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Abstract

Purpose—The quantitative analysis of contrast-enhanced
Computed Tomography Angiography (CTA) is essential to
assess aortic anatomy, identify pathologies, and perform
preoperative planning in vascular surgery. To overcome the
limitations given by manual and semi-automatic segmenta-
tion tools, we apply a deep learning-based pipeline to
automatically segment the CTA scans of the aortic lumen,
from the ascending aorta to the iliac arteries, accounting for
3D spatial coherence.
Methods—A first convolutional neural network (CNN) is
used to coarsely segment and locate the aorta in the whole
sub-sampled CTA volume, then three single-view CNNs are
used to effectively segment the aortic lumen from axial,
sagittal, and coronal planes under higher resolution. Finally,
the predictions of the three orthogonal networks are inte-
grated to obtain a segmentation with spatial coherence.
Results—The coarse segmentation performed to identify the
aortic lumen achieved a Dice coefficient (DSC) of
0.92 ± 0.01. Single-view axial, sagittal, and coronal CNNs
provided a DSC of 0.92 ± 0.02, 0.92 ± 0.04, and
0.91 ± 0.02, respectively. Multi-view integration provided a
DSC of 0.93 ± 0.02 and an average surface distance of
0.80 ± 0.26 mm on a test set of 10 CTA scans. The
generation of the ground truth dataset took about 150 h
and the overall training process took 18 h. In prediction

phase, the adopted pipeline takes around 25 ± 1 s to get the
final segmentation.
Conclusion—The achieved results show that the proposed
pipeline can effectively localize and segment the aortic lumen
in subjects with aneurysm.

Keywords—Aorta segmentation, Deep learning, Convolu-

tional neural network, Multi-view integration.

INTRODUCTION

Abdominal aortic aneurysm (AAA) is a vascular
disease involving pathologic dilatations of the
abdominal aorta up to more than 3 cm in the greatest
diameter or dilatation of more than 50% of its diam-
eter.4 The AAA is localized between the renal and iliac
arteries and is associated with a high rate of morbidity
and mortality.15

In the last few years, the surgical management of
abdominal aortic aneurysms has shifted from surgery
to minimally invasive endovascular repair (EVAR).
During the intervention, the surgeon deploys one or
more stent grafts into the aneurysm sac using a ca-
theter inserted through femoral access: this procedure
reduces the pressurization of the aneurysm sac lower-
ing the risk of wall rupture.8

Computed Tomography Angiography (CTA) is the
primary imaging technique used to assess, manage, and
monitor abdominal aortic aneurysms. Accurate seg-
mentation of the aortic lumen in CTA scans is a critical
step to measure aortic length and diameters in order to
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facilitate the sizing of endografts.2 Besides the clinical
applications, the aortic models obtained from medical
images are also exploited to perform numerical simu-
lations.16

However, commercial software are semi-automatic
and require user initialization to perform vessel mor-
phological analysis.6 An automatic tool performing
aortic lumen segmentation would facilitate and stan-
dardize the analysis of the aortic anatomy, enabling
robust and reproducible measurements.

Recently, deep learning techniques have shown
excellent performances in the field of medical image
analysis, addressing classification, segmentation, and
detection tasks.18 In the following, some studies
showing the potential of deep learning-based tech-
niques in the endovascular field are reported.

Larsson et al. proposed a fully automatic method to
perform the segmentation of abdominal organs
including abdominal aorta.7 A feature-based multi-
atlas approach is exploited to coarsely localize the
organ, then a 3D Convolutional Neural Network
(CNN) is used to perform segmentation. In this study,
the overall dataset included 70 CT images of abdomi-
nal organs.

Lopez et al. designed a fully automatic pipeline
performing thrombus detection and its subsequent
segmentation.9 Thrombus segmentation is performed
on single 2D slices, and the spatial consistency between
sequential slices is enforced at a second stage applying
a Gaussian filter in the z-direction; the dataset is
composed of 13 postoperative CTA. This work has
been subsequently extended using 3D networks instead
of 2D networks8

Noothout et al. suggested an automatic method to
segment the ascending aorta, the aortic arch and
descending aorta in low-dose, non-contrast-enhanced
scans.14 A dilated convolutional neural network is
applied to axial, coronal, and sagittal planes, then the
results obtained in each view are averaged to provide
the final segmentation. The dataset is composed of 24
CT scans.

In the work by Mohammadi et al., the aorta is de-
tected in CTA scans using a patch-wise CNN classi-
fier.13 After detection, the aorta borders are extracted
through the Hough Circle algorithm and the lumen
diameters are used to predict the risk of AAA. The
dataset used to train the CNN classifier is composed of
5800 image patches.

Few studies have been carried out for the automatic
segmentation of aortic lumen in type B aortic dissec-
tion. In Cao et al., multitask learning is exploited to
segment the whole aorta, the true lumen and the false
lumen using 3D CNNs.1 The dataset is composed of
276 CTA scans.

Despite some works based on deep learning have
been proposed already to perform detection and seg-
mentation of aortic lumen and thrombi, most of them
are based on 2D CNNs and do not deal with 3D
spatial coherence, targeting for specific segments of the
aortic lumen (thoracic, abdominal, or iliac) or throm-
bosis. To overcome such limitations, the present study
develops a deep learning approach aimed at locating
and segmenting the whole aortic lumen from thoracic
aorta to the common iliac arteries, including branch
vessels in the aortic arch and abdominal segment,
accounting for spatial consistency. In particular, we
have implemented a fully automatic pipeline for pre-
operative aortic lumen segmentation, relying on a first
CNN to coarsely segment and locate the aortic lumen
from the whole CTA scans followed by other CNNs
for its finer segmentation.

Since deep learning approaches are data and mem-
ory demanding, the whole pipeline exploits 2D CNNs
instead of 3D CNNs.

MATERIALS AND METHODS

The proposed approach for automatic aortic seg-
mentation is described in Fig. 1. The pipeline consists
of a first 2D U-Net trained on down-sampled (¼) axial
slices in order to localize and extract a preliminary
aortic mask from CTA scans. The extraction of a
Region of Interest (ROI) is performed both to reduce
the needed memory and to focus on the information
that is crucial to segment the aorta. The identified ROI
is then processed by two-dimensional U-Nets trained
on axial, sagittal, and coronal planes that are obtained
extracting 2D slices along the x, y, and z axes of the
CTA scan under higher resolution. The predictions
provided by the three planes U-Nets are then com-
bined to provide a final segmentation that is spatially
coherent, overcoming the limitations of single-plane
CNNs.

Dataset

The dataset used in this study has been provided by
IRCCS San Martino University Hospital (Genoa,
Italy) and consists of 80 preoperative Computed
Tomography Angiography (CTA) scans regarding
patients with abdominal aortic aneurysm as primary
pathology. Patients with other diseases such as aortic
dissections and thoracic aneurysms were not included.

All the subjects involved in the study have signed
the informed consent form, allowing the treatment of
their anonymized data for research purposes. Given
the retrospective nature of the analysis and the adop-

BIOMEDICAL
ENGINEERING 
SOCIETY

3D Automatic Segmentation of Aortic Computed Tomography Angiography 577



tion of anonymized data, we have not submitted the
ethics committee/IRB application.

The mean age of the patients was 75 years (range
60–91 years), with a male predominance (86% males
compared to 14% females). Each CTA volume has
been semi-automatically segmented by trained experts
by means of ITK-Snap interactive tool.19 The ground
truth segmentations include thoracic, abdominal, and
iliac aortic segments. In addition, aortic arch branch
vessels (innominate artery, left common carotid artery,
and left subclavian artery) and abdominal aortic
branch vessels (celiac trunk, superior mesenteric artery,
left and right renal arteries) were included in the seg-
mentations. The branch vessels were segmented up to a
distance of 2 cm from the beginning of the branch. The
CTA acquisitions and corresponding segmentations
have been divided into three groups: training set
(n = 64 scans), validation set (n = 6 scans), and test
set (n = 10 scans). While the train and the test sets are
respectively exploited to train and evaluate the net-
work, the validation set is used in three different ways.
During the training process, the validation set is em-
ployed to prevent data overfitting through early stop-
ping regularization. Besides regularization, the
validation set is used to define the threshold needed to
binarize the raw probability maps provided by the
network. Finally, the validation set is exploited to se-
lect the integration approach to combine the single-
axis predictions.

Data Preprocessing

Data preprocessing is crucial to properly train the
deep learning networks; in the following, all the steps
involved in data preprocessing are described.

(a) Voxel size normalization: since input scans
have varying spatial resolution (pixel size

0.76 ± 0.08 mm, spatial thickness
0.75 ± 0.26 mm), the CTA pixel size has been
set to 0.73 mm and the slice thickness to
0.62 mm to enable the network to properly
learn the spatial semantic. The selected pixel
size and slice thickness are computed as the
median pixel size and thickness in the dataset.

(b) Window level adjustment: to enhance the
aortic lumen in the CTA scans, the window
level has been set to 200 Hounsfield Units
(HU) with 800 HU window width, resizing the
image intensity between 0 and 255.

(c) Resizing: in order to train the first U-Net and
coarsely extract the aorta location, the axial
slices have been down-sampled to 128x128
pixels (with down-sample factor = 4).

(d) ROI Extraction: given the preliminary axial
segmentation, a cuboid of dimension
144 9 144 9 480 centered in the aorta is used
to crop the CTA images at higher resolution
(down-sample factor = 2) and exclude part
of the background. The cuboid is used to train
both axial, sagittal, and coronal U-Nets.

(e) Data Augmentation: random rotations, shifts,
and zoom factors are applied to the slices
during the training process to augment both
the training and the validation sets (Table 1).

Pipeline

Based on the proposed workflow, this subsection is
divided into three main steps such as (a) aortic lumen
localization, (b) single-view segmentation, and (c)
multi-view aggregation.

(a) Localization. Segmentation is considered as a
binary classification problem, thus each pixel
in the image is classified as aorta or back-

FIGURE 1. Proposed method for aorta segmentation. On the left, the coarse localization of aorta is performed on down-sampled
images. On the right, models trained on axial, sagittal and coronal axes are used to perform single-view segmentations from the
cropped CTA volume. The final segmentation is obtained by integrating the three orthogonal segmentations.
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ground type. A preliminary 2D U-Net model
is used to segment the aorta from the axial
view. As already reported in the previous
section, the network is trained and validated
on CTA images resized to [128, 128] to reduce
the needed memory. The probability map
provided by the 2D coarse model is binarized
with a single threshold that maximizes the
Dice Coefficient (DSC) on the validation set.
Then, the coarse segmentation is used to ex-
tract a bounding box of the aortic mask and
keep only the area around the aorta. The
bounding box coordinates are used to get the
ROI with higher resolution, as proposed by
Jia et al.3

(b) Single-view Segmentation. Each CTA scan is
parsed into 2D axial, sagittal, and coronal
views. The scans are cropped with the cuboid
computed in the previous step. The cropped
scans have half resolution with respect to the
original CTA scans to deal with memory
needs. According to Noothout et al., a sepa-
rate deep learning model is trained for each
orthogonal view using the same U-Net archi-
tecture.14 The three networks are trained
using the same CTA scans, but taken from
different perspectives.

(c) Multi-view Aggregation. Three different U-
Nets have been separately trained on axial,
sagittal, and coronal planes to deal with the
need for spatial coherence in segmentation.
The outputs provided by the single-plane
networks are 2D probability maps where each
intensity value represents the probability of a
given pixel being aortic lumen or not.
According to Lopez et al., each 3D prediction
map volume is obtained by concatenating the
2D probability maps and applying a Gaussian
filter along the z-direction.9 Similar to the
coarse segmentation, the single-view 3D label
map is obtained by binarizing the prediction
map with a threshold maximizing the DSC on
the validation set. The aggregation stage is
intended to regularize the voxel prediction by
considering the spatial information from the

three orthogonal views. Three different
approaches have been implemented to com-
bine the single-view segmentations:
� Majority voting. Each network makes a

prediction for the voxels in the CTA scan,
and the corresponding label maps are
generated. According to the approach
followed by Zhou et al., the predicted label
(aorta or background) is assigned to the
voxel following the majority voting rule
among the predictions of the single-view
networks.20

� Simple averaging. According to Noothout
et al., the single-view prediction maps are
averaged to provide a final prediction
map.14 The final prediction for each voxel
x in the per-view prediction maps is com-
puted as follows:

pfinalðxÞ ¼
1

3
paxðxÞ þ

1

3
psagðxÞ þ

1

3
pcorðxÞ

where paxðxÞ, psagðxÞ, pcorðxÞ are the voxel
prediction in axial, sagittal, and coronal
views respectively. The binary segmenta-
tion is finally obtained by thresholding the
obtained prediction map.

� Integration of majority voting and aver-
aging. Given the 3D label maps, if the
three networks agree on the same label
(aorta or background), the probability
value in the final probability map is set to
be 1 if the label is aorta, or 0 if the label is
the background. Otherwise, the final voxel
probability is averaged following the pre-
vious formula, as proposed by Lyksborg
et al.10 The binary segmentation is finally
obtained by thresholding the obtained
prediction map.

Data Analysis

The segmentations obtained with the proposed pi-
peline are compared against the ground truth annota-
tions using multiple criteria.

TABLE 1. Data augmentation parameters.

Methods Coarse segmentation Finer axial segmentation Finer sagittal and coronal segmentation

Degree range for rotations [� 10�, 10�] [� 7�, 7�] [� 7�, 7�]
Width shift range [� 20, 20] pixels [� 22, 22] pixels [� 22, 22] pixels

Height shift range [� 22, 22] pixels [� 22, 22] pixels [� 72, 72] pixels

Zoom range [0.85, 1.15] [0.85, 1.15] [0.85, 1.15]
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� Overlap measures. The Dice coefficient is used
to evaluate the performance of the multi-view
network as an overlap measure between the
predicted and the ground truth segmentations.
The Dice coefficient between two binary seg-
mentations is defined as follow:

DSC ¼ 2jGT \ Pj
jGTj þ jPj

where GT is the ground truth volume and P is
the automatically segmented volume. The Jac-
card index (JAC), defined as intersection
between the two volumes divided by their union,
is further considered:

JAC ¼ GT \ Pj j
GT [ Pj j

� Symmetric surface to surface distance. This
criterion is used to evaluate how closely the
surfaces generated by the predicted and the
ground truth segmentations align. The dis-
tances are obtained by means of the distance
maps proposed by Maurer et al.12 Mean and
standard deviations of the surface-to-surface
distances are used to represent how the two
surfaces globally align, while the maximum
distance is used to represent the spurious errors.

EXPERIMENTS AND RESULTS

Experimental Settings

The experiments were performed using 80 CTA
scans acquired in the same hospital. Both training,
validation and testing were performed on a NVIDIA
GeForce RTX 2080 Ti graphic card with CUDA
compute capability = 7.5, under Windows operating
system. The segmentation pipeline was completely
developed using Python. The deep learning models
were implemented in Keras framework based on
Tensorflow with GPU support.

To train the models, binary cross-entropy was used
as a loss function, and Adam optimizer with learning
rate = 0.0001 was adopted to optimize the network
parameters. In each iteration, a mini-batch containing
20 and 10 slices randomly sampled from the training
set was provided to the first U-Net and to the single-
view networks, respectively. The images in the mini-
batch were modified on the fly with random rotations,
shifts, and zoom factors (Table 1) to perform data
augmentation. The training process was stopped using
early stopping criteria, with patience set to 15 epochs.
The overall time needed to train the first U-Net and the

single-view U-Nets are reported in Tables 2 and 3,
respectively.

Aortic Lumen Coarse Segmentation and Localization

Since the first U-Net is just aimed at coarsely
identifying the aortic lumen in the CTA scans, the
performances were evaluated only in DSC terms,
regardless of Jaccard score and surface to surface dis-
tances. Table 2 lists the average ± standard deviation
DSC achieved on the 10 test scans.

Single-Plane Lumen Segmentation

Axial, sagittal, and coronal U-Nets were separately
trained on the CTA cropped around the area of
interest. Table 3 reports the average ± standard devi-
ation Dice coefficients achieved on the 10 test scans.

Multi-view Aggregation

Multi-view aggregation is the final step in the pro-
posed pipeline. Three different approaches were
implemented to integrate axial, sagittal, and coronal
predictions into a final segmentation. The evaluation
of the integration approaches was performed on the
validation set. As shown in Table 4, the three
approaches provide similar results in terms of overlap
and surface measures. Simple averaging and the com-
bination of majority voting and averaging provide the
same results to the fifth decimal place. Since the com-
bination of majority voting and averaging provided
shade better results, it was selected as the final inte-
gration approach.

The results obtained with multi-view aggregation
were compared with those provided by single-view
segmentations to evaluate the impact of the proposed
approach on the test set. As it can be noticed from
Table 5, combining orthogonal segmentations pro-
vided better results than those obtained with single
view segmentations.

The quantitative measures of performance achieved
with the single-view and the multi-view models on
individual test patients are reported in Fig. 2. Patients
with ID5 and ID6 present the lowest DSC and Jaccard
index as well as the higher mean and maximum sur-
face-to-surface distances. Patient with ID5 has an
orthopedic prosthesis that caused artifacts in the
acquired CTA. The high maximum surface-to-surface
distance is caused by the fact that part of the prosthesis
has been segmented as part of the aorta (Fig. 3). As
regards the patient with ID6, we have noticed that
parts of vessels near the aorta have been included in
the predicted segmentation, increasing the number of
false positives. Probably, the network segments parts
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of those vessels as they have similar features to those of
the aorta and the other branches included in the
ground truth segmentations (Fig. 3).

Increasing the training set may reduce the errors
highlighted for patients with ID5 and ID6. Including
more patients with orthopedic prosthesis may avoid
the errors encountered in ID5 segmentations, reducing
the number of false positives. Besides, the inclusion of
CTAs with heterogeneous anatomies may increase the
network ability to correctly identify the aortic lumen
making the segmentation more robust.

A qualitative evaluation of the results provided by
the developed pipeline is presented in Figs. 4 and 5,
where the aortic segmentations performed by the ex-
perts are overlaid with the segmentations obtained
with multi-view aggregation. In Fig. 4, the segmenta-
tion provided by the proposed method is smooth and
effective. In Fig. 5, the final result presents some spu-
rious errors.

Figure 6 presents the 3D models generated from the
automatic and ground truth segmentations represented
in Figs. 4 and 5.

TABLE 2. A summary of data employed to perform coarse axial segmentation together with information on the training process is
reported in the first columns.

Segmentation

task

Training

CTA

Validation

CTA Test CTA

Image

dimension

Number of

epochs

Training

time (min)

Binarization

threshold

DSC on test

set

DSC on val-

idation set

Axial coarse

segmentation

64 (61507

2D sli-

ces)

6 (5795

2D sli-

ces)

10 (9033

2D sli-

ces)

(128, 128) 19 111 0.4 0.92 ± 0.01 0.92 ± 0.03

The quantitative results obtained on the test set and validation set are shown in the last columns on the right. The reported binarization

threshold maximizes the DSC on the validation set.

TABLE 3. A summary of data employed to perform single-view segmentation along with information on the training process is
reported in the first columns.

Segmentation

task Training CTA

Validation

CTA Test CTA

Image

dimension

Number of

epochs

Training

time (min)

Binarization

threshold

Dice coeffi-

cient

Axial 64 (47087 2D

slices)

6 (4744 2D

slices)

10 (7411 2D

slices)

(144, 144) 18 252 0.4 0.920 ± 0.016

Sagittal 64 (11658 2D

slices)

6 (1063 2D

slices)

10 (1727 2D

slices)

(480, 144) 35 378 0.45 0.915 ± 0.038

Coronal 64 (11122 2D

slices)

6 (1113 2D

slices)

10 (1775 2D

slices)

(480, 144) 36 327 0.4 0.913 ± 0.019

The quantitative results obtained on the test set are shown in the last column on the right. The reported binarization threshold maximizes the

DSC on the validation set.

TABLE 4. Performances of different multi-view aggregation approaches on the validation set.

Integration approach Dice coefficient

Jaccard coeffi-

cient Mean surface distance (mm)

Maximum distance

(mm)

Majority voting 0.929 ± 0.021 0.869 ± 0.037 0.575 ± 0.193 32.888 ± 10.17

Simple averaging 0.930 ± 0.021 0.870 ± 0.036 0.559 ± 0.188 28.020 ± 5.807

Integration of majority voting and averaging 0.930 ± 0.021 0.870 ± 0.036 0.559 ± 0.188 28.020 ± 5.807

Both Dice and Jaccard scores and mean and maximum symmetric surface distances are evaluated.

TABLE 5. Performances provided by single-view and multi-view segmentations on the test set.

View Dice coefficient Jaccard coefficient Mean surface distance (mm) Maximum distance (mm)

Axial 0.920 ± 0.016 0.853 ± 0.02 1.457 ± 0.695 121.772 ± 27.356

Sagittal 0.915 ± 0.038 0.845 ± 0.060 2.451 ± 3.680 75.073 ± 42.470

Coronal 0.913 ± 0.019 0.841 ± 0.032 1.363 ± 1.179 82.364 ± 31.086

Multi-view integration 0.928 ± 0.013 0.866 ± 0.023 0.711 ± 0.644 50.059 ± 37.285

Both Dice and Jaccard scores and mean and maximum symmetric surface distances are evaluated.
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DISCUSSIONS AND CONCLUSION

In this study we have proposed a deep learning
approach for a spatially coherent segmentation of
thoracic aorta, abdominal aorta, and iliac arteries.

In the proposed pipeline, the aortic lumen is first
coarsely localized in the CTA scans, then the axial,
sagittal, and coronal slices are segmented from the
cropped region of interest using three distinct 2D
networks. Finally, the single view segmentations are

FIGURE 2. The Dice and Jaccard scores, together with mean and maximum distance measurements, are reported for each patient
in the test set. Each patient is represented by an identification number (ID). For each evaluation metric, the results provided by
single-view and multi-view segmentation are reported.

FIGURE 3. Patient with ID5 presents a high maximum surface-to-surface distance because some pixels are wrongly labeled as
aorta in the iliac area. The presence of an orthopedic prosthetic may have caused these errors. In Patient with ID6, some spurious
errors are caused by the partial segmentation of other vessels near the aorta.
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combined to provide the final segmentation. The pre-
sented method can localize and effectively segment the
aorta from preoperative CTA scans of patients affected
by AAA.

Since the lack of annotated data is one of the most
common limitations encountered in many deep learn-
ing approaches,8,9,14 a semi-automatic segmentation
protocol was established to collect a labeled dataset.
The experts have segmented a total amount of 80 CTA
volumes to enable end-to-end learning. Since each
CTA scan is decomposed into stacks of axial, sagittal,
and coronal 2D slices, the networks were trained with
a large amount of data.

Moreover, the CTAs in our dataset comprise
annotations of thoracic, abdominal, and iliac seg-
ments, including aortic arch branch vessels (innomi-
nate artery, left common carotid artery, and left
subclavian artery) and abdominal aortic branch vessels
(celiac trunk, superior mesenteric artery, left and right
renal arteries), while most of the studies available in
literature are focused on a single area.7–9,14 In this way,

FIGURE 4. Ground truth and predicted segmentations are overlaid onto a cropped CTA belonging to the test set. The ground
truth segmentation is represented in green, while automatic segmentations is displayed in red.

FIGURE 5. Ground truth and predicted segmentations are overlaid onto a cropped CTA belonging to the test set. The ground
truth segmentation is represented in green, while automatic segmentations is displayed in red. The automatic segmentation in
slices (a) and (c) presents some spurious errors.

FIGURE 6. The ground truth 3d model and the model
generated by automatic CTAs segmentation are represented
in green and red, respectively. The considered CTAs belong
to the test set. In panel (a) the predicted model aligns with the
ground truth. In panel (b), the predicted model presents some
spurious areas and extends deeper into the iliac arteries.
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the proposed approach allows the analysis of the whole
aortic morphology.

Axial Pre-segmentation

The first step in the proposed pipeline is the auto-
matic, coarse identification of the aortic lumen from
CTA scans. This step is performed to preserve only the
information needed to segment the aortic lumen,
excluding part of the background. In the work pro-
posed by Lopez et al., a 2D specific detection network
is exploited to perform thrombus localization from
CTA images.9 In our work, we have adopted another
approach exploited for left atrium automatic segmen-
tation.3 Here, a first 3D U-Net was exploited to extract
the region of interest from MR images, then a second
3D U-Net performed a finer segmentation on MR
cropped at higher resolution.

Spatial Coherence

In our work, three state-of-the-art approaches per-
forming multi-view integration were evaluated to find
out which one suits our problem better; our results
showed that the integration of majority voting with
simple averaging provided the best prediction.

Since 3D CNNs usually require larger dataset and
are memory-demanding,5 some studies focused on the
integration of orthogonal 2D-CNNs for medical image
segmentation.10,11,17,20 To the best of our knowledge,
only one publication deals with 3D integration of 2D
CNNs in the endovascular field,14 where the authors
average together axial, sagittal, and coronal predic-
tions to provide a smoother segmentation of the aortic
lumen from CT scans. Following these state-of-the-art
approaches, we have adopted a combination of 2D U-
Nets trained on orthogonal planes to provide a final
3D segmentation.

Limitations

� Dataset A larger dataset should further im-
prove the performances of the proposed pipe-
line, leading to a better generalization and
preventing overfitting problems. Moreover,
including CTA acquired in different hospitals
and with different scanners should increase the
variability in the training, validation and test
sets, leading to better segmentation results.

� Segmentation accuracy In order to train the
deep learning models involved in the adopted
pipeline, a dataset composed of 80 CTAs has
been semi-automatically segmented by trained
experts. The models in the pipeline learn in a

supervised manner how to segment CTA
images. As a consequence, the accuracy of the
pipeline strongly depends on the quality of the
ground truth segmentations generated by the
experts using the semi-automatic software.
Having the same CTAs segmented by several
experts would be helpful to deal with interob-
server variability. However, since ground truth
generation is a time-consuming task, in the
present study we have provided only one
ground truth segmentation for each patient.

� Lumen segmentation In this work, the proposed
pipeline segments the aortic lumen from CTAs,
without considering the thrombus. Currently,
the lack of annotated thrombi in our CTA
scans prevented the development of this line of
research. Moreover, since multi-class segmen-
tation is more complex than binary segmenta-
tion, a larger dataset could be required to train
the multi-class networks. In future works we
aim at integrating the thrombus segmentation
part.

� Preoperative CTA segmentation Another limi-
tation of the current work is that the proposed
pipeline is limited to preoperative CTA scans. It
would be very interesting to perform automatic
segmentation of both preoperative and post-
operative aortic lumen, in order to evaluate the
morphology changes after EVAR. In future
works, after collecting and labeling postopera-
tive CTAs, the developed pipeline will be
trained and tested on postoperative data.

� Patient anatomy In this work, we have not
analyzed the impact of patient anatomy on the
segmentation results. In future developments,
given a bigger test set it might be possible to
evaluate the variation of the segmentation per-
formance with respect to the patient anatomy.
This analysis might enable the identification of
anatomies that are more difficult to segment
and the development of a classification algo-
rithm capable of automatically identifying these
challenging cases.

� ITK-Snap plugin Currently, the developed pi-
peline is not integrated in ITK-Snap. Further
developments of the present study will address
the implementation of ITK-Snap plugins to
make the developed pipeline available.

Conclusion

The proposed automatic segmentation pipeline
shows promising applications both for clinical practice
and numerical analysis.
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Considering that the aortic lumen segmentation is
the first step for morphology analysis and stent-graft
sizing, this approach may significantly reduce the
workload for surgeons in the planning stage and
facilitate decision making. Moreover, the automatic
segmentation of the lumen in all the aortic segments
represents an advantage, as it enables different types of
geometric analysis (e.g., iliac tortuosity estimation,
thoracic aortic arch analysis, etc.).

Finally, the 3D models obtained from the automatic
segmentation may be used to perform different types of
numerical analysis (e.g., simulation of guidewire
insertion during EVAR, simulation of stent graft
deployment, hemodynamic simulations, etc.).

On average, the whole pipeline took only 25 ± 1 s
per scan, making it suitable for application in studies
including large volumes of images.
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