Uncertainty Quantification Dealing with uncertainties in computational science and engineering

Lorenzo Tamellini CNR-IMATI, Pavia

The Uncertainty Quantification framework

The Uncertainty Quantification framework

• y are random/uncertain:

- experimental error
- scarcity of data (expensive/difficult measurements)
- lack of knowledge
- intrinsic randomness (wind load, rainfall, earthquakes)
- Then, *u*(**y**) and *F*(**y**) are random quantities
- What is the variability of *u* and *F* wrt to *y*?

• Forward UQ:

Compute mean, variance, quantiles, probability density function (pdf) of $u(\mathbf{y})$

• Inverse UQ (calibration):

Can we reduce the uncertainty on \boldsymbol{y} if we measure u?

Practical example: forward UQ for a ferry

- Two operational **uncertain parameters**:
 - Speed within the operational range
 - **Draught** ±10% design (±15% design payload)
- Quantity of interest: resistance to advancement (ship drag)
- PDE: Navier-Stokes (RANS solver)

Practical example: inverse UQ for epidemics

- Two uncertain parameters
 - Contact probability, β
 - Recovery time, r
- ODE: SIR system

• Forward UQ:

Compute mean, variance, quantiles, probability density function (pdf) of $u(\mathbf{y})$

• Inverse UQ (calibration):

Can we reduce the uncertainty on \boldsymbol{y} if we measure u?

• Forward UQ:

Compute mean, variance, quantiles, probability density function (pdf) of $u(\mathbf{y})$

• Sensitivity Analysis:

Which parameters impact the most the variability of u?

• Optimization under uncertainty:

If *u*= *u*(*x*,*y*,*p*) and *p* are under our control, chose *p* that e.g. maximizes the expected value of u, or minimizes the variance

• Inverse UQ (calibration):

Can we reduce the uncertainty on **y** if we measure *u*?

• Forward UQ:

Compute mean, variance, quantiles, probability density function (pdf) of $u(\mathbf{y})$

• Sensitivity Analysis:

Which parameters impact the most the variability of u?

• Optimization under uncertainty:

If *u*= *u*(*x*,*y*,*p*) and *p* are under our control, chose *p* that e.g. maximizes the expected value of u, or minimizes the variance

• Inverse UQ (calibration):

Can we reduce the uncertainty on **y** if we measure *u*?

- Identifiability analysis: Can I actually calibrate y if I measure u?
 - *Structural*: is there a unique **y** that matches best my data?
 - *Practical*: how sensitive is my calibration to data quality (nb data, noise)?

• **Design of experiments:**

What measurement of u are the best to calibrate y?

• Forward UQ:

Compute mean, variance, quantiles, probability density function (pdf) of $u(\mathbf{y})$

• Sensitivity Analysis:

Which parameters impact the most the variability of u?

• Optimization under uncertainty:

If *u= u(x,y,p) and p are under our control, chose p that e.g. maximizes the expected value of u, or minimizes the variance*

0

Inverse UQ (calibration):

Can we reduce the uncertainty on **y** if we measure *u*?

- Identifiability analysis: Can I actually calibrate y if I measure u?
 - *Structural*: is there a unique **y** that matches best my data?
 - *Practical*: how sensitive is my calibration to data quality (nb data, noise)?

• Design of experiments:

What measurement of u are the best to calibrate y?

Solve, solve, solve!

- Most techniques boil down to repeatedly solving the ODE/PDE for multiple values of y (**sampling**)
- How many samples? For what values of y?
 - Alternative 1: Monte Carlo
 - Robust but very expensive
 - Error $\approx M^{-1/2}$

Solve, solve, solve!

- Most techniques boil down to repeatedly solving the ODE/PDE for multiple values of y (**sampling**)
- How many samples? For what values of y?
 - Alternative 1: Monte Carlo
 - Robust but very expensive
 - *Error* ≈*M*^{-1/2}
 - Alternative 2: Cartesian sampling
 - More accurate but also expensive

$$- M = M_0^N$$

Solve, solve, solve!

- Most techniques boil down to repeatedly solving the ODE/PDE for multiple values of y (**sampling**)
- How many samples? For what values of y?
 - Alternative 1: Monte Carlo
 - Robust but very expensive
 - Error $\approx M^{-1/2}$
 - Alternative 2: Cartesian sampling
 - More accurate but also expensive
 - $M = M_0^N$
 - Alternative 3: Sparse grids, and more...

-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
-0.8		•						•	•	•
-0.6			• • • • •		•					
-0.4	1				•			1		Ĭ
-0.2					•					
0		• •	•	• • • • • • •	• • •	•	•	• •	•	••
0.2										
0.2		i i i m mim m	2 1 1							
0.4					• • • •					•
0.0					•					
0.6		•			•					•
0.8										
1			•		•	1	•			
10										

Make it faster: surrogate modeling

- Instead of solving the PDE for all value of y
 - a. Solve for a few "selected" **y**
 - b. "Interpolate" the values of $u(\mathbf{y})$
 - c. Evaluate the surrogate model: **much cheaper!**
 - d. Works for **smooth functions** *u*(**y**)
- Many alternatives:

h.

...

- a. Polynomial Chaos Expansion
- b. Sparse Grids
- c. Reduced Basis
- d. Proper Orthogonal Decomposition
- e. Radial Basis Functions
- f. Gaussian Processes
- g. Neural Networks

How does sand on the bottom of the ocean become rock?

conservatio

$$\frac{\partial \phi \rho_I}{\partial t} + \frac{\partial \left[\phi \rho_I u_I\right]}{\partial z} = 0$$
$$\frac{\partial \left(1 - \phi\right) \rho_s}{\partial t} + \frac{\partial \left[\left(1 - \phi\right) \rho_s u_s\right]}{\partial z} = q_{qrtz}$$

 $C_1 \frac{\partial T}{\partial t} + C_2 \frac{\partial T}{\partial z} - \frac{\partial}{\partial z} \left(K_T \frac{\partial T}{\partial z} \right) = q_T \qquad \text{end}$

$$\sigma = - \underbrace{\int_{z_{top}}^{z} \left[\phi \rho_{l} + (1 - \phi)\rho_{s}\right] gdz}_{z_{top}} + s_{0} - p_{l}$$

overburden load

$$K = 10^{\begin{array}{c} k_1 \\ k_2 \end{array}} \phi - \begin{array}{c} k_2 \\ k_2 \end{array} - 15$$

$$\phi(u_{I} - u_{s}) = -\frac{\kappa}{\mu_{I}} \left(\frac{\partial p_{I}}{\partial z} - \rho_{I}g\right)$$
$$\kappa_{T}(T) = \lambda_{I}^{\phi} [\lambda_{s}(T)]^{1-\phi}$$
$$\frac{d\phi}{dt} = \frac{d\phi_{M}}{dt} - \frac{d\phi_{Q}}{dt}, \phi > 0$$

conserva	tion equations
= 0	water mass conservation law
lqrtz	 solid mass conservation law q_{qrtz} is the quartz production rate h_{sea} is the height of the sea over the basin
= 9T	energy conservation law • $C_1 = \phi \rho_l c_l + (1 - \phi) \rho_s c_s$ • $C_2 = \phi \rho_l c_l u_l + (1 - \phi) \rho_s c_s u_s$ • q_T represents internal heat sources
— <i>P</i> I	force balance • g is the gravity acceleration • s_0 is the weight of the sea water column • σ is resulting effective stress on the solid matrix
constitut	ive equations
- 15	porosity/permeability law
p _l g)	 Darcy law μ₁ is the water viscosity
$-\phi$	thermal conductivity of the water/rock system • $\lambda_s(T) = \lambda_0 / (1 + c_0 T)$
> 0	porosity rate of change
	$a\phi_M$ $d\sigma$

parameter	units	lower bound	upper bound
eta	$[Pa^{-1}]$	$5 imes 10^{-8}$	$7 imes 10^{-8}$
а	$[mol m^{-2} s^{-1}]$	$0.5 imes10^{-18}$	$3.5 imes10^{-18}$
Ь	$[°C^{-1}]$	0.020	0.024
T_c	[°C]	70	90
h _{sea}	[m]	450	550
k_1	[-]	14.07	14.22
k_2	[-]	1.35	2.38

Forward UQ for:

- Porosity
- Temperature
- Pressure

Applications:

- Groundwater management
- Oil and mineral extraction

Mean ± std for porosity (forward UQ)

Porosity sensitivity analysis

	Monte Carlo (s)	Sparse grids (s)
Method creation	$1.46 \cdot 10^{-1}$	$0.27 \cdot 10^{-1}$
Realizations	$(1.24 \cdot 10^7)$	$(7.30 \cdot 10^4)$
Moments	$6.67 \cdot 10^{4}$	$3.82 \cdot 10^2$
Sobol indices		$4.20 \cdot 10^{3}$
MC of PCE		$1.22 \cdot 10^5$
Total	$1.25 \cdot 10^{7}$	$2.00 \cdot 10^5$

Surrogate model 100x faster (600 sparse grids samples vs 1e5 MC samples)

Multi-fidelity

- Consider a **hierarchy of approximations** of the same ODE/PDE:
 - a. Different discretizations
 - b. Different **physics:** Euler / Stokes / RANS / Direct Navier Stokes
- Explore the "bulk" of the variability due to y with **many queries of the cheap models** ...
- ... and correct with a handful of queries of the high-fidelity models
- Can (should) be combined with the **surrogate-modeling** paradigm

Multi-fidelity: back to the ferry problem

Mesh	Cells	Queries
M	ııк	~180
M ₂	87K	~50
M ₃	699K	10
M ₄	5.5M	5

Multi-fidelity: a 3d-printing problem

- Uncertain *E*, *v* after having 3d printed an object
- mean elongation given a constant pull?
- *E* = [105,120] GPa, *v* = [0.265,0.34] (Ti64, https://www.eos.info/material-m)

Multi-fidelity: a 3d-printing problem

Multi-fidelity methods run faster!

... and now, some details on multi-fidelity

- Our multi-fidelity method is called **Multi-Index Stochastic Collocation** (MISC)
- It uses a **sparse grid** sampling for each fidelity (roughly)
- It creates a multi-fidelity **surrogate** model
- Solvers can be used in a **black-box** way, embarrassingly **parallel**
- Based on the so-called
 "sparsification principle"

MISC: the sparsification principle

MISC: the sparsification principle

#PDE solved (parametric accuracy)

Write a telescopic equality

F = F + C - C + C - C + P - P + Q - Q

Rearrange to put in evidence three corrections

2nd order correction, small but expensive!

MISC: the sparsification principle

#PDE solved (parametric accuracy)

Rearrange terms, obtain MISC formula

 $\mathbf{F} \approx \mathbf{P} + \mathbf{Q} - \mathbf{C}$

i.e., a **linear combination of three different (cheap) approximations**

Each of them requires fixing a mesh for the PDE and the samples in the parameter space

- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

 Δ [Expected value] / cost

- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

 Δ [Expected value] / cost

- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

 Δ [Expected value] / cost

- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

 Δ [Expected value] / cost

- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

 Δ [Expected value] / cost

- 1. Add "neighboring refinements"
- 2. Choose the one that gave the **best** improvement:

 Δ [Expected value] / cost

Last but not least: inverse UQ / calibration

Maximum Likelihood and **Bayesian inversion** provide formulas to "update the statistical description" of **y** given noisy measures of *u* (posterior pdf of **y**). It's a "calibration with uncertainty"

Last but not least: inverse UQ / calibration

- Easiest setting:
 - uniform prior for y
 - o gaussian noise
 - "informative data"
- Then, there is a **close** relation to **least squares**:

 $\min_{\mathbf{y}}\sum_{i=1}^{M}[u_i(\mathbf{y})- ext{data}_i]^2$

Last but not least: inverse UQ / calibration

- Easiest setting:
 - uniform prior for y
 - o gaussian noise
 - "informative data"
- Then, there is a **close** relation to **least squares**: The updated pdf (posterior) of **y** is gaussian with
 - Mean = least squares estimate
 - **St. dev**. = inverse of eigenvalues of Hessian of least squares functional
- Requires optimization, i.e., multiple evaluations of u(y)! Surrogate models will help
- Can use data from multiple sources
- Alternative methods: Markov Chain Monte Carlo (MCMC), Kalman filter, ...
- Beware of identifiability!
 - **Structural:** is there a unique set of parameters that matches best my data / is the posterior pdf unimodal?
 - **Practical:** How sensitive is the procedure to data quality?

 $\min_{\mathbf{y}} \sum_{i=1}^{M} [u_i(\mathbf{y}) - ext{data}_i]^2$

Calibrate parameters from noisy measurements of porosity and/or temperature. What data are more informative?

Porosity data only

Temp. data only

Both data

Prior-based predictions

Posterior-based predictions

Conclusions

- UQ is a broad set of techniques to deal with **uncertainties** in computational sciences and engineering
- **forward** UQ, **inverse** UQ, optimization under uncertainty...
- Strong links with approximation theory, statistics, machine learning
- It boils down to repeatedly solving the ODE/PDE at hand: **expensive**!
 - Choose wisely the **sampling** scheme
 - Surrogate modeling
 - **multi-fidelity** paradigm
- Examples:
 - Ferry
 - Geochemical compaction
 - 3d-printing
 - SIR system

PhD course on UQ @ UniPV

- April 12 May 26
- Classes: Monday 11am/1pm
- Lab session: Thursday 9:30am/11:30am
- https://sites.google.com/view/phd-course-uq-tamellini

Bibliography

- C. Piazzola, L. Tamellini, R. Pellegrini, R. Broglia, A. Serani, M. Diez Uncertainty Quantification of Ship Resistance via Multi-Index Stochastic Collocation and Radial Basis Function Surrogates: A Comparison AIAA Aviation forum 2020 proceedings (arXiv:2005.07405)
- J. Beck, L. Tamellini, R. Tempone

IGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domains CMAME, 2019

• C. Piazzola, L. Tamellini, R. Tempone

A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology Math. Biosciences 2021

• G. Porta, L. Tamellini, V. Lever, M. Riva

Inverse modeling of geochemical and mechanical compaction in sedimentary basins through Polynomial Chaos Expansion WRR, 2014

Thanks for your attention