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The Uncertainty Quantification framework

e Solution u(xy)

Parameters y = PDE/ODE : e Solution functional F(y)



The Uncertainty Quantification framework

Parameters y e Solution u(xy)
o coefficients e Solution functional F(y)
e forcing terms PDE/ODE > o  Fluxes
e Initial cond i
: o Drag/ lift forces
° bouno!ary cond. o  Time of arrival
° Domain shape o

e y are random/uncertain:
o experimental error
o scarcity of data (expensive/difficult measurements)
o lack of knowledge
o intrinsic randomness (wind load, rainfall, earthquakes)

e Then, u(ly)and F(y) are random quantities
e What s the variability of uand Fwrttoy ?



Different kind of analysis are possible

Forward UQ:
Compute mean, variance, quantiles, probability density function (pdf) of u(y)

Inverse UQ (calibration):
Can we reduce the uncertainty on y if we measure u?



Practical example: forward UQ for a ferry

e Two operational uncertain parameters:

o Speed within the operational range

o Draught +10% design (x15% design payload)
e Quantity of interest: resistance to advancement (ship drag)
e PDE: Navier-Stokes (RANS solver)
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Practical example: inverse UQ for epidemics

e Two uncertain parameters
o Contact probability,
o Recovery time,r

e ODE:SIR system

no data are available
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Different kind of analysis are possible

Forward UQ:
Compute mean, variance, quantiles, probability density function (pdf) of u(y)

Inverse UQ (calibration):
Can we reduce the uncertainty on y if we measure u?



Different kind of analysis are possible

Forward UQ:
Compute mean, variance, quantiles, probability density function (pdf) of u(y)

o Sensitivity Analysis:
Which parameters impact the most the variability of u?

o Optimization under uncertainty:
If u=u(x,y,p) and p are under our control, chose p that e.g. maximizes the expected
value of u, or minimizes the variance

Inverse UQ (calibration):
Can we reduce the uncertainty on y if we measure u?



Different kind of analysis are possible

Forward UQ:
Compute mean, variance, quantiles, probability density function (pdf) of u(y)

o Sensitivity Analysis:
Which parameters impact the most the variability of u?

o Optimization under uncertainty:
If u=u(x,y,p) and p are under our control, chose p that e.g. maximizes the expected
value of u, or minimizes the variance

Inverse UQ (calibration):
Can we reduce the uncertainty on y if we measure u?

o Identifiability analysis: Can | actually calibrate y if | measure u?
- Structural: is there a unique y that matches best my data?
- Practical: how sensitive is my calibration to data quality (nb data, noise)?

o Design of experiments:
What measurement of u are the best to calibrate y?



Different kind of analysis are possible

Forward UQ:
Compute mean, variance, quantiles, probability density function (pdf) of u(y)

o Sensitivity Analysis:
Which parameters impact the most the variability of u?

Inverse UQ (calibration):
Can we reduce the uncertainty on y if we measure u?



Solve, solve, solve!

Most techniques boil down to repeatedly solving
the ODE/PDE for multiple values of y (sampling)

How many samples? For what values of y?

O

Alternative 1: Monte Carlo
- Robust but very expensive
- Error sM2
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Solve, solve, solve!

e Most techniques boil down to repeatedly solving e e T
the ODE/PDE for multiple values of y (sampling) (R ® o .
e How many samples? For what values of y? L A S
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Solve, solve, solve!

e Most techniques boil down to repeatedly solving g a8 $ °
the ODE/PDE for multiple values of y (sampling) el o
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Make it faster: surrogate modeling

e |Instead of solving the PDE for all value of y
a. Solve for a few “selected” y
b. ‘“Interpolate” the values of u(y)
c. Evaluate the surrogate model:
much cheaper! e
d. Works for smooth functions u(y) N
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e Many alternatives:

Polynomial Chaos Expansion
Sparse Grids .
Reduced Basis 2N
Proper Orthogonal Decomposition 20
Radial Basis Functions B .
Gaussian Processes 0.4
Neural Networks N S -
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Example: a geochemical compaction model

How does sand on the bottom of the ocean become rock?

Upon Deposition
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Example: a geochemical compaction model

conservation equations

i [opu]
ot Oz
9(1— ¢)ps 9[(1 — ¢) psus]
T = qqrtz
ot oz
= oT oT o " oT
L ot 2 Oz oz oz d

overburden load

[¢p) + (1 — })ps] gdz+sy — py

water mass conservation law

solid mass conservation law
® qgrtz is the quartz production rate

® hsey is the height of the sea over the basin

energy conservation law

o (1 = ¢pjcy+ (1 — @)pscs

o & = ¢pjcu + (1 — P)pscsus
® g7 represents internal heat sources

force balance

® g is the gravity acceleration

® sg is the weight of the sea water column

® o is resulting effective stress on the solid matrix

constitutive equations

¢y —us) = ——

dt

K =10

K

Ky

ky ¢— kp —15

(

oz

Kr(T) = AP (T ¢
d¢ _dém _

dt

L

dt

, ¢ >0

porosity /permeability law

Darcy law
® /iy is the water viscosity

thermal conductivity of the water/rock system
o Xs(T)= Xg/(1+¢T)

porosity rate of change
dd) M do

8 =T B (g — ¢f)EXP(—BU)I

d M
. ﬂ:—QA()( & ) ol 7>
dt PQ Pact

parameter units lower bound

B [Pa~! 5x 1078
a [mol m™2s7']  0.5x 10718
b °ct 0.020
T, [°C] 70

Hiees [m] 450

kq [-] 14.07

ko [-] 1.35

Forward UQ for:

e Porosity
e Temperature
e Pressure

Applications:
e GCroundwater management
e Oiland mineral extraction

upper bound
7 x 1078
3.5 x 10718
0.024
90
550
14.22
2.38



Example: a geochemical compaction model
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Example: a geochemical compaction model
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Example: a geochemical compaction model

Monte Carlo (s) Sparse grids (s)
Method creation 146101 0.27.10"!
Realizations 1.24 - 107 7.30 - 10*
Moments 6.6710" 3-82—10°
Sobol indices 4.20-103
MC of PCE 122.10°
Total 1.25 . 10" 2.00 - 10°

Surrogate model 100x faster
(600 sparse grids samples vs 1e5 MC samples)



Multi-fidelity

Consider a hierarchy of approximations of the same ODE/PDE:
a. Different discretizations

b. Different physics: Euler / Stokes / RANS / Direct Navier Stokes

Explore the “bulk” of the variability due to y with many queries of the cheap models ...

e ..and correct with a handful of queries of the high-fidelity models

e Can (should) be combined with the surrogate-modeling paradigm



Multi-fidelity: back to the ferry problem
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Multi-fidelity: a 3d-printing problem

e Uncertain E, v after having 3d printed an object
e mean elongation given a constant pull?
e £ =[105120] GPa, v = [0.265,0.34] (Ti64, https://www.eos.info/material-m)
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Multi-fidelity: a 3d-printing problem

- Multi-fidelity vi  Single-fidelity
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Multi-fidelity methods run faster!



... and now, some details on multi-fidelity

’.Ml o M, M3 XM4‘
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e Our multi-fidelity method is called
Multi-Index Stochastic Collocation 0.047
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e |t uses a sparse grid sampling for

each fidelity (roughly) 0.045
e ; = 0.044
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MISC: the sparsification principle

#PDE solved

(parametric accuracy)

A

® P

C

Ideal but computationally unreachable

/ C: coarse discretization (coarse mesh, few
samples)

® F

:refine PDE mesh

P: add more samples in the parameter
space

F: take both actions
® Q

>
PDE solver accuracy



MISC: the sparsification principle

#PDE solved

(parametric accuracy)

A

® P

C

®F

® Q

>
PDE solver accuracy

Write a telescopic equality

F=F+C-C
+C-C
+P-P
+ 0 -

Rearrange to put in evidence three
corrections

F=¢
+P-€
+Q-C

' M 2nd order correction,

small but expensive!



MISC: the sparsification principle

#PDE solved

(parametric accuracy)

A

® P

C

® F

® Q

>
PDE solver accuracy

Rearrange terms, obtain MISC formula
FxP+Q-C

i.e., a linear combination of three
different (cheap) approximations

Each of them requires fixing a mesh for
the PDE and the samples in the
parameter space



MISC: an adaptive algorithm

# PDE solved
(param. accuracy)

Y W e | 1. Add “neighboring refinements”

e ------------------- ------------- curr. idx| 2. Choose the one that gave the best
| | | | improvement:

5l A[Expected value] / cost

.| MEREE—— .................. .................... 3. Repeat

é ; ; >
0 2 4 6 8
PDE solver accuracy



MISC: an adaptive algorithm

# PDE solved
(param. accuracy)

8? .................. e T —— 1. Add “neighboring refinements’

7/ S ---------------- ® reduced margin 2. Choose the one that gave the best
" T B our.idx | improvement:

sl A[Expected value] / cost

PDE solver accuracy



MISC: an adaptive algorithm

# PDE solved
(param. accuracy)

a? 1. Add “neighboring refinements”
: m | ‘

] | | reduced margin 2. Choose the one that gave the best
f N e e improvement:

Bl e A[Expected value] / cost

; } ; >
0 2 4 6 8
PDE solver accuracy



MISC: an adaptive algorithm

# PDE solved
(param. accuracy)

eT B 1. Add “neighboring refinements”

74 SRR e ® reduced margin| 2. Choose the one that gave the best
| o (Mouridk | | improvement:

sl R A[Expected value] / cost
| S T 5. Repest

é ; ; >
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PDE solver accuracy



MISC: an adaptive algorithm

# PDE solved
(param. accuracy)

8? 1. Add “neighboring refinements”
m | :

b m reduqed margin 2. Choose the one that gave the best
B GO Iqx improvement:

sl A[Expected value] / cost

1| TE— .................. .................... 3. Repeat

PDE solver accuracy



MISC: an adaptive algorithm

# PDE solved
(param. accuracy)

8? ,,,,,,,,,,,,,,,,,, e 5 1. Add “neighboring refinements”

s reduced margin 2. Choose the one that gave the best
| o oum x| improvement:

| | _
% N S R N— A[Expected value] / cost

.| SERR—— SIS SO .................... 3. Repeat

PDE solver accuracy



Last but not least: inverse UQ / calibration

Maximum Likelihood and Bayesian inversion provide formulas to “update the statistical
description” of y given noisy measures of u (posterior pdf of y). It's a “calibration with uncertainty”
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Last but not least: inverse UQ / calibration

e FEasiest setting:
o uniform prior fory
O gaussian noise
o ‘“informative data”

. M
e Then, thereis a close relation to least squares:  INIIy Zz’:l [uz (y) — datai]Q



Last but not least: inverse UQ / calibration

e Easiest setting:
o uniform prior fory
O gaussian noise
o ‘“informative data”

. M
e Then, thereis a close relation to least squares:  INIIy Zz’:l [uz (y) — datai]2

The updated pdf (posterior) of y is gaussian with
o Mean = |east squares estimate
o St.dev. = inverse of eigenvalues of Hessian of least squares functional

e Requires optimization, i.e., multiple evaluations of u(y)! Surrogate models will help
e Can use data from multiple sources
e Alternative methods: Markov Chain Monte Carlo (MCMC), Kalman filter, ...

e Beware of identifiability!
o Structural: is there a unique set of parameters that matches best my data /is the
posterior pdf unimodal?
o Practical: How sensitive is the procedure to data quality?



Example: a geochemical compaction model

Calibrate parameters from noisy measurements of porosity and/or temperature.
What data are more informative?
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Example: a geochemical compaction model
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Example: a geochemical compaction model

0 50 100 150
t [Ma]

Prior-based predictions

0.01
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Posterior-based predictions



Conclusions

e UQ s a broad set of techniques to deal with uncertainties in computational sciences and
engineering

e forward UQ, inverse UQ, optimization under uncertainty...
e Strong links with approximation theory, statistics, machine learning

e It boils down to repeatedly solving the ODE/PDE at hand: expensive!
o Choose wisely the sampling scheme
o Surrogate modeling
o multi-fidelity paradigm

e Examples:
o Ferry
o Geochemical compaction
o 3d-printing
o SIR system



PhD course on UQ @ UniPV

e April12 - May 26
e Classes: Monday 1lam/1pm
e Lab session: Thursday 9:30am/11:30am

e https://sites.google.com/view/phd-course-ug-tamellini
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Thanks for your attention



