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Background and Motivation

Existence through time:
Composite materials have been used since Mesopotemia and the
Pharaonic civilisations
Reinforced construction components for enhanced mechanical
properties ⇒ brick and straw, reinforced concrete, etc...

Figure: Typical ancient house in south of Egypt and a modern reinforced beam
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Background and Motivation

Industrial needs:
Enhanced mechanical properties ⇒ stiffness, load-carrying capacity,
increased strength to weight ratio, etc...
Numerical analyses for complex shapes and designs
Ability to manufacture optimized complex designs

Additive manufacturing deposits thermoplastic
molten filament layer by layer.
3D printing steps:
CAD based 3D model ⇒ STL file ⇒ sliced
layers ⇒ 3D printing ⇒ part finishing.
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What are the different types of structural optimization?

Structural optimization
Topology optimization: how to remove material
Shape optimization: how to change the shape of the boundaries
Size optimization: how to change the thicknesses of components
Material optimization: how to orient material

Figure: Four levels of structural optimization. Figure adapted from Ramm et al. (1998)
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Optimization problem
Requires solving a large number of 3D
forward models corresponding to
different values of the parameters
(orientation of material).
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Proper Generalized Decomposition (PGD) framework

Steps of PGD
Obtain pre-computed solutions in the form of a computational vademecum by

1 Considering the parameters as extra-coordinates in the problem

2 Making use of a separated representation of the solution to
overcome the curse of dimensionality

Offline phase
Important computational
resources only once
Results in a generalized solution

Online phase
Very fast browsing of solutions
Availability of the solution for
any value in the parametric
space
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Objectives

Present a new computational tool for the 3D numerical
analysis of fibrous composite laminates with the goal of

optimizing the orientation of fibers for 3D printing
applications

Main goals

1 Apply a set of newly in-house developed tools known as
encapsulated PGD [Díez et al. (2018, 2019)]

2 Implement a post-process algortihm to solve the optimization
problem

3 Apply the methodology to a couple of numerical examples to
assess the capabilities of the model

4 Enhance the model by implementing and applying a data analysis
algorithm
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Governing Equations: Linear Elasticity

Strong form (Voigt’s notation)
Given a 3D domain Ω ∈ R3, find the displacement u(x) satisfying the
following:

∇T
Sσ + b = 0 in Ω (equilibrium)

u = uD on ΓD (Dirichlet BC)
nTσ = tN on ΓN (Neumann BC)
σ = Cε (Constitutive law)
ε = ∇Su

Weak form

The weak form is as follows, find u ∈ U such that∫
Ω

(∇Sw)TC∇Su dΩ =
∫

ΓN

wTtdΓ +
∫

Ω
wTbdΩ ∀w ∈ Uo
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Governing Equations: Linear Elasticity

Finite dimensional
The integration over the whole domain could be a sum of integrals over
the elements Ωe.

nel∑
e=1

{∫
Ωe

(∇Sw
e
h)TC∇Su

e
h dΩ−

∫
Γe

N

weTh t dΓ−
∫

Ωe

weTh b dΩ

}
= 0

After derivations, the element stiffness matrix and force vector read:

Ke =
∫

Ωe

BeTCBe dΩ fe =
∫

Ωe

NeTb dΩ +
∫

ΓN

⋂
Ω̄e

NeTt dΓ

Applying assembly operators, the global stiffness matrix and force vector
read:

K :=
nel∑
e=1

LeTKeLe and f :=
nel∑
e=1

LeTfe yielding: Kd = f
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Material Parameterization

The material properties are described by C0 and
its orientation is described by the angle θ.
The oriented material is described as follow:

C(θ) = T−1(θ)C0T
−T(θ)

Each parameter θi is assigned to a sub-domain
Ωi, Ωi ⊂ Ω, and many Ωe ⊂ Ωi.
The element stiffness:

Ke(θi) =
∫

Ωe

BeTC(θi)BedΩ

.
The parametric linear system of equations:

K(θ)d(θ) = f

The np parameters are gathered in vector
θ = [θ1, θ2, ..., θnp ]T.
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Tsai-Wu Failure Criterion
The Tsai-Wu failure index:

If
(
σ
)

= σTFσ + σTF

If(σ) ≤ 1⇒ Material is safe.

Alternative expression of the failure criterion:

If
(
σ
)

= If
(
λσ
)

= λ2σTFσ + λσTF

The critical value of λ corresponds to the onset of failure If
(
σ
)

= 1.
Assuming that F is symmetric positive definite, σTFσ ≥ 0, there is a
unique positive root of the equation If

(
σ
)

= 1.

λs = 1
2σTFσ

(√
(σTF )2 + 4σTFσ − σTF

)
The smallest positive root, denoted as λs, is the safety factor
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Tsai-Wu Failure Criterion

Our goal is to obtain expressions If(θ) and λs(θ) that could be evaluated
very fast
Expressions of F and F with respect to the global axes are obtained using
the transformation matrices:

F(θi) = T T(θi)F0T (θi)

F (θi) = T T(θi)F 0

Marking explicitly the parametric dependence, for x ∈ Ωi, the failure index
If and the safety factor λs are rewritten as:

If
(
σ(x, θ)

)
=σ(x, θ)TF(θi)σ(x, θ) + σ(x, θ)TF (θi)

λs
(
σ(x, θ)

)
=
√

(σ(x, θ)TF (θi))2 + 4σ(x, θ)TF(θi)σ(x, θ)− σ(x, θ)TF (θi)
2σ(x, θ)TF(θi)σ(x, θ)

The failure index If and the safety factor λs are our objective functions
for the optimization problem.
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Optimization problem

The first choice is to find θ that minimizes the maximum value of
If
(
σ(x, θ)

)
evaluated at all points x in Ω.

θOpt
f = argmin

θ
max
x
If
(
σ(x, θ)

)
The second choice is to find θ that maximizes the minimum value of
λs(x, θ) evaluated at all points x in Ω.

θOpt
s = argmax

θ
min
x
λs(x, θ)

The objective functions are not necessarily smooth and they are non
convex-concave which might lead to being stuck in local minima/maxima
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Optimization Algorithms

Types of algorithms
The optimization algorithms are classified into deterministic and stochastic
algorithms.
Gradient-based methods (Newton method) converge fast but are easily
stuck in local minima/maxima.
Evolutionary methods (Genetic Algorithm) converge slow but yield a
global optimal in complex problems.
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PGD at a glance

1 The parameters are taken as extra coordinates stating the problem in a
multidimensional framework; finding an approximation to d(θ) in Rnd × Iθ.

2 The solution is sought in a separable format reducing the order of the
problem

nfull = nd

np∏
i=1

nD, i → nPGD = nd +
np∑
i=1

nD,i with nPGD << nfull

.

3 The PGD solver is based on a greedy strategy (computing one rank-one
term at a time) and an alternating directions method to solve the
nonlinear rank-one problems.
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Encapsulated PGD

Separated global stiffness matrix is needed for the
PGD solver!

Input: the global separated stiffness matrix K(θ).

K(θ) ≈Ksep(θ) =
nk∑
k=1

Kk

np∏
j=1

ϕkj (θj)

Output: the unknown vector of displacements d(θ).

d(θ) ≈ dnPGD(θ) =
n∑

m=1

βmdm
np∏
j=1

Gmj (θj)

Encapsulated PGD provides tools that directly produce computational
vademecums for the high-dimensional tensor data.
The toolbox1 permits the performance of operations such as: solving linear
system of equations, compression, addition, multiplication, division, etc...

1Publicly available at https://git.lacan.upc.edu/zlotnik/algebraicPGDtools
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PGD compression

The goal is to remove excess terms associated with redundant information
from the PGD solution and increase othogonality between terms

Least-squares projection of the PGD solution into the same approximation
space:
find a PGD-type approximation dnc

com minimizing

‖dnc
com − dnPGD‖L2(Iθ) =

∫
I1

· · ·
∫
Inp

(dnc
com − dnPGD)2 dθnp . . . dθ1

The number of terms nc in the compressed solution dnc
com is significantly

lower than the original one (nc � n)
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Separation of input for PGD solver

The separated representation of C(θ):

C(θi) =
nt∑
`=1

C`
np∏
j=1

φ`,ij (θj) φ`,ij (θj) ≡ 1 for j 6= i

The element stiffness, Ωe ∈ Ωi, yields:

Ke(θi) =
nt∑
`=1

[∫
Ωe

BeTC`BedΩ
] np∏
j=1

φ`,ij (θj)

Assembling the global stiffness matrix yields:

K(θ1, θ2, ..., θnp ) =
nel∑
e=1

LeTKe(θi)Le

=
nel∑
e=1

nt∑
`=1

[∫
Ωe

LeTBeTC`BeLe dΩ
] np∏
j=1

φ`,ij (θj)

Karim M. El-Ghamrawy PGD solutions of composite laminates 18 / 46



Introduction Problem Statement Encapsulated PGD Examples PGD and clustering Conclusions References

Post-process and Sensitivities

PGD gives the displacement d(θ) =
∑n

m=1 β
mdm

∏np
j=1 G

m
j (θj)

The parametric strain tensor is a linear output of the overall displacements
d

The parametric stress tensor ⇒ σg(θ) = C(θi)εg(θ) with εmg = Be
gL

edm

σg(θ) =
n∑

m=1

nt∑
`=1

βmC`εmg

np∏
j=1

φ`,ij (θj)Gmj (θj)

Using the parametric stress tensor and the transformed strength tensors,
the failure index could be reconstructed:

IL
(
σg(θ)

)
= σT

gF (θi) and IQ
(
σg(θ)

)
= σT

gF(θi)σg
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Failure Vademecums

The expressions for the quadratic and linear terms:

IQ
(
σg(θ)

)
=

nQ∑
b=1

γ̃bÃbg

np∏
j=1

H̃b,i
j (θj) and IL

(
σg(θ)

)
=

nL∑
v=1

γ̂vÂvg

np∏
j=1

Ĥv,i
j (θj)

The final expression for the failure index If is readily recovered by
summing up IQ and IL

If
(
σg(θ)

)
= IQ

(
σg(θ)

)
+ IL

(
σg(θ)

)
=

nQ+nL∑
f=1

γfAfg

np∏
j=1

Hf,i
j (θj)

The quantities γf , Afg and Hf,i
j (θj) depend on the index f

γf , Afg , H
f
g =

{
γ̃f , Ãfg , H̃

f
g iff ≤ nQ

γ̂f−nQ , Â
f−nQ
g , Ĥ

f−nQ
g if f > nQ
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Failure Index If Sensitivities

The gradient of the failure index ∇θIf(θ):

∂If(θ)
∂θk

=
nQ+nL∑
f=1

γfAfg

[
dHf,i

k

dθk
(θk)

] np∏
j 6=k

Hf,i
j (θj)

For optimization methods requiring the Hessian matrix, for k 6= k̃

∂2If(θ)
∂θk∂θk̃

=
nQ+nL∑
f=1

γfAfg

[
dHf,i

k

dθk
(θk)

dHf,i

k̃

dθk̃
(θk̃)

] np∏
j 6=k,k̃

Hf,i
j (θj)

And for the diagonal terms

∂2If(θ)
∂θk

2 =
nQ+nL∑
f=1

γfAfg

[
d2Hf,i

k

dθk
2 (θk)

] np∏
j 6=k

Hf,i
j (θj)
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Safety Factor λs Sensitivities

The gradient of the safety factor ∇θλs(θ):

∂IQ(θ)
∂θk

=
nQ∑
b=1

γ̃bÃfg

[
dH̃b,i

k

dθk
(θk)

] np∏
j 6=k

H̃b,i
j (θj)

∂IL(θ)
∂θk

=
nL∑
v=1

γ̂vÂfg

[
dĤv,i

k

dθk
(θk)

] np∏
j 6=k

Ĥv,i
j (θj)

Recalling the safety factor expression, and applying the quotient rule for
derivatives of divisions

λs
(
σ(x, θ)

)
=
−IL +

√
I2

L + 4 IQ

2IQ

∂λs(θ)
∂θk

=

IQ

[
−∂IL(θ)

∂θk
+ 0.5(I2

L + 4IQ)−1/2 ·
(

2IL
∂IL(θ)
∂θk

+ 4∂IQ(θ)
∂θk

)]
− ∂IQ(θ)

∂θk

[
−IL +

√
I2

L + 4IQ

]
2I2

Q
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Plate under tensile load: Description

Plate dimensions: 60× 60× 6 mm3.

Type and number of elements:
Serendipity 800 elements.

Parameters range:
θ1 ∈ I1 = [−90°, 90°]
θ2 ∈ I2 = [−90°, 90°].

Parametric mesh: 181 nodes.

Material: Carbon Fibre ABS.
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Plate under tensile load: PGD performance

The stopping criterion for computing terms is controlled by ξ = βm

β1 .
The number of modes is reduced by 31.5% in the compressed
solution.
The reltive error between FE and PGD is 0.1%

εglob =
‖dPGD − dFE‖Ω×I1×...×Inp

‖dFE‖Ω×I1×...×Inp
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Plate under tensile load: Optimization output

Maps represent the objective functions in the parametric space.
The optimal (θ1, θ2) = (45°, 45°).

CPU time
The CPU time for the FE whole solution is ∼ 6.5 days with 32761 FE
solves.
The CPU time for the offline PGD solution is ∼ 2.5 hours and the online
browsing is in seconds.
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Plate with circular hole under tensile load: Two parameters

No more symmetry in the optimal
solution due to patches of
elements.
The optimal solution is ambiguous
due to the hole existence.
The compression yields a reduction
in the number of modes 43.5%.
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Plate with circular hole under tensile load: Four parameters

Optimal Angles
ga function fmincon function

θ1 42° 42.062°
θ2 3° 2.9944°
θ3 −22° −22.4586°
θ4 −83° −84.1544°

Index value max(minλs) = 0.8254 max(minλs) = 0.8255
CPU time ∼ 40 min ∼ 1 min

Table: Optimized angles for square plate with circular hole using the safety factor as
objective function.
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Plate with circular hole under tensile load: Eight parameters

Optimized angles of the safety factor using GA
# of GA
evaluations 1000 10, 000 100, 000 1, 000, 000

θ1 81° 86° 70° 84°
θ2 42° 43° 42° 41°
θ3 5° 6° 6° 4°
θ4 −6° 8° 8° −20°
θ5 −20° −21° −23° 17°
θ6 −24° −25° −26° −51°
θ7 −26° −25° −30° −61°
θ8 45° −86° −85° −82°

max(λs) 0.8249 0.8803 0.879 0.8501
CPU time ∼ 1.2 min ∼ 12 min ∼ 120 min ∼ 1300 min

Table: Different number of evaluations yielding different GA precision
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Plate with circular hole under tensile load: Computational cost

Four parameters: PGD provides a solution in ∼ 30 hours while
computing the standard FE solution at every parametric point would
take ∼ 106 hours.
Eight parameters: PGD provides a solution in ∼ 42 hours while
computing the standard FE solution at every parametric point would
take ∼ 1016 hours.

The computational cost is drastically reduced when using PGD!
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Domain decomposition strategy: Introduction

Changing the partitioning patterns and increasing the number of
partitions affects the optimal fibre orientation results.
Increasing the number of subdomains does not guarantee fast
convergence

We need to find a smarter partitioning strategy!!!
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Domain decomposition strategy: Clustering algorithm steps

Clustering techniques are unsupervised learning techniques such as:
K-means, hierarchical clustering.
Clustering aims to group elements having similar features in a data set into
coherent groups.
The clustering strategy is applied as a preprocess before solving the
mechanical problem using PGD.

Clustering techniques for efficient partitioning of the domain

1 Preanalyses: snapshots of the system at each finite element for different
orientations are taken and stored.

2 Principal Component Analysis: responsible for the data transformation
from correlated fields to uncorrelated new components.

3 Clustering of factors and their intersection: the clustering techniques are
applied to the factors (components) obtained from PCA.

4 Error computation and clustering optimization: clustering optimization in
order to find the best clusters representing the data.
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Domain decomposition strategy: Clustering algorithm steps

Preanalyses
Collecting as much data as possible.
The data represents a quantity of interest taken at different fibres
configurations in each FE.
More data ⇒ accurate results.
We assume a unidirectional laminate in each single snapshot.
The quantity of interest is the safety factor at each element.
The data is stored, in the nel × Nc matrix λ̃s, to be manipulated and
analyzed.
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Domain decomposition strategy: Clustering algorithm steps

Principal Component Analysis (PCA)
PCA reduces the dimensionality of the data while maintaining its variance
as high as possible.

First we find the covariance matrix

Σ = 1
nel
λ̃s

T
λ̃s

We then solve for the eigenvalues λi
and the eigenvectors vi

The factors or principal components are
defined

fi = λ̃sv
i

The eigenvalues expressed in terms of the obtained factors

λi = 1
nel

nel∑
j=1

(fij − f̂i)2 with λ1 > λ2 > . . . , > λNc
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Domain decomposition strategy: Clustering algorithm steps

First four factors from PCA:
Factors based on the safety factor data λ̃s that will be clustered using
the K-means algorithm
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Domain decomposition strategy: Clustering of factors

K-means clustering of four factors
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Domain decomposition strategy: Error computation

Our goal: find the best partition P
The optimization objective is to minimize the error measure called Sum of
Squares Error (SSE) [Alaimo et al. (2019)].
SSE is a measure of discrepancy between the data of an element and the
average of the data in the cluster where the element belongs.

E(P) =
Nc∑
s=1

Es(P) = 1
Emax

Nc∑
s=1

ns∑
`=1

n`(P)∑
i=1

(ωsi − ωs,`)
2

Emax =
Nc∑
s=1

nel∑
i=1

(ωsi − ωs)2

Each finite element is a cluster on its own ns = nel ⇒ E(P) = 0%
Partition P consists of only one cluster ns = 1⇒ E(P) = 100%
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Domain decomposition strategy: Clustering optimization

The clustering multi-objective problem is defined as

POpt = argmin
P
{E(P), ns(P)} s.t. P ∈ P

There exists a Pareto optimality situation.

A Pareto set has optimization solutions that are superior to the rest of the
solutions in the search space P.

The solutions among the set do not dominate each other.

A partition P1 is said to dominate another partition P2 only when the
following inequalities hold

E(P1) ≤ E(P2) and ns(P1) ≤ ns(P2)
E(P1) < E(P2) or ns(P1) < ns(P2)
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Pareto set error comparison
Stress based clusters Safety factor based clusters

4 clusters 8 clusters 4 clusters 8 clusters
K-means
single run 38% 29% 11.5% 9.5%

K-means 10
runs 37% 29% 11.2% 9.1%

Ward’s
method 41% 26% 11.9% 9.3%

Table: Pareto set error comparison between K-means with a single run, K-means with
10 runs, and Ward’s method
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Domain decomposition strategy: Clustered domains

Optimal domain decomposition obtained from the clustering algorithm

Domain Domain
with 4 parameters with 8 parameters

Stress based clustering with K-means 0.7863 0.8788
Stress based clustering with Ward’s 0.8653 0.9037

Transformed safety factor clustering with K-means 1.013 0.9934
Transformed safety factor clustering with Ward’s 0.7973 0.8244

Based on intuition 0.8254 0.879

Table: Safety factor index λs obtained from PGD based on different domain
parameterization
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Domain decomposition strategy: Experimental testing

Experimental testing for the validation of the model using 3D printing

1 Simulation and analysis: Run the model to obtain optimal fibre orientation
in different domains.

2 Specimen preparation and 3D printing: The preparation of the STL files
of the components to be printed and slicing the part for the G-Code
generation.

3 Tensile test and monitor results: Perform traction on the part until failure
occurs and then record the corresponding load for comparison.
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Domain decomposition strategy: Experimental tests

Optimal fibre orientation in optimized partitions in the domain
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Domain decomposition strategy: Experimental tests
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Conclusions

PGD reduces the computational cost significantly.

Applying the encapsulated PGD concept facilitates the manipulation of
high-dimensional data.

Using PGD in optimization problems is extremely efficient since we have
the whole space of solutions available.

Applying clustering techniques as a pre-process leads to better
optimization results.

The whole methodology opens the door for customized mechanical
components.

Experimental tests show the improvement in the load carrying capacity of
the optimized 3D printed components

The clustering techniques approach reduces the CPU time for the PGD.
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Future work

Enhancement of the model:
From the PGD point of view, it is important to enhance the vademecum
by including geometrical parameterization, load location parameter, and
boundary conditions parameterization.
Programming languages:
From the programming point of view, the PGD package could be
implemented using high-efficiency languages such as C/C++ and/or
FORTRAN. Moreover, modern simulation applications on smartphones
could be developed to make use of the fast response of the PGD
vademecums.
Error estimation:
Obtaining an error estimator of a quantity of interest to be able to
accurately choose the stopping criterion for the greedy algorithm in the
PGD.
Additive manufacturing:
The need to explore the possibility of printing continuous fibres with the
aim of enhancing the mechanical properties of 3D printed components by
avoiding jumps between partitions.

Karim M. El-Ghamrawy PGD solutions of composite laminates 44 / 46



Introduction Problem Statement Encapsulated PGD Examples PGD and clustering Conclusions References

References

Alaimo, G., Auricchio, F., Marfia, S., and Sacco, E. (2019). Optimization
clustering technique for PieceWise Uniform Transformation Field Analysis
homogenization of viscoplastic composites. Computational Mechanics,
64(6):1495–1516.

Díez, P., Zlotnik, S., García-González, A., and Huerta, A. (2018). Algebraic
PGD for tensor separation and compression: An algorithmic approach.
Comptes Rendus - Mecanique, 346(7):501–514.

Díez, P., Zlotnik, S., García-González, A., and Huerta, A. (2019). Encapsulated
PGD Algebraic Toolbox Operating with High-Dimensional Data. Archives of
Computational Methods in Engineering, 26(5).

Ramm, E., Maute, K., and Schwarz, S. (1998). Conceptual design by structural
optimization. Proceedings of the Euro–C 1998 Conference on Computational
Modelling of Concrete Structures, herausgegeben von R. de Borst, N.
Bicanic, H. Mang & G. Meschke, S, pages 879–896.

Karim M. El-Ghamrawy PGD solutions of composite laminates 45 / 46



Introduction Problem Statement Encapsulated PGD Examples PGD and clustering Conclusions References

Karim M. El-Ghamrawy PGD solutions of composite laminates 46 / 46


	Introduction
	Motivation
	Objectives

	Problem Statement
	Governing equation
	Material Parameterization

	Encapsulated PGD
	PGD at a glance

	Examples
	Example 1: Plate under tensile load
	Example 2: Plate with circular hole under tensile load

	PGD and clustering
	Clustering
	Experimental tests

	Conclusions
	Conclusions

	References

