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AIM OF THE THESIS

Introduction

I. Set-up innovative computational tools for geometrical and
hemodynamic analysis in the carotid artery

II. Apply the developed tools in different clinical perspectives of
arteriosclerosis
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MULTIFACTORIALITY OF ARTERIOSCLEROSIS

Introduction

Morbiducci et al. 2016Susic et al. 1997
Han et al. 2012



I. Arterial morphometry, cerebral perfusion and hypertension
• Method: Framework for automatic splitting and morphometric 

analysis of carotid and vertebral arteries 
• Application: Analysis of vascular morhometry and blood flow in 

a multipatient dataset of 112 normotensive/hypertensives

THESIS OUTLINE

Introduction

II. Carotid stenting, hemodynamics and restenosis
• Method: Framework for analysis of post-stenting carotid

hemodynamics exploiting the immersed approach
• Application: Proof-of-concept study assessing the impact of 4

stent designs on carotid hemodynamics



Arterial morphometry, 
cerebral perfusion and 
hypertension



BACKGROUND AND AIM OF THE STUDY

Arterial morphometry, cerebral perfusion and hypertension

Study on a population 
of 112 participants if 
hypertensives exhibit 

specific 
morphometric 

features of carotid 
and vertebral vessels

• Global measures

Framework to 
automatically:

→ Split vessels
→ Extract

morphometric 
features of local tracts

• Manual measures

Tortuosity
1.1 

Tortuosity 
1.1 

• Cushing mechanism: insufficient 
cerebral flow & hypertension 
(Paton et al. 2009)

• Prevalence in hypertensives of 
congenital variants of vertebral 
arteries (Warnert et al. 2016)

• Insufficient data concerning 
carotid arteries (Pancera et al. 2000)



MEDICAL IMAGE 
SEGMENTATION CENTERLINE CURVATURE 

ANALYSIS CAROTID SPLITTING

Arterial morphometry, cerebral perfusion and hypertension

FRAMEWORK FOR VASCULAR SPLITTING

Piccinelli et al. 2011

Accurate curvature 
computation



STL 3D MODEL

Arterial morphometry, cerebral perfusion and hypertension

CURVATURE COMPUTATION BY CENTRAL DIFFERENCE

CENTERLINE
Resampling=1 mm 

(≈100 points)

CENTERLINE COMPONENTS CURVATURE

INACCURATE

CENTRAL DIFFERENCE



SARS: Spatially Adaptive free-knot Regression Splines
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Arterial morphometry, cerebral perfusion and hypertension

FIT EACH COMPONENT 
WITH 

ANALYTICAL FUNCTION

EXACT DERIVATION

ANALYTICAL CURVATURE

SPATIALLY ADAPTIVE FREE KNOT REGRESSION SPLINES

UNIFORM
KNOT vector

Sangalli et al. 2009
Zhou and  Shen 2001



SARS: Spatially Adaptive free-knot Regression Splines
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Arterial morphometry, cerebral perfusion and hypertension

FIT EACH COMPONENT 
WITH 

ANALYTICAL FUNCTION

EXACT DERIVATION

ANALYTICAL CURVATURE

SPATIALLY ADAPTIVE FREE KNOT REGRESSION SPLINES

OPTIMIZED
KNOT vector

Parametric abscissa [mm]Sangalli et al. 2009
Zhou and  Shen 2001



Inaccurate curvature 
peak values

Inaccurate curvature 
peak positions (5mm)

Arterial morphometry, cerebral perfusion and hypertension

SPATIALLY ADAPTIVE FREE KNOT REGRESSION SPLINES
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Arterial morphometry, cerebral perfusion and hypertension

CAROTID SPLITTING
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Arterial morphometry, cerebral perfusion and hypertension

VERTEBRAL SPLITTING
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Arterial morphometry, cerebral perfusion and hypertension
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MRI SEGMENTATION & 
CENTERLINE EXTRACTIONPATIENT DATA

VASCULR SPLITTING & 
MORPHOMETRIC 
MEASUREMENT

STATISTICAL ANALYSIS

Participants
• 41 Normotensives
• 71 Hypertensives

Dataset
• Blood pressure
• Anatomic data from 3D 

TOF MR
• Flow data from PC-MR

RC LC

LVRV

Vessels
• Right/left carotids 

(RC/LC)
• Right/left vertebrals 

(RV/LV)

Segmentation
MIMICS

Centerline extraction
VMTK

Splitting
• 112/112 RC and LC
• 98/106 RV
• 101/106 LV

Measuring
Tortuosity, length and caliber

Statistics:
• R (R Core Team 2013)
• Shapiro-Wilk test for 

normality check
• Unpaired t-test to compare 

means (paired to compare 
right/left sides)

• Wilcoxon test for not
normally distributed
variables

• CI = 95%, * p<0.05, ** 
p<0.01, *** p<0.001 

MORPHOMETRIC ANALYSIS: MULTI-PATIENT STUDY

Arterial morphometry, cerebral perfusion and hypertension



Arterial morphometry, cerebral perfusion and hypertension

RESULTS

• Hypertensives had longer and 
more tortuous RVA, but similar 
LVA

• Vertebral flow was negatively 
associated with length and cross-
sectional area, but not with 
tortuosity

• In hypertensives, flow was lower in 
RCA, LCA, RVA but not in LVA 

• Global and local morphometry of 
carotid arteries did not differ between 
hypertensives and normotensives

• Carotid flow did not correlate with 
morphometric features

RCA=RIGHT CAROTID; LCA=LEFT CAROTID; RVA= RIGHT VERTEBRAL; LVA=LEFT VERTEBRAL; BA=BASILAR ARTERY



Carotid stenting, 
hemodynamics and 
restenosis



Why CFD?
• Superior spatio-temporal resolution than 

medical imaging/experimental techniques
• Predict flow in realistic/patient-specific

models

BACKGROUND

Carotid stenting, hemodynamics and restenosis

Why hemodynamics after stenting?
• Stent implant leads to in-stent restenosis (ISR) 

through endothelial damage (Koskinas et al. 2012)

• Stent design influences flexibility, plaque
coverage and flow (McClean et al. 2002)
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STRONG BOUNDARY CONDITIONS

X Generation of computational grid by 
boolean operation is difficult due to 
thinness of stent struts
X Time-consuming model preparation

BACKGROUND

Carotid stenting, hemodynamics and restenosis
De Santis et al. 2013

NEED A FAST MODEL SET-UP
FOR CLINICAL USE
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AIM OF THE STUDY

Carotid stenting, hemodynamics and restenosis

MODIFIED NAVIER-STOKES EQUATIONS

• Develop a framework to easily generate a mesh refined at the immersed boundary
• Set-up the CFD analysis by tuning the mesh and time parameters towards the target problem 
• Compare post-stenting carotid hemodynamics with different stent designs
• Show an application of the developed framework in a proof-of-concept study

EASIER MODELLING PREPARATION

WORSE SOLUTION ACCURACY 

Conti et al. 2016
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Carotid stenting, hemodynamics and restenosis

AUTOMATIC MESH REFINEMENT
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240 μm

15
0 
μm

FLOW

• Idealized model of stent strut immersed in a cylindrical 
artery

• Assess two mesh sizes: refined and unrefined regions
• Comparison between body-fitted and immersed meshes

COARSE REGION

REFINED REGION

MESH CALIBRATION: IDEALIZED MODEL

Carotid stenting, hemodynamics and restenosis
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RESULTS
• Element size of 300 μm in the unrefined

region
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MESH CALIBRATION: VELOCITY RESULTS

Carotid stenting, hemodynamics and restenosis
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MESH CALIBRATION: VELOCITY RESULTS

TRAN
SVERSAL

RESULTS
• Element size of 300 μm in the unrefined

region
• Element size 25 μm in the refined region
• Growth rate of 1.2 in the transition zone

Carotid stenting, hemodynamics and restenosis
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MESH CALIBRATION: WSS RESULTS

Carotid stenting, hemodynamics and restenosis

FLOW
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MESH CALIBRATION: WSS RESULTS

Carotid stenting, hemodynamics and restenosis
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RESULTS
• WALL SHEAR STRESS (WSS) are 

less accurate
• No improvement with mesh size

MESH CALIBRATION: WSS RESULTS

Carotid stenting, hemodynamics and restenosis

FLOW
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MESH GENERATION WITH 
LOCAL REFINEMENT

POST-STENTING CAROTID AND 
STENT GEOMETRIES CFD SET-UP

POST-PROCESSING 
THROUGH 

HEMODYNAMIC INDECES

Element size
• 100 μm in the stented 

region
• 25 μm in a stent

subregion at
bifurcation

25 μm

100 μm

Qin(t)

Qout(t)
P=0 Pa
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ow
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xt
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Modelling assumptions
• Flow split ICA/ECA
• Zero traction outlet
• Laminar
• Newtonian blood

• Velocity streamline
• Time Averaged Wall 

Shear Stress
< 4 dyne/cm2 → ISR

• Vascular resistance: 
RICA=(PCCA-PICA)/(QICA)
RECA=(PCCA-PECA)/(QECA)

Carotid stenting, hemodynamics and restenosis

POST-STENTING BLOOD FLOW: COMPARATIVE STUDY
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RESULTS
• No significant alteration of flow 

pattern around thin stent struts
• Increased low TAWSS area
• Increased ECA resistance (closed-

cell)

RESULTS

Carotid stenting, hemodynamics and restenosis



CONCLUSIONS AND FUTURE PERSPECTIVES

Increase automatization of morphometric 
framework (segmentation, splitting)
Improve WSS accuracy of hemodynamic 
framework (forcing parameter)
Validate hemodynamic framework 
(numerically/experimentally)

• Implemented computational frameworks to investigate geometrical and hemodynamic 
aspects of carotid artery

• Applied the morphometric framework in a multi-patient study to automatically extract 
morphometric measures 

• Applied the hemodynamic framework in a proof-of-concept study comparing different stent 
designs

Apply hemodynamic
framework on a multi-patient
study

Conclusions and future perspectives
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