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The Uncertainty Quantification framework

PDE/ODE

Parameters y
● coefficients
● forcing terms
● Initial cond.
● boundary cond.
● Domain shape

● Solution u(x,y)
● Solution functional F(y)

○ Fluxes
○ Drag / lift forces
○ Time of arrival 
○ ...

● y are random/uncertain: 
○ experimental error
○ scarcity of data (expensive/difficult measurements) 
○ lack of knowledge
○ intrinsic randomness (wind load, rainfall, earthquakes)

● Then, u(y) and F(y) are random quantities

● What is the variability of u and F wrt to y ? 



Different kind of analysis are possible

● Forward UQ:
Compute mean, variance, quantiles, probability density function (pdf) of u(y)

● Inverse UQ (calibration):
Can we reduce the uncertainty on y if we measure u?



Practical example: forward UQ for a ferry
● Two operational uncertain parameters:  

○ Speed within the operational range
○ Draught ±10% design (±15% design payload)

● Quantity of interest: resistance to advancement (ship drag)
● PDE: Navier-Stokes (RANS solver)

mean(RT)=52.37
std(RT)=21.63



Practical example: inverse UQ for epidemics
● Two uncertain parameters 

○ Contact probability, β  
○ Recovery time, r

● ODE: SIR system

no data are available

β in [0.25, 0.35], r in [0.06,0.18] (literature)

with data on I,R up to t=30

β ~ N(0.285,0.80), r ~ N(0.086,0.26) 
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Solve, solve, solve!

● Most techniques boil down to repeatedly solving 
the ODE/PDE for multiple values of y (sampling)

● How many samples? For what values of y?

○ Alternative 1: Monte Carlo 
- Robust but very expensive 
- Error ≈M-1/2 
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Solve, solve, solve!

● Most techniques boil down to repeatedly solving 
the ODE/PDE for multiple values of y (sampling)

● How many samples? For what values of y?

○ Alternative 1: Monte Carlo 
- Robust but very expensive 
- Error ≈M-1/2 

○ Alternative 2: Cartesian sampling  
- More accurate but also expensive
- M = M0

N

○ Alternative 3: Sparse grids, and more...



Make it faster: surrogate modeling
● Instead of solving the PDE for all value of y

a. Solve for a few “selected” y
b. “Interpolate” the values of u(y) 
c. Evaluate the surrogate model:

much cheaper! 
d. Works for smooth functions u(y)

● Many alternatives:
a. Polynomial Chaos Expansion 
b. Sparse Grids
c. Reduced Basis
d. Proper Orthogonal Decomposition
e. Radial Basis Functions
f. Gaussian Processes

g. Neural Networks
h. ...



Example: a geochemical compaction model

How does sand on the bottom of the ocean become rock?



Example: a geochemical compaction model

Forward UQ for:
● Porosity
● Temperature
● Pressure

Applications:
● Groundwater management
● Oil and mineral extraction



Example: a geochemical compaction model

Mean ± std for porosity (forward UQ) Porosity sensitivity analysis



Example: a geochemical compaction model

Mean ± std for porosity (forward UQ) Porosity pdf at three depths

S0

S1

S2

S0

S1

S2



Example: a geochemical compaction model

Surrogate model 100x faster
(600 sparse grids samples vs 1e5 MC samples)



Multi-fidelity

● Consider a hierarchy of approximations of the same ODE/PDE:
a. Different discretizations
b. Different physics: Euler / Stokes / RANS / Direct Navier Stokes

● Explore the “bulk” of the variability due to y with many queries of the cheap models …

● … and correct with a handful of queries of the high-fidelity models

● Can (should) be combined with the surrogate-modeling paradigm 



Multi-fidelity: back to the ferry problem

Mesh Cells Queries

M1 11K ~180

M2 87K ~50

M3 699K 10

M4 5.5M 5

M4 M3 M2 M1



Multi-fidelity: a 3d-printing problem
● Uncertain E, v after having 3d printed an object
● mean elongation given a constant pull?
● E = [105,120] GPa, v = [0.265,0.34]  (Ti64, https://www.eos.info/material-m)



Multi-fidelity: a 3d-printing problem

Multi-fidelity v1

Multi-fidelity v2

Single-fidelity

Multi-fidelity methods run faster!



… and now, some details on multi-fidelity

● Our multi-fidelity method is called 
Multi-Index Stochastic Collocation 
(MISC)

● It uses a sparse grid sampling for 
each fidelity (roughly)

● It creates a multi-fidelity surrogate 
model

● Solvers can be used in a black-box 
way, embarrassingly parallel

● Based on the so-called 
“sparsification principle”



MISC: the sparsification principle

C: coarse discretization (coarse mesh, few 
samples)

Q: refine PDE mesh 

P: add more samples in the parameter 
space

F: take both actions

 Ideal but computationally unreachable



Write a telescopic equality

F = F + C − C
   + C − C
   + P − P
   + Q − Q

Rearrange to put in evidence three 
corrections

F = C 
   + P − C                     
   + Q − C                    
   + F − P − Q + C       

MISC: the sparsification principle

2nd order correction,
small but expensive!



Rearrange terms, obtain MISC formula

F ≈ P + Q − C

i.e., a linear combination of three 
different (cheap) approximations

Each of them requires fixing a mesh for 
the PDE and the samples in the 
parameter space

MISC: the sparsification principle



PDE solver accuracy

1. Add “neighboring refinements”

2. Choose the one that gave the best 
improvement:

3. Repeat

Δ[Expected value] / cost

# PDE solved
(param. accuracy)

MISC: an adaptive algorithm
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2. Choose the one that gave the best 
improvement:

3. Repeat

Δ[Expected value] / cost

# PDE solved
(param. accuracy)

MISC: an adaptive algorithm



Last but not least: inverse UQ / calibration

Maximum Likelihood and Bayesian inversion provide formulas to “update the statistical 
description” of y given noisy measures of u (posterior pdf of y). It’s a “calibration with uncertainty”  



Last but not least: inverse UQ / calibration
● Easiest setting: 

○ uniform prior for y
○ gaussian noise
○ “informative data”

● Then, there is a close relation to least squares:      



Last but not least: inverse UQ / calibration
● Easiest setting: 

○ uniform prior for y
○ gaussian noise
○ “informative data”

● Then, there is a close relation to least squares:      
The updated pdf (posterior) of y is gaussian with

○ Mean = least squares estimate
○ St. dev. = inverse of eigenvalues of Hessian of least squares functional

● Requires optimization, i.e., multiple evaluations of u(y)! Surrogate models will help

● Can use data from multiple sources

● Alternative methods: Markov Chain Monte Carlo (MCMC), Kalman filter, ...

● Beware of identifiability! 
○ Structural: is there a unique set of parameters that matches best my data / is the 

posterior pdf unimodal?
○ Practical: How sensitive is the procedure to data quality?   



Example: a geochemical compaction model
Calibrate parameters from noisy measurements of porosity and/or temperature. 
What data are more informative?



Example: a geochemical compaction model

Porosity data only

Temp. data only

Both data

More noise More noise More noise

Param 1 

Param 2 

Param 3 

Param 4 



Example: a geochemical compaction model

Prior-based predictions Posterior-based predictions



Conclusions
● UQ is a broad set of techniques to deal with uncertainties in computational sciences and 

engineering

● forward UQ, inverse UQ, optimization under uncertainty…

● Strong links with approximation theory, statistics, machine learning

● It boils down to repeatedly solving the ODE/PDE at hand: expensive!
○ Choose wisely the sampling scheme
○ Surrogate modeling
○ multi-fidelity paradigm

● Examples:
○ Ferry 
○ Geochemical compaction
○ 3d-printing
○ SIR system



● April 12 - May 26

● Classes: Monday 11am/1pm

● Lab session: Thursday 9:30am/11:30am

● https://sites.google.com/view/phd-course-uq-tamellini

PhD course on UQ @ UniPV
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Thanks for your attention 


