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Abstract. The interest in manufacturing complex devices with integrated extra-functional 
properties is steadily growing for high technological application fields, such as the aerospace 
and biomedical ones. Among advanced methods of manufacturing, additive manufacturing 
allows to produce complex three-dimensional geometries, like lattice structures, which possess 
mechanical and functional properties unachievable by their constituent materials. The present 
work investigates Ti6Al4V lattice structures produced by Selective Laser Melting (SLM) 
through a combined experimental and numerical campaign. The effects of the relative density of 
the elementary cell, building direction (along horizontal and vertical building directions), and 
sample condition (as-built and heat treated at 850°C) on the mechanical properties of the lattice 
structures are investigated through tensile testing. Finite element analysis is performed to analyze 
the stress/strain distribution due to the different investigated effects. The results provide useful 
insight into the deformation/failure mechanisms, stress concentrations, and mechanical 
properties of the studied structures as well as into their correlation to the relative density and 
printing process parameters. The resulting performances of the lattice structures are compared 
with the ones of the bulk samples. 

1.  Introduction 
Lattice structures are three-dimensional open-cell architectures consisting of one or more repeating unit 
cells. These structures are characterized by a controlled relative density, defined by the ratio of the 
apparent density of the cellular structure to the density of the cellular structure’s base material. 
Accordingly, such relative density depends on the dimensions and connectivity of the strut elements 
which constitute the unit cells and are connected at specific nodes [1]. Thanks to their geometry, lattice 
structures possess mechanical and functional properties unachievable by their base materials, such as 
high specific strength, lightweight, and shock absorption, that make them ideal candidates for medical 
[2], automotive [3], aeronautical [4], and seismic [5] applications.  

Particularly, lattice structures made of metallic alloys are widely investigated in literature, being 
mainly oriented to biomedical devices in which low weight, low equivalent Young’s moduli, and high 
osteointegration responses are highly demanded [6-7]. Moreover, metallic lattice structures are 
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promising for enhancing the damping behavior for the suppression of mechanical vibrations and as 
acoustic insulators, heat exchangers, and, generally, light structures with high capability of deformation 
[8]. 

The huge commercial usefulness of metallic lattice structures as well as the continuing advancements 
on Additive Manufacturing (AM) technologies, in which the layer-by-layer building strategy offers 
designers the greatest possible freedom [9], motivate research efforts to propose reliable design 
approaches and characterization methods for a comprehensive understanding of the mechanical and 
functional properties of such structures [10]. In this regards, main challenges are associated to the fact 
that the mechanical and functional properties of these structures are significantly affected by different 
factors as unit cell’s topology and relative density, boundary and loading conditions, heat treatment, and 
fabrication process parameters [10]. 

Among metallic AM technologies, the most diffused ones are electron beam melting [11-16] and 
selective laser melting [17-21], based on local melting of metallic powders deposited in a uniform bed 
by high power electron or laser beams, respectively.  

Particularly, Ti6Al4V and CoCr alloys have been deeply investigated for realizing lattice and cellular 
structures mainly for biomedical applications, while the interest about 316L and AlSi10Mg alloys is 
growing in the prospective of mechanical and aerospace applications. In these cases, the compression 
and fatigue behavior of trabecular structures and the influence of process parameters, thermal treatments, 
and geometric features on the mechanical performances have been studied [18, 20, 22-29]. Moreover, 
different geometries and materials have been adopted and optimized in order to meet specific needs. For 
example, trabecular structures were proven instrumental in lowering the elastic modulus of Ti alloys 
down to about 1 GPa, so as to match the rigidity of bones and avoid dangerous stress shielding effect in 
biomedical implants [17]. Aluminum lattice structures with graded density were optimized in order to 
act as efficient energy absorbing material (up to 6,3 MJ/m3) in low-weight structures [30].  Moreover, it 
was found that process parameters, such as powder morphology and size, scanning strategy, power, scan 
speed, build direction, and layer thickness, affect the strength, modulus, microstructure, as well as 
dimensional accuracy of lattice structures (see [10, 26] and references therein).  

On the contrary, the damping response as well as the tensile behaviour of lattice structures remain an 
area requiring further research. In dynamic applications, in fact, trabecular structures possess damping 
performances significantly higher than the fully dense ones, making them ideal materials for energy 
absorption [26, 31-33]. Moreover, mechanical testing under compression is generally preferred due to 
the easier setup compared to testing under tension [34].  

To avoid the costs of fabrication and experimentation of metallic lattice structures, the formulation 
of models is highly desirable for accurately predicting their structural behavior and for allowing efficient 
numerical design simulations at acceptable computational expenses. To date, finite element models of 
either the entire lattices or single unit cells [6, 21-22, 25, 35-36] as well as homogenization approaches 
[37] represent the most used tool for predicting the behavior of these structures. Such models allow to 
analyze material behavior dependence on loading conditions, lattice topology, cell relative density, and 
presence of imperfections or defects as well as to obtain design maps [38]. Alternative approaches for 
reducing computational expense, but often at the cost of accuracy, e.g., beam-based models or Gibson-
Ashby models, have been proposed (see [10] and references therein). Topology optimization is often 
used for designing lattice structures satisfying the requirements of different applications [39-40]. 

Motivated by the discussed framework, the present work aims to investigate the effect of the relative 
density of the elementary cell on the mechanical material properties of a lattice structure fabricated by 
AM. 

An experimental investigation is first performed on Ti6Al4V lattice structures and full density 
dogbone shaped samples, produced by Selective Laser Melting (SLM), which is the most diffused 
technology among AM. Thereafter, two elementary cells, representative of two values of relative 
density, are considered and realized as lattice samples. In particular, due to the limited data on tensile 
performances of these structures, static mechanical behaviour in tension is studied by taking into account 
the two principal manufacturing orientations (i.e., parallel and orthogonal to the building platform) as 



The 49th AIAS Conference (AIAS 2020)
IOP Conf. Series: Materials Science and Engineering 1038  (2021) 012057

IOP Publishing
doi:10.1088/1757-899X/1038/1/012057

3

 
 
 
 
 
 

well as material treatment condition (i.e., as-built and heat treated at 850°C for two hours). Then, a 
numerical finite element analysis is performed to analyze the effect of the elementary cell on stress/strain 
distribution, in order to ease the description and discussion of the experimental results.  

The obtained results allow to provide useful insight into the deformation/failure mechanisms, stress 
concentrations, and mechanical properties of the studied structures as well as into their correlation to 
the relative density and printing process parameters. A discussion on the calibration of the material 
parameters employed in the numerical model is further provided. 

The paper is organized as follows. Section 2 describes the material and the adopted methodology. 
Then, Section 3 presents and discusses the results of the experimental and numerical investigation. 
Finally, conclusions are given in Section 4. 

2.  Materials and methods 

2.1.  Material and manufacturing 
Spherical gas atomized Ti6Al4V powder, whose chemical composition is reported in Table 1, was used. 
The powder featured a particles size between 20 µm and 63 µm with average size of approximately 45 
µm. 

 
Table 1: Chemical composition of the TiAl6V4 powder (wt. %). 

Al V Fe O C N H Ti 
6 4 < 0.25 < 0.13 < 0.08 < 0.05 < 0.012 bal. 

 
Two types of lattice samples were produced by means of a SLM system (mod. AM400 from 

Renishaw), equipped with a pulsed wave fiber laser. Both lattice structures were based on a tetragonal 
diamond-like structure; the structures, indicated as L18.5 and L22.1, had 18.5% and 22.1% of relative 
density with respect to full dense parts. Strut diameter was 1 mm, while strut length was 2.5 mm and 
1.23 mm for L18.5 and L22.1, respectively. The lattice samples were manufactured with prismatic 
geometry (10 mm × 10 mm × 30 mm in size) and oriented in the xy and xz directions (i.e., respectively, 
along horizontal and vertical building directions), as depicted in Figure 1. Standard process parameters, 
suggested by Renishaw, are listed in Table 2. The used laser scanning strategy was concentric, as usually 
adopted for thin and lattice structures. Each scanning layer was rotated by 67° with respect to the 
previous one, and the scheme was repeated every 180 layers. During the SLM process, the O2 content 
was below 100 ppm. 

The samples were tested in the as-built (AB) condition and after heat treatment (HT), performed in 
vacuum at 850 °C for two hours and hereafter rapidly cooled in flowing argon atmosphere, according to 
the indications from the material’s datasheet [41]. 

As reference, fully dense dogbone samples, according with the standard [42], were manufactured 
with the same process parameters used for the printing of the lattice structures and were used for the 
identification of the material constitutive model employed in the numerical simulations (see Section 
2.3). 

 
Table 2: SLM process parameters used for manufacturing the lattice samples. 

Parameter Value 
Power 100 W 

Exposure time 60 µs 
Point distance 75 µm 
Hatch distance 75 µm 
Hatch offset 60 µm 

Layer thickness 30 µm 
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Atmosphere Ar 
 

 
Figure 1: Schematic of the lattice structure manufactured in TiAl6V4 having relative density of (a) 

18.5% and (b) 22.1%, respectively.  
 

2.2.  Mechanical characterization 
Quasi-static mechanical properties were evaluated by means of an MTS 2/M machine (strain rate of 

0.015 min-1). Tensile testing was performed on full dense dogbone specimens and on the lattice 
structures. Three samples for each manufacturing condition (i.e. without and with homogenization heat 
treatment) and printing direction were tested. All samples were tested along their main axes (lying either 
in the xy or xz planes) and up to complete failure. In order to calculate engineering stress and strain of 
lattice structures, the nominal section and length of the whole structure itself were considered, as if it 
were a dense part [43]. This allowed to better highlight the change in mechanical properties with respect 
to the bulk samples. 

2.3.  Numerical simulations 
To predict and analyze the results of the quasi-static mechanical characterization, finite element 

analyses (FEA) were performed using the commercial finite element software Abaqus (Simulia, 
Providence, RI, USA).  

The two lattice geometries reported in Figure 1 were meshed using four-node tetrahedral elements 
(C3D4), available in the software library. The mesh of the L18.5 structure was defined by 21898 nodes 
and 65401 elements, while the mesh of the L22.1 structure by 136771 nodes and 419979 elements. 

Since the lattice structures were made of Ti6Al4V alloy and the analyses had to simulate monotonic 
behavior, a J2 elastoplastic constitutive model with isotropic hardening was adopted. The constitutive 
model is already implemented within the software material library and its parameters were identified on 
tensile stress-strain curves obtained from full dense dogbone specimens. 

To simulate the mechanical characterization on lattice structures under uniaxial tensile loads, a quasi-
static analysis was performed under large displacements. A displacement was applied along the main 
axis direction on the upper face of the structure, while classical boundary conditions were applied on 
the other faces. 

3.  Results and discussion 

3.1.  Mechanical Characterization 
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Tensile tests were performed on fully dense dogbone specimens, built along xy and xz directions, in the 
AB and HT conditions. Figure 2 shows the stress-strain curves of the Ti6Al4V dogbone samples, while 
Table 3 lists the main tensile characteristics, i.e. Young’s modulus, yield and ultimate stress, and 
elongation to fracture.  
 

 
Figure 2: Tensile stress-strain curves of the Ti6Al4V full dense dogbone specimens under different 

conditions and printing orientations. 
 

Table 3: Elastic modulus (E), yield stress (YS), ultimate tensile stress (UTS) and elongation to failure 
(ε) of the Ti6Al4V full dense dogbone samples tested under tensile conditions.  

Samples  
E (GPa) 

 
YS (MPa) 

 
UTS (MPa) 

 
ε (%) Geometry Building 

direction 
Condition 

 
Bulk 

xy AB 40.6 726.3 974.2 5.3 
HT 41.7 763.1 833.9 4.4 

xz AB 38.4 542.3 938.3 5.9 
HT 39.4 621.6 826.9 5.4 

 
Then, tensile tests were performed on both lattice structures, built along xy and xz directions, in the 

AB and HT conditions. Figures 3(a) and 3(b) show the experimental tensile stress-strain curves for the 
lattice structure L18.5 and L22.1, respectively.  

 

 
(a)                                                                   (b) 
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Figure 3: Tensile stress-strain curves of the Ti6Al4V lattice structures with relative density of (a) 
18.5% and (b) 22.1%, respectively, under different treatment conditions and printing orientations. 

 
All curves show a linear elastic behavior up to yielding, followed by plastic deformation up to failure.  
It may be appreciated that, as expected, the trabecular structures are characterized by much lower 

stiffness and mechanical resistance than corresponding bulk samples and that, accordingly, higher 
elastic moduli characterize L22.1 with respect to L18.5 trabecular samples. Thus, according to literature 
results [6], the mechanical properties decrease with reduced relative density. On the contrary, elongation 
to failure is largely higher in trabecular samples than in bulk parts.  

Mechanical behavior of the considered lattice samples was only slighted affected by building 
direction per se. Minor differences in elastic modulus values of samples built along different directions 
should probably be ascribed to measurement variability. This is reasonable, since the orientation of the 
struts is the same between vertical and horizontal samples.  

However, production strategy did have a strong influence on the effect of heat treatment. As far as 
parts built on the xy plane are concerned, heat treated samples show a distinct decrease in ultimate tensile 
stress with respect to as-built ones. The reduction amounts to approximately 18% and 1% for bulk and 
trabecular samples, respectively. On the other hand, this difference is much smaller for samples built in 
vertical direction and approaches zero in the case of trabecular specimens. The present trend may be 
ascribed to the well-known problem concerning the build-up of residual stresses during the selective 
laser melting process. According to [44], residual stresses in as-built Ti6Al4V parts can be as high as 
265 MPa along x direction and they are completely cancelled by heat treatment at temperatures equal or 
higher than 800 °C. It is reasonable to suppose that residual stresses are higher in samples, which during 
production were attached to the building plate through a larger area, hence the difference in mechanical 
behavior induced by heat treatment is more marked for specimens built on xy plane. Moreover, bulk 
samples are likely more affected by residual stresses because of their higher mass. 

Final failure of samples happened abruptly in bulk samples, whereas it happened by progressive 
breaking of single struts in trabecular structures. As evident in Figure 4, in trabecular structures failure 
took place by shearing due to progressive breakage of struts along a plane lying at 45° with respect to 
stress direction, which is in agreement with what is reported in literature for compression tests [18, 24]. 
On the other hand, bulk samples failed along less geometrically defined planes, reasonably because of 
their limited thickness. At higher magnification all fracture surfaces revealed a mixed ductile-brittle 
behaviour.  Although small dimples, induced by relevant plastic deformation, were prevalent across all 
fracture surfaces, some cleavage-like planes, frequently localized at defects (lack of fusion defects or 
round gas porosities) could also be found. 
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Figure 4: (a) Macroscopic appearance of broken tensile samples; magnification of fracture surfaces of 
(b) bulk and (c) lattice samples. 

3.2.  Numerical simulations 
Numerical simulations were performed to predict the tensile behavior of the two lattice structures (see 
Figure 3). Accordingly, the parameters of the J2 elastoplastic constitutive model with isotropic 
hardening were calibrated on the four stress-strain curves reported in Figure 2. This way, four sets of 
model parameters were obtained for each condition (i.e., XY-AB, XY-HT, XZ-AB, and XZ-HT) and 
were used to predict the corresponding lattice structures’ behaviour. 

Figures 5(a) and 5(b) show the experimental and predicted tensile stress-strain curves for the lattice 
structure L18.5, respectively in the AB and HT condition, while Figures 5(c) and 5(d) show the 
experimental and predicted tensile stress-strain curves for the lattice structure L22.1, respectively in the 
AB and HT condition. In general, good agreement between numerical and experimental curves can be 
observed for most of the cases. In fact, consistently with experimental data, numerical results predict 
the decrease of the mechanical properties with decreasing relative density. Moreover, the model shows 
higher strength of the as-built structures than the heat treated ones.  
 

 
(a)                                                                   (b) 

  
(c)                                                                   (d) 

Figure 5: Tensile stress-strain curves of the Ti6Al4V lattice structure with relative density of 18.5% in 
the (a) AB and (b) HT condition and different printing directions, respectively, and of the lattice 
structure with relative density of 22.1% in the (c) AB and (d) HT condition and different printing 

directions, respectively. 
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To quantify the goodness of numerical results, Table 4 reports the relative errors on the computation of 
the elastic modulus and yield stress from experimental and finite element curves reported in Figure 5. 
Relative errors vary between a minimum value of 1.7% and a maximum value of 33.3%. Major 
differences between experimental and numerical results are evident for the lattice structure L22.1 built 
along the xz direction. It must be recognized that the experimental mechanical behaviour of this 
particular sample appears to be definitely out of trend with respect to other samples. Therefore, this 
discrepancy between experimental and numerical description of the L22.1 sample shall likely be 
ascribed to experimental variability rather than to a defectiveness of the model. Moreover, the 
discrepancy may be due to some variations between the finite element model and the produced lattice 
structures. In fact, the manufactured lattice may have defects, caused by the SLM process, which can 
affect the overall mechanical behaviour, as well as residual stresses causing anisotropic material 
behaviour. Moreover, it should be highlighted that the adopted constitutive model is very simple and 
does not take into account anisotropic and tension-compression asymmetric material behavior.  

 
Table 4: Relative errors on the elastic modulus (eE) and yield stress (eYS) of the lattice samples tested 

under tensile conditions between experimental and numerical results. 
Samples  

eE (%) 
 

eYS (%) Geometry Building 
direction 

Condition 

 
Lattice 
L18.5 

xy AB 13.9 12.4 
HT 24.3 24.4 

xz AB 6.4 18.5 
HT 10.6 14.7 

Lattice 
L22.1 

xy AB 15.4 8.0 
HT 18.8 1.7 

xz AB 27.5 33.3 
HT 28.4 15.0 

 
Finally, in order to provide insight about stress and strain distribution along the lattice structures, the 

contour plot of the von-Mises equivalent stress (MISES) is reported, respectively, in Figure 6 and 7 for 
the two trabecular structures under tensile load. As it can be noted, both lattice structures are 
characterized by high values of the von-Mises equivalent stress in the as-built condition. As expected 
from the predicted stress-strain curves, the structures printed along the xy direction show higher values 
compared to the xz direction. Stress concentrations are present close to the intersection of diagonal 
struts. 
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Figure 6: Contour plot of the von-Mises equivalent stresses (MISES) [MPa] for the trabecular 

structure with relative density of 18.5% under tensile load. 
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Figure 7: Contour plot of the von-Mises equivalent stresses (MISES) [MPa] for the trabecular 

structure with relative density of 22.1% under tensile load. 
 

The contour plot of the equivalent plastic strain (PEEQ) is reported, respectively, in Figure 8 and 9 for 
the two trabecular structures under tensile load. The results show that plastic strain is higher for the 
structures subjected to heat treatment.   
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Figure 8: Contour plot of the equivalent plastic strain (PEEQ) [-] for the trabecular structure with 

relative density of 18.5% under tensile load. 
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Figure 9: Contour plot of the equivalent plastic strain (PEEQ) [-] for the trabecular structure with 

relative density of 22.1% under tensile load. 
 

4.  Conclusions 
 
This paper has presented an experimental and numerical investigation of the tensile behavior of lattice 
structures having two different relative densities. The design of lattice structures has been successful in 
giving rise to structures with low, and tunable, stiffness and ductility higher than the bulk material. The 
effect of both printing direction and heat treatment has been investigated and the behavior of lattice 
structures has been compared to the results on bulk specimens. Experimental and numerical results 
predict an overall consistent behavior. The observed discrepancies may be associated to the 
manufacturing process: the real manufactured structures may be, in fact, different from the ideal ones 
simulated through finite element analysis. A simple constitutive J2 elastoplastic model has been adopted 
and calibrated on data from bulk specimens realized with the same procedure applied to the lattice 
structures. Such an identification process of model parameters is fundamental for obtaining coherent 
results, given the variability of 3D printed material response. However, more complex constitutive 
material behavior could be also adopted. Finally, it should be highlighted that tensile testing results 
should be considered with caution, since many different effects concurred to determine the final result. 
In particular, the mechanical behaviour may not be perfectly approximated to the one of standard dog-
bone samples. As a matter of fact, different features, including scanning strategy, thickness, inclination 
and distance from the building plate, may alter the microstructure of real lattice struts, thus possibly 
yielding unexpected behaviours. 
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