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Sommario

I materiali compositi stanno guadagnando popolarità come alternativa ai

materiali classici in molte diverse applicazioni. Inoltre, il loro design è sempre

più flessibile grazie al potenziale della manifattura additiva. Pertanto, è

possibile produrre un laminato composito su misura con i valori ottimali di

alcuni parametri di progettazione allo scopo di fornire le prestazioni meccaniche

desiderate. In questo contesto, disporre di un modello numerico parametrico

per la risposta meccanica del laminato composito è essenziale per calcolare i

parametri ottimali. In generale, risolvere un modello meccanico utilizzando

tecniche basate su mesh in 3D è computazionalmente costoso e ad un certo

punto potrebbe diventare irrealizzabile quando il problema è multidimensionale.

Inoltre, se il problema in esame è un’applicazione che richiede più query nei

problemi di ottimizzazione, i problemi inversi o la quantificazione dell’incertezza,

il problema diretto viene risolto numerose volte aumentando drasticamente il

carico computazionale.

Nella presente tesi, i parametri di progetto presi in considerazione sono gli

angoli che descrivono l’orientamento delle fibre di rinforzo nei diversi strati o

nelle diverse zone dei laminati compositi. Presentiamo il criterio di rottura

di Tsai-Wu come funzione obiettivo del problema di ottimizzazione. Nel

presente lavoro, si raccomanda l’uso di una tecnica di “Model Order Reduction”

(MOR) per decrementare il costo computazionale menzionato; ovvero, si ricorre

alla “Proper Generalized Decomposition” (PGD) per ottenere la soluzione

generalizzata della risposta meccanica della struttura. In particolare, otteniamo

un vademecum computazionale 3D che fornisce un indice di rottura del laminato

e un fattore di sicurezza che dipendono esplicitamente dall’orientamento della

fibra. PGD fornisce anche sensitività per un algoritmo di ottimizzazione basato

sul gradiente. La potenzialità e l’efficacia dell’approccio presentato è dimostrata

attraverso alcuni test numerici. Infine, viene presentato un accoppiamento tra

la metodologia proposta e le tecniche di clustering per migliorare le prestazioni

complessive del modello.



Abstract

Composite materials are gaining popularity as an alternative to classical

materials in many different applications. Moreover, their design is even more

flexible due to the potential of additive manufacturing. Thus, one can produce a

tailored composite laminate with the optimal values of some design parameters

providing the desired mechanical performance. In this context, having a

parametric numerical model for the mechanical response of the composite

laminate is essential to compute the optimal parameters. Generally, solving

a mechanical model using mesh-based techniques in 3D is computationally

expensive and at some point it could become infeasible when the problem

is multidimensional. Furthermore, if the problem under consideration is an

application requiring multiple queries such as optimization, inverse problems,

or uncertainty quantification, the direct problem is solved numerous times

increasing drastically the computational burden.

In the present thesis, the design parameters under consideration are the angles

describing the orientation of the reinforcement fibers in different layers or

patches of the composite laminates. We present the Tsai-Wu failure criterion as

the objective function of the optimization problem. The use of a Model Order

Reduction (MOR) technique is advocated to alleviate the mentioned compu-

tational burden. Namely, we resort to the Proper Generalized Decomposition

(PGD) to obtain the generalized solution of the structure mechanical response.

Particularly, we obtain a computational vademecum which provides laminate

failure index and safety factor that depend explicitly on the fiber orientation.

The PGD vademecum provides also sensitivities for a gradient-based optimiza-

tion algorithm. The potentiality and efficiency of the presented approach is

demonstrated through some numerical tests. Finally, a coupling between the

proposed methodology and clustering techniques is presented to enhance the

overall performance of the model.

Keywords: Generalized solutions; Composite laminates; Fibre orientation; Failure; Op-

timization; PGD; Clustering optimization; 3D printing
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IL Linear term of the Tsai-Wu criterion

nQ Number of modes for IQ
nL Number of modes for IL
ξ Greedy algorithm stopping condition

c Cluster index or number

J K-means cost function value

K Total number of clusters

ψ Location of the centroid

D Distance between observation and centroid

Nc Total number of components in data matrix

X Arbitrary data matrix
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σ̃ Stress raw data matrix

λ̃s Safety factor raw data matrix

Emax Maximum sum of squared error

P Clustering partition

ns Total number of clusters in each partition P

Vectors

u Displacement field

σ Stress vector

b Body forces

uD Prescribed displacement field

n Outward normal vector

tN Prescribed traction vector

ε Strain vector

d Nodal global displacement

x Point in 3D space

uh Displacement trial function

f Global force vector

θ Parameter vector

Tensors

C Elasticity tensor

τ Stress tensor

T Transformation tensor

F Fourth order strength tensor

F Second order strength tensor



Chapter 1

INTRODUCTION

The present thesis applies the Proper Generalized Decomposition (PGD) framework in

the parametric analysis of composite laminates. Within the computational mechanics

framework, PGD provides a very efficient tool to solve the multidimensional parametric

problems and obtains generalized solutions, known as computational vademecums. We

are particularly interested in fibrous composite laminates and the goal is to ultimately

optimize the orientation of the fibres to obtain enhanced mechanical properties of the

structure. In the following, we present the motivation behind the current work and a

brief introduction to the main ingredients of the thesis.

The motivation is presented in Section 1.1. A brief background on the main ingredi-

ents of the current thesis is in Section 1.2. We first define in a general way composite

materials, their types, and list their manufacturing techniques; and then we introduce

the types of structural optimization highlighting their main features. We provide a brief

introduction to Model Order Reduction (MOR) techniques. We then follow by a short

introduction on Data Mining (DM) and Additive Manufacturing (AM) highlighting the

different technologies and their applications. In Section 1.3, we present the state of the

art of the work in structural optimization of composites and the application of MOR

techniques. Finally, we show the thesis scope and outline in Section 1.4. The chapter is

organized as shown in Fig. 1.1.

1
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1.1 Motivation

The progress of additive manufacturing allows producing tailored composite laminates,

for instance with different fiber orientations in each layer or patch. Thus, the designer of

the laminate has the freedom of selecting a number of parameters, e.g., angles describing

the fiber orientation in each zone. In order to properly determine the optimal choice

for these parameters, there is a need for modeling the mechanical behavior of a given

composite laminate for any possible value of the parameters. To achieve such model,

the selected parameters are considered as independent variables (extra-coordinates or

extra-dimension) in the problem formulation resulting in a multidimensional problem.

Generally, solving a mechanical model using mesh-based techniques in 3D is computa-

tionally expensive and at some point it could become infeasible when the problem is

multidimensional. In spite of the existence of very well established theories that simplify

the analysis of 3D composite laminate bodies through 2D or even into 1D structural the-

ories, a 3D analysis is often compulsory to capture all the physics through the thickness

and around the boundaries [4]. Furthermore, if the problem under consideration is an

application requiring multiple queries such as optimization, inverse problems, or uncer-

tainty quantification, the direct problem is solved numerous times increasing drastically

the computational burden [5].

In the present work, we investigate the effect of the fibre orientation on the mechani-

cal performance of fibrous composite laminates. Accordingly, an optimization technique

should be applied to efficiently find the best fibre orientation in the laminate. The fi-

bre orientation in a laminate is one of many design parameters affecting the structural

performance. For example, the variation of the stacking sequence, material density or

layer thickness has a direct effect on the mechanical performance of composite lami-

nates. For this reason, it is of paramount importance to consider their optimization

either individually or simultaneously [6, 7] to achieve better designs. There is a vast lit-

erature on methodologies for the optimization of the design of composite laminates; and

for deeper insight the reader is referred to the review paper [8] and the references therein.

Driven by the importance of this area of research, the present thesis focuses on fibrous

composite laminates and aims for quantifying the failure of the material using the Tsai-

Wu failure criterion and ultimately find the best fibre orientations minimizing the failure

index. These aims naturally lead us to an optimization problem that has to be solved a

large number of times, corresponding to different choices of the design parameters. Thus,

the computational complexity of this procedure blows up with the number of design pa-

rameters, resulting in the so-called curse of the dimensionality [9]. The use of a Model
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Order Reduction (MOR) technique is advocated to alleviate the mentioned computa-

tional burden. Particularly, the Proper Generalized Decomposition (PGD) method is se-

lected as a MOR technique because it provides a solution with explicit dependence on the

parameters of the problem making the optimization process straightforward. Moreover,

PGD provides a generalized solution, known as a computational vademecum, resulting in

very fast responses when browsing a particular solution. Motivated by the above, we put

together different ingredients to efficiently approach the optimization of fibre orientation

in composite laminates.

1.2 Background

Composite materials are widely used nowadays in numerous engineering applications

such as: automotive, aerospace, biomedical, structural, to name a few. Composite ma-

terials could be defined as material possessing two or more phases bonded together [10].

The origin of composite materials is debatable between ancient Egypt and Mesopotamia,

however, it is not less than 4000 years old [11]. Without a doubt, humans across different

civilizations have been using composites and benefiting for example from its strength,

light weight, durability, design flexibility, or even corrosion resistance. For example, it

was reported in [12] that ancient Egyptians used to mix mud and straw to obtain re-

inforced bricks with increased strength that were used in different types of constructions.

The development of composites is progressing with the advancement of design and man-

ufacturing technologies. Composite materials nowadays enter in most industries with

different commercial applications such as machine components, thermal components;

mechanical components like brakes or drive shafts; sports components, biomedical de-

vices, to name a few. Composite materials could also be found in nature. A popular

example is the trunk of a tree where the material has different orientation in the cross-

section, another common example is the cross-section of the femur bone (as shown in

Fig. 1.2).

A typical composite consists of reinforcement fibres and a matrix; and according to [13],

composites could be classified based on the type of material used for the matrix. The

main types of composites are Polymer Matrix Composites (PMC) which is the most

popular type, Metal Matrix Composites (MMC), Ceramic Matrix Composites (CMC),

Carbon Matrix Composites (CaMC). Reinforcement fibres could also be continuous, dis-

continuous, particles, braids, among numerous forms [13].
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(a) Cross-section of a tree trunk (b) Cross-section of a femur bone

Figure 1.2: Different composite materials in nature

Many fibre reinforced composites are heterogeneous and anisotropic materials. Anisotropic

material is a material which possesses different mechanical properties in different direc-

tions. Whereas, heterogeneous materials means that their properties vary considerably

from one point to another [13]. The possibility to have different fibre orientations gives

the designer the flexibility to customize the mechanical properties of the composite re-

sulting in more durable, reliable structural components in various applications.

Designers could achieve very complex designs of mechanical components thanks to the

advancement of manufacturing processes. Traditionally, composite materials are fab-

ricated with one of the following techniques and their variations: hand lay-up, spray

lay-up, Resin Transfer Molding (RTM), compression molding, injection molding, vac-

uum bag processing, pultrusion, and filament winding [14]. The most recent fabrication

technology is the Additive Manufacturing (AM), also commercially known as 3D print-

ing. AM is the process of building structural parts additively, by adding material in

a layer-by-layer fashion. The AM technology succeeds to build rapidly very complex

structural components which encourages researchers and designers to perform structural

optimization of the 3D printed components and to find new materials in the pursuit of

more reliable structures with a wide range of applications (example in Fig. 1.3).

Structural optimization is the study of finding the best design of a structure to fulfil a

certain objective [15]. An example of the design objective to be fulfilled could be finding

the minimum possible weight to strength ratio or achieving the maximum stiffness. The

choice of the optimization objective is decided by the designer based on the function and

conceptual design of the structure [15]. Traditionally, once the optimization objective is

chosen, an iterative-intuitive trial and error procedure is followed to find the best design.

Certainly, this is a very expensive and time consuming procedure resulting also in a waste

of materials; and sometimes is very difficult to achieve. Luckily, with the advancement

of numerical modelling and the improvement of the computational power, we are able
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Figure 1.3: An example of a complex geometry possible with 3D printing

nowadays to undergo the optimization process virtually. In order to perform any kind

of mathematical optimization, a precise mathematical problem needs to be formulated

first. Given an arbitrary function f , a design variable x, and a state variable y, we show

a typical optimization problem form:

SO =


minimize f(x, y) w.r.t x and y

subject to


Equilibrium constraint

Design constraints on x

Behavioral constraints on y

(1.1)

The design variable x could represent a geometric feature of the structure, or a material

parameter. A typical classification of a structural optimization problem is based on a

geometric feature, and accordingly we could divide structural optimization into three

classes: size, shape, and topology [15]. The optimization of materials, including fibre

orientations, could be added to the just mentioned categories and therefore we could

consider four layers of structural optimization [1]. For the sake of completeness, we

introduce here the different types of structural optimization highlighting their main fea-

tures.

Size optimization is when the design variable x in problem (1.1) is a type of structural

thickness, i.e., thickness of a layer or cross section area of a membrane. While shape

optimization is when the design variable x represents the shape of a part or of all of the

boundary of the structural domain, i.e. shape of a hole. The topology optimization is
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the most popular type of structural optimization and it consists in finding the best way

to remove material while maintaining the strength of the structure as high as possible.

And finally, the material optimization contribute to the changing of the orientation

of the material in composites. In Fig. 1.4, we can see a schematic representation of

different structural optimization layers. For further insight on structural optimization,

the interested reader should refer to the work in [15, 16] and the references therein.

Figure 1.4: Four levels of structural optimization. Figure adapted from [1]

The change of the material orientation in composites creates new material with differ-

ent mechanical properties and new characteristics. One of the characteristics of new

advanced materials is that they are anisotropic. Thanks to new manufacturing tech-

nologies, such as AM, complex anisotropic materials and customized structures could be

realized. However, the anisotropy of materials poses new challenges for the analysis and

the optimization methods [16]. A common challenge is that the optimization of the orien-

tation of the material is computationally very expensive. The multi-query nature of such

problems consists in solving the forward problem numerous times. Moreover, the search

space becomes multidimensional when we increase the number of design variables, which

makes the optimization problem impractical. One way to alleviate the computational

burden is to resort to Model Order Reduction (MOR) techniques.

Model Order Reduction (MOR) techniques is a family of techniques that developed enor-

mously over the past decade. The main purpose of this family of techniques is to reduce

the computational burden and the data storage needs in many fields of engineering. Tra-

ditional mesh-based numerical methods such as the Finite Element Method (FEM) are

very well established for solving Partial Differential Equations (PDEs). In an optimiza-

tion problem, each iteration involves a new input to the FEM model, which results in a

PDE to be solved many times. The different inputs to the model, that are considered as

parameters, could be geometrical, material orientation, or even boundary conditions [17].

Of course, with every new set of parameters, we end up with a full system of equations

to solve and therefore resulting in a huge increase in the computational cost. For the just

mentioned challenges, one would resort to MOR techniques to reduce the computational
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cost.

Another ingredient in the current thesis is Data Mining (DM). The coupling between

Computational Mechanics (CM) models and DM techniques has recently gained a lot of

popularity [18, 19]. DM is the core of discovering knowledge in large complex databases.

The knowledge discovery process is achieved by employing algorithms to explore the

data and develop models to extract unknown patterns. The term Data Mining has been

coined to explain the process of going through big databases looking for informative

patterns and connections between data. With the exponential increase of data availabil-

ity, DM field is of paramount importance to keep up the processing level of this data [20].

Predictive models are one of the most popular tasks of DM. It involves processing history

data, identifying patterns in the data, and then use an already built model to predict the

future. An example of a predictive model is the weather forecast. Another important

task of DM is the segmentation of data. It consists in collecting items having similar

features into mutually exclusive groups [21]. In the current work we are interested in

segmentation of data through the so-called unsupervised clustering algorithms. Accord-

ing to [21], clustering methods could be divided into three main groups, unsupervised,

semi-supervised, and supervised:

(1) Unsupervised: the aim of unsupervised clustering is to maximize the within

cluster similarity and minimize the intercluster similarity using a metric measure

without any information about the output. The most popular algorithms used in

segmentation are the K-means and the hierarchical clustering.

(2) Semi-supervised: this type of clustering uses additional information to guide the

clustering algorithm and improve the results.

(3) Supervised: in the presence of class labels and with a priori knowledge of the

types of output we want, clustering could be considered supervised.

Inspired by the recent work of Alaimo et al. in [22], we would like to apply such techniques

to be able to improve the methodology proposed in the present thesis.

The final ingredient which motivates the current work is the Additive Manufacturing

(AM) technology. AM refers to a series of technologies that aims at building products

by adding material rather than the traditional subtractive manufacturing processes (e.g.

drilling, milling, etc). The AM technology has been around for more than two decades

now and it is growing rapidly due to its great potential in the industry. AM technolo-

gies, also referred to commercially as 3D printing, contribute to many fields of science

and engineering such as: automotive, medical and healthcare, aerospace and defense,



Chapter 1. Introduction 9

consumer products, to name a few.

AM technologies possess many different advantages against traditional manufacturing

techniques that makes it very attractive to designers. First of all and most importantly,

it could achieve very complex geometries with very high accuracy giving flexibility to

designers which is not always possible with traditional techniques. The ability to pro-

duce complex designs opens the door for new customized materials to be investigated by

researchers. Second, it reduces the waste of material since the process is additive, unlike

the subtractive manufacturing techniques where there is a huge loss of material. It is

a user-friendly technology that could be in everyone’s home; with minimum computer

skills, an untrained person could use 3D printing. Finally, it is fast to produce a part,

and depending on the AM technology used, it requires minor post-processing enabling

on-demand manufacturing.

1.3 State of the art

1.3.1 Optimization of fibre orientation in composite laminates

The interest in obtaining new material is increasing everyday. Coupled with the advance-

ment of AM technologies, the realization of composite laminates with complex material

orientation is possible [23]. It was shown in many studies that the optimization of the

failure of the material [24], stiffness [25], or strain energy [26] affects the overall material

properties. Many recent works have been dedicated to investigate the optimization of

different aspects of composite laminates. The outstanding review paper by Nikbakt et

al. [8] summarizes to a good extent the different kinds of composite structures and the

methods employed for their optimization. We could classify the process of optimizing

the material orientation in composite laminates based on the objective function used or

the optimization algorithm used. Early work by Pedersen has been dedicated to solve

the optimization problem of the orientation of orthotropic material analytically using a

strain based objective function [27]. Pedersen continued his work and devised a FEM

and optimization procedure to solve the aforementioned problem and also to solve the

thickness-orientation optimization problem [26, 28]. The early work inspired Thomsen

to add topology optimization for composite discs using Pedersen’s method [29]. Another

approach was proposed by Luo et al. that is based on energy to determine analyti-

cally the optimal orientation of orthotropic material [25]. The early work paved the way

for more researchers to investigate the optimization of fibre orientations using different
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approaches. More recent work by Huang et al. involving the optimization of fibre ori-

entation using a load bearing approach. Particularly, they used the famous Tsai-Wu

criterion as the objective function [24]. It was followed by the work of Groenwold and

Haftka on the optimization of different failure criteria, which is considered as a main

reference for the current thesis [30]. The work by Bruynmeel consisted in optimizing the

fibre orientation using strength based criteria, such as Tsai-Hill and Tsai-Wu, showing

that a direct parameterization of the problem in the design variables is favorable over the

parameterization using lamination parameters where the space is not completely known

[31]. Bruynmeel extended his work by providing a more complete picture of structural

optimization. He argued that the optimization of the fibres in a non-homogeneous do-

main is very sensitive to the initial guess in gradient based methods and that one could

end up with a local solution. Bruynmeel also reported that the more the number of de-

sign variables increases the more the optimization problem becomes expensive, especially

if the optimization method employed is a non-deterministic method to obtain global so-

lutions [32].

More recent work done by Hwang et al. addressing the optimization of fibre orientation

in each layer using the Genetic Algorithm (GA) and it was reported that the optimiza-

tion algorithm behaves well in such problems [33]. It was shown by Li et al. in a recent

research that a hybrid optimization method consisting in the genetic algorithm and the

particle swarm optimization efficiently finds the optimal solution [34]. Another recent

work combining topology optimization with fibre orientation optimization by minimizing

the compliance. They use gradient-based method which leads to local solutions. More-

over, solving the system and the computation of the sensitivities every iteration could

lead to a computationally expensive problem depending on the size of the system and

the number of design variables [23]. A recent study by Diniz et al. focuses on the de-

sign optimization using the Tsai-Wu failure criterion as the objective function coupled

with Artificial Neural Networks (ANN) [35]. Another work considering fibre orientation

optimization by minimizing the compliance in hyperelastic material is presented in [36].

It was shown that it is a good practice to employ a filter to obtain a good continuity of

the optimal fibres. The work done by Shen et al. is very competitive and it shows the

optimization of fibre orientation using the compliance as an objective function. However,

it is reported that the solution is easily affected by the initial guess since the work em-

ploys a gradient-based method to obtain the optimal fibre orientation. They overcome

this issue by providing the gradient-based method with the principle directions as initial

guess. Moreover, in each iteration they solve the complete system, which could become

computationally challenging if the system is large [37].
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1.3.2 PGD as a MOR technique and its applications

The use of standard techniques to solve an optimization problem is computationally ex-

pensive as it involves solving the full model a large number of times for different values

of the design variables (i.e. model parameters). Thus, one would consider the appli-

cation of MOR techniques to reduce the computational burden of such problems. A

very well established MOR class is the Reduced Basis (RB) method. RB is based on

taking snapshots of the system, which are a collection of full solutions of the system at

different values of a parametric set. The snapshots are then combined together to form

a basis for the problem [38–41]. The building of the basis is a straightforward procedure,

whereas the main challenge remains in the choice of the values of the parametric set

where to take the snapshots and also in choosing the number of snapshots used to build

the basis. The most common strategy to build the reduced basis space is the Proper Or-

thogonal Decomposition (POD). Depending on the field, POD is also known as Principal

Component Analysis (PCA), Singular Value Decomposition (SVD), or Karhunen-Loève

transform [42, 43]. POD aims to generate orthonormal basis that are optimal based on

a Galerkin (or least-square) projection resulting in the elimination of any redundancies

in the formed basis functions representing the system [41]. An error estimator is usually

employed to assess the quality of the basis obtained, the interested reader could refer to

[38, 44, 45] for a deeper insight on the topic.

Another MOR technique, which developed enormously over the last decade, is the Proper

Generalized Decomposition (PGD) [5, 9, 46–51]. Unlike RB and POD, the PGD is a pri-

ori MOR technique, i.e., it does not rely on the approximate solution of the full problem.

PGD is most useful in multi-variable parametric problems such as optimization prob-

lems, inverse identification, and uncertainty quantification, where the forward problem

is solved a large number of times [47]. In a nutshell, the PGD aims at two things in a

multi-variable problem. First, it aims at considering all the design variables in the prob-

lem as extra-coordinate, making the model explicit in the parameters and thus resulting

in an explosion in the computational cost known as curse of dimensionality. Second,

it aims at representing the solution of the parametric PDE in a separated fashion to

alleviate the computational burden. There are two distinct phases when applying PGD,

the first is the offline phase and the second is the online phase. The offline phase takes

important computational resources and results in a generalized solution known as com-

putational vademecum. The computational vademecum acts like a modern virtual chart

having all the possible solutions of the problem for any value of the set of parameters.

This is particularly useful for multi-query problems, as the browsing of the solution for a

value of the parametric set happens in seconds, which occurs in the online phase, open-

ing the door for real-time simulations. Thus, an optimization problem becomes a simple

post-process especially that the sensitivities are explicit in the design parameters.
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PGD is applied in many fields. The work by Bognet et al. addresses plates and shells

geometries providing 3D solutions with 2D computational complexity [4]. The same

problem was addressed by Vidal et al. choosing a piecewise fourth-order Lagrange poly-

nomial instead of a linear piecewise polynomial [52, 53]. The work by Leygue and Verron

took the first steps towards structural optimization [54]. It was followed a few years later

by the work of Ammar et al. applying PGD to shape optimization problems [55]. A very

recent work by Sibileau et al. provides parametric solutions for lattice structures [56].

PGD is also applied in computational rheology [57], in solving Navier-Stokes equation

for water agitation in harbours [58], in solving the Stokes problem [59], power supply

systems [60], real-time monitoring of thermal processes [61], and damage models [62].

Many works were dedicated to solving inverse problems and uncertainty quantification

in different fields such as: parameter identification in geophysics problems [63] and in

heat transfer problems [64], and uncertainty quantification in physics [65]. Finally, the

work by Courard et al. took the first steps in incorporating a PGD vademecum in a non-

intrusive way as a part of an engineering process (e.g. optimization process) [66]. A very

recent work by Dı́ez et al. presented an algorithmic approach to high-dimensional tensor

separation and they extended the PGD approach to obtain a set of tools to operate with

multidimensional data which is applied in the current thesis [50, 51].

1.4 Scope and outline of this thesis

The objective of the current thesis is to present a new computational tool for the nu-

merical analysis of 3D fibrous composite laminates problems with the goal of optimizing

the fibres orientations. This is particularly useful for additive manufacturing applica-

tions. The used in-house algorithm is based on solving a set of algebraic equations where

the unknown is a generalized vector of deformations of the composite laminate. The

generalized solution obtained from the solver, stored in a computational vademecum, is

explicit in the design variables which is very useful for the optimization problem. The

code is then coupled with a post-process algorithm that evaluates the stresses and the

failure index of the structure obtaining a failure vademecum. The failure vademecum

is then inserted in an optimization algorithm to find the best fibre orientation in the

structure. The non-convex nature of the optimization objective motivates the use of the

evolutionary optimization algorithm, the Genetic Algorithm (GA). The present work fo-

cuses only on linear elastic constitutive model as a preliminary analysis step. Moreover,

the system is spatially discretized using the Finite Element Method (FEM). Finally, the

model is also supplemented with a data analysis algorithm that finds the best domain

decomposition strategy for the PGD problem and hence enhancing the methodology.
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For clarity we outline the present thesis below

� Chapter 2: Problem statement.

This chapter introduces the problem statement including the governing equations

for linear elasticity in 3D, a brief introduction for the different failure criteria, and

the optimization problem to be solved to find the best fibre orientation in the

composite laminate.

� Chapter 3: Proper Generalized Decomposition (PGD) framework.

This chapter presents the PGD framework with a brief introduction, then intro-

duces the encapsulated PGD approach [51], and shows how the PGD tools are

adapted to the problem in hand. It also presents the separation process of the

PGD input and the sensitivities computation.

� Chapter 4: Numerical examples.

In this chapter, a series of numerical examples are simulated to demonstrate the

capabilities of the methodology. Results are first compared with FEM and then a

more challenging example is simulated with a higher number of parameters.

� Chapter 5: Domain decomposition using data analysis techniques for efficient

PGD parameterization.

In this chapter, we introduce data analysis techniques with the aim to enhance

the proposed methodology. The idea in this chapter is to obtain a clustering

optimization algorithm that automatically finds the best domain partitioning (i.e.

parameterization) strategy for the PGD solver.

� Chapter 6: Concluding remarks.

Finally, we wrap up with some concluding remarks on the work done in the pre-

sented thesis. Future potential directions of research are also introduced.



Chapter 2

PROBLEM STATEMENT

2.1 Preliminaries

The current chapter presents the problem statement and the methodology applied in this

thesis. Firstly, the governing equations used for the numerical analysis of the problems

along with the constitutive law are shown in Section 2.2. Then the parametrization

of the problem is explained in Section 2.3. The description of various popular failure

criteria is briefly introduced along with a deeper explanation of the Tsai-Wu criterion in

Section 2.4. Finally, Section 2.5 provides a short description of the optimization problem

in hand and the techniques that will be used are briefly explained. The layout of the

chapter is shown in Fig. 2.1.

14
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Figure 2.1: Structure of Chapter 2

2.2 Governing equations and constitutive law

Given a 3D domain Ω ⊂ IR3, the linear elasticity problem consists in solving the follow-

ing Boundary Value Problem (BVP), here presented in its strong form:
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find the displacement u satisfying the equilibrium equation and boundary conditions,
∇T

Sσ + b = 0 in Ω

u = uD on ΓD

nTσ = tN on ΓN

(2.1)

with,
σ = Cε
ε = ∇Su,

(2.2)

where ∇S is a 6 × 3 symmetric gradient matrix operator (described in [67]), σ is the

stress field, b is the body forces vector; uD is the displacement field prescribed on the

Dirichlet boundary, tN is the prescribed the traction applied on the Neumann boundary,

n is the 6× 3 matrix representation of the normal (analogous to ∇S operator); C is the

elasticity tensor, and ε is the strain field. The stresses and strains are expressed in the

engineering Voigt’s notation (vectors of six components); and using the same notation,

the elasticity tensor is expressed as a 6× 6 matrix. Thus, for orthotropic materials, the

constitutive relation in (2.2) reads,

σxx
σyy
σzz
τyz
τxz
τxy


=



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

Sym. C44 0 0

C55 0

C66





εxx
εyy
εzz
γyz
γxz
γxy


. (2.3)

Following the derivations in [67] to obtain the weak form, we first define the admissible

weight function and trial solution. Then we premultiply the equilibrium equation and

the boundary conditions by the weight function and integrate over the domain Ω. This

results in the following weak form after applying the divergence theorem and integrating

by parts, ∫
Ω

(∇Sw)Tσ dΩ =

∫
ΓN

wTtdΓ +

∫
Ω

wTbdΩ, (2.4)

where w is the weight function and it is chosen in a way such that it vanishes on the

Dirichlet boundary. We then substitute the constitutive law in Eq. (2.2) in the weak

form yielding the following,

solve for u ∈ U such as,∫
Ω

(∇Sw)TC∇Su dΩ =

∫
ΓN

wTtdΓ +

∫
Ω

wTbdΩ ∀w ∈ Uo

where, U = {u|u ∈
(
H1(Ω)

)3
, u = uD on ΓD}, U0 = {w|w ∈

(
H1(Ω)

)3
, w = 0 on ΓD}.

(2.5)
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Remark 1: We define the trial solution space as U = {u|u ∈
(
H1(Ω)

)3
, u =

uD on ΓD} and the test function space as U0 = {w|w ∈
(
H1(Ω)

)3
, w =

0 on ΓD}, where H1(Ω) is a Hilbert space containing square-integrable functions

with derivatives that are also square-integrable.

We denote the total number of nodes per element as nne and the total number of nodes

in the domain as nnt whereas the whole domain has a total number of elements nel.

For a 3D domain, there are three degrees of freedom per node and the global nodal

displacement vector reads,

d = [ux1 uy1 uz1 ux2 uy2 uz2 · · · uxnnt uynnt uznnt ]
T.

In the finite dimensional context, the continuous displacement field u at a given point

x = [x y z]T is approximated by the trial function uh and is expressed as follows within

an element domain Ωe with nedof element degrees of freedom,

ueh(x) = Ne(x)de x ∈ Ωe

weh(x)T = weTNe(x)T x ∈ Ωe,
(2.6)

where N e is a 3× nedof elemental shape function matrix having the following form,

Ne =

N e
1 0 0 N e

2 0 0 · · · N e
nne

0 0

0 N e
1 0 0 N e

2 0 · · · 0 N e
nne

0

0 0 N e
1 0 0 N e

2 · · · 0 0 N e
nne

 ,
where ueh is the 3× 1 element trial solution and de is a nedof× 1 element nodal displace-

ments vector. The integral over the whole domain in (2.5) could be computed as a sum

of integrals over element domains Ωe as follows:

nel∑
e=1

{∫
Ωe

(∇Sw
e
h)TC∇Su

e
h dΩ −

∫
Γ e
N

weT
h t dΓ −

∫
Ωe

weT
h b dΩ

}
= 0. (2.7)

It is convenient now to follow the same procedure and express the strain field in terms

of the shape functions,

εeh(x) = ∇Su
e
h(x) = ∇SN

e(x)de = Be(x)de x ∈ Ωe, (2.8)

where Be is the 6× nedof strain-displacement matrix containing the symmetric gradient

of the shape functions and has the following structure
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Be ≡∇SN
e =



∂N e
1

∂x
0 0

∂N e
2

∂x
0 0 · · ·

∂N e
nne

∂x
0 0

0
∂N e

1

∂y
0 0

∂N e
2

∂y
0 · · · 0

∂N e
nne

∂y
0

0 0
∂N e

1

∂z
0 0

∂N e
2

∂z
· · · 0 0

∂N e
nne

∂z

0
∂N e

1

∂z

∂N e
1

∂y
0

∂N e
2

∂z

∂N e
2

∂y
· · · 0

∂N e
nne

∂z

∂N e
nne

∂y

∂N e
1

∂z
0

∂N e
1

∂x

∂N e
2

∂z
0

∂N e
2

∂x
· · ·

∂N e
nne

∂z
0

∂N e
nne

∂x

∂N e
1

∂y

∂N e
1

∂x
0

∂N e
2

∂y

∂N e
2

∂x
0 · · ·

∂N e
nne

∂y

∂N e
nne

∂x
0



,

and εeh is the 6 × 1 elemental strain field at point x. Similarly, the derivatives of the

test function in Eq. (2.7) could be written in terms of the strain-displacement matrix as

follows,

(∇Sw
e
h)T = (∇SN

ewe)T = (Bewe)T = weTBeT. (2.9)

Substituting Eq. (2.6), Eq. (2.8) and Eq. (2.9) in Eq. (2.7) yields,

nel∑
e=1

{∫
Ωe

(weTBeTCBede dΩ −
∫
Γ e
N

weTN eTt dΓ −
∫
Ωe

weTN eTb dΩ

}
= 0. (2.10)

Recalling that de = Led and weT = wTLeT where d is the global displacements vector,

w is the global nodal vector of weight functions and Le is a nedof×nd gather matrix that

extracts the element displacements vector from d. Note that the matrix Le is a matrix

that consists of only ones and zeros. Accordingly the weak form is then rearranged and

results in the following,

wT

{
nel∑
e=1

[∫
Ωe

LeTBeTCBeLed dΩ −
∫
Γ e
N

LeTN eTt dΓ −
∫
Ωe

LeTN eTb dΩ

]}
= 0,

(2.11)

where,

Ke =

∫
Ωe

BeTCBe dΩ (2.12)

fe =

∫
Ωe

N eTb dΩ +

∫
ΓN

⋂
Ω̄e

N eTt dΓ. (2.13)
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Substituting Eq. (2.12) and Eq. (2.13) in Eq. (2.11), the final weak form has the following

form,

wT

{
nel∑
e=1

[
LeTKeLed−LeTfe

]
︸ ︷︷ ︸

residual vector

}
= 0.

(2.14)

Since w has to be arbitrary, then the residual vector has to be equal to zero to satisfy

Eq. (2.14). Therefore, the global system of equations reads

Kd = f , (2.15)

where,

K :=
nel∑
e=1

LeTKeLe and f :=
nel∑
e=1

LeTf e. (2.16)

2.3 Material parametrization

Material types differ according to the symmetries they possess. The material in its

most generic form is called anisotropic. Anisotropic material possesses different physical

properties in all directions, as opposed to the isotropic material that possesses the same

properties in all directions. For a linear elastic anisotropic material, the stress tensor

and the strain tensor are linearly related through the elasticity tensor. The elasticity

tensor C is a fourth order tensor such that in the most generic form has 81 independent

components. Given the symmetry of the stress and strain tensors, that is called the minor

symmetry, a certain symmetry also holds for the elasticity tensor and, hence, its number

of independent components reduces from 81 to 36. There exists also a symmetry of the

elasticity tensor called the major symmetry which reduces the number of independent

components from 36 to 21. Certainly the fourth order tensor could be represented by a

6× 6 matrix C, while the stress and strain tensors could be represented as 6× 1 vectors

using the engineering Voigt’s notation [68]. Other types of material symmetries reduce

further the number of independent components in the elasticity tensor. A material having

independent properties in three mutually orthogonal directions is called an orthotropic

material. It is a subset of anisotropic material and its symmetry results in the reduction of

the number of independent components in the elasticity tensor from 21 to 9 components.

Fig. 2.2 shows a piece of wood that is a great example of orthotropic material in the

nature, where the three mutually orthogonal directions at a point are the longitudinal

direction along the fibres, the radial direction perpendicular to the ring-like structure in

wood, and finally the tangential direction tangent to the ring-like structure [2].
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Figure 2.2: Independent directions in orthotropic material. Figure from [2] with permis-
sion.

Another material symmetry is when the material has its physical properties symmetric

about one direction that is perpendicular to a plane of isotropy as shown in Fig. 2.3.

This material is called transversely isotropic material and the number of independent

components in its elasticity tensor is five. Finally the isotropic material, such as glass,

has the same properties in all directions and the elasticity tensor has two independent

components.

Figure 2.3: Transversely isotropic material with yz-plane as the plane of isotropy

It is assumed in the following that fibres always lie in planes parallel to the 1− 2 plane

in a {O, 1, 2, 3} material coordinate system (as shown in Fig. 2.4), where direction 1 is

always the fibres’ longitudinal direction. The existence of the fibres is modelled using a

transversely isotropic material assumption. The reference coordinate system (or global

axes) is denoted by {O, x, y, z} and axis z coincides with axis 3, consequently, plane

{O, x, y} coincides with plane {O, 1, 2}, as shown in Fig. 2.4. The angle θ is the orien-

tation of the family of fibres belonging to the material coordinate system with respect

to the global coordinate system. Note that, the domain could be divided into many

subdomains (layers or patches), hence, θ could take a specific value for each specific

subdomain with respect to the global coordinate system.
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Figure 2.4: Global coordinate system {O,x,y,z} and material coordinate system {O,1,2,3}

The elasticity tensor C in (2.2) when expressed in the material axes {O, 1, 2, 3} in terms

of the Young’s moduli, shear moduli, and Poisson’s ratios, is denoted as C0. Since our

problem is defined with respect to the global axes {O, x, y, z} and we aim to have dif-

ferent fiber orientations in different parts of the domain, C0 has to be also expressed in

the global reference. Thus, the question is how to represent C(θ) as a function of C0 and θ.

The transformation of C0 to C(θ) is a result of the transformation of stresses and strains

from material to global axes. These transformations are well established in the literature

[69, 70] and make use of a transformation matrix T (θ). The matrix T is applied to

stresses and strains as follows

σ123 =T (θ)σxyz

ε123 =T−T(θ)εxyz,
(2.17)

where the subscript ”123” refers to the material axes and ”xyz” refers to the global axes.

We could then define the matrix T as

T (θ) =



cos2(θ) sin2(θ) 0 0 0 2 cos(θ) sin(θ)

sin2(θ) cos2(θ) 0 0 0 −2 cos(θ) sin(θ)

0 0 1 0 0 0

0 0 0 cos(θ) − sin(θ) 0

0 0 0 sin(θ) cos(θ) 0

− cos(θ) sin(θ) cos(θ) sin(θ) 0 0 0 cos2(θ)− sin2(θ)


.

(2.18)
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The inverse transpose of T (θ) is explicitly given by the following expression

T−T(θ) =



cos2(θ) sin2(θ) 0 0 0 cos(θ) sin(θ)

sin2(θ) cos2(θ) 0 0 0 − cos(θ) sin(θ)

0 0 1 0 0 0

0 0 0 cos(θ) sin(θ) 0

0 0 0 − sin(θ) cos(θ) 0

−2 cos(θ) sin(θ) 2 cos(θ) sin(θ) 0 0 0 cos2(θ)− sin2(θ)


.

(2.19)

Given the following relation,

σ123 =C0ε123. (2.20)

The elasticity tensor C(θ) could be derived by substituting the stress and strain tensors

in (2.20) by the ones in (2.17) which results in the following,

T (θ)σxyz =C0T
−T(θ)εxyz. (2.21)

Multiplying both sides by T−1(θ) yields,

σxyz =T−1(θ)C0T
−T(θ)εxyz. (2.22)

Thus, the relation between the elasticity tensor in the global axes and in the one in the

material axes reads,

C(θ) = T−1(θ)C0T
−T(θ). (2.23)

In the present thesis, we divide the domain into several different subdomains (layers or

patches) and, as parameters to be optimized, we consider the fibre orientation angle in

each single subdomain (layer or patch). Thus, the number of layers (or patches) np is

the number of parameters characterizing the domain and is denoted by θi, such that

i = 1, . . . , np. Each parameter θi ranges in a real interval Ii ⊂ IR and describes the fiber

orientation in a subdomain Ωi ⊂ Ω (note that the notation for the finite elements is Ωe,

e = 1, . . . , nel, and typically many elements Ωe are inside a subdomain Ωi).

The np parameters are gathered in vector θ = [θ1, θ2, ..., θnp ]
T. Note that θ ranges in the

multidimensional parametric domain Iθ = I1 × I2 × ...× Inp ⊂ IRnp .

Recalling (2.12), for every element e such that Ωe ⊂ Ωi, the element stiffness matrix

reads,

Ke(θi) =

∫
Ωe

BeTC(θi)B
edΩ. (2.24)



Chapter 2. Problem statement 23

The parametric linear system of equations is derived using the parametric expression of

the element stiffness matrix (2.24) in the assembly described in (2.16) resulting in

K(θ)d(θ) = f . (2.25)

It is worth noting that in this particular problem statement the force term f does not

depend on the parameters.

2.4 Failure criteria

The design analysis of a composite laminate is performed by comparing the stresses due

to the applied loads with an allowable strength of the material [70, 71]. To achieve such

comparison, many failure criteria were proposed for different types of materials. It is

also possible to quantify failure on the microscopic or the macroscopic level depending

on the application. In the present work, we choose to take the phenomenological ap-

proach and quantify failure in a macroscopic way. In other words, our goal here is to

have a measure of how good or bad is a design of a composite laminate based on the

variation of fibre orientations rather than actually analyzing the mechanisms of failure.

In a macroscopic approach, the strength of the composite laminate varies with the fibre

orientation. The strength of a composite laminate along an arbitrary direction is related

to the material’s strength characteristics in a well defined material axes. In our case,

where we assume the material is transversely isotropic, the material is characterized with

five basic strength characteristics. Those characteristics are the longitudinal tensile and

compressive strengths σLty and σLcy respectively, the transverse tensile and compressive

strengths σTty and σTcy respectively, and the in-plane shear strength τLTy . There are addi-

tional characteristics that arise when analyzing a composite laminate having less material

symmetries.

Failure criteria could be classified based on the material type. For example, the Von

Mises criterion is widely used for homogeneous isotropic material, such as steel and alu-

minium alloys, to detect yielding [71]. Those isotropic criteria are very well established

and many works were dedicated to adapt those isotropic criteria to anisotropic ones [70].

Since a fibre reinforced composite laminate is not isotropic, many failure theories were

proposed such as the maximum stress, maximum strain, the Tsai-Hill criterion, and the

Tsai-Wu criterion. The differences among them have been discussed intensively in the

literature and for deeper insight about different criteria, the reader is referred to the fol-

lowing literature [69–72]. In the following subsections we introduce some of those criteria
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briefly and then present the Tsai-Wu criterion, that is used in our methodology, in detail.

2.4.1 Maximum stress, maximum strain, and Tsai-Hill criteria

The maximum stress criterion states that the material is considered at failure if any of

the stress components in its principle directions exceeds the corresponding strength in

the same direction [70]. Thus, for a transversely isotropic material to be safe, all the

following inequalities have to hold,

−σLcy <σ1 < σLty

−σTcy <σ2, σ3 < σTty

−τLTy <σ5, σ6 < τLTy

−τTVy <σ4 < τTVy ,

(2.26)

where τTVy is the out-of-plane (2-3 plane) yielding shear strength and the superscript

letter ”V” stands for the vertical direction. The stress state in the principle directions

(σ123) relates to the applied stresses through Eq. (2.17) and, thus, the safe value of the

applied stresses is affected by the change of the orientation of the material.

Similarly, according to the maximum strain criterion, the material is considered at failure

if any of the strains in the principle directions exceeds its corresponding ultimate strain

in the same direction [70]. Thus for a transversely isotropic material, the material is

considered safe if and only if the following inequalities hold,

−εLcy <ε1 < εLty

−εTcy <ε2, ε3 < εTty

−εLTy <ε5, ε6 < εLTy

−εTVy <ε4 < εTVy ,

(2.27)

where εLty , ε
Lc
y , ε

Tt
y , ε

Tc
y , ε

LT
y , εTVy are the ultimate longitudinal tensile, longitudinal com-

pressive, transverse tensile, transverse compressive, in-plane shear, out-of-plane shear

strains respectively. The strains are obtained first by transforming the stresses as shown

in equation Eq. (2.17). Then finding the corresponding strains by applying the inverse of

the elasticity matrix (compliance matrix) to the stresses. This theory accounts for some

interaction between stresses due to the Poisson’s ratio effect.

Following the work by Hill extending the Von Mises criterion for anisotropic ductile

metal, Azzi and Tsai adapted Hill’s criterion to orthotropic composite materials. In the

case of a 3D stress state, the Azzi-Tsai-Hill criterion states that the material is considered
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safe if the following inequality holds,

σ2
1 − σ1σ2 − σ1σ3

f2
1

+
σ2

2 + σ2
3 − σ2σ3

f2
2

+
τ 2

4

f2
4

+
τ 2

5 + τ 2
6

f2
6

< 1, (2.28)

where the strength parameter f is particularized to the material basic strength charac-

teristics introduced in Section 2.4.2 depending on the stress state. Thus,

f1 =

{
σLty when σ1 > 0

σLcy when σ1 < 0
(2.29a)

f2 =

{
σTty when σ2 > 0

σTcy when σ2 < 0
(2.29b)

f4 = |τTVy | (2.29c)

f6 = |τLTy |, (2.29d)

where for transversely isotropic materials, f2
∼= f3 and f5

∼= f6.

The criterion showed superiority over the maximum stress and maximum strain theories

as it is expressed with a single criterion instead of many sub-criteria; and it also has a

good fit with the experimental data. One of the main disadvantages is that it cannot

differentiate between tensile or compressive stresses given its quadratic nature as shown in

equation Eq. (2.28). This means that the stress state has to be specified and accordingly

the proper strengths terms are chosen as in Eq. (2.29).

Finally we resort to the Tsai-Wu criterion, that is widely used nowadays, for three main

reasons. The first reason is because it matches best the experimental data out of all the

presented criteria in the current section, and the second reason is that the criterion takes

into account tensile and compressive stress and multi-axial stress states accounting for

stress interaction, and finally it is expressed using one single scalar function that is easy

to implement [70, 71, 73].

2.4.2 Tsai-Wu criterion

Tsai-Wu criterion is a general anisotropic theory that is an extension of the Azzi-Tsai-

Hill criterion. The criterion is intended to be a descriptive tool for us to have a general

notion of the load-bearing capacity of structures for design purposes. The failure criterion

proposed by Tsai and Wu [73] is based on the scalar failure index If defined as function

of the stress σ as follows:

If
(
σ
)

= σTFσ + σTF . (2.30)
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In particular, the criterion states that the material at point x is not at failure if and

only if If(σ) ≤ 1. The dependency of the failure index on the position x is through the

stress state σ(x). The strength tensors F and F are fourth and second order tensors

respectively (expressed as a matrix and a vector, when using the engineering Voigt’s

notation).

There are several features of this criterion that make it a suitable choice over other

criteria [73]:

(1) The criterion is a scalar equation. It accounts for interactions among all stresses,

unlike the maximum stress and strain theories where interactions are not admissi-

ble.

(2) Since the strength components are represented using second and fourth order ten-

sors, their transformations are well established and very similar to the one used

for the elasticity tensor. Moreover the tensors are analogous to the elasticity ten-

sor in terms of symmetry properties and number of non zero and independent

components.

(3) The anisotropy and multidimensional spaces don’t cause any difficulty.

(4) There is flexibility in the representation of the failure criterion in terms of trans-

formations. It could be represented either in material axes or in global axes.

(5) The criterion is automatically invariant which makes it valid for all coordinate

systems.

(6) A stability condition is incorporated to ensure that the failure envelope is not open

ended.

FmmFnn − F 2
mn ≥ 1, (2.31)

where the indices m and n are not summation indices and they run from 1 to 6 to

represent different components of the fourth order strength tensor.

The full strength tensors have the following form for an anisotropic material,

F =



F11 F12 F13 F14 F15 F16

F22 F23 F24 F25 F26

F33 F34 F35 F36

Sym. F44 F45 F46

F55 F56

F66


(2.32)
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F =



F1

F2

F3

F4

F5

F6


. (2.33)

The strength tensors are treated like the elasticity tensor in terms of the reduction of the

number of independent components due to the stress, strain, and material symmetries.

The number of independent components for anisotropic material is 21 and 6 for F
and F respectively. For a transversely isotropic material, the number of independent

components reduces to 5 and 3 for F and F respectively. Thus, the forms of F and F

in the material axes, denoted by F0 and F0, are

F0 =



F11 F12 F12 0 0 0

F22 F23 0 0 0

F22 0 0 0

Sym. 2(F22 − F23) 0 0
1

(τTVy )2
0

1

(τTVy )2


(2.34)

F0 =



F1

F2

F2

0

0

0


. (2.35)

Remark 2.1. Tensors F0 and F0 are material characteristics that have to be determined

in the laboratory. This is achieved by applying uni-axial and bi-axial stresses in tension

and compression and measuring the failure strengths [73].

F11 =
1

σLty σ
Lc
y

, F1 =
1

σLty
− 1

σLcy
, (2.36)

F22 =
1

σTty σ
Tc
y

, F2 =
1

σTty
− 1

σTcy
, (2.37)

F12 = −1

2

√
F11F22, F23 = −1

2

√
F22F33, (2.38)

where, σLty , σLcy , σTty , σTcy and τTVy are the longitudinal tensile, longitudinal compressive,

transverse tensile, transverse compressive and shear yielding strength of the material

respectively, and the subscript ”y” stands for yield state of the strength.
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In order to apply the Tsai-Wu criterion, the stress states and the strength tensors have

to be evaluated in the same coordinate system. Therefore, it is necessary to either rep-

resent the stresses in the material axes (principle directions) or transform and represent

the strength tensors in the global axes [73]. Conceptually both ways give the same

results represented in different axes and one could choose one way over the other for

computational simplicity later on in the PGD framework.

Equation (2.30) is expanded as follows when the computed stresses are transformed to

the material axes for transversely isotropic material with 2-3 as the plane of isotropy;

If =F1σ1 + F2(σ2 + σ3) + ...

F11σ
2
1 + 2F12(σ1σ2 + σ1σ3) + 2F23(σ2σ3 − σ2

4) + ...

F22(σ2
2 + σ2

3 + 2σ2
4) + F66(σ2

5 + σ2
6).

(2.39)

The other way is when the computed stresses are left unchanged and the strength tensors

are transformed. We denote the components of the transformed strength tensors F and

F with a prime ”′”, and the vector of computed stresses reads σ = [σxx σyy σzz σyz σxz σxy]
T.

In that case, Eq. (2.30) is expanded as follows for transversely isotropic material with

plane 2-3 as plane of isotropy [73],

If =F ′1σxx + F ′2σyy + F ′3σzz + F ′6σxy + F ′11σ
2
xx + F ′22σ

2
yy + F ′33σ

2
zz + ...

F ′44σ
2
yz + F ′55σ

2
xz + F ′66σ

2
xy + 2F ′12σxxσyy + 2F ′23σyyσzz + ...

2F ′31σzzσxx + 2F ′16σxxσxy + 2F ′26σyyσxy + 2F ′36σzzσxy + ...

2F ′45σyzσxz.

(2.40)

The Tsai-Wu criterion in (2.30) is non-homogeneous, meaning that it has a quadratic

term and a linear term, where the latter takes into account the internal stresses that

differentiate between tensile and compressive stress states [73]. It was demonstrated in

[30] that the Tsai-Wu criterion could be load dependent. This means that for applied

loads under a certain threshold, the criterion in (2.30) is dominated by the linear term,

and thus, leading to inaccurate counter-intuitive optimization results. To alleviate this

problem, the failure criterion may be alternatively expressed in terms of a scalar load

multiplier λ. The load multiplier (or safety factor) λ produces a stress state σ = λσ,

such that, the applied stress scales by a factor λ to match the yielding state of the

material at the onset of failure [30]. Consequently, the goal now is to find the best fibre

orientation that maximizes the safety factor λ, and therefore, design the laminate based

on the maximum load-bearing capacity of the structure just before failure. Thus, the

corresponding failure index reads,

If
(
σ
)

= If
(
λσ
)

= λ2σTFσ + λσTF . (2.41)
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At each point x, the critical value of λ corresponds to the onset of failure If
(
σ
)

= 1. This

results in a polynomial equation of the second degree for λ where its explicit solution is

available. Assuming that F is symmetric positive definite, σTFσ ≥ 0, there is a unique

positive root of the equation If
(
σ
)

= 1. The smallest positive root is the safety factor,

denoted by λs and reads,

λs =
1

2σTFσ

(√
(σTF )2 + 4σTFσ − σTF

)
. (2.42)

Note that the safety factor depends on the choice of the parameters θ and the point x

where the stress is evaluated; and thus the notation λs(x,θ) is adopted in the following.

To emphasize the dependence of the failure criterion in (2.30) on the fibre orientation (our

parameters), we explicitly express the strength tensors in (2.34) and (2.35) with respect

to the global axes. Thus, in an arbitrary point x ∈ Ωi where the fiber orientation angle

is θi, or in any element Ωe ⊂ Ωi, the expressions of F and F with respect to the global

axes are obtained using the transformation matrices, introduced in (2.18) and (2.19),

namely
F(θi) = T T(θi)F0T (θi)

F (θi) = T T(θi)F0.
(2.43)

It is worth noting that the dependence of If(σ) on θ does not only come from σ(x,θ)

but also from F(θi) and F (θi) where they depend only on the local θi because they are

material properties. Marking explicitly the parametric dependence, for x ∈ Ωi, equation

(2.30) is rewritten as:

If
(
σ(x,θ)

)
= σ(x,θ)TF(θi)σ(x,θ) + σ(x,θ)TF (θi). (2.44)

Equation (2.44) and the smallest positive root of Equation (2.42) are the objective func-

tions of our optimization problem. In the following section we introduce the optimization

problem. We also briefly introduce different types of algorithms that could be used to

solve the problem.

2.5 Optimization problem

Optimization is the process of finding the best design variables that minimizes or max-

imizes a particular design objective of a given problem. Following [30], two alternative

optimization problems are considered to find the optimal values of the parameters θ.
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The first choice is to find θ that minimizes the maximum value of If
(
σ(x, θ)

)
evaluated

at all points x in Ω. Thus, the optimization problem reads,

θOptf = argmin
θ

max
x
If
(
σ(x, θ)

)
, (2.45)

where superscript “Opt” is used to indicate the optimal choice and subscript “f” is a

label to indicate that the objective function is based on the failure index. Alternatively,

the second choice is to find θ that maximizes the minimum value of λs(x,θ) evaluated

at all points x in Ω. The corresponding optimal choice (labeled by subscript “s” for

safety) is

θOpts = argmax
θ

min
x

λs(x,θ). (2.46)

The objective functions in Equations 2.42 and 2.44 are not necessarily smooth and they

are non convex-concave which might lead to being stuck in local minima/maxima [30].

In Fig. 2.5b is shown an example of a minimum safety factor function to be maximized.

It is demonstrated that the function has many local minima and local maxima.

(a) Convex sphere function (b) Non-convex function

Figure 2.5: Convex and non-convex functions example

Accordingly, the choice of the optimization algorithm is of paramount importance to

avoid false optimal solutions. The optimization algorithm is an iterative procedure ap-

plied to the problem with the aim of reaching a satisfactory solution. The classification of

such algorithms is discussed extensively in the literature [74]. Generally the optimization

algorithms are classified into deterministic and stochastic algorithms. The deterministic

algorithms follow well defined paths to find the optimal solution of a certain problem.

In other words, if we provide the algorithm with the same starting point, it will take

the same search path and reach the same optimal solution. One of the most famous and

widely used examples of such algorithms is gradient-based methods. On the other hand,
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the stochastic algorithms follow random different paths, each time the code is running,

in an attempt to find the optimal solution. The Genetic Algorithm (GA) is a good

example. There are further subdivisions of the deterministic and stochastic algorithms

that could be found in detail in [74] and the references therein. In the current thesis we

use both an evolutionary method alone and we use a hybrid of a gradient-based method

and an evolutionary method to optimize the fibre orientations. In the hybrid approach,

we aim to run first the evolutionary method without a large accuracy benefiting from

its global search character, then use the gradient-based algorithm to seek the solution

locally in a fast manner.

Gradient-based methods use gradient information to decide the direction of the search for

the minimum or maximum of a function. The use of such methods in convex problems (as

in Fig. 2.5a) is very appropriate and the convergence to the optimal solution is very fast.

However, in non-convex problems as shown in Fig. 2.5b, the gradient-based algorithm

tends to be stuck in a local minimum (or maximum) if the initial guess is far from the

global optimal solution. Moreover, the evaluation of the gradients (and sometimes the

Hessian) is required in some methods which could be a difficult task if they depend on

the design variables implicitly. Fortunately in our case, the PGD framework provides

solutions depending explicitly on the design variables and, consequently, it is very easy

to compute the gradient and the Hessian.

On the other hand, the global method we use is an evolutionary method, namely the

Genetic Algorithm (GA). GA is an algorithm that tries to mimic the natural evolution

in biology that is based on Darwin’s theory of natural selection and the survival of the

fittest. GA has two main advantages: it deals with a variety of complex optimization

problems yielding a global solution and parallelism [74]. The main steps in a GA are as

follows:

• The selection criterion or the fitness function definition;

• Initializing a population;

• Evaluating the fitness of the whole population;

• Create new offspring by performing crossover, mutation, and selection of the fittest.

• Advance the algorithm in the same manner until a stopping condition is met;

• Finally, decode the results to analyse the solution.

The fitness function quantifies how good are the elements of the population to be a

candidate optimal solution. Initially the elements of the population (possible solutions)

are encoded in binary arrays and are randomly selected. Next, the fitness function is

evaluated for all candidate solutions (our initial population). The iteration where we

evaluate the fitness function is called a generation. The process is repeated until we

reach a predefined threshold, normally the maximum number of generations.
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Algorithm 2.1: Pseudo-code of the genetic algorithm

Input : Number of generations, population size, crossover probability, mutation
probability

Output: Optimal global solution

(1) Choose the objective function f(x) for the problem

(2) Encode the solution into binary arrays

(3) Define a fitness function F such that F ∝ f(x)

(4) Initialize a population of possible solutions randomly

(5) Ng ← 0

while Ng < Number of generations do

(5.1) Generate new solution by the crossover and mutation operators:

if pc >rand then

• Apply crossover

end
if pm >rand then

• Apply mutation

end

(5.2) Select the best solution in terms of fitness

(5.3) Ng ← Ng + 1

(6) Decode and analyse the results

In the following chapter we present the PGD framework in detail that is used to solve

the problem presented in the current chapter.



Chapter 3

PROPER GENERALIZED

DECOMPOSITION (PGD)

FRAMEWORK

3.1 Preliminaries

This section briefly describes the Proper Generalized Decomposition (PGD) as a tool to

obtain a parametric solution of the problem described in Section 2.3 that depends ex-

plicitly on the fibre orientation. This explicit parametric solution, also denoted as com-

putational vademecum, allows expressing in a compact form the solutions corresponding

to all possible values of parameters θ. In a nutshell, the main concepts behind the PGD

approach are summarized in three steps as follows [9, 49]:

• First, the parameters are taken as extra coordinates, stating the problem in a

multidimensional framework; this means finding an approximation to d(θ) in IRnd×
Iθ, i.e. the solution of (2.25). Consequently, the multidimensional character of the

problem drastically increases its computational complexity (the number of degrees

of freedom is the product of the number of degrees of freedom in each parametric

dimension). This cannot be solved with a standard discretization method in the

multidimensional domain.

• Second, in order to reduce the computational complexity, the solution is sought in

a separable format. This means that the solution is written as a sum of products

33
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of sectional functions each depending only on one of the parameters; each term

is referred to as a rank-one term. Thus, the actual number of degrees of free-

dom reduces to the sum of the number of degrees of freedom in each parametric

dimension.

• Third, the algorithm to solve this problem is based on a greedy strategy (computing

one rank-one term at a time) and an alternating directions method to solve the

nonlinear rank-one problems.

The computational vademecum is typically computed in an offline phase that may take

important computational resources. The interesting aspect of the PGD is that once

the explicit parametric solution is available, exploring the parametric space (e.g. for

an optimization problem) is a simple postprocess, which is extremely fast, and it can

be conducted online in real time. In the following we show the encapsulated concept,

presented in [50, 51], where a set of algebraic tools operate with multidimensional tensors

in a separable format. Subsequently, we present the process of separation of input for

the encapsulated PGD, and finally we introduce the post-process steps to compute the

failure index and ultimately solve the optimization problem. The chapter is organized

as shown is Fig. 3.1.
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Chapter 3

3.1
Preliminaries

3.2
PGD brief

introduction

3.3
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formulation at
a glance

3.4
Encapsulated
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Figure 3.1: Structure of Chapter 3
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3.2 PGD brief introduction

The PGD is a member of the Model Order Reduction (MOR) family. In the present

work, PGD is used to obtain a computational vademecum accounting for parameters

representing the fibre orientations in a composite laminate as defined in Section 2.3. In

order to do so, we need to consider our parameters as new independent variables (extra-

coordinates) in the problem. In a space of dimension Nd, we could concretely say that

the solution for a general field u(ϑ1, ϑ2, ..., ϑNd) is sought in a multidimensional space

D = S1 × S2 × ... × SNd ⊂ IRNd where each coordinate ϑi ∈ Si with i = 1, . . . , Nd. The

coordinate ϑi could be a spatial, time, or material coordinate. In this way we could

solve the problem only once in the so-called offline phase and then perform extremely

fast computations to obtain the solution for a given value of the set of parameters in

the so-called online phase. This is particularly useful in a many-query problem, like

optimization or inverse problems, where the direct model has to be evaluated several

times for different values of the set of parameters. However, the computational complex-

ity explodes with the increase of independent variables which is referred to as curse of

dimensionality [49].

Solving this multidimensional problem using a standard mesh based discretization tech-

nique would lead to an exponential increase in the computational complexity. In other

words, solving a model with Nd dimensions, where each space coordinate is discretized

using M nodes, the resulting total number of degrees of freedom is MNd . For exam-

ple, with M = 1000 and Nd = 30, the resulting numerical complexity is 1090 which is

an astronomical number [49]. One way to circumvent the cruse of dimensionality is to

represent the solution in a separable manner. Separated representations is a very well

established technique inspired from Fourier and introduced by Ladeveze in numerous

works [49]. Thus the PGD framework approximates the field u in a separated form as

follows,

u(ϑ1, ϑ2, ..., ϑNd) ≈
n∑

m=1

Vm1 (ϑ1) · Vm2 (ϑ2) · ... · VmNd (ϑNd) =
n∑

m=1

Nd∏
j=1

Vmj (ϑj). (3.1)

The PGD approximation is, therefore, a sum of n functional products of Nd functions

(Vmj (ϑj)) that are unknown a priori [49]. As a result of this approximation, the total

number of degrees of freedom decreases fromMNd to n·M·Nd, that is, a linear increase of

the computational complexity with the increase of number of independent variables in the

problem rather than an exponential increase. The PGD approximation is constructed by

successive enrichments using a greedy strategy and each functional product is determined
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sequentially. This means that we compute the term m = 1, then m = 2, and so on until

we reach a certain predefined threshold. Note that, the number of enrichment terms n

is not known a priori. In theory, to obtain an exact solution, the number of enrichment

terms should be infinite. However this is impractical and one chooses a certain level

of accuracy where the enrichment of the solution stops and a finite number of terms is

accepted. Let’s assume we are computing the functions at step ñ. The solution is already

computed in the previous steps, that is m < ñ and is enriched by computing and adding

the current step. Each function of the current step is computed sequentially. This leads

to a series of low-dimensional non-linear problems to be solved, at each step m, using

an alternated direction fixed point strategy [49], hence reducing the order of the model.

The non-linear nature of each problem at each enrichment step arises from the fact that

we need to solve for the functions Vmj (ϑj) that are multiplying each other.

One of the main advantages of PGD is that it provides a generalized solution which

allows us to reconstruct the solution extremely fast by particularizing it to the desired

set of parameters. Another advantage is that the dependence on the parameters is explicit

which facilitates the computation of the sensitivities for the optimization problem. There

are also numerous applications where PGD fits very well such as in geophysics [75],

materials [56], bio-mechanics [76], and virtual surgeries [49] and many more. In the

following section we show briefly how the PGD is adapted to 3D linear elasticity where

we do not separate the space and only separate the parameters.

3.3 PGD formulation at a glance

Following the work of [49, 63, 76], in the current section the PGD formulation is briefly

explained for the problem presented in Chapter 2. Therefore, the unknown we are solv-

ing for, in 3D, is the displacement field u presented in problem (2.1). In our problem,

the aim is to obtain a generalized solution parameterized with the fibre orientations,

as coordinates, instead of solving the model for discrete values of the orientations. This

means we introduce the fibre orientations as independent variables along with the spatial

coordinates into the problem formulation. In this case, the displacement field is general-

ized from u(x) to u(x,θ), where θ = [θ1, θ2, . . . , θnp ]
T ∈ Iθ denotes a vector holding np

parameters. Since we are interested in a parametric PGD in the fibre orientations, there

is no need to separate our spatial space. Thus, the output we are aiming for is a gen-

eralized solution that is explicit in the parameters, corresponding to different layers (or

patches), and it is reconstructed very quickly when particularized to a set of parameters

to give the mechanical response of the system (i.e. displacements).

Let us start from the weak form of our problem from Eq. (2.5).
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Given a parametric space Iθ = I1 × I2 × · · · × Inp , we solve for u(x,θ) ∈ U
np⊗
j=1

L2(Ij),

∫
Ω

(∇Sw
∗)TC∇Su dΩ =

∫
ΓN

w∗TtdΓ +

∫
Ω

w∗TbdΩ, (3.2)

where w∗(x,θ) ∈ U0

np⊗
j=1

L2(Ij) is the test function for the PGD formulation chosen in

an appropriate space. The main steps of the formulation are introduced next with two

parameters only to ease the notation, however, it is valid for any number of parameters

np and poses no additional difficulty.

We are seeking a solution having the following form,

u(x, θ1, θ2) ≈ un(x, θ1, θ2) =
n∑

m=1

Xm(x) ·Θm
1 (θ1) ·Θm

2 (θ2), (3.3)

where Xm(x) is the spatial function with x ∈ Ω ⊂ IR3 and Θm
j (θj) represents the

parametric function for the jth parameter θj ∈ Ij ⊂ IR. Our goal now is to obtain

an accurate enough approximation of the solution shown in Eq. (3.3). As mentioned

previously, the greedy strategy computes each enrichment term sequentially.

Let us assume we would like to compute the solution at the enrichment step ñ and that

we already know the solution at enrichment step ñ− 1 such that

uñ(x, θ1, θ2) = uñ−1(x, θ1, θ2) + X ñ(x) ·Θñ
1 (θ1) ·Θñ

2 (θ2). (3.4)

For the sake of notation simplicity, we will drop the dependence on the current step ñ

and we replace the functional product X ñ(x) · Θñ
1 (θ1) · Θñ

2 (θ2) by R(x) · S1(θ1) · S2(θ2).

The solution at step ñ could be rewritten as

uñ(x, θ1, θ2) = uñ−1(x, θ1, θ2) +R(x) · S1(θ1) · S2(θ2). (3.5)

According to [49], the simplest choice of the test functions w∗ could be taken as

w∗ = R∗(x) · S1(θ1) · S2(θ2) +R(x) · S∗1(θ1) · S2(θ2) +R(x) · S1(θ1) · S∗2(θ2), (3.6)

where we denote the unknown terms that we want to compute by an asterisk “*”. Incor-

porating the test functions in Eq. (3.6) and the trial functions in Eq. (3.5) in the weak

form in Eq. (3.2), it results in a non-linear problem that is solved using an alternated

directions fixed point algorithm. This algorithm is chosen for its robustness and ease

of implementation [49]. In each iteration, three steps are repeatedly performed until we

reach convergence:
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(1) Computing R∗(x) assuming that the terms S1(θ1) and S2(θ2) are already known

from the previous iteration. In this case the test function reduces to R∗(x) ·S1(θ1) ·
S2(θ2) since the only unknown is R∗(x).

(2) Using the just computed R(x) and S2(θ2) computed from the previous iteration

to compute S1(θ1) with the test function as R(x) · S∗1(θ1) · S2(θ2).

(3) Update S∗2(θ2) using the just-updated quantities R(x) and S1(θ1). In this case the

test function becomes w∗ = R(x) · S1(θ1) · S∗2(θ2).

Note that for the initial enrichment step n = 1, an arbitrary guess is used. The obtained

converged functions are the functional product for the enrichment step ñ. The enrichment

procedure is repeated until the greedy algorithm tolerance is reached.

As can be seen, the PGD is composed of a hierarchical two-loop structure. The PGD

enrichment is sought by the outer-loop and the inner-loop solves, in an iterative way,

for the functional product that expresses the spatial and parametric problems. Both

loops are controlled using predefined tolerances to attain an accurate result. In order to

control the loops, we define the amplitude of the ñth mode as follows

Añ := ‖X ñ‖
np∏
j=1

‖Θñ
j ‖, (3.7)

where ‖?‖ is a norm of ? in its own space, and the norm is typically the L2 norm. The

amplitude Añ is a measure of how important is the ñth mode, hence, it is used as a

stopping criterion for the enrichment of the solution. Moreover, the alternated direction

fixed point loop could be controlled, at each iteration “iter”, by comparing a given

tolerance “tol” with a stationary measure of the amplitude

|Añiter − Añiter−1|
|Añiter−1|

< tol. (3.8)

The details of and deeper insight on PGD algorithms could be found in [9, 49, 51, 77] and

the references therein. In order to be able to solve the problem computationally, we need

to recast our problem in a tensorial format. Once the functional space is discretized, we

could reformulate our problem in a tensorial format that is equivalent to the functional

format [51]. The standard discretization of the parametric PDE, typically with FEM,

results in a system of linear equations to be solved that has the following algebraic form

K(µ)d(µ) = f(µ), (3.9)

where µ is a generic vector collecting different kinds of parameters that are considered

as extra coordinates in the problem, K(µ) ∈ IRnd×nd is the generalized stiffness matrix,
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d(µ) ∈ IRnd is the vector of generalized displacements that we are solving for, and

f(µ) ∈ IRnd is the generalized vector of forces. Thus, all these fields are taking values in

a multiparametric space Iθ. This equation is of algebraic nature and is already discretized

in space. Note that from now on, for the sake of notation clarity, the generic vector of

parameters µ is replaced with the vector θ because all our parameters have the same

nature, i.e. are fibre orientations. The solution of Eq. (3.9) is based on the weighted

residuals approach and is introduced as follows,

R
(
d(θ)

)
:= f(θ)−K(θ)d(θ). (3.10)

Therefore we could state that d(θ) is a solution for Eq. (3.9) if and only if∫
I1

· · ·
∫
Inp

U ∗(θ)R
(
d(θ)

)
dθnp . . . dθ1 = 0, (3.11)

where U ∗ is a test function and the integration is performed for np parameters. The

separated form of Eq. (3.11) is solved with the PGD solver. To perform the integration,

we need to define first a range or interval for the parameters such that θi ∈ Ii ⊂ IR. Once

this is chosen, we explicitly discretize those intervals by choosing a number of points

inside the interval where the solution will be sought. After we obtain our generalized

solution, if we desire to particularize our solution to a parametric value that is between

two discretization points, a linear interpolation is performed. The encapsulated PGD

concept that takes as input a separated stiffness matrix K(θ) and f(θ) and gives as

output the vector of generalized displacements d(θ) is introduced next.

3.4 Encapsulated PGD

The PGD approach is introduced here following the encapsulated concept presented in

[50, 51], where it provides tools that directly produce the computational vademecums

for the high-dimensional tensor data. The encapsulated PGD concept allows to define

PGD objects, which are quantities defined in a multidimensional setting representing

multiparametric functions, and it provides a toolbox1 of algebraic routines to directly

operate with these objects. Thus, the general methodology permits the performance

of non-trivial operations (e.g. solving linear systems of equations, compression, etc...)

for multidimensional tensors, shown in [51]. For example, the input parametric matrix

1 Publicly available at https://git.lacan.upc.edu/zlotnik/algebraicPGDtools

https://git.lacan.upc.edu/zlotnik/algebraicPGDtools
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K(θ) in (2.25) has to be provided in (or approximated by) a separated form, that is

K(θ) ≈Ksep(θ) =
nk∑
k=1

Kk

np∏
j=1

ϕkj (θj), (3.12)

where superscript “sep” indicates that the quantity (in this case the matrix) is stored

in a separated form. For each term k = 1, . . . , nk, matrices Kk and functions ϕkj , for

j = 1, . . . , np are the spatial and the parametric modes, respectively, describing the

parametric dependence of the global stiffness matrix using an affine decomposition with

nk terms.

One of the routines in the toolbox is the linear solver, having as input Ksep(θ) and f

(possibly f sep(θ)) and yielding as output a separable approximation to the unknown

vector of generalized displacements d(θ), namely,

d(θ) ≈ dnPGD(θ) =
n∑

m=1

βmdm
np∏
j=1

Gm
j (θj)

= dn−1
PGD (θ) + βndnGn

1 (θ1)Gn
2 (θ2)...Gn

np
(θnp),

(3.13)

where dnPGD is a separated approximation with n terms; dm is the spatial mode, and Gm
j

are the parametric modes where m = 1, . . . , n and j = 1, . . . , np. Modes dm and Gm
j are

normalized and βm collects the amplitude of each term. Amplitude βm accounts for the

importance of term m and is also used to decide when to stop the greedy algorithm (one

stops computing new terms once βm is small enough, with respect to β1).

Often, the PGD solution has redundant information as orthogonality between succes-

sive terms is not enforced; whereas it is enforced, for instance, in the Singular Value

Decomposition (SVD can be seen as a particular case of PGD). The PGD compression

is a methodology that post-processes any PGD object, aiming to alleviate the excess

of PGD terms associated with redundant information (reduce a too large value of n in

(3.13)). It consists in least-squares approximation following the same PGD philosophy,

see [50, 56, 63]. In a nutshell, for any solution provided by the PGD solver like dnPGD (as

the solution of (3.13)) the goal is to find a PGD-type approximation dnccom such that the

following discrepancy is minimized,

‖dnccom − dnPGD‖L2(Iθ) =

∫
I1

· · ·
∫
Inp

(dnccom − dnPGD)2 dθnp . . . dθ1. (3.14)

Note that the number of terms, nc, in the compressed solution dnccom is expected to be

significantly lower than the original one (nc � n).
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3.5 Separation of input for PGD solver

As indicated in the previous section, the input of the encapsulated PGD routines is made

of separated PGD objects, as the stiffness matrix described in (3.12). In the present case,

the parametric dependence of the input matrix K(θ) on the parameters θi, i = 1, . . . , np
arises from the parametric dependence of the elasticity tensor C(θ); which depends on

the value of the fiber orientation at the material point where it is evaluated. A separated

representation of C(θ) is required in order to build up a separated representation of

matrix K(θ) as in (3.12).

Recalling Section 2.3, it is assumed that the subdomains Ωi, i = 1, . . . , np, where the

angle of the fiber orientation is θi, do cover the whole domain Ω; that is Ω̄ =
np⋃
i=1

Ω̄i.

Thus, the elasticity tensor depends at each point x ∈ Ωi on the parameter θi, and it is

expressed in a separable format as:

C(θi) =
nt∑
`=1

C`
np∏
j=1

φ`,ij (θj), (3.15)

where the fact that C(θi) depends only on θi results in the condition φ`,ij (θj) ≡ 1 for

j 6= i, see Appendix B for details.

Moreover, any point x belonging to some element Ωe ⊂ Ωi, such that the element index,

e, e = 1, . . . , nel, is in relation with subdomain index i.

This formal convention identifying element e with material subdomain i allows replacing

(3.15) in the expression for Ke(θi) provided by (2.24), and this results in

Ke(θi) =
nt∑
`=1

[ ∫
Ωe

BeTC`BedΩ
] np∏
j=1

φ`,ij (θj). (3.16)

Then, assembling the local matrices as indicated in (2.6), one gets

K(θ1, θ2, ..., θnp) =
nel∑
e=1

LeTKe(θi)L
e

=
nel∑
e=1

nt∑
`=1

[ ∫
Ωe

LeTBeTC`BeLe dΩ
] np∏
j=1

φ`,ij (θj),

(3.17)



Chapter 3. PGD framework 43

which provides a separable expression forK(θ) that is used as input for the encapsulated

PGD routines. In particular, the linear solver for algebraic equations provides as output

dnPGD(θ).

In the following is presented the pseudo-algorithm for the computation of the separated

stiffness matrix K:

Algorithm 3.1: Pseudo-code of the FE loop to build the separated stiffness matrix
for the PGD routines

Input : Mesh coordinates, FE connectivities, number of elements, parametric
subdomains Ωi

Output: Separated stiffness matrix K

(1) Evaluate the separated terms of the elasticity tensor

for e = 1, ..., nel do

(1.1) Extract element coordinates and connectivities

if e ∈ Ωi then

• Assign θi to element e with i = 1, ...np

end

for ` = 1, ..., nt do

• Compute (Ke)` like in Eq. (3.16)

• Assign local (Ke)` to globalKk(θ1, θ2, ..., θnp) and k = (`+(i−1)·nt), ..., (i·
nt)

3.6 Post-process and sensitivities

Once the parametric solution dnPGD(θ) is obtained in the form of a computational vademe-

cum (3.13), it has to be used to compute the parametric expressions of the failure index

If, see (2.30), and the safety factor, λs, see (2.42). In order to solve the optimization

problems (2.45) and (2.46) with gradient-based methods, the sensitivities (gradients and

Hessian matrices with respect to the parameters) need to be computed.

In a first step, the strain tensor has to be computed as a postprocess of the parametric

displacements dnPGD(θ). In practice, the strain field is computed in a set of ng points in
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domain Ω, typically the integration points of the finite element mesh which are indexed

with g = 1, . . . , ng. At each of these points, the strain tensor is a vector of 6 components

(using Voigt’s notation), which is a linear function of the displacement field, see (2.2).

Thus, globally the strain field is described by a 6×ng matrix depending on the parameters,

ε(θ). Each column of this matrix is a 6 × 1 vector denoted εg(θ) and represents the

strain tensor at point g.

Assuming that point g is in element Ωe, the strain at point g is a linear output of the

overall displacements d, namely,

εg = Be
gL

ed,

where Be
g is matrix Be (same as in equation (2.12)) evaluated at point g and Le is

the Boolean operator localizing global displacements to element degrees of freedom.

Consequently, using the parametric expression of the displacements in (3.13) results in

the following expression for the parametric strains at point g:

εg(θ) =
n∑

m=1

βmεmg

np∏
j=1

Gm
j (θj), (3.18)

where εmg = Be
gL

edm.

The format of the strain field ε(θ), that is a 6×ng matrix, with columns εg(θ) represent-

ing strains at point g, is replicated to describe the stresses. Thus, stresses are stored in

a 6× ng, σ(θ), such that each column of this matrix is a 6× 1 vector σg(θ) representing

the stress tensor at point g.

The relation between strains and stresses at point g is given by the corresponding elas-

ticity tensor C, see (2.2). Thus, the stresses at point g, σg(θ) = C(θi)εg(θ) become,

using (3.15) and (3.18),

σg(θ) =
n∑

m=1

nt∑
`=1

βmC`εmg

np∏
j=1

φ`,ij (θj)G
m
j (θj), (3.19)

where it is worth noting that, similarly as in the previous equations, index i is associated

with index g, in the sense that it is assumed that point g is in subdomain Ωi. Sorting

the terms with a single index q = 1, . . . , n · nt instead of the two indices m and `, (3.19)

is rewritten as:

σg(θ) =
n·nt∑
q=1

β̄qσqg

np∏
j=1

Qq
j(θj). (3.20)

It is assumed that there is an explicit association between a pair (m, `) and index q

(for instance q = m + (` − 1) · n); σqg is equal to C`εmg divided by its norm, Qq
j(θj) is

the product φ`,ij (θj)G
m
j (θj) also normalized; and β̄q collects the product of βm and the

normalization factors.
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In the remainder of the present section, a similar strategy is employed to compute the

parametric dependence of If
(
σg(θ)

)
, see (2.30) in Section 2.4.2. A parametric separated

expression of the transformation matrix T (θi) is needed as a first step to compute the

parametric expression for the strength tensor and vector, F and F , see (2.43), namely,

T (θi) =
nr∑
r=1

T r

np∏
j=1

Zr,i
j (θj), (3.21)

where nr is the number of terms required to express the transformation matrix in a

separated fashion, and similar to the definition of φ`,ij in (3.15), Zr,i
j (θj) ≡ 1 for i 6= j.

The explicit expressions of all the terms are given in Appendix B.

Using (3.21) in (2.43), results in

F(θi) =
nr∑
s=1

nr∑
r=1

(T rTF0T
s)

np∏
j=1

Zr,i
j (θj)Z

s,i
j (θj). (3.22)

Analogously as with σg, (3.22) is rewritten using a single index notation (index pair

(r, s) is mapped into a single index p, p = 1, . . . , n2
r), that is,

F(θi) =

n2r∑
p=1

ᾱpFp

np∏
j=1

P p,i
j (θj). (3.23)

The same is carried out for F and results in

F (θi) = T T(θi)F0 =
nr∑
r=1

α̃r(T rTF0)

np∏
j=1

Zr,i
j (θj). (3.24)

The failure index given in (2.30) is divided in two terms, one linear and one quadratic,

namely,

IL
(
σg(θ)

)
= σT

g F (θi) and IQ
(
σg(θ)

)
= σT

gF(θi)σg. (3.25)

The expression for σg and F in (3.20) and (3.23) are used in (3.25) to obtain the following

expression for IQ

IQ
(
σg(θ)

)
=

n2r∑
p=1

n·nt∑
w=1

n·nt∑
q=1

ᾱpβ̄wβ̄q(σqTg Fpσwg )

np∏
j=1

P p,i
j (θj)Q

w,i
j (θj)Q

q,i
j (θj). (3.26)
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Again, transforming the three indices (p, w, q) into one index b, b = 1, . . . , n2
rn

2n2
t, the

following expression is obtained

IQ
(
σg(θ)

)
=

n2rn
2n2t∑

b=1

γ̃bÃbg

np∏
j=1

H̃b,i
j (θj), (3.27)

where Ãbg and H̃b,i
j (θj) are the normalized versions of σqTg Fpσwg and P p,i

j (θj)Q
w,i
j (θj)Q

q,i
j (θj)

respectively, and γ̃b collects the amplitude ᾱpβ̄wβ̄q and all the normalization factors.

Analogously, for the linear part of the failure index, IL, we have

IL
(
σg(θ)

)
=

n·nt∑
q=1

nr∑
r=1

β̄qα̃r(σqg
TF r)

np∏
j=1

Qq,i
j (θj)Z

r,i
j (θj), (3.28)

that in a single index format (associating (q, r) to v, v = 1, . . . , n · nt · nr) results in

IL
(
σg(θ)

)
=

n·nt·nr∑
v=1

γ̂vÂvg

np∏
j=1

Ĥv,i
j (θj), (3.29)

where we define nL := nr ·n ·nt to ease the notation. The expression for the failure index

If is readily recovered by summing up (3.27) and (3.29), that is,

If
(
σg(θ)

)
= IQ

(
σg(θ)

)
+ IL

(
σg(θ)

)
=

nQ+nL∑
f=1

γfAfg

np∏
j=1

Hf,i
j (θj), (3.30)

where the quantities γf , Afg and Hf,i
j (θj) are equal to the ones in (3.27) or (3.29) de-

pending on the index f ,

γf , Afg , H
f
g =

{
γ̃f , Ãfg , H̃

f
g iff ≤ nQ

γ̂f−nQ , Âf−nQg , Ĥf−nQ
g if f > nQ

,

and, for the sake of shortening the writing, the number of PGD terms needed to express

IQ is introduced as nQ := n2
rn

2n2
t.

Once If
(
σg(θ)

)
is obtained in the form of (3.30), the multiple queries required to solve

the optimization problem defined in (2.45) (or in (2.46)) may be performed very fast, as

a simple post-processing.

Moreover, an additional advantage of the PGD solutions is that it provides a solution

depending on the parameters explicitly allowing the computation of the derivatives of the

objective function provided by (3.30) in a straight-forward way. That is, the sensitivities

needed in the implementation of the gradient-based optimization methods.
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At any sampling point g, the gradient of the failure index is denoted as ∇θIf(θ) and

contains all partial derivatives of If with respect to θk, for k = 1, . . . , np. Using the

expression (3.30), these derivatives read

∂If(θ)

∂θk
=

nQ+nL∑
f=1

γfAfg

[
dHf,i

k

dθk
(θk)

]
np∏
j 6=k

Hf,i
j (θj). (3.31)

Moreover, for the strategies requiring the Hessian matrix, all its components consist in

second order derivatives, which are readily computed in a similar fashion. In particular,

for k 6= k̃, one has

∂2If(θ)

∂θk∂θk̃
=

nQ+nL∑
f=1

γfAfg

[
dHf,i

k

dθk
(θk)

dHf,i

k̃

dθk̃
(θk̃)

]
np∏

j 6=k,k̃

Hf,i
j (θj) (3.32)

and
∂2If(θ)

∂θk
2 =

nQ+nL∑
f=1

γfAfg

[
d2Hf,i

k

dθk
2 (θk)

]
np∏
j 6=k

Hf,i
j (θj). (3.33)

The derivatives of the parametric modes Hf,i
k in equation (3.31) are performed numeri-

cally. Typically, the modes are stored in terms of vectors of nodal variables, following the

FE philosophy. Thus, assuming that the nodal values of function Hf,i
k (θk) are collected

in vector h, the question is how to compute the derivatives. In other words, assuming

that
dHf,i

k

dθk
is stored in the same fashion in the vector of nodal values g, how to compute

g from h? Note that the parametric range for θk, Ik, is typically 1D (a subset of IR)

and therefore explicit numerical differentiation node-wise is straightforward. A more

consistent approach is based on the least-squares projection on the initial discrete func-

tional space of the sectional approximation. Recall that the adjective sectional is used

in this context to refer to operations in a single parametric dimension. In summary, the

derivation of the function described by h consists in computing g such that

Mg = Dh, (3.34)

where M is the sectional mass matrix and D is the sectional gradient matrix. Both M

and D are very simple matrices (in the usual case of being Ik a 1D sectional domain

discretized with linear finite elements, they are tridiagonal matrices). In a more general

case, they result from assembling elemental matrices having the form,

Me =

∫
Ik

Ñ eTÑ e dθ and De =

∫
Ik

Ñ edÑ
e

dθ
dθ,

where Ñ e is the vector of element shape functions in each element discretizing Ik, that

is the parametric counterpart of the shape functions introduced in equation (2.6) for the
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space approximation.

Similarly, at any sampling point g, the gradient of the safety factor is denoted as ∇θλs(θ)

and contains all partial derivatives of IQ and IL with respect to θk, for k = 1, . . . , np.

Using the expressions in (3.27) and (3.29), these derivatives read

∂IQ(θ)

∂θk
=

nQ∑
b=1

γ̃bÃfg

[
dH̃b,i

k

dθk
(θk)

]
np∏
j 6=k

H̃b,i
j (θj) (3.35a)

∂IL(θ)

∂θk
=

nL∑
v=1

γ̂vÂfg

[
dĤv,i

k

dθk
(θk)

]
np∏
j 6=k

Ĥv,i
j (θj). (3.35b)

Following the quotient rule to evaluate the derivative of the division in (2.42), we obtain

the following expression:

∂λs(θ)

∂θk
=

IQ
[
−∂IL(θ)

∂θk
+ 0.5(I2

L + 4IQ)−1/2 ·
(

2IL
∂IL(θ)

∂θk
+ 4

∂IQ(θ)

∂θk

)]
− ∂IQ(θ)

∂θk

[
−IL +

√
I2
L + 4IQ

]
2I2

Q

.

(3.36)

The sensitivities provided by equations (3.31), (3.33), and (3.36) are extremely useful

for gradient-based methods. However, the optimization problem defined in Section 2.5 is

in general non-convex and, additionally, gradient-based methods are extremely sensitive

to initial guesses leading to a non-convergent iterative procedure. In order to carry out

a first global inspection of the parametric domain providing a proper initial guess, it

is interesting to consider some evolutionary strategies as Genetic Algorithm (GA), or

Simulated Annealing (SA). In a second phase, and starting from a fair initial guess,

a gradient-based algorithm is a robust complementary approach converging fast to an

accurate solution.
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NUMERICAL EXAMPLES

4.1 Preliminaries

From the previous chapters we already know that PGD is able to obtain all possible

solutions for a given parametric PDE and store it in a computational vademecum. The

availability of the whole space of solutions, i.e. spatial and parametric spaces, is an

attractive feature when solving an optimization problem. Recalling from Chapter 2 in

Section 2.5, the objective function of the optimization problem that we would like to

solve is highly non-convex, leading to a difficulty in applying a gradient based method

since it could easily get stuck in local minima and it usually fails to find the global

optimum. Consequently, one would need to solve the problem a very large number of

times to converge to a global solution using a heuristic method, such as the genetic al-

gorithms (GA), which is computationally expensive. Generally, when using a standard

FE approach, there is no need to compute the solution for the whole parametric space to

solve an optimization problem having a small number of design variables (i.e. parame-

ters). However, with the increase of the number of parameters and with the non-convex

nature of the objective function (shown in Section 2.5), having the possibility to access

the whole parametric space very fast is compelling. With PGD, we are able to browse

the solution at particular values of the parameters very fast which allows us to perform

plenty of evaluations of the objective function instantaneously.

In the current chapter, we present the solution for the 3D elasticity problem using PGD

as described in Chapter 3. We present two main examples to demonstrate the capabilities

49
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and potential of the methodology described in the previous chapters. Both examples are

based on composite laminates parameterized with the orientation of the fibers in different

subdomains. In the coming examples, we quantify the accuracy of PGD with respect

to standard FE, and we discuss different PGD features such as its amplitude resolution,

computational cost, and optimization solutions.

The first example in Section 4.2 is a square plate under tensile load having only two

parameters where each parameter characterizes a single layer in the domain. Given the

simplicity of the problem, it is affordable to compute its solution using standard FE for

each point in the parametric space. We will assess the goodness of the PGD by comparing

it with the standard FE solution using a global error measure between displacements.

Whereas the browsing of the solution in the PGD vademecum at a particular value of

the parametric set is extremely fast, the standard FE solution requires a full solve for

each parametric value. Note that the computing time to obtain the PGD solution with

only two parameters is ∼ 2.5 hours; whereas if we would want to compute the solution

at every parametric point using standard FE, we would require ∼ 6.5 days using the

same computer power as in the PGD case. We will also show different loading cases for

the same geometry to highlight the optimization results.

The second example (Section 4.3) is a more complicated one involving a plate with a

circular hole in the middle. The example is divided into three sub-examples considering

two, four, and eight parameters. The domain is subdivided into patches of elements

belonging to the {O, x, y} plane rather than layers. As the number of parameters in-

creases, the computational burden increases when using standard FE. For instance, in

the case of the example with four parameters, the PGD provides a solution in ∼ 30 hours

and the cost of computing the standard FE solution at every parametric point would be

approximately ∼ 106 hours. We will show the optimization results computed using the

GA, and their variation with the number of parameters. The chapter is organized as

shown in Fig. 4.1.

In both examples, the parameters take values in the range θi ∈ Ii = [−90°, 90°], for

i = 1, . . . , np. Each parametric interval is uniformly discretized by 1° and thus yielding

181 parametric nodes. The material under consideration is the carbon fibre reinforced

ABS material, and its characteristics are shown in Appendix C. The tolerance acting

as the stopping condition for the alternated directions scheme is set, for both examples,

to tol = 10−6. Moreover, the greedy algorithm tolerance which acts as the stopping

condition for the modes enrichment loop takes the value ξ = 10−4 unless stated otherwise;

and it is described through the following amplitudes ratio for the n-th mode,

βn

β1
< ξ. (4.1)
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Chapter 4

4.1 Preliminaries

4.2 Plate under

tensile load

4.3 Plate with

circular hole

under tensile

load

Figure 4.1: Structure of Chapter 4.

It is well known that performing a numerical simulation consists of at least three major

steps, namely (a) pre-processing; (b) solving; and (c) post-processing. The workflow

followed in this thesis for numerical simulations to find the optimal fibre orientation in

composite laminates is briefly summarised in Fig. 4.2.
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Geometry creation

Create geometry
using a relevant

CAE software and
mesh generation.

Import mesh

Importing mesh
to Matlab and
adapt it to the
developed code.

Parametrization

Parametrization
of the elastic-
ity tensor to

manipulate the
fibre orientation.

Interpolation

Define shape
functions and their
derivatives. Com-

pute the global
stiffness matrix

PGD input

The preparation
of the input
includes the

separation process,
enforcing boundary

conditions and
parametric

discretization.

PGD solver

Running the PGD
solver and the

PGD-compression
routines.

Quantification

Quantifying
strains, stresses,

failure, and safety
factor using
the obtained

computational
vademecum.

Optimization

Optimize the ob-
tained failure index

and safety factor

Visualization

Results are
visualized with the

aid of Paraview
and Matlab.

Pre-processing Solving Post-processing

Figure 4.2: Simulation workflow
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4.2 Plate under tensile load

This example considers a two-layered composite laminate parameterized by the fibre

orientation at each layer. The domain corresponds to a square plate (60× 60× 6 mm3)

subjected to a tensile load as shown in Fig. 4.3a. Parameters are independent and

therefore the material properties at each layer has the form (2.23) and the final separated

expression of the operator is that in (3.15).

Parameters θ1 and θ2 determine the fibre orientation of layers 1 and 2 respectively as

shown in Fig. 4.3b. Parameters take values in the range θ1 ∈ I1 = [−90°, 90°] and

θ2 ∈ I2 = [−90°, 90°].

The discretization of space involves 800 hexahedral Serendipity elements (4725 nodes)

and discretization of both parameters is done with a uniform 1° spaced grid and thus

yielding 181 parametric nodes. Note that, despite the parametric space is two dimen-

sional, because of the separated structure of the problem, each parameter dimension is

discretized independently as a one dimensional grid. The mechanical properties of the

materials are those of carbon fibre reinforced ABS [78] and are described in Appendix C.

The plate is under a 45° tensile in-plane load with respect to the x-axis.

(a) Domain top plane (b) Domain 3D view

Figure 4.3: Plate under tensile load of 45°

We assess the goodness of the PGD solution by comparing it with the standard FEM

solution. The comparison is done by measuring the norm of the difference between the

PGD and standard FEM displacements, ∆d = dPGD − dFEM, integrated in space and
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parameters as:

e =

∑
Si

∑
Sj

∆dT(θi, θj)M∆d(θi, θj)∑
Si

∑
Sj

dT
FEM(θi, θj)MdFEM(θi, θj)

, (4.2)

where the M matrix is a mass matrix for the space dimension. Note that the error is

estimated based on subsets of the parametric grids, Si ∈ I1 and Sj ∈ I2. We choose

the subsets to reduce the number of FEM problems that is required to be solved for

the comparison. Here we use subsets Si and Sj with one parametric value every 3°
instead of every 1° and therefore the solutions are compared at 61×61 = 3721 instead of

181× 181 = 32761 parametric points. Results of the PGD parametric solution show an

excellent agreement with those obtained by standard FEM having errors around 0.1%

between both methods with 87 modes in the PGD compressed solution as shown in

Fig. 4.4a. It is worth noting that the number of modes in the PGD solution is controlled

by the predefined greedy algorithm tolerance ξ = 10−4.

(a) Convergence curve of PGD solution (b) Amplitude evolution with number of modes

Figure 4.4: Convergence curve and amplitude evolution for plate under tensile load of 45°
with greedy tolerance ξ = 10−4

In Fig. 4.4a, the convergence curve of the compressed PGD reaches a plateau after ∼ 70

modes and, after that, the error does not decrease significantly when adding new modes.

Moreover, the compressed and uncompressed PGD solutions converge to the same error

proving that the compression routine is performing efficiently. The minimum error shown

in Fig. 4.4a is controlled by the tolerances imposed in the PGD algorithm (ξ = 10−4).

Note that, we consider the obtained error (∼ 0.1% of the standard FE solution) to be

an accepted accuracy for engineering purposes. Looser or stricter tolerances produce a

plateau in the convergence curve at higher or lower error values respectively (shown in

Fig. 4.5). The amplitude of the terms in the PGD solution indicates the importance

of each term and it is shown in Fig. 4.4b. There we can see how the importance of

each term reduces with the increase of the number of terms. The red curve corresponds

to the amplitude evolution of the uncompressed PGD solution, while the blue curve
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corresponds to the PGD compressed solution. The PGD-compression is a post-process

applied to any PGD object, and it aims to remove redundant information (shown in

Section 3.4). This is a standard procedure that projects the solution into the same space

using an L2 projection [51]. In the example shown in Fig. 4.4b, the number of modes is

reduced by 31.5%. We could also notice that the PGD compressed solution curve has a

smoother behaviour as the redundant information is removed unlike the uncompressed

solution that has a lot of oscillations. Note that, the convergence curve Fig. 4.4a reaches

stagnation after 70 modes, while the general trend of the amplitude curve in Fig. 4.4b

continues decreasing, therefore, implying that the amplitude cannot be used as a direct

estimator of the error.

(a) ξ = 10−3 (b) ξ = 10−6

Figure 4.5: Convergence curves for plate under tensile load of 45° with different greedy
algorithm tolerances

In Fig. 4.6, we show the amplitude evolution against the number of modes for differ-

ent greedy algorithm tolerances. Fig. 4.6a shows the amplitude evolution for a greedy

algorithm tolerance of ξ = 10−3. The PGD-compression reduces the number of modes

by 34.5%. On the other hand, for the strict enrichment tolerance ξ = 10−6, we can

see the number of terms explode to 500 and 300 for the uncompressed and compressed

PGD respectively. It is important to mention that another way to stop the greedy al-

gorithm is to prescribe a maximum number of modes a priori to avoid being stuck if

the algorithm is diverging. The convergence curve in Fig. 4.4a shows that the increase

of modes does not necessarily add to the accuracy of the problem, i.e., decreasing the

relative global error. This suggests that there are factors affecting the global error esti-

mation other than the number of modes which is still an area of investigation [46, 79, 80].

In an attempt to briefly investigate the effect of the spatial mesh size on the amplitude

evolution, Fig. 4.7 shows that there is no significant change in the amplitude values nor

in the number of modes when a finer or coarser meshes are employed.
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(a) ξ = 10−3 (b) ξ = 10−6

Figure 4.6: Amplitude evolution of uncompressed and compressed PGD solution for plate
under tensile 45°for various greedy algorithm tolerances ξ

Figure 4.7: Comparison of amplitudes of PGD compressed solution between fine and coarse
spatial meshes

The PGD solution consists of a spatial part and a parametric part as demonstrated in

Section 3.4. The spatial part is defined by a vector of generalized displacements for each

mode, where the parametric part represents the impact of the fibre orientation in each

subdomain on the displacements. For the same problem shown previously in Fig. 4.3, we

choose a particular value of the set of parameters, namely, θ1 = −45° and θ2 = 0°, which

deforms the structure significantly and therefore we could visualize the different spatial

modes. Fig. 4.8 shows the magnitude of the reconstructed solution dPGD at θ1 = −45°
and θ2 = 0°. Despite the application of the external load only in the xy-plane, we notice



Chapter 4. Numerical examples 57

that in addition to the deformation in the xy-plane there is a clear deformation in the

xz-plane and the yz-plane that is due to the effect of the significant difference of the

fibre orientations in each layer. In the following we show the generalized spatial modes

separately to highlight the different modes of deformation.

(a) Displacement magnitude xy-plane (b) Displacement magnitude yz-plane

Figure 4.8: Displacement magnitude for θ1 = −45° and θ2 = 0°
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(a) Mode 1 in xy-plane (b) Mode 1 in yz-plane

(c) Mode 2 in yz-plane (d) Mode 3 in yz-plane

(e) Mode 3 in xz-plane (f) Mode 4 in yz-plane

(g) Mode 5 in yz-plane (h) Mode 5 in xz-plane

Figure 4.9: Normalized spatial modes for θ1 = −45° and θ2 = 0°
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Given that the first modes of the PGD solution are the most informative as shown in

Fig. 4.4b, we choose to illustrate the first five spatial modes. It is clear from Fig. 4.9a that

the first mode is capturing the essence of the in-plane deformation (xy-plane deformation)

only which is the dominant deformation, where the black square frame in the figure

represents the original domain. Fig. 4.9b shows mode one from a different view, and

confirms that there is no out-of-plane deformation in any way. Furthermore, mode two

represents the essence of the deformation in the z-direction in a bending-like response.

Note that mode two and mode four are very similar, as they share the same magnitude

in opposite directions as shown in Fig. 4.9c and Fig. 4.9f. Finally, modes three and five

are capturing combinations of deformations in all planes having a buckling-like response.

In order to make sense of these spatial modes and relate them to the solution showed

in Fig. 4.8, we also need to look at the parametric modes presented in Fig. 4.10. First,

we could easily notice that the functions are of sinosoidal nature, which is natural given

that the parametric dependence of the problem only involves angles and is expressed

using only cosines, sines, and their combinations. Furthermore, looking at the parametric

functions at each prescribed angle, we could easily detect the influence of each parameter

on the spatial modes. For instance, when we look at the first parametric function (Gm
1 )

in Fig. 4.10a, it is obvious that mode two (in blue) at the prescribed angle θ1 = −45° has

a negative value. The negative value scales and inverts the deformation of spatial mode

two, which makes sense by comparing Fig. 4.9c with Fig. 4.8. On the other hand, when

we inspect the second parametric function (Gm
2 ) in Fig. 4.10b, we notice that mode five

(in magenta) at the prescribed angle θ2 = 0° also has a negative value that scales and

inverts the fifth spatial mode. As a result, and by comparing Fig. 4.9g with Fig. 4.8b, we

could detect the inversion of the convexity of the structure deformation. It is important

to recall that all these spatial and parametric modes are normalized; and by multiplying

each spatial mode by its corresponding parametric functions and amplitude, and then

summing over all the modes we recover the structural response (shown in Fig. 4.8) at

the given value of the set of parameters.

Since we are aiming for finding the best fibre orientation that minimizes the Tsai-Wu cri-

terion, it is essential to apply optimization techniques to find the optimal solution. One

of the main features of PGD is that the sensitivities depend explicitly on the parameters,

and therefore, the optimization problem becomes straight-forward. Consequently, for the

current example where we have two parameters, it is very fast to compute the optimal

solution. It is also easy to find the optimal solution by plotting the objective functions,

introduced in Section 2.5, against both parameters and inspecting the obtained map

for the minimum/maximum point. Note that for a higher number of parameters (more

than 3), the optimization becomes much more complicated and it is also not possible to

plot the objective function anymore; therefore the application of optimization strategies

is inevitable. The objective functions based on the PGD solution can be easily used

in combination with an optimization procedure, such as the Genetic Algorithm or a
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(a) Parametric function 1 (b) Parametric function 2

Figure 4.10: PGD compressed solution: Normalized parametric functions

gradient-based method, to obtain the optimal fibre orientation automatically.

(a) Failure index (If) map (b) Safety factor index (λs) map

Figure 4.11: Failure criteria maps of plate under tensile load at 45°.

Fig. 4.11 shows the maps of the objective functions, namely the failure criterion and the

safety factor, introduced in Section 2.4.2. Once the PGD solution has been obtained it

is extremely fast to evaluate it for any value of the parameters and, therefore, one can

evaluate the objective functions at every parameter value of a fine grid and produce those

plots easily. The optimization in this simple case can be done by direct observation of

the maps, where local and global minima/maxima are readily identified. For the example

introduced in Fig. 4.3, the critical point representing the optimal value for each objective

function is located at the fibre orientations (θ1, θ2) = (45°, 45°). The obtained optimal

solution is expected as the applied load is purely tensile in the xy-plane and is applied

at 45°. Additionally, it is in agreement with the solution of the hybrid optimization

using GA and a gradient-based method validating the optimization algorithms. It is

easy to detect in Fig. 4.11a and in Fig. 4.11b the symmetry of the objective functions
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with respect to the (0°, 0°) as both parameters (layers) behave similarly with respect

to the applied load. In Fig. 4.12, we show the objective functions map for the same

(a) Failure index (If) map (b) Safety factor index (λs) map

Figure 4.12: Failure criteria maps of plate under small tensile load at 45°with reduced
applied load.

domain under 10% of the initial applied load in Fig. 4.11. The aim is to investigate the

effect of the load variation on the optimization results. As mentioned in Section 2.4.2,

the optimization of the failure criterion could be load dependent leading to inaccurate

solutions which is evident when comparing Fig. 4.11a with Fig. 4.12a. On the other

hand, the optimization of the safety factor does not depend on the load applied in

terms of optimization results which is demonstrated in Fig. 4.12b when compared with

Fig. 4.11b. Moreover, it is expected that if the angle of the applied load changes, the

global minimum/maximum would change accordingly. Fig. 4.13 shows different maps

corresponding to different angles of the applied load for the same domain in Fig. 4.3.

We notice that the global minimum/maximum moves on the symmetric diagonal line

passing through the origin with the variation of the angle of the applied load. We could

also deduct that the optimization of the safety factor is more accurate and less sensitive

to jumps in the objective functions.

It is important to mention that every point of these maps is equivalent to one FE solution

at a particular value of the set of parameters. Note that the computing time to obtain

the PGD solution is ∼ 2.5 hours and the map is generated in seconds. If one aims at

producing the same maps based on a standard FE solution, this would require 181×181 =

32761 FE solves, that would take ∼ 6.5 days using the same computer power as in

the PGD case. It is obvious that with the increase of parameters, the computational

burden increases. As discussed in Section 3.2, the increase of parameters increases the

computational complexity of the standard FE solution exponentially while it increases

with PGD linearly.
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(a) Minimum failure (If) index map (b) Maximum safety factor (λs) index map

(c) Minimum failure (If) index map (d) Maximum safety factor (λs) index map

Figure 4.13: Failure criteria maps of plate under tensile load at: (a) & (b) 30°, (c) & (d)
60°.

4.3 Plate with circular hole under tensile load

The second example involves a plate with a circular hole in the middle subjected to

tensile load oriented parallel to the x-axis as shown in Fig. 4.14. Using the symmetry of

the problem we solve only for half of the domain. This problem adds a slight ambiguity

because of the existence of the hole in its geometry. It is not straightforward to predict the

best fibre orientation based only on intuition, hence, we resort to optimization algorithms.

The space is discretized using 390 hexahedral Serendipity elements and the discretization

of each parametric dimension is the same as in the previous example in Section 4.2,

that is, Ii is represented using a uniform grid of 1° spacing yielding 181 parametric

nodes. Moreover, the greedy algorithm tolerance used in this section and controlling

the enrichment of the PGD solution is ξ = 10−4 unless stated otherwise. In the current

section, we present three different sub-examples with different subdivisions for a plate

with a hole in the centre. The plate is divided into two, four, and eight subdomains,
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highlighting their effect on the optimization solution and the computational time. Note

that in the current example, the subdomains are in the form of patches in the xy-

plane unlike the previous example where the subdomains were represented by different

unidirectional layers varying in the z-direction.

We first introduce the domain involving only two parameters (two subdomains) as shown

in Fig. 4.14. The discretization of the two-dimensional parametric space is affordable

as in the previous section. The plate is divided into two subdomains, each one with

its independent fibre orientation in the xy-plane. Each subdivision corresponds to a

different parameter θi ∈ Ii with i = 1, 2; where each parameter ranges in a real interval

Ii = [−90, 90]. The material properties remain the same throughout this section and are

presented in Appendix C.

Figure 4.14: Symmetric half of a square plate with a circular hole: 2 subdomains

(a) Global relative error (b) Amplitude evolution

Figure 4.15: Plate with hole under tensile load at 0° with two parameters for a greedy
tolerance ξ = 10−4

Similar to the example in the previous section, Section 4.2, we first compute the standard

FE solution at different values of the set of parameters; and then compute the error
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between the PGD and standard FE using Eq. (4.2). Results of the PGD parametric

solution show a great agreement with those obtained using the standard FE with errors

around ∼ 0.1% with 40 modes in the PGD compressed solution. The error is estimated

using subsets of the parametric grid with 3° angle step as shown in the previous example

in (4.2). In Fig. 4.15a, the convergence curve of the compressed solution shows a sharp

decrease of the error in the first 20 modes before the curve starts to reach a plateau around

10−3. We could also deduce that the PGD-compression is performing very well because

its error (blue curve in Fig. 4.15a) is reaching the same value as the PGD uncompressed

solution error (red curve in Fig. 4.15a). In Fig. 4.15b, we observe the evolution of the

amplitudes of the PGD solution. The PGD-compression routine yields a reduction of

43.5% in the total number of modes.

(a) Global relative error (b) Amplitude evolution

Figure 4.16: Plate with hole under tensile load at 0° with two parameters for a greedy
tolerance ξ = 10−6

In Fig. 4.16 we could see the evolution of the error and the amplitudes with a stricter

greedy algorithm tolerance leading to a lower error value between the PGD and standard

FE solutions (∼ 0.001%) with the price of a bigger number of modes. The optimization

results are presented in the maps of the objective functions shown in Fig. 4.17a and

Fig. 4.17b with optimal values (θ1, θ2) ≈ (−3°,−33°). The results give a general descrip-

tion of the stress distribution in the structure through the failure index and the safety

factor. We expect a stress concentration around the hole and, therefore, we expect to see

the fibres encircling the hole to minimize failure. Consequently, increasing the number of

parameters would result in more subdomains that capture better the variation of stresses

around the hole and thus leading to better optimization results.

The second example in the current section involves four parameters as shown in Fig. 4.18.

With the aim of solving the parametric PDE to cover the whole space of solutions, the

discretization of the four-dimensional parametric spaces becomes impractically expensive
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(a) Failure index If map (b) Safety factor λs map

Figure 4.17: Plate with hole under tensile load at 0° with two parameters: Objective
functions maps

Figure 4.18: Symmetric half of a square plate with a circular hole

if standard techniques are applied because the number of parametric points increases ex-

ponentially with the number of dimensions (shown in Fig. 4.24). The separable character

of the PGD solution, on the other hand, makes this problem tractable as every dimension

is discretized independently.

The plate is divided into four sub-domains, each one with its independent fibre orientation

determined by the corresponding parameter θi ∈ Ii with i = 1 . . . 4; where the range of

all parameters θi, is Ii = [−90°, 90°] yielding 181 parametric nodes. Note that the

discretization of the coupled four-dimensional parametric space would require 1814 > 109

points, whereas the separated representation requires 181 × 4 points. The parametric

part of the solution is stored in 181× 4×m points, being m the number of terms used

in the solution (98 for the compressed solution for this example).

The parametric PGD solution has been computed with the same tolerances as in the

previous example and, after compression, the solution has 98 modes. Amplitudes of the
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modes are shown in Fig. 4.19a. The PGD-compression yields a reduction in the number

of modes of 30%. Furthermore, having four parameters makes integrating the error in

the parametric domain too expensive as the number of FE solves is enormous (1814). As

a reference, in Fig. 4.19b we provide a convergence curve of the local error in space for

one given point in the parametric space, θOpt, that happens to be the optimal solution

found as described next.

(a) Amplitude evolution for ξ = 10−4 (b) Relative error measured at optimal solution θOpt

Figure 4.19: Amplitude of the PGD modes and the error in space measured in one para-
metric point

In this four-dimensional case it is not possible to visualize the objective functions and,

hence, finding the critical point of the failure criterion by inspection is not feasible; and

thus an optimization algorithm must be employed.

As we have seen in the previous example, the objective functions defined by the failure

criterion and the safety factor are not convex and local minima/maxima are present.

Applying a gradient-based method converges often very fast however there is always the

risk to be stuck in a local minimum/maximum if the initial guess is not close enough to

the optimal global solution. On the other hand, applying a global method such as the

Genetic Algorithm, leads to a global optimum with the price of a slow rate of conver-

gence. Therefore we obtain the optimal solution using a hybrid strategy performed in

two steps with the aim of minimizing the computation time. First we use the Genetic

Algorithm to perform a global minimization/maximization without large accuracy. Sec-

ond, we use a gradient-based method to reach the global minimum/maximum starting

from the solution of the first step. Both optimization methods are implemented using

general built-in Matlab functions (ga and fmincon functions). In the following, we focus

more on the optimization of the objective function involving the safety factor (λs) as it

yields more accurate results as discussed in Section 2.3. However, we will show some

results regarding the failure index (If) for comparison purposes.
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Figure 4.20: Optimal fibre orientations on the deformed domain obtained by a global
maximization of the safety factor λs using first the Genetic Algorithm and then a gradient-

based method.

The optimal fibre orientations are shown in Fig. 4.20 and presented in Table 4.1. The

result agrees well with the intuition that the fibres should encircle the hole where there

is stress concentration. Note that, the output angles of the optimization in Table 4.1 for

the Genetic Algorithm are integer numbers because the population of angles in the input

are integers as well. The number of evaluations of the objective function in this opti-

mization problem using the GA is approximately 100,000 out of a total around 1× 109

possible evaluations. Using this result as the initial guess for the gradient method, we

obtain a very robust and precise solution in an efficient way.

Optimal Angles
ga function fmincon function

θ1 −73° 42° −73.0371° 42.062°
θ2 4° 3° 3.9244° 2.9944°
θ3 −26° −22° −26.0131° −22.4586°
θ4 −88° −83° −87.9362° −84.1544°

Index value
min(If) =

1.4237
max(λs) =

0.8254
min(If) =

1.4235
max(λs) =

0.8255
CPU time ∼ 2 min ∼ 40 min ∼ 0.2 min ∼ 1 min

Table 4.1: Optimized angles for square plate with circular hole for different objective
functions.

We could deduce from Table 4.1 that the GA algorithm performs very well with a rela-

tively small number of evaluations in this particular example that we are solving. The

GA predicts efficiently the optimal solution very close to the global optimum for both

objective functions. The obtained solution is then a perfect choice as an initial guess for

the gradient-based method.

In Table 4.2, we could see the difference between the optimization of both the failure
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index and the safety factor when applying different load values. It is easy to notice

that the optimization results of the failure criterion are load dependent while the safety

factor results are consistent regardless of the load magnitude (as discussed in Section 2.3).

Optimal angles for different applied loads values
1250 kN 5000 kN

θ1 −73° 42° 83° 43°
θ2 4° 3° 6° 3°
θ3 −26° −22° −39° −20°
θ4 −88° −83° −80° −85°

Index value
min(If) =

1.4235
max(λs) =

0.8255
min(If) =

18.9261
max(λs) =

0.264

Table 4.2: Optimized angles for square plate with circular hole with different applied load
values.

In a nutshell, once the parametric solution is computed by PGD, its evaluation for

any parametric point is extremely fast and, therefore, it is possible to perform a very

large number of evaluations of the objective function within the optimization scheme.

Unfortunately in some cases, where the problem is very sensitive to the initial guess

when using a gradient-based method, we resort only to the Genetic Algorithm to ensure

accuracy which leads to more computational efforts.

Optimal angles maximizing the safety factor λs
using GA and a gradient-based method

# of
GA

evalua-
tions

100 1000 10, 000 1, 000, 000

Opt.
Func-
tion

ga fmincon ga fmincon ga fmincon ga fmincon

θ1 −79° −59.024° −58° −58.562° −57° −57.176° 42° 42.230°
θ2 35° 3.522° 3° 2.775° 2° 1.871° 3° 2.888°
θ3 31° −21.852° −19° −21.143° −22° −22.012° −21° −21.054°
θ4 −15° −79.962° −69° −85.388° −84° −83.835° −84° −84.949°

max(λs) 0.6847 0.8235 0.8199 0.8237 0.8236 0.8236 0.8254 0.8255

CPU
time

∼ 0.1
min

∼ 2
min

∼ 0.6
min

∼ 0.5
min

∼ 4.2
min

∼ 0.2
min

∼ 450
min

∼ 0.2
min

Table 4.3: Different GA precision yielding values used as initial guesses for the gradient-
based method

In Table 4.3, we present the maximized optimal solutions obtained using different num-

bers of evaluations of the safety factor λs with the aid of the Genetic Algorithm. The
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gradient-based solutions having the GA solutions as their initial guesses are also pre-

sented. It is evident that for this particular problem we reach the global solution with

100,000 evaluations of the objective function as shown earlier in Table 4.1.

This is confirmed when we converge to the same solution even after increasing the preci-

sion of the GA by employing 106 evaluations as shown in Table 4.3. In the case with high

precision, the use of a gradient-based method with the GA solution as an input becomes

a complementary step to ensure convergence. On the other hand, when applying the GA

with low precision (i.e. small number of evaluations) and then introduce the solution to

the gradient-based method as initial guess, we diverge from the global optimal solution

due to the existence of local maxima.

Figure 4.21: Symmetric half of a square plate with a circular hole subdivided in 8 patches

The third example of the current section involves eight parameters shown in Fig. 4.21.

The plate is divided into eight sub-domains, each one with its independent fibre orienta-

tion determined by the corresponding parameter θi ∈ Ii with i = 1 . . . 8; where the range

of all parameters θi, is Ii = [−90°, 90°] yielding 181 parametric nodes.

Note that the discretization of the coupled eight-dimensional parametric space would

require 1818 > 1018 points, whereas the separated representation requires 181×8 points.

The parametric part of the solution is stored in 181× 8×m points, being m the number

of terms used in the solution (384 for the compressed solution for this example).

The parametric PGD solution has been computed with the same tolerances as in the

previous examples and, after compression, the solution has 384 modes. The amplitudes

of the modes of the compressed solution are shown in Fig. 4.22a. We could easily ob-

serve that the number of modes needed for convergence increased with the number of

parameters as expected. Furthermore, having eight parameters makes integrating the

error in the parametric domain impossible as the number of standard FE solves for the

full parametric space is astronomical (1818). As a reference, in Fig. 4.22b we provide

a convergence curve of the error in space for different subsets of the parametric space

which are chosen randomly; except for the error measured at one set (the blue curve)
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(a) Amplitude evolution for ξ = 10−4 (b) Relative error measured at different subsets

Figure 4.22: Amplitude of the PGD compressed solution and the error in space measured
in one parametric point, θOpt, defined inTable 4.4

that happens to be the optimal solution found as shown in Table 4.4. We could notice

that the error is relatively high for the optimal set compared to the previous examples

with two and four parameters. This is expected as the parametric space is much larger

and therefore the percentage of contribution of one parametric point to the global er-

ror is much lower. Moreover, the more we include different parametric points in the

global error evaluation, the more the error decays. The optimal fibre orientations are

Figure 4.23: Optimal fibre orientation on deformed domain

shown in Fig. 4.23 and presented in Table 4.4. The results agree well with the previous

example, with the intuition that the fibres should be oriented around the hole. The

number of evaluations of the objective function in this optimization problem using the

GA is approximately 100,000 out of a total around 1× 1018 possible evaluations. As the

parametric space is very large, using a low precision GA and then the gradient-based

method does not give a good solution. Therefore, we only use the GA algorithm with
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high precision in this example.

Optimized angles of the safety factor using GA

# of GA
evaluations

1000 10, 000 100, 000 1, 000, 000

θ1 81° 86° 70° 84°
θ2 42° 43° 42° 41°
θ3 5° 6° 6° 4°
θ4 −6° 8° 8° −20°
θ5 −20° −21° −23° 17°
θ6 −24° −25° −26° −51°
θ7 −26° −25° −30° −61°
θ8 45° −86° −85° −82°

max(λs) 0.8249 0.8803 0.879 0.8501

CPU time ∼ 1.2 min ∼ 12 min ∼ 120 min ∼ 1300 min

Table 4.4: Different number of evaluations yielding different GA precision

The optimization problem is naturally evaluating the forward problem numerous times.

The great advantage of PGD is that, through the computational vademecum, the whole

parametric space is available and browsing it for any value of the set of parameters is

very fast. Generally speaking, mesh based techniques are more accurate than PGD,

however very expensive in a multi-query application, like optimization, especially when

the number parameters is large. Fig. 4.24 shows the CPU time needed for the PGD and

standard FE to explore the whole parametric space; and for standard FE to explore a

reduced parametric space (30% of the full parametric space). We could deduce from the

trend of the graph that the PGD is by far computationally cheaper than standard FE

when considering a number of parameters more than two.

We have already noticed in the current chapter that altering the domain sub-divisions

to assign different parameters changes the optimal solution. Since the choice of sub-

divisions is done manually based on intuition, therefore, in the next chapter we would

like to explore a little bit further a way to automatically choose the sub-divisions based

on a mechanical measure and see if we yield better optimal results.
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Figure 4.24: CPU time evolution of PGD vs standard FEM



Chapter 5

DOMAIN DECOMPOSITION

USING DATA ANALYSIS

TECHNIQUES FOR EFFICIENT

PGD PARAMETERIZATION

5.1 Preliminaries

Up until this point we have shown how the PGD framework obtains a generalized solution

for composite laminates parameterized with fibre orientations. To obtain the generalized

solution, it is necessary to parameterize it with the angles describing the fibres (that are

eventually optimized) and assign each angle to a predefined independent subdomain (e.g.

the 4 subdomains in Figure 4.18). Once the generalized solution is obtained and stored,

through the computational vademecum we could optimize the fibre orientations in the

initially chosen independent partitions (e.g. Figure 4.20). One possible drawback of the

methodology is that when we exceed a certain number of parameters (∼ 15 subdomains),

the PGD convergence in an acceptable time is not guaranteed. Thus, one should pay

attention on how to choose the partitions of the domain to efficiently parameterize the

problem. One possible way to smartly partition the domain is to group elements having

similar mechanical features. The partitioning occurs in a way such that each parameter

(i.e. the fibre orientation) is constant inside each subdomain where it is assigned. Thus,

a natural idea is to select the parameters such that the stress state tends to be also as

73
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uniform as possible in each subdomain. In order to identify zones where the stresses are

typically uniform, a large number of solutions of different configurations of the system is

analyzed, aiming at identifying the zones in which the variability of the stresses is least;

these zones are detected using clustering techniques. Once detected, the parametric

problem supported by this partitioning of the domain is solved with a PGD strategy and

the optimal values of the parameters are readily identified. Compared with the arbitrary,

regular domain partitioning (shown in Chapter 4), these new “smart” partitions result

in designs improving the objective functions (failure index), and therefore improving the

overall methodology.

Clustering is a fundamental data analysis tool that could be classified as an unsuper-

vised learning method. Clustering aims to automatically group elements having similar

features in a data set into coherent groups or clusters. Clustering is applied in many

fields such as:

• Medicine in image segmentation, differentiation between different types of tissue

[81, 82].

• Biology and bioinformatics [83].

• Business and marketing: in market research to group people with same taste or

needs for example [84].

• Climatology: to detect weather patterns [85].

There are many types of algorithms that perform clustering. These algorithms are dif-

ferent in their notion of what qualifies as a cluster and how to find it. One main clas-

sification is hard and soft clustering. Hard clustering is when an element in a cluster

cannot belong to two or more clusters. Soft clustering is when an element could be

assigned to different clusters like C-means algorithm [86]. We will focus in this thesis on

hard clustering algorithms such as K-means and hierarchical clustering. For the sake of

completeness, the K-means and the hierarchical clustering algorithms are explained in

detail in Appendix D.

The road-map of the current chapter is presented in Fig. 5.1.
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Chapter 5

5.1
Preliminaries

5.2 Clustering
optimization for

PGD:
motivation and

objectives

5.3
Introduction to

Additive
Manufacturing

(AM) and
experimental

validation

Figure 5.1: Structure of Chapter 5.

5.2 Clustering optimization for PGD: motivation and

objectives

In the previous chapter we showed the effect of increasing the number of parameters on

the optimal fibre orientation solution. It was shown that the more we increase the subdi-

visions (i.e. parameters), the more we represent the problem more accurately and obtain

better results in terms of the safety factor (or the failure index). A simple example in

Fig. 5.2 shows two different partitioning strategies, and it was found that even when we

partition the domain in a different way while maintaining the number of subdivisions

fixed, we obtain different optimal results; with an increase in the safety factor by ∼ 25%.

Furthermore, when we increased the number of partitions from four (as in Fig. 5.2a) to
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(a) symmetrically partitioned domain (b) Shifted partitioned domain

Figure 5.2: Example of two partitioned domain with four sub-divisions

eight subdivisions (as in Fig. 4.21) while maintaining the same symmetrical partition-

ing strategy, there was also an improvement in the safety factor by ∼ 7%. We could

easily deduce that both changing the partitioning patterns and increasing the number

of partitions affects the safety factor index and, consequently, affects the optimal fibre

orientation results. Since the PGD convergence becomes slow after a certain number of

parameters (∼ 15 parameters), therefore, we are interested in maximizing the usage of

the “limited” number of possible subdomains (i.e. parameters). Moreover, in the pre-

vious chapter, the choice of the subdomains was always based on intuition and it is not

necessarily the most descriptive partitioning of the domain especially when the structure

under investigation has a complex stress distribution and it is difficult to predict it. As

a result and in an attempt to have more descriptive subdivisions, we perform an analysis

of the domain prior to parametrizing and solving the problem using PGD.

The preanalysis consists of collecting as much data as possible, e.g. the stress compo-

nents, by taking snapshots of the system in different fibre orientations. Note that each

element of the FE mesh could have an independent fibre orientation in the preanalysis

when taking the snapshots in order to have a more descriptive data. We then reduce the

dimensionality of the collected data using Principal Component Analysis (PCA), and

we also obtain the most important uncorrelated modes representing the data. Finally

we perform some clustering analysis and clustering optimization using the factors (or

modes) obtained from PCA that are computed based on the collected data. For our

problem, we collect the stress components and the safety factor index (λs) for each el-

ement for different snapshots of the system. All these steps would be considered as a

pre-process, before solving the mechanical and the optimization problems using PGD.

Inspired by the work of Alaimo et al. [22], we could explain the clustering optimization

process in four main steps as follows:

(1) Preanalyses: snapshots of the system’s stresses and safety factor index evaluated

at each finite element for different orientations are taken and stored.
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(2) Principal Component Analysis: responsible for the data transformation from

correlated fields to uncorrelated new components which describe the problem in a

lower dimension.

(3) Clustering of factors and their intersection: the clustering techniques are

applied to the factors (components) obtained from PCA.

(4) Error computation and clustering optimization: clustering optimization in

order to find the best clusters representing the data.

For the sake of clarity and completeness, we will go through each point in detail.

5.2.1 Preanalyses

The main goal of the preanalyses step is to calculate quantities that represent the me-

chanical response of the system in order to decompose the domain into groups or patches

of elements based on mechanical measures. We will build our data set by pre-computing

the stresses and the safety factor index in each finite element for a given set of different

fibre orientations using standard FE. It is important to note that the more we collect

data, the more we will have accuracy in our results but with the price of increasing the

computational cost. It is possible to assume that each finite element is independent from

the others in terms of fibre orientation in a single snapshot to have a better description

of the problem, however, this yields computationally very expensive preanalyses. Since,

we would like to minimize the computational burden in the preanalyses step, and we

aim only at having a general description of the domain, we will assume that all the finite

elements have the same orientation in a single snapshot as shown in Fig. 5.3.

(a) Fibres at 0° (b) Fibres at 70° (c) Fibre at −45°

Figure 5.3: Snapshots of different fibre orientations in the domain

The idea now is to solve the system at different values of the fibre orientations and the

stresses and safety factor evaluated at the centre of each element are then stored. In this

manner we end up with matrices or vectors of data for each snapshot (i.e. each fibre

orientation) having the size of nel × 6 for the stresses and nel × 1 for the safety factor

where nel is the total number of elements in our FE mesh. The six components of the

stresses are reduced to three by taking only the in-plane components to minimize the
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computational burden. We could then arrange the data in two different data matrices

that we will denote as σ̃ and λ̃s for stresses and the safety factor respectively. Each of

the raw data matrices is composed of nel rows and Nc columns. For example if we take 50

snapshots of the system, then the size of the stresses data matrix will be nel × Nc where

Nc = 150 because for each snapshot we store 3 stress components yielding Nc = 3 × 50

columns. Whereas for the safety factor data matrix will be nel × 50 as each snapshot

we store one vector containing the safety factor values at the centre of each element. It

is argued in [87] that the K-means algorithm, which we will apply in our analyses, is

sensitive to the skewness of the data and could give inaccurate or even wrong results. It

is then important to verify first if the data collected is balanced or not before performing

any kind of analysis on it. We resort to histograms plots where we show the distribution

of the data. It turns out that the stress raw data distribution is balanced while the

distribution of the safety factor raw data is very skewed as shown in Fig. 5.4. The

(a) Histogram of stress raw data σ̃ (b) Histogram of safety factor raw data λ̃s

Figure 5.4: Raw data distribution histograms

common practice and the easiest way to overcome this issue is to transform the safety

factor raw data. There are many ways to do transformation of data that could be found

in the literature. We will adopt one of the most popular transformations that is called

the power transformation, and namely, we will apply the logarithmic operator on the

data. After applying the transformation, the data becomes more balanced as shown in

Fig. 5.5. Once we have obtained the data matrices, we could possibly apply PCA to

them in order to convert the correlated quantities to uncorrelated ones. By doing so, we

ensure that we could remove any redundancy in the data and only work with the most

informative unique components as we will see in the next subsection.

5.2.2 Principal Component Analysis

PCA is one of the oldest and best known of the techniques of multivariate analysis [88].

The idea behind PCA is to reduce the dimensionality of the data set having correlated
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Figure 5.5: Histogram of the transformed safety factor raw data log(λ̃s)

variables while attempting to keep its variance as much as possible. The dimensionality

reduction is necessary as it certainly saves up computer memory and speeds up our al-

gorithms. The reduction of the data using PCA produces a new set of variables, called

factors or principal components, that are uncorrelated. The most important information

(the most variation of all the data) is held in the first few components [88].

In Fig. 5.6a is an example of a data set (blue dots) having only two features. What PCA

does is that it approximates the original data set by projecting it on a new line, that is

the black line passing through the data in Fig. 5.6b. PCA tries to find the best line that

minimizes the projection error, i.e. the sum of squared distance (the red lines) between

the data (blue dots) and the newly projected data (red dots), while maintaining as much

as possible the variance of the data. Note that there is an equivalence between deriving

the principal components by minimizing the projection error or by maximizing the data

variance [89]. We can notice that in Fig. 5.6b is not a good fit as the variance of data

is low and the projection error between the blue dots and the black line is maximal.

Whereas in Fig. 5.6c, the data is very well spread, i.e. having high variance, and the

minimum projection error is reached. In this way we have reduced the dimensionality of

the data by representing two features with only one line (2D to 1D).

We could look at PCA as solving an eigenvalue-eigenvector problem, where we try to

find the direction (eigenvector) that maximizes the variance of the projected data. The

eigenvector maximizing the variance possesses the largest eigenvalue. In our case, we

particularly use Singular Value Decomposition (SVD) to find the eigenvectors and eigen-

values, as it was reported to be more stable numerically [88]. We could formulate then
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(a) Data set example (b) Data projection with low variance (c) Data projection with high variance

Figure 5.6: PCA example between two features

the problem in a general way as follows:

Σ =
1

m
XTX, (5.1)

whereX is a m×Nc generic data matrix that is equivalent to σ̃ or log(λ̃s) in our problem,

m is the total number of observations in the generic data matrix (nel in our problem),

and Σ is the covariance matrix.

Remark 5.1. Normally a generic raw data matrix X having features with different scales

should be normalized or standardized depending on the data distribution. It is a normal

pre-processing procedure and a common practice when applying PCA. However, in our

case, we use the raw data because we would like to keep the variability of the data as it

is and also because the data have the same scale and units.

Using the covariance matrix obtained from (5.1), we obtain the eigenvalues λi and the

corresponding eigenvectors vi, with i = 1, . . . , Nc, which we then use to determine our

principal components (or factors). It is important to note that in order to have a well-

defined problem, this relation must hold vTv = 1. Now we could define the factors

(principal components) as follow,

fi = Xvi, (5.2)

with the eigenvalues expressed in terms of the obtained factors as follows,

λi =
1

m

m∑
j=1

(fij − f̂
i
)2, (5.3)

where f̂
i

is the mean of fi. The eigenvalues obtained from PCA are normally ordered

in descending order (i.e. λ1 > λ2 > . . . , λNc). Consequently, the first factors have

more importance by having the most variance of the data (see proof in Appendix E).

Furthermore, it is worth mentioning that the eigenvectors are orthogonal which ensures
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there is no redundancy of data between the factors obtained. The evolution of the

cumulative variance against the number of factors computed for the stresses, σ̃, and the

transformed safety factor data, log(λ̃s), is illustrated in Fig. 5.7.

(a) Stress based curve (b) Transformed safety factor based curve

Figure 5.7: Evolution of the cumulative variance with the number of factors

Fig. 5.7 is very important as it shows us the percentage of the total variance that we get

when we accumulate the information from the factors and accordingly we decide how

many factors to consider in our analysis. It is shown that three factors cover more than

95% of the cumulative variance of the data while four factors cover more than 97% of

the data.

In our analysis in the following sub-sections, we choose to use four factors as they cover

a satisfactory percentage of the total cumulative variance of the raw data leading to

both accuracy and computational efficiency. In Fig. 5.8 we show the first four factors

obtained from applying PCA, according to Eq. (5.2), on the stress raw data, σ̃. Similarly,

in Fig. 5.9 we show the first four factors obtained from applying PCA on the transformed

safety factor raw data, log(λ̃s). For completeness, we will also show the factors obtained

from applying PCA on the safety factor data before transformation and its clustering in

Appendix F.
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(a) Factor 1 (b) Factor 2

(c) Factor 3 (d) Factor 4

Figure 5.8: The first four factors obtained from applying PCA on stress raw data
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(a) Factor 1 (b) Factor 2

(c) Factor 3 (d) Factor 4

Figure 5.9: The first four factors obtained from applying PCA on the transformed safety
factor raw data matrix log(λ̃s)

In the next sub-section we show how the obtained factors are divided into sub-clusters

using the clustering techniques introduced earlier in this chapter.
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5.2.3 Clustering of factors and their intersection

The factors obtained from applying PCA on the stress and the transformed safety factor

data are clustered using K-means and Ward’s method. We use both clustering tech-

niques for a brief comparison. We also cluster factors based on both stresses and safety

factor data to have an insight at the end about which mechanical measure would lead to

a better domain partitioning and accordingly better optimization results.

In the following, each factor is divided into a different number of sub-clusters. In Fig. 5.10

and Fig. 5.11, we show two, three, and four divisions for each factor of the stress raw data

previously shown in Fig. 5.8 using K-means and Ward’s method respectively. Similarly,

in Fig. 5.12 and Fig. 5.13, we show two, three, and four divisions for each factor of the

transformed safety factor raw data in Fig. 5.9 using K-means and Ward’s method respec-

tively. Note that each finite element belongs to one of these sub-clusters and is marked

with a circle at the centre of the element. We chose a maximum number of divisions equal

to four for each factor to reduce the computational burden. After clustering the factors,

the idea is to intersect them together for every possible combination of sub-divisions so

we could get a set of global sub-divisions of the domain. We will call each intersection

of the four factors a partition and we will denote it by P where all the partitions belong

to a set P. The size of the set P varies with the number of divisions per factor and the

total number of factors chosen. For example, if four factors are sub-clustered up to eight

divisions, the set P would possess 84 partitions (possible combinations).

From Figs. 5.10 to 5.13, we show the division of the factors based on the stress and the

safety factor raw data using K-means and Ward’s clustering techniques. We could detect

just by eye-balling the figures that both clustering techniques behave almost similarly.

We could also see that it is possible to have some elements belonging to the same cluster

but disconnected in the spatial domain. This is because we cluster the data based on

the values of the factors obtained from PCA not based on the location of the element in

the domain.
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(a) Factor 1

(b) Factor 2

(c) Factor 3

(d) Factor 4

Figure 5.10: Clustering of the first four factors obtained from applying PCA on the stresses
raw data matrix using K-means. Each factor is divided into 2,3,4 clusters from left to right.
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(a) Factor 1

(b) Factor 2

(c) Factor 3

(d) Factor 4

Figure 5.11: Clustering of the first four factors obtained from applying PCA on the stresses
raw data matrix using Ward’s method. Each factor is divided into 2,3,4 clusters from left

to right.
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(a) Factor 1

(b) Factor 2

(c) Factor 3

(d) Factor 4

Figure 5.12: Clustering of the first four factors obtained from applying PCA on the
transformed safety factor raw data matrix using K-means. Each factor is divided into 2,3,4

clusters from left to right.
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(a) Factor 1

(b) Factor 2

(c) Factor 3

(d) Factor 4

Figure 5.13: Clustering of the first four factors obtained from applying PCA on the
transformed safety factor raw data matrix using Ward’s method. Each factor is divided

into 2,3,4 clusters from left to right.

At this point we have clustered the first four factors obtained from PCA based on the

stress data and the transformed safety factor data. The next step is to intersect those

factors together to get all the possible combinations of partitions P that will constitute

the set of partitions P. Since we adopt four factors, based on Fig. 5.7, as it was enough

to represent the data and each factor was sub-divided maximum into four clusters; then

the possible partitioning from intersecting the factors ranges from 1 to 44 possibilities.
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An example of intersection is shown Fig. 5.14, where the number of clusters for factors

1,2,3,4 is 1,2,1,4 respectively. Note that we neglected factors one and three in Fig. 5.14

since they only have 1 cluster each.

Figure 5.14: Partition with 8 clusters resulting from the intersection of 4 factors where
each of them was clustered using Ward’s method. The number of clusters for factors 1,2,3,4

is 1,2,1,4 respectively.

5.2.4 Error computation and clustering optimization

In order to find the “best” intersection of factors we need to perform a clustering opti-

mization based on a given error measure. The idea is to find the partition possessing the

minimum within cluster variance, leading to more homogeneous partitions in terms of

the mechanical measure used. In order to achieve such goal, we use the Sum of Squares

Error (SSE). SSE is a measure of discrepancy between the data of an element (the stress

data or the safety factor data) and the average of the data in the cluster where the ele-

ment belongs. Thus, for a domain having a number of clusters as many as the number of

elements, the SSE measure is equal to zero. Moreover, if all the elements in a cluster are

the same, then also the SSE would be zero. SSE will be used as an optimality criterion

in our problem such that the clusters in a given partition possess elements that are very

similar to each other. The smaller is the SSE measure, the better is the partitioning of

the domain and the clusters are more uniform.

Following the work done by Alaimo et al. [22], we will show how the SSE is computed

for the stress raw data knowing that the same procedure is followed for any kind of raw

data matrix. We first define the total maximum error over all the stress components of

the data matrix σ̃ yielding,

Emax =
Nc∑
s=1

nel∑
i=1

(σ̃si − σ̃s)2, (5.4)

where the σ̃s is the mean of the s-th stress data matrix component. We compute now

the error in each sub-cluster of a given partition P having more than one cluster in it.
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The error associated with the s-th component of σ̃s reads,

Es(P) =
1

Emax

ns∑
`=1

n`(P)∑
i=1

(σ̃si − σ̃s,`)
2, (5.5)

where n`(P) and σ̃s,` are the number of elements and the mean value of the s-th component

of the stress within the `-th cluster, respectively; and ns is the total number of clusters

in each partition P . Now, we could compute the global error as follows:

E(P) =
Nc∑
s=1

Es(P) =
1

Emax

Nc∑
s=1

ns∑
`=1

n`(P)∑
i=1

(σ̃si − σ̃s,`)
2. (5.6)

Exactly a similar procedure is followed to evaluate the SSE for the partitions obtained

from the intersection of the factors that are based on the transformed safety factor raw

data. It is worth noting that if each finite element is a cluster on its own (ns = nel), we

get the lowest global SSE (E(P) = 0%) while the maximum global SSE (E(P) = 100%)

is when partition P consists of only one cluster. Consequently, it is a trade off between

the global SSE and the number of clusters because the more we decrease the SSE, the

number of cluster increases and vice versa. Accordingly, the goal is to simultaneously

minimize the total global SSE, E(P), to have accurate results and minimize the number

of clusters for computational efficiency. According to Alaimo et al. [22], the clustering

multi-objective optimization problem could be defined as follows:

Let the superscript ”Opt” indicate optimality, find POpt such that,

POpt = argmin
P
{E(P), ns(P)} s.t. P ∈ P. (5.7)

As argued in [22], there is not a single partition that represents a global minimum of

the problem which leads to a Pareto optimality situation. A Pareto optimality is a

situation where improving a criterion cannot happen without making another criterion

worse. What we are aiming for is to obtain a Pareto set or Pareto front which is the set

having optimization solutions that are superior to the rest of the solutions in the search

space P while the solutions among the Pareto set do not dominate each other [90]. Note

that, a partition P1 is said to dominate another partition P2 only when the following

inequalities hold [22]:

E(P1) ≤ E(P2) and ns(P1) ≤ ns(P2) (5.8a)

E(P1) < E(P2) or ns(P1) < ns(P2). (5.8b)
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The optimization problem in (5.7) is solved with Algorithm 5.1.

Algorithm 5.1: Pseudo-code for clustering optimization algorithm

Input : Set of partitions P, Maximum number of clusters, stress raw data, transformed
safety factor raw data

Output: Clustering solutions, Pareto set

(1) Set ns = 1

(2)

while ns ≤ Maximum number of clusters do

(2.1) Extract all the partitions P from the set P that are sub-divided into ns clusters

(2.2) Compute the corresponding global error E(P) as shown in (5.6)

(2.3) Store the errors of all the partitions

(3) Apply Eq. (5.8a) and Eq. (5.8b) to obtain the Pareto set

We run the algorithm for both the K-means and Ward’s method clusters. The output

from the algorithm is all the possible clustering solutions based on the set of partitions

P, as shown in Fig. 5.15 and Fig. 5.16, where the blue dots represent the clustering

solutions and the red ones represent the the Pareto set. As explained in Appendix D.1,

K-means algorithm is very efficient, however, it has got an element of randomness due

to the random initialization of the centroids. A common practice to overcome this issue

and to ensure we converge to the correct results is to run the K-means algorithm several

times and take the best output. This leads only to a bigger set of partitions P, but the

procedure is exactly the same.

In our problem, we have run the K-means 10 times and monitored the clustering solutions

as shown in Fig. 5.15c and Fig. 5.15d. It was found that there is a very slight improvement

in terms of the global error E(P) as shown in Table 5.1.
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(a) Stress based Pareto set with a single run (b) Safety factor based Pareto set with a single run

(c) Stress based Pareto set with 10 runs (d) Safety factor based Pareto set with 10 runs

Figure 5.15: Clustering optimization solutions obtained from Algorithm 5.1 using K-means
with a single run and 10 runs.

,

Pareto set error comparison
Stress based clusters Safety factor based clusters

4 clusters 8 clusters 4 clusters 8 clusters
K-means
single run

38% 29% 11.5% 9.5%

K-means 10
runs

37% 29% 11.2% 9.1%

Ward’s
method

41% 26% 11.9% 9.3%

Table 5.1: Pareto set error comparison between K-means with a single run, K-means with
10 runs, and Ward’s method
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(a) Stress based Pareto set (b) Safety factor based Pareto set

Figure 5.16: Clustering optimization solutions obtained from Algorithm 5.1 using Ward’s
method

It can be deduced by visually comparing Fig. 5.16 with Fig. 5.15 and from the errors

shown in Table 5.1 that Ward’s method’s results are very close to the ones obtained

by K-means. Consequently, it is essential to test the clustering solutions obtained from

both methods on the original PGD problem to decide which clustering technique is

performing better for our optimization problem. The idea now is to run the PGD with

the parameterized fibre orientations assigned to partitions obtained from the clustering

results. The outcome of the test would be the optimal fibre orientation and we will

also compare it with the optimal fibre orientation obtained from the PGD without the

clustering analysis presented in Chapter 4.

5.2.5 Fibre orientation optimal results

In the current section, we show the optimal fibre orientation solutions obtained us-

ing PGD, where the domain is partitioned based on the obtained optimized clusters.

In Figs. 5.17 and 5.18, we illustrate the domains with four and eight parameters (sub-

domains) that were in the Pareto set obtained based on the K-means and Ward’s method

clustering optimization of both the stress and the transformed safety factor data. The

clustered domains are used as input for the PGD, and the different clusters are param-

eterized with different independent fibre orientations to be optimized.

It was found out that the optimal fibre orientations results, obtained using PGD, based

on the domains in Figs. 5.17a, 5.17d, 5.18a and 5.18b are better than the ones obtained

in Chapter 4 in the examples with the domains partitioned based on intuition (as in

Fig. 4.18 and Fig. 4.21). This outcome results from the measurement of the failure onset

index, that is the safety factor index (λs) explained in Chapter 2 by Eq. (2.42), corre-

sponding to the optimal fibre orientation. The comparison between different findings

based on different partitioning of the domain is shown in Table 5.2. Recalling that the

optimization objective in Chapter 2 consists in maximizing the safety factor index λs,



Chapter 5. PGD and clustering techniques 94

(a) K-means with 4 parameters (b) K-means with 8 parameters

(c) Ward’s with 4 parameters (d) Ward’s with 8 parameters

Figure 5.17: Domain parameterization for PGD solver based on the clustering optimization
of the stress data using: K-means in (a) & (b) and Ward’s method in (c) & (d)

therefore, the higher the value of λs the better our results are.

Domain Domain
with 4 parameters with 8 parameters

Stress based clustering with K-means 0.7863 0.8788
Stress based clustering with Ward’s 0.8653 0.9037

Transformed safety factor clustering with K-means 1.013 0.9934
Transformed safety factor clustering with Ward’s 0.7973 0.8244

Based on intuition (Chapter 4) 0.8254 0.879

Table 5.2: Safety factor index λs obtained from PGD based on different domain parame-
terization shown in Fig. 5.17 and Fig. 5.18

As shown in Table 5.2, the PGD result based on the clustered domains show a significant

improvement. There is an increase of 23% in the safety factor index value, for the 4

parameter domain, whereas there is an increase of 13% in the safety factor index value,
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(a) K-means with 4 parameters (b) K-means with 8 parameters

(c) Ward’s with 4 parameters (d) Ward’s with 8 parameters

Figure 5.18: Domain parameterization for PGD solver based on the clustering optimization
of the transformed safety factor data using: K-means in (a) & (b) and Ward’s method in

(c) & (d)

for the 8 parameter domain, compared to the results obtained in Chapter 4. The optimal

fibre orientation resulting from PGD based on the domains in Figs. 5.18a and 5.18b is

shown in Figs. 5.19a and 5.19c. It can be seen that there are jumps in the fibre orientation

between patches. In an attempt to reduce fibre discontinuities and avoid big angle jumps

between elements with the aim of having a more homogeneous distribution of fibres, we

resort to the application of a filter as follows:

θ̃ = Hθ, (5.9)

where θ̃ is the nel × 1 filtered angle vector and H is the nel × nel filter matrix. The

filter matrix holds the weight coefficients relating the filtered angle at a given element
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(a) Optimal discontinuous fibres for domain in Fig. 5.18a (b) Filtered fibre orientation corresponding to (a)

(c) Optimal discontinuous fibres for domain in Fig. 5.18b (d) Filtered fibre orientation corresponding to (c)

Figure 5.19: Example of optimal fibre orientation for domains with 4 and 8 parameters
obtained using the clustering of the safety factor via K-means

with the angles at the neighbouring elements and it has the following form:

Hij =
h(i, j)vj∑nel
k h(i, k)vk

with h(i, j) = max
{

0, [rmin − dist(i, j)q]
}
,

(5.10)

where vi is the volume of the i-th element, rmin is a user defined radius defining the

application region of the filter, dist(i, j) is a distance measure between θ̃i and θj, and

finally q is an exponent defining the order of the filter’s weighting function as shown

in Fig. 5.20. The output for a radius of rmin = 10, which is almost including three

neighbouring elements, is shown in the schematics in Fig. 5.19b and Fig. 5.19d where

the arrows originating from the centre of each element indicate the direction of the fibres

at the corresponding element.
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(a) Linear filter (b) Quadratic filter (c) Cubic filter

Figure 5.20: Weighting functions example. Illustration adapted from [3]

5.3 Introduction to Additive Manufacturing (AM) and

experimental validation

In the previous sections it was shown the importance of clustering analysis, and it was

shown that it has a direct impact on the optimal fibre orientation in composite laminates

obtained using PGD. It is also shown that the new optimal solutions are highly complex

in terms of fibre orientation with large discontinuities between sub-domains which makes

its manufacturing challenging. Thanks to the Additive Manufacturing (AM) technology

(also called 3D printing technology), this kind of complex domains could be realized in

a short amount of time with very high precision.

The AM process is illustrated in Fig. 5.21 (illustration adapted from [91]) and it consists

of five main steps. It starts with a 3D CAD model where the part to be printed is

designed. The CAD file is then converted to an stereolithography file (STL file). The

STL file describes the triangulated surface of the 3D object in terms of unit normals

and vertices. The STL file is then introduced to another software called a slicer. The

slicer’s job is to take the 3D object and slice it into 2D layers. The slicing step is of

paramount importance as it also defines the path by which the layers will be printed.

The slicing process outputs a file called the G-Code which holds the set of instructions

that needs to be sent to the 3D printer in order to manufacture the part. The G-Code

file contains valuable information obtained from the slicing process such as the printing

path, printing patterns, layer thickness, and printing density, to name a few. Once the

G-Code is passed to the 3D printer, the machine starts to build the actual 3D model

layer by layer until the part is completed. A final step is to finish and post-process the

part and the type of post-processing depends on the printing technology used.

There are many types of AM technologies nowadays in the industry, and they could be

classified based on the way the material is fed to the printer, the type of materials used,

or layer formation technique. Examples of AM technologies are Stereolithography (SLA),
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Figure 5.21: The Additive Manufacturing (AM) process.

Fused Deposition Modelling (FDM), Selective Laster Sintering (SLS), Laminated Object

Manufacturing (LOM), to name a few. The interested reader should refer to [92] and

the references therein. Since our work in this thesis is on fibrous composite laminates,

then we will briefly introduce the FDM technology which uses filament deposition to

produce the printed components and it is one of the most widely used technologies for

3D printing [93].

Figure 5.22: FDM technology system scheme
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FDM is by far the most common AM technology that is based on extrusion of material

[92]. In Fig. 5.22, we can observe the complete system scheme. FDM uses thermoplastic

molten filament to feed the system and the filament is pushed via a tractor-pulley system

which generates the extrusion pressure. Most FDM based machines have two sets of

extruder heads with, for example, one for a thick nozzle and another for a thinner one.

The filament is then deposited on the bed of the machine where it rests there to solidify.

The deposition of the material in one layer occurs in two main steps. First, a matrix

defining the borders of the layer is deposited, and then the material filling of that matrix

also referred to as infill. In the same manner, the material is deposited for each layer

until the desired part is ready. An important design consideration when using FDM is to

take into account the mechanical properties of the part that change due to the filament

deposition orientation. By nature, the filaments are stronger in one direction over the

other and, therefore, the filling pattern is crucial to the design.

The definition of the filament infill patterns is part of the slicing process. There exists

many slicing commercial software with built-in predefined printing patterns, such as

rectilinear, concentric, triangular, honeycomb, grid, and zigzag as shown in Fig. 5.23.

Figure 5.23: Common infill patterns found in commercial software

The predefined patterns give the designer a limited choice when taking into account the

mechanical properties of the component. As it was shown in the previous sections that

the optimal fibre orientation could have a complex shape and discontinuous regions of

fibres with different orientation. In an attempt to explore the possibility of obtaining

customized infill patterns based on the optimization undergone in the past sections, we

took a preliminary step to modify the open source C++ slicing software CuraEngine. The

modification is very simple, it consists in modifying the infill function in the code so we

could get a different infill pattern for each layer based on a given list of angles. We tried

the modified function on a cube with six layers, where we have one layer of a grid type
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pattern of −45°/45° and the rest of the stacking sequence is −45°/30°/60°/45°/90° for

layers 2,3, 4, 5, and 6 respectively. The output is generated using Repetier-host© for

illustration and it is shown in Fig. 5.24.

(a) Layer 1 with grid pattern 45°− 45° (b) Layer 2 with line pattern −45°

(c) Layer 3 with line pattern 30° (d) Layer 4 with line pattern 45°

(e) Layer 5 with line pattern 60° (f) Layer 6 with line pattern 90°

Figure 5.24: Example of a cube with custom infill pattern generated by modifying the
slicing software CuraEngine

By doing so, we open the door for editing the slicing software to get a specific desired

pattern and possibly continuous fibre orientation which is a very active area of research

nowadays [94], however, this will not be in the scope of this thesis and is considered as

part of the future work.

In the following we present the output of preliminary experimental tests undergone for

the specimen simulated in the present chapter. The experimental tests are crucial for

the validation of the clustering optimization and the methodology in general. At this

point, we have already obtained the optimal results as shown in Figs. 4.20 and 5.19a.
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The aim of the tests is to experimentally demonstrate that the optimal results obtained

using a domain partitioned based on clustering are better than the ones obtained using

a symmetrically partitioned domain. The comparison between the domains occurs by

monitoring the loads at which the specimens exhibit failure during the tensile test. The

experimental validation is done in three main steps:

(1) Simulation and analysis: The first step is to run the model, which we have

already done by now, to obtain the optimal fibre orientation in different domains

(shown in Fig. 5.25).

(2) Specimen preparation and 3D printing: The specimen preparation consists

in designing the grips of the component where the tensile testing machine would

clamp the component (shown in Fig. 5.26). It also consists in preparing the STL

files of the components to be printed and slicing the part for the G-Code generation.

(3) Tensile test and monitor results: Set up the 3D printed part on the tensile

testing machine, perform traction until first point failure occurs, and then record

the corresponding load for comparison.

(a) Symmetrical partitioning (b) Clustering based partitioning

Figure 5.25: Optimal fibre orientation for domains based on symmetrical partitioning and
on clustering results using ABS material

So far in the current thesis, we have been using carbon fibre reinforced ABS material

data throughout all our simulations. However, for the sake of 3D printing and testing,

and due to material availability, the material used in the test is ABS instead of CF-ABS

and , therefore, we simulated the same problem for different material properties corre-

sponding to ABS characteristics that are shown in [95]. The optimal results obtained

from PGD for a symmetrically partitioned and cluster based partitioned domains using

ABS material properties are shown in Fig. 5.25.

The specimen preparation step consists in designing extra parts at the extremities of the

structure where the testing machine would grip as shown in Fig. 5.26. The grip section

in the specimen should be tapered not to have any stress concentrations. Furthermore,
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Figure 5.26: Component designed with grips for the tensile test

there is the need to provide the slicing software with different STL files where each file

corresponds to a different zone in the structure having a different fibre orientation. We

used the commercial software Abaqus to perform the aforementioned preparation steps.

(a) Symmetrical partitioning

(b) Clustering based partitioning

Figure 5.27: Optimal fibre orientation for domains based on symmetrical partitioning and
on clustering results using ABS material

The slicing of the parts is performed using CuraEngine slicing software. We provide the

slicing software with the STL files and their corresponding fibre orientations, and we
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ultimately obtain the G-Codes. In Fig. 5.27, we show the 3D printed components for

both the manually partitioned and the cluster based partitioned parts.

The tensile test undergone consisted in pulling the specimens from both grips until failure.

The test results show great agreement with the methodology showing an enhancement in

the load bearing capacity of the structure. The load against extension curve is shown in

Fig. 5.28. We could observe that the structure optimized based on the clustering analysis

partitioning breaks at a load ∼ 1370 N where the structure that was partitioned manually

breaks at a load ∼ 1070 N yielding a 22% increase in the load carrying capacity. The

failure in each of the structures occurs suddenly in a brittle-like failure mode due to the

discontinuity of fibres between zones as shown in Fig. 5.29. This confirms the compelling

need for continuous fibre manufacturing to avoid breaks at the interfaces between zones

in specimens.

Figure 5.28: Load vs extension curves for specimens with symmetrical and clustered based
partitioning
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(a) Symmetrical partitioning

(b) Clustering based partitioning

Figure 5.29: Failure of structure for domains based on symmetrical partitioning and on
clustering resulting from tensile tests



Chapter 6

CONCLUDING REMARKS

6.1 Summary

The current dissertation presents a new methodology with the intention of obtaining

generalized solutions for the deformation of composite laminates parameterized with fi-

bre orientations using the Proper Generalized Decomposition (PGD) framework. The

aim is to optimize the fibre orientation in composite laminates, with an affordable com-

putational cost, to improve the macro-mechanics of the laminate. This is relevant for

the mechanical optimization of additively manufactured components. The main ingredi-

ents of this multidisciplinary research include solid mechanics, failure theories, numerical

methods, optimization techniques, reduced order modelling techniques, additive manu-

facturing, experimental testing, coupling and development of computer codes, and ma-

chine learning techniques for data analysis. In the following, we present some concluding

remarks on the work presented and a list of future work ideas.

6.2 Concluding remarks

The problem statement including the governing equations, the Tsai-Wu failure theory,

and the optimization problem, is introduced in Chapter 2. A FE 3D model for anisotropic
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material was developed in Matlab from scratch. The model was validated against the

commercial software Abaqus which was further used for mesh generation. The model

behaves very well and has been tested using different benchmark tests. The optimality

of the structure is determined here using the Tsai-Wu failure criterion that in practice

produces objective functions that are non-convex. An evolutionary optimization method

is applied, namely the genetic algorithm, to search for the global solution; and, there-

fore, the problem becomes expensive and many evaluations of the objective function are

required. Consequently, we resort to Model Order Reduction (MOR) techniques and

namely the PGD framework.

A novel encapsulated PGD approach [51] is presented in Chapter 3. The proposed ap-

proach is able to handle cases where the application of standard discretization techniques

would be impractical due to its computational burden. We used an in-house package of

routines developed using Matlab to obtain generalized solutions, known as computational

vademecum, for composite laminates that are parameterized in the fibre orientation. We

obtained the affine decomposition of the elasticity and transformation tensors to have a

separated stiffness matrix that is passed as an input to the PGD solver. We also extended

the code with a post-process algorithm that allows us to generate the vademecum for the

failure index of the laminate and then couple it with the optimization algorithm. The

failure vademecum enables us to browse the failure indices of a given problem extremely

fast and as many times as we want which is particularly very useful for any multi-query

application and, in our case, it is used for optimizing the fibre orientation of the com-

posite laminates. The extremely fast evaluation of the parametrized solution once it has

been obtained by PGD makes the optimization possible and efficient.

The methodology is tested through a series of numerical examples in Chapter 4. The

examples have been used to assess the potentiality of the methodology presented in the

thesis. The numerical simulations showed excellent results in problems with two, four,

and eight parameters with a significant reduction in the computational cost compared

to standard FE. We also concluded that the optimal solutions depend on the domain

partitioning chosen a priori.

Following the work of Alaimo et al. [22], in Chapter 5 we present the coupling between

the PGD and clustering techniques. The aim is to search for the best strategy for the

parameterization of the domain. This has been achieved by implementing a cluster-

ing optimization algorithm in Matlab that automatically finds the best sub-division of

the domain based on a mechanical measure. The algorithm uses Principal Component

Analysis (PCA) for dimensionality reduction and orthogonal decomposition of the data,

and uses both K-means and Ward’s method for clustering the data. The results showed

that the optimal clustering solutions yield better optimal fibre orientation results when

compared to the ones in Chapter 4 and, hence, indicating an improvement in the method-

ology. Finally, we concluded the work by briefly introducing additive manufacturing and
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exploring the possibility of editing the open source slicing software CuraEngine in or-

der to achieve desired printing patterns (fibre orientation). Moreover, we validated the

methodology in Chapter 5 by undergoing experimental tests comparing different parti-

tioning strategies.

6.3 Future work

The work presented in this thesis opens up other possible lines of research which can be

explored in the future. Some of these are

� Enhancement of the model:

Since only linear elasticity constitutive model is employed in this thesis, it is es-

sential to include non-linear and thermo-mechanical models to have a wider range

of applications. From the PGD point of view, it is also important to enhance

the vademecum by including geometrical parameterization, load location parame-

ter, and boundary conditions parameterization. By doing so, we would obtain a

more versatile model that would enable us to solve more complex geometries that

would meet the industrial needs. Another way to enhance the model is to perform

a multi-scale optimization analysis of fibre orientation problem by applying the

homogenization theory and coupling it with PGD.

� Programming languages:

From the programming point of view, the PGD package could be implemented using

high-efficiency languages such as C/C++ and/or FORTRAN. Moreover, modern

simulation applications on smartphones could be developed to make use of the fast

response of the PGD vademecums.

� Error estimation:

Obtaining an error estimator of a quantity of interest to be able to accurately

choose the stopping criterion for the greedy algorithm in the PGD. It would also

involve investigating the coupling of the stopping criteria of the greedy algorithm

with the alternated directions algorithm.

� Additive manufacturing:

The presented work also opens the door to explore the possibility of printing con-

tinuous fibres with the aim of enhancing the mechanical properties of 3D printed

components by avoiding jumps between partitions. We could also explore adaptive
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slicing in CuraEngine, that is the slicing process that allows the variation of layer

thickness according to the curvature of the model. The adaptive approach would

minimize the staircase effect and the printing time [96].



Appendix A

COLLECTION OF TERMS OF

THE ELASTICITY TENSOR

The collection of components process of the rotated elasticity tensor C(θ) is performed

by hand and with the aid of the symbolic tool of Matlab®. We will denote cos(θ) as c

and sin(θ) as s for ease of notation. The components are as follows for a transversely

isotropic material:

C11 =
1− ν23ν32

E2
2∆

c4

(c2 + s2)2
+

1− ν13ν31

E1E2∆

s4

(c2 + s2)2
+ 2

ν21 + ν23ν31 + 2E2
2G12∆

E2
2∆

c2s2

(c2 + s2)2

C12 = C21 = ν21+ν23ν31
E2

2∆
c4

(c2+s2)2
+ ν21+ν23ν31

E2
2∆

s4

(c2+s2)2
+

E1(1−ν23ν32)+E2(1−ν13ν31)−4E1E2
2G12∆

E1E2
2∆

c2s2

(c2+s2)2

C13 = C31 =
ν31 − ν21ν32

E2
2∆

c2 +
ν32 − ν12ν31

E1E2∆
s2

C16 = C61 =
1−ν21−ν23ν31−ν23ν32−2E2

2G12∆

E2
2∆

c3s
(c2+s2)2

+
−E2+E1ν21+E2ν13ν31+E1ν23ν31+2E1E2

2G12∆

E1E2
2∆

cs3

(c2+s2)2

C22 =
1− ν13ν31

E1E2∆

c4

(c2 + s2)2
+

1− ν23ν32

E2
2∆

s4

(c2 + s2)2
+

2E1ν21 + 2E1ν23ν31 + 4E1E
2
2G12∆

E1E2
2∆

c2s2

(c2 + s2)2

C23 = C32 =
ν31 − ν21ν32

E2
2∆

s2 +
ν32 + ν12ν31

E1E2∆
c2
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C26 = C62 =
−E2+E1ν21+E2ν13ν31+E1ν23ν31+2E1E2

2G12∆

E1E2
2∆

c3s
(c2+s2)2

+
E1−E1ν21−E1ν23ν31−E1ν23ν32−2E1E2

2G12∆

E1E2
2∆

cs3

(c2+s2)2

C33 =
1− ν12ν21

E1E2∆

C36 = C63 =
−E2(ν32 + ν12ν31) + E1(ν31 − ν21ν32)

E1E2
2∆

cs

(c2 + s2)2

C44 = G23
c2

(c2 + s2)2
+G13

s2
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C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0

with

∆ =
1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν31

E1E2
2



Appendix B

SEPARATION TERMS OF THE

ELASTICITY AND

TRANSFORMATION TENSORS

The separation of C results in the following summation for a given θi

C(θi) =
9∑
t=1

Ctφti(θi)

This expression expanded has 9 terms and has the following form

C(θi) =C1φ1
i (θi) +C2φ2

i (θi) +C3φ3
i (θi) +C4φ4

i (θi) + ...

C5φ5
i (θi) +C6φ6

i (θi) +C7φ7
i (θi) +C8φ8

i (θi) +C9φ9
i (θi)

The separation process of C to obtain the spatial terms and the parametric terms apart

was carried out by hand with the aid of the symbolic tool of Matlab®. In the following

we show each spatial term with its parametric function

C1 =



a11 a12 0 0 0 0

a22 0 0 0 0

0 0 0 0

Sym. 0 0 0

0 0

a66


φ1(θi) = cos4(θi)
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C2 =



b11 b12 0 0 0 0

b22 0 0 0 0

0 0 0 0

Sym. 0 0 0

0 0

b66


φ2(θi) = sin4(θi)

C3 =



d11 d12 0 0 0 0

d22 0 0 0 0

0 0 0 0

Sym. 0 0 0

0 0

d66


φ3(θi) = cos2(θi) sin2(θi)

C4 =



0 0 e13 0 0 0

0 e23 0 0 0

0 0 0 0

Sym. e44 0 0

e55 0

0


φ4(θi) = cos2(θi)

C5 =



0 0 g13 0 0 0

0 g23 0 0 0

0 0 0 0

Sym. g44 0 0

g55 0

0


φ5(θi) = sin2(θi)

C6 =



0 0 0 0 0 h16

0 0 0 0 h26

0 0 0 0

Sym. 0 0 0

0 0

0


φ6(θi) = cos3(θi) sin(θi)
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C7 =



0 0 0 0 0 k16

0 0 0 0 k26

0 0 0 0

Sym. 0 0 0

0 0

0


φ7(θi) = cos(θi) sin3(θi)

C8 =



0 0 0 0 0 0

0 0 0 0 0

0 0 0 l36

Sym. 0 l45 0

0 0

0


φ8(θi) = cos(θi) sin(θi)

C9 =



0 0 0 0 0 0

0 0 0 0 0

q33 0 0 0

Sym. 0 0 0

0 0

0


φ9(θi) = 1

Note that all the components a, b, d, e, g, h, k, l, q are function of the material character-

istics, i.e. Young’s moduli, shear moduli, and Poisson’s ratios, for transversely isotropic

material.

Similarly, the separation of the transformation matrix T results in the following summa-

tion for a given θi

T (θi) =
7∑
r=1

T rZr
i (θi)

This expression expanded has 7 terms and has the following form

T (θi) =T 1Z1
i (θi) + T 2Z2

i (θi) + T 3Z3
i (θi) + ...

T 4Z4
i (θi) + T 5Z5

i (θi) + T 6Z6
i (θi) + T 7Z7

i (θi)
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It is shown next the spatial parts of T each with its parametric function

T 1 =



1 0 0 0 0 0

1 0 0 0 0

0 0 0 0

Sym. 0 0 0

0 0

0


Z1(θi) = cos2(θi)

T 2 =



0 1 0 0 0 0

0 0 0 0 0

0 0 0 0

Sym. 0 0 0

0 0

0


Z2(θi) = sin2(θi)

T 3 =



0 0 0 0 0 0

0 0 0 0 0

1 0 0 0

Sym. 1 0 0

0 0

0


Z3(θi) = cos(θi)

T 4 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 0


Z4(θi) = sin(θi)

T 5 =



0 0 0 0 0 2

0 0 0 0 0 −2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 1 0 0 0 0


Z5(θi) = cos(θi) sin(θi)
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T 6 =



0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

Sym. 0 0 0

0 0

1


Z6(θi) = cos2(θi)− sin2(θi)

T 7 =



0 0 0 0 0 0

0 0 0 0 0

1 0 0 0

Sym. 0 0 0

0 0

0


Z7(θi) = 1



Appendix C

MATERIAL CHARACTERISTICS

OF CARBON FIBRE

REINFORCED ABS

The elasticity tensor is described by characteristic values of the material such as Young’s

modulii, Poison’s ratios, and shear modulii. The elasticity tensor has the following format

for orthotropic materials,



1− ν23ν32

E2E3∆

ν21 − ν23ν31

E2E3∆

ν31 − ν21ν32

E2E3∆
0 0 0

1− ν13ν31

E1E3∆

ν32 − ν12ν31

E1E3∆
0 0 0

1− ν12ν21

E1E2∆
0 0 0

Sym. G23 0 0

G13 0

G12


where,

∆ =
1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν31

E1E2E3
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Note that, for transversely isotropic material with plane 2-3 as the plane of isotropy, the

following relations hold

E2 = E3, ν12 = ν13, ν32 = ν23, ν21 =
E2

E1

ν12

ν31 = ν21, G12 = G13, and G23 =
E2

2(1 + ν23)

In this work, we used a material close to carbon fibre ABS material in our simulations,

and the characteristics have the following values:

Material characteristics

E1 [MPa] E2 [MPa] ν12 ν23 G12 [MPa]
5.71481× 103 2.74085× 103 0.164 0.38 1106.85

Table C.1: Carbon fibre reinforced ABS material characteristics



Appendix D

CLUSTERING TECHNIQUES

D.1 K-means

K-means is very popular and is by far the most widely used clustering algorithm. Given

an unlabeled data set, the K-means algorithm aims to partition the data into a given

number of mutually exclusive clusters K. Each observation in the data set is treated as

a point having a location in space as shown in the example in Fig. D.1.

K-means algorithm is an iterative algorithm and performs two main steps [97]. The first

step is cluster assignment and the second step is centroid moving. During the cluster

assignment step, the algorithm is going through each of the observations in the data set,

i.e. the black dots shown in Fig. D.2a; and depending on whether it’s closer to the red

cluster centroid or the blue cluster centroid which are randomly initialized, the algorithm

is going to assign each of the data points to one of the two cluster centroids. Specifically,

what is meant by that, is to go through the data set and color (assign) each of the points

either in red or blue, depending on whether it is closer to the red cluster centroid or the

blue cluster centroid.

The other part of the loop of K-means is the move centroid step. We take the two cluster

centroids, that is, the red cross and the blue cross in Fig. D.2a, and we move them to

the average of the points having the same color. In other words, we examine all the

red points and compute the average resulting in the mean of the location of all the red

points, and then we move the red cluster centroid there. Similarly, we perform the same

step for the the blue cluster centroid. We look at all the blue dots and compute their

118



Appendix D. Clustering techniques 119

Figure D.1: Example data set

mean, and then move the blue cluster centroid there. We keep repeating those steps until

the cluster centroids don’t change any further. Altogether, the two main steps could be

expanded into six mini-steps:

(1) Randomly initialize K cluster centroids as shown in Fig. D.2a.

(2) Calculate distances of data points from centroids.

(3) Assign each data point to the closest centroid.

(4) Compute the mean of each cluster.

(5) Move the centroid to the location of the mean.

(6) Repeat steps 2-5 until convergence (shown in Fig. D.2b).

Note that the distances calculated in step (2) often do not represent spatial distances.

The K-means algorithm has an optimization objective or a cost function J that it is

trying to minimize. It is very useful to show it here to deeply get the idea behind the

algorithm. Therefore, understanding what is the optimization objective of K-means will

help us to debug the algorithm and just make sure that K-means is running correctly

and, more importantly, we will also be able to avoid local optima.
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(a) Randomly initialized centroids for K = 2 (b) Cluster assignments and centroids for K = 2

Figure D.2: Initial and final centroids positions and cluster solution for an example with
K = 2

Let us consider two sets of variables. First is the c(i) and it keeps track of the index

or the number of the cluster to which an observation from the data set x(i) is assigned.

The superscript i denotes the i-th observable in the data set and it runs from 1, . . . ,m,

where m is the total number of observations in the data set. The other set of variables

is ψk, which is the location of the cluster centroid k. As mentioned before, for K-means

we use capital K to denote the total number of clusters and lower case k is going to be

an index into the cluster centroids running from 1, . . . , K.

A variation of ψk is the ψc(i) which denotes the centroid location of the cluster to which

example x(i) has been already assigned. For example let us assume that x(i) has been

assigned to cluster number two, in this case c(i) that is the index of x(i), is equal to two

and, consequently, ψc(i) is equal to ψ2.

The objective function that K-means is minimizing is function of all of the sets of variables

c(1), . . . , c(m) and ψ1, . . . , ψK . With the just mentioned notation, we could now express

the optimization objective of the K-means clustering algorithm as follows,

J (c1, . . . , cm, ψ1, ..., ψK) =
1

m

m∑
i=1

‖x(i) − ψc(i)‖2. (D.1)

What K-means can be shown to be doing is that it is trying to define parameters c(i) and

ψc(i) to minimize the cost function J . This cost function is sometimes also called the

distortion cost function or the distortion of the K-means algorithm. In other words, the

cluster assignment step is exactly minimizing J with respect to the variables c1, c2, . . . , cm

while holding the cluster centroids locations ψ1, . . . , ψK fixed.
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The cluster assignment step does not change the cluster centroids location, but it is

exactly picking the values of c1, c2, . . . , cm that minimize the cost function, or the dis-

tortion function J . The interested reader should refer to [97] and the references therein

for deeper insight and mathematical proofs. The intuitive meaning is assigning each

point to a cluster centroid that is closest to it because that is what minimizes the square

of distance between the points and the cluster centroids. The second step is the move

centroid step. What the move centroid step does is that it chooses the values of ψ that

minimizes J , i.e., it minimizes the cost function J with respect to the locations of the

cluster centroids ψ1, . . . , ψK . The minimization problem could be written as follows,

arg min
c1,...,cm

ψ1,...,ψK

J (c1, . . . , cm, ψ1, ..., ψK).
(D.2)

The minimization of (D.2) will lead to the discussion of how to make K-means avoid local

optima. There are many ways of choosing the initial centroids in step (1) of the K-means

cluster analysis algorithm. A poor choice of the initial centroids could result in sub-

optimal clusters, meaning that the minimization of the total sum of distances between

observations and centroids would not converge to a global optimum. One initialization

approach is to simply choose the initial centroids randomly from among the observations

in the data set. When running the K-means algorithm, we should have the number of

cluster centroids, K, set to be less than the number of observations in our data set m as

it does not make sense to have more centroids than the number of observations. K-means

is initialized by randomly picking K observations from the data set, which is basically

equal to the predefined number of cluster centroids. Then we set the centroid ψ1, . . . , ψK
to be in the randomly chosen K observations locations.

(a) Randomly picked points in the data set (b) Centroids assignment to randomly generated points

Figure D.3: Steps for random initialization of cluster centroids for an example with K = 2

For example, if K is equal to two and, for the example in Fig. D.1, we would like to find

two clusters. In order to initialize the cluster centroids, we randomly pick a couple of
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observations (because K = 2 in this example) as shown in Fig. D.3a in blue and red.

Consequently, we initialize the cluster centroids to be right on top of those randomly

chosen points as shown in Fig. D.3b. In other words, at initialization, our first cluster

centroid ψ1 will be equal to x(i) for some randomly chosen value of i and ψ2 will be equal

to x(j) for some different randomly chosen value of j. The output of K-means for this

example is shown in Fig. D.2b. Note that this initialization was particularly a good one

since the centroids are quite distant and well positioned amid the data points.

(a) Randomly picked points in the data set (b) Centroids assignment to randomly generated points

Figure D.4: Bad initialization of cluster centroids for an example with K = 2

However, sometimes we could get less lucky and maybe we end up picking points that

are close to each other as our initial random starting observation as shown in Fig. D.4a.

This results in being stuck in a local minimum when minimizing the cost function (D.1).

We can easily observe that the centroids are not placed in a good balanced location amid

the data points anymore in Fig. D.4b. As a result, the K-means clustering algorithm

yields a wrong solution as shown in Fig. D.5. It seems that in Fig. D.5 the red cluster

has captured almost all of the points in the data set while the blue cluster captured only

one observation, and therefore, corresponding to a bad local optimum.

By comparing the two solutions in Fig. D.2b and Fig. D.5, we conclude that K-means

could end up converging to different solutions depending on exactly how the clusters

were initialized, and therefore, affected by the “random” initialization. In order to

alleviate the problem of K-means getting stuck in local optima and increase the odds of

K-means finding the best possible clustering, one could try multiple random initialization.

Meaning that, instead of just initializing K-means once and running the algorithm just

once, we initialize K-means and run the whole algorithm several times. By doing so,

we ensure that we have different random initialization and, therefore, leading to better

solutions, possibly a global optimum.

The multiple initialization is simple to perform; let us assume that we decide to initialize

and run K-means for 200 times (50-1000 times typically). Thus, the outcome of the
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Figure D.5: Local minimum solution from the minimization of the K-means objective
function

K-means would give us a set of clustering solutions and a set of cluster centroids. We

would then compute the cost J of the set of cluster assignments and cluster centroids

that we got. Finally, having done this whole procedure 200 times, we will have 200

different ways of clustering the data and, ultimately, we just pick the one that gives us

the lowest cost J .

By experiment, we could also deduce that if we are running K-means with a fairly small

number of clusters, with the number of clusters anywhere between two to ten, then doing

multiple random initialization can often ensure that we find a better local optimum.

However, if K is very large (hundreds), then, having multiple random initialization is

less likely to make a huge difference and there is a much higher chance that our first

random initialization will yield a decent solution.

Another approach is to choose one centroid randomly and then choose the others so

as to try to spread the centroids out so that they are as far apart from each other

as possible. The just mentioned approach is called the K-means++ algorithm. The

K-means++ algorithm is a variation of the K-means algorithm. It initializes the centroids

based on probabilities. The algorithm is widely used and is built-in in most programming

libraries. The K-means++ algorithm has the same steps as the K-means algorithm except

that step (1) in K-means is expanded into the following four steps:

(a) Choosing a random observation x(i) from the data set to be the first centroid ψ1
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(b) Compute the distance D(x) between the observation and the nearest centroid that

is already chosen

(c) Randomly choose a new observation as a new centroid according the a weighted

probability distribution that ensures the spread of centroids

(d) Finally repeat steps (b) and (c) until we have chosen K centroids

It was reported in [98] that the K-means++ algorithm showed excellent capabilities with

real big data sets. The algorithm shows high accuracy while maintaining a decent speed.

D.2 Hierarchical clustering

Another popular type of clustering techniques is the hierarchical clustering. The basic

idea of the hierarchical clustering is to produce a set of clusters and establish the rela-

tionships between them [99]. The idea is to build a tree of clusters that have different

levels (or hierarchy). The tree, also called dendrogram, is not a single set of clusters

but rather a multilevel hierarchy where clusters at one level are then joined together or

split in the following level. In other words, the tree that is built is the whole possible

clustering solutions as shown in the example in Fig. D.6.

Figure D.6: Cluster tree or dendrogram example
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Note that unlike K-means, a single observation of the data set could belong to more

than one cluster as long as these clusters are related and have different hierarchies or

levels. The hierarchy allows us to decide which level or height of clustering is suitable

for our application. There are two main types of hierarchical clustering [20]. The first

is the agglomerative hierarchical clustering and the second is the divisive hierarchical

clustering. They are essentially following the same idea but with different tree building

direction. The agglomerative hierarchical clustering constructs its clusters in a bottom-

up fashion. Meaning that, each observation in the data set starts off in its own cluster as

a singleton, leading to as many clusters as observations in the first hierarchy (level). The

clusters are then merged together, in a binary mode, based on a given distance measure

(also called linkage). The linking process keeps going in an iterative way until all the

clusters are joined into one cluster (the root of the tree). Whereas the divisive clustering

technique is a top-bottom approach. It initially starts with one cluster, that is the root

of the tree, and then it is successively divided into sub-clusters and so on recursively until

the tree nodes are obtained (leaves of the tree). The result of either technique is the

dendrogram that represents the nested groups of clustering and showing which cluster

merged (or split) with which cluster highlighting the similarity levels at which groups

of clusters change as shown in Fig. D.6. We will explain a little bit more in detail the

agglomerative hierarchical clustering as it is commonly used in different applications and

we will employ it in our analyses.

As mentioned before, the grouping of clusters (or the split of clusters in divisive cluster-

ing) occurs according to a similarity measure between observations in a data set [100].

This is achieved first by computing the distances between observations using a metric

measure , such as Euclidean distance, then the similarity is found by using a linkage cri-

terion between sets of clusters. The linkage criterion obtains the distances between sets

of observations as a function of the pairwise distances computed between observations

[100]. Let us assume that the distance between any two observations of a set S is denoted

as D(x(i), x(j)). To be able to select the closest pair of clusters to merge together at each

stage of the process, we need to define a sub-set distance ∆(Si, Sj) that is the pairwise

distance between elements belonging to different sub-sets. The sub-sets are equal to

Si = {x(i)} and Sj = {x(j)} only when Si and Sj are singletons, which is the first stage

of agglomerative clustering; and in this case D(x(i), x(j)) = ∆(Si, Sj) [100]. The linkage

function could be divided into three main categories as follows:

(1) Single linkage: also called the nearest neighbour method and it defines the dis-

tance between two clusters as the shortest distance between any element of one

cluster to any element of the other cluster.

∆(Si, Sj) = min
x(i)∈Si

x(j)∈Sj

D(x(i), x(j)).
(D.3)
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(2) Complete linkage: also called the furthest neighbour method and it defines the

distance between two clusters as the longest distance between any element of one

cluster to any element of the other cluster.

∆(Si, Sj) = max
x(i)∈Si

x(j)∈Sj

D(x(i), x(j)).
(D.4)

(3) Average linkage: also called minimum variance method and it defines the dis-

tance between two clusters as the average of all the distances between elements of

one cluster and elements of the other cluster.

∆(Si, Sj) =
1

|Si||Sj|
∑
x(i)∈Si

∑
x(j)∈Sj

D(x(i), x(j)). (D.5)

The linkage functions could be also illustrated as shown in Fig. D.7 for clarity.

(a) Single linkage (b) Complete linkage (c) Average linkage

Figure D.7: Types of linkage distances in hierarchical clustering

One of the drawbacks of hierarchical clustering is that it requires a lot of memory and

it is time consuming for big data [100]. It was also reported that the algorithm with

complete linkage (also called CLINK) is very sensitive to outliers in the data. While the

algorithm with single linkage function (also called SLINK) yields an unwanted “chaining

phenomenon” in dendrograms, which is the event where two clusters are joined because

there are two elements very close to each other while the other elements are very distant.

This issue is alleviated in the complete linkage as it ensures to merge clusters having

similar diameters [101].

There exists more sub-set linkage distances in the literature such as weighted average link-

age, centroid linkage, and Ward’s linkage. Ward’s method is widely used as it possesses

both cluster homogeneity and cluster separability. The method aims to minimize the

increase in the total within-cluster sum of squared error, that is, the total within-cluster

variance of data [102]. In its original format, it uses the squared Euclidean distance as

the metric for distances between observations in the data. The method is widely used

due to its popularity, and it has been extended into several versions [99]. Ward’s method

merges in an iterative way two clusters at a time ensuring the minimum within-cluster
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variance possible [103]. The algorithm is very straightforward and it has four main steps

as follows:

(1) Initialize for each observation in the data set to be assigned to its cluster singleton

Si = {x(i)} and put them in a list. The set S = {S1, S2, . . . , SK} where K is the

total number of clusters (and observations).

(2) The pair Si and Sj are grouped together based on the linkage function yielding a

new cluster Sij = Si ∪ Sj. The old sub-sets Si and Sj are then removed from the

list.

(3) Compute and set the centroid of the newly obtained cluster to its center of gravity.

(4) Finally, the total number of clusters K reduces by one. If K is larger than the

desired number of clusters, go back to step (2).

The linkage distance in Ward’s method is measured as follows,

∆(Si, Sj) =
ninj
ni + nj

D(ψi, ψj), (D.6)

where ni and nj are the number of observations in sub-sets Si and Sj respectively;

D(ψi, ψj) is a metric measure and in Ward’s method’s original form it is the squared

Euclidean distance, D(ψi, ψj) = ‖ψi−ψj‖2, between centroids ψi and ψj. In the following

section, we will show how these clustering techniques play a role in the optimization of

fibre orientation in composite laminates using the PGD framework.



Appendix E

MATHEMATICS OF PRINCIPAL

COMPONENTS

The simplest way to derive the principal components could be achieved by finding the

projections which maximize the variance of the data. The first principal component is

the direction in space along which projections have the largest variance.

Let us assume we have the m×p data matrix X, where m is the number of observations

in the data and p is the number of snapshots taken of the system (also called number

of features). We will also assume that the data is centered. We are now looking for a

vector v that maximizes the variance of the data. In order to derive the first principal

component we need to define first the variance. Given the covariance matrixΣ =
XTX

m
,

the variance could be written as

Var(X) = σ2 = vTΣv

We would like to find a vector v, having a unit length vTv = 1 to ensure the well posed-

ness of the problem, that maximizes vTΣv. The constrained optimization problem could

be transformed into an unconstrained optimization problem by introducing a Lagrange

multiplier λ. The problem as a result could be seen as maximizing vTΣv− λ(vTv− 1).

We then differentiate the objective function with respect to the vector v and setting the

derivative to zero to maximize, yielding the following eigenvector equation

Σv − λv = 0

128
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where v is an eigenvector of the covariance matrix Σ, and thus the vector yielding the

maximum variance will be the one corresponding to the largest eigenvalue λ.



Appendix F

FACTORS OF THE RAW

SAFETY FACTOR DATA AND ITS

CLUSTERING

In this section we provide complementary figures for the analysis and the clustering

of factors obtained from applying PCA on the safety factor raw data λ̃s presented in

Chapter 5.

Figure F.1: Evolution of the cumulative variance with the number of factors for the raw
safety factor data

130
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(a) Factor 1 (b) Factor 2

(c) Factor 3 (d) Factor 4

Figure F.2: The first four factors obtained from applying PCA on the safety factor raw
data matrix λ̃s
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(a) Factor 1

(b) Factor 2

(c) Factor 3

(d) Factor 4

Figure F.3: Clustering of the first four factors obtained from applying PCA on the safety
factor raw data matrix using K-means. Each factor is divided into 2,3,4 clusters from left

to right.
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(a) Factor 1

(b) Factor 2

(c) Factor 3

(d) Factor 4

Figure F.4: Clustering of the first four factors obtained from applying PCA on the safety
factor raw data matrix using Ward’s method. Each factor is divided into 2,3,4 clusters from

left to right.
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