of the topology-preservation technique for different mesh sizes h.

Galerkin form is given by
Find uh ∈ V h and ph ∈ Qh such that:
a(uh,vh) + b(ph,vh) + sghost(uh,vh) = l(vh) ∀vh ∈ V h

b(qh,uh) − sskeleton(ph, qh) = 0 ∀qh ∈ Qh,

(3.45)

where the bilinear and linear operators are defined as [15]

a(uh,vh) := 2µ(∇suh,∇svh) − 2µ
[
⟨∇suh · n,vh⟩ΓD

+⟨∇svh · n,uh⟩ΓD

]
+ ⟨µβh−1uh,vh⟩ΓD

(3.46a)
b(ph,vh) := −(ph,div vh) (3.46b)

l(vh) := −⟨p̄,vh · n⟩∂Ap̄
(3.46c)

sskeleton(ph, qh) :=
∑

F ∈Fskeleton

∫
F

γµ−1h2k+1J∂k
np

hKJ∂k
nq

hK dS (3.46d)

sghost(uh,vh) :=
∑

F ∈Fghost

∫
F

γ̃µh2k−1J∂k
nuhK · J∂k

nvhK dS, (3.46e)

and (·, ·) denotes the inner product in L2(Ω), ⟨·, ·⟩ΓD
denotes the inner product

in L2(ΓD), and J·K is the jump operator. The parameters β, γ, and γ̃ denote
the penalty constants for the Nitsche term, the Skeleton-stabilization term, and
the Ghost-stabilization term, respectively. We consider second-order (k = 2)
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B-splines constructed on a variety of uniform background meshes with element
size h. Let us note that we use equal-order approximations for the velocity and
pressure fields, which is admissible by virtue of the skeleton-penalization acting
on the pressure field.

Two-dimensional test case

To demonstrate the developed methodology in the Stokes flow case, we first con-
sider the idealized two-dimensional geometry shown in Figure 3.22 (constructed
from 32×32 grayscale voxels). In this two-dimensional case, we consider the ambi-
ent domain to be a unit square (with L = 1), and we set the non-dimensionalized
parameters to µ = 1 and p̄ = 1; see Figure 3.22c (constructed with ϱmax = 3).
For the penalty parameters we take, β = 100, γ = 0.05, and γ̃ = 0.0005, which
have been determined empirically.

Figure 3.23 shows the pressure and velocity contour plots for the case where
a topological anomaly occurs in the form of a pinched-off channel (top row), and
in the case where the topology-preservation algorithm is applied (bottom row).
The topological anomaly evidently obstructs fluid from flowing through the left
branch, resulting in a zero pressure and zero fluid velocity solution in the top left
disconnected domain. The topology-correction strategy proposed in this work
avoids the left channel from being closed and results in a different flow profile. It
is noteworthy that, if Dirichlet conditions were imposed on the top boundary, the
pathological case without the topology-correction would have become singular.

The influence of the mesh size is studied in Figure 3.24, which, similar to the
elasticity problem considered above, conveys that both simulation cases converge
under mesh refinement. However, without application of the topology-correction
strategy, the solution converges to an erroneous result.

Three-dimensional scan-based simulation

To demonstrate the developed methodology in a real scan-based setting, we con-
sider a Stokes flow through a carotid artery. The geometry of the carotid artery is
obtained from a CT-scan (see Figure 3.25). The scan data consists of 80 slices of
85×70 voxels. The size of the voxels is 300×300µm2 and the distance between the
slices is 400µm. Hence, the total size of the scan domain is 25.6×21.1×32.0 mm3.
The original grayscale data, represented in DICOM format [178], is preprocessed
using ITK-SNAP (open-source medical image processing tool [179]) from which
binary voxel data is exported and read into our Python-based implementation of
the developed topology-correction strategy.

The direct, non-smooth, segmentation of the image data is visualized in Fig-
ure 3.25a. When applying the spline-based segmentation procedure using second-
order B-splines, the stenotic part of the artery in the original voxel image is lost
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Figure 3.22: Illustration of (a) the original grayscale image, g(x), (b) the voxel-
segmentation of the image, i.e, g(x) > 0, and (c) the computational domain (using
ϱmax = 3) with the boundary conditions.

(Figure 3.25b). As discussed in Section 3.2.2, this topological anomaly result-
ing from the spline-based segmentation procedure is expected on account of the
feature-to-mesh-size ratio in that particular area.

In Figure 3.26 a zoom of the stenotic part of the artery is shown. Figure 3.26c
shows the indicator function (3.21) as determined by the topology-correction
strategy. This image conveys that the topological anomaly in the form of the
missing stenotic part of the artery is appropriately detected. Figure 3.26d shows
the smoothly segmented geometry after THB-spline refinement. From this figure
it is observed that the topological anomaly is corrected by the proposed strat-
egy. In the case of the complete topology (see Figure 3.25c), it is observed that
additional boundary regions are tagged for refinement on account of the high-
curvature of the boundary surface in these regions.

To simulate the flow through the stenotic artery we consider a viscosity of
µ = 4 mPa s and a pressure drop of 17.3 kPa (130 mm of Hg). These parameters
are selected based on Ref. [178]. The penalty parameters associated with the
weak formulation (3.45) are set to β = 100, γ = 0.05, and γ̃ = 0.0005, which
have been determined empirically to yield a stable formulation without adversely
affecting the accuracy of the approximation.

The results for the velocity and pressure fields computed on a uniform mesh
with h = 1.75 mm in the directions perpendicular to the pressure gradient and h =
2 mm in the direction of the pressure gradient are shown in Figure 3.27. Similar to
the two-dimensional case, the topological anomaly evidently obstructs fluid from
flowing through the stenotic part of the artery, resulting in a zero pressure and
zero fluid velocity solution in the right artery (see Figure 3.27). The topology-
correction strategy avoids the stenotic part from being closed and results in a
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(a) Pressure (b) Velocity magnitude

(c) Pressure (d) Velocity magnitude

Figure 3.23: Comparison of the pressure, p, and velocity magnitude, |u|, for the
segmented domain constructed without (top row) and with (bottom row) topology-
preservation using h = L/64.
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Figure 3.24: Total outflow from the left branch of the carotid artery, computed using
different mesh sizes h, with and without the use of the topology-correction strategy.
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Figure 3.25: Illustration of (a) the directly segmented scan-data, g(x). The com-
putational domain of the stenotic carotid artery extracted by the B-spline-based seg-
mentation procedure (b) before and (c) after application of the topology preservation
algorithm. The smooth level set function, f(x), is segmented using the midpoint tes-
sellation procedure with a subdivision level of ϱmax = 2.
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(d) Corrected smooth segmentation

Figure 3.26: Illustration of the topology-preserving procedure focused on the stenotic
part of the carotid artery. Panel (a) shows the original segmentation obtained directly
by thresholding the voxel data, and panel (b) shows the segmentation through the B-
spline-based smoothing strategy. A moving-window technique then locally compares
the topology between the two segmentations, which results in the indicator function (c)
that marks topological differences. THB-spline-based refinements are then introduced
to locally increase the resolution of the smooth level set function, thereby preserving
the topology of the original scan-data (d).
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meaningful flow profile. Although the mesh considered here is relatively coarse,
the flux through the stenotic region of approximately 200 mm3/s (corresponding
to an average velocity of approximately 1.3 m/s, see Figure 3.27f) corresponds
reasonably well with the flow through a circular tube (Hagen–Poiseuille flow)
of length 8 mm and diameter 0.35 mm subject to the above-mentioned pressure
drop, which corroborates that the computed speed is meaningful.

In Figure 3.28 the outflow through the stenotic branch of the artery is de-
picted for various uniform meshes, ranging from a very coarse mesh with 8,760
(active) degrees of freedom to a refined mesh with 96,196 degrees of freedom.
Similar to the problems studied above, this mesh verification study conveys that
both simulation cases converge under mesh refinement, but that an erroneous
result is obtained in the case that the topology is not corrected. Note that, due
to the employed uniform meshes, the number of degrees of freedom increases
rapidly under mesh refinement, which will limit the size of the domain that can
be considered by this type of analysis in practice. It is important to note, how-
ever, that mesh refinements throughout most of the domain do not substantially
improve the accuracy of the simulation (in particular for the considered quantity
of interest). Therefore, to properly leverage the property of immersed techniques
that the mesh resolution can be controlled independently of the geometry (and
topology) representation, significant improvements in computational efficiency
can be obtained by means of adaptive local mesh refinement. The combination
of the proposed technique with an error-estimation-and-adaptivity strategy is an
important topic of further study.

3.6 Concluding remarks
To leverage the advantageous properties of isogeometric analysis in a scan-based
setting, a smooth representation of the computational domain must be obtained.
This can be achieved by applying a smoothing operation on the voxel-based gray-
scale data and subsequently applying an octree-based tessellation procedure. A
negative side-effect of this smoothing procedure is that it can induce topological
changes when the scan data contains features with a characteristic length scale
similar to the voxel size.

Based on a Fourier analysis of the B-spline-based smoothing operation, it
is proposed to repair smoothing-induced topological anomalies by locally refin-
ing the smoothed gray-scale function using THB-splines. In combination with a
moving-window strategy to detect topological changes, the local refinement tech-
nique is used to develop a topology-preserving image segmentation technique.
Based on a comparison of the Euler characteristic between the window view on
the original voxel data and that on the smoothed representation, the proposed
technique systematically distinguishes shape changes from topological changes.
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Figure 3.27: Comparison of the pressure, p, and velocity magnitude, |u|, for the
segmented domain constructed without (top row) and with (bottom row) topology-
preservation using a mesh size of h = 2 mm in the vertical direction, and h = 1.75 mm
in the other directions.
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Figure 3.28: Total outflow from the right branch of the carotid artery, computed
using different degrees of freedom (DOFs), with and without the use of the topology-
correction strategy.

The algorithm is fail-safe in that it detects and repairs topological changes, and
does not essentially change the geometry in the (rare) case that a shape change is
accidentally marked for refinement. The proposed location-based masking strat-
egy to detect shape changes is very effective for the considered test cases, but it
is envisioned that further robustness improvements can be made by the develop-
ment of a more advanced masking procedure.

The developed algorithm works for two- and three-dimensional scan data.
Numerical simulations demonstrate the effectivity of the algorithm in both set-
tings. For all considered test cases, a topologically consistent smoothed image is
obtained after a single topology-correction step. Based on the presented Fourier
analysis this is to be expected, as refining the mesh for the B-spline grayscale
function has a strong effect on the filtering properties. It can, in principle, occur
that topologial changes are not repaired after a single correction step. Although
not considered in this work, the presented algorithm has the potential to be
extended so that it can be applied recursively in such scenarios.

In this work we have restricted ourselves to immersed isogeometric analyses
based on uniform meshes. In order to optimally benefit from the fact that the
computaional mesh is decoupled from the segmented geometry in the immersed
setting, use should be made of (adaptive) local refinements for the analysis mesh.
Combination of the proposed topology-preservation technique with an adaptive
meshing strategy is therefore an important topic of further study.





Chapter 4

Residual-based error
estimation and adaptivity
for stabilized immersed
isogeometric analysis using
truncated hierarchical
B-splines

I n this chapter, we propose an adaptive mesh refinement strategy for immersed
isogeometric analysis, with application to steady heat conduction and viscous

flow problems. The proposed strategy is based on residual-based error estimation,
which has been tailored to the immersed setting by the incorporation of appro-
priately scaled stabilization and boundary terms. Element-wise error indicators
are elaborated for the Laplace and Stokes problems, and a THB-spline-based lo-
cal mesh refinement strategy is proposed. The error estimation and adaptivity
procedure is applied to a series of benchmark problems, demonstrating the suit-
ability of the technique for a range of smooth and non-smooth problems. The

This chapter is reproduced from [88]: S.C. Divi, P.H. van Zuijlen, T. Hoang, F. de Prenter,
F. Auricchio, A. Reali, E.H. van Brummelen and C.V. Verhoosel, Residual-based error estima-
tion and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical
B-splines. arXiv preprint, submitted, 2022. The (co-)promotors confirm that S.C. Divi is the
primary author of this publication, i.e., she was responsible primarily for the planning, execution
and preparation of the work.
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adaptivity strategy is also integrated in a scan-based analysis workflow, capable
of generating reliable, error-controlled, results from scan data, without the need
for extensive user interactions or interventions.

4.1 Introduction
Immersed finite element methods, such as the finite cell method [14, 48, 49] and
CutFEM [50, 51, 83], are a natural companion to isogeometric analysis [16, 110].
The combination of immersed methods with the spline-based discretization strat-
egy provided by the isogeometric analysis paradigm is recognized as a valu-
able extension of isogeometric analysis, because the immersed analysis concept
provides a cogent framework for the consideration of trimmed CAD objects
[37, 52–54, 81, 89]. Moreover, immersed isogeometric analysis enables the con-
struction of spline-based discretization spaces for geometrically and topologically
complex volumetric domains [52, 55, 89], a simulation strategy referred to as im-
mersogeometric analysis [56,57].

In comparison to boundary-fitting isogeometric analysis, the immersed iso-
geometric analysis strategy requires consideration of three (categories of) non-
standard computational aspects. First, the geometry of elements that intersect
with the boundary of the computational domain must be resolved by a dedicated
integration procedure; see e.g., [71, 73, 75, 86, 98, 125]. Second, Dirichlet bound-
ary conditions on immersed boundaries can generally not be imposed through
basis function constraints. Instead, such boundary conditions are frequently im-
posed weakly; see, e.g., [50,77,78,180]. Third, unfavorably trimmed elements are
notorious for causing ill-conditioning problems and, along Dirichlet boundaries,
large unphysical gradients [14,53,76,79,80,84,181]. This problem is amplified in
the higher-order discretization setting of isogeometric analysis [80]. Prominent
computational remedies to overcome these problems are to supplement the weak
formulation with stabilization terms, see, e.g., [51,79,83], or to constrain, extend,
or aggregate of basis functions, see e.g., [81, 85, 182–187], or to apply dedicated
preconditioning techniques, e.g., [62, 80,82].

For mixed formulations, such as standard weak forms of the Stokes and
Navier-Stokes equations, the immersed isogeometric analysis setting imposes an
additional challenge. In order to satisfy the inf-sup condition [188,189] in boundary-
fitting (isogeometric) analyses, generally use is made of stable pairs of basis func-
tions (e.g., Taylor-Hood [24, 190–192] or Raviart-Thomas [191, 193–195]). Al-
ternatively, stabilization techniques such as GLS [196–198], VMS [199–201] or
projection methods [202,203] can be used. Direct utilization of these elements or
stabilization techniques in the immersed setting can lead to non-physical spuri-
ous oscillations in the solution, even with relatively large and regular cut element
configurations [15,204]. One remedy for tackling this issue is to employ a skeleton-
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stabilized immersed isogeometric technique [15]. The fundamental idea of this
stabilization technique is to penalize (high-order) pressure derivative jumps over
the edges/faces of the background mesh, resulting in stable discretizations using
equal-order spline spaces. The technique proposed in Ref. [15] is inspired by the
(continuous) interior penalty ((C)IP) and the ghost penalty (GP) methods [79],
extending these techniques to the case of high-regularity isogeometric analysis.

An appraised property of immersed methods in general, and immersed isogeo-
metric analysis in particular, is that the discretization resolution can be controlled
independently of the geometry parametrization. The immersed analysis concept
avoids the need for geometry-induced mesh refinements in the vicinity of geo-
metric details that are irrelevant in relation to the objective of an analysis. This
decoupling of the discretization resolution from the geometry makes it natural
to consider immersed finite elements in combination with adaptive discretization
strategies. In fact, adaptivity in the form of local p- and hp−refinements has
always been an integral part of the finite cell method [65,118,205,206].

A posteriori error estimation and adaptivity techniques are well-established in
the context of finite element methods; see, e.g., the reviews [207–209]. A variety
of error estimation and adaptivity techniques has been studied in isogeometric
analysis, such as residual-based error estimators for T-splines [210] and hierarchi-
cal splines [158, 211, 212], and goal-oriented techniques [213]. The contemporary
overview [214] is also noteworthy, as is the advanced industrial application con-
sidered in Ref. [215]. In the context of Nitsche-based finite element methods (see
Refs. [216, 217] for an overview), studies on a posteriori error estimators have
been conducted [50, 218–221]. Local refinement strategies in immersed method
are predominantly feature based, i.e., either based on geometric features such as
boundaries, or based on solution features such as sharp gradients in the solution
fields; see, e.g., [89, 222, 223] for examples of local refinement capabilities in fi-
nite cell simulations. Goal-oriented error estimation and adaptivity for immersed
methods has also been studied [58, 213, 224, 225]. In the context of stabilized
immersed finite elements, Ref. [226] considered a posteriori element-wise error
estimation and adaptivity to improve boundary approximations.

Although the computational setting of immersed isogeometric analysis enables
the use of volumetric spline patches, the standard h, p and k-type refinement
strategies in patch-based isogeometric analysis [16] are not suitable because of the
non-local propagation of refinements. Various alternative refinement strategies
have been proposed over the last decade to construct local spline refinements, the
most prominent of which are T-splines [57, 89, 227–231], LRB-splines [232, 233],
U-splines [234], and (Truncated) Hierarchical B-splines [176]. In the context of
immersed isogeometric analysis on volumetric domains, hierarchical splines are
particularly suitable, as they optimally leverage the advantages offered by the
geometrically simple background mesh.
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In this contribution we propose a computational strategy for the application
of residual-based a-posteriori error estimation and mesh adaptivity to stabilized
immersed isogeometric analyses. We study various computational aspects of the
framework that are non-standard in comparison to error estimation and adaptiv-
ity for boundary-fitting analyses, viz.: (i) In immersed analyses, the discretiza-
tion basis is constructed over a mesh comprised of all elements in an ambient
mesh that intersect with the computational domain. As a direct consequence
of this setting, the support of the computational basis in general changes under
refinement operations. The same holds for the mesh skeleton, which is a key in-
gredient of the considered stabilization methods. The considered computational
strategy preserves the geometry of the computational domain under local mesh
refinements, despite the change of the background mesh; (ii) Weak formulations
in stabilized immersed isogeometric analysis generally involve operators with an
explicit dependence on the mesh size. While this mesh size is unambiguously
defined in the case of a uniform background mesh, the local mesh refinements
considered in the adaptive setting warrant careful consideration of the scaling of
the stabilization terms. We herein propose and study a scaling of the stabilization
terms based on the local element sizes.

We demonstrate the performance of the proposed computational strategy us-
ing a series of test cases for steady heat conduction problems (Poisson problem)
and steady viscous flow problems (Stokes problem). We consider the application
of the proposed adaptivity technique in a scan-based isogeometric analysis set-
ting, and demonstrate that a robust automatic simulation workflow is realized
when the methodology presented herein is combined with the topology-preserving
image segmentation algorithm presented in Ref. [86].

This paper is outlined as follows. Section 4.2 introduces the immersed isogeo-
metric analysis framework, along with a detailed stability analysis for the consid-
ered model problems. This analysis focuses particularly on the scaling relations
for the stabilization terms. In Section 4.3 the residual-based error estimator is
introduced, and a mesh-refinement strategy is proposed. Benchmark simulation
results are then presented in Section 4.4 for both the steady heat conduction
problem and the viscous flow problem, after which the developed framework is
applied in a scan-based setting in Section 4.5. Conclusions are finally drawn in
Section 4.6.

4.2 Stabilized immersogeometric analysis with lo-
cal mesh refinements

In this section we introduce the stabilized immersed isogeometric analysis for-
mulations for the steady heat conduction (Laplace) problem and steady viscous
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flow (Stokes) problem. We commence with presenting the general setting of the
problems in Section 4.2.1, after which the stabilized formulations are presented
in Section 4.2.2. In preparation of the a posteriori error estimation concept dis-
cussed in Section 4.3, in Section 4.2.3 we study the stability of the considered
formulations.

4.2.1 The finite cell setting
We consider a physical domain Ω ∈ Rd (with d ∈ {2, 3}) with boundary ∂Ω, as
illustrated in Figure 4.1. The boundary is composed of a Neumann part, ∂ΩN ,
and a Dirichlet part, ∂ΩD, such that ∂ΩN ∪ ∂ΩD = ∂Ω and ∂ΩN ∩ ∂ΩD = ∅.
The outward-pointing unit normal vector to the boundary is denoted by n.

The physical domain is immersed in a geometrically simple ambient domain,
i.e., A ⊃ Ω, on which a locally refined ambient mesh TA with elements K is
defined. In this work, the ambient domain is chosen to be rectangular or cuboid,
to facilitate simple, tensor-product, spline discretizations. The locally-refined
meshes are constructed by sequential bisectioning of (selections of) elements in
the mesh, starting from a Cartesian mesh. Truncated hierarchical B-splines can
be formed on such meshes, as will be elaborated in Section 4.2.2.

Elements that do not intersect with the physical domain can be omitted from
the ambient mesh, resulting in the locally refined (active) background mesh

T := {K |K ∈ TA,K ∩ Ω ̸= ∅}. (4.1)

In the remainder, with the abuse of notation, we will use T (and other meshes) to
denote both the set of elements in the mesh and the geometry obtained from the
union of these elements. The local mesh size of the locally refined background
mesh is denoted by

hT : K → hK = d
√

meas(K). (4.2)

By cutting the elements that are intersected by the immersed boundary ∂Ω, a
mesh that conforms to the physical domain Ω is obtained:

TΩ := {K ∩ Ω |K ∈ T } (4.3)

The collection of elements in the background mesh that are crossed by the im-
mersed boundary ∂Ω is defined as

G := {K ∈ T | K ∩ ∂Ω ̸= ∅}. (4.4)

In immersed methods, the geometry of the physical domain is captured by the
integration procedure on the cut elements, i.e., elements that are intersected by
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Figure 4.1: (a) A physical domain Ω, with boundary ∂Ω, is embedded in an ambient
domain A. The background mesh T , which consists of all elements that intersect
the physical domain, is constructed by locally refining the ambient domain mesh TA.
The zoom illustrates the employed bisectioning procedure to capture the immersed
boundaries. The integration subcells are marked in blue, whereas the background cells
are marked in black. The skeleton mesh, Fskeleton, and ghost mesh, Fghost, are shown
in panels (b) and (c), respectively.
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the immersed boundary ∂Ω. We herein employ an octree integration procedure
[58, 86], which we close at the lowest level of bisectioning with a tessellation
procedure. The considered integration procedure is illustrated in Figure 4.1 (in
blue) for a typical cut element; see Ref. [86] for further details. The employed
tessellation provides an explicit parametrization of a polygonal approximation of
the immersed boundary ∂Ω through the set of boundary faces

T∂Ω := {E ⊂ ∂Ω |E = ∂K ∩ ∂Ω, K ∈ TΩ}. (4.5)

All faces E ⊂ ∂ΩN (respectively E ⊂ ∂ΩD) are assigned to a set of Neumann
faces T∂ΩN

(respectively Dirichlet faces T∂ΩD
). In general, a single polygon face

can overlap with both the Neumann and the Dirichlet boundary. Let us note
that in an adaptive refinement procedure, the refinements can serve to provide
an increasingly accurate approximation of the transition between the Neumann
and Dirichlet boundary.

The formulations considered in the remainder of this work incorporate sta-
bilization terms formulated on the edges of the background mesh (see Section
4.2.2), which we refer to as the skeleton mesh

Fskeleton = {∂K ∩ ∂K ′ | K,K ′ ∈ T ,K ̸= K ′}. (4.6)

Note that the boundary of the background mesh is not part of the skeleton mesh.
In addition to the skeleton mesh, we define the ghost mesh as the subset of
the skeleton mesh that contain a face of an element intersected by the domain
boundary

Fghost = {∂K ∩ ∂K ′ |K ∈ G,K ′ ∈ T ,K ̸= K ′}. (4.7)

As will be detailed in Section 4.2.3, the stabilization terms formed on the skeleton
and ghost mesh account for stability and ill-conditioning effects related to unfa-
vorably cut elements, as well as for preventing pressure oscillations in equal-order
discretizations of the Stokes problem.

4.2.2 Immersogeometric analysis
We consider the immersogeometric analysis of a single-field steady heat-conduction
problem and of a two-field viscous flow problem. Both problems are represented
by the abstract Galerkin problem{

Find uh ∈ Uh such that:
ah(uh, vh) = bh(vh) ∀vh ∈ V h,

(4.8)

with mesh-dependent bilinear and linear forms, ah and bh, respectively. Note that
the superscript h is used to indicate mesh-dependence. The finite dimensional
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trial and test spaces, Uh and V h, are spanned by truncated hierarchical B-spline
(THB-splines) [158,176] basis functions of degree k and regularity α constructed
over the locally-refined background mesh, viz.

Sk
α(T ) = {N ∈ Cα(T ) : N |K ∈ P k(K), ∀K ∈ T }, (4.9)

with P k(K) the set of d-variate polynomials on the element K constructed by
the tensor-product of univariate polynomials of order k. Truncated hierarchical
B-splines, which are illustrated in Figure 4.2, form a partition of unity and have
a reduced support compared to their non-truncated counterpart, which is ad-
vantageous from the perspective of system matrix sparsity. Our implementation
is based on the open source finite element library Nutils [109], which provides
support for THB-splines.

Since the imposition of strong Dirichlet boundary conditions over the im-
mersed boundary ∂Ω is intractable in the immersogeometric analysis setting,
such boundary conditions are imposed weakly through Nitsche’s method; see,
e.g., Ref. [78]. A mesh-dependent consistent stabilization term is introduced in
order to ensure the well-posedness of the Galerkin problem (4.8).

Steady heat conduction

Steady heat conduction is governed by the Poisson problem, which, in dimen-
sionless form, can be formulated as

Find u such that:
−∆u = f in Ω,

u = g on ∂ΩD,

∂nu = q on ∂ΩN ,

(4.10)

where u is the scalar temperature field, f is a heat source term, q represents
the prescribed heat flux on the Neumann boundary, and g is the prescribed
temperature on the Dirichlet boundary. The normal gradient is defined as ∂nu =
∇u · n.

The discretized solution to the strong formulation (4.10) with the Dirichlet
conditions enforced by Nitsche’s method is denoted by

uh ∈ Uh = Sk
α(T ) ⊂ H1(T ),

with the corresponding test functions given by vh ∈ V h = Uh. We herein consider
maximum regularity B-splines, i.e., α = k − 1. The bilinear and linear forms in
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Figure 4.2: Illustration of truncated hierarchical B-splines [158,176] in the immersoge-
ometric analysis setting. The left column shows the hierarchical levels of the mesh T in
Figure 4.1, while the right column illustrates the concept for a one-dimensional immersed
domain Ω. The background mesh at the level ℓ = 0, · · · , ℓmax (with ℓmax = 3 in this illus-
tration) is defined as T ℓ = {K ∈ T ℓ

A | K ∩Ω ̸= ∅} where T ℓ
A is a regular mesh with mesh

size parameter 2−ℓh. Note that the meshes are nested, in the sense that the domain cov-
ered by the physical mesh at level ℓ, T ℓ, is completely inside that of level ℓ−1, T ℓ−1, i.e.,
T ℓ ⊆ T ℓ−1. The THB-spline basis, H(T ), is constructed by selection and truncation of
the basis functions in the B-spline basis B(T ℓ) = {N ∈ B(T ℓ

A) | supp (N) ⊆ T ℓ} defined
at each level. At the most refined level, i.e., at ℓ = ℓmax, all basis functions that are
completely inside T ℓmax are selected: H(T ℓmax ) = {N ∈ B(T ℓmax ) | supp (N) ⊆ T ℓmax }.
At the coarser levels, i.e., ℓ < ℓmax, the functions that are completely inside the do-
main T ℓ but not completely inside the refined domain T ℓ+1 are selected and truncated:
H(T ℓ) = {trunc(N) | N ∈ B(T ℓ), supp (N) ⊈ T ℓ+1}. The truncation operation re-
duces the support of the B-spline functions by projecting away basis functions retained
from the refined levels. The THB-spline basis then follows as H(T ) = ∪ℓmax

ℓ=0 H(T ℓ).
The reader is referred to Ref. [158] for details of THB-spline basis and Ref. [176] for
THB-spline basis construction.
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equation (4.8) are

ah(uh, vh) =
∫
Ω

∇uh · ∇vh dV −
∫

∂ΩD

(
(∂nu

h)vh + uh(∂nv)
)

dS

+
∑

E∈T∂ΩD

∫
E

β̃uhvh dS +
∑

F ∈Fghost

∫
F

γ̃gJ∂k
nu

hKJ∂k
nvK dS, (4.11a)

bh(vh) =
∫
Ω

fvh dV +
∫

∂ΩN

qvh dS −
∫

∂ΩD

g∂nv
h dS

+
∑

E∈T∂ΩD

∫
E

β̃gvh dS, (4.11b)

where β̃ is the Nitsche stabilization parameter. This parameter should be se-
lected and scaled (with the mesh size) appropriately, being large enough to en-
sure stability, while not being too large to cause a reduction in accuracy (see,
e.g., Ref. [76, 85]). The ghost-penalty operator in (4.11a) controls the kth-order
normal derivative jumps, indicated by J·K, over the interfaces of the elements
which are intersected by the domain boundary ∂Ω. Since in this contribution
B-splines of degree k with Ck−1-continuity are considered, only the kth normal
derivative is non-vanishing at the ghost mesh. As will be discussed in detail in
Section 4.2.3, upon approriate selection and scaling (with the mesh size) of γ̃g, a
Nitsche stabilization parameter, β̃, can be selected in such a way that stability
of the formulation can be assured independent of the cut-cell configurations. To
avoid loss of accuracy, the ghost-penalty parameter γ̃g should also not be too
large [235].

Steady viscous flow

Steady viscous flow can be modeled by the Stokes equations,

Find u and p such that:
−∇ · (2µ∇su) + ∇p = f in Ω

∇ · u = 0 in Ω
u = g on ∂ΩD

2µ (∇su) n − pn = t on ∂ΩN

(4.12)

with velocity u, pressure p, constant viscosity µ, body force f , Dirichlet data g
and Neumann data t. By consideration of the solution in the abstract Galerkin
problem (4.8) as a velocity-pressure pair, i.e., uh = (uh, ph) ∈ Uh = Uh

u × Uh
p =

[Sk
k−1]d × Sk

k−1 ⊂ [H1(Ω)]d × L2(Ω) and the corresponding test functions as
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vh = (vh, qh) ∈ V h = V h
u × V h

p = Uh, the aggregate bilinear and linear forms
corresponding to (4.12) follow as

ah(uh, vh) =
∫
Ω

(
2µ∇suh : ∇svh − ph∇ · vh − qh∇ · uh

)
dV

−
∫

∂ΩD

[
2µ
(
(∇suh)n · vh + (∇svh)n · uh

)
−
(
phvh · n + qhuh · n

)]
dS

+
∑

E∈T∂ΩD

∫
E

β̃µuh · vh dS

+
∑

F ∈Fghost

∫
F

γ̃gµJ∂k
nuhK · J∂k

nvhK dS

−
∑

F ∈Fskeleton

∫
F

γ̃sµ
−1J∂k

np
hKJ∂k

nq
hK dS, (4.13a)

bh(vh) =
∫
Ω

f · vh dV +
∫

∂ΩN

t · vh dS

−
∫

∂ΩD

(
2µ(∇svh)n − qhn

)
· g dS +

∑
E∈T∂ΩD

∫
E

β̃g · vh dS. (4.13b)

For the selection of the Nitsche parameter, β̃, and ghost stabilization constant,
γ̃g, the same arguments apply as for the steady heat conduction problem discussed
above. A discussion on the selection and scaling of these parameters for the Stokes
problem is presented in Section 4.2.3.

An additional stability issue is encountered for the immersed Stokes flow prob-
lem (4.13) on account of the selected equal-order optimal regularity spline spaces
of degree k. In the conforming setting, inf-sup stability is achieved by adopt-
ing a suitable velocity-pressure pair, e.g., Taylor-Hood [24, 190–192] or Raviart-
Thomas [191,193–195]. In the immersed setting, such pairs can still lead to pres-
sure oscillations in the vicinity of cut elements [204]. To resolve these pressure
oscillations, the immersogeometric skeleton stabilization technique developed in
Ref. [15] is applied. This stabilization technique can be regarded as the higher-
order continuous version of the method proposed in Ref. [236], which has also
been applied in the conforming isogeometric analysis setting [204].

From equation (4.13a) it is seen that the skeleton stabilization term penal-
izes jumps in higher-order pressure gradients, where the parameter γ̃s should be
selected such that oscillations vanish, while the influence of the additional term
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on the accuracy of the solution remains limited. The purpose of the skeleton
stabilization method is to avoid pressure oscillations associated inf-sup stability
problems, allowing for the utilization of identical spaces for the velocity compo-
nents and the pressure. Since the inf-sup stability problem is not restricted to
the immersed boundary, the skeleton stabilization pertains to all interfaces of the
background mesh. The appropriate selection and scaling of the skeleton stability
parameter is discussed in detail in Section 4.2.3.

4.2.3 Selection of the stabilization parameters: continuity
and coercivity of the formulation

Before considering a-posteriori error estimation in Section 4.3, we first study the
continuity and coercivity of the immersed formulations introduced above. We
commence with the introduction of the following inequalities:

• Using Young’s inequality, it follows that for any constant ε > 0 it holds
that

2∥uh∥L2∥ũh∥L2 ≤ ε∥uh∥2
L2 +

1
ε
∥ũh∥2

L2 ∀uh ∈ Uh, ∀ũh ∈ Uh. (4.14)

In combination with the Cauchy-Schwarz inequality, this inequality can be
applied to obtain

2
∫

∂ΩD

(∂nu
h)uh dS ≤ ε∥∂nu

h∥2
L2(∂ΩD) +

1
ε
∥uh∥2

L2(∂ΩD) ∀uh ∈ Uh. (4.15)

• For any background element K crossed by the boundary ∂Ω, with E =
K ∩ ∂Ω, under an assumption of shape regularity (i.e., provided with an
upper bound on the length of the intersection of the boundary within one
single element meas(K ∩ ∂Ω)), it holds that (see, e.g., Ref. [237, Lemma
4.2])

∥ϕ∥2
L2(E) ≤ CT ∥hK

−1/2ϕ∥2
L2(K) ∀ϕ ∈ P k, (4.16)

where it is noted that this inequality holds for the finite-dimensional space
P k of tensor-product polynomials of order k (not for functions in H1 in
general). The constant CT > 0, referred to as the trace inequality con-
stant, is independent of the size of the element, but dependent on the order
k. Note that the right part of the inequality contains the norm over the
full background element K, and not just its intersection with the physical
domain.
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Using inequality (4.16), the following bound for the normal gradient of uh

on the immersed boundary is obtained as

∥∂nu
h∥2

L2(∂Ω) ≤ ∥∇uh∥2
L2(∂Ω) =

∑
E∈T∂Ω

∥∇uh∥2
L2(E)

≤
∑
K∈G

CT ∥hK
−1/2∇uh∥2

L2(K)

≤ CT ∥hT
−1/2∇uh∥2

L2(T ) ∀uh ∈ Uh, (4.17)

with hT defined in Eq. (4.2) and where, with abuse of notation, the constant
CT is used to both represent the local trace inequality constant (second line)
and its global maximum (third line).

• Norms of functions over the entire background domain T can be bounded
by norms over the physical domain Ω and the ghost penalty. Using the
ghost-penalty, the gradients on the background mesh are bounded by those
in the physical domain. To demonstrate this bound, we split the norm over
the background mesh as

∥∇uh∥2
L2(T ) = ∥∇uh∥2

L2(T \G) + ∥∇uh∥2
L2(G)

≤ ∥∇uh∥2
L2(Ω) + ∥∇uh∥2

L2(G)

≤ ∥∇uh∥2
L2(Ω) +

∑
K∈G

∥∇uh∥2
L2(K) ∀uh ∈ Uh. (4.18)

To show the last inequality, we consider an element K ∈ G which shares
the interface F with an element K ′ /∈ G that completely lies inside Ω, such
that the volume integral over the background element K ′ is included in
the norm over Ω. We will first demonstrate that the gradients on K are
controlled by the ghost penalty and the norms on the physical domain.
Later on, elements in G that do not share an interface with an element in
T \ G will be considered by means of recursion. To demonstrate that the
gradients on K are bounded by those in the physical domain, we define
the polynomial extension of uh

∣∣
K′ as the global polynomial ūh

K′ ∈ P k (see
Figure 4.3). Using this extension, the spline function uh on the element K
can be decomposed as

uh
∣∣
K

= ūh
K′ + ũh

K′ . (4.19)

Let us consider xF as a projection of x on the straight or flat interface
F , such that x can be written as xF + xnnF , where xn = (x − xF ) · nF .
Here, the interface coordinate xF ∈ F is interpreted to be on the side of
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the element K, and related to the coordinate x ∈ K. The function ũh
K′ has

no support on K ′ and has vanishing normal derivatives up to order k at
the interface F . By Taylor-series expansion, one can infer

ũh
K′(x) = 1

k!∂
k
n(uh(xF ) − ūh

K′(xF ))xk
n

= 1
k!∂

k
nJuh(xF )Kxk

n ∀x ∈ K,∀uh ∈ Uh. (4.20)

This splitting is very natural through the use of maximum regularity splines
(i.e., ũh

K′ contains all degrees of freedom of K that are independent of K ′).
For the polynomial extension ūh

K′ it holds that

∥∇ūh
K′∥2

L2(K) ≤ CQ∥∇ūh
K′∥2

L2(K′) ∀uh ∈ Uh, (4.21)

where the constant CQ is independent of the mesh size, but dependent on
the order of the approximation and the ratio of the size of the elements
at either side of the interface. The order-dependence of this constant is
illustrated in Figure 4.3c. The presented results have been computed by
solving the generalized eigenvalue problem corresponding to Eq. (4.21).
From the expansion ũh

K′ in equation (4.20) it follows that

∥∇ũh
K′∥2

L2(K) = ∥ 1
k!
(
∇F∂

k
nũ

h
)
xk

n + k

k!
(
∂k

nũ
h
)
xk−1

n ∥2
L2(K)

≤ 2
(k!)2

(
∥
(
∇F∂

k
nũ

h
)
xk

n∥2
L2(K)

+∥k
(
∂k

nũ
h
)
xk−1

n ∥2
L2(K)

)
≤ 2

(k!)2

(
∥∇F∂

k
nũ

h∥2
L2(F )(2k + 1)−1h2k+1

F

+ k2∥∂k
nũ

h∥2
L2(F )(2k − 1)−1h2k−1

F

)
≤ CF

2 h2k−1
F ∥∂k

nũ
h∥2

L2(F )

≤ CF

2 h2k−1
F ∥J∂k

nu
hK∥2

L2(F ) (4.22)

with hF the size of K in the direction normal to the interface and where
∇F denotes the surface gradient in the interface F and where use has been
made of the polynomial inequality ∥∇F f

h∥2
L2(F ) ≲ h−2

F ∥fh∥2
L2(F ) for all

fh ∈ P k [238]. The dependence of the constant CF in the inequality (4.22)
on the order is illustrated in Figure 4.3d. This constant is independent of
the mesh size.
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(a) (b)

∥∇ūh
K′∥2

L2(K) ≤ CQ∥∇ūh
K′∥2

L2(K′)

(c)

∥∇ũh
K′∥2

L2(K) ≤ CFh
2k−1
F ∥J∂k

nu
hK∥2

L2(F )

(d)

Figure 4.3: Panel (a) is an illustration of a second order B-spline on an element K ∈ G
and its adjacent element K′ with an interface F . Panel (b) is its second order gradient
in the direction normal to the interface (with en the unit vector in the normal direction).
Panels (c) and (d) show the dependence of the constants in (4.21) and (4.22) on the
order k.
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Substituting the decomposition (4.19) in equation (4.18) yields

∥∇uh∥2
L2(G) =

∑
K∈G

∥∇ūh
K′ + ∇ũh

K′∥2
L2(K)

≤ 2
∑
K∈G

(
∥∇ūh

K′∥2
L2(K) + ∥∇ũh

K′∥2
L2(K)

)
∀uh ∈ Uh. (4.23)

Using the inequalities (4.21) and (4.22), and noting that since K ′ ∈ T \ G
it follows that ∥∇ūh

K′∥2
L2(K′) = ∥∇uh∥2

L2(K′), then results in

∥∇uh∥2
L2(G) ≤ (CG − 1)∥∇uh∥2

L2(Ω)

+
∑
F ∈F

CFh
2k−1
F ∥J∂k

nu
hK∥2

L2(F ) ∀uh ∈ Uh, (4.24)

where CG = 1 + 2 maxK∈G(CQ). To obtain this result, the inequality is
first applied to the layer of elements in G that share an interface with the
interior mesh T \ G. With control over the gradients in this first layer,
the inequality is then applied to a second layer of elements. This recursive
application is repeated until all elements in G have been considered. As a
result of this recursive application of the ghost inequality, the constant CG

depends on the number of layers, which in turn depends on the mesh size.
The boundedness of the gradients on the background mesh finally follows
by substitution of (4.24) in (4.18):

∥∇uh∥2
L2(T ) ≤ CG∥∇uh∥2

L2(Ω)

+
∑
F ∈F

CFh
2k−1
F ∥J∂k

nu
hK∥2

L2(F ) ∀uh ∈ Uh. (4.25)

One may note that the second term in (4.25) corresponds to the ghost-
penalty term with an appropriate scaling of the stabilization parameter;
see e.g., (4.11a).

• Following Ref. [239, Lemma 3.11], where piecewise linear (k = 1) polyno-
mials are considered, we conjecture that for any ph ∈ Uh

p there exists a
wh ∈ V h

u such that, for sufficiently small mesh sizes, it holds that

−ah
2 (ph,wh) ≥ C1∥µ−1/2ph∥2

L2(T )

− C2
∑

F ∈Fskeleton

∫
F

h2k+1
F µ−1J∂k

np
hKJ∂k

np
hK dS, (4.26a)

∣∣∣∣∣∣wh
∣∣∣∣∣∣

u
≤ C3∥µ−1/2ph∥L2(T ), (4.26b)
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with

ah
2 (ph,wh) := −

∫
Ω

ph∇ · wh dV +
∫

∂ΩD

phwh · n dS,

∣∣∣∣∣∣wh
∣∣∣∣∣∣

u
the velocity energy norm (see Section 4.2.3), and constants C1, C3 >

0 and C2 ≥ 0. Since the function spaces considered herein do not coincide
with those considered in Ref. [239], it is not evident that the proof pre-
sented there is also applicable to the situation considered in this work.
However, numerical evidence of the formulation (4.13) being stable in the
(optimal-regularity) spline setting has been presented [15, 30]. These nu-
merical results do suggest that the inequalities (4.26) hold, but a formal
proof is so far unavailable.

Steady heat conduction

Continuity of the bilinear form (4.11a) cannot be shown in the H1-norm on ac-
count of the immersed boundary terms, and coercivity cannot be shown on the
infinite-dimensional space. However, with an appropriate selection of the stabi-
lization parameters, continuity and coercivity can be established with respect to
the mesh-dependent norm∣∣∣∣∣∣uh

∣∣∣∣∣∣2 : = ∥∇uh∥2
L2(T ) + ∥β̃−1/2∂nu

h∥2
L2(∂ΩD)

+ ∥β̃1/2uh∥2
L2(∂ΩD) +

∑
F ∈Fghost

∥γ̃1/2
g J∂k

nu
hK∥2

L2(F ) ∀uh ∈ Uh, (4.27)

which we refer to as the energy norm.
The bilinear form (4.11a) is continuous on Uh ×V h if there exists a constant,

C > 0, independent of the mesh size, such that
ah(uh, vh) ≤ C

∣∣∣∣∣∣uh
∣∣∣∣∣∣ ∣∣∣∣∣∣vh

∣∣∣∣∣∣ ∀uh ∈ Uh, ∀vh ∈ V h. (4.28)

Using the Cauchy-Schwarz inequality, for all uh ∈ Uh, vh ∈ V h one obtains

ah(uh, uh) ≤ ∥∇uh∥L2(Ω)∥∇vh∥L2(Ω)

+ ∥β̃−1/2∂nu
h∥L2(∂ΩD)∥β̃1/2vh∥L2(∂ΩD)

+ ∥β̃1/2uh∥L2(∂ΩD)∥β̃−1/2∂nv
h∥L2(∂ΩD)

+
∑

E∈T∂ΩD

∥β̃1/2uh∥L2(E)∥β̃1/2vh∥L2(E)

+
∑

F ∈Fghost

∥γ̃1/2
g J∂k

nu
hK∥L2(F )∥γ̃1/2

g J∂k
nv

hK∥L2(F ).
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Since each of the norms in this expression is bounded from above by the energy
norm (4.27), it follows that ah(uh, uh) ≤ 5

∣∣∣∣∣∣uh
∣∣∣∣∣∣ ∣∣∣∣∣∣vh

∣∣∣∣∣∣. Hence the bilinear form
is continuous.

The bilinear form (4.11a) is uniformly (i.e., independent of h) coercive on Uh

if there exists a constant, C ⋆ > 0, such that

ah(uh, uh) ≥ C ⋆
∣∣∣∣∣∣uh

∣∣∣∣∣∣2 uh ∈ Uh. (4.29)

To demonstrate that this is indeed the case, we apply the inequalities (4.15) and
(4.25) to obtain

ah(uh, uh) ≥

(
C−1

G ∥∇uh∥2
L2(T ) −

∑
F ∈Fghost

C−1
G CF

∫
F

h2k−1
F J∂k

nu
hK2 dS

)

−

(
ε∥∂nu

h∥2
L2(∂ΩD) + ε−1∥uh∥2

L2(∂ΩD)

)

+
∑

E∈T∂ΩD

∥β̃ 1
2uh∥2

L2(E) +
∑

F ∈Fghost

∫
F

γ̃gJ∂k
nu

hK2 dS.

Application of the trace inequality (4.16) and collecting terms then yields

ah(uh, uh) ≥ ∥
(
C−1

G − φCTh
−1
T
) 1

2 ∇uh∥2
L2(T ) + ∥(φ− ε)

1
2 ∂nu

h∥2
L2(∂ΩD)

+ ∥
(
β̃ − ε−1) 1

2 uh∥2
L2(∂ΩD)

+
∑

F ∈Fghost

∫
F

(
γ̃g − C−1

G CFh
2k−1
F

)
J∂k

nu
hK2 dS,

for arbitrary φ > 0. By selecting element-wise constants 0 < ε ≤ φ and 0 < φ ≤
C−1

G

CT
hT , one can infer that coercivity is ensured provided that

β̃ = βh−1
K ≥ CTCGh

−1
K γ̃g = γgh

2k−1
F ≥ CF

CG
h2k−1

F . (4.30)

for all elements K and interfaces F , where the positive constants β ≥ CTCG

and γg ≥ CFC
−1
G are independent of the mesh size. The interface length scale is

defined as hF = max (hK , hK′) with K and K ′ being the elements on either side
of the interface F . The rational behind this choice is that the ghost stabilization
term scales with h2k−1

F (k ≥ 1) and that hence the larger element size ensures
that the stability constant is sufficiently large.
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Steady viscous flow

Recalling that for the Stokes problem uh = (uh, ph), we define the mesh-dependent
error norm as ∣∣∣∣∣∣uh

∣∣∣∣∣∣2 =
∣∣∣∣∣∣(uh, ph)

∣∣∣∣∣∣2 =
∣∣∣∣∣∣uh

∣∣∣∣∣∣2
u

+
∣∣∣∣∣∣ph

∣∣∣∣∣∣2
p
, (4.31)

with∣∣∣∣∣∣uh
∣∣∣∣∣∣2

u
:= ∥µ1/2∇suh∥2

L2(T ) + ∥β̃−1/2µ1/2∂nuh∥2
L2(∂ΩD)

+ ∥β̃1/2µ1/2uh∥2
L2(∂ΩD) +

∑
F ∈Fghost

∥γ̃1/2
g µ1/2J∂k

nuhK∥2
L2(F ), (4.32a)

∣∣∣∣∣∣ph
∣∣∣∣∣∣2

p
:= ∥µ−1/2ph∥2

L2(T ) +
∑

F ∈Fskeleton

∥γ̃1/2
s µ−1/2J∂k

np
hK∥2

L2(F ). (4.32b)

Continuity of the bilinear form (4.13a) with respect to this energy norm in the
sense of (4.28) follows directly by application of the Cauchy-Schwarz inequality
to all terms in (4.13a).

With an appropriate selection of the stability parameters for the Stokes prob-
lem, it holds that the bilinear form (4.13a) is inf-sup stable in accordance with

sup
vh∈V h\{0}

ah(uh, vh)
|||vh|||

≥ C⋆
∣∣∣∣∣∣uh

∣∣∣∣∣∣ ∀uh ∈ Uh, (4.33)

where C⋆ > 0 is the inf-sup stability constant. To demonstrate this stability
property, we split the bilinear form as

ah(uh, vh) = ah
1 (uh,vh) + ah

2 (qh,uh) + ah
2 (ph,vh) − ah

3 (ph, qh), (4.34)

with

ah
1 (uh,vh) :=

∫
Ω

2µ∇suh : ∇svh dV

−
∫

∂ΩD

[
2µ
(
(∇suh)n · vh + (∇svh)n · uh

)]
dS

+
∑

E∈T∂ΩD

∫
E

βµ

hK
uh · vh dS

+
∑

F ∈Fghost

∫
F

γµh2k−1
F J∂k

nuhK · J∂k
nvhK, (4.35a)
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ah
2 (qh,uh) := −

∫
Ω

qh∇ · uh dV +
∫

∂ΩD

qhuh · n dS, (4.35b)

ah
3 (ph, qh) :=

∑
F ∈Fskeleton

∫
F

γ̃sµ
−1J∂k

np
hKJ∂k

nq
hK dS. (4.35c)

We now take a function

φh = (vh, qh) = (uh − αwh,−ph) ∈ V h,

where wh depends on ph in accordance with (4.26), and with some constant
α > 0, such that

sup
vh∈V h\{0}

ah(uh, vh)
|||vh|||

≥ ah(uh, φh)
|||φh|||

≥ ah
1 (uh,uh) − αah

1 (uh,wh)
|||φh|||

+ −αah
2 (ph,wh) + ah

3 (ph, ph)
|||φh|||

∀uh ∈ Uh. (4.36)

Following Section 4.2.3, ah
1 (uh,uh) is coercive and ah

1 (uh,wh) is continuous with
respect to the velocity energy norm (4.32a) in accordance with Eqs. (4.28) and
(4.29), respectively. Hence,

sup
vh∈V h\{0}

ah(uh, vh)
|||vh|||

≥
C⋆

u

∣∣∣∣∣∣uh
∣∣∣∣∣∣2

u
− αC

∣∣∣∣∣∣uh
∣∣∣∣∣∣

u

∣∣∣∣∣∣wh
∣∣∣∣∣∣

u√
2 |||uh|||2u + 2α2 |||wh|||2u + |||ph|||2p

+ −αah
2 (ph,wh) + ah

3 (ph, ph)√
2 |||uh|||2u + 2α2 |||wh|||2u + |||ph|||2p

∀uh ∈ Uh, (4.37)

where use has been made of∣∣∣∣∣∣φh
∣∣∣∣∣∣ =

√
|||uh − αwh|||2u + |||ph|||2p

≤
√

2 |||uh|||2u + 2α2 |||wh|||2u + |||ph|||2p. (4.38)
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Using the inequalities (4.26), it follows that

sup
vh∈V h\{0}

ah(uh, vh)
|||vh|||

≥
C⋆

u

∣∣∣∣∣∣uh
∣∣∣∣∣∣2

u
− αCC3

∣∣∣∣∣∣uh
∣∣∣∣∣∣

u
∥µ−1/2ph∥L2(T )√

2 |||uh|||2u + (1 + 2α2C2
3 ) |||ph|||2p

+
αC1∥µ−1/2ph∥2

L2(T )√
2 |||uh|||2u + (1 + 2α2C2

3 ) |||ph|||2p

+

∑
F ∈Fskeleton

(
1 − αC2γ̃

−1
s h2k+1

F

)
∥γ̃1/2

s µ−1/2J∂k
np

hK∥2
F√

2 |||uh|||2u + (1 + 2α2C2
3 ) |||ph|||2p

∀uh ∈ Uh, (4.39)

which, using Young’s inequality (4.14) with ε = 1, can be reformulated as

sup
vh∈V h\{0}

ah(uh, vh)
|||vh|||

≥

(
C⋆

u −
αCC3

2

)∣∣∣∣∣∣uh
∣∣∣∣∣∣2

u

C4 |||uh|||

+
α

(
C1 −

CC3

2

)
∥µ−1/2ph∥2

L2(T )

C4 |||uh|||

+

∑
F ∈Fskeleton

(
1 − αC2γ̃

−1
s h2k+1

F

)
∥γ̃1/2

s µ−1/2J∂k
np

hK∥2
F

C4 |||uh|||
∀uh ∈ Uh. (4.40)

Inf-sup stability as in (4.33) then holds, provided that

α <
2C⋆

u

CC3
, γ̃s = γsh

2k+1
F ≥ αC2h

2k+1
F . (4.41)

We note that the skeleton penalty has two purposes: i) It extends the stability
of the pressure field to the background grid T as in (4.26), in the same way as for
the ghost penalty discussed in Section 4.2.3. Since stability is here defined with
respect to the L2-norm of the pressure field, the skeleton stability constant γ̃s

scales with h2k+1, following the same reasoning as in Eq. (4.25); ii) It ensures the
inf-sup stability for equal-order discretizations, essentially meaning that pressure
oscillations in the interior are penalized. This is the reason why this term is
applied over the complete skeleton and not only the ghost interfaces.



130 Residual-based error estimation & adaptivity in immersed IGA

4.3 Error estimation and adaptivity
We study a posteriori error estimation and adaptivity for immersogeometric anal-
ysis. In Section 4.3.1 we first introduce a residual-based error indicator, and elab-
orate it for the heat conduction problem and viscous flow problem introduced in
the previous section. In Section 4.3.2 the refinement strategy is discussed.

4.3.1 Residual-based error estimation
We propose an error estimator pertaining to the background mesh, T , of the form

E =
√∑

K∈T
η2

K , (4.42)

where the element-wise error indicators, ηK , will serve to guide an adaptive re-
finement procedure. The derivations of the indicators for the heat conduction
problem and viscous flow problem will be elaborated in the following sections.

From an abstract perspective, the element-wise error indicators are defined in
such a way that the estimator (4.42) bounds the residual from above as

E ≳ ∥rh∥
V̂ h . (4.43)

In this expression, the residual and its norm are defined as

rh(v̂h) := rh(uh)(v̂h) := bh(v̂h) − ah(uh, v̂h),

∥rh∥
V̂ h := sup

v̂h∈V̂ h\{0}

rh(v̂h)
|||v̂h|||

,
(4.44)

with the discrete function space V̂ h being defined on the same mesh and with
the same regularity as the space V h, but with the order of the basis elevated in
such a way that V̂ h ⊃ V h.

The reason for considering the finite-dimensional order-elevated space V̂ h in
the definition of the norm (4.44) is that in the considered immersed formulations,
inf-sup stability can only be shown in the discrete setting. Obtaining a stable for-
mulation in the space V̂ h requires additional stabilization terms on higher-order
non-vanishing derivatives, for which appropriate stabilization constants must be
selected [30, 240]. Note that, in principle this means that the operators defined
above need to be augmented with these additional stabilization terms, but we
assume that for the solution in the order-elevated space these terms are small.
Similar assumptions, referred to as saturation assumptions, have been considered
in e.g., [219–221].
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Assuming that the stability constants are selected such that a stable formu-
lation is obtained both in V h and in V̂ h, it follows that

E ≳ sup
v̂h∈V̂ h\{0}

rh(v̂h)
|||v̂h|||

= sup
v̂h∈V̂ h\{0}

bh(v̂h) − ah(uh, v̂h)
|||v̂h|||

= sup
v̂h∈V̂ h\{0}

ah(ûh − uh, v̂h)
|||v̂h|||

≳ |||e||| , (4.45)

where the solution error is defined as the difference between the solution obtained
in the order-elevated space, ûh ∈ V̂ h, and the Galerkin approximation (4.8), i.e.,

e = ûh − uh. (4.46)

As we will elaborate in Sections 4.3.1 and 4.3.1, the order-elevated solution is not
required for the calculation of the residual-based estimator (4.42). This refined
space is only used to provide a proper functional setting for the error estimator.

Steady heat conduction

To derive the error indicators for the steady heat conduction problem introduced
in Section 4.2.2, it is first noted that because of Galerkin orthogonality

rh(v̂h) = rh(v̂h − Πhv̂h) = rh(ṽ), (4.47)

where ṽ = v̂h − Πhv̂h ∈ V̂ h and Πh : V̂ h → V h is an interpolation operator
[241, 242]. Note that, for notational convenience, we will drop the diacritic and
superscript from v̂h ∈ V̂ h in the remainder of this section, i.e., v̂h = v.

Using the definition of the residual (4.44) in combination with the definitions
of the bilinear and linear forms (4.11a) and (4.11b), (reverse) integration by parts
yields

rh(ṽ) =
∑

K∈T

{ ∫
K∩Ω

rh
volumeṽ dV +

∫
K∩∂ΩN

rh
neumannṽ dS

+
∫

K∩∂ΩD

(
−rh

nitsche
)
∂nṽ dS +

∫
K∩∂ΩD

β

hK
rh

nitscheṽ dS

+
∫

∂K∩Fskeleton

(
−rh

jump
)
ṽ dS

+
∫

∂K∩Fghost

γgh
2k−1
F

(
−rh

ghost
)
J∂k

nṽK dS
}
, (4.48)
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where

rh
volume := f + ∆uh, (4.49a)

rh
neumann := q − ∂nu

h, (4.49b)
rh

nitsche := g − uh, (4.49c)
rh

jump := 1
2J∂nu

hK, (4.49d)
rh

ghost := 1
2J∂k

nu
hK. (4.49e)

The factor 1
2 in the jump and ghost terms accounts for the presence of the

associated interfaces in two elements. Using the Cauchy-Schwarz inequality it
then follows that

|rh(ṽ)| ≤
∑

K∈T

{
∥rh

volume∥L2(K∩Ω)∥ṽ∥L2(K∩Ω)

+ ∥rh
neumann∥L2(K∩∂ΩN )∥ṽ∥L2(K∩∂ΩN )

+ ∥rh
nitsche∥L2(K∩∂ΩD)∥∂nṽ∥L2(K∩∂ΩD)

+ βh−1
K ∥rh

nitsche∥L2(K∩∂ΩD)∥ṽ∥L2(K∩∂ΩD)

+
∑

F ∈Fskeleton

∥rh
jump∥L2(∂K∩F )∥ṽ∥L2(∂K∩F )

+
∑

F ∈Fghost

γgh
2k−1
F ∥rh

ghost∥L2(∂K∩F )∥J∂k
nṽK∥L2(∂K∩F )

}
. (4.50)

Using standard interpolation inequalities [11,24] and the definition of the norm
(4.27), and noting that we consider the functions ṽ and v to be polynomials, it
follows that

∥ṽ∥L2(K∩Ω) ≲ hK∥∇v∥
L2(K̃) ≲ hK |||v|||

K̃
, (4.51a)

∥ṽ∥L2(K∩∂Ω) ≲ h
− 1

2
K ∥ṽ∥L2(K) ≲ h

1
2
K |||v|||

K̃
, (4.51b)

∥∂nṽ∥L2(K∩∂ΩD) ≲ h
− 1

2
K ∥∇ṽ∥L2(K) ≲ h

− 1
2

K |||v|||
K̃
, (4.51c)

∥ṽ∥L2(∂K∩F ) ≲ h
− 1

2
K ∥ṽ∥L2(K) ≲ h

1
2
K |||v|||

K̃
, (4.51d)
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∥J∂k
nṽK∥L2(∂K∩F ) ≲ ∥∂k

nṽK∥L2(∂K∩F ) + ∥∂k
nṽK′∥L2(∂K′∩F )

≲ h
1
2 −k

F |||v|||
K̃∪K̃′ , (4.51e)

where K̃ is the support extension [24] of the element K and K ′ is the element
that shares the interface F with element K. The residual can then be bounded
as

|rh(ṽ)| ≲
∑

K∈T

{
hK∥rh

volume∥L2(K∩Ω) + h
1
2
K∥rh

neumann∥L2(K∩∂ΩN )

+ h
− 1

2
K ∥rh

nitsche∥L2(K∩∂ΩD) + βh
− 1

2
K ∥rh

nitsche∥L2(K∩∂ΩD)

+
∑

F ∈Fskeleton

h
1
2
F ∥rh

jump∥L2(∂K∩F )

+
∑

F ∈Fghost

γgh
k− 1

2
F ∥rh

ghost∥L2(∂K∩F )

}
|||v|||

K̃∪K̃′ , (4.52)

which, using the discrete Cauchy-Schwarz inequality can be rewritten as

|rh(v)|2

|||v|||2
≲
∑

K∈T

{
h2

K∥rh
volume∥2

L2(K∩Ω) + hK∥rh
neumann∥2

L2(K∩∂ΩN )

+ h−1
K ∥rh

nitsche∥2
L2(K∩∂ΩD) + β2h−1

K ∥rh
nitsche∥2

L2(K∩∂ΩD)

+
∑

F ∈Fskeleton

hF ∥rh
jump∥2

L2(∂K∩F )

+
∑

F ∈Fghost

γ2
gh

2k−1
F ∥rh

ghost∥2
L2(∂K∩F )

}
. (4.53)

Using the definition of the residual norm (4.44) it follows that

∥rh∥
V̂ h ≲ E =

√∑
K∈T

η2
K , (4.54)
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with the element error indicators defined as

η2
K := h2

K∥rh
volume∥2

L2(K∩Ω) + hK∥rh
neumann∥2

L2(K∩∂ΩN )

+ h−1
K ∥rh

nitsche∥2
L2(K∩∂ΩD) + β2h−1

K ∥rh
nitsche∥2

L2(K∩∂ΩD)

+
∑

F ∈Fskeleton

hF ∥rh
jump∥2

L2(∂K∩F )

+
∑

F ∈Fghost

γ2
gh

2k−1
F ∥rh

ghost∥2
L2(∂K∩F ). (4.55)

This error indicator reflects that the total element error for all elements that do
not intersect the boundary of the domain is composed of the interior residual and
the residual term for the jump in the solution normal derivative across the element
interfaces. It is noted that for higher-order continuous discretizations, i.e., α >
0, the jump contribution vanishes. For elements that intersect the Neumann
boundary, additional error contributions are obtained from the Neumann residual
and the ghost penalty residual, while additional Nitsche-related contributions
appear for elements intersecting the Dirichlet boundary.

Steady viscous flow

For the Stokes problem introduced in Section 4.2.2, using (reverse) integration
by parts, the error indicators in equation (4.42) are obtained by considering the
residual (4.44) as

rh(ṽ) =
∑

K∈T

{ ∫
K∩Ω

rh
int,u · ṽ + rh

int,pq̃ dV +
∫

K∩∂ΩN

rh
neumann · ṽ dS

+
∫

K∩∂ΩD

(−rh
nitsche) · ((2µ∇sṽ) n + q̃n) dS

+
∑

F ∈Fskeleton

∫
∂K∩F

(−rh
jump) · ṽ dS +

∫
K∩∂ΩD

βµ

hK
rh

nitsche · ṽ dS

+
∑

F ∈Fghost

∫
∂K∩F

γgµh
2k−1
F (−rh

ghost) · J∂k
nṽK dS

+
∑

F ∈Fskeleton

∫
∂K∩F

γsh
2k+1
F

µ
rh

skeletonJ∂k
nq̃K dS

}
, (4.56)
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where ṽ = v − Πhv = (ṽ, q̃) and

rh
int,u := f + ∇ ·

(
2µ∇suh

)
− ∇ph, (4.57a)

rh
int,p := ∇ · uh, (4.57b)

rh
neumann := t −

(
2µ∇suh

)
n + phn, (4.57c)

rh
nitsche := g − uh, (4.57d)
rh

jump := 1
2J
(
2µ∇suh

)
nK, (4.57e)

rh
ghost := 1

2J∂k
nuhK, (4.57f)

rh
skeleton := 1

2J∂k
np

hK. (4.57g)

Application of the Cauchy-Schwarz inequality gives

∣∣rh(ṽ)
∣∣ ≤

∑
K∈T

{
∥rh

int,u∥L2(K∩Ω)∥ṽ∥L2(K∩Ω) + ∥rh
int,p∥L2(K∩Ω)∥q̃∥L2(K∩Ω)

+ ∥rh
neumann∥L2(K∩∂ΩN )∥ṽ∥L2(K∩∂ΩN )

+ ∥rh
nitsche∥L2(K∩∂ΩD)

(
2µ∥ (∇sṽ) n∥L2(K∩∂ΩD) + ∥q̃∥L2(K∩∂ΩD)

)
+

∑
F ∈Fskeleton

∥rh
jump∥L2(∂K∩F )∥ṽ∥L2(∂K∩F )

+ µβh−1
K ∥rh

nitsche∥L2(K∩∂ΩD)∥ṽ∥L2(K∩∂ΩD)

+
∑

F ∈FK
ghost

µγgh
2k−1
F ∥rh

ghost∥L2(∂K∩F )∥J∂k
nṽK∥L2(∂K∩F )

+
∑

F ∈FK
skeleton

µ−1γsh
2k+1
F ∥rh

skeleton∥L2(∂K∩F )

∥J∂k
nq̃K∥L2(∂K∩F )

}
, (4.58)
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which, using the inequalities (4.51) and

∥q̃∥L2(K∩Ω) ≲ ∥q∥L2(K), (4.59a)

∥q̃∥L2(K∩∂Ω) ≲ h
− 1

2
K ∥q̃∥L2(K) ≲ h

− 1
2

K ∥q∥L2(K), (4.59b)
∥J∂k

nq̃K∥L2(∂K∩F ) ≲ ∥∂k
nq̃K∥L2(∂K∩F ) + ∥∂k

nq̃K′∥L2(∂K′∩F )

≲ h
− 1

2 −k

F ∥q∥
L2(K̃∪K̃′), (4.59c)

can be rewritten as

∣∣rh(ṽ)
∣∣ ≲ ∑

K∈T

{
µ− 1

2hK∥rh
int,u∥L2(K∩Ω) + µ

1
2 ∥rh

int,p∥L2(K∩Ω)

+ µ− 1
2h

1
2
K∥rh

neumann∥L2(K∩∂ΩN ) + 3µ 1
2h

− 1
2

K ∥rh
nitsche∥L2(K∩∂ΩD)

+
∑

F ∈Fskeleton

µ− 1
2h

1
2
K∥rh

jump∥L2(∂K∩F ) + µ
1
2 βh

− 1
2

K ∥rh
nitsche∥L2(K∩∂ΩD)

+
∑

F ∈FK
ghost

µ
1
2 γgh

k− 1
2

F ∥rh
ghost∥L2(∂K∩F )

+
∑

F ∈FK
skeleton

µ− 1
2 γsh

k+ 1
2

F ∥rh
skeleton∥L2(∂K∩F )

}
|||v|||

K̃∪K̃′ . (4.60)

Note that the factor 3 in front of the Nitsche residual results from the fact that
both terms 2µ∥ (∇sṽ) n∥L2(K∩∂ΩD) and ∥q̃∥L2(K∩∂ΩD) are bound by the same
norm. Following the same steps as for the heat conduction problem we then
obtain the element error indicators as

η2
K = µ−1h2

K∥rh
int,u∥2

L2(K∩Ω) + µ∥rh
int,p∥2

L2(K∩Ω)

+ µ−1hK∥rh
neumann∥2

L2(K∩∂ΩN ) + 9µh−1
K ∥rh

nitsche∥2
L2(K∩∂ΩD)

+
∑

F ∈Fskeleton

µ−1hK∥rh
jump∥2

L2(∂K∩F ) + µβ2h−1
K ∥rh

nitsche∥2
L2(K∩∂ΩD)

+
∑

F ∈FK
ghost

µγ2
gh

2k−1
F ∥rh

ghost∥2
L2(∂K∩F )

∑
F ∈FK

skeleton

µ−1γ2
sh

2k+1
F ∥rh

skeleton∥2
L2(∂K∩F ). (4.61)
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Compared to the error indicators for the heat conduction problem, we here get one
additional term to represent the error in the balance of mass, i.e., ∥rh

int,p∥L2(K∩Ω),
and one term related to the skeleton-stabilization, i.e., ∥rh

skeleton∥L2(∂K∩F ). More-
over, note that the mass and momentum balance terms are scaled with µ− 1

2 and
µ

1
2 , respectively, in order to be dimensionally-consistent with the energy norm

(4.31).

4.3.2 Adaptive solution procedure
We employ the residual-based error estimator introduced above in an iterative
mesh refinement procedure. In each iteration, for the given mesh we solve the
Galerkin problem (4.8) and subsequently compute the element-wise error indica-
tors (4.42) (and the corresponding estimator). Based on the indicators, certain
elements are then refined, after which the procedure is repeated on the refined
mesh. These iterations are continued until a stopping criterion is satisfied.

We consider Dörfler marking [243] to select the elements to be refined. In this
marking strategy, the marked set, M, is defined as a minimal set of elements
such that √ ∑

K∈M
η2

K ≥ λ

√∑
K∈T

η2
K = λE , (4.62)

with λ a selected fraction of the error estimator. For the considered (truncated)
hierarchical spline meshes, refining elements does not necessarily result in a re-
finement of the approximation space [176, 213]. To ensure that the approxima-
tion space is refined, an additional step is required in which a refinement mask
M̃ ⊃ M is defined. To determine the refinement mask, for each element K in
the marked set M we determine the support extension

K̃ =
⋃

{supp(N) | supp(N) ∩K ̸= ∅, N ∈ H(T )} , (4.63)

and then refine the elements in each support extension which are not smaller
than the element K, i.e.,

M̃ =
⋃

K∈M

{
K ′ ∈ K̃ | K ′ ∈ ∪ℓK

ℓ=0T ℓ, K ∈ T ℓK

}
. (4.64)

During the element refinement procedure the geometry approximation is not
altered, as illustrated in Figure 4.4. In our implementation, the bisectioning
depth used to determine the integration subcells is lowered under refinement,
resulting in the preservation of the integration subcells under refinement. This
ensures that the boundary of the segmented geometry is invariant under mesh
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refinement. A consequence of this choice is that an element can only be refined
up to the level of the integration subcells. Elements requiring refinement beyond
the level of the integration subcells are discarded from the refinement list, and
the adaptive refinement procedure is stopped if there are no more elements that
can be refined.

(a) Original element (b) First refinement (c) Second refinement

Cut elements Uncut elements Void elements

Figure 4.4: Illustration of the refinement procedure for cut elements. The original ele-
ment is subdivided in integration subcells (blue borders) using the recursive bisectioning
procedure detailed in Ref. [86]. At the lowest level of bisectioning, a triangulation pro-
cedure is employed. After one refinement of the original element, the original element
is split into 4 elements, of which one is now an uncut element and the other three are
cut elements. The bisectioning depth for the determination of the integration subcells
is reduced by one level compared to the original element, so that the subcells remain
identical under the element refinement operation. After one further refinement step,
each of the four elements in the first refinement is further refined, resulting now also in
elements that are void and are hence discarded from the background mesh.

4.4 Benchmark simulations
In this section we assess the developed residual-based adaptive refinement tech-
nique on a range of numerical experiments. For both the heat conduction problem
(Section 4.4.1) and the viscous flow problem (Section 4.4.2), both singular and
non-singular test cases are considered. For all simulations exact reference solu-
tions are available, allowing for a rigorous study of the stability and accuracy of
the developed adaptive immersed isogeometric analysis framework. For all simu-
lations the octree subdivision depth is set equal to the desired maximum number
of refinements (see Section 4.3.2) and the refinement threshold is set to λ = 0.8.
Throughout this section, the problems are considered to be in dimensionless form.



Benchmark simulations 139

y

x

(-0.5,-0.5)

(-0.5,0.5) (0.5,0.5)

(0.5,-0.5)

Ω∂ΩD

∂ΩD

∂ΩD

∂ΩD

(a) (b)

Figure 4.5: (a) Problem setup, and (b) the exact solution u(x, y), Eq. (4.65), for the
Laplace problem on the unit square domain.

4.4.1 Steady heat conduction
We consider the two-dimensional heat conduction problem on a unit square and
on a star-shaped domain with a smooth exact solutions, and on a domain with
a re-entrant corner, for which the exact solution has a reduced regularity (Sec-
tion 4.4.1). The problems are discretized with linear (k = 1) and quadratic
(k = 2) (TH)B-splines using both uniform and adaptive refinement. All exam-
ples consider a non-conforming ambient mesh positioned at an angle of 20 degrees
(see Figure 4.5a and Figure 4.9a), unless specified otherwise. The empirically se-
lected Nitsche and ghost penalty parameters are set to β = 50 and γg = 10−(k+2),
respectively.

Unit square

Let Ω = [− 1
2 ,

1
2 ]2 be a unit square with Dirichlet boundary ∂ΩD (see Figure 4.5a).

We define the exact solution of the problem (4.10) as

u(x, y) = sin(πx) + sin(πy), (4.65)

which is shown in Figure 4.5b. The heat source f corresponding to this exact
solution is equal to zero, and the Dirichlet data is set to g = u|∂ΩD

, matching
the exact solution.
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(a) k = 1 (b) k = 2

Figure 4.6: Error convergence results for the Laplace problem on the unit square do-
main under residual-based adaptive refinement (solid) and uniform refinement (dashed)
for linear (k = 1) and quadratic (k = 2) basis functions.

Figure 4.6 shows error-analysis results using both uniform and adaptive refine-
ments for the linear case (Figure 4.6a) and for the quadratic case (Figure 4.6b).
Both refinement procedures start from an initial mesh consisting of 8×8 elements
covering the ambient domain [−1, 1]2. Optimal convergence rates are obtained
for both the error in the L2-norm (i.e., O(n− 1

2 (k+1))) and in the H1-norm (i.e.,
O(n− 1

2 k)), with n denoting the number of degrees of freedom. Moreover, as
the number of refinement steps increases, the energy norm and H1-norm of the
error coincide, indicating that the error is dominated by the H1-semi-norm con-
tribution in Eq. (4.27). The estimator (4.42) is observed to converge at the
same rate as the energy norm, bounding the energy norm from above, consistent
with Eq. (4.45). Because of the smooth solution (4.65), the refinement pattern
following from the adaptive refinement procedure closely resembles the uniform
refinements, as observed from the close correspondence between the error results
for the uniform and adaptive simulations in Figure 4.6.

Star-shaped domain

To study the sensitivity of the adaptive simulation framework to the cut-cell
configurations, we consider the star-shaped domain shown in Figure 4.7a for
various orientation angles ϑ. The star-shaped domain is constructed using the
level set function

ψ(x, y) = R1 +R2 sin(nfold arctan2(y, x)) −
√
x2 + y2,
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with R1 = 0.6, R2 = 0.2 and nfold = 5 [60]. On the boundary of the domain, the
Dirichlet data is set equal to the same exact solution (4.65) as in the previous
example. For all orientations, an initial mesh of 10 × 10 elements covering the
ambient domain [−1, 1]2 is considered, after which local refinements using second-
order THB-splines are performed until the smallest elements have been refined
six times.

Figures 4.7b–4.7f show the error u − uh after completion of the refinement
procedure. These figures convey that both the error and the refinement pattern
are similar for all orientations. This is corroborated by the results in Figure 4.8,
which indicates that both the number of degrees of freedom and the errors (in
various norms) are insensitive to the orientation angle.

Re-entrant corner

To study the behavior of the adaptive simulation strategy for problems with
(weakly) singular solutions, we consider a domain with a re-entrant corner, as
shown in Figure 4.9a. The data on the Dirichlet and Neumann boundaries,
u|∂ΩD

= g = 0 and ∂nu|∂ΩN
= q, is set to match the exact solution [206,213]

u(x, y) = (x2 + y2) 1
3 cos

(
2
3arctan2(x− y, x+ y)

)
. (4.66)

The convergence behavior of the L2-error, H1-error, energy norm error (4.27)
and the residual-based estimator (4.55) is studied for uniform refinement and
residual-based adaptive refinement. Both refinement procedures start from an
initial mesh of 10 × 10 elements formed on the ambient domain [− 3

2 ,
3
2 ]2. The

convergence results for first and second order B-splines are shown in Figure 4.10a
and Figure 4.10b, respectively.

Under uniform refinement, the convergence rates are impeded by the weak
singularity at the re-entrant corner. For the L2-error and H1-error, subopti-
mal rates of O(n− 2

3 ) and O(n− 1
3 ) are observed, which is in agreement with the

expected rates [244]. These rates are independent of the order of the approxima-
tion, as the regularity of the exact solution limits the rate already for the linear
case. As for the cases considered above, the energy error and estimator follow
the convergence of the H1-error.

Using the adaptive refinement strategy with linear basis functions, the opti-
mal rates of O(n−1) and O(n− 1

2 ) are recovered for the L2-error and H1-error,
respectively. For the quadratic case, rates that are substantially higher than the
theoretical rates are observed. We attribute this to pre-asymptotic behavior, in
which the refinement pattern as shown in Figure 4.10 is strongly focused on the
re-entrant corner singularity. After the first two steps, the errors become dom-
inated by the singularity at the re-entrant corner, which results in the further
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(c) ϑ = 20 (d) ϑ = 30

(e) ϑ = 40 (f) ϑ = 50

Figure 4.7: (a) Problem setup, and (b)-(f) contour plots of the error, u − uh, for the
Laplace problem on the star shaped domain at the end of 6 adaptive refinement steps
for different angles of mesh rotation ϑ.
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(a) (b)

Figure 4.8: (a) Degrees of freedom, and (b) error norms for the Laplace problem on
the star shaped domain after 6 adaptive refinement steps for different angles of mesh
rotation ϑ.
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Figure 4.9: (a) Problem setup, and (b) the exact solution u(x, y), Eq. (4.66), for the
Laplace problem on the re-entrant corner domain.
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(a) k = 1 (b) k = 2

Figure 4.10: Error convergence results for the Laplace problem on the re-entrant
corner domain under residual-based adaptive refinement (solid) and uniform refinement
(dashed) for linear (k = 1) and quadratic (k = 2) basis functions.

refinement of the few elements in the vicinity of the corner. These refinements
do reduce the error, while they only introduce a limited number of additional
degrees of freedom. The observed flattening in the rate of the L2-error in the
quadratic case is caused by the refinement reaching the maximum level in the
elements in the corner, which causes the marking strategy to tag elements that
do not carry the largest error contributions.

4.4.2 Steady viscous flow
We regard the two-dimensional Stokes flow problem on a quarter annulus ring
domain with a smooth solution and on the above-introduced re-entrant corner
domain with a singular solution. We consider equal-order discretizations for
the velocity and pressure fields using optimal regularity (TH)B-splines of degree
k = 1 and k = 2. For the Nitsche and ghost-penalty parameter the same settings
are used as for the Laplace problem considered above, i.e., β = 50 and γg =
10−(k+2). In addition, a skeleton-penalty parameter of γs = 10−(k+1) is used for
all simulations.

Quarter annulus ring

We consider an annulus ring domain Ω = {(x, y) ∈ R2
>0 : R2

1 < x2 + y2 <
R2

2} with inner radius R1 = 1, outer radius R2 = 4, Dirichlet boundary ∂ΩD

and Neumann boundary ∂ΩN , as shown in Figure 4.12a. The Dirichlet data
g and Neumann data t are prescribed in accordance with the divergence-free
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(a) Initial mesh (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4 (f) Step 5

Figure 4.11: Evolution of the mesh using the adaptive refinement procedure for the
Laplace problem on the re-entrant corner domain using k = 2.
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manufactured solution [204]

u1(x, y) = 10−6x2y4(x2 + y2 − 1)(x2 + y2 − 16)(
5x4 + 18x2y2 − 85x2 + 13y4 − 153y2 + 80

)
, (4.67a)

u2(x, y) = 10−6xy5(x2 + y2 − 1)(x2 + y2 − 16)(
102x2 + 34y2 − 10x4 − 12x2y2 − 2y4 − 32

)
, (4.67b)

p(x, y) = 10−7xy(y2 − x2)(x2 + y2 − 16)2

(x2 + y2 − 1)2 exp(14(x2 + y2)−1/2). (4.67c)

The body force f in the Stokes problem (4.12) is determined based on this
manufactured solution, with the viscosity set to µ = 1.

Figure 4.13 displays the convergence results for the annulus ring problem.
Both the uniform refinement results and the adaptive refinement results are ob-
tained starting from a 9×9 uniform mesh on the ambient domain [0, R2]2 = [0, 4]2.
A good resemblance with the optimal rates of O(n− 1

2 k) in the velocity H1-norm
and pressure L2-norm is observed, and, as expected, the rate of the velocity L2-
error is O(n− 1

2 (k+1)). The error in the energy norm (4.31) is observed to converge
with the same rate as the H1-norm velocity error and L2-norm pressure error,
which is in agreement with the definition of the energy norm. As expected, the
error estimator bounds the error in the energy norm from above.

Although optimal convergence rates are obtained using uniform refinements,
the adaptive refinement procedure is observed to substantially improve the error
for a fixed number of degrees of freedom. This behavior is explained by the ob-
served refinement patterns, as shown in Figure 4.14. Although the exact solution
(4.67) is smooth, in particular the steep gradients in the velocity solution lead to
local refinements. This effectively reduces the error when compared to a uniform
refinement with a similar number of degrees of freedom.

Re-entrant corner

As a final benchmark problem we consider the Stokes problem (4.12) on the re-
entrant corner domain with mixed Dirichlet and Neumann boundaries introduced
above, as shown in Figure 4.9a. The weakly singular exact solution is taken from
Ref. [245] as

u1(x, y) = Rα
[

sin(θ)∂ψ
∂θ

− (1 + α) cos(θ)ψ
]

(4.68a)

u2(x, y) = −Rα
[

cos(θ)∂ψ
∂θ

+ (1 + α) sin(θ)ψ
]

(4.68b)

p(x, y) = −Rα−1

1 − α

[
(1 + α)2 ∂ψ

∂θ
+ ∂3ψ

∂θ3

]
, (4.68c)
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Figure 4.12: (a) Problem setup, and (b)-(d) the exact solution components u1(x, y),
u2(x, y), and p(x, y), defined in Eq. (4.67), for the Stokes problem on the quarter annulus
ring domain.
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(a) k = 1 (b) k = 2

Figure 4.13: Error convergence results for the Stokes problem on the quarter annulus
ring domain under residual-based adaptive refinement (solid) and uniform refinement
(dashed) for linear (k = 1) and quadratic (k = 2) basis functions.

with constants α = 856399/1572864 and ω = 3
2π, and with

ψ(θ) =cos(αω)
1 + α

sin((1 + α)θ) − cos(αω)
1 − α

sin((1 − α)θ)

+ cos((1 − α)θ) − cos((1 + α)θ).
(4.69)

The exact pressure and velocity fields are illustrated in Figure 4.15. The corre-
sponding Stokes problem (4.12) is considered with the viscosity set to µ = 1, no
body force f = 0, a no slip condition on ΓD, such that uD = 0, and the Neumann
data g on ΓN matching the exact solution.

Figure 4.16 displays the error convergence results obtained using uniform
and adaptive refinements, for both linear and quadratic (TH)B-splines. As for
the Laplace case, the weak singularity in the exact solution (4.68) limits the
convergence rate when uniform refinements are considered. Using adaptive mesh
refinement results in a recovery of the optimal rates in the case of linear basis
functions, with even higher rates observed for the quadratic splines on account of
the highly-focussed refinements resulting from the residual-based error estimator
as observed in Figure 4.17.

4.5 Scan-based simulations
In this section we apply the developed adaptive immersed isogeometric analysis
framework in the context of scan-based analysis. We consider the viscous flow
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(a) Initial mesh (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4 (f) Step 5

Figure 4.14: Evolution of the mesh using the adaptive refinement procedure for the
Stokes problem on the quarter annulus ring domain using k = 2.
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(a) |u| (b) p

Figure 4.15: (a) Velocity magnitude and streamlines, and (b) pressure for the exact
solution (4.68) to the Stokes problem on the re-entrant corner domain. Because of the
singular solution, the pressure color bar is truncated to the range −10 and 10.

(a) k = 1 (b) k = 2

Figure 4.16: Error convergence results for the Stokes problem on the re-entrant cor-
ner domain under residual-based adaptive refinement (solid) and uniform refinement
(dashed) for linear (k = 1) and quadratic (k = 2) basis functions.
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(a) Initial mesh (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4 (f) Step 5

Figure 4.17: Evolution of the mesh using the adaptive refinement procedure for the
Stokes problem on the re-entrant corner domain using k = 2.
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(a) (b)
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∂Ω

A

(c)

Figure 4.18: Illustration of the scan-based analysis workflow. The original grayscale
image in panel (a) is converted to a level set function, shown in panel (b), which is
constructed using the topology-preserving segmentation algorithm of Ref. [87]. The
trimmed geometry, shown in panel (c), is then extracted using the recursive bi-sectioning
strategy with mid-point tessellation of Ref. [86].

problem on a two-dimensional image domain and on a three-dimensional patient-
specific problem based on a µCT-scan of a carotid artery, represented by grayscale
voxels. The primary purpose of the two-dimensional setting is to test the scan-
based analysis framework. For all simulations, the octree subdivision depth is set
equal to 8 in two dimensions and 3 in three dimensions. The refinement threshold
related to the Dörfler marking is set to λ = 0.8.

Our scan-based analysis workflow is illustrated in Figure 4.18. The first step in
this workflow is to smoothen the original grayscale voxel data using a convolution
operation on a B-spline basis formed on the voxel grid [58]. Since this smooth-
ing operator behaves as a Gaussian filter, geometric features that are similar in
size to the voxels can be lost [87]. To avoid this loss of features, the topology-
preservation procedure proposed in Ref. [87] is employed. This procedure locally
refines the convolution basis to retain small geometric features in the smooth-
ing procedure. Once the smooth level set representation has been obtained, the
octree segmentation procedure with mid-point tessellation of Ref. [86] is used to
obtain the immersed geometry represented on an ambient domain mesh. It is im-
portant to note that this ambient domain mesh, on which the solution to the flow
problem is computed, can be chosen independently of the voxel size, and hence
it is independent of the mesh on which the level set function is constructed.

The considered computational domain is illustrated in Figure 4.19a. Neumann
conditions are imposed on the inflow and outflow boundaries, with the traction on
the inflow boundary acting in the normal direction with a pressure magnitude,
t = −p̄n. Homogeneous Dirichlet conditions are imposed along the immersed
boundaries to mimic the no slip condition. In all simulations we consider second-
order (k = 2) (TH)B-splines and set the stabilization parameters to β = 100,
γg = 10−(k+2) and γs = 10−(k+1), which have been determined empirically.
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Figure 4.19: (a) Illustration of the domain and boundary conditions for the scan-based
viscous flow problem, and (b) a typical locally refined mesh resulting from the adaptive
procedure.

4.5.1 Two-dimensional prototypical geometry

To test the developed methodology in the scan-based setting, we first consider
the prototypical two-dimensional geometry shown in Figure 4.19a, which is con-
structed from 32 × 32 grayscale voxel data. The ambient domain, which matches
the scan window, is taken as a unit square (L = 1) which is covered by an 8 × 8
elements ambient mesh. The viscosity is set equal to µ = 1.

Various steps in the adaptive refinement procedure are illustrated in Fig-
ure 4.20. In the first step virtually all elements covering the flow domain are
refined, indicating that the initial mesh of only 8 × 8 elements is too coarse to re-
solve the solution globally. After the first refinement step, the refinement strategy
starts to focus on the regions where the errors are largest, i.e., near boundaries
and narrow sections, as also illustrated in Figure 4.19b. Under further refine-
ment, the procedure resolves prominent solution details, most importantly the
(Poiseuille-like) profile in the carotid part of the artery and the velocity profiles
at the inflow and outflow boundaries.

Further results of the viscous flow problem solved using uniform and adaptive
refinements are shown in Figure 4.21 in the form of the flux through the left
and right outflow channels. Both methods are observed to converge to the same
fluxes under refinement, but an excellent approximation of the reference solution
(computed on a uniform overkill refinement, consistent with the result reported
in Ref. [87]) is obtained using the adaptive mesh refinement procedure using
substantially fewer degrees of freedom required than for uniform refinements.
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(a) Initial mesh (b) Step 1

(c) Step 2 (d) Step 6

Figure 4.20: Evolution of the mesh and (magnitude of the) velocity field during the
adaptive refinement process for the viscous flow in two dimensions.
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(a) (b)

Figure 4.21: Mesh convergence of the outflow flux at the (a) left and (b) right channel
of the domain in Figure 4.19a using adaptive (solid) and uniform (dashed) mesh refine-
ments.

This is consistent with the observations on the velocity field discussed above,
where in particular the ability of the adaptive refinement procedure to resolve
the flow in the carotid part is essential.

4.5.2 Three-dimensional patient-specific geometry
To demonstrate the residual-based adaptivity procedure in a real scan-based set-
ting, we consider a part of the patient-specific carotid artery used in Ref. [87].
The geometry of the carotid artery is obtainted from CT-scan data containing
80 slices of 85 × 70 voxels with each voxel of size 300 × 300µm2 and with the
distance between the slices being 400µm. The total size of the scan domain is
25.6 × 21.1 × 32.0 mm3.

Simulation results for this problem are shown in Figure 4.22. Note that for
the considered scan data, the application of the topology-preservation algorithm
in Ref. [87] is essential, as otherwise the narrow channel section would disappear.
The simulation results are based on a 20 × 20 × 20 ambient domain mesh of 12 ×
9×16 mm3 and an octree depth of three. In this setting, after two refinements, an
element is of a similar size as the voxels. The need to substantially refine beyond
the voxel size is, from a practical perspective, questionable, as the dominant error
in the analysis will then be related to the scan resolution and the segmentation
procedure. In this sense, the constraint of not being able to refine beyond the
octree depth is not a crucial problem in the considered simulations.

Different steps in the adaptive refinement procedure are illustrated in Fig-
ure 4.22. In all the refinement steps, the refinement strategy starts to focus on
the regions where the errors are largest, i.e., near the narrow section due to the
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stenosis. Under local mesh refinement, the procedure resolves prominent solution
details, most importantly the velocity field in the stenotic part of the artery.

The flux at the outlet of the artery is shown in Figure 4.23, which is com-
puted with the velocity field obtained by solving the flow problem using both
uniform and adaptive refinements. Both refinement strategies are observed to
approach the reference solution obtained using five uniform refinement steps (ap-
proximately 35000 DOFs). It is observed that the adaptive procedure terminates
after 3 refinement steps, because of reaching the maximum refinement level in all
the elements tagged for refinement. At this point, the adaptive simulation per-
tains to 6227 DOFs. With this number of DOFs, a better approximation to the
reference solution is obtained than using a uniformly refined mesh with 22340
DOFs. This evidently is a consequence of the error estimation and adaptivity
procedure being able to focus the refinements on the regions contribution most
to the error in the solution.

4.6 Concluding remarks
In the immersed (isogeometric) analysis framework, the geometry representation
is decoupled from the discretization. This enables the consideration of spline
basis functions on complex volumetric domains, for which boundary-fitting dis-
cretizations cannot easily be obtained. Moreover, the decoupling of the geometry
and the discretization allows one to have a globally accurate representation of the
geometry, but only to refine the mesh in places where the errors are large. Such
local mesh refinements have the potential to provide a significant efficiency gain
compared to uniform meshes. The adaptive simulation strategy proposed in this
work automatically refines the elements in places that significantly contribute to
the error in the energy norm.

The developed error estimation and adaptivity strategy is based on residual-
based error estimation, which is well-established in traditional finite elements and
has been successfully applied in boundary-fitting isogeometric analysis. In the
considered immersed setting, the residual-based error estimation and adaptivity
framework requires the incorporation of the stabilization terms for the weakly
imposed Dirichlet boundary conditions, and, in the case of the (mixed) Stokes
flow problem, for the treatment of equal-order discretizations of the velocity-
pressure pair. Adequate scaling of the stabilization constants with the mesh size
is essential for the adaptive procedure to be effective. In particular the order
dependence of the stabilization constants and the definition of the local element
sizes must be treated adequately.

In contrast to residual-based error estimation for boundary-fitting finite el-
ements and isogeometric analysis, in the stabilized immersed setting it is not
evident that the residual-based error estimator bounds the error in the energy
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(a) Initial mesh
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(b) Step 1
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(c) Step 2
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(d) Step 3

Figure 4.22: Evolution of the mesh and (magnitude of the) velocity field during the
adaptive refinement process for the patient-specific viscous flow problem.
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Figure 4.23: Mesh convergence of the flux at the outflow boundary using adaptive
(solid) and uniform (dashed) mesh refinements for the patient-specific viscous flow prob-
lem.

norm from above. This is a consequence of the absence of an h-independent weak
formulation. In this work, it is reasoned, however, that under the assumption of
sufficient smoothness, the residual is expected to be useful in the setting of an
adaptive refinement strategy. For all numerical simulations considered, includ-
ing simulations with reduced regularity, it is observed that the error estimator
does provide an upper bound to the error in the energy norm. A rigorous study
regarding the relation between the residual and the actual error is warranted.

It is demonstrated that the developed adaptive simulation strategy is particu-
larly useful in a scan-based analysis setting, where manual selection of refinement
zones is impractical. When used in combination with advanced image segmen-
tation procedures to obtain a smooth geometry representation while preserving
small geometric features, the developed adaptive refinement strategy optimally
leverages the advantageous approximation properties of splines for geometrically
and topologically complex domains. The adaptivity strategy results in a simula-
tion workflow that is capable of obtaining reliable, error-controlled, results with
limited user interaction.

The developed adaptive solution strategy is elaborated for the Laplace prob-
lem and the Stokes problem. For other problems, such as, for example, Navier-
Stokes or Cahn-Hilliard problems, the starting point of the derivation of the
error-estimator remains the same. The estimators are problem-specific, however,
and hence need to be elaborated for such problems. The same holds for the con-
sideration of additional or alternative stabilization techniques, specifically when
these alter the Galerkin form of the problem.



Chapter 5

Conclusions &
Recommendations

T his chapter discusses the most important conclusions that can be drawn
from the work presented in this dissertation. Additionally, based on the un-

derstanding gained by the theoretical and numerical analyses, we discuss several
concepts and methods that warrant further study.

5.1 Conclusions
The overarching goal of this dissertation is to unlock the potential of immersed
isogeometric analysis for scan-based simulations by developing computational
solutions for challenges associated with the scan-based analysis workflow. Specif-
ically, we have developed the following computational techniques:

• An efficient integration technique for scan-based immersed isogeometric
analysis is required to reduce the computational effort associated with
the evaluation of integrals on cut elements. In this dissertation, based on
Strang’s first lemma, we have developed an algorithm to construct quadra-
ture rules for cut elements in which the integration points are distributed
in such a way that the integration error is minimized. The pivotal idea be-
hind the proposed error-estimate-based optimization algorithm is to gradu-
ally increase the number of integration points by adding integration points
to the octree sub-cells for which the error reduction per added integration
point is highest. The presented numerical simulations demonstrate that
using this algorithm, the integration error for a fixed number of integration
points can be reduced significantly. This is a consequence of the ability of
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the algorithm to efficiently distribute integration points over cut elements
for a wide range of cut cell configurations. Based on the results obtained
from the optimization algorithm, we have also proposed specific choices
for distributing the integration points over the octree levels in such a way
that the optimal distribution is approached without the need to execute
the optimization algorithm.

• A dedicated image segmentation technique is required to obtain a smooth
representation of the scan data, without altering the topology of the orig-
inal voxel data. In this dissertation, based on a Fourier analysis of a
B-spline-based smoothing operation, it is proposed to repair smoothing-
induced topological anomalies by locally refining the smoothed grayscale
function using truncated hierarchical B-splines. In combination with a
moving-window strategy to detect topological changes, the local refinement
technique is used to develop a topology-preserving image segmentation tech-
nique. Based on a comparison of the Euler characteristic between the win-
dow view on the original voxel data and that on the smoothed represen-
tation, the proposed technique systematically distinguishes shape changes
from topological changes. Numerical simulations demonstrate the effectiv-
ity of the algorithm, in the sense that a topologically consistent smoothed
image is generally obtained after a single topology-correction step.

• To accurately resolve local solution features in scan-based simulations with
a minimal number of degrees of freedom, an adaptive local mesh-refinement
strategy is required. In this dissertation, an adaptive simulation strategy is
proposed which automatically identifies and recursively refines the elements
in places that significantly contribute to an a-posteriori residual-based er-
ror estimate. Truncated hierarchical B-splines are used to locally refine
the background grid, while preserving the geometry of the computational
domain. The immersed setting requires a dedicated treatment of the stabi-
lization terms to compute the residual-based error estimate, and adequate
scaling of the stabilization constants with the mesh size is found to be essen-
tial for the adaptive procedure to be effective. It is observed that the error
estimator provides a good indicator for refinement, both for problems with
and without reduced regularity. The developed adaptive simulation strat-
egy is particularly useful in a scan-based analysis setting, where manual
selection of refinement zones is impractical.

With these three innovations, a highly versatile, efficient and robus immersed iso-
geometric analysis workflow for scan-based analyses is obtained. Error-controlled
simulations can be performed directly based on scan data, without the need for
extensive user interactions or interventions. The effectivity of the framework is
not fundamentally affected by the geometric and topological complexity of the
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scan data, on account of the decoupling of the geometry and computational grid
in immersed methods. The robustness of the framework derives from the rigorous
mathematical underpinning of the considered methods.

In combination with the earlier developments regarding stabilization tech-
niques [246] and solver performance [247], with the work in this dissertation the
most prominent fundamental obstacles for the application of the scan-based im-
mersed isogeometric analysis workflow to complex problems have been resolved.
Besides the evident need for problem-specific developments – e.g., possibly requir-
ing additional stabilization techniques or error estimators – further improvements
are required to enhance the computational performance of the developed work-
flow. This mainly pertains to developments in terms of code optimization, which
are required to apply the developed workflow to larger scans, time-dependent
problems, multi-physics problems, etc. The current maturity level of the work-
flow and the ambition to extend its application to complex problems is also
reflected by the emergence of dedicated simulators based on the immersed finite
element concept [248].

5.2 Recommendations
The theoretical and numerical analyses presented in this dissertation warrant the
further investigation of several aspects. Specifically, we recommend the following:

• In this work we have focused on the evaluation and optimization of the
integration error contribution in Strang’s first lemma, implicitly assuming
that this error contribution is significant in comparison to the approxima-
tion error. However, the need to optimize the integration error depends
on the approximation error, in the sense that there is no strong need to
optimize the integration error if the approximation error is the dominating
contribution. The development of a strategy to balance the various error
contributions has the potential to substantially enhance the performance of
immersed finite element methods.

• In this work, the integration errors are optimized by distributing integration
points over the cut elements while keeping the octree depth fixed. However,
the octree depth, and with that the accuracy of the geometry approxima-
tion, is an adjustable numerical parameter in the simulation framework.
Since both the error reduction and the associated computational cost are
quantifiable, one can include the octree depth as an additional parameter
in the integration error optimization algorithm. Together with the approx-
imation error balancing discussed above, this enhancement would further
improve the control over the accuracy in the simulation workflow. Al-
though the error optimization strategy regarding cut element integration
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can be conducted as an element-wise pre-processor to the simulations, the
involved computational effort can be significant. The development of a
machine learning algorithm to obtain integration schemes for cut elements
quickly, trained by the developed optimization algorithm, is a topic of fur-
ther investigation.

• The developed technique to evaluate integration errors on cut elements is,
in principle, independent of the considered integration strategy. This im-
plies that it is not only applicable to optimizing octree-based integration
schemes, but that it can also be used in combination with alternative inte-
gration schemes. In the context of moment-fitting methods, the optimized
integration schemes constructed in this work can also serve as a means
to compute the positions and weights of the integration points, thereby
enhancing the computational performance of the moment-fitting method.

• In this work we have restricted ourselves to adaptivity based on residual-
based error estimators. This approach works well in general, in the sense
that it systematically reduces the error in the solution field, measured in
global norms. In scan-based analysis, it is not uncommon that the analyst is
interested in specific quantities of interest. In such cases, steering the mesh
adaptivity based on a global norm definition is sub-optimal, and alterna-
tive techniques, most prominently goal-oriented error estimation, could be
favorable. The concept of goal-oriented adaptivity in immersed (isogeo-
metric) analysis has been explored already [58], but its application in the
stabilized (flow) setting considered in this work is largely unexplored.

• In this dissertation we have considered Laplace and Stokes problems to
investigate the developed algorithms for stabilized immersed isogeometric
analysis. Further investigation of other problem will evidently broaden the
horizon of the stabilized framework. We have already considered the ex-
tension to moderate/high Reynolds number flows and convection-diffusion
problems. Preliminary observations indicate that, with a careful consid-
eration of the non-linear solver, time-integration schemes and stabilization
parameters, the general characteristics of the stabilized immersed simula-
tion framework as observed in this work do extend to these problems.

• The current simulation framework is implemented in Nutils [109], an open
source Python-based numerical library with support for immersed isogeo-
metric analysis. Nutils contains efficient under-the-hood vectorization and
built-in parallellization that allows us to develop novel algorithms in the
context of problems from real scan data. With increasing problem (scan)
sizes, some of the operations, specifically the mesh-trimming operation, be-
come computationally demanding. Therefore, further code optimization is
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required, for example by implementing time-consuming parts in compiled
languages (e.g., C, Rust).

• The methods employed in this dissertation, specifically those in Chapter
4, are based on a strong theoretical underpinning. This theoretical basis
is, for example, used to derive the scaling relations for the stabilization
parameters and for the residual-based error estimator. Further theoretical
investigation is warranted with respect to the applicability of the skeleton-
stabilization inequality (4.26) to optimal regularity splines, and with respect
to the relation between the residual error and the energy norm in Eq. (4.27)
in the context of immersed finite elements.

• The mathematical analysis of Chapter 4 elucidates how each stabilization
parameter scales with the constants resulting from a specific inequality.
In principle, these constants can be computed by solving a (generalized)
eigenvalue problem corresponding to the inequality. By doing so, as a
preprocessing operation, optimal stabilization parameters can be computed,
similar to what is done for the Nitsche parameter [76, 78]. The calculation
of optimal ghost and skeleton stability constants along the same lines is a
topic worthy of further study.
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[20] F. Cirak, M. Ortiz, and P. Schröder. Subdivision surfaces: a new paradigm
for thin-shell finite-element analysis. International Journal for Numerical
Methods in Engineering, 47(12):2039–2072, 2000.

[21] T.J.R. Hughes, A. Reali, and G. Sangalli. Efficient quadrature for NURBS-
based isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, 199(5-8):301–313, 2010.

[22] F. Auricchio, M. Conti, M. Ferraro, S. Morganti, A. Reali, and R.L. Tay-
lor. Innovative and efficient stent flexibility simulations based on isogeo-
metric analysis. Computer Methods in Applied Mechanics and Engineering,
295:347–361, 2015.

[23] J.A. Cottrell, A. Reali, Y. Bazilevs, and T.J.R. Hughes. Isogeometric anal-
ysis of structural vibrations. Computer Methods in Applied Mechanics and
Engineering, 195(41-43):5257–5296, 2006.



Bibliography 167

[24] Y. Bazilevs, V.M. Calo, Y.J. Zhang, and T.J.R. Hughes. Isogeometric
fluid–structure interaction analysis with applications to arterial blood flow.
Computational Mechanics, 38(4):310–322, 2006.

[25] Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y.J. Zhang.
Patient-specific isogeometric fluid–structure interaction analysis of thoracic
aortic blood flow due to implantation of the Jarvik 2000 left ventricular
assist device. Computer Methods in Applied Mechanics and Engineering,
198(45-46):3534–3550, 2009.

[26] A. Reali. An isogeometric analysis approach for the study of structural
vibrations. Journal of Earthquake Engineering, 10(spec01):1–30, 2006.

[27] I. Akkerman, Y. Bazilevs, C.E. Kees, and M.W. Farthing. Isogeo-
metric analysis of free-surface flow. Journal of Computational Physics,
230(11):4137–4152, 2011.

[28] J. Kiendl, M.-C. Hsu, M.C.H. Wu, and A. Reali. Isogeometric Kirchhoff–
Love shell formulations for general hyperelastic materials. Computer Meth-
ods in Applied Mechanics and Engineering, 291:280–303, 2015.

[29] S. Morganti, F. Auricchio, D.J. Benson, F.I. Gambarin, S. Hartmann,
T.J.R. Hughes, and A. Reali. Patient-specific isogeometric structural anal-
ysis of aortic valve closure. Computer Methods in Applied Mechanics and
Engineering, 284:508–520, 2015.

[30] T. Hoang, C.V. Verhoosel, F. Auricchio, E.H. van Brummelen, and A. Reali.
Skeleton-stabilized isogeometric analysis: High-regularity interior-penalty
methods for incompressible viscous flow problems. Computer Methods in
Applied Mechanics and Engineering, 337:324–351, 2018.

[31] T. Terahara, K. Takizawa, T.E. Tezduyar, Y. Bazilevs, and M.-C. Hsu.
Heart valve isogeometric sequentially-coupled FSI analysis with the space–
time topology change method. Computational Mechanics, pages 1–21, 2020.

[32] M. Carraturo, P. Hennig, G. Alaimo, L. Heindel, F. Auricchio, M. Kästner,
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ary method on hierarchical B-spline grids. Computer Methods in Applied
Mechanics and Engineering, 311:415–437, 2016.

[85] S. Badia, F. Verdugo, and A.F. Mart́ın. The aggregated unfitted finite
element method for elliptic problems. Computer Methods in Applied Me-
chanics and Engineering, 336:533–553, 2018.



Bibliography 173

[86] S.C. Divi, C.V. Verhoosel, F. Auricchio, A. Reali, and E.H. van Brumme-
len. Error-estimate-based adaptive integration for immersed isogeometric
analysis. Computers & Mathematics with Applications, 80(11):2481–2516,
2020.

[87] S.C. Divi, C.V. Verhoosel, F. Auricchio, A. Reali, and E.H. van Brummelen.
Topology-preserving Scan-based Immersed Isogeometric Analysis. Com-
puter Methods in Applied Mechanics and Engineering, 392:114648, 2022.

[88] S.C. Divi, P.H. van Zuijlen, T. Hoang, F. de Prenter, F. Auricchio, A. Reali,
E.H. van Brummelen, and C.V. Verhoosel. Residual-based error estimation
and adaptivity for stabilized immersed isogeometric analysis using trun-
cated hierarchical B-splines. arXiv preprint arXiv:2202.08763, 2022.

[89] D. Schillinger, L. Dede, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank,
and T.J.R. Hughes. An isogeometric design-through-analysis methodology
based on adaptive hierarchical refinement of NURBS, immersed boundary
methods, and T-spline CAD surfaces. Computer Methods in Applied Me-
chanics and Engineering, 249:116–150, 2012.

[90] A.M. Bauer, M. Breitenberger, B. Philipp, R. Wüchner, and K.U. Blet-
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Appendix A

Midpoint tessellation
procedure

As discussed in Section 2.3.1, at the lowest level of bisectioning we apply a
tessellation procedure that provides an order O(h2/22ϱmax) approximation of

the interior volume [58], with h the size of the background element in which the
sub-cell resides and with ϱmax the number of octree bisections. The considered
procedure provides an explicit parametrization of both the interior of the trimmed
sub-cell and its immersed boundary.

The employed tessellation procedure is illustrated for a two-dimensional sub-
cell in Figure A.1. In order to acquire a tessellation of the immersed boundary
and the corresponding trimmed interiors, the following steps are taken:

(a) The immersed boundary, i.e., the blue curve in Figure A.1a, is assumed to
corresponds to the zero level set of a continuous function.

(b) The level set function is evaluated in the vertices of the quadrilateral cell,
and a bi-linear interpolation is used to approximate the level set value in
the center point. In Figure A.1b positive level set values are indicated by
green circles with a plus sign, and negative ones by a red circle with a minus
sign.

(c) For all edges of the sub-cell we consider a linear interpolation of the level
set function along the edge, and, if the level set values at the edge vertices
have opposite signs, we determine the approximate zero level set point
based on this linear interpolation. If an edge is intersected by the immersed
boundary, it is split up in a positive part and a negative part based on the
determined edge intersection. The approximate zero level set points are
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indicated by the blue circles with a 0 in Figure A.1c, and the splitting of
the edges is visualized by the edge colors.

(d) Along each of the 4 lines connecting the center of the square with its ver-
tices, linearly interpolated zero level set points are determined. For the
case considered in Figure A.1d, the two additionally obtained zero level set
points are indicated by the blue squares on the yellow diagonals.

(e) An additional zero level set point is formed by taking the arithmetic mean of
the coordinates of the zero level set points along the diagonals. This point,
which we refer to as the (approximate) midpoint of the trimmed boundary,
is illustrated by the blue circle in the interior of the cell in Figure A.1e.

(f) The trimmed boundary is then constructed by extruding the edge intersec-
tions toward the computed approximate midpoint. As can be seen from
Figure A.1f, a piece-wise linear approximation of the trimmed boundary in
Figure A.1a is obtained.

(g-i) Interior cells are then constructed by extruding the edges toward the mid-
point, thereby creating triangular integration sub-cells. The collection of
sub-cells pertaining to the positive side of the trimmed elements are shown
in green in Figure A.1h, whereas the negative side of the element is shown
in red in Figure A.1i.

From this tessellation procedure applied in two dimensions it is evident that
it traverses through the dimensions of the problem, in the sense that it first trims
the edges (a–c), after which the quadrilateral is trimmed through the extrusion
of the edges to the computed mid-point (d–i). This approach directly extends to
the three-dimensional case, an illustration of which is presented in Figure A.2.
In Figure A.2b the level set function is evaluated in all vertices of the cube. For
each of the six faces of the cube the two-dimensional procedure as described above
is applied, as illustrated on the unfolded cubes in Figures A.2d–A.2e. Finally,
the trimmed faces are extruded toward the computed mid-point of the cube,
as illustrated in Figures A.2g–A.2h. Note that in the three-dimensional case
both tetrahedrons and pyramids are created, based on whether or not a face is
trimmed. Integration rules are available for both these shapes.
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Figure A.1: Schematic representation of the mid-point tessellation procedure for a
two-dimensional case.
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Figure A.2: Schematic representation of the mid-point tessellation procedure for a
three-dimensional case.
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Summary

T he rapid evolution of the field of scientific computing over the past decades
has driven the development of various numerical techniques for mathematical-

physical modeling. In particular, the Finite Element Method (FEM) has been an
astonishing success in both solid mechanics and fluid dynamics. In recent years,
immersed finite element methods have been proven to be suitable for problems
for which the performance of standard, mesh-fitting, FEM is impeded by compli-
cations in the meshing procedure. Immersed techniques have been successfully
combined with Isogeometric Analysis (IGA) – a spline-based higher-order finite
element framework originally targeting the integration of FEM and Computer
Aided Design (CAD) – enabling its application to complex three-dimensional
problems. Specifically, immersed IGA can be applied for scan-based analyses,
which is, for example, of interest in the fields of biomechanics (patient-specific
analysis), geomechanics and material science.

Scan-based simulations contain innate topologically and geometrically com-
plex three-dimensional domains, represented by large data sets in formats which
are not directly suitable for analysis. Consequently, performing high-fidelity scan-
based simulations at practical computational costs is still very challenging. The
main objective of this dissertation is to develop an efficient and robust scan-based
simulation strategy by acquiring a profound understanding of three prominent
challenges in scan-based IGA, viz.: i) balancing the accuracy and computational
effort associated with numerical integration; ii) the preservation of topology in
the spline-based segmentation procedure; and iii) the control of accuracy using
error estimation and adaptivity techniques.

In three-dimensional immersed isogeometric simulations, the computational
effort associated with integration can be the critical component. A myriad of
integration strategies has been proposed over the past years to ameliorate the
difficulties associated with integration, but a general optimal integration frame-
work that suits a broad class of engineering problems is not yet available. In this
dissertation we provide a thorough investigation of the accuracy and computa-
tional effort of the octree integration technique. We quantify the contribution of
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the integration error using the theoretical basis provided by Strang’s first lemma.
Based on this study we propose an error-estimate-based adaptive integration
procedure for immersed IGA.

To exploit the advantageous properties of IGA in a scan-based setting, it is im-
portant to extract a smooth geometry. This can be established by convoluting the
voxel data using B-splines, but this can induce problematic topological changes
when features with a size similar to that of the voxels are encountered. This dis-
sertation presents a topology-preserving segmentation procedure using truncated
hierarchical (TH)B-splines. A moving-window-based topological anomaly detec-
tion algorithm is proposed to identify regions in which (TH)B-spline refinements
must be performed. The criterion to identify topological anomalies is based on
the Euler characteristic, giving it the capability to distinguish between topologi-
cal and shape changes. A Fourier analysis is presented to explain the effectiveness
of the developed procedure.

An additional computational challenge in the context of immersed IGA is the
construction of optimal approximations using locally refined splines. For scan-
based volumetric domains, hierarchical splines are particularly suitable, as they
optimally leverage the advantages offered by the availability of a geometrically
simple background mesh. Although truncated hierarchical B-splines have been
successfully applied in the context of IGA, their application in the immersed
setting is largely unexplored. In this dissertation we propose a computational
strategy for the application of error estimation-based mesh adaptivity for stabi-
lized immersed IGA.

The conducted analyses and developed computational techniques for scan-
based immersed IGA are interrelated, and together constitute a significant im-
provement in the efficiency and robustness of the analysis paradigm. In combi-
nation with other state-of-the-art developments regarding immersed FEM/IGA
(e.g., iterative solution techniques, parallel computing), the research in this the-
sis opens the doors to scan-based simulations with more sophisticated physical
behavior, geometries of increased complexity, and larger scan-data sizes.
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