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Abstract: Background: Transcatheter aortic valve replacement has proved its safety and effectiveness
in intermediate- to high-risk and inoperable patients with severe aortic stenosis. However, despite
current guideline recommendations, the use of transcatheter aortic valve replacement (TAVR) to treat
severe aortic valve stenosis caused by degenerative leaflet thickening and calcification has not been
widely adopted in low-risk patients. This reluctance among both cardiac surgeons and cardiologists
could be due to concerns regarding clinical and subclinical valve thrombosis. Stent performance
alongside increased aortic root and leaflet stresses in surgical bioprostheses has been correlated
with complications such as thrombosis, migration and structural valve degeneration. Materials
and Methods: Self-expandable catheter-based aortic valve replacement (Medtronic, Minneapolis,
MN, USA), which was received by patients who developed transcatheter heart valve thrombosis,
was investigated using high-resolution biomodelling from computed tomography scanning. Calcific
blocks were extracted from a 250 CT multi-slice image for precise three-dimensional geometry image
reconstruction of the root and leaflets. Results: Distortion of the stent was observed with incomplete
cranial and caudal expansion of the device. The incomplete deployment of the stent was evident in
the presence of uncrushed refractory bulky calcifications. This resulted in incomplete alignment of the
device within the aortic root and potential dislodgment. Conclusion: A Finite Element Analysis (FEA)
investigation can anticipate the presence of calcified refractory blocks, the deformation of the prosthetic
stent and the development of paravalvular orifice, and it may prevent subclinical and clinical TAVR
thrombosis. Here we clearly demonstrate that using exact geometry from high-resolution CT scans
in association with FEA allows detection of persistent bulky calcifications that may contribute to
thrombus formation after TAVR procedure.
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1. Introduction

Transcatheter aortic valve replacement (TAVR) is now a common cardiac operation performed
worldwide. It is the most effective aortic implantation method for several categories of patients
affected by severe aortic valve stenosis [1–7]. Although transcatheter aortic valve procedures have
been performed for more than 17 years [8], no detailed guidelines on the choice of TAVR for younger
low-risk patients have been published [9,10], and the choice of strategy remains more an art than a
science [11]. Moreover, there is a clear contradiction between the proven benefits of transcatheter
heart valve therapy (THVT) and a disguised concern related to thrombosis and early structural valve
deterioration [12,13].

Subclinical leaflet thickening, reduced leaflet motion of bioprosthetic aortic valves and
manifested thrombosis in transcatheter aortic valve replacement are more common than previously
appreciated [14–18]. Recently, the GALILEO-4D Clinical Trial [19] showed that the precise causative
mechanisms remain unknown despite the use of rivaroxaban-based antithrombotic strategy (10 mg
rivaroxaban plus 75 to 100 mg aspirin once daily) or an antiplatelet-based strategy (75 mg clopidogrel
plus 75 to 100 mg aspirin once daily).

Vollema et al. [16] focused attention on the phenomenon of early hypo-attenuated leaflet thickening
(HALT) documented either in standard aortic valve replacement or in TAVR [14], which is a cause
for concern in both procedural effectiveness and durability of the device. The HALT could serve
as a promoter for leaflet thrombosis leading to increased transvalvular gradients, an influencing
determinant of early structural valve deterioration and an increased risk for ischemic accidents [17].
The single-center study by Nührenberg et al. [20] focused on the phenomenon of hypo-attenuated
leaflet thickening as a potential precursor of thrombosis. The authors evaluated the association
between platelet reactivity and HALT following transcatheter aortic valve replacement. All patients,
including those with oral anticoagulation treatment, had dual antiplatelet therapy with aspirin and
clopidogrel for at least 24 h prior to the procedure. In patients who had pre-existing indications for oral
anticoagulation treatment, aspirin was discontinued, but the therapy was continued after TAVR for all
the rest. Recipients of the protocol were checked for platelet function, and 4D computed tomography
was performed five days after valve implantation to determine the association between baseline platelet
reactivity and hypo-attenuated leaflet thickening. The most important finding of this study showed an
18% incidence of hypo-attenuated leaflet thickening with lower complication rates for patients treated
with oral anticoagulation. Authors concluded that patients with dual antiplatelet therapy (aspirin and
clopidogrel) did not experience a change in the onset of early hypo-attenuated leaflet thickening.

It is indisputable that these complications may have an effect on everyday clinical practice. In the
hope of encouraging wider diffusion of THVT and to provide a guide for clinicians, we have developed
a predictive model to evaluate the progression of thrombotic process with the aim to discuss current
evidence for the use of this operation. We propose a research investigation using high-resolution
biomodelling from computed tomography scanning. Calcific blocks were extracted from a 250 CT
multi-slice image for precise three-dimensional geometry image reconstruction of the root and leaflets.

2. Material and Methods

2.1. Study Design and Oversight

The study was a retrospective cohort analysis conducted on 98 patients who received
the commercially available self-expanding TAVR. First-generation CoreValve self-expandable
catheter-based aortic valve replacements were implanted in 82 patients. In the remaining patients,
7 received second-generation self-expandable catheter-based replacements and 9 received the Portico
device (ethics approval: IRB CCN_TAVR_1-1218, 29 December 2018).
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2.2. Patient Selection

The selected patients underwent TAVR from November 2014 to April 2018 at the Centre
Cardiologique du Nord. The eligibility criteria for the study was the implantation of self-expanding
transcatheter aortic valve replacement in patients who had developed symptomatic thrombosis after
implantation of the device at one year. Eligible symptomatic patients were identified and re-hospitalized
with New York Heart Association Class (NYHA) class IV symptoms and severe stenosis of device.
Diagnosis of thrombosis was confirmed at the CT scan.

2.3. CT Imaging and Evaluation

All 98 patients had preoperative CT scans. Our institutional TAVR protocol does not mandate
systematic CT scans post-TAVR in patients with uncomplicated postoperative courses. Thus, only the
39 patients with unplanned heart failure rehospitalization underwent CT at varying intervals after
catheter-based aortic valve replacement. Of a total of six devices affected by symptomatic THVT,
three patients were carriers of self-expanding TAVR. Two of those patients received a first-generation
CoreValve device. As stated in Figures 1–7, the sizes were 26 and 23 mm. The third patient received a
Portico self-expandable catheter-based aortic valve replacement. As stated in Figure 8, the size was
29 mm.

Diagnostics 2020, 10, x FOR PEER REVIEW 3 of 13 

 

2.2. Patient Selection 

The selected patients underwent TAVR from November 2014 to April 2018 at the Centre 

Cardiologique du Nord. The eligibility criteria for the study was the implantation of self-expanding 

transcatheter aortic valve replacement in patients who had developed symptomatic thrombosis after 

implantation of the device at one year. Eligible symptomatic patients were identified and re-

hospitalized with New York Heart Association Class (NYHA) class IV symptoms and severe stenosis 

of device. Diagnosis of thrombosis was confirmed at the CT scan. 

2.3. CT Imaging and Evaluation 

All 98 patients had preoperative CT scans. Our institutional TAVR protocol does not mandate 

systematic CT scans post-TAVR in patients with uncomplicated postoperative courses. Thus, only 

the 39 patients with unplanned heart failure rehospitalization underwent CT at varying intervals 

after catheter-based aortic valve replacement. Of a total of six devices affected by symptomatic THVT, 

three patients were carriers of self-expanding TAVR. Two of those patients received a first-generation 

CoreValve device. As stated in Figure 1–7, the sizes were 26 and 23 mm. The third patient received a 

Portico self-expandable catheter-based aortic valve replacement. As stated in Figure 8, the size was 

29 mm.  

All 3D CT scan procedures were obtained with the 256-row multi-slice GE using volume-

rendered CT-acquisition protocol (General Electric Healthcare, Chicago, IL, USA). Qualitative and 

quantitative assessment of left ventricular outflow tract, aortic root, ascending aorta, and leaflet 

morphology were performed. Finally, leaflet motion with volume-rendered en-face CT imaging of 

the native aortic valve and TAVR prosthesis at maximal systolic leaflet opening was quantitatively 

assessed.  

 

Figure 1. Transcatheter aortic valve replacement (TAVR) position, thrombus formation and 

biomechanical model of patient-specific aortic root from medical CT images. (A) Pre-operative CT 

scan of CoreValve (26 mm). (B) Post-operative CT scan at one year shows a device upward shift. (C) 

Thrombus formation in subvalvular zone (red arrow). 

Figure 1. Transcatheter aortic valve replacement (TAVR) position, thrombus formation and
biomechanical model of patient-specific aortic root from medical CT images. (A) Pre-operative CT
scan of CoreValve (26 mm). (B) Post-operative CT scan at one year shows a device upward shift.
(C) Thrombus formation in subvalvular zone (red arrow).Diagnostics 2020, 10, x FOR PEER REVIEW 4 of 13 
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Figure 3. (A,B) Preoperative CT scan shows massive calcifications of aortic leaflet and root.
(C) Extraction of aortic root geometry. (D,E) 3D preoperative model: aortic wall with leaflets and
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Figure 4. Inclusion of calcific blocks and Finite Element Analysis simulation of TAVR procedure. (A) CT
image, aortic valve from transverse plane: leaflet calcifications. (B) Top view of patient-specific 3D
aortic root reconstruction: calcifications attached to the leaflets. Persistent bulky calcifications may
determine the development of paravalvular leakage. (C) Influence of bulky calcification on device
biomechanical behavior. (D) Simulation of stent self-expansion after catheter removal: lack of prosthetic
anchorage corresponding to uncrushed calcific plaques (blue arrow). (E) Great calcification prevents
good left ventricular outflow tract (LVTO) inferior placement of CoreValve (26 mm) and upward stent
migration (red arrow).
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Figure 5. Results of FEA: evaluation of von Mises average stress distribution induced by the device
expansion along the native aortic structure during and after implant simulation. (A) Stent crimping.
(B) Catheter removing. (C) Stent self-expansion.Diagnostics 2020, 10, x FOR PEER REVIEW 6 of 13 

 

 

Figure 6. Numerical values expressed in MPa. (A) Stent crimping. (B) Catheter removing. (C) Stent 

self-expansion. 

 

Figure 7. (A–C) Valve-in-valve thrombosis of CoreValve self-expanding TAVR. 

 

Figure 8. (A–D) Thrombosis of 29 mm self-expandable Portico device. 

2.4. The Use of Finite Element Analysis Investigation 

Figure 6. Numerical values expressed in MPa. (A) Stent crimping. (B) Catheter removing.
(C) Stent self-expansion.

Diagnostics 2020, 10, x FOR PEER REVIEW 6 of 13 

 

 

Figure 6. Numerical values expressed in MPa. (A) Stent crimping. (B) Catheter removing. (C) Stent 

self-expansion. 

 

Figure 7. (A–C) Valve-in-valve thrombosis of CoreValve self-expanding TAVR. 

 

Figure 8. (A–D) Thrombosis of 29 mm self-expandable Portico device. 

2.4. The Use of Finite Element Analysis Investigation 

Figure 7. (A–C) Valve-in-valve thrombosis of CoreValve self-expanding TAVR.



Diagnostics 2020, 10, 183 6 of 13

Diagnostics 2020, 10, x FOR PEER REVIEW 6 of 13 

 

 

Figure 6. Numerical values expressed in MPa. (A) Stent crimping. (B) Catheter removing. (C) Stent 

self-expansion. 

 

Figure 7. (A–C) Valve-in-valve thrombosis of CoreValve self-expanding TAVR. 

 

Figure 8. (A–D) Thrombosis of 29 mm self-expandable Portico device. 

2.4. The Use of Finite Element Analysis Investigation 

Figure 8. (A–D) Thrombosis of 29 mm self-expandable Portico device.

All 3D CT scan procedures were obtained with the 256-row multi-slice GE using volume-rendered
CT-acquisition protocol (General Electric Healthcare, Chicago, IL, USA). Qualitative and quantitative
assessment of left ventricular outflow tract, aortic root, ascending aorta, and leaflet morphology were
performed. Finally, leaflet motion with volume-rendered en-face CT imaging of the native aortic valve
and TAVR prosthesis at maximal systolic leaflet opening was quantitatively assessed.

2.4. The Use of Finite Element Analysis Investigation

Presently, the mechanism of THVT cannot be directly predicted, but it can be determined through
finite element analyses (FEAs). By means of FEA, we obtained knowledge about complicated real-world
systems that would otherwise be impossible to directly determine. First, we applied FEA to medical
device designs, and we used this pivotal procedure to calculate stresses and investigate potential failure
modes and locations. Second, we performed a predictive biomechanical modelling of aortic root and
leaflet through the FEA to obtain specific features directly extracted from CT imagery of the patient’s
aortic root preoperatively. Our goal was to determine the risk of THVT in the first generation of TAVR
(Medtronic, Minneapolis, MN, USA). In addition, non-cylindrical trans-aortic valve (TAV) shape after
implantation in the calcified aortic root, which can cause paravalvular regurgitation, was observed.

2.5. Computed Biomodelling of Thrombosis

The patients with severe calcified aortic stenosis who underwent a TAVR procedure with a
self-expanding device were studied with the 256-row CT scan. The adopted computational framework
to simulate transcatheter aortic valve replacement was used to investigate the first commercially
available 26 mm CoreValve self-expandable catheter-based aortic valve replacement, which was the
most widely used self-expandable device with 82 procedures.

The FEA evaluation can be categorized into four main phases: Phase 1 was the processing
of medical images. Phase 2 was the establishment of suitable models for analysis. Phase 3 was
the simulation of the entire clinical procedure after analysis of the acquired data. Phase 4 was the
post-processing of the simulation results and comparison with follow-up data.



Diagnostics 2020, 10, 183 7 of 13

The commercial finite element solver Abaqus 6.14 by Dassault Systèmes (Simulia, Providence, RI,
USA) was used to create an aortic valve Finite Element Model (FEM) and perform all simulations—stent
crimping and prosthesis implantation in the native root. Preoperative CT images were initially used
to create a patient-specific geometrical model of the aortic valve complex consisting of aortic root
wall, native leaflets, and calcific plaques. Details on the FEA methodology are reported in the
Supplementary Materials.

3. Results

Thrombotic formation with 26 mm CoreValve transcatheter valve therapy (online Video 1) was
detected one year after implantation.

3.1. Phase 1—Processing Medical Images

Echocardiography showed high transvalvular gradients (peak 34 mm Hg; mean 23 mm Hg;
dimensionless valve index 0.23), mild central leakage, and elevated left ventricular dimensions with
normal left ventricular function. Thrombotic formation was detected at transthoracic echocardiography
(TTE) and subsequent transoesophageal echocardiography (TEE) (online Video 2).

CT scan showed thrombosis of the inner surface of the CoreValve where a thrombus measuring
20 × 15 mm was located in the subvalvular zone. The thrombus was at the level of the posterior and
anterior right leaflet and presented with extensions into the supravalvular zone, rendering the posterior
leaflet quasi-totally blocked in closed position with a measured planimetry of 1.5 cm2. The coronary
ostia were free of lesions, and there was no evidence of embolism (online Video 3). The thrombus
extended to the outer surface of the CoreValve involving the sinus of Valsalva. The device had migrated
17 mm cranially (Figure 1A–C and Figure 2). The patient was promptly commenced on anticoagulant
therapy. Seven days after treatment, CT imaging revealed a residual partial extension of subvalvular
thrombus with a marked regression of the circumferential supravalvular mass partially limited to
the right and left aortic sinus. The thrombus was predominantly organized on the posterior leaflet
as a nodular formation of 4–4.5 mm (online Video 4). Both TTE and TEE revealed a significantly
reduced transvalvular gradient of 10–11 mm Hg with no evidence of central leakage (online Video
5). The patient was discharged home on anticoagulant therapy. Upon follow-up four weeks later,
the images revealed further regression of thrombus (online Videos 4 and 5).

3.2. Phase 2—Simulation of the Entire Clinical Procedure after Analysis of the Acquired Data

Pre-operative CT images (Figure 3A,B) were used to create an accurate geometrical model of
the aortic valve complex of the patient consisting of aortic root wall, native leaflets, and calcific
plaques (Figure 3C–E; Figure 4B,D,E). Based on the reconstructed geometrical model, Finite Element
Analysis (FEA) was performed using the commercial FE solver Abaqus 6.14 by Dassault Systèmes
(Simulia, Providence, RI, USA), following the detailed procedure described by Morganti et al. [21]
(Supplementary Methods). CT images taken after stenting have been used to validate our simulation
outcomes by direct comparison with post-operative data. During the FEA simulation of TAVR
procedure, von Mises average stress distribution was computed to measure the stress induced by the
device expansion onto the inner wall of the aortic root (Figure 4B,D,E; Figure 5A–C; Figure 6A–C).

3.3. Phase 3—Post-Processing of the Simulation Results and Comparison with Follow-Up Data

As shown in the image study results, the location of stress peaks corresponded to the sites of higher
global anchoring forces. Therefore, as expected, greater values of stress were associated with the contact
areas between the stent frame and the patient-specific aortic structure (0.1667–2.715 MPa). Conversely,
lower values were revealed in correspondence with the position of refractory bulky calcifications,
noted after deployment of the self-expanded valve, which could not cover the entire circumference of
the annulus, leaving a large paravalvular orifice (Figure 4B, green arrow). The device was not properly
aligned with the aortic root, thereby lacking complete basal attachment and showed stent deformation
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(Figure 4D, blue arrow). Evidence that TAVR biomechanical behavior was influenced by calcific blocks
attached to the leaflets is shown in Figure 3A,B and Figure 4A,C. Compared to the shape before the
crimping procedure (Figure 2), a qualitative evaluation of real stent deformation in the investigated
patient’s root clearly highlights an incomplete and asymmetric expansion of the device (Figure 4B,D).

4. Discussion

Just a few years ago, the heart surgery community experienced a reversal of the trend of
standard operation for aortic valve replacement, and there was a drastic reduction in the number of
mechanical prostheses implanted compared to stented xenografts [22,23] because thrombosis in surgical
bioprosthesis occurs more rarely (1%–2% of recipients) [24], which is significantly less compared to
the modern-day TAVR [17,23]. Today, in the transcatheter heart valve therapy scenario, one of the
exciting arguments for optimizing the TAVR procedure is improved antiplatelet therapy, although
clinical investigators are enticed by novel anticoagulant drugs [25].

Transcatheter heart valve thrombosis is an ongoing thorn in the effectiveness of long-term outcomes
for the procedure. The importance of post-TAVR thrombotic complication as initially described by
Hanson showed a 7% THVT rate with 18% of patients with clinically obstructive TAVR thrombosis
despite the administration of dual antiplatelet medication [15]. However, concerns emerged prematurely
in the results of Placement of AoRTic TraNscathetER Valve Trial Partner II and III randomized clinical
trials, and widespread empirical use of dual antiplatelet therapy was supported by evidence of 75%
of recipients of catheter-based aortic valve replacement developing embolic detritus [3,5]. In the last
two years, investigators have tried to provide an answer to the problem by primarily optimizing
antithrombotic therapy with aspirin alone or aspirin plus clopidogrel administration, thus ignoring
biomechanical studies on the aortic root post-TAVR procedure. Nührenberg’s work revealed that
antiplatelet therapy was ineffective in the prevention of thrombosis, highlighting that an improvement
in the understanding of HALT phenomenon after transcatheter heart valve replacement may circumvent
the inherent risks of continuous anticoagulant therapy in patients who have received a bioprosthesis.
Recently, a GALILEO RCT (global study comparing a rivaroxaban-based antithrombotic strategy
to an antiplatelet-based strategy after transcatheter aortic valve replacement to optimize clinical
outcomes) showed that a rivaroxaban-based antithrombotic strategy was more effective than an
antiplatelet-based strategy in preventing subclinical leaflet motion abnormalities. These results are
promising to establish an effective optimal medical treatment and avoid THVT; however, in the main
trial, the rivaroxaban-based strategy was associated with a higher risk of death or thromboembolic
complications and a higher risk of bleeding than the antiplatelet-based strategy [19].

Dynamic of Aortic Root and Persistent Bulky Calcification: Still Relevant?

The performance of the percutaneous aortic valve procedure is affected by the degree of native
valve calcifications, stent deformation, the size of the patient’s annulus, and a physiological dynamic
of blood [26].

First, the presence of calcified blocks in the annulus raises questions on the indication of the
use of stented prostheses that may lead to geometric transformations of the aortic annulus after the
deployment of the device [21,27]. Balloon and self-expandable catheter-based aortic valves may be
ineffective on solid and bulky native aortic valve calcifications. In our own study, the Sapien XT
showed high values of the maximum principal stress in the aortic regions closed to solid calcific blocks
resulting in the deformation of the stent which assumes an elliptical shape [27]. The consequence
of the geometric modification in the more accentuated form can lead to leaflet mal-coaptation due
to paravalvular leakage, while in the lesser accentuated ones it can lead to hypo-attenuated leaflet
thickening. We hypothesize that the second, less evident elliptical deformation potentially predisposes
patients to subclinical thrombosis due to the presence of residual bulky native calcification favoring
hypomobility [21,27]. In self-expanding devices, we have demonstrated the crucial role of positioning in
determining valve anchorage. Non-uniform expansion related to extensive calcifications is responsible
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for prosthetic device deformation that leads to an eccentricity > 10%, resulting in incomplete expansion
of the metallic frame at almost all levels [21].

Second, the current progress of technology and design associated with advanced clinical studies
probably continues to collide with the concept that transcatheter heart valve replacement was initially
conceived for use in the pulmonary artery [28], which has a higher degree of extensibility and distortion
with respect to the aortic root [29–35]. This delicate peculiarity does not apply to the Valsalva sinus of
the aortic root, where the predisposition to receive material such as stents is different in both nitinol
constituents of the self-expanding valves [21] or cobalt-chromium that integrates balloon-expandable
devices [27]. Thus, thrombus formation may be due to the frame of the prosthesis or stasis in the sinus of
Valsalva. Currently, the pathophysiological events responsible for transcatheter heart valve thrombosis
remain elusive. The process is likely mediated by the formation of platelets or thrombin-related
clots [36–38].

Third, focusing on antithrombotic management following TAVR may not resolve thrombotic
complications. The changes in the dynamic anatomy of the root should also be studied alongside the
pharmacodynamics of antiplatelet drugs. Concerns regarding variable pharmacodynamic effects of
clopidogrel-based dual antiplatelet therapy remain and may lead to the use of more effective antiplatelet
agents such as prasugrel or ticagrelor, which could provide better antithrombotic effects by avoiding the
development of HALT. The findings from ongoing trials such as ATLANTIS (Anti-Thrombotic Strategy
After Trans-Aortic Valve Implantation for Aortic Stenosis), AUREA (Dual Antiplatelet Therapy Versus
Oral Anticoagulation for a Short Time to Prevent Cerebral Embolism After TAVI), ENVISAGE-TAVI AF
(Edoxaban Compared to Standard Care After Heart Valve Replacement Using a Catheter in Patients With
Atrial Fibrillation), POPular-TAVI (Antiplatelet Therapy for Patients Undergoing Transcatheter Aortic
Valve Implantation), and CLOE (Clopidogrel to Lower Adverse Ischemic Events After Transcatheter
Aortic Valve) should be integrated with predictive studies on mechanical modelling using computed
finite element analysis (FEA) research and 4D CT scan reconstruction. This way, we will not only limit
ourselves to antithrombotic treatment optimization but investigate other variables involved in the
thrombotic process.

Finally, the application of Finite Element Analysis research to biological structures may be of
value [21,27,39,40]. FEA investigation uses the geometric algorithmic prediction to calculate the stress
and strain coefficients of the complex. This function is expressed within a small geometric area whereby
its behavior can be mathematically anticipated [41]. Although FEA research has been used for more
than two decades to study heart valves [10,42–46], its widespread usage in cardiology and cardiac
surgery is limited because of the presumed unreliable analysis. Clinicians are hesitant due to the
lack of related clinical studies, thereby curtailing its potential effectiveness. Finite Element Analysis
biomodelling allows the development of predictive models suitable for investigating the complications
related to the TAVR procedure. Therefore, short- and long-term follow-up may be anticipated by
means of computed biomodelling applied to TVT. The use of FEA can be clinically validated through
a comparative analysis with computed reconstruction of CT scans, magnetic resonance, or 3D TEE
reconstruction of the aortic valve [21,27,36], a finding that offers a mathematical physical process to
explain the observed advantage in clinical outcomes [10,41–46].

5. Conclusions

The shift toward routine use of oral anticoagulation administration may be premature considering
the availability of bioprostheses, especially since these drugs are widely used by patients over 60 and in
some younger patients as well. One of the main reasons for the reaffirmation of stented bioprosthesis
in conventional aortic valve surgery is to prevent patients from receiving lifelong oral anticoagulation
treatment, as efficacy and safety of the novel oral anticoagulation medications remain unknown, and
some studies have even suggested a detrimental association [47]. The use of a predictive model based
on the association between CT scan and biomodelling can be useful in selecting patients who would
not benefit from TAVR.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4418/10/4/183/s1,
Methods for Predictive Biomechanical Modelling; Additional Reference; Online Video 1: TAVR was performed
on an 84-year-old woman of prohibitive surgical risk; The video shows the success of the implanted CoreValve
(26 mm) with restoration of adequate surface of aortic area. Online Video 2: 1 year later, TTE showed increased
mean systolic gradient at 23 mm Hg, central leakage and elevated left ventricular dimensions with normal left
ventricular function. TTE and TOE detected thrombus formation; Online Video 3: Postoperative CT scan at 1 year
shows obstruction of TAVR. See the thrombus at the level of the posterior and anterior right leaflet with partial
extensions in supravalvular zone; the posterior leaflet quasi-totally obstructed in closed position with a planimetry
of 1.5 cm2; the thrombus is extended to the outer surface of the CoreValve involving the sinus of Valsalva. The
coronary ostia is free of lesions, and there is no suggestion of embolism; Online Video 4: CT scan after anticoagulant
medication shows normal cusps and normal gradient. Marked regression of the circumferential supravalvular
mass partially limited to the right and left sinus of Valsalva. The thrombus predominantly organized on posterior
leaflet as a nodular formation (4–4.5 mm); Online Video 5: One- and four-week TTE and TOE after administration
of anticoagulant therapy showed regression of thrombus.
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