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ABSTRACT
Elastic geothermobarometry on inclusions is a method to deter-

mine pressure-temperature conditions of mineral growth independent 
of chemical equilibrium. Because of the difference in their elastic 
properties, an inclusion completely entrapped inside a host mineral 
will develop a residual stress upon exhumation, from which one can 
back-calculate the entrapment pressure. Current elastic geobaromet-
ric models assume that both host and inclusion are elastically isotropic 
and have an ideal geometry (the inclusion is spherical and isolated 
at the center of an infinite host). These conditions do not commonly 
occur in natural rocks, and the consequences for inclusion pressures 
can only be quantified with numerical approaches. In this paper, we 
report the results of numerical simulations of inclusions with the 
finite element method on elastically isotropic systems. We define and 
determine a geometrical factor (Γ) that allows measured residual pres-
sures to be corrected for the effects of non-ideal geometry. We provide 
simple guidelines as to which geometries can safely be used for elastic 
geobarometry without correcting for the geometry. We also show that 
the discrepancies between elastic and conventional geobarometry 
reported in literature are not due to geometrical effects, and therefore 
result from other factors not yet included in current models.

INTRODUCTION
Application of conventional geothermobarometry is extremely chal-

lenging in many rock types due to alteration processes, chemical reequili-
bration and diffusion, and kinetic limitations. Elastic geothermobarom-
etry on host-inclusion systems is a complementary method independent 
of chemical equilibrium. An inclusion completely entrapped inside a 
host mineral will develop a residual stress upon exhumation because 
of the contrast in elastic properties (Rosenfeld and Chase, 1961). If the 
host does not undergo plastic deformation or brittle failure after trapping 
the inclusion, the entrapment pressure (Ptrap) can be calculated from the 
measured residual pressure on the inclusion (or remnant pressure, Pinc), 
provided that the elastic properties (equations of state, EoS) for the host 
and inclusion are known (e.g., Zhang, 1998; Angel et al., 2014). Elas-
tic geothermobarometry is increasingly applied to metamorphic rocks, 
where measurements of Raman shifts on quartz inclusions trapped in 
garnet (quartz-in-garnet inclusion barometry, QuiG) give information 
on the residual stresses that can be used to infer growth conditions (e.g., 
Kouketsu et al., 2016) and the degree of overstepping of garnet isograds 
(e.g., Spear et al., 2014).

The validity of elastic geobarometric methods was discussed by Ash-
ley et al. (2016), who reported that the Ptrap inferred from measured Pinc 
of quartz inclusions in garnets do not match those obtained by conven-
tional geobarometry on the same rocks. However, the calculation of Ptrap 

currently assumes that the minerals are elastically isotropic with ideal 
geometry where the inclusion is spherical and isolated at the center of the 
host (Goodier, 1933; Eshelby, 1957; Van der Molen and Van Roermund, 
1986). None of these conditions apply in natural systems; neither quartz 
nor garnet are elastically isotropic, inclusions are often close to grain 
boundaries or other inclusions, and they are often not spherical. The result-
ing changes in Pinc can only be quantified using numerical approaches.

In this paper, we use finite element (FE) models of elastically isotropic 
host-inclusion systems with non-ideal geometries to determine the mag-
nitude of the geometric effects on Pinc, and in turn on the calculated Ptrap. 
We show that the discrepancies reported by Ashley et al. (2016) are only 
partly due to the geometry of their samples. We provide guidelines as to 
which geometries of host-inclusion systems lead to deviations smaller 
than the typical experimental uncertainties in inclusion pressures obtained 
from conventional μ-Raman measurements, and can therefore be safely 
used for geobarometry without any correction.

METHODS
The final stress state of an inclusion is path independent, and it is con-

venient to split the pressure-temperature (P-T) change from the entrapment 
conditions (Ptrap, Ttrap; see Fig. 1) to the final pressure and temperature 
(Pend, Tend) into two parts (see Angel et al., 2014). Figure 1 illustrates the 
stepwise procedure used to calculate the residual pressure from known 
entrapment conditions. During step 1 the temperature is reduced from 
Ttrap to Tend along the isomeke (Rosenfeld and Chase, 1961; Adams et al., 
1975), thus preserving the reciprocal mechanical equilibrium between the 
host and the inclusion. The change in external T and P required to main-
tain the pressure in the inclusion equal to the external P can be calculated 
directly from the thermodynamic properties of the minerals without any 
influence of the geometry of the system. In step 2, the isothermal decom-
pression from Pfoot, Tend to the final Pend, Tend (Pfoot Tend and Pend as defined 
by Angel et al. [2014]) causes a mechanical disequilibrium between the 
host and the inclusion. Consequently, the stresses are readjusted through 
the relaxation process. Because the relaxation depends on force balance 
at the interface between host and inclusion, in this step the geometry 
becomes important. The exact amount of relaxation in step 2 can only 
be calculated if the geometry of the system is ideal; for all other cases a 
numerical approach is required.

In our study we used two commercially available engineering packages 
(MARC Mentat by MSC Software, http://www.mscsoftware.com/product​
/marc/, and Abaqus by Dassault Systèmes, https://www.3ds.com/products​
-services​/simulia​/products​/abaqus/) to create and solve two-dimensional 
(2-D) axisymmetric and 3-D models using FE numerical simulations. 
Always using isotropic elastic properties, we explored the effects of sev-
eral deviations from ideal geometry, including the size of the inclusion 
relative to the host and its proximity to external surfaces. To evaluate the 
effects of non-spherical shapes we modeled ellipsoids of revolution with *E-mail: mattialuca.mazzucchelli01@universitadipavia.it
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aspect ratios 1:1:1, 2:1:1, 1:2:2, 5:1:1, and 1:5:5. The effects of edges 
and corners were then determined by comparing the results against cylin-
drical and prismatic models (with quadrilateral cross sections) with the 
same aspect ratios.

To simulate the effects of external pressure, edge loads (for 2-D mod-
els) or face loads (for 3-D models) were applied to the external bound-
aries of the models. Stationary boundary conditions were placed on the 
relevant edges and faces to prevent rigid body rotations and translations. 
An example of a model mesh and the elastic properties used in the mod-
els are given in the GSA Data Repository1; more details are in Burnley 
and Davis (2004), Burnley and Schmidt (2006), and Abaqus (2016). For 
each model, we performed calculations using different elastic isotropic 
properties for the host and the inclusion to probe possible scaling laws.

For each geometry we calculated the actual inclusion pressure P inc
non-ideal  

by performing FE simulations upon isothermal decompression from Pfoot 
to Pend. We define a geometrical factor (hereafter Γ) as the normalized 
deviation of the actual inclusion pressure from that expected for an ideal 
isolated spherical inclusion, Pinc

ideal, for the same decompression:

	 Γ = −P
P

1inc
non-ideal

inc
ideal .	 (1)

The value of Γ is obtained using the linear elastic approximation, so 
it is independent of the magnitude of Pfoot – Pend. Because pressures in 
natural inclusions are typically <1 GPa (e.g., Ashley et al., 2016), this 
linear approximation is not significant for most inclusions, and the Γ 

1 GSA Data Repository item 2018057, elastic geothermobarometry (compu-
tational details, elastic properties used for all calculations, and some additional  
examples), is available online at http://www.geosociety.org/datarepository/2018/ 
or on request from editing@geosociety.org.

parameter can be used to correct experimentally determined inclusion 
pressures (Pinc

exp = Pinc
non-ideal) for geometric effects:

	 =
+ Γ

P P
1

�inc
corrected inc

exp

.	 (2)

This corrected Pinc can then be used to calculate the Ptrap using isotropic 
elastic geobarometry models (e.g., Angel et al., 2014, 2017b).

RESULTS AND DISCUSSION

Insights from Finite Element Models
Our FE models have been validated against the analytical exact solu-

tion by modeling an ideal infinite spherical system. In practice, the host 
can be considered infinite when the simulation results do not change 
upon further increase in the size of the host (Fig. 2A). Our FE models 
then reproduce the analytical solution for the pressure inside a spheri-
cal inclusion well within the expected numerical precision (i.e., 0.2%).

The stress in the region of the host close to the inclusion is always devi-
atoric (e.g., Zhang, 1998). Therefore, when a large inclusion is surrounded 
by a thin layer of host crystal, the deviatoric stress extends throughout 
the volume of the thin host layer, causing the outer boundary of the host 
to deform. The host is thus no longer able to shield the inclusion from 
the external pressure. Consequently, the Pinc will be partially released. 
For a spherical inclusion at the center of the host, the pressure release is 
a function of the size and the properties of the inclusion with respect to 
the host (Fig. 2A). Hosts much stiffer than the inclusion (e.g., quartz in 
garnet) can preserve a larger Pinc. Our results indicate that, if the radius 
of the host is at least four times that of the inclusion, both the Pinc

non-ideal  
and the Ptrap

non-ideal  are within 1% of the value expected for an infinite host. 
For the same reason, the capacity of the host to act as a pressure vessel 
for the inclusion is also reduced when a small inclusion is close to the 
external surface of the host (Fig. 2B). Stiffer hosts preserve more residual 
pressure than softer hosts. Regardless of the contrast in elastic properties, 
if the inclusion is at least 3 radii from the external surface of the host the 
effect on Pinc is <1%. If a spherical and isotropic inclusion is close to the 
external surface of the host, the normal stresses in the inclusion are not 
homogeneous, and the domains of the inclusion closer to the external 
surface record stresses lower than those toward the center of the host. 
For a quartz inclusion in pyrope the variation of the pressure across the 
inclusion can reach 8% when the distance to the surface is half the radius 
of the inclusion (inset in Fig. 2B). Note that these conclusions do not 
depend on the absolute size of the inclusion, but upon the relative sizes 
of the inclusion and host.

For fluid inclusions the aspect ratio and the presence of corners and 
edges are two major influences on the pressures of isolated inclusions (e.g., 
Burnley and Davis, 2004; Burnley and Schmidt, 2006). In our models of 
solid inclusions, we find that the aspect ratio of the inclusion gives rise 
to deviations in Pinc >7% for soft platy inclusions (aspect ratio 1:5:5) in 
stiff hosts (e.g., quartz in pyrope; see Fig. 3). The presence of edges and 
corners further enhances the deviations (≈9%). For non-spherical shapes 
with edges and corners, the stress in the inclusion is neither homogeneous 
nor hydrostatic. The pressure varies from the center of the inclusion toward 
its external surface, by different amounts in different directions. For a 
quartz inclusion with aspect ratio 1:5:5 in pyrope, the pressure variation 
along the longer axes of the inclusion is ~5%, while it is <1% along the 
shortest axis (see Figs. DR2 and DR3 in the Data Repository). For a 
residual pressure at the center of the inclusion of 0.3 GPa, the differential 
stress (σmax – σmin) within the inclusion reaches 0.28 GPa. For a stiff inclu-
sion in a soft host with the same shape, the pressure variation within the 
inclusion is typically much larger (e.g., 22% for diamond in pyrope) and 
of the opposite sign (see Fig. DR2).

The exact effect of inclusion shape on Pinc
non-ideal  is a complex interplay 

between the bulk and shear moduli for both host and inclusion (see Fig. 3). 
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Figure 1. Calculation procedure for two host inclusion pairs; one with 
ideal geometry (red dot inclusion) and one with non-ideal geometry 
(green dashed rectangle), that are trapped at the same pressure and 
temperature (Ptrap, Ttrap) conditions. Step 1: Along the isomeke the host 
and inclusion are in reciprocal mechanical equilibrium. Therefore, the 
pressure on the isomeke at the final Tend (i.e., Pfoot) will be the same 
for any geometry of the system. Step 2: The host is decompressed 
to the final pressure Pend. The relaxation of the inclusion is geometry 
dependent and therefore the final Pinc will be different for the two sys-
tems (Pinc

non-ideal ≠ Pinc
ideal). The geometrical factor Γ is a measure of this 

discrepancy. The inset illustrates how to apply Γ to correct the experi-
mental Pinc

exp measured on natural rocks with non-ideal geometry. The 
corrected Pinc

corrected can then be used to back-calculate the Ptrap using 
currently available elastic geobarometry models.
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In general, the influence of non-ideal shapes becomes greater when the 
bulk modulus of the host and the inclusion are similar, provided there is 
a significant contrast in shear moduli. For a soft inclusion in a stiffer host 
(quartz in garnet, or pyrope in diamond) with aspect ratios less than 1:2:2, 
the deviations induced by the shape are typically <5% (Fig. 3).

Calculation of Entrapment Pressures
Ashley et al. (2016) used Raman spectroscopy to determine the rem-

nant pressure in quartz inclusions in garnets while they were heated up 
to 500 °C. As the T increases, the Pinc

exp increases because of thermal pres-
sure effects, but the Ptrap for a single inclusion should always be a unique 
value independent of the temperature (Tend) at which the  Pinc

exp is measured. 
However, Ashley et al. (2016) reported large variations on Ptrap for the 
same inclusion calculated from the various  Pinc

exp measured at different Tend 
and none of the calculated Ptrap agreed with the results from conventional 
geobarometry. Ashley et al. (2016) ascribed this unphysical behavior to 
the use of unrealistic EoS for quartz close to the α-β structural phase 
transition. We chose this example to assess if the shape of the inclusion 
could explain these discrepancies.

We consider the case of sample MT 09-09, where several quartz inclu-
sions are entrapped in an almandine-rich garnet (Ashley et al., 2015, 2016). 
The Ptrap values at 540 °C were recalculated from the experimental Pinc

exp  
of 0.300 GPa and 0.491 GPa at the minimum and maximum Tend (31 °C 
and 500 °C) using a more reliable EoS for quartz (Angel et al., 2017a) 
that explicitly includes the α-β transition. Assuming ideal geometry for 
the quartz inclusion, the discrepancy between the two Ptrap values is 0.186 
GPa (Table 1), similar to that reported by Ashley et al. (2016), demon-
strating that the differences cannot be ascribed to errors in the EoS. To 
eliminate the discrepancies in Ptrap values the volume thermal expansion 
of almandine must be increased by more than 30% to α298K ~2.76 × 10−5 
K–1; this is unrealistic given that this value is much greater than those of 
any silicate garnet end member.

Because the shapes of the inclusions measured by Ashley et al. (2016) 
were not reported, we then overestimated the shape effects by modeling 
the inclusion as a platy prism (aspect ratio 1:5:5). At room temperature 
the correction factor is Γ = −0.094, similar to that for quartz in pyrope 
(Fig. 3), but decreases to Γ = −0.078 at 500 °C (Table 1) due to the elastic 
softening of quartz as it approaches the phase transition (Lakshtanov et 
al., 2007). The inclusion pressures corrected for shape, Pinc

corrected, are then 
0.331 GPa (at 31 °C) and 0.532 GPa (at 500 °C), and result in a small but 
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external surface of the host
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TABLE 1. CALCULATION OF ENTRAPMENT PRESSURE FOR SAMPLE 
MT 09-09 BEFORE AND AFTER THE CORRECTION FOR THE SHAPE OF 

THE INCLUSION

Uncorrected for shape Correction for shape

Tend
(°C)

Pinc
exp 

(GPa)
Ptrap at 540 °C 

from Pinc
exp 

(GPa)

Geometrical 
factor

(Γ)

Pinc
corrected

(GPa)
Ptrap at 540 °C 
from Pinc

corrected 
(GPa)

31 0.300 1.041 −0.094 0.331 1.091
500 0.491 0.855 −0.078 0.532 0.929

∆Ptrap=0.186 ∆Ptrap=0.162

Note: Ptrap is entrapment pressure. ∆Ptrap is calculated as the difference between Ptrap 
from the pressure on the inclusion (Pinc) at the end temperature Tend = 31 °C, and that 
from the Pinc at 500 °C (exp is experimental). The equations of state used for quartz 
and almandine are reported in the GSA Data Repository (see text footnote 1).

Figure 3. Geometrical factor Γ for several shapes plotted 
versus the normalized aspect ratio. The latter is calculated 
with the unique axis as the denominator (e.g., aspect ratio 
2:1:1 becomes ½ = 0.5). For a soft inclusion in a stiffer host 
(e.g., quartz in garnet), Γ < 0 and therefore Pinc

non-ideal < Pinc
ideal 

(as in Fig. 1). The opposite occurs for a stiff inclusion in a 
softer host (e.g., diamond in pyrope). Note that Γ values 
greater than zero are plotted with a compressed vertical 
scale. Exp.—experimental.

Figure 2. Effects of inclu-
sion size and proximity 
to the external surface. 
A: Geometrical factor 
Γ for a spherical inclu-
sion with increasing size 
(toward the left)  with 
respect to that of the 
host. Exp.—experimen-
tal. B: Geometrical factor 
Γ for a spherical inclu-
sion approaching the 
external surface of the 
host (toward the right). 
Γ  is  a lways negat ive 
when the distance of the 
inclusion from the exter-
nal surface is reduced 
or when the size of the 
inclusion increases. This 
can be interpreted as the 
pressure in the inclusion 
(Pinc) being reduced from 
the ideal Pinc. Inset: Stress 
map of a model of a quartz inclusion in pyrope, where the distance between the inclusion and the external surface of the host was one-half 
of the inclusion radius (Ri), showing the inhomogeneity of the pressure.
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insignificant reduction of 0.02 GPa in the differences in Ptrap calculated 
from the two measurements. Furthermore, even with the geometrical 
correction, the Ptrap values (1.091 and 0.929 GPa) are not in agreement 
with those obtained from the conventional methods (0.82 GPa; Ashley 
et al., 2015).

Thus neither the EoS nor the shape of the inclusion can explain the 
discrepancies found by Ashley et al. (2016), and other factors not yet 
included in the current models must be responsible for the discrepancies 
in the Ptrap. One factor is that quartz inclusions in a garnet host will be 
subject to isotropic strain (leaving aside further perturbations arising from 
the elastic relaxation and the geometry) because garnet is cubic. As quartz 
is elastically anisotropic, the isotropic strain will result in a non-hydrostatic 
stress in the inclusion. The effect of this deviatoric stress on the Raman 
spectrum of quartz is not known in detail, but both theory (Key, 1967) 
and experiments (Briggs and Ramdas, 1977) show that Raman peak shifts 
will be different from those predicted from hydrostatic calibrations used 
by Ashley et al. (2016) to convert measured Raman shifts into pressures. 
Therefore, the mismatch in the Ptrap is probably due to the combination of 
an inappropriate Raman stress calibration and the assumption of elastic 
isotropy in the geobarometric models.

CONCLUSIONS
Current elastic geobarometric models assume isotropic elastic prop-

erties for the host and the inclusion, and that the inclusions are isolated 
and spherical. These conditions do not commonly occur in natural rocks. 
Regardless of the relative stiffness of host and inclusion, for a big inclu-
sion in a small host and for an inclusion close to the external surface of 
the host, the Pinc

exp is reduced relative to the ideal case, but a simple correc-
tion factor cannot be defined and Γ should be evaluated on a case-by-case 
basis with finite element method (FEM) analysis carried out on realistic 
digital models of the inclusions.

For isotropic elasticity, our FEM results show that for an inclusion at 
least at 3 radii from external surfaces or other inclusions, the geometric 
effects on Pinc

exp are <1% (Fig. 2B). Under these conditions the shape effects 
then dominate the geometric corrections to the measured Pinc

exp (Fig. 3). 
For soft inclusions in a stiff host (e.g., quartz in garnet), non-spherical 
inclusions (Γ< 0), will exhibit a lower pressure than spherical inclusions. 
Correction of the measured  Pinc

exp for the shape effects will therefore result 
in  Pinc

corrected > Pinc
exp and thus an increase in the calculated Ptrap. By contrast, 

for stiff inclusions in soft hosts (Γ > 0), the correction will lead to Pinc
corrected 

< Pinc
exp and therefore a reduction in Ptrap. Experimental uncertainties on Pinc

exp 
are typically <5% when measured by Raman spectroscopy (e.g., Ashley 
et al., 2016, Kouketsu et al., 2016). For Pinc <1 GPa, the uncertainties 
propagated into the Ptrap are smaller than those on the Pinc. Therefore, 
pressures from inclusions for which the geometrical effects on Pinc

exp are 
<5% will provide reliable estimates of Pinc, and hence Ptrap without the 
need for correction. For soft inclusions in stiff hosts, such as quartz in 
garnet, this means the following:

(1) The radius of the inclusion must be smaller than one-half of that 
of the host.

(2) The distance from the external surface is larger than one-half the 
radius of the inclusion.

(3) The inclusion aspect ratio is lower than 1:3:3, with few sharp 
edges and corners.

These guidelines do not apply to inclusions stiffer than the host (e.g., 
diamond in garnet) that require much larger corrections of opposite sign 
(Fig. 3).
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