PROPER GENERALIZED DECOMPOSITION SOLUTIONS OF COMPOSITE LAMINATES PARAMETERIZED WITH FIBRE ORIENTATIONS FOR FAST COMPUTATIONS

PhD thesis defense

KARIM M. EL-GHAMRAWY

Advisors: PROF. FERDINANDO AURICCHIO & PROF. PEDRO DÍEZ Co-Advisor & Programme coordinator: DR. SERGIO ZLOTNIK

Dipartimento di Ingegneria Civile ed Architettura (DiCAr), Università di Pavia

Department d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya

Pavia & Barcelona, February 24th, 2021

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
00000						
Backgrou	and and Moti	vation				

Existence through time:

- Composite materials have been used since Mesopotemia and the Pharaonic civilisations
- Reinforced construction components for enhanced mechanical properties ⇒ brick and straw, reinforced concrete, etc...

Figure: Typical ancient house in south of Egypt and a modern reinforced beam

Introduction 00000	Problem Statement	Encapsulated PGD	Examples 0000000	PGD and clustering	Conclusions 00	References O
Backgrou	ind and Motiv	vation				

Industrial needs:

- Enhanced mechanical properties ⇒ stiffness, load-carrying capacity, increased strength to weight ratio, etc...
- Numerical analyses for complex shapes and designs
- Ability to manufacture optimized complex designs
- Additive manufacturing deposits thermoplastic molten filament layer by layer.

• 3D printing steps:

CAD based 3D model \Rightarrow STL file \Rightarrow sliced layers \Rightarrow 3D printing \Rightarrow part finishing.

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	0000000	0000000	0000000000000	00	0

What are the different types of structural optimization?

Structural optimization

- Topology optimization: how to remove material
- Shape optimization: how to change the shape of the boundaries
- Size optimization: how to change the thicknesses of components
- Material optimization: how to orient material

Figure: Four levels of structural optimization. Figure adapted from Ramm et al. (1998)

Optimization problem

Requires solving a large number of 3D forward models corresponding to different values of the parameters (orientation of material)

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	0000000	0000000	0000000000000	00	0

Proper Generalized Decomposition (PGD) framework

Steps of PGD

Obtain pre-computed solutions in the form of a computational vademecum by

- Considering the parameters as extra-coordinates in the problem
- Making use of a separated representation of the solution to overcome the curse of dimensionality

Offline phase

- Important computational resources only once
- Results in a generalized solution

Online phase

- Very fast browsing of solutions
- Availability of the solution for any value in the parametric space

Introduction	Pro	oblem Statement 000000	Encapsulated PGD 00000000	Examples 0000000	PGD and clustering	Conclusions 00	Reterence O	
Object	ives							
		Present a analysis c optimiz	new computat of fibrous comp zing the orienta ap	tional tool f osite lamina ation of fibe plications	or the 3D numeri ites with the goal rs for 3D printing	cal l of s		
1	Main	goals						
	Apply a set of newly in-house developed tools known as <i>encapsulated</i> PGD [Díez et al. (2018, 2019)]							
	2	Implement a problem	a post-process a	algortihm to	solve the optimi	zation		
	8	Apply the m assess the c	nethodology to apabilities of th	a couple of ne model	numerical examp	oles to		
	4	Enhance the algorithm	e model by imp	lementing a	nd applying a da	ta analysis		
			Karim M. El Chamra	DCD	tion of compariso to destination	7 / 46		

Governir	or Equations	Linear Elasti	icity			
000000	● 0 00000	0000000	0000000	0000000000000	00	0
Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

Strong form (Voigt's notation)

• Given a 3D domain $\Omega \in \mathbb{R}^3$, find the displacement $\boldsymbol{u}(\boldsymbol{x})$ satisfying the following:

$$\nabla_{s}^{\mathsf{T}} \boldsymbol{\sigma} + \boldsymbol{b} = 0 \qquad \text{in } \Omega \qquad (\text{equilibrium})$$
$$\boldsymbol{u} = \boldsymbol{u}_{D} \qquad \text{on } \Gamma_{D} \qquad (\text{Dirichlet BC})$$
$$\boldsymbol{n}^{\mathsf{T}} \boldsymbol{\sigma} = \boldsymbol{t}_{N} \qquad \text{on } \Gamma_{N} \qquad (\text{Neumann BC})$$
$$\boldsymbol{\sigma} = \mathcal{C}\varepsilon \qquad (\text{Constitutive law})$$
$$\boldsymbol{\varepsilon} = \nabla_{s} \boldsymbol{u}$$

Weak form

ullet The weak form is as follows, find ${oldsymbol u}\in U$ such that

$$\int_{\Omega} (\boldsymbol{\nabla}_{\mathbf{S}} \boldsymbol{w})^{\mathsf{T}} \boldsymbol{\mathcal{C}} \boldsymbol{\nabla}_{\mathbf{S}} \boldsymbol{u} \ d\Omega = \int_{\Gamma_{N}} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{t} d\Gamma + \int_{\Omega} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{b} d\Omega \qquad \forall \boldsymbol{w} \ \in U_{d}$$

Governir	ng Equations:	Linear Elasti	citv			
000000	000000	0000000	0000000	0000000000000	00	0
Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

Finite dimensional

 $\bullet\,$ The integration over the whole domain could be a sum of integrals over the elements $\Omega_e.$

$$\sum_{e=1}^{n_{e1}} \left\{ \int_{\Omega^{e}} \left(\boldsymbol{\nabla}_{\mathbf{S}} \boldsymbol{w}_{h}^{e} \right)^{\mathsf{T}} \boldsymbol{\mathcal{C}} \boldsymbol{\nabla}_{\mathbf{S}} \boldsymbol{u}_{h}^{e} \ d\Omega - \int_{\boldsymbol{\Gamma}_{N}^{e}} \boldsymbol{w}_{h}^{e\mathsf{T}} \boldsymbol{t} \ d\boldsymbol{\Gamma} - \int_{\Omega^{e}} \boldsymbol{w}_{h}^{e\mathsf{T}} \boldsymbol{b} \ d\Omega \right\} = 0$$

• After derivations, the element stiffness matrix and force vector read:

$$\boldsymbol{K}^{e} = \int_{\Omega^{e}} \boldsymbol{B}^{e^{\mathsf{T}}} \boldsymbol{\mathcal{C}} \boldsymbol{B}^{e} \ d\Omega \qquad \qquad \boldsymbol{f}^{e} = \int_{\Omega^{e}} \boldsymbol{N}^{e^{\mathsf{T}}} \boldsymbol{b} \ d\Omega + \int_{\Gamma_{N}} \bigcap_{\bar{\Omega}^{e}} \boldsymbol{N}^{e^{\mathsf{T}}} \boldsymbol{t} \ d\Gamma$$

 Applying assembly operators, the global stiffness matrix and force vector read:

$$m{K} := \sum_{e=1}^{ extsf{nel}} m{L}^{e op} m{K}^e m{L}^e$$
 and $m{f} := \sum_{e=1}^{ extsf{nel}} m{L}^{e op} m{f}^e$ yielding: $oxed{Kd=f}$

000000	000000	0000000	0000000	0000000000000	00	0
Material	Parameteriza	ation				

- The material properties are described by C_0 and its orientation is described by the angle θ .
 - The oriented material is described as follow:

 $\boldsymbol{\mathcal{C}}(\theta) = \boldsymbol{T}^{-1}(\theta) \boldsymbol{\mathcal{C}}_0 \boldsymbol{T}^{-\mathsf{T}}(\theta)$

- Each parameter θ_i is assigned to a sub-domain Ω_i , $\Omega_i \subset \Omega$, and many $\Omega^e \subset \Omega_i$.
- The element stiffness:

$$\mathbf{K}^{e}(\theta_{i}) = \int_{\Omega^{e}} \mathbf{B}^{e\mathsf{T}} \mathbf{C}(\theta_{i}) \mathbf{B}^{e} d\Omega$$

• The parametric linear system of equations:

$$oldsymbol{K}(oldsymbol{ heta})oldsymbol{d}(oldsymbol{ heta})=oldsymbol{f}$$

• The n_p parameters are gathered in vector $\boldsymbol{\theta} = [\theta_1, \theta_2, ..., \theta_{n_p}]^{\mathsf{T}}.$

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	0000000	0000000	0000000000000	00	
Tsai-Wu	Failure Criter	rion				

• The Tsai-Wu failure index:

$$\mathcal{I}_{ extsf{f}}ig(oldsymbol{\sigma}ig) = oldsymbol{\sigma}^{ extsf{T}}oldsymbol{\mathcal{F}}oldsymbol{\sigma} + oldsymbol{\sigma}^{ extsf{T}}oldsymbol{F}$$

- $\mathcal{I}_{f}(\boldsymbol{\sigma}) \leq 1 \Rightarrow$ Material is safe.
- Alternative expression of the failure criterion:

$$\mathcal{I}_{ extsf{f}}ig(ar{oldsymbol{\sigma}}ig) = \mathcal{I}_{ extsf{f}}ig(\lambdaoldsymbol{\sigma}ig) = \lambda^2oldsymbol{\sigma}^{\mathsf{T}}oldsymbol{\mathcal{F}}oldsymbol{\sigma} + \lambdaoldsymbol{\sigma}^{\mathsf{T}}oldsymbol{F}$$

- The critical value of λ corresponds to the onset of failure $\mathcal{I}_{\mathrm{f}}(\bar{\sigma}) = 1$.
- Assuming that *F* is symmetric positive definite, *σ*^T*Fσ* ≥ 0, there is a unique positive root of the equation *I*_f(*σ̄*) = 1.

$$\lambda_s = \frac{1}{2\boldsymbol{\sigma}^{\mathsf{T}} \boldsymbol{\mathcal{F}} \boldsymbol{\sigma}} \left(\sqrt{(\boldsymbol{\sigma}^{\mathsf{T}} \boldsymbol{F})^2 + 4 \, \boldsymbol{\sigma}^{\mathsf{T}} \boldsymbol{\mathcal{F}} \boldsymbol{\sigma}} - \boldsymbol{\sigma}^{\mathsf{T}} \boldsymbol{F} \right)$$

• The smallest positive root, denoted as λ_s , is the safety factor

	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	0000000	0000000	0000000000000	00	
Tsai-Wu	Failure Criter	rion				

- Our goal is to obtain expressions $\mathcal{I}_{f}(\theta)$ and $\lambda_{s}(\theta)$ that could be evaluated very fast
- Expressions of \mathcal{F} and F with respect to the global axes are obtained using the transformation matrices:

$$oldsymbol{\mathcal{F}}(heta_i) = oldsymbol{T}^{\mathsf{T}}(heta_i)oldsymbol{\mathcal{F}}_0oldsymbol{T}(heta_i)$$

 $oldsymbol{F}(heta_i) = oldsymbol{T}^{\mathsf{T}}(heta_i)oldsymbol{F}_0$

• Marking explicitly the parametric dependence, for $x \in \Omega_i$, the failure index \mathcal{I}_{f} and the safety factor λ_s are rewritten as:

$$\begin{split} \mathcal{I}_{\mathrm{f}}\big(\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta})\big) = & \boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{\mathcal{F}}(\theta_{i}) \boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta}) + \boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{F}(\theta_{i}) \\ \lambda_{s}\big(\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta})\big) = & \frac{\sqrt{(\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{F}(\theta_{i}))^{2} + 4\,\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{\mathcal{F}}(\theta_{i})\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta})}{2\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{\mathcal{F}}(\theta_{i})\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta})} - \boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{F}(\theta_{i})} \end{split}$$

• The failure index \mathcal{I}_{f} and the safety factor λ_{s} are our objective functions for the optimization problem.

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	0000000	0000000	0000000000000	00	
Optimiza	tion problem					

• The first choice is to find θ that minimizes the maximum value of $\mathcal{I}_{\mathbf{f}}(\boldsymbol{\sigma}(\boldsymbol{x}, \theta))$ evaluated at all points \boldsymbol{x} in Ω .

$$oldsymbol{ heta}_{ extsf{f}}^{ extsf{Opt}} = rg\min_{oldsymbol{ heta}} \; \max_{oldsymbol{x}} \mathcal{I}_{ extsf{f}}igl(oldsymbol{\sigma}(oldsymbol{x},oldsymbol{ heta})igr)$$

• The second choice is to find θ that maximizes the minimum value of $\lambda_s(x, \theta)$ evaluated at all points x in Ω .

$$oldsymbol{ heta}_{ extsf{s}}^{ extsf{Opt}} = rg\max_{oldsymbol{ heta}} \min_{oldsymbol{x}} \lambda_s(oldsymbol{x},oldsymbol{ heta})$$

• The objective functions are not necessarily smooth and they are non convex-concave which might lead to being stuck in local minima/maxima

13/46

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	000000	0000000	0000000	0000000000000	00	
Optimiza	tion Algorith	ms				

Types of algorithms

- The optimization algorithms are classified into deterministic and stochastic algorithms.
- Gradient-based methods (Newton method) converge fast but are easily stuck in local minima/maxima.
- Evolutionary methods (Genetic Algorithm) converge slow but yield a global optimal in complex problems.

Introduction 000000	Problem Statement	Encapsulated PGD •0000000	Examples 0000000	PGD and clustering	Conclusions 00	References O
PGD at a	glance					

- **1** The parameters are taken as extra coordinates stating the problem in a multidimensional framework; finding an approximation to $d(\theta)$ in $\mathbb{R}^{n_d} \times I_{\theta}$.
- Phe solution is sought in a separable format reducing the order of the problem

$$\mathtt{n}_{\mathtt{full}} = \mathtt{n}_{\mathtt{d}} \prod_{i=1}^{\mathtt{n}_{p}} n_{D}, i \quad \rightarrow \quad \mathtt{n}_{\mathtt{PGD}} = \mathtt{n}_{\mathtt{d}} + \sum_{i=1}^{\mathtt{n}_{p}} n_{D,i} \qquad \text{with } \mathtt{n}_{\mathtt{PGD}} << \mathtt{n}_{\mathtt{full}}$$

3 The PGD solver is based on a greedy strategy (computing one rank-one term at a time) and an alternating directions method to solve the nonlinear rank-one problems.

Separated global stiffness matrix is needed for the PGD solver!

• Input: the global separated stiffness matrix $K(\theta)$.

$$\boldsymbol{K}(\boldsymbol{\theta}) \approx \boldsymbol{K}^{\texttt{sep}}(\boldsymbol{\theta}) = \sum_{k=1}^{\texttt{n}_k} \boldsymbol{K}^k \prod_{j=1}^{\texttt{n}_p} \varphi_j^k(\boldsymbol{\theta}_j)$$

• **Output:** the unknown vector of displacements $d(\theta)$.

$$\boldsymbol{d}(\boldsymbol{\theta}) \approx \boldsymbol{d}_{\mathtt{PGD}}^{n}(\boldsymbol{\theta}) = \sum_{m=1}^{n} \beta^{m} \boldsymbol{d}^{m} \prod_{j=1}^{\mathtt{n}_{\mathtt{p}}} G_{j}^{m}(\boldsymbol{\theta}_{j})$$

- *Encapsulated PGD* provides tools that directly produce computational vademecums for the high-dimensional tensor data.
- The toolbox¹ permits the performance of operations such as: solving linear system of equations, compression, addition, multiplication, division, etc...

¹Publicly available at https://git.lacan.upc.edu/zlotnik/algebraicPGDtools

16/46

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	00000000	0000000	000000000000000000000000000000000000000	00	
PGD com	npression					

- The goal is to remove excess terms associated with redundant information from the PGD solution and increase othogonality between terms
- Least-squares projection of the PGD solution into the same approximation space:
 find a PCD type approximation d^{ms}, minimizing

find a PGD-type approximation $d_{\scriptscriptstyle {\rm com}}^{\rm n_c}$ minimizing

$$\|\boldsymbol{d}_{\mathrm{com}}^{\mathrm{n_c}}-\boldsymbol{d}_{\mathrm{PGD}}^n\|_{L^2(I_{\boldsymbol{\theta}})}=\int_{I_1}\cdots\int_{I_{\mathrm{n_p}}}(\boldsymbol{d}_{\mathrm{com}}^{\mathrm{n_c}}-\boldsymbol{d}_{\mathrm{PGD}}^n)^2\;d\theta_{\mathrm{n_p}}\dots d\theta_1$$

• The number of terms ${\bf n}_{\rm c}$ in the compressed solution $d_{\rm com}^{{\bf n}_{\rm c}}$ is significantly lower than the original one $({\bf n}_{\rm c}\ll n)$

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	00000000	0000000	000000000000000000000000000000000000000	00	0
Separatio	n of input for	PGD solver				

• The separated representation of $\mathcal{C}(\theta)$:

$$\mathcal{C}(\theta_i) = \sum_{\ell=1}^{\mathbf{n}_{\mathrm{t}}} \mathcal{C}^{\ell} \prod_{j=1}^{\mathbf{n}_{\mathrm{p}}} \phi_j^{\ell,i}(\theta_j) \qquad \phi_j^{\ell,i}(\theta_j) \equiv 1 \text{ for } j \neq i$$

• The element stiffness, $\Omega_e \in \Omega_i$, yields:

$$\boldsymbol{K}^{e}(\theta_{i}) = \sum_{\ell=1}^{\mathtt{n}_{\mathtt{t}}} \left[\int_{\Omega_{e}} \boldsymbol{B}^{e\mathsf{T}} \boldsymbol{\mathcal{C}}^{\ell} \boldsymbol{B}^{e} d\Omega \right] \prod_{j=1}^{\mathtt{n}_{\mathtt{p}}} \phi_{j}^{\ell,i}(\theta_{j})$$

• Assembling the global stiffness matrix yields:

$$\begin{split} \boldsymbol{K}(\theta_1, \theta_2, ..., \theta_{n_p}) &= \sum_{e=1}^{n_{e1}} \boldsymbol{L}^{e\mathsf{T}} \boldsymbol{K}^e(\theta_i) \boldsymbol{L}^e \\ &= \sum_{e=1}^{n_{e1}} \sum_{\ell=1}^{n_{t}} \left[\int_{\Omega_e} \boldsymbol{L}^{e\mathsf{T}} \boldsymbol{B}^{e\mathsf{T}} \boldsymbol{\mathcal{C}}^{\ell} \boldsymbol{B}^e \boldsymbol{L}^e \ d\Omega \right] \prod_{j=1}^{n_p} \phi_j^{\ell, i}(\theta_j) \end{split}$$

18/46

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
		00000000				
Post-pro	cess and Sens	sitivities				

- PGD gives the displacement $d(\theta) = \sum_{m=1}^n \beta^m d^m \prod_{j=1}^{\mathtt{n}_{\mathtt{p}}} G_j^m(\theta_j)$
- The parametric strain tensor is a linear output of the overall displacements *d*
- The parametric stress tensor $\Rightarrow \sigma_g(\theta) = \mathcal{C}(\theta_i) \varepsilon_g(\theta)$ with $\varepsilon_g^m = B_g^e L^e d^m$

$$\boldsymbol{\sigma}_g(\boldsymbol{\theta}) = \sum_{m=1}^n \sum_{\ell=1}^{\mathbf{n_t}} \beta^m \boldsymbol{C}^\ell \boldsymbol{\varepsilon}_g^m \prod_{j=1}^{\mathbf{n_p}} \phi_j^{\ell,i}(\theta_j) G_j^m(\theta_j)$$

• Using the parametric stress tensor and the transformed strength tensors, the failure index could be reconstructed:

$$\mathcal{I}_{L}(\boldsymbol{\sigma}_{g}(\boldsymbol{\theta})) = \boldsymbol{\sigma}_{g}^{\mathsf{T}} \boldsymbol{F}(\theta_{i}) \text{ and } \mathcal{I}_{Q}(\boldsymbol{\sigma}_{g}(\boldsymbol{\theta})) = \boldsymbol{\sigma}_{g}^{\mathsf{T}} \boldsymbol{\mathcal{F}}(\theta_{i}) \boldsymbol{\sigma}_{g}$$

Introduction 000000	Problem Statement	Encapsulated PGD 00000●00	Examples 0000000	PGD and clustering	Conclusions 00	References O
Failure V	ademecums					

• The expressions for the quadratic and linear terms:

$$\mathcal{I}_{\mathtt{Q}}\big(\boldsymbol{\sigma}_{g}(\boldsymbol{\theta})\big) = \sum_{b=1}^{\mathtt{n}_{\mathtt{Q}}} \tilde{\gamma}^{b} \tilde{A}_{g}^{b} \prod_{j=1}^{\mathtt{n}_{\mathtt{p}}} \tilde{H}_{j}^{b,i}(\theta_{j}) \text{ and } \mathcal{I}_{\mathtt{L}}\big(\boldsymbol{\sigma}_{g}(\boldsymbol{\theta})\big) = \sum_{v=1}^{\mathtt{n}_{\mathtt{L}}} \hat{\gamma}^{v} \hat{A}_{g}^{v} \prod_{j=1}^{\mathtt{n}_{\mathtt{p}}} \hat{H}_{j}^{v,i}(\theta_{j})$$

• The final expression for the failure index \mathcal{I}_{f} is readily recovered by summing up \mathcal{I}_{Q} and \mathcal{I}_{L}

$$\mathcal{I}_{\mathrm{f}}\big(\boldsymbol{\sigma}_{g}(\boldsymbol{\theta})\big) = \mathcal{I}_{\mathrm{Q}}\big(\boldsymbol{\sigma}_{g}(\boldsymbol{\theta})\big) + \mathcal{I}_{\mathrm{L}}\big(\boldsymbol{\sigma}_{g}(\boldsymbol{\theta})\big) = \sum_{f=1}^{\mathrm{n}_{\mathrm{Q}}+\mathrm{n}_{\mathrm{L}}} \gamma^{f} A_{g}^{f} \prod_{j=1}^{\mathrm{n}_{\mathrm{P}}} H_{j}^{f,i}(\boldsymbol{\theta}_{j})$$

• The quantities γ^f , A_g^f and $H_j^{f,i}(\theta_j)$ depend on the index f

$$\left| \gamma^{f}, \, A_{g}^{f}, \, H_{g}^{f} = \begin{cases} \tilde{\gamma}^{f}, \tilde{A}_{g}^{f}, \tilde{H}_{g}^{f} & \text{if} f \leq \mathbf{n}_{\mathbf{Q}} \\ \hat{\gamma}^{f - \mathbf{n}_{\mathbf{Q}}}, \hat{A}_{g}^{f - \mathbf{n}_{\mathbf{Q}}}, \hat{H}_{g}^{f - \mathbf{n}_{\mathbf{Q}}} & \text{if} \, f > \mathbf{n}_{\mathbf{Q}} \end{cases} \right|$$

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	000000●0	0000000		00	O
Failure In	dex $\mathcal{I}_{\mathtt{f}}$ Sensit	tivities				

• The gradient of the failure index $\nabla_{\theta} \mathcal{I}_{f}(\theta)$:

$$\boxed{\frac{\partial \mathcal{I}_{f}(\boldsymbol{\theta})}{\partial \theta_{k}} = \sum_{f=1}^{n_{q}+n_{L}} \gamma^{f} A_{g}^{f} \left[\frac{dH_{k}^{f,i}}{d\theta_{k}}(\theta_{k}) \right] \prod_{j \neq k}^{n_{p}} H_{j}^{f,i}(\theta_{j})}$$

 \bullet For optimization methods requiring the Hessian matrix, for $k\neq \tilde{k}$

$$\frac{\partial^{2} \mathcal{I}_{\mathbf{f}}(\boldsymbol{\theta})}{\partial \theta_{k} \partial \theta_{\tilde{k}}} = \sum_{f=1}^{\mathbf{n}_{\mathbf{q}} + \mathbf{n}_{\mathbf{L}}} \gamma^{f} A_{g}^{f} \left[\frac{dH_{k}^{f,i}}{d\theta_{k}}(\theta_{k}) \frac{dH_{\tilde{k}}^{f,i}}{d\theta_{\tilde{k}}}(\theta_{\tilde{k}}) \right] \prod_{j \neq k, \tilde{k}}^{\mathbf{n}_{p}} H_{j}^{f,i}(\theta_{j})$$

And for the diagonal terms

$$\boxed{\frac{\partial^2 \mathcal{I}_{\mathrm{f}}(\boldsymbol{\theta})}{\partial \theta_k^2} = \sum_{f=1}^{\mathrm{nq}+\mathrm{n_L}} \gamma^f A_g^f \left[\frac{d^2 H_k^{f,i}}{d \theta_k^2}(\theta_k)\right] \prod_{j \neq k}^{\mathrm{n_p}} H_j^{f,i}(\theta_j)}$$

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	00000000	0000000	0000000000000000	00	
Safety Fa	ictor λ_s Sensi	itivities				

• The gradient of the safety factor $\nabla_{\theta}\lambda_s(\boldsymbol{\theta})$:

$$\begin{split} & \left[\frac{\partial \mathcal{I}_{\mathsf{Q}}(\boldsymbol{\theta})}{\partial \theta_{k}} = \sum_{b=1}^{\mathsf{n}_{\mathsf{Q}}} \tilde{\gamma}^{b} \tilde{A}_{g}^{f} \left[\frac{d \tilde{H}_{k}^{b,i}}{d \theta_{k}}(\theta_{k}) \right] \prod_{j \neq k}^{\mathsf{n}_{\mathsf{P}}} \tilde{H}_{j}^{b,i}(\theta_{j}) \\ & \frac{\partial \mathcal{I}_{\mathsf{L}}(\boldsymbol{\theta})}{\partial \theta_{k}} = \sum_{v=1}^{\mathsf{n}_{\mathsf{L}}} \hat{\gamma}^{v} \hat{A}_{g}^{f} \left[\frac{d \hat{H}_{k}^{v,i}}{d \theta_{k}}(\theta_{k}) \right] \prod_{j \neq k}^{\mathsf{n}_{\mathsf{P}}} \hat{H}_{j}^{v,i}(\theta_{j}) \end{split}$$

• Recalling the safety factor expression, and applying the quotient rule for derivatives of divisions

$$\begin{split} \lambda_s \big(\boldsymbol{\sigma}(\boldsymbol{x}, \boldsymbol{\theta}) \big) &= \frac{-\mathcal{I}_{\rm L} + \sqrt{\mathcal{I}_{\rm L}^2 + 4\mathcal{I}_{\rm q}}}{2\mathcal{I}_{\rm q}} \\ \frac{\partial \lambda_s(\boldsymbol{\theta})}{\partial \theta_k} &= \\ \frac{\mathcal{I}_{\rm q} \left[-\frac{\partial \mathcal{I}_{\rm L}(\boldsymbol{\theta})}{\partial \theta_k} + 0.5(\mathcal{I}_{\rm L}^2 + 4\mathcal{I}_{\rm q})^{-1/2} \cdot \left(2\mathcal{I}_{\rm L} \frac{\partial \mathcal{I}_{\rm L}(\boldsymbol{\theta})}{\partial \theta_k} + 4 \frac{\partial \mathcal{I}_{\rm q}(\boldsymbol{\theta})}{\partial \theta_k} \right) \right] - \frac{\partial \mathcal{I}_{\rm q}(\boldsymbol{\theta})}{\partial \theta_k} \left[-\mathcal{I}_{\rm L} + \sqrt{\mathcal{I}_{\rm L}^2 + 4\mathcal{I}_{\rm q}} \right]}{2\mathcal{I}_{\rm q}^2} \end{split}$$

Diata un	dar tancila la	d. Decerinti	~ ~			
			000000	0000000000000		
		Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

- Plate dimensions: $60 \times 60 \times 6 \text{ mm}^3$.
- Type and number of elements: Serendipity 800 elements.
- Parameters range: $\theta_1 \in I_1 = [-90^\circ, 90^\circ]$ $\theta_2 \in I_2 = [-90^\circ, 90^\circ].$
- Parametric mesh: 181 nodes.
- Material: Carbon Fibre ABS.

Plate under tensile load: PGD performance

- The stopping criterion for computing terms is controlled by $\xi = \frac{\beta^m}{\beta^1}$.
- $\bullet\,$ The number of modes is reduced by 31.5% in the compressed solution.
- $\bullet\,$ The reltive error between FE and PGD is 0.1%

$$arepsilon_{glob} = rac{\|oldsymbol{d}_{ ext{FE}}\|_{\Omega imes I_1 imes \dots imes I_{ ext{np}}}}{\|oldsymbol{d}_{ ext{FE}}\|_{\Omega imes I_1 imes \dots imes I_{ ext{np}}}}$$

Plate under tensile load: Optimization output

- Maps represent the objective functions in the parametric space.
- The optimal $(\theta_1, \theta_2) = (45^{\circ}, 45^{\circ}).$

CPU time

- $\bullet\,$ The CPU time for the FE whole solution is ~ 6.5 days with 32761 FE solves.
- The CPU time for the offline PGD solution is ~ 2.5 hours and the online browsing is in seconds.

- No more symmetry in the optimal solution due to patches of elements.
- The optimal solution is ambiguous due to the hole existence.
- The compression yields a reduction in the number of modes 43.5%.

Plate wi	th circular ho	le under tens	ile load [.] F	our parameters	;	
			0000000			
	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

Optimal Angles						
	ga function fmincon function					
θ_1	42°	42.062°				
θ_2	3°	2.9944°				
θ_3	-22°	-22.4586°				
$ heta_4$	-83°	-84.1544°				
Index value	$\max(\min \lambda_s) = 0.8254$	$\max(\min \lambda_s) = 0.8255$				
CPU time	~ 40 min	~ 1 min				

Table: Optimized angles for square plate with circular hole using the safety factor as objective function.

Plate wi	th circular ho	le under tens	ile load [.] E	ight narameter	<u>،</u> د	
000000	0000000	0000000	0000000	00000000000000	00	0
Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

	Optimized ang	les of the safety f	actor using GA	
# of GA	1000	10,000	100,000	1,000,000
A	810	86°	70°	810
θ_2	42°	43°	42°	41°
θ_3	5°	6°	6°	4°
θ_4	-6°	8°	8°	-20°
θ_5	-20°	-21°	-23°	17°
θ_6	-24°	-25°	-26°	-51°
θ_7	-26°	-25°	-30°	-61°
θ_8	45°	-86°	-85°	-82°
$\max(\lambda_s)$	0.8249	0.8803	0.879	0.8501
CPU time	$\sim 1.2 {\rm ~min}$	$\sim 12~{\rm min}$	$\sim 120~{\rm min}$	$\sim 1300 \text{ min}$

Table: Different number of evaluations yielding different GA precision

- Four parameters: PGD provides a solution in ~ 30 hours while computing the standard FE solution at every parametric point would take $\sim 10^6$ hours.
- Eight parameters: PGD provides a solution in ~ 42 hours while computing the standard FE solution at every parametric point would take $\sim 10^{16}$ hours.

Domain decomposition strategy: Introduction

- Changing the partitioning patterns and increasing the number of partitions affects the optimal fibre orientation results.
- Increasing the number of subdomains does not guarantee fast convergence

Domain	decomposition	strategy:	Clustering a	lgorithm steps		
000000	0000000	00000000	0000000	000000000000000000000000000000000000000	00	0
	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

- Clustering techniques are unsupervised learning techniques such as: K-means, hierarchical clustering.
- Clustering aims to group elements having similar features in a data set into coherent groups.
- The clustering strategy is applied as a preprocess before solving the mechanical problem using PGD.

Clustering techniques for efficient partitioning of the domain

- **1 Preanalyses:** snapshots of the system at each finite element for different orientations are taken and stored.
- Principal Component Analysis: responsible for the data transformation from correlated fields to uncorrelated new components.
- Olustering of factors and their intersection: the clustering techniques are applied to the factors (components) obtained from PCA.
- ② Error computation and clustering optimization: clustering optimization in order to find the best clusters representing the data.

Domain	decomposition	n strategy: (lustering :	algorithm steps		
000000	0000000	0000000	0000000	000000000000000000000000000000000000000	00	0
Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

Preanalyses

- Collecting as much data as possible.
- The data represents a quantity of interest taken at different fibres configurations in each FE.
- More data \Rightarrow accurate results.
- We assume a unidirectional laminate in each single snapshot.
- The quantity of interest is the safety factor at each element.
- The data is stored, in the $\mathtt{n_{el}}\times \mathtt{N_c}$ matrix $\tilde{\lambda}_s$, to be manipulated and analyzed.

Principal Component Analysis (PCA)

- PCA reduces the dimensionality of the data while maintaining its variance as high as possible.
- First we find the covariance matrix

$$\boldsymbol{\Sigma} = \frac{1}{\mathtt{n}_{\texttt{el}}} \boldsymbol{\tilde{\lambda}_s}^{\mathsf{T}} \boldsymbol{\tilde{\lambda}_s}$$

- We then solve for the eigenvalues λ_i and the eigenvectors $oldsymbol{v}^i$
- The factors or principal components are defined $\boxed{\mathbf{f}^{i} = \tilde{\boldsymbol{\lambda}}_{s} \boldsymbol{v}^{i}}$

$$\boxed{\lambda_i = \frac{1}{\mathtt{n}_{\mathtt{el}}} \sum_{j=1}^{\mathtt{n}_{\mathtt{el}}} (\mathsf{f}_j^i - \hat{\mathsf{f}}^i)^2 \qquad \mathsf{with} \ \lambda_1 > \lambda_2 > \ldots, > \lambda_{\mathtt{N}_{\mathtt{c}}}}$$

Domain	decomposition	strategy.	Clustering a	lgorithm steps		
000000	000000	00000000	0000000	000000000000000000000000000000000000000	00	0
Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

First four factors from PCA:

Factors based on the safety factor data $\tilde{\lambda}_s$ that will be clustered using the K-means algorithm

Domain	decomposition	n strategy: I	Error comp	utation		
000000	0000000	0000000	0000000	000000000000000	00	0
	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

- \bullet Our goal: find the best partition ${\cal P}$
- The optimization objective is to minimize the error measure called Sum of Squares Error (SSE) [Alaimo et al. (2019)].
- SSE is a measure of discrepancy between the data of an element and the average of the data in the cluster where the element belongs.

$$E(\mathcal{P}) = \sum_{s=1}^{N_c} E^s(\mathcal{P}) = \frac{1}{E_{max}} \sum_{s=1}^{N_c} \sum_{\ell=1}^{n_s} \sum_{i=1}^{n_\ell(\mathcal{P})} (\omega_i^s - \overline{\omega_{,\ell}^s})^2$$
$$E_{max} = \sum_{s=1}^{N_c} \sum_{i=1}^{n_{e1}} (\omega_i^s - \overline{\omega^s})^2$$

- Each finite element is a cluster on its own $n_s = n_{el} \Rightarrow E(\mathcal{P}) = 0\%$
- Partition \mathcal{P} consists of only one cluster $n_s = 1 \Rightarrow E(\mathcal{P}) = 100\%$

Dom	ain decompositio	on strategy: C	Clustering	optimization		
000000	0000000	00000000	0000000	000000000000000	00	0
Introductio	on Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

• The clustering multi-objective problem is defined as

$$\mathcal{P}^{\texttt{Opt}} = \arg\min_{\mathcal{P}} \ \{ E(\mathcal{P}), \texttt{n}_{\texttt{s}}(\mathcal{P}) \} \quad \texttt{s.t.} \quad \mathcal{P} \in \mathbb{P}$$

- There exists a Pareto optimality situation.
- A *Pareto set* has optimization solutions that are superior to the rest of the solutions in the search space \mathbb{P} .
- The solutions among the set do not dominate each other.
- A partition \mathcal{P}_1 is said to dominate another partition \mathcal{P}_2 only when the following inequalities hold

$$\begin{split} E(\mathcal{P}_1) &\leq E(\mathcal{P}_2) \quad \text{and} \quad \mathbf{n}_{\mathrm{s}}(\mathcal{P}_1) \leq \mathbf{n}_{\mathrm{s}}(\mathcal{P}_2) \\ E(\mathcal{P}_1) &< E(\mathcal{P}_2) \quad \text{or} \quad \mathbf{n}_{\mathrm{s}}(\mathcal{P}_1) < \mathbf{n}_{\mathrm{s}}(\mathcal{P}_2) \end{split}$$

Pareto set error comparison							
	Stress base	Stress based clusters Safety factor based clus					
	4 clusters	8 clusters	4 clusters	8 clusters			
K-means single run	38%	29%	11.5%	9.5%			
K-means 10 runs	37%	29%	11.2%	9.1%			
Ward's method	41%	26%	11.9%	9.3%			

Table: Pareto set error comparison between K-means with a single run, K-means with 10 runs, and Ward's method

Introduction Problem Statement Encapsulated PGD Examples PGD and clustering Conclusions References 000000 0000000 0000000 0000000 00 00 0

Optimal domain decomposition obtained from the clustering algorithm

	Domain	Domain
	with 4 parameters	with 8 parameters
Stress based clustering with K-means	0.7863	0.8788
Stress based clustering with Ward's	0.8653	0.9037
Transformed safety factor clustering with K-means	1.013	0.9934
Transformed safety factor clustering with Ward's	0.7973	0.8244
Based on intuition	0.8254	0.879

Table: Safety factor index λ_s obtained from PGD based on different domain parameterization

Domain (decomposition	strategy: Ex	perimenta	al testing		
000000	0000000	0000000	0000000	000000000000000000000000000000000000000	00	0
Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

Experimental testing for the validation of the model using 3D printing

- **)** Simulation and analysis: Run the model to obtain optimal fibre orientation in different domains.
- Specimen preparation and 3D printing: The preparation of the STL files of the components to be printed and slicing the part for the G-Code generation.
- **(3)** Tensile test and monitor results: Perform traction on the part until failure occurs and then record the corresponding load for comparison.

Domain	decomposition	strategy:	Experimenta	l tests		
000000	000000	00000000	0000000	000000000000000000000000000000000000000	00	
Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References

Optimal fibre orientation in optimized partitions in the domain

Introduction 000000	Problem Statement	Encapsulated PGD 00000000	Examples 0000000	PGD and clustering ○○○○○○○○○○○○○	Conclusions 00	Reference O
Domain	decompositio	n strategy: E	xperiment	al tests		

	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	0000000	0000000	0000000000000	••	
Conclusio	ons					

- PGD reduces the computational cost significantly.
- Applying the encapsulated PGD concept facilitates the manipulation of high-dimensional data.
- Using PGD in optimization problems is extremely efficient since we have the whole space of solutions available.
- Applying clustering techniques as a pre-process leads to better optimization results.
- The whole methodology opens the door for customized mechanical components.
- Experimental tests show the improvement in the load carrying capacity of the optimized 3D printed components
- The clustering techniques approach reduces the CPU time for the PGD.

Introduction	Problem Statement	Encapsulated PGD	Examples	PGD and clustering	Conclusions	References
000000	0000000	0000000	0000000	0000000000000	00	
Future we	ork					

• Enhancement of the model:

From the PGD point of view, it is important to enhance the vademecum by including geometrical parameterization, load location parameter, and boundary conditions parameterization.

• Programming languages:

From the programming point of view, the PGD package could be implemented using high-efficiency languages such as C/C++ and/or FORTRAN. Moreover, modern simulation applications on smartphones could be developed to make use of the fast response of the PGD vademecums.

Error estimation:

Obtaining an error estimator of a quantity of interest to be able to accurately choose the stopping criterion for the greedy algorithm in the PGD.

• Additive manufacturing:

The need to explore the possibility of printing continuous fibres with the aim of enhancing the mechanical properties of 3D printed components by avoiding jumps between partitions.

Introduction 000000	Problem Statement	Encapsulated PGD	Examples 0000000	PGD and clustering	Conclusions 00	References O
References						

- Alaimo, G., Auricchio, F., Marfia, S., and Sacco, E. (2019). Optimization clustering technique for PieceWise Uniform Transformation Field Analysis homogenization of viscoplastic composites. *Computational Mechanics*, 64(6):1495–1516.
- Díez, P., Zlotnik, S., García-González, A., and Huerta, A. (2018). Algebraic PGD for tensor separation and compression: An algorithmic approach. *Comptes Rendus - Mecanique*, 346(7):501–514.
- Díez, P., Zlotnik, S., García-González, A., and Huerta, A. (2019). Encapsulated PGD Algebraic Toolbox Operating with High-Dimensional Data. Archives of Computational Methods in Engineering, 26(5).
- Ramm, E., Maute, K., and Schwarz, S. (1998). Conceptual design by structural optimization. Proceedings of the Euro–C 1998 Conference on Computational Modelling of Concrete Structures, herausgegeben von R. de Borst, N. Bicanic, H. Mang & G. Meschke, S, pages 879–896.

45 / 46

TER ХВАЛА RON KÖSZÖN 60 CIES GR TAK CIES GRA 2 님 IL Н. ХВАЛА ΓE MΛ S GRACIAS C SHUKRAN

References