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Abstract

Simulation Tools for Biomechanical Applications with PGD-Based
Reduced Order Models

Xi Zou

Numerical simulation tools are generally used in all modern engineering fields, espe-

cially those having difficulties in performing large number of practical experiments,

such as biomechanics. Among the computational methods, Finite Element (FE) is an

essential tool. Nowadays, the fast-growing computational techniques, from the up-

grading hardware to the emerging of novel algorithm, have already enabled extensive

applications in biomechanics, including mechanical analysis from musculoskeletal or

cardiovascular system in macro scale to cell structures or tissue behaviours in micro

scale. For applications that require fast response and/or multiple queries, Reduced

Order Modelling (ROM) methods have been developed based on existing methods

such as FE, and have eventually enabled real-time numerical simulation for a large

variety of engineering problems.

In this thesis, several novel computational techniques are developed to explore

the capability of Proper Generalised Decomposition (PGD), which is an important

approach of ROM. To assess the usability of the PGD-based ROM for biomechanical

applications, a real human femur bone is chosen to study its mechanical behaviour as

an example. Standard image-based modelling procedure in biomechanics is performed

to create an FE model which is then validated with in vitro experimental results.

As a major contribution, a non-intrusive scheme of the PGD framework is de-

veloped and implemented using commonly-used industrial software such as Matlab

and Abaqus. It uses Abaqus as an external FE solver, which is called by in-house

Matlab codes implementing the PGD algorithms. An example code is available at

https://github.com/xizou/NIPGD. This scheme takes advantages of the maturity,

robustness and availability of existing FE solvers, and demonstrates a great potential

for being applied to industrial projects.

To solve parametrised partial differential equations with a parameter space sub-

jected to physical or geometric constraints, a novel strategy is proposed. This strategy

provides an approach that collects the most correlated parameters, and then sepa-

rates them into 2D/3D spaces, instead of separating the parameter space into tensor

products of 1D spaces in a Cartesian fashion as it is done in conventional PGD
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framework.

Inspired by the fast-developing methods of isogeometric analysis, it is interesting

to borrow the isogeometric idea to exploit the ways of discretising the parameter

space inside the PGD framework. The high continuity of B-spline shape functions

enables more accurate results for the computation of sensitivities with respect to the

parameters. A classical mechanical problem is investigated with orthotropic materials

in 2D, with the intention of further application in biomechanics.

In addition, an exploration of the generalisation of PGD to nonlinear problems in

solid mechanics is presented as another main contribution. Following the large strain

theory, Picard linearisation is used to establish a consistent PGD framework within

total Lagrange formulation. As a preliminary example, the St.Venant-Kirchhoff con-

stitutive model is adopted.

A practical example of the femur bone simulation is provided, the material pa-

rameters are obtained through an identification problem using the PGD vademecum,

and in a further step, another PGD vademecum is generated for real-time simulation

accounting for various loading locations.
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Chapter 1

Introduction

Biomechanics is a subject dedicated to the study of structures and functions of me-

chanical aspects of biological systems, at levels from whole organisms to organs, cells

and cell organelles, using the methods of classical mechanics. It is both an old and new

discipline from the historic point of view. It is known that Aristotle wrote the first

book on the motion of animals, De Motu Animalium, which is regarded as the first an-

tique literature on biomechanics. Interestingly, one of the first works of biomechanics

in 17th century, a page of which is shown in Figure 1.1, written by a Renaissance Ital-

ian academic Giovanni Alfonso Borelli used the same title. The well-known Leonardo

da Vinci made notable contribution to the development of biomechanics during the

Renaissance period, thanks to his talents of drawing and interests in anatomy in the

context of mechanics. Later scientists like Galileo Galilei paid special attention on

biomechanics, for instance, Galilei suggested that bones are hollow because this af-

fords maximum strength with minimum weight. The nomenclature of biomechanics

did not emerge in the long history of the establishment of classical mechanics, which

based on the milestone works by Issac Newton, Joseph-Louis Lagrange and William

Rowan Hamilton, until the late 20th century when Hatze [1974] firstly discussed

“the meaning of the term ‘biomechanics’”. Having stated “biomechanics is mechanics

applied to biology” in the monograph Fung [1993], the Chinese-American professor

Yuan-Cheng Fung devoted most of his life on this “new” branch and is regarded as

the father of modern biomechanics.

Without exception from problems in classical mechanics, biomechanics problems

deal with mechanical behaviours of bio-solids and/or bio-fluids. The prefix “bio-”

1



1. Introduction

Figure 1.1: Page of De Motu Animalium by Giovanni Alfonso Borelli in the 17th century.

demonstrates the special biological mechanisms which are commonly represented by

specific constitutive laws, but for brevity purposes, we will remove this prefix later on.

This thesis will discuss mechanical problems focusing on solids. The solid constitutive

models widely used on biomechanics are roughly divided into two types corresponding

to the biological tissues. For “hard” tissues such as bones, teeth and so on, linear

elastic models are generally used; for “soft” tissues such as hair, muscles, blood vessels

and so forth, hyperelastic models are mainly adopted.

Simulation-Based Engineering Sciences (SBES) today require conceptual and nu-

merical models to solve problems involving multi-physics and multi-scales. Most

numerical models are mathematically based on partial differential equations (PDEs).

Numerical methods for solving PDEs, such as finite difference method (FDM) LeV-

eque [2007], finite element method (FEM) Hughes [1989], Zienkiewicz et al. [2013]

and finite volume method (FVM) Versteeg and Malalasekera [2007], are intensely

implemented in engineering research and industry, covering a wide range of fields

from aerospace to biomedical engineering. However, the intrinsic complexity of nu-

merical methods for solving PDEs prevents finding solutions with high fidelity and

high efficiency simultaneously. Therefore, further development of novel techniques is

2



necessary.

In this work, FEM will be used as the basic method. As a well established nu-

merical method, FEM has dominated the branch of structural mechanics since the

1960s Stein [2014]. Afterwards, it has been intensively studied mathematically, and

its effectiveness for elliptic boundary value problems (BVPs) was later investigated,

together with the a priori and a posteriori error analysis Babuška and Rheinboldt

[1978], Ladevèze and Leguillon [1983], Larson [2000], Ainsworth and Oden [2000],

Oden and Prudhomme [2001], Chamoin and Díez [2016]. Parallel to this, engineer-

ing developments have been made for linear and nonlinear problems of the classical

PDEs in mathematical physics to solve complicated industrial problems. Inspired

and driven by the fast growing computer science and technology, the dimension of

solvable algebraic equations is becoming larger and larger. Nowadays, a large num-

ber of finite element (FE) software are available, both commercial and open-sourced.

Among all the popular commercial FE solvers, Abaqus (Dassault Systèmes, France)

is chosen for the thesis work.

It is notable that the numerical methods, including but not limited to FDM,

FEM and FVM, are able to provide a virtual or in silico platform for material/me-

chanics testing or in vitro experiments, and to produce full-order (or the so-called

high-fidelity) approximations of the physical reality. However, for the aforementioned

problems involving multi-physics and multi-scales, the computational cost of high-

fidelity solutions could be as expensive as many hours, or even several days, of CPU

time, due to the large amount of degree of freedom (DOF) which results in calculations

of very large matrices. For applications that require fast response and multi-queries,

it is not efficient enough in practice. In fact, the large number of DOF is usually de-

rived from discretised PDEs involving multiple parameters, which will naturally result

in the so-called parametrised PDEs. An idea of solving the parametrised PDEs is to

assume the parameters as extra coordinates, and solve a generalised PDE. This would

cause the dimensionality of the problem increase, leading to an exponential growth

of the DOF as well as computational costs, i.e. the so-called curse of dimensional-

ity. Therefore, proper reduction of the dimensionality, which induces losing as little

accuracy as possible, of the origin problem has become necessary. It should be noted

that in this case, the dimensionality increase arises not only from the discretisation

of physical space, but also from the parameter space.

There are at least two categories of techniques for the reduction of the complexity

3
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of a physical model. The first category reduces the model conceptually in a physi-

cal or geometric aspect. For instance, in structural mechanics, it is common to use

beam element and shell element to reduce the physical model from 3D spaces to

1D/2D spaces. When the geometric feature of the problem satisfies certain criteria,

planar symmetric, axisymmetric assumptions are widely used to reduce the model

dimension. For blood flow analysis in the circulatory network, the geometrical multi-

scale modelling strategy has been developed Quarteroni et al. [2000], Quarteroni and

Veneziani [2003], with the idea of reducing the global geometric model of vascular

network from 3D space to 1D/0D using analogy of the electric circuit network, while

keeping local Navier-Stokes model in full 3D space. Recently the strategy of hi-

erarchical model reduction has evolved for the vessel flow model Ern et al. [2008],

Perotto et al. [2010], Perotto and Zilio [2013]. The idea is to assume a fibre bundle

structure on the geometric domain, and use different approximate function spaces to

characterise the dependence of full solution on the dominant flow direction and on

the transverse directions. In biomechanics, geometric shape of the tissue model is

usually very complicated, and thus its description relies on high dimensional spaces.

It is always beneficial to reduce the dimensionality of the geometric shape space to a

reasonable low order.

The second category, which will be focused on throughout this thesis, reduces the

mathematical complexity of the model with devised algorithms. It is well-known that

models containing multiple parameters generally contain redundant or less relevant

information. The idea of reduced order modelling, or model order reduction, is to use

mathematical methods to remove the redundancy or minor relevancy, keeping only the

essential information in a so-called reduced order model. Typically, the mathematical

description of the model is the aforementioned parametrised PDEs, therefore, the

practical content of model order reduction is to find the solution of the parametrised

PDEs.

As it is well-known, the reduction of dimensionality of the physical space would

decrease the computational cost of each simulation, while that of the parameter space

would lower the size of the space to be explored and therefore the number of queries.

It is natural to combine the two categories of model reduction techniques globally or

locally in specific problems.

In order to explain the preliminary idea of reduced order modelling, now we intro-

duce a classical example: the compression of a digital image using the singular value
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decomposition (SVD) method. Taking grey scale images for example, the mathe-

matical model of a digital image with resolution m × n is a 2D matrix M ∈ R
m×n,

with each element containing a grayscale value Mij ∈ [0, 255]. This matrix contains

all information stored in the image. As mentioned before, there exists less relevant

information in this matrix, and thus we can use SVD to analyse the data, and obtain

a reduced or compressed image.

In mathematics, the SVD of an m× n matrix M reads

M = UΣVT =
min(n,m)
∑

i=1

σi Ui ⊗Vi, (1.1)

where U = [U1, U2, . . . , Um] is an m×m orthogonal matrix with column vectors Ui,

Σ is a diagonal m×n matrix with non-negative real numbers σi on the diagonal, and

V = [V1, V2, . . . , Vn] is an n × n orthogonal matrix with column vectors Vi. The

diagonal elements σi of Σ are known as the singular values of M. It is common to

list the singular values in a descending order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n). The

mathematical interpretation of reducing the image is to make a truncation on the

number of summed terms for M. That is, using a small number k ≪ min(m, n) to

substitute min(m, n), and obtaining Mk as an approximation of M:

M ≈Mk :=
k∑

i=1

σi Ui ⊗Vi. (1.2)

In this sense, we can interpret that σi Ui⊗Vi, (i = 1, 2, . . . , k) consist a reduced basis

of Mk.

Now we analyse an image with a resolution 667 × 500, thus the dimension is

333 500. Its normalised singular value spectrum is plotted in Figure 1.2, from which

we can observe a drastic drop of the singular value around the first 50 entries. The

first 10 basis images are shown in Figure 1.3. The original image, together with three

reduced images reconstructed with different number of the basis images, is illustrated

in Figure 1.4. It can be seen that although one could not perceive any meaningful

information from single basis image, with the sum of the first 10 basis images, a

sketch of the original image is already presented, and more detailed information

emerges when the number of summed basis increases.

The idea presented in the image compression example is generalised to different

types of problems, most of which involves parametrised PDEs, and this generalisation

eventually establishes the methodology of reduced order modelling.
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Figure 1.2: SVD spectrum of an 667× 500 image.

Figure 1.3: First 10 basis images reconstructed with σi Ui ⊗Vi, (i = 1, 2, . . . , 10).

In general, the computational process of reduced order modelling consists in two

phases: an offline phase which constructs the reduced basis, it is usually consider-

ably expensive, such as the SVD in previous example; and an online phase which

reconstructs the approximation of the model using the reduced basis generated in the

offline phase. The cost of the online computations is much cheaper than that at the

offline phase, and thus its extremely fast speed is ideal for real-time simulations.

As mathematical techniques to build the reduced order models, in this chapter we

will introduce briefly state of the art methods, such as Reduced Basis (RB) Quarteroni

et al. [2016], proper orthogonal decomposition (POD) Liang et al. [2002a,b] and

proper generalised decomposition (PGD) Chinesta and Ladevèze [2014]. As the main
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Figure 1.4: Reduction of an 667× 500 image, reconstructed with
∑k

i=1 σi Ui ⊗Vi, (k =
10, 50, 100, 500).

topic in this work, PGD will be focused on in later chapters.

1.1 Background

Along with the rapid growth of computational techniques, simulation of mechanical

response of biological tissues is generally adopted in the research of biomechanics.

From musculoskeletal or cardiovascular systems at macro scale to cell or tissue struc-

tures at micro scale, numerical methods are commonly used, especially FE methods.

For many clinical applications, fast-response and multi-query are frequently re-

quired for patient-specific simulations. Current techniques are able to generate high-

fidelity solutions Taddei et al. [2006], Trabelsi et al. [2009, 2011], however, they are

usually not provided in time, especially in case of emergency. Consequently, it is

very interesting and necessary to explore the capability of reduced order modelling,

in order to find a optimised balance between the accuracy and speed of simulations.
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As a practical application, we will use the technique of reduced order modelling

for the structural analysis of a human proximal femur.

The femur, also known as the thigh bone, is the largest and strongest bone in the

human musculoskeletal system. As the proximal part of the leg, it connects the hip

and the knee, and is vital for the functions requiring leg movement such as walking,

running and jumping. The anatomic terminologies of a right proximal femur seen

from the back are illustrated in Figure 1.5 with annotations.

Figure 1.5: Anatomic terminologies of a right proximal femur, seen from the back. (Case
courtesy of A.Prof Frank Gaillard, https://radiopaedia.org, rID: 7555)

Due to its important role, a femur carries heavy mechanical loads up to 30 times

of the body weight, and thus it is also one of the most vulnerable bone in the mus-

culoskeletal system. For the treatment of severe hip joint degenerative pathologies,

total hip arthroplasty (THA) Siopack and Jergesen [1995] has become a common

procedure worldwide. With the help of ROM, it is possible to construct a practical

surgery simulator which is able to provide the expected fast-response and multi-query

for real-time simulations.

1.2 State of the art

Models in engineering and industry are usually complex systems a priori described

by a large number of variables and parameters. High-dimensional data are collected

8
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from observations, measurements and calculations. However, it is often known that

the number of dimensions in the a priori description typically exceeds the essential

dimensionality of the system. Therefore, the objective of model order reduction

is to use different techniques to reduce the number of variables to fit the intrinsic

dimensionality of the system, thus to reduce the computational cost and to achieve

fast-response and multi-query for real-time simulations.

To better explain the technical details, we now introduce the standard notations

used for the high-fidelity problems in FEM and many other methods. Consider the

abstract form of a linear problem, which reads: find u ∈ U , such that

a(u, v) = l(v), ∀v ∈ V, (1.3)

where u is called the trial or basis function while v is denoted as the test function,

a(u, v) is a bilinear form while l(v) is a linear form, U and V are proper function

spaces such as the Hilbert space.

To make the problem solvable on computers, algebraic formulation is generated by

discretisations based on the abstract form Equation 1.3. The corresponding algebraic

equation reads

Au = f , (1.4)

where A is the stiffness matrix, u is the DOF vector to be solved, and f is the load

vector.

1.2.1 Reduced order modelling with RB

The reduction of the model is based on the dimension reduction of the discretised

solution space of the governing PDEs and the parametric space to be explored. The

low-order space is defined by a low-dimensional basis referred as the reduced basis.

Although it is not the focus of this thesis to investigate the reduce basis methods, we

find it necessary to introduce briefly the essence of RB methods. It will be highlighted

in Subsection 1.2.2 that the PGD formulation could be naturally established based

on the clear mathematical definitions from RB methods.

We refer to Rozza [2005], Rozza et al. [2008], Quarteroni et al. [2011] for a gen-

eral review of the reduced basis approximation and a posteriori error estimation

methods for the rapid and reliable evaluation of engineering outputs associated with

parametrised PDEs. The low-dimensional approximation space can be established by
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the span of a set of characteristic solution results, i.e. the reduced basis, which also

called snapshots.

The essential ingredients of the dimension reduction with RB include (primal-

dual) Galerkin projection onto a low-dimensional space associated with a smooth

“parametric manifold” Milani et al. [2008]; efficient and effective greedy sampling

methods for identification of optimal and numerically stable approximations and a

rapid convergence. On one hand, the incomplete RB would cause an inaccurate

approximation, whilst the error can be estimated; on the other hand, consideration

of too many snapshots may bring redundant information, resulting in ill-conditioned

algebraic systems of equations.

Now we introduce briefly the details of the RB methods. Given a parameter space

Ωµ and denote the parameters as µ ∈ Ωµ, we generalise the problem in Equation 1.4

to following parametrised formulation

A(µ)u(µ) = f(µ). (1.5)

It is obvious that for any specified µ, a high-fidelity solution u(µ) can be obtained by

solving the linear system Equation 1.5. Let’s assume this linear system has a rank N ,

we have A(µ) ∈ R
N×N , u(µ) ∈ R

N and f(µ) ∈ R
N . The key idea of the RB method

is to seek an approximation of u in a subspace with a much lower dimension n≪ N .

This is achieved by using a Galerkin projection of the original operator. The reduced

order model represented by the corresponding linear system reads

An(µ)un(µ) = fn(µ), (1.6)

where An(µ) ∈ R
n×n, un(µ) ∈ R

n and fn(µ) ∈ R
n. The new low-dimensional

unknown un is called reduced basis solution. Explicitly, the high-fidelity solution is

approximated by

u(µ) ≈ Vun(µ), (1.7)

where V ∈ R
N×n is called the transformation matrix or projection matrix which

depends on µ. With this projection, the approximated high-fidelity problem can be

written as

V
T [f(µ)− A(µ)Vun(µ)] = 0. (1.8)

It can be seen that An(µ) = V
T
A(µ)V and fn(µ) = V

T f(µ).
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1.2. State of the art

In most cases, it is assumed that for the stiffness matrix A(µ) and the load vector

f(µ), the dependency on parameters is affine, that is

A(µ) =
p
∑

j=1

ϕj(µ)Aj,

f(µ) =
q
∑

k=1

θk(µ) fk,

(1.9)

where ϕj and θk denotes scalar functions of the parameters, while Aj and fk are

constant matrices or vectors independent of µ.

The most important ingredient of the RB method is the approach to generate the

snapshots wisely. POD and greedy algorithm are the two mostly used methods. To

obtain the RB properly during the offline phase, POD technique is commonly used

Ryckelynck et al. [2006]. Depending on the application field, POD is also known as

principal component analysis (PCA) or discrete Karhunen-Loève transform (KLT)

Maccone [2009]. Mathematically, POD is highly related to SVD, which provides

a convenient technique to extract the dominant elements from a highly redundant

family. Recently, further reduction on the POD reduced model introduces the so-

called hyper-reduction method Ryckelynck [2009], Horák et al. [2017], Hernández

et al. [2017], considering governing equations only over a subdomain which is called

reduced integration domain. In many cases, once a proper (preferably goal-oriented)

a posteriori error estimator is available, the greedy algorithm can be used to search

for the reduced basis more efficiently and thus accelerate the offline computation.

It is worth noting that POD or SVD provides the optimal reduced basis in simple

cases, such as elliptic PDE with only one parameter, but this is not the case for

PDE problems with more than one parameter, although the so-called high-order

SVD (HOSVD) is available Ammar et al. [2014].

Having been developed during the past decade, several implementation of RB

methods are already available, such as the rbMIT package (http://augustine.mit.

edu/), the RBmatlab package (http://www.ians.uni-stuttgart.de/MoRePaS/), the

pyMOR package (http://pymor.org/) Milk et al. [2016], the redbKIT package (http:

//redbkit.github.io/redbKIT/) Quarteroni et al. [2016], etc.

1.2.2 Reduced order modelling with PGD

In recent decade, an a priori model order reduction technique, PGD, has been de-

veloped Ammar [2010], Chinesta et al. [2010, 2011b], Chinesta and Ladevèze [2014],
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Chinesta and Cueto [2014], Chinesta et al. [2014]. This technique features the sep-

arated representation of the solution, so that the relationship between the solution

complexity scale and the dimension of solution space is reduced from exponentially to

linearly, and also the greedy algorithm. The reduction made by PGD makes it pos-

sible to solve multidimensional models efficiently by means of treating parameters as

extra coordinates and obtaining the reduced basis as a so-called computational vade-

mecum Chinesta et al. [2013] during the offline phase. With the obtained vademecum,

fast-response and multi-query can be achieved in real-time simulations which are de-

noted as online phase. The power of PGD is demonstrated in many different fields,

such as structural analysis Vidal et al. [2012, 2014], structural optimisation Leygue

and Verron [2010], Ammar et al. [2014], Courard et al. [2015], computational rheol-

ogy Chinesta et al. [2011a], computational fluid dynamics González et al. [2013], Díez

et al. [2017], heat transfer Berger et al. [2017], power supply system García-Blanco

et al. [2017], parameter identification Nadal et al. [2015a] etc.

Now we introduce briefly the basics of PGD, using the previously established con-

cepts from RB methods. In PGD, the parameters are considered as extra coordinates,

and thus the solution space is generalised to a Cartesian product of physical space

and the parameter space. To establish an abstract form of this generalised problem,

one need not only integrate over the physical space, but also on the parameter space,

obtaining the so-called PGD generalised weak form. To make the generalised problem

able to be discretised and thus solvable, the separated formulation is introduced for

the approximation of the unknown u:

u(µ) ≈
n∑

i=1

ωi(µ) ui, (1.10)

where ωi denote the functions depending on µ, and ui are the constant vectors in-

dependent of parameters. Inspired by the similarity of modal analysis in vibration

mechanics, a component ωi(µ) ui is often referred to the ith mode, and ωi(µ) is called

the ith parametric mode while ui the ith spatial mode. In PGD, the unknown modes

are solved sequentially with a initial guess.

Taking ωn(µ) as the test function and applying the PGD methodology, the linear

system in RB formulation Equation 1.5 is now generalised to a weak form

∫

Ωµ

A(µ) ωn(µ)
n∑

i=1

ωi(µ) ui dµ =
∫

Ωµ

ωn(µ) f(µ) dµ. (1.11)
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To enable the solvability of parametrised problem, the operator A is also required to

be separable. To achieve this, it is natural to assume the operator A has a similar

separated formulation as Equation 1.10. Therefore, we now invoke the affine depen-

dency assumption from RB methods Equation 1.9 into Equation 1.11, and the latter

becomes

∫

Ωµ

p
∑

j=1

ϕj(µ)Aj ωn(µ)
n∑

i=1

ωi(µ) ui dµ =
∫

Ωµ

ωn(µ)
q
∑

k=1

θk(µ) fk dµ

=⇒
n∑

i=1

p
∑

j=1

(
∫

Ωµ

ϕj(µ) ωn(µ) ωi(µ) dµ

)

Ajui =
q
∑

k=1

(
∫

Ωµ

ωn(µ) θk(µ) dµ

)

fk.

(1.12)

It can be seen Equation 1.12 is a nonlinear equation for ωn(µ), even if the original

problem is linear. This is because a quadratic term ω2
n will emerge on the left-hand

side when i = n.

Typically, a fixed-point scheme called alternative direction iteration is used to

linearise the nonlinear equation and solve the modes in a sequence. This scheme, as

will be explained in detail in the following chapters, is suitable for many different

cases. However, the drawback is it is not able to be parallelised.

Unlike RB methods, we can see that the offline computation in PGD is not a

collection of high-fidelity solutions with chosen parameters, but a generalised problem

that lacks proper physical interpretation. Nevertheless, the online computation of

PGD is conceptually faster since the modes are already computed and stored in the

vademecum to be reconstructed with linear combinations. There is no need to solve

any (reduced) linear system, which is necessary for RB methods. Currently, error

estimation strategies of the PGD methods is under active research, several available

procedures are already proposed in the literature, such as Ammar et al. [2010], Alfaro

et al. [2015], Nadal et al. [2015b], Zlotnik et al. [2015b], Allier et al. [2015], Chamoin

et al. [2017].

Compared to the RB methods, there are less public codes available for PGD

implementations. Most of the practical PGD frameworks currently available in the

literature are based on intrusive implementations relying on academical FE source

codes, commonly requiring cumbersome coding work. Typical PGD codes could be

found in Cueto et al. [2016]. It is worth noting that due to the characteristic of

PGD framework, it is ideal for a non-intrusive implementation Duval et al. [2016].

Preliminary application is performed in literature such as Courard et al. [2015].
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1.2.3 Application of reduced order models in biomechanics

In the biomedical field, applications of model order reduction methodology is promis-

ing. For instance, reduced order model is even used to simulate the tumour growth

Colin et al. [2012], Quarteroni and Rozza [2014].

Thanks to the increasing computational power as well as progress in imaging and

geometry extraction/reconstruction techniques with more efficient algorithms, real-

time numerical simulation of blood flow problems have become quite popular in the

past two decades Manzoni et al. [2012a]. The driving factor behind this development

is the awareness that numerical models can provide real-time quantitative descrip-

tions of blood flow behaviour in important vascular districts or in vessel networks,

and to explain and assess the relationships among vessels shape, haemodynamics and

a family of clinical indicators. With the techniques combining geometric parametri-

sation and reduced basis method, it is possible to account for patient-specific vessel

configurations. After the reconstruction by solving a suitable parameter identification

problem, real-time simulation of blood flows are able to be performed on each recon-

structed parametrised geometry. The approach advocated in Manzoni et al. [2012a]

can be applied to a broad variety of (different) flow problems related with geome-

try/shape variation, for instance the cardiovascular vessels, and can be extended to

related topics such as parametric geometry shape optimisation Manzoni et al. [2012b],

Lassila et al. [2013a] and inverse problems Lassila et al. [2013b].

Real-time simulation of surgery Cotin et al. [1999] has attracted the attention of

a wide community of researchers, from computer scientists to mechanical engineers,

together with computational geometers, surgeons, etc. The utility of such techniques

are obvious, and they include, for instance, surgery planning, training of surgeons in

image-guided surgery or minimally invasive surgery, etc. The real-times simulations

are supposed to provide a physically accurate response so that a realistic feedback

is transmitted to the surgeon in terms of both visual feedback and force feedback.

For that to be possible, it is commonly recognised that a minimum bandwidth of

20–60 Hz for visual feedback and 300–1000 Hz for haptic display is necessary. Such a

frequency requires very short CPU time for the simulation. For solid objects, a general

survey on the real-time deformable models is found in Meier et al. [2005]. In general,

two typical approaches are used in real-time simulations: heuristic models based on

simplified physical laws Agus et al. [2003] and continuum mechanical models that

follows mechanical equilibrium equations. For the continuum mechanical approach,
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traditional FE models are less widely used due to the large computational costs, and

condensation techniques are usually applied to reduce the cost Bro-Nielsen and Cotin

[1996], Cotin et al. [1999].

To accelerate the deformable models, reduced order models have been developed

to simulate biomedical tissues, which can even be hyperelastic materials, with ap-

proaches based on RB or PGD Niroomandi et al. [2008, 2013a], Chinesta et al. [2013].

Paying the price of a considerable amount of offline computations, the online simula-

tion can be performed on portable devices such as smartphones and tablet computers

on which the vademecum is stored. Such feature enables a comfortable accessibility

and convenient application in a practical surgery González et al. [2015], Quesada et al.

[2016a]. Reduced order models are considered to be the very technique able to simu-

late at real-time feedback rates, highly complex constitutive models for living tissues

Niroomandi et al. [2012a,b] (fibre-reinforced hyperelastic models, for instance). It is

also feasible to extend model order reduction methodologies to the structural analysis

of musculoskeletal systems.

To create a valid numerical model for bones, it is important to specify an accurate

density-modulus relationship. Numerous identification studies have been performed

for this purpose, most of which are based on statistics of various experimental data

and a large number of corresponding FE simulations Cong et al. [2011]. However,

with the reduced order model, it is possible to perform in silico identification of

the material properties with a few experimental data, thanks to the computational

efficient online phase. For example, works on the identification of bone modulus

parameters have been carried with sophisticated framework combining RB method

and neural network Zaw et al. [2009].

1.3 Thesis objectives and chapter organisation

As a basis of this work, the medical image processing has to be performed, in order

to generate an available FE model. This model should be validated according to data

collected from a previously performed in vitro experimental test. The full procedure

of image-based model generation and the validation of generated model is described

in Chapter 2.

As a major objective of this thesis, a non-intrusive scheme for the PGD frame-

work is developed in Chapter 3. It is implemented using in-house developed Matlab
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(Mathworks, USA) code to conduct the PGD work flow, and calling Abaqus as an

external solver for devised fictitious mechanical problems.

Since the FE model is image-based, the transformation of data from computed

tomography (CT) image set to FE model including inhomogeneous material proper-

ties is subjected to some physical constraints, and when applying the load, there are

also geometric constraints limiting the locations where load could be applied. These

constraints will lead to a constrained parameter space, which possibly has difficulty

to be separated in a Cartesian fashion. Therefore, a novel strategy to separate the

parameters in a collective manner is proposed in Chapter 4.

Chapter 5 details a comprehensive application in biomechanics, the methodolo-

gies proposed in Chapter 3 and 4 are applied on the practical model generated in

Chapter 2. As a typical application of the PGD vademecum, a material property

identification problem is discussed. Further PGD vademecum is generated using the

identified material properties with variable loading locations, and with this vademe-

cum, real-time mechanical response of the femur is available.

In addition, for the purpose of extending the methodologies to orthotropic mate-

rials, which is commonly used in biomechanics, in Chapter 6 another linear elastic

model is investigated with the non-intrusive PGD scheme. Nowadays, isogeometric

analysis (IGA) Hughes et al. [2005] is a very popular tool in computational mechanics.

It is appealing to take advantage of non-uniform rational B-splines (NURBS) Piegl

and Tiller [1997] to discretise the model. For PGD, using B-splines for the discreti-

sation of the parameter space could improve the quality of vademecum, especially

for problems involving sensitivities with respect to the parameters during the online

computations.

It is important and necessary to extend the PGD framework to nonlinear solid

mechanics, because most biological soft tissues have been observed nonlinear mechan-

ical behaviours. Consequently, in Chapter 7 we have developed a PGD framework

for the St.Venant-Kirchhoff constitutive model using the Picard linearisation which

is consistent with the fixed-point iteration algorithm commonly used in PGD.

In Chapter 8, conclusive remarks are addressed as well as forecasts of possible

future works.

Moreover, as complementary explanations of several technical details, Appendix A

introduces PGD formulation involving the standard static condensation in FEM and

B details the case of taking Young modulus and Poisson’s ratio as the extra coordi-
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1.3. Thesis objectives and chapter organisation

nates.

It is well-known that a satisfactory geometric parametrisation for biological tissues

is still an open question. In Appendix C, attempts have been made using popular

machine learning techniques to analyse the geometric shape of proximal femurs. In-

teresting indications have been obtained, which are assumed applicable for future

developments.
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Chapter 2

Image-based FE model

generation and validation

In this chapter we introduce the basics of the image-based FE model generation

and validation. From previously performed in vitro experimental tests, as shown

in Figure 2.1, the sample is vertically aligned with lower end fixed and upper end

applied vertical loadings. Strains in longitudinal and circumferential directions are

acquired at locations where strain gauges are attached. Tomographic images of the

sample are later obtained through a CT scan, which is performed using a Siemens

SOMATOM Emotion 6 CT scanner (Siemens Healthineers GmbH, Germany). The

CT image sets are generated with Siemens Syngo CT 2006A and stored in standard

DICOM (Digital Imaging and COmmunications in Medicine) format. As the essential

input for numerical modelling, the CT images contain not only the geometric but also

material constitutive information of the sample to be modelled. Therefore, a proper

procedure of generating the FE model is important for an accurate simulation of

mechanical behaviour of the bone.

2.1 From CT data to FE model

The CT images represents a 3D space of a box shape, i.e., ΩCT = [0, a]⊗ [0, b]⊗ [0, c],

where a, b, c denote the length, width and height of the box, respectively. Each

CT image is a slice with na × nb pixels, as shown in Figure 2.2, the resolution r is
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2. Image-based FE model generation and validation

Crosshead

Load cell

Load plates
(ensure vertical load)

Femur sample
(with strain gauges)

Nylon cup
(filled with resin)

Figure 2.1: In vitro experiment settings.

determined by the CT machine, while na = a/r and nb = b/r. The distance between

slices ∆c = c/nc can be controlled for different type of scans, resulting nc slices. In

total, a CT image set contains na × nb × nc voxels and their corresponding grayscale

value. Each voxel grayscale value can be mapped to the apparent density ρ.

Density

1964

1473

983

492

0

Figure 2.2: A CT slice example.

To perform image-based FE analysis, there are two typical approaches to gener-

ate practical FE models. The first approach is voxel-based, which directly transforms

the CT voxel structure into hexahedral elements. This approach is convenient for

direct FE modelling, and is frequently used in early FE analysis on bone biomechan-

ics Keyak and Skinner [1992], Keyak et al. [1998]. Along with the development of

CT technology, the quantitative computed tomography (QCT)-based homogenised

voxel FE modelling have also adopted this approach Dall’Ara et al. [2013]. Lim-
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2.1. From CT data to FE model

ited by the image resolution and the corner singularity due to hexahedral shape,

voxel-based models have difficulty in providing accurate stress analysis results. The

second approach adds an additional procedure between the voxel CT data and the

final FE model, which is a combination of segmentation and remeshing. Based on

the fast development of computer image processing techniques, modern segmentation

algorithm is able to extract specific objects from noisy backgrounds, and eventually

obtain a smooth surface of the object in interest. Therefore, the outcome FE model is

based on remeshing of a smooth geometry, and various types of element, not limited

to hexahedrons, can be used. Latest FE models based on high-resolution periph-

eral QCT (HRpQCT) with segmentation algorithm showed significant improvement

Luisier et al. [2014] from voxel-based FE models. Following this trend, we take ad-

vantage of the second approach in the creation of FE model of the femur.

The first step is to extract the interested spatial domain Ω from ΩCT, this segmen-

tation procedure, which will be detailed in Section 2.2, filters the voxels that are void

in the box, leaving only the part with ρ > 0. In particular, through the procedure

we have obtained ρ ∈ [1, 3071], with ρ being integer. In this work, the segmentation

is performed with ITK-SNAP Yushkevich et al. [2006] as shown in Figure 2.3. ITK-

SNAP provides an active contour evolution methodology for edge detection, which is

called “snake”. The contour evolves according to the following equation:

∂

∂t
C(t, u, v) = FN̂ ,

where N̂ is the unit normal to the contour C(t, u, v) parametrised by variables u, v

and time variable t, and F represents the sum of the internal and external forces

that act on the contour in the normal direction. The internal forces are derived from

the contour’s geometry and are used to impose regularity constraints on the shape of

the contour, while the external forces incorporate information from the image being

segmented. Active contour methods typically solve the contour evolution equation

using the level set method Osher and Sethian [1988].

The segmented surface is triangulated, and can be exported into an STL mesh

file for further editing and remeshing. Those meshes are not directly applicable for

FE analysis, because

1. the mesh size is based on pixel size which is usually too fine;

2. distorted triangles prevent the successful conversion to a tetrahedral mesh.

21



2. Image-based FE model generation and validation

Figure 2.3: Segmentation with ITK-SNAP.

Therefore, further smoothing and remeshing on the STL triangulation has to be

performed. We choose to remesh it with VMTK Antiga et al. [2008]. The target

element edge length is set to 3 mm after a mesh convergence study as shown in

Figure 2.4.

Following most biomechanical FE analysis for solid bodies, the tetrahedral mesh

is adopted in most image-based studies because of its relative higher efficiency/cost

rate. It is also reported in Ramos and Simões [2006] that proximal femur experimental

strains were well correlated with numerical ones using second order tetrahedral finite

elements.

The spatial mesh for the finite element model of proximal femur is shown in

Figure 2.5. All the elements are tetrahedral element provided by Abaqus (C3D4 or

C3D10). To comply with the in vitro experiment settings, the FE model is fixed at

the distal end, and loaded on the femur head in vertical direction. To simulate the

strain acquisition of the experiments, the numerical strains are extracted from the

approximate positions located on two cross-sections of the shaft.
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2.2. From grey scale data to material properties
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Figure 2.4: A mesh convergence study for the femur FE model. Mesh size is characterised
by edge length of tetrahedrons, U denotes displacement of the loading point.
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Figure 2.5: Spatial mesh of the human proximal femur model, illustrating locations with
strain gauges attached for strain acquisition. Each location is attached two
strain gauges in longitudinal and circumferential direction, respectively.

2.2 From grey scale data to material properties

It is observed that the influence of Poisson’s Ratio ν is negligible, and ν = 0.3 is usu-

ally adopted Yosibash et al. [2007]. The isotropic assumption is generally employed

as a certified simplification for the mechanical behaviour of the femur Ramos and

Simões [2006], Papini et al. [2007].
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2. Image-based FE model generation and validation

The acquired CT images are in stored in DICOM format, which digitally repre-

sents the Hounsfield Units (HU):

HU(µ) = 1000 ·
µ− µwater

µwater − µair

, (2.1)

where µ is the linear attenuation coefficient.

From definition of HU it is straightforward to identify that for water HU = 0

while for air HU = −1000. During the segmentation, we have already filtered HU

with taking only the non-negative values.

The filtered HU is then converted to apparent density ρ using linear relations

according to metadata of the DICOM files,

ρ ∝ HU. (2.2)

To map the density to mechanical properties, Young modulus, exponential law and

linear law are both widely used in the literature. According to works by Keller [1994],

Taddei et al. [2004] that focuses on the simulation of bone mechanics with structural

elements, we adopt the assumption that the density of CT images is linearly mapped

to Young modulus of the bone:

E(x) = αρ(x) + β, (2.3)

where α and β are parameters that can be determined by experiments. With this

mapping, we ignore the difference in biological tissues between the trabecular bone

and cortical bone, but use variable moduli to represent its inhomogeneity in mechan-

ics. Note that the CT image is, in fact, already discretised. For simplicity, in the finite

element model we assign each element the density from the voxel which is closest to

the centroid of the element, denoted as ρe.

2.3 Validation of the FE model

To validate the FE model, we perform some preliminary simulations with certain

simplifications. In this validation, the bone material is firstly assumed to be homo-

geneous, regardless of the difference between trabecular bone and cortical bone.

The exact Young modulus of the real cortical bone is unknown. However, due to

the linearity of the FE model, a preliminary analysis is performed with a presumed
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2.3. Validation of the FE model

Young modulus E0 = 20 000 MPa. Then, it is calibrated by matching the preliminary

strain results with the experimental strain results.

To get optimised stress/strain results on the surface, Abaqus element type C3D10I

is chosen. The C3D10I element is a 10-node quadratic tetrahedra element with

improved stress visualization which is obtained through an 11-point Gauss-Lobatto

quadrature rule Peano [1982], consisting of 10 integration points at the element nodes

and one integration point at the centroid Simulia Corp. [2013].

Since the exact loading location is also unknown, an MPC element is used to

distribute load to a set of possible nodes on the femur head from the assumed loading

point. The amplitude of load is 2 800 N, as it was set in previous experiments.

To calibrate Young modulus E, a parameter k is introduced. Due to the linearity

we have ε/ε0 = E0/E = k. The least squared method is used to determine ε with

results from simulation and experiment. The identification problem reads, find k to

minimize the error norm

‖ǫ− kε0‖
2 =

∑

i

(ǫi − kε0i)
2 (2.4)

where ǫi denotes experimental strains and ε0i denotes strains from the preliminary

simulations. Let f(k) =
∑

i(ǫi − kε0i)
2, we can find that f(k) has a minimum value.

Letting

f ′(k) = 2k
∑

i

ε2
0i − 2

∑

i

ǫiε0i = 0, (2.5)

we have

k =

∑

i ǫiε0i
∑

i ε2
0i

. (2.6)

The calibration result for the femur FE model is listed in Table 2.1.

Table 2.1: Calibration results for femurs

E0 (MPa) k E = E0/k (MPa)

20 000 1.436 274 13 924.92

Longitudinal and circumferential strains are obtained both from the simulation

and in vitro tests, see the comparison between experimental results and calibrated

simulation results in Figure 2.6.

For a further comparison, the FE model with inhomogeneous material properties

is also generated. By extracting the coordinates of centroids for each tetrahedron
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2. Image-based FE model generation and validation
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Figure 2.6: Comparison of Experimental (E) and simulated (S) strain results.

element, the density is mapped from HU value of the nearest voxel in the CT image.

The mapping from HU to density ρ is taken from literature Keyak et al. [1994], which

reads

E(ρ) = 14 261ρ− 13 430, (2.7)

where the unit for E is MPa and that for ρ is g/ml. A typical slice of CT image and

its corresponding slice in the FE model are shown in Figure 2.7 with mapped Young

modulus contour.

The simulation result of inhomogeneous FE model is shown in Figure 2.8 in terms

of strains at Section SG1. It demonstrates very small difference between homogeneous

and inhomogeneous FE model. Calibration of Young modulus is still necessary for

the inhomogeneous FE model.
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2.4. Summary

Figure 2.7: Young modulus contour. Left: CT image; Right: FE model.
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Figure 2.8: Comparison of strains on Section SG1. Left: longitudinal strains; Right:
circumferential strains. Solid line: homogeneous model; Dashed line: inho-
mogeneous model.

2.4 Summary

This chapter briefly introduced the FE modelling procedure, especially the image-

based modelling techniques that is employed. The generated FE model, which sim-

ulates the previously performed in vitro experimental test, is validated with both

homogeneous and inhomogeneous material property distributions under isotropic as-

sumption and a simple calibration. This model will be used for further simulations

in next chapters.
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Chapter 3

Non-intrusive PGD scheme

In this chapter, we introduce the general formulation of PGD framework and the

details of its non-intrusive scheme, with practical implementation using Matlab and

Abaqus.

For solid mechanics, linear elasticity is the simplest model for most materials

under small deformation assumption. Here we review briefly the governing equations

of linear elasticity for its later extensions in PGD formulation.

Consider an elastic body, which consists the computational domain, denoted as

Ω ∈ R
d, (d = 1, 2, 3), usually the quantity of interest is the displacement field u =

u(x), x ∈ Ω. The boundary of Ω is often denoted as ∂Ω. Under the infinitesimal

deformation assumptions, the relationship between strain tensor ε and displacement

u(x) is

ε = ∇su =
1

2

[

∇u + (∇u)T
]

, (3.1)

where ∇ = ∂/∂x is the gradient operator, and ∇s = (∇ + ∇T )/2 is the symmetric

gradient operator.

The stress tensor σ and the strain tensor ε are related with elasticity tensor C by

Hooke’s law

σ = C : ε. (3.2)

Typically, in a strong form, the displacement field is obtained by solving the
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3. Non-intrusive PGD scheme

following boundary value problem:







∇ · σ + b = 0, in Ω,

u = uD, on ΓD,

σ · n = tN , on ΓN ,

(3.3)

where b represents the body force, uD denotes the prescribed displacement on Dirich-

let boundary ΓD and tN denotes the prescribed traction on Neumann boundary ΓN .

In general, we assume that ΓD ∪ ΓN = ∂Ω while ΓD ∩ ΓN = ∅.

To solve the PDEs Equation 3.3 with FE methods, it is necessary to convert it to

a weak form. We define the trial function space V and the test function space V0 as

V := {u ∈ H1(Ω) : u = uD on ΓD},

V0 := {v ∈ H1(Ω) : v = 0 on ΓD},
(3.4)

where H1(Ω) is a Hilbert space. The weak form is constructed by multiplying an ar-

bitrary test function v to both sides of the equilibrium equation, and then integration

by parts over the domain Ω. It reads: find u ∈ V such that

a(u, v) = l(v), ∀v ∈ V0, (3.5)

with the bilinear form a : V × V0 → R and linear form l : V0 → R are given by

a(u, v) :=
∫

Ω
∇su : C : ∇sv dΩ,

l(v) :=
∫

Ω
b · v dΩ +

∫

ΓN

tN · v dΓ.
(3.6)

Since u ∈ V ⊂ H1(Ω) and v ∈ V0 ⊂ H1(Ω), it is convenient to measure their

magnitude with the standard L2 norm inherited from H1(Ω), i.e.

‖u‖V = ‖u‖L2(Ω) :=
(∫

Ω
u2 dΩ

) 1

2

,

‖v‖V0
= ‖v‖L2(Ω) :=

(∫

Ω
v2 dΩ

) 1

2

.

(3.7)

In linear elasticity C is constant, and thus it is straightforward to verify that the

bilinear form a(u, v) is continuous and coercive: there exist constants α, β such that

|a(u, v)| ≤ β‖u‖L2(Ω)‖v‖L2(Ω), ∀(u, v) ∈ V × V0,

a(v, v) ≥ α‖v‖2
L2(Ω), ∀v ∈ V0.

(3.8)
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3.1. PGD formulation

Therefore, according to Lax-Milgram Lemma Quarteroni and Valli [1994], the solution

u exists, is unique and continuous if and only if b and tN are bounded. In addition,

we have the a priori error estimation that there exists a constant C such that

‖u‖L2(Ω) ≤ C
(

‖b‖L2(Ω) + ‖tN‖L2(Ω)

)

. (3.9)

3.1 PGD formulation

In many practical problems in solid mechanics, model parameters such as material

properties, loading locations, are difficult to obtain exactly, while only their ranges are

known from previously performed experiments or from the literature. Consequently,

it would be greatly helpful if we are able to obtain a parametrised solution by taking

advantage of PGD. Following the standard PGD procedure for parametrised problems

which are detailed in Chinesta et al. [2010, 2011a, 2013], we construct the generalised

weak form by assuming the parameters as extra coordinates.

3.1.1 PGD generalised weak form

With the idea of considering parameters as extra coordinates, the displacement field

u(x) is generalised to u(x, µ), where µ = (µ1, µ2, . . . , µm) ∈ Ωµ denotes a vector of

m independent parameters. Let Iµj
be the range of jth parameter µj, assume the

parametric space is Cartesian, namely Ωµ = Iµ1
× Iµ2

× . . . × Iµm
, we generalise the

trial function space to u(x, µ) ∈ V
⊗m

j=1 L2(Iµj
), and thus the test function space to

v(x, µ) ∈ V0
⊗m

j=1 L2(Iµj
).

The generalised weak form of problem Equation 3.5 then reads: find the displace-

ment field u ∈ V
⊗m

j=1 L2(Iµj
), such that for all:

A(u, v) = L(v), ∀v ∈ V0

m⊗

j=1

L2(Iµj
) (3.10)

where the bilinear and linear forms are generalised from Equation 3.6:

A(u, v) :=
∫

Ωµ

a(u, v) dµ =
∫

Iµ1

· · ·
∫

Iµm

a(u, v) dµ1 · · · dµm,

L(v) :=
∫

Ωµ

l(v) dµ =
∫

Iµ1

· · ·
∫

Iµm

l(v) dµ1 · · · dµm.
(3.11)
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3. Non-intrusive PGD scheme

3.1.2 PGD separated representation

The general procedure of solving parametrisation problems with PGD is discussed

intensively in the literature Chinesta et al. [2010, 2011a, 2013], Zlotnik et al. [2015b].

Here we briefly introduce the PGD separated representation to adapt our purpose.

One of the major important issues for PGD is the separability of the generalised

solution. The separated representation of model parameters, boundary conditions

and/or the source terms is always required for an efficient numerical computation. In

this case, the generalised weak form Equation 3.11 is supposed to be separable, so

that it can be factorised as:

A(u, v) :=
∫

Iµ1

· · ·
∫

Iµm

a(u, v) dµ1 · · · dµm =
(∫

Ω
. . . dΩ

) m∏

j=1

(
∫

Iµj

. . . dµj

)

,

L(v) :=
∫

Iµ1

· · ·
∫

Iµm

l(v) dµ1 · · · dµm =
(∫

Ω
. . . dΩ

) m∏

j=1

(
∫

Iµj

. . . dµj

)

.

(3.12)

To guarantee the factorisation Equation 3.12, the generalised solution for the

parametrised problem is assumed to be approximated by a superposition of n modes

u(x, µ) ≈ un
PGD(x, µ) :=

n∑

i=1

χi(x)
m∏

j=1

ωi
j(µj). (3.13)

Each mode is composed by the product of a vector-valued function χi(x) representing

the spatial displacement and m scalar functions ωi
j(µj) representing the influence of

the each parameter. We also call χi(x) the ith spatial mode and ωi
j(µj) the ith

parametric mode of parameter µj. For notational simplicity, we will frequently neglect

the dependent variables.

To obtain the functions composing each PGD mode, typically we compute the

modes sequentially from the fact that

un
PGD = un−1

PGD + χn(x)
m∏

j=1

ωn
j (µj). (3.14)

Such procedure is also called enrichment. Very often, the superscript n for current

mode and the arguments are omitted for brevity.

To perform the enrichment procedure of finding the nth mode based on previously

obtained (n − 1) modes, we put Equation 3.13 and 3.16 into the generalised weak

form Equation 3.10, resulting an equation explicitly expressed by the PGD modes

32



3.1. PGD formulation

to be solved. Now the problem reads: given un−1
PGD =

∑n−1
i=1 χi∏m

j=1 ωi
j, find χn and

ωn
j , (j = 1, 2, . . . , m), such that

A



un−1
PGD + χn

m∏

j=1

ωn
j , vn



 = L(vn), ∀vn ∈ V0

m⊗

j=1

L2(Iµj
). (3.15)

It can be seen this is a nonlinear equation, so that a proper nonlinear solver should

be used to obtain solution in an iterative scheme.

3.1.3 Alternative direction iteration

A typical solver for the nonlinear problem Equation 3.15 is a fixed-point scheme,

the so-called alternative direction iteration. The idea is, during an enrichment, each

time solve only one unknown mode, assuming all the others known, until reaching

convergence under a given tolerance.

For the PGD generalised weak form, we select the test function as the admissible

variation of nth modes, which reads

vn := δ



χn
m∏

j=1

ωn
j



 = δχn
m∏

j=1

ωn
j + χn

m∑

k=1

δωn
k

m∏

j=1,j 6=k

ωn
j . (3.16)

In general, a PGD solver contains loops in two levels: one outer loop for modal en-

richment, and inside each there is an iterative loop solving the (m+1) functions com-

posing the mode. During each loop for modal search, by putting Equation 3.13 and

3.16 into the weak form Equation 3.10, we obtain one mechanical problem to solve χ,

and m parametric problems to solve ωj. In this case, we have one spatial/mechanical

problem in term of function χ and m parametric problems in terms of ωj to be solved.

The alternative direction iteration scheme reads: given un−1
PGD =

∑n−1
i=1 χi∏m

j=1 ωi
j, find

the nth modes as follows:

1. Assume ωj, (j = 1, 2, . . . , m) are known, thus v = δχ
∏m

j=1 ωj, find χ such that

A



χ
m∏

j=1

ωj, v



 = L (v)−A
(

un−1
PGD, v

)

, ∀δχ ∈ V0. (3.17)

2. For k = 1, 2, . . . , m, assume χ and ωj, (j = 1, 2, . . . , m; j 6= k) are known, thus

v =
∑m

k=1 δωk
∏m

j=1,j 6=k ωj, find ωk such that

A



χ
m∏

j=1

ωj, v



 = L (v)−A
(

un−1
PGD, v

)

, ∀δωk ∈ L2(Iµk
). (3.18)
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3. Non-intrusive PGD scheme

A PGD algorithm can be constructed with a hierarchical two-loop structure. The

outer loop searches for PGD modes, and the inner loop applies the alternative di-

rection iterations solving the spatial/mechanical and parametric problems iteratively.

Each of the two loops needs user-specified control variables to ensure the accuracy

and robustness of the algorithm. To control a loop, either the maximum number of

iterations or a stopping criterion has to be given. To implementation the algorithm,

we define the amplitude of the nth mode as an indication of convergence

Mn := ‖χn‖
m∏

j=1

∥
∥
∥ωn

j

∥
∥
∥ , (3.19)

where ‖ • ‖ denotes the proper norm of • in the corresponding space, which typically

is L2 norm. Ideally, it is expected that Mn decreases monotonically with n, however,

empirical observation shows that there are frequent fluctuations during this decreasing

global trend.

As we mentioned in Chapter 1, PGD is an a priori model order reduction method.

In fact, the approximation error is implicitly determined before the offline computa-

tion by the loop control variables. However, verification tools for PGD are still under

development Nadal et al. [2015b]. The PGD approximation error manly comes from

two different sources: the truncation of PGD modes which is controlled by n, and the

discretisation error from underlying numerical methods such as FEM.

For the study of a raw PGD model without any a priori knowledge of the error

bounds, it is still an unsolved issue that how to properly determine the stopping

criterion for the mode searching loop Ammar [2010]. In this work, preliminary PGD

computations have been performed without limiting the maximum number of modes

to search, but with limiting the number of alternative direction iterations to reduce

computational costs. Consequently, an empirical knowledge about the error evolution

is gained in terms from observing the behaviour of the amplitude. The number of

modes n dominants the accuracy of PGD approximation, while the correction on each

mode obtained from the alternative direction iteration becomes less significant when

the iteration number reaches some certain problem-dependent threshold.

The typical implementation of PGD is presented in Algorithm 3.1. The main loop

is the search for modes, which is controlled by our choice of specifying the maximum

number of modes n. The inside loop is the alternative direction iteration indexed with

iter, and the loop is controlled by a stopping criterion which compares the given
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3.2. FE discretisation

tolerance tol, typically tol = 10−3, with stationarity measure of the amplitude

∣
∣
∣M i

(iter) −M i
(iter−1)

∣
∣
∣

∣
∣
∣M i

(iter−1)

∣
∣
∣

< tol. (3.20)

To ensure the robustness, a maximum iteration number itermax is also specified.

Further discussions on PGD algorithm, for instance, different approaches of defining

the stopping criterion, can be found in the literature such as Chinesta et al. [2014].

Algorithm 3.1 Typical PGD algorithm
1: Initialise χ and ωj.
2: Specify user-controlled input n, tol, itermax.
3: for i = 1 to n do

4: Initialise χi and ωi
j.

5: while iter < itermax do

6: Solve the mechanical problem to update χi.
7: for j = 1 to m do

8: Solve the parametric problem to update ωi
j.

9: end for

10: Update the amplitude M i
(iter) ← ‖χ

i‖
∏m

j=1 ‖ω
i
j‖.

11: Check the convergence:
12: if |M i

(iter) −M i
(iter−1)|/|M

i
(iter−1)| < tol then

13: iter← itermax

14: end if

15: end while

16: Save amplitude M i, functions χi and ωi
j into vademecum.

17: end for

3.2 FE discretisation

For a better representation, we now introduce the algebraic formulation of PGD

following standard FE discretisation. Conventionally, both spatial domain and pa-

rameter spaces are discretised with FE methods.

In practice, when dealing with structural problems solved through FE methods,

we express the local displacement u(x) in terms of nodal degrees of freedom (DOF)

vector Û interpolated by the matrix consisting proper shape functions N(x), i.e.,

in matrix form, we have u(x) = N(x)Û. Generalising this matrix formulation by

taking parameters as extra coordinates, we introduce the FE approximation for both
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3. Non-intrusive PGD scheme

mechanical and parametric problems

χ(x) = N(x)U,

ωj(µj) = NT
j (µj)ωj, j = 1, 2, . . . , m,

(3.21)

where Nj(µj) are column vectors of shape functions interpolating parameter µj. Thus

Equation 3.13 becomes

un
PGD(x, µ1, µ2, . . . , µm) =

n∑

i=1

N(x)Ui ·
m∏

j=1

NT
j (µj)ω

i
j, (3.22)

where N(x) denotes the shape functions for the spatial discretisation, and Ui denotes

the spatial DOF vector, while Nj(µj) denotes shape functions for the parameters,

and ωi
j denotes the DOF vector for the corresponding parameter. Note that N(x)

only depends on the spatial mesh, while Nj(µj) depends on the discretisation of the

parametric space. Accordingly, we generalise the global nodal displacement DOF

vector to

Ûn
PGD(µ1, µ2, . . . , µm) :=

n∑

i=1

Ui ·
m∏

j=1

NT
j (µj)ω

i
j, (3.23)

and thus we have a formulation separating the spatial and parametric variables

un
PGD(x, µ) = N(x)Ûn

PGD(µ). We would like to address that since the spatial shape

function vector N(x) is exactly the same as that in standard FE formulation, the

generalised global displacement DOF vector Ûn
PGD is of more interest in structural

analysis other than the local solution, because it depends only on the parameters,

which can be explicitly written as Ûn
PGD(µ1, µ2, · · · , µm) or Ûn

PGD(µ).

3.3 Non-intrusive scheme

In this section, we introduce in detail the non-intrusive PGD scheme with the previ-

ously established mechanical problem in linear elasticity.

From Algorithm 3.1, we identify that each modal enrichment is a composition of

a sequence of one mechanical problem and m parametric problems. The mechanical

problems are usually more demanding of the computational resources, because the

FE model can be of a large number of DOFs. During FE solution of each mechanical

problem, it is necessary to compute elemental stiffness matrices element-wise, and

then assemble the global stiffness matrix. In the mean time, for each parametric

problem, only the relatively cheaper mass matrix is needed. Therefore, a natural idea
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3.3. Non-intrusive scheme

is to isolate the mechanical problem, in Line 5 of Algorithm 3.1 which corresponds to

Equation 3.17, and solve it with some off-the-shelf solvers. There are a large number

of existing FE packages available. In this chapter, for instance, we take advantage

of Abaqus as the mechanical problem solver, and implement the non-intrusive PGD

scheme with Matlab as the controlling code.

We first consider only material properties as extra coordinates, and then loading

location as extra coordinates. In general, they could be considered in one problem,

however, to make the problem less complicated and more clear, different type of

parameters are considered separately.

3.3.1 Material properties as extra coordinates

Consider a separable domain Ω = Ω1 ∪ Ω2 with two different material properties,

for example the Young moduli, as extra coordinates. For the sake of simplicity, we

consider the homogeneous, isotropic materials with the same Poisson’s ratio, so that

the displacement under given boundary conditions should only depend on the two

parameters, E1 and E2, of each subdomain. The PGD separated representation reads

Ûn
PGD(E1, E2) :=

n∑

i=1

Uiωi
1(E1)ω

i
2(E2). (3.24)

In PGD framework, to guarantee the separability of the bilinear form in Equa-

tion 3.10, conventionally it is required that the elastic tensor C(x, E1, E2) should

also be (approximately) separable Zlotnik et al. [2015b].

C(x, E1, E2) =
2∑

k=1

C
k(x)λk

1(E1)λ
k
2(E2), (3.25)

where functions C
k(x), λk

1(E1) and λk
2(E2) describe the material properties in each

of the two subdomains. In this two-material case, without losing generality, it is able

to define C
k(x) for each domain as

C
k(x) :=







C1, if x ∈ Ω1,

C2, if x ∈ Ω2,
(3.26)

where C1 and C2 are constant. The functions related to Young moduli can be iden-

tified as
λ1

1(E1) := E1, λ1
2(E2) := 1,

λ2
1(E1) := 1, λ2

2(E2) := E2.
(3.27)
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3. Non-intrusive PGD scheme

As a result of the separation, the bilinear form will become a sum of products of the

factorised integrals in Equation 3.12.

In FE formulation, the elastic tensor C(x, E1, E2) is discretised to the elemental

elastic matrix De(E1, E2), and is eventually integrated to the global stiffness matrix

K(E1, E2), which now may be written as

K(E1, E2) = E1K1 + E2K2, (3.28)

where K1 and K2 are stiffness-like global matrices, despite that they are independent

of Young moduli. For convenience, we will keep referring to K1 and K2 as stiffness

matrices when there is no ambiguity in the context.

Now we introduce the definition of following mass-like matrices:

H1 :=
∫

IE1

E1N1N
T
1 dE1,

H2 :=
∫

IE2

E2N2N
T
2 dE2,

M1 :=
∫

IE1

N1N
T
1 dE1,

M2 :=
∫

IE2

N2N
T
2 dE2,

(3.29)

and following load-like vectors:

Q1 :=
∫

IE1

N1 dE1,

Q2 :=
∫

IE2

N2 dE2.
(3.30)

In particular, the discretised form of Equation 3.17 in this example reads: assum-

ing ω1, ω2 and Ûn−1 =
∑n−1

i=1 Ui(NT
1 ωi

1)(N
T
2 ωi

2) are known, solve U from

(Ẽ1K1 + Ẽ2K2)U = Q̃F−
n−1∑

i=1

(Ẽi
1K1 + Ẽi

2K2)U
i, (3.31)

where the scalars are computed as follows:

Ẽ1 =
(

ωT
1 H1ω1

) (

ωT
2 M2ω2

)

,

Ẽ2 =
(

ωT
2 H2ω2

) (

ωT
1 M1ω1

)

,

Ẽi
1 =

(

ωT
1 H1ω

i
1

) (

ωT
2 M2ω

i
2

)

, i = 1, . . . , n− 1,

Ẽi
2 =

(

ωT
2 H2ω

i
2

) (

ωT
1 M1ω

i
1

)

, i = 1, . . . , n− 1,

Q̃ =
(

QT
1 ω1

) (

QT
2 ω2

)

,

(3.32)
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3.3. Non-intrusive scheme

and F is the standard finite element load vector, namely

F :=
∫

Ω
NT b dΩ +

∫

ΓN

NT tN dΓ. (3.33)

Note that the only unknown in Equation 3.31 is U. We denote the right-hand

side as a fictitious load F∗,

F∗ := Q̃F−
n−1∑

i=1

(Ẽi
1K1 + Ẽi

2K2)U
i, (3.34)

and define a fictitious stiffness matrix

K∗ := Ẽ1K1 + Ẽ2K2. (3.35)

As a result, a fictitious mechanical problem in terms of a linear system

K∗U = F∗ (3.36)

is created for each mechanical problem in the alternative direction iteration. For a

non-intrusive implementation, the idea is we generate K∗ and F∗, and transfer them

to an external solver which will return U. Details are explained in Section 3.4.

Similarly, the discretised form of the first parametric problem Equation 3.18 with

E1 as the extra coordinate reads: assuming U, ω2 and Ûn−1 =
∑n−1

i=1 Uiωi
1ω

i
2 are

known, solve ω1 from

(M̃2H1 + H̃2M1)ω1 = F̃2Q1 −
n−1∑

i=1

(M̃ i
2H1 + H̃ i

2M1)ω
i
1, (3.37)

and the scalars are computed by

M̃2 :=
(

UT K1U
) (

ωT
2 M2ω2

)

,

H̃2 :=
(

UT K2U
) (

ωT
2 H2ω2

)

,

M̃ i
2 :=

(

UT K1U
i
) (

ωT
2 M2ω

i
2

)

, i = 1, . . . , n− 1,

H̃ i
2 :=

(

UT K2U
i
) (

ωT
2 H2ω

i
2

)

, i = 1, . . . , n− 1,

F̃2 :=
(

UT F
) (

QT
2 ω2

)

.

(3.38)

To solve this problem also in a non-intrusive fashion, another linear system can be

created by defining

M∗
1 := M̃2H1 + H̃2M1,

Q∗
1 := F̃2Q1 −

n−1∑

i=1

(M̃ i
2H1 + H̃ i

2M1)ω
i
1,

(3.39)
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3. Non-intrusive PGD scheme

so that the linear system reads

M∗
1ω1 = Q∗

1. (3.40)

It can also be sent into an external solver to obtain ω1. In addition, the other para-

metric problem with E2 as the extra coordinate can be solved in a similar procedure.

3.3.2 Loading locations as extra coordinates

In many multi-query problems, we need to obtain solutions under a source term cor-

responding to different loading locations. Within the PGD framework, the loading

location s ∈ ΓN is considered as the only extra coordinate. Considering that the

spatial discretisation in Equation 3.21, the global nodal displacement vector Equa-

tion 3.23 can be written as a function of the single parameter s

Ûn
PGD(s) :=

n∑

i=1

Uiωi(s). (3.41)

We consider the simplest case in problems in linear elasticity that the source term

is a point force. With the help of the Dirac delta function, it can be written as a

“body force”

b(x, s) = b0 δ(x− s), (3.42)

where b0 is a constant vector that denotes the point load, and δ(•) denotes the Dirac

delta function.

Let’s focus on the mechanical problem Equation 3.17. Assuming that the first

n − 1 modes and the nth parametric function ωn(s) are known, we now try to

solve Un for the nth spatial mode. We choose the test function in Equation 3.16 as

vn = N(x)ωn(s), so that the global load vector that corresponding to Equation 3.33

becomes

Fn(s) =
∫

Ω
NT (x)b0 ωn(s) δ(x− s) dx = NT (s)b0 ωn(s), (3.43)

and its PGD generalisation becomes

F̂n =
∫

ΓN

Fn(s) ds =
∫

ΓN

NT (s)b0 ωn(s) ds. (3.44)

Assume the stiffness matrix K of the system is acquired, the PGD generalised

weak form has a formulation with only spatial discretisation as

∫

ΓN

K
n∑

i=1

Uiωi(s)ωn(s) ds =
∫

ΓN

NT (s)b0 ωn(s) ds. (3.45)
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3.3. Non-intrusive scheme

The spatial DOF Ui can be obtained by solving Equation 3.45 with the alternative

direction iteration.

Now we need to discretise ωi(s) for a numerical solution. A natural approach

of discretising the parameter space of loading location is to follow the spatial FE

discretisation Cueto et al. [2016]. That is, we select admissible nodes for the point

force from the spatial mesh. The discretisation can be written as

ωi(s) = NT
s (s)ωi, (3.46)

where the dimension of the DOF vector ωi and that of the corresponding shape

function vector Ns(s) both equal to the number of selected nodes admissible for

loading.

As before, by putting Equation 3.46 into Equation 3.45, integration over the

parametric space ΓN will result a mass-like matrix such as Equation 3.29. For the

left-hand side, we have

M =
∫

ΓN

Ns(s)NT
s (s) ds. (3.47)

However, the right-hand side will include a mass-like matrix which is not necessarily a

squared matrix because it involves the shape functions of both spatial and parametric

discretisation that may have different dimensions. This matrix has to be computed

intrusively in the in-house code. We denote it as

M̂ =
∫

ΓN

NT (s)b0N
T
s (s) ds. (3.48)

Now the fully discretised PGD alternative direction iteration formulation reads:

1. Mechanical problem: Assume ω and Ûn−1 =
∑n−1

i=1 Ui(NT
s ωi) are known, solve

U from
(

ωT Mω
)

KU = M̂ω −
n−1∑

i=1

(

ωT Mωi
)

KUi. (3.49)

2. Parametric problem: Assume U and Ûn−1 =
∑n−1

i=1 Ui(NT
s ωi) are known, solve

ω from
(

UT KU
)

Mω = M̂T U−
n−1∑

i=1

(

UT KUi
)

Mωi. (3.50)

It is straightforward to see that the non-intrusive scheme still fits the solution,

except that M̂ has to be created intrusively.
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3. Non-intrusive PGD scheme

In addition, we would like to point out that proper selection of the location of DOF

for s is important for avoiding interpolative instabilities as investigated in Zlotnik

et al. [2015a]. Although the selected loading locations may not necessarily be the

subset of the spatial nodes, it is optimal to do so. This is due to the introduction

of the Dirac delta function in Equation 3.42. When a different discretisation mesh is

used on the selected admissible loading area, it is always necessary to distribute this

singular function to the related nodes on the spatial mesh, otherwise the equivalent

spatial problem would become faulty because point loads are not applied on consistent

nodes but on element faces.

Remark 3.1 (Geometrical parameters as extra coordinates). In general, geometrical

parameters can also be considered as extra coordinates in the non-intrusive PGD

scheme. Due to the geometrical complexity of biological objects, a robust geometrical

parametrisation framework is still an open question, which is beyond the scope of

this paper. Focusing on the community of reduced order modelling, the interesting

approaches that the authors would like to mention includes the kPCA-based manifold

learning method investigated in González et al. [2018] and the non-uniform rational

B-spline (NURBS) parametrisation discussed in Al Akhras et al. [2017].

3.4 Matlab–Abaqus implementation

We provide the detailed implementation of non-intrusive PGD scheme in this section,

taking the case of material properties as extra coordinates for example.

In the non-intrusive manner, taking advantage of the off-the-shelf code such as

Abaqus, the computation of element stiffness matrices Ke and the assembly of global

stiffness matrix

K = A
e

Ke (3.51)

is automatically performed with specified values of (E1, E2) and the mapping informa-

tion about their corresponding subdomains. Ideally, we should be able to obtain K1

by specifying (E1, E2) = (1, 0) and K2 by (E1, E2) = (0, 1). However, the limitation

from Abaqus that Young modulus must always be positive prevents this operation.

A trick to walk around is to replace zero with a negligible value η to the machine

precision, such as η = 10−36.
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3.4. Matlab–Abaqus implementation

Now we take (E1, E2) = (1, η) as an example input to explain the creation of

global stiffness matrix K1. As a typical Abaqus implementation, the generation and

output of global stiffness matrix is requested by adding an extra step in the input

file, e.g., job.inp, with following commands:

*STEP

*MATRIX GENERATE, STIFFNESS

*MATRIX OUTPUT, STIFFNESS, FORMAT=COORDINATE

*END STEP

After running Abaqus with input file job.inp, the stiffness matrix K1 is generated by

means of two files: a plain text file job_STIF1.mtx and a binary file job_X1.sim. The

data format in the plain text file job_STIF1.mtx perfectly matches Matlab format for

sparse matrix, so it works as the interface for data exchange from Abaqus to Matlab.

The binary file, representing the same matrix, can be reused by Abaqus with a scale

factor sf, which enables setting of the scalars in Equation 3.32 such as sf_1 = Ẽ1

and sf_2 = Ẽ2. Another stiffness matrix K2 can also be obtained in the same way by

prescribing (E1, E2) = (η, 1), and resulting two files job_STIF2.mtx and job_X2.sim.

Note that the stiffness matrices K1 and K2 need only be generated once for all, and

be stored for later use.

During the solution of each mechanical problem, the fictitious stiffness matrix K∗

in Equation 3.35 can be generated through the following commands in another input

file:

*MATRIX INPUT, NAME=stiff_1, INPUT=job_X1.sim, MATRIX=STIFFNESS,

SCALE FACTOR=sf_1

*MATRIX INPUT, NAME=stiff_2, INPUT=job_X2.sim, MATRIX=STIFFNESS,

SCALE FACTOR=sf_2

*MATRIX ASSEMBLE, STIFFNESS=stiff_1

*MATRIX ASSEMBLE, STIFFNESS=stiff_2

The standard load vector F in Equation 3.33 can either be read from the Abaqus

input file or be written from Matlab data to plain text files. The fictitious load vector

F∗ has to be computed within Matlab according to Equation 3.34, and output to a

plain text file, then subsequently be included into the Abaqus input file. In this

manner, the plain text file establishes the interface for load data transfer.
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3. Non-intrusive PGD scheme

In practical construction of the fictitious mechanical problem, only (Ẽ1, Ẽ2) and

F∗ need to be computed and output by Matlab through plain text files. The linear

system is written to an Abaqus input file, say job.inp, and sent to Abaqus solver to

obtain spatial DOF U by the following Matlab command:

system(’abaqus job=job interactive’)

There are several ways of transferring U from Abaqus back to Matlab. The sim-

plest one is to require Abaqus directly output the data into a text file, e.g, job.fil.

One can also use a Python script to extract data from Abaqus output database, e.g,

job.odb, and write the data into a text file. Here again, this text file works as the

interface for transferring the displacement DOFs. The former approach is chosen for

its higher execution speed.

The flowchart of current implementation of the non-intrusive PGD scheme is il-

lustrated in Figure 3.1. In this case, the parametric problems, which are usually

computationally inexpensive, are solved within the in-house developed Matlab code,

while the fictitious mechanical problems, which are supposed to be much more ex-

pensive, are solved by Abaqus solver.

An example of Matlab–Abaqus implementation for the non-intrusive PGD scheme

can be downloaded through https://github.com/xizou/NIPGD.

For the case of loading location as the extra coordinate, the implementation is

still available after slight modifications. For example, Equation 3.48 has to be imple-

mented in Matlab code.

3.5 Numerical examples

3.5.1 Example I: A 1D problem with material properties as

extra coordinates

In this simple example, we briefly present an instance of non-intrusive PGD imple-

mentation with material properties as extra coordinates.

Consider a single rod with two portions (l1 and l2) made of different materials (E1

and E2) as shown in Figure 3.2. Assume the cross section area is uniform and has

unit value, that is A1 = A2 = 1. Discretise the problem with two rod elements for
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Figure 3.1: Flowchart of non-intrusive PGD implementation with material properties as
extra coordinates.

both portions, it is straightforward to write the exact solution as

Uex(E1, E2) =








U1

U2

0








= F








l1
E1

+ l2
E2

l2
E2

0








=








F

0

0








1

E1

l1 +








F

F

0








l2
1

E2

. (3.52)

The PGD solution is obtained following Subsection 3.3.1, which reads

Ûn
PGD(E1, E2) =

n∑

i=1

Uiωi
1(E1)ω

i
2(E2). (3.53)

It can be seen that the exact solution in Equation 3.52 is readily separable in a PGD

fashion. However, the dependency of E1 or E2 is nonlinear. In practice, 12 modes are

needed to meet prescribed error tolerance as shown in Figure 3.3. The results for U1
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x1 2 3

F
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Figure 3.2: Sketch of the 1D problem with material properties as extra coordinates.

and U2 are plotted in Figure 3.4 along with relative errors. The maximum relative

error for U1 is 2.8157% while that for U2 is 4.1761%.
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Figure 3.3: Amplitude of each PGD mode for the 1D problem with material properties
as extra coordinates.

3.5.2 Example II: A 1D model problem with loading

locations as extra coordinates

In this simple example, we present an instance of non-intrusive PGD implementation

with loading location as extra coordinates, and compare the ways of obtaining the

reduced order solution.

As depicted in Figure 3.5, consider an elastic bar with left end Point 1 (x = 0)

fixed and right end Point 3 (x = l) free, and loaded by F at Point 2 (x = s with

s ∈ [s1, s2]). The displacement u is a function of the querying location x and the
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Figure 3.4: Results of nodal displacement for the 1D problem with material properties
as extra coordinates.

loading location s, i.e., u = u(x; s). The strong form of the problem reads






d

dx

(

EA
du

dx

)

+ f = 0, in Ω = (0, l),

u(0) = 0, EA
du

dx
(l) = 0,

f = Fδ(x− s).

(3.54)

l

s

x1 2 3

F

Figure 3.5: Sketch of the 1D problem with loading location as extra coordinates.

The exact solution to problem Equation 3.54 is

u(x, s) =







Fx

EA
, if x < s,

Fs

EA
, if x ≥ s.

(3.55)
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3. Non-intrusive PGD scheme

The PGD separated representation reads

u(x, s) ≈ un
PGD =

n∑

i=1

U i(x)ωi(s). (3.56)

The extended weak form reads
∫ s2

s1

∫ l

0
EA

dv

dx

du

dx
dx ds =

∫ s2

s1

∫ l

0
vf dx ds, (3.57)

where v = u∗ is the variation. Discretise the functions as U i(x) = NT (x)Ui and

ωi(s) = NT
s (s)ωi, we obtain the algebraic form according to the variation. Note we

select the admissible loading locations from the discretised spatial nodes, so shape

functions for loading locations Ns(s) is a subset of spatial shape functions N(x).

Let v = N(x) · NT
s (s)ωi, the fully discretised PGD alternative direction iteration

formulation is exactly the same as Equation 3.49 and 3.50, and the mass-like matrices

are defined by

M =
∫ s2

s1

Ns(s)NT
s (s) ds,

M̂ =
∫ s2

s1

FN(s)NT
s (s) ds.

(3.58)

For this particular problem, we set l = 100, s1 = 50 and s2 = 75. The bar is

discretised into a 100-element mesh, from which 25 elements are extracted to construct

the parametric space, so the non-squared mass matrix M̂ has a dimension of 101×26.

The generalised parametric problem is 2D, according to Chinesta et al. [2014], both

SVD and PGD approach can be used to obtain the reduced basis. We may construct a

matrix by concatenating the n solutions as columns, while the number of rows depends

on the degrees of freedom in the problem. It is optimal to perform singular value

decomposition (SVD) on the matrix to obtain the reduced order solution. Meanwhile,

one may also obtain the suboptimal reduced order solution with PGD. In Figure 3.6,

we illustrate both results with the decreasing curve of amplitude versus modes. It

demonstrates that the PGD solution is close to the SVD solution, and is suboptimal

than the SVD solution which is optimal. The drastic drops occurring both after

the 26th mode indicate that the real order of solution for this model problem is 26,

which agrees with the discretisation of the parametric space. The comparison between

PGD solution and the exact solution is shown in Figure 3.7. With 26 PGD modes,

the maximum relative error is 0.27%.

Remark 3.2 (Non-intrusive computation for the matrices). Note that the mass and

stiffness matrices need only compute once for all. It is possible to use Abaqus to
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Figure 3.6: Comparison of PGD and SVD solutions. The modal amplitudes drastically
drop after the 26th mode.
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Figure 3.7: Comparison of the exact solution and PGD solution with 26 modes.

compute the stiffness matrix. In principle, it should also be possible to use Abaqus

to compute the mass matrix for the discretised parametric space, however, Abaqus

can only output lumped mass matrix for linear elements. To obtain consistent mass

matrix, we have to compute it with in-house codes. Besides, the non-squared mass

matrix has to be computed with in-house codes.

3.5.3 Example III: A 2D problem with material properties

as extra coordinates

In this example, we apply PGD on a 2D elasticity problem with a single homogeneous

isotropic material, taking both Young modulus E and Poisson’s ratio ν as extra

coordinates for a parametric study. We consider a rectangular beam in plane stress

state as shown in Figure 3.8. The beam is supported on the right edge, and a

distributed force with total amplitude P is applied on the left edge. The boundary
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3. Non-intrusive PGD scheme

condition described in displacement components (u, v) reads

u(L, y) = v(L, 0) = 0. (3.59)

In the literature Zienkiewicz et al. [2013] the exact solution of u(x, y) and v(x, y)

is provided, which reads

u(x, y) = −
Py

EI

[

x2 − L2

2
− (2 + ν)

y2 − c2

6

]

,

v(x, y) =
P

EI

[

νxy2

2
+

x3 − L3

6
− (x− L)

(

4 + 5ν

6
c2 +

L2

2

)]

,

(3.60)

where I = 2tc3/3 is the area moment of inertia, t is a constant beam thickness. For

a better comparison, we investigate the vertical displacement v0 of the point at the

centre of left edge, thus according to Equation 3.60, we have

v0(E, ν) := v(0, 0) =
PL

6EI

[

2L2 + (4 + 5ν)c2
]

. (3.61)

x
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Figure 3.8: End loaded beam. Left: geometry; Right: spatial meshes.

For the numerical solution, we choose c = 10, L = 100, t = 1, P = 80 as the

fixed parameters, while E ∈ IE = (800, 1200) and ν ∈ Iν = (0, 0.5) as the PGD extra

coordinates.

The spatial domain is discretised with quadrilateral elements, as illustrated in

Figure 3.8. Both a coarse mesh and a fine mesh have been created to reveal the

discretisation error. Detailed PGD formulation can be found in Appendix B. The

parametric domains are discretised with 100 nodes for each parameter and for both
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3.6. Summary

meshes. We have obtained the parametric solution v(E, ν) via the PGD framework,

and the results are presented in Figure 3.10. For each spatial mesh, using the same

stopping criterion, 8 modes have been computed, which demonstrate a drastic drop

of the normalised modal amplitude from 1 to 10−6, as shown in Figure 3.9. It can

be seen that the spatial discretisation does not affect the PGD modes significantly.

As a comparison between the PGD solution v(E, ν) and exact solution v0(E, ν), the

relative error surfaces are computed with (v − v0)/v0 over the parameter domain

IE × Iν = (800, 1200) × (0, 0.5). From Equation 3.61 one can identify that v0(E, ν)

hyperbolically dependent on E and linearly dependent on ν, and from Figure 3.10

we can see the dependencies have been well approximated by v(E, ν). In addition,

as it is expected, the fine mesh improves the relative error over the coarse mesh from

about 3.4% to about 0.7%.
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Figure 3.9: Comparison of the PGD modal amplitudes with two different spatial meshes.

3.6 Summary

As a main contribution of this thesis, the non-intrusive PGD scheme is introduced in

this chapter with detailed implementations. Numerical examples are also presented

demonstrating the effectiveness of the scheme.

Moreover, both spatial and parametric discretisations are performed with FE

method, for the sake of the non-intrusive implementations. For further investigation,

this could be improved with other discretisation methods but with some intrusive but

novel implementations. In Chapter 6, NURBS discretisation is used for the parameter

space following an IGA fashion.
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3. Non-intrusive PGD scheme
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Figure 3.10: Vertical displacement result comparison of the selected location. Top: from
coarse spatial mesh; Bottom: from fine spatial mesh.
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Chapter 4

PGD for constrained

parameter space

This chapter is dedicated to the introduction of a type of specific cases for PGD

when the parameter space of parametrised PDEs is subjected to some constraints.

Two common types, both physical constraints and geometrical constraints, are consid-

ered. Although it is not conceptually innovative for the PGD community to separate

the parameters in a collective fashion, this strategy is seldom implemented on the

parameter domain and not seen in the literature so far.

Collective separation of spatial domain is natural in structural analysis, especially

in problems involving plates and shells. The membrane and transverse dimension

is commonly separated in PGD solutions since they show significantly different me-

chanical behaviour when carrying bending load Bognet et al. [2012], Giner et al.

[2013].

In conventional PGD frameworks, typically the parameters are assumed to be

independent to each other, and the parameter space Ωµ is assumed to be Cartesian

Chinesta and Ladevèze [2014], i.e., Ωµ = Iµ1
× · · · × Iµm

, so that the parametric

modes in the separated representation can be written in terms of a product of m

functions, each function is a 1D map from the range of the parameter to a scalar,

namely ωj : Iµj
→ R. Thanks to such an assumption, the parametric problems to

be solved in the alternative direction iterations during each modal search are all 1D,

which enables fast computations.
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4. PGD for constrained parameter space

On the contrary, in real situations, the parameters can have mutual dependen-

cies, due to the constraints from limitations of physical, geometrical, and/or other

aspects. Those correlations may cause the parameter space not being Cartesian. The

constrained parameter space has much lower separability, which could cause the sep-

arated representation ineffective. That is, the factorisation Equation 3.12 may not

be able to perform. To solve this problem, unlike the conventional PGD approach of

separating the parameter space into tensor products of 1D subspaces, the separation

strategy for parameter spaces under constraints is to collect the most correlated pa-

rameters and keep them in 2D/3D spaces during the separation, in order to respect

the constraints and to avoid solutions with non-physical parameters.

In addition, to obtain more accurate derivatives with respect to the parameters,

such as sensitivities in a parameter study, it is possible to replace FE discretisation

with NURBS discretisation in an isogeometric analysis fashion. Thanks to its capa-

bility of describing exact geometric shape and providing highly smoothness, NURBS

discretisation improves the PGD vademecum with little effort of modifying the code

from original FE discretisation.

4.1 Physical constraints

Now we use a practical example in Chapter 2 to explain the physical constraints of

the parameter space. An example will follow, providing a comparison between the

different strategies of separating the parameter space.

4.1.1 PGD formulation for Young modulus mapped from

CT image

Recall that a segmentation procedure is performed to filter the voxels in CT images,

leaving only ones with positive densities. After the segmentation, we have obtained

ρ ∈ [1, 3071], with ρ being integer.

According to Equation 2.3, we have two parameters, α and β, to be determined.

In PGD formulation, the two parameters are considered as extra coordinates. Thus

the Young modulus is generalised from E(x) to E(x, α, β). Thanks to the linearity

of the density-modulus mapping, Young modulus is separable in this form:

E(x, α, β) =
2∑

k=1

Gk(x)Rk(α)Sk(β), (4.1)
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4.1. Physical constraints

where it is straightforward to identify

R1(α) = α, S1(β) = 1, G1(x) = ρ(x),

R2(α) = 1, S2(β) = β, G2(x) = 1.
(4.2)

In standard finite element methods, the element stiffness matrix Ke is computed

as

Ke :=
∫

Ω
BT DeB dΩ =

∫

Ω
Ee BT D̂B dΩ =

∫

Ω
(αρe + β)BT D̂B dΩ, (4.3)

where B := ∇sN is the displacement-strain matrix, De is the element elastic matrix:

De :=
Ee

(1 + ν)(1− 2ν)

















1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1
2
− ν 0 0

0 0 0 0 1
2
− ν 0

0 0 0 0 0 1
2
− ν

















. (4.4)

For the brevity of formulas, we define a matrix D̂ := De/Ee. In linear elastic case

with a given Poisson’s ratio ν, D̂ is constant. Now the the element stiffness matrix

is separated as

Ke = αKe
1 + βKe

2, (4.5)

with

Ke
1 :=

∫

Ω
ρe BT D̂B dΩ,

Ke
2 :=

∫

Ω
BT D̂B dΩ.

(4.6)

It is clear that when assembled into the global stiffness matrix, Ke
1 contributes to the

inhomogeneous part, while Ke
2 consists the homogeneous part. Note the similarity be-

tween Equation 4.5 and 3.28, the computation procedure discussed in Subsection 3.3.1

well suits this problem.

However, due to the CT imaging mechanism that stronger tissue results higher

intensity, apparently we have α > 0. In addition, physically Young modulus cannot

be negative, the parameters α and β must satisfy following conditions:






α > 0,

α + β > 0.
(4.7)

Therefore, we have obtained a problem with parameters µ = (α, β) living in a con-

strained 2D parametric domain Ωc, as shown in Figure 4.1.
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4. PGD for constrained parameter space

O α

β

Ωc

α+ β = 0

Figure 4.1: Shape of the constrained parametric domain.

Recalling Equation 3.23, the separated representation for the nodal displacement

vector reads

ÛPGD(µ) :=
n∑

i=1

Uiωi(µ). (4.8)

The procedure is almost same as Subsection 3.3.1 to obtain the corresponding com-

putational vademecum ÛPGD(µ) by applying the non-intrusive PGD scheme with FE

discretisation of the 2D constrained parameter space Ωc ⊂ R
2. Let µ = (E1, E2) ∈ Ωc,

now Equation 3.31 becomes: assuming ω(µ) and Ûn−1
PGD =

∑n−1
i=1 Uiωi(µ) are known,

solve U from

(Ẽ1K1 + Ẽ2K2)U = Q̃F−
n−1∑

i=1

(Ẽi
1K1 + Ẽi

2K2)U
i, (4.9)

where the scalars are computed as follows:

Ẽ1 :=
∫

Ωc

E1ω
2(µ) dµ,

Ẽ2 :=
∫

Ωc

E2ω
2(µ) dµ,

Ẽi
1 :=

∫

Ωc

E1ω(µ)ωi(µ) dµ, i = 1, . . . , n− 1,

Ẽi
2 :=

∫

Ωc

E2ω(µ)ωi(µ) dµ, i = 1, . . . , n− 1,

Q̃ :=
∫

Ωc

ω(µ) dµ.

(4.10)

On one hand, the integrals are computed repeatedly during the loops, so additional

computational costs may be introduced since dim Ωc = 2. On the other hand, we now

have more options to discretise the parameter space with different meshes to improve
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4.1. Physical constraints

the accuracy. For example, one may use h-refinement to reduce the discretisation

error.

When the parameters µ are limited in a constrained space Ωc, such a technique

would lead to the total non-intrusive PGD scheme described in Algorithm 4.1. In

this total non-intrusive scheme, the main code acts only as the data collector and

flow controller, while the solution of equations are performed by using the exterior

solver as a black box.

Algorithm 4.1 Fully non-intrusive PGD algorithm
1: Create spatial mesh and parametric mesh for the model.
2: Transfer the definition of the model into main code.
3: Initialise χ(x) and ω(µ).
4: for i = 1 to n do

5: Initialise χi(x) and ωi(µ).
6: while iter < itermax do

7: Export and solve the mechanical problem in external solver.
8: Import the solution into main code to update χi(x).
9: Export and solve the parametric problem in external solver.

10: Import the solution into main code to update ωi(µ).
11: Update the amplitude M i

(iter) ← ‖χ
i(x)‖ · ‖ωi(µ)‖.

12: Check the convergence:
13: if |M i

(iter) −M i
(iter−1)|/|M

i
(iter−1)| < tol then

14: iter← itermax

15: end if

16: end while

17: Save functions χi(x) and ωi(µ) into vademecum.
18: end for

Remark 4.1 (On the solving of parametric problems). The parametric problems, as

represented in Line 9 in Algorithm 4.1, does not contain derivatives with respect to

the unknowns, which suggests that it is not always necessary to solve the parametric

problems with the Galerkin-based FE method.

In the non-intrusive implementation of the PGD algorithm, each call of the exter-

nal solver will introduce extra cost of computation time, because upon each call, the

external solver (e.g. Abaqus) will perform its initialisation.

In this work, the parametric problems for all the examples are solved within the

in-house Matlab code still with FE discretisation, despite that they can also be solved

by calling Abaqus.
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4. PGD for constrained parameter space

4.1.2 Example: A 2D problem with material properties as

extra coordinates

This example presents an instance of non-intrusive PGD implementation with ma-

terial properties as extra coordinates, with two material parameters both separated

and collected. To ensure the separation, the parameter space is kept Cartesian.

Consider a plane strain problem in a squared spatial domain [0, 10] × [0, 10], as

sketched in Figure 4.2, the left edge and lower edge are fixed horizontally and ver-

tically, respectively, while the upper edge is free, and the right edge is loaded with

uniform traction σ. The domain is partitioned into two subdomain composed by ma-

terials with the same Poisson’s ratio ν = 0.3 but different Young moduli E1 and E2.

Provided having used a compatible unit system, we will ignore units in this example.

Material 1

Material 2

Figure 4.2: Sketch of the 2D problem with material properties as extra coordinates.

For the purpose of validating the new strategy of separating the parameter space,

we implement the non-intrusive PGD scheme introduced in Chapter 3 to solve the

problem twice with the two parameters separated and collected (unseparated), namely

Ûn
PGD =

n∑

i=1

Ui
sep ωi

1(E1) ωi
2(E2)

︸ ︷︷ ︸

separated

=
n∑

j=1

U
j
col ωj(E1, E2)
︸ ︷︷ ︸

collected

. (4.11)

Note that although the spatial domain is identical, the spatial modes resulted from

separated approach Ui
sep and from collected approach U

j
col are not the same, neither

are the functions of parameters.
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4.1. Physical constraints

The ranges of parameters are selected as E1 ∈ [10, 100], E2 ∈ [20, 200]. For the

separated approach, the parameter space is [10, 100] ⊗ [20, 200], and 100 linear ele-

ments are used for the discretisation of both E1 and E2. For the collected approach,

the parameter space is [10, 100] × [20, 200]. Three different linear triangular meshes

are used to discretise the unseparated parameter space: one with 114 unstructured

triangles, one with 100 structured triangles, and to be more comparable with the sep-

arated approach, the last one with 100×100×2 = 20000 triangles. All the meshes are

shown in Figure 4.8. We computed 10 PGD modes for both approaches of discretising

the parameter space with the same stopping criterion, tol = 10−3, for the looping

control.

The amplitude of each mode is plotted in Figure 4.3. It demonstrates that the

unseparated approach achieves higher rate of convergence than the conventional sep-

arated PGD approach. The results imply that the unseparated approach, although

presumed to be more expensive than the separated approach, may be not so expen-

sive because less modes are needed to achieve the same accuracy thanks to the higher

rate of convergence. It is worth noting that some authors such as Ammar [2010] also

compared the separated approach and unseparated approach in the spatial domain.

Similarly, the unseparated approach exhibits a higher rate of convergence.
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Figure 4.3: Normalised modal amplitude plots for both separated and unseparated ap-
proach.

The spatial modes for both approaches are plot in Figure 4.4 and 4.5 with nodal

displacement magnitudes U =
√

U2
x + U2

y . To visualise the correlation between the

two parameters, we plot the tensor product of results from the separated approach

in Figure 4.6 and the results from the unseparated approach along with the mesh in
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4. PGD for constrained parameter space

Figure 4.7. It is observed that the first three modes, either spatial or parametric,

computed by both separation strategies are very similar.
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Figure 4.4: Normalised spatial modes U
i
sep solved from IE1

× IE2
. Bottom plane: spatial

domain. Vertical axis: magnitude of nodal displacement.
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Figure 4.5: Normalised spatial modes U
i
col solved from Ωc. Bottom plane: spatial do-

main. Vertical axis: magnitude of nodal displacement.

To evaluate the error for both approaches, we have randomly selected 5 samples of

parameters (E1, E2) as listed in Table 4.1, and have computed Uref(E1, E2) with corre-

sponding ordinary FE models as references. The relative error ‖ÛPGD−Uref‖/‖Uref‖

for each sample for both approaches are plotted in Figure 4.8. As we have observed,

the unseparated approach converges more rapidly. The refinement of mesh for the
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4.1. Physical constraints

Figure 4.6: Normalised parametric modes ω
j
1(E1)⊗ω

j
2(E2) solved from IE1

×IE2
. Bottom

plane: parametric domain. Vertical axis: parametric function value.

Figure 4.7: Normalised parametric modes ωj(E1, E2) solved from unseparated Ωc. Bot-
tom plane: parametric domain. Vertical axis: parametric function value.

unseparated parameter space improves significantly the accuracy of the converged

result, but it requires more modes to achieve the convergence. Take the sample

(E1, E2) = (76.24, 29.86) for example, the relative error converges near 10−2 in the

coarse meshes with about 100 triangles and the convergence requires 4–5 modes, while

it converges to near 10−4 in the fine mesh with 20000 triangles and the convergence

requires 8 modes. From the comparison of different meshes of parameter space we can
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4. PGD for constrained parameter space

conclude that the mesh density dominates the stagnation accuracy that the PGD so-

lutions converge to, while under the same density the mesh quality has no significant

influence on the convergence.

Table 4.1: Randomly selected parameter sets

No. E1 E2

1 93.70 91.04
2 45.91 118.08
3 14.27 143.52
4 40.81 180.85
5 76.24 29.86

4.2 Geometrical constraints

A common situation is when representing the loading locations, the parameter space

has to be 2D or 3D. For instance, possible equivalent loading locations on the femur

head ranges a partial sphere on the its surface, as illustrated in Figure 4.9.

In this case, the parameter space is generally not separable in the Cartesian fash-

ion. Instead of separating the parameter space into tensor product of 1D parameter

spaces, it is better to be kept unseparated and the parametric problem is solved in a

2D/3D space. Provided that the FE model is readily built, it is possible to extract

the possible loading locations, that is a set of admissible nodes s ∈ Γ̄, and the pa-

rameter space can be reconstructed based on it. To make the discretised parametric

domain compatible with the finite element model, the surface is approximated to be

composed by the exterior faces of the tetrahedral elements involved. Naturally, the

DOFs of the parametric mesh just live on the nodes.

Ideally, since dim Γ̄ = 2, the parametric domain should be discretised by a 2D

triangulation. To build the parametric mesh, we first use the graphical user interface

(GUI) provided by Abaqus to extract the related nodes from the spatial mesh, and

then use an in-house developed code (or even by hand) to reconstruct the triangular

mesh, the procedure is illustrated in Figure 4.10. During the reconstruction process,

proper renumbering is required to make the data compatible with the parent finite

element model.

However, although practically the loaded nodes can only lie on the exterior surface

of the femur head, mathematically it is allowed that we apply some “ghost” loads on
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4.3. Summary

nodes inside the solid. That is to say, the 2D parameter space can be extended to some

related tetrahedral elements which consist a subset of the whole 3D spatial domain,

namely Ω̂ ⊂ Ω. With this dimensional extension, the number of parameters have been

increased from 2 to 3. The benefit of this extension is the set of tetrahedral elements

can be directly extracted from the original finite element model. This extraction

procedure, which is in a more non-intrusive fashion, can be performed within the

handy Abaqus GUI as shown in Figure 4.11.

The second approach does not require reconstruction of triangular mesh from node

extraction, but would make the computation slightly more expensive. Considering

the number of selected elements is usually far less than the total element number, the

extra cost is acceptable.

A practical example of problem involving this geometric constrained parameter

space is presented in Section 5.2.

4.3 Summary

For problems involving a parameter space that subjected to some constraints, a sepa-

ration strategy is proposed in this chapter. The strategy collects the most correlated

parameters and keep them in a 2D/3D space which is separated from other parame-

ters. This strategy enables using PGD to solve problems with inseparable parameter

space.

The proposed separation strategy could be more expensive, however, the higher

dimensional interpolation improves the convergence rate of the parametrised problem.

In addition, as an implementation in the non-intrusive fashion, an extraction

method is introduced using Abaqus GUI to construct the discretised parameter space

directly from FE model.
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(a) Unstructured coarse mesh with 114 triangles.
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(b) Structured coarse mesh with 100 triangles.
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(c) Structured fine mesh with 20000 triangles (mesh not shown).

Figure 4.8: Relative error of both separated and unseparated PGD approach for the 2D
model problem. For the separated approach, three different meshes for the
parameter space are used. For the unseparated approach, the discretisation
remains the same.

64



4.3. Summary

Figure 4.9: Illustration of the possible equivalent loading location on the femur head.
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Figure 4.10: Extraction of the involved nodes (left) within Abaqus GUI and parametric
mesh (right) reconstructed with in-house code.
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Z

Figure 4.11: Parametric mesh (right) constructed by direct extraction of involved tetra-
hedral elements (left) using Abaqus GUI.
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Chapter 5

Online biomechanical

application of PGD

vademecum

Literature Niroomandi et al. [2013a,b], González et al. [2015], Quesada et al. [2016a],

Mena et al. [2015], González et al. [2018] shows that the PGD framework is par-

ticularly suitable for many challenging problems in biomechanics such as real-time

simulation and multi-parameter identification. In a comprehensive ageing society,

osteoporosis is one of the common diseases for the elders. THA is the typical surgery

for osteoporosis happened on the proximal femur. A patient-specific, fast-responding

decision making tool could be of great interest for surgeons facing the THA to study

the mechanical response of the proximal femur.

The hypothesis of linear elastic modelling of bone tissue at macroscale is commonly

accepted for biomechanical analysis under normal loads in regular daily activities

Keaveny et al. [1994], Yosibash et al. [2006].

In this chapter, we present a realistic problem in bone mechanics, and apply the

non-intrusive PGD scheme proposed in Chapter 3 to solve the problem as another

demonstration its feasibility for practical problems. As introduced in Chapter 2, we

have previously performed CT scans as well as experimental tests to obtain data from

a real sample of femur, and an available FE model is established and validated. For
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5. Online biomechanical application of PGD vademecum

a macroscopic analysis, the structure material of bone tissue is commonly assumed

to be linear elastic, so the numerical scheme well suits this application.

As a typical application of the PGD vademecum at the online phase, a mate-

rial parameter identification problem is introduced. Because identification problem

generally requires multi-query to the response of the model with given input param-

eters, the extremely fast speed of the online phase using PGD vademecum provides

countable accelerations to this problem.

In addition, real-time simulation of the bone structure under loadings at variable

locations is enabled by using the PGD vademecum. Proper post-processing of the

vademecum further extends the real-time simulation to distributed loads.

5.1 Material parameter identification

Recall the parametrised mechanical problem in Subsection 4.1.1, the PGD solution

is computed following Equation 4.8, with FE discretisation of the parameter space as

shown in Figure 5.1.

In practice, we confine the parametric domain by proper choices of (αmax, βmax),

and discretise the domain with triangular mesh. In the parameter identification

problem, since the values of (α∗, β∗) is unknown while the parametric mesh is flexible,

we use a coarser mesh to perform preliminary estimation, and subsequently use a finer

mesh to approximate the desired values.

The real parameters µ∗ = (α∗, β∗) for the model are unknown a priori. As

introduced in Chapter 2, in vitro experiments in have been performed on the femur,

and have obtained data from the 12 strain gauges depicted in Figure 2.5, namely ε∗
P

=

[ǫ1, ǫ2, . . . , ǫ12]
T . Taking advantage of the fast online computation with the obtained

PGD vademecum Nadal et al. [2015a], we now construct a parameter identification

problem to obtain the parameters.

Following standard FE method, the numerical strain is computed as

ε = ∇su = ∇sNÛ = BÛ. (5.1)

Regarding to PGD separated representation, when the displacement vademecum

ÛPGD(µ) is already obtained, the strain vademecum can be computed from

εPGD(µ) = BÛPGD(µ) = B
∑

i

Uiωi(µ) =
∑

i

BUiωi(µ). (5.2)
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Figure 5.1: Discretisation of the constrained parametric domain. Left: coarse mesh with
83 triangles, (αmax, βmax) = (10, 10); right: subdomain mesh with 456 trian-
gles, (αmax, βmax) = (10,−8).

Defining a selection operator P to extract the 12 numerical strain values corre-

sponding to the experiment result, the selected strain can be written as a vector

εP(µ) = PεPGD(µ) = PB
∑

i

Uiωi(µ) =
∑

i

PBUiωi(µ). (5.3)

The parameter identification problem reads: given εPGD(µ), find µ∗ such that

µ∗ = arg min
µ∈Ωc

‖ε∗
P
− εP(µ)‖. (5.4)

To certify the eligibility of the parameter identification problem, benchmark tests

have been made with synthetic values for the parameters. We have computed ε∗
P

with synthetic parameters µ∗ = (3.02, 3680), and then we solved the identification

problem with ε∗
P

and the previously computed vademecum εP(µ). The obtained

result µ = (3.0168, 3667.22) with relative error ‖µ − µ∗‖/‖µ∗‖ = 0.35% shows a

good agreement, which proves the identification.

In real case with ε∗
P

from the experiments, results of the parameter identifi-

cation problem is shown in Figure 5.2. With εP(µ) computed from the coarse

parametric mesh, the approximate location of the parameters is identified as µ∗ =

(9.3712,−9.3712). Thereafter, the vademecum is recomputed with the fine paramet-

ric mesh, and the parameters are identified by rerunning the identification problem,

finally obtaining µ∗ = (9.3589,−9.3589).
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Figure 5.2: Error norm ‖ε∗
P
− εP(α, β)‖ distribution on the parametric space. Left: pre-

liminary result from coarse mesh; right: secondary result from fine mesh on
local subdomain.

Remark 5.1 (Computation of numerical strains). In practice, there are two options

for the implementation of Equation 5.3. The first option is to compute B within the

main code after having obtained ÛPGD(µ), and then compute εPGD(µ), and eventually

apply P to obtain εP(µ); another option is compute PBUiωi(µ) by the external solver

under the non-intrusive PGD scheme, resulting directly εP(µ) by summing all the

obtained modes. Particularly in this example, the first option computes B only once,

but due to the fact that the elemental strains are constant, extra post-processing is

needed to compute the averaged strain thus this implementation is more intrusive. On

the contrary, the second option needs to compute B for many times during the loops,

so that we can use Abaqus to output strains that are already averaged. Therefore,

the implementation could be in a more non-intrusive fashion. In our case, we have

adopted the second option for its non-intrusiveness, and thus the result we have obtain

is the computational vademecum of strains εPGD(µ).

Remark 5.2 (On the identified parameters). Regarding the resultant error norm

‖ε∗
P
−εP(α, β)‖, its dependency on β is less sensitive in a small scale, this is because ρe

raises the magnitude of Ke
1 with about 103 in Equation 4.6. The resulting parameters

occur on the boundary α+β = 0, this phenomenon indicates that the FE model is not

exactly reflecting the mechanics of real femur due to the simplifications we have made

during the modelling process. On one hand, in the image-processing procedure detailed

in Chapter 2, many empty spaces which should be eliminated during segmentation may

have been included in the FE mesh, therefore, the fact that they should have zero elastic

modulus drives the identification result to the boundary. On the other hand, despite

that the bone material might not be exact linear, the assumption that Young modulus
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is linearly dependent on the intensity of CT image may have strongly increased the

discrepancy of the FE model. Even so, the discrepancy between FE model and real

sample does not disprove the effectiveness of the PGD vademecum.

5.2 Towards real-time simulation

One of the most significant contributions of PGD computational vademecum is that

we may take advantage of it for real-time simulations Niroomandi et al. [2013b]. In

clinical aspects, this kind of application is of great interest for patient-specific studies.

Using the material parameters µ∗ = (9.3589,−9.3589) obtained from the identi-

fication problem in Section 5.1, it is possible to solve another parametrised problem

with loading locations as extra coordinates using the non-intrusive PGD scheme of

Subsection 3.3.2. As explained in Section 4.2, the loading location is a 2D surface,

which can also be extended to 3D solids for the offline solution and restrict the ad-

missible locations on the exterior surface at online phase.

We computed the first 4 dominating modes with both meshes, the modal ampli-

tude curves decrease at almost the same rate as plotted in Figure 5.3. The rate of

convergence is nearly the same, which is not surprising because the parametric space

is discretised in the same order. The spatial modes represented with displacement

in z direction computed with both parametric meshes are shown in Figure 5.4. The

parametric modes computed with both meshes are shown in Figure 5.5. It is observed

that the modes computed with the two parametric meshes are different both spatial

and parametric, and the parametric modes computed with the 2D mesh are more

spiny. Even so, the resultant displacements computed with each PGD vademecum

is nearly the same. Compared to the standard FE result with a specified loading

location, the error norm of the 2D parametric mesh result is 3.61% while that of the

3D parametric mesh result is 3.49%.

Having computed the computational vademecum ÛPGD(s), we are able to perform

real-time simulation in the online computations on the numerical femur model. For

instance, the strain field under different loading locations can be computed with

Equation 5.2. It is believed to have great potential clinic applications thanks to the

fact that the online computation with the computational vademecum is extremely

fast.

For a prescribed distribute load t(s), with s ∈ Γ̄, referring to Equation 3.33, it
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Figure 5.3: Normalized modal amplitude plot for triangular and tetrahedral parametric
meshes.
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Figure 5.4: The z component of normalized spatial modes computed with triangular
mesh (upper row) and tetrahedral mesh (lower row).

is possible to write the global load vector F as a linear superposition of equivalent

nodal forces

F =
∫

Γ̂
NT t(s) dΓ =

∑

i

Fi f(si), (5.5)

where f is a single-point load applied at si and Fi denotes its amplitude. With

obtained (α∗, β∗), the displacement DOF vector Udist under the given distributed
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Figure 5.5: Parametric modes ωj(µ) computed with triangular mesh (upper row) and
tetrahedral mesh (lower row).

load is computed as

Udist = (α∗K1 + β∗K2)
−1

F = (α∗K1 + β∗K2)
−1
∑

i

Fi f(si). (5.6)

Note that

(α∗K1 + β∗K2)
−1

f(si) = ÛPGD(si), (5.7)

the displacement DOF vector is eventually obtained by

Udist =
∑

i

FiÛPGD(si). (5.8)

5.3 Summary

For biomechanical structures, the data of geometric shape as well as material prop-

erties are usually not directly available in vivo. Those data are generally obtained by

processing medical image sets from CT scan, MRI, radiography, ultrasonography, etc.

This chapter has demonstrated that using the computational vademecum generated

from non-intrusive PGD scheme, it is possible to identify the material constitutive

parameters and perform real-time simulation during the online phase.
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Chapter 6

NURBS shape function

discretisation of parameter

spaces

This chapter is dedicated to the introduction of a practical application of the non-

intrusive PGD scheme stated in Chapter 3 with the separation strategy stated in

Chapter 4. Although the discussion is still based on linear elasticity, a generalisation

is made to extend the application from isotropic materials to orthotropic materials.

It is worth noting that most materials studied in biomechanics show an orthotropic

behaviour, because of their fibre reinforced structures.

It is well known that for many inverse problems, such as identification of ma-

terial constitutive parameters, computation of the derivatives with respect to the

parameters are necessary. However, in the conventional PGD framework, low-order

discretisation methods, such as finite difference, collocation with trapezoidal integra-

tion as well as linear FE, are commonly used for the parameter space, which could

cause problems not only during the offline phase, but the online simulation phase. To

improve the performance of the PGD framework, it is interesting to introduce IGA

concepts to the discretisation of the parameter space. Using NURBS shape func-

tions, typically the B-splines, it is not only easy to obtain high-order discretisation

of the parameter space, but the smoothness of the parametric modes would be im-
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6. NURBS shape function discretisation of parameter spaces

proved by the high continuity. In addition, computational efficiency of the high-order

discretisation could benefit from the k-refinement in an IGA fashion.

This approach is referred as NURBS Enhanced PGD (NE-PGD) framework in the

following context, in order to distinguish from the conventional FE-PGD framework.

To the author’s knowledge, although the extension from FE-PGD to NE-PGD is a

quite natural idea, it is still innovative and rarely seen in the literature. On the other

hand, the combination of IGA and RB is under active investigation in the model

order reduction community Salmoiraghi et al. [2016], Devaud and Rozza [2017].

6.1 Constitutive parameters of 2D orthotropic

materials

Consider a 2D orthotropic material, such as a composite plate, an equivalent unidi-

rectional lamina can be used to represent its in-plane mechanical property. For any

unidirectional lamina, there are four independent parameters of the in-plane material

property: E1, E2, ν12, G12, where the subscripts denotes an orthogonal coordinate.

The ranges for the parameters are assumed to be

E1 ∈ [10, 30] GPa, E2 ∈ [10, 30] GPa,

ν12 ∈ (0, 0.5), G12 ∈ [0.5, 10] GPa.
(6.1)

The stress-strain relationship is








σ1

σ2

τ12








=








Q11 Q12 0

Q12 Q22 0

0 0 Q66















ε1

ε2

γ12








, (6.2)

where the elastic constants are defined as

Q11 =
E1

1− ν21ν12

, Q12 =
ν12E2

1− ν21ν12

,

Q22 =
E2

1− ν21ν12

, Q66 = G12,

(6.3)

and the relationship
E1

E2

=
ν12

ν21

. (6.4)
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To simplify the relationship between the parameters, we introduce a change of

variables with the definition of

q1 :=
E1

1− ν2
12E2/E1

, q2 :=
E2

E1

, q3 := ν12, q4 := G12, (6.5)

and it is straightforward to obtain

Q11 = q1, Q22 = q1q2, Q12 = q1q2q3, Q66 = q4, (6.6)

Imposing the following restrictions

E1 > E2 > 0,

0 < ν12 < 0.5,
(6.7)

we can compute the admissible ranges of the parameters:

q1 ∈ (10, 40) GPa, q2 ∈ [1/3, 1],

q3 ∈ (0, 0.5), q4 ∈ [0.5, 10] GPa.
(6.8)

After the change of variables, it is straightforward to verify that the resultant

parametric space Ωq ⊂ span{q1, q2, q3, q4} is still Cartesian under the constraints. It

can also be seen from Equation 6.5 that q1, q2, q3 are more correlated while q4 is inde-

pendent. Therefore, considering the strategy proposed in Chapter 4, it is reasonable

that we separate the first three parameters into a 3D space Ωq̃ = span{q1, q2, q3},

and the last parameter a 1D space Iq4
. For convenience, we introduce the following

notations
q̃ := (q1, q2, q3),

q := (q1, q2, q3, q4) = (q̃, q4).
(6.9)

6.2 Decomposition of element stiffness matrix

With definition of the element elasticity matrix

D =








Q11 Q12 0

Q12 Q22 0

0 0 Q66








, (6.10)

considering Equation 6.6, we can decompose the elastic matrix D as

D =








q1 q1q2q3 0

q1q2q3 q1q2 0

0 0 q4








= q1D1 + q1q2D2 + q1q2q3D3 + q4D4, (6.11)
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where

D1 :=








1 0 0

0 0 0

0 0 0








, D2 :=




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


0 0 0

0 1 0

0 0 0


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



,

D3 :=




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


0 1 0

1 0 0

0 0 0








, D4 :=








0 0 0

0 0 0

0 0 1








.

(6.12)

For the mechanical problem, we keep using FE for the spatial discretisation. The

element stiffness matrix can be obtained by

K =
∫

Ωe

BT DB dV = q1K1 + q1q2K2 + q1q2q3K3 + q4K4, (6.13)

where B = [B1, B2, . . . , Bn] is the strain-displacement matrix for n-node plane stress

elements with shape functions Ni

Bi =








∂Ni/∂x 0

0 ∂Ni/∂y

∂Ni/∂y ∂Ni/∂x








, i = 1, 2, . . . , n, (6.14)

and

K1 =
∫

Ωe

BT D1B dV,

K2 =
∫

Ωe

BT D2B dV,

K3 =
∫

Ωe

BT D3B dV,

K4 =
∫

Ωe

BT D4B dV.

(6.15)

In addition, it is possible to compute the partial derivatives of K with respect to

the parameters as
∂K

∂q1

= K1 + q2K2 + q2q3K3,

∂K

∂q2

= q1K2 + q1q3K3,

∂K

∂q3

= q1q2K3,

∂K

∂q4

= K4.

(6.16)

From Equation 6.16 it can be observed that the derivatives with respect to q1, q2, q3

have quadratic dependency on the parameters, while that with respect to q4 shows

only linearly dependency.
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6.3. PGD separated representation

6.3 PGD separated representation

Assume the displacement field is discretised with standard FEM

u(x; q1, q2, q3, q4) ≈ N(x)U(q1, q2, q3, q4), (6.17)

where N(x) is the standard FE shape function matrix, U is the global displacement

DOF vector.

The parametric problem is to compute the vademecum of global displacement

DOF vector

U(q1, q2, q3, q4) ≈ ÛM
PGD(q) =

M∑

i=1

χiλi(q̃)ωi(q4), (6.18)

where χi denotes the spatial mode, and λi : Ωq̃ → R and ωi : Iq4
→ R are the 3D

and 1D parametric modes respectively.

Now we are able to write the semi-discretised alternative direction iteration scheme

following Equation 3.17 and 3.18:

1. Mechanical problem: assuming the first M − 1 modes, λM(q̃) and ωM(q4)

are known, solve the Mth spatial mode χM with

∫

Ωq̃

∫

Iq4

KχMλ2
Mω2

M dq̃ dq4 =
∫

Ωq̃

∫

Iq4



F−
M−1∑

j=1

Kχjλjωj



λMωM dq̃ dq4.

(6.19)

2. 3D parametric problem: assuming the first M − 1 modes, χM and ωM(q4)

are known, solve λM(q̃) with

λM

∫

Iq4

χT
MKχMω2

M dq4 =
∫

Iq4

χT
M



F−
M−1∑

j=1

Kχjλjωj



ωM dq4. (6.20)

3. 1D parametric problem: assuming the first M − 1 modes, χM and λM(q̃)

are known, solve ωM(q4) with

ωM

∫

Ωq̃

χT
MKχMλ2

M dq̃ =
∫

Ωq̃

χT
M



F−
M−1∑

j=1

Kχjλjωj



λM dq̃. (6.21)

6.4 Discretisation with B-Spline interpolation

As the core idea of this example, we use a NURBS solid to represent the 3D parametric

space Ωq̃, and a NURBS curve to represent the 1D parametric space Iq4
. To be
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6. NURBS shape function discretisation of parameter spaces

simplified, we use B-splines, which is a typical NURBS with all weights equal to one,

for practical implementations.

6.4.1 B-spline discretisation in the IGA fashion

Now we introduce the necessary notations following the IGA conventions in the liter-

ature Piegl and Tiller [1997], Hughes et al. [2005]. It is known B-splines are a specific

type of NURBS with all weights equal to one. The B-spline curves are constructed

by linear combinations of B-spline basis functions. The coefficients of the basis func-

tions are referred to as control points. The unknown variables are now computed

on the control points instead of nodes, thus they are called control variables and are

equivalent to DOFs. Let the knot vector be ξ = (ξ1, ξ2, . . . , ξn+p+1), where ξi is the

ith knot, i is the knot index, i = 1, 2, . . . , n + p + 1, p is the polynomial order, and n

is the number of basis functions used to construct the B-spline curve.

The B-spline basis functions Ni,p(ξ) are defined using Cox–de Boor recursion for-

mula de Boor [1972, 1977]. Starting with piecewise constants (p = 0)

Ni,0(ξ) =







1, if ξi ≤ ξ < ξi+1,

0, otherwise.
(6.22)

For p ≥ 1, they are defined by

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (6.23)

The first derivative of the shape functions are:

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi

Ni,p−1(ξ)−
p

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (6.24)

As a demonstration, a typical set of B-spline shape functions and their corre-

sponding derivatives are plotted in Figure 6.1 with 5 knot spans (which in analogy

to elements in FE point of view) in different orders. In IGA, the refinement of shape

functions is enriched beyond h-refinement and p-refinement inherited from FEM. Due

to the non-commutability of the two legacy types of refinements, k-refinement is in-

troduced by elevating the order prior to inserting the knots. The k-refinement is

important and a superior approach to high-precision analysis than p-refinement. It

not only increases the continuity of the piecewise polynomials, but also keeps ho-

mogeneous structure within the refined patch with limited proliferation of control

variables.
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Figure 6.1: Typical set of B-spline shape functions and the corresponding derivatives.

Let Bi denote the control points, a piecewise-polynomial B-spline curve C(ξ) is

given by

C(ξ) =
n∑

i=1

Ni,p(ξ)Bi. (6.25)

For the 1D parameter space, it is known to be a straight line since it is Cartesian.

Denoting the knot vector as ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃n+p+1), it can be represented with the

following B-spline:

q4(ξ̃) =
ñ∑

i=1

Ñi,p(ξ̃)q̃i, (6.26)

where q̃i are the control points.
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6. NURBS shape function discretisation of parameter spaces

For the 3D parameter space, the representative B-spline solid is defined in a

tensor product way. Given a control lattice Bi,j,k, i = 1, 2, . . . , n, j = 1, 2, . . . , m,

k = 1, 2, . . . , l, polynomial orders p, q, r, and knot vectors ξ = (ξ1, ξ2, . . . , ξn+p+1),

η = (η1, η2, . . . , ηm+q+1), ζ = (ζ1, ζ2, . . . , ζl+r+1), the B-spline solid is defined by

q̃(ξ, η, ζ) =
n∑

i=1

m∑

j=1

l∑

k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Bi,j,k, (6.27)

Following the isogeometric fashion, the parametric modes λ(q̃), ω(q4) can be ap-

proximated with shape functions from values computed on control points.

λ(q̃) = λ ◦ q̃(ξ, η, ζ) =
n∑

i=1

m∑

j=1

l∑

k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)λ̂i,j,k := RT λ,

ω(q4) = ω ◦ q4(ξ̃) =
ñ∑

i=1

Ñi,p(ξ̃)ω̂i := PT ω,

(6.28)

where λ̂i,j,k denotes the DOF computed on Bi,j,k, and ω̂i the DOF computed on q̃i.

The vector form of the DOFs are denoted by λ and ω respectively.

Let ncp = n ·m · l and mcp denote the numbers of control points for the discretised

3D and 1D parameter space respectively, the shape function vectors in Equation 6.28

are defined as

[R]A = Ni,p(ξ)Mj,q(η)Lk,r(ζ), A = 1, 2, . . . , ncp,

[P]B = Ñi,p(ξ̃), B = 1, 2, . . . , mcp.
(6.29)

For the purpose of simplifying the notations, we define the following mass-like

matrices

H1 :=
∫

Ωq̃

q1RRT dq̃, H2 :=
∫

Ωq̃

q1q2RRT dq̃,

H3 :=
∫

Ωq̃

q1q2q3RRT dq̃, S :=
∫

Ωq̃

RRT dq̃,

H4 :=
∫

Iq4

q4PPT dq4, M :=
∫

Iq4

PPT dq4,

(6.30)

and the following force-like vectors

Q :=
∫

Ωq̃

RT dq̃, Z :=
∫

Iq4

PT dq4. (6.31)

Standard Gaussian quadrature is used to compute the mass-like matrices and

force-like vectors. For the 3D parameter space, the total number of quadrature points

is denoted by ngp, whilst for the 1D parameter space, it is denoted by mgp. Note
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6.4. Discretisation with B-Spline interpolation

that the quadrature is performed over the index space, a coordinate transformation

mapping is needed. For the 3D space, it is necessary to define the Jacobian for the

mapping between the index space and the parameter space

J(ξ, η, ζ) =
∂(q1, q2, q3)

∂(ξ, η, ζ)
. (6.32)

Let the control lattice be Ba = (Ba,1, Ba,2, Ba,3), for the 3D space we have

qi(ξ, η, ζ) =
mgp
∑

a=1

Ra(ξ, η, ζ)Ba,i, i = 1, 2, 3, (6.33)

and for the 1D space we have

q4(ξ̃) =
mgp
∑

a=1

Pa(ξ̃)q̃a,
dq4(ξ̃)

dξ̃
=

mgp
∑

a=1

dPa(ξ̃)

dξ̃
q̃a. (6.34)

The mass-like matrices and force-like vectors are computed as

[H1]AB ≈
ngp
∑

j=1

wj det J q1RA(ξj, ηj, ζj)RB(ξj, ηj, ζj),

[H2]AB ≈
ngp
∑

j=1

wj det J q1q2RA(ξj, ηj, ζj)RB(ξj, ηj, ζj),

[H3]AB ≈
ngp
∑

j=1

wj det J q1q2q3RA(ξj, ηj, ζj)RB(ξj, ηj, ζj),

[S]AB ≈
ngp
∑

j=1

wj det J RA(ξj, ηj, ζj)RB(ξj, ηj, ζj),

[H4]AB ≈
mgp
∑

j=1

wj

mgp
∑

a=1

dPa(ξ̃j)

dξ̃
q̃a

∑

b

Pb(ξ̃j)BbPA(ξ̃j)PB(ξ̃j),

[M]AB ≈
mgp
∑

j=1

wj

mgp
∑

a=1

dPa(ξ̃j)

dξ̃
q̃aPA(ξ̃j)PB(ξ̃j),

(6.35)

and

[Q]A ≈
ngp
∑

j=1

wj det J RA(ξj, ηj, ζj),

[Z]A ≈
mgp
∑

j=1

wj

∑

a

dPa(ξ̃j)

dξ̃
q̃aPA(ξ̃j).

(6.36)

where wj are the weights for the Gaussian quadrature. On-going studies on novel

efficient quadrature schemes for integrating the NURBS shape functions can be found

in Hughes et al. [2010].
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6. NURBS shape function discretisation of parameter spaces

6.4.2 Fully discretised PGD formulation

Now we may obtain the fully discretised formulation for PGD alternative direction

iteration.

1. For the mechanical problem:

LHS =

[
3∑

i=1

(λT
MHiλM)(ωT

MMωM)Ki + (λT
MSλM)(ωT

MH4ωM)K4

]

χM ,

RHS = (QT λM)(ZT ωM)F

−
M−1∑

j=1

[
3∑

i=1

(λT
MHiλj)(ω

T
MMωj)Ki + (λT

MSλj)(ω
T
MH4ωj)K4

]

χj.

(6.37)

2. For the 3D parametric problem:

LHS =

[
3∑

i=1

(χT
MKiχM)(ωT

MMωM)Hi + (χT
MK4χM)(ωT

MH4ωM)S

]

λM ,

RHS = (χT
MF)(ZT ωM)Q

−
M−1∑

j=1

[
3∑

i=1

(χT
MKiχj)(ω

T
MMωj)Hi + (χT

MK4χj)(ω
T
MH4ωj)S

]

λj.

(6.38)

3. For the 1D parametric problem:

LHS =

[
3∑

i=1

(χT
MKiχM)(λT

MHiλM)M + (χT
MK4χM)(λT

MSλM)H4

]

ωM ,

RHS = (χT
MF)(QT λM)Z

−
M−1∑

j=1

[
3∑

i=1

(χT
MKiχj)(λ

T
MHiλj)M + (χT

MK4χj)(λ
T
MSλj)H4

]

ωj.

(6.39)

For this particular problem, the non-intrusive scheme is used only for the mechan-

ical problem. For the parametric problems, in-house Matlab codes are developed to

implement the NURBS discretisation.

6.5 Post-processing

In this section we explore the capability of the obtained PGD vademecum in terms

of computing the derivatives with respect to the parameters.
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6.5. Post-processing

6.5.1 Displacement

With the PGD vademecum, we may reconstruct the parametrised solution of the

displacement DOF vector as

ÛM
PGD(q) =

M∑

i=1

χi

∑

A

RA(ξ, η, ζ)λ̂i
A

∑

B

PB(ξ̃)ω̂i
B =

n∑

i=1

χi(R
T λi)(P

T ωi). (6.40)

Because the NURBS shape functions are in terms of the knots, for a specified set

of parameters q = (q̃, q4), we need to compute the inverse mapping of Equation 6.27

and 6.26, and then compute the displacement with Equation 6.40.

To compute the inverse mapping which is generally nonlinear, we adopt the

Newton-Raphson method. Take the 3D parametric space Ωq̃ for example, given q̃

and initial guess of Ξ0 = (ξ0, η0, ζ0), we have

q̃ = q̃(Ξ0) + J(Ξ0)(Ξ−Ξ0), (6.41)

=⇒ Ξk+1 = Ξk + J−1(Ξk)[q̃ − q̃(Ξk)]. (6.42)

The inverse mapping in the 1D parametric space Iq4
can be computed similarly.

6.5.2 Derivatives with respect to parameters

With Equation 6.40, it is possible to compute the parametric derivatives with the

PGD vademecum:

∂U

∂qα

≈
∂ÛM

PGD

∂qα

=







∑n
j=1 χj(

∂R
T

∂qα
λj)(P

T ωj), α = 1, 2, 3,
∑n

j=1 χj(R
T λj)(

∂P
T

∂qα
ωj), α = 4.

(6.43)

For the 3D space, note that

∂RT

∂(q1, q2, q3)
=








∂R
T

∂q1

∂R
T

∂q2

∂R
T

∂q3








= J−T








∂R
T

∂ξ
∂R

T

∂η
∂R

T

∂ζ








, (6.44)

and
∂RA

∂ξ
=

dNi,p(ξ)

dξ
Mj,q(η)Lk,r(ζ), A = 1, 2, . . . , ncp,

∂RA

∂η
= Ni,p(ξ)

dMj,q(η)

dη
Lk,r(ζ), A = 1, 2, . . . , ncp,

∂RA

∂ζ
= Ni,p(ξ)Mj,q(η)

dLk,r(ζ)

dζ
, A = 1, 2, . . . , ncp.

(6.45)

85



6. NURBS shape function discretisation of parameter spaces

For the 1D space, we have

dPT

dq4

=
dPT

dξ̃

dξ̃

dq4

=

(
∑

a

dPa(ξ̃)

dξ̃
q̃a

)−1
dPT

dξ̃
, (6.46)

and
dPB

dξ̃
=

dÑi,p

dξ̃
, B = 1, 2, . . . , mcp. (6.47)

In addition, since the engineering parameters are of more interest, recalling the

change of variables in Equation 6.5, we may compute

∂U

∂E1

=
∂U

∂q1

∂q1

∂E1

+
∂U

∂q2

∂q2

∂E1

,

∂U

∂E2

=
∂U

∂q1

∂q1

∂E2

+
∂U

∂q2

∂q2

∂E2

,

∂U

∂ν12

=
∂U

∂q3

,

∂U

∂G12

=
∂U

∂q4

,

(6.48)

where
∂q1

∂E1

=
1− 2ν2

12E2/E1

(1− ν2
12E2/E1)2

,

∂q1

∂E2

=
ν2

12

(1− ν2
12E2/E1)2

,

∂q2

∂E1

= −E2/E2
1 ,

∂q2

∂E2

= 1/E1.

(6.49)

In case of requiring the reaction forces Fd, the static condensation has to be

invoked. Detailed derivation is arranged in Appendix A. Considering the case of

KU =




Kd Kdf

KT
df Kf








Ud

Uf



 =




Fd

Ff



 , (6.50)

where subscript d denotes the fixed nodes (on which Dirichlet boundary condition is

applied), and subscript f denotes the free nodes. The prescribed displacements Ud

and load Ff are both known.

It is trivial to obtain
Uf = K−1

f

(

Ff −KT
dfUd

)

,

Fd = KdUd + KdfUf ,
(6.51)
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thus the parametric derivatives are

∂Fd

∂qα

=
∂Kd

∂qα

Ud +
∂Kdf

∂qα

Uf + Kdf
∂Uf

∂qα

, α = 1, 2, 3, 4. (6.52)

In the online phase, both Uf and ∂Uf/∂qα are approximated with PGD solution.

6.6 Numerical examples

Now we consider a classical mechanical model, a rectangular plate with a round open

hole in the centre, for a benchmark example. The length and height of the plate are

900 mm and 300 mm respectively, while the radius of the circle is 50 mm, and the

thickness is 1.26 mm. The FE mesh of the mechanical model is shown in Figure 6.2.

Figure 6.2: FE mesh of the mechanical model.

Two load cases (LCs), namely LC A and LC B, are considered, as shown in Fig-

ure 6.3. For LC A, the left end is prescribed with inhomogeneous nodal displacements,

while the right end is subjected to inhomogeneous nodal forces. For LC B, both left

and right ends are prescribed with inhomogeneous nodal displacements.

ux=0

uy=0

ux=0

uy=0

Right end:

inhomogeneous 

Neumann BC

Left end: 

inhomogeneous

Dirichelet BC

Right end: 

inhomogeneous

Dirichelet BC

Load Case B

Load Case A

ux=0

uy=0

Left end: 

inhomogeneous

Dirichelet BC

fx=0

fy=0

Figure 6.3: Load cases of the mechanical model.
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6. NURBS shape function discretisation of parameter spaces

To obtain a reference solution, material properties are chosen as:

E1 = 25 GPa, E2 = 19 GPa,

ν12 = 0.25, G12 = 3 GPa.

For both LCs, the reference displacement fields computed with standard FE

method are plotted in Figure 6.4. For visualisation purposes, the deformed shape

is amplified with a proper scale factor.

Figure 6.4: Reference displacement field computed with standard FE method, amplified
for visualisation. Left: LC A. Right: LC B.

Powered by the k-refinement methodology of isogeometric analysis, it is possible

to specify the number of knot spans (elements) and interpolating polynomial degree

of the parametric spaces. For instance, when the knot span numbers nspan is set to

10 for each parameter, that is to say, Ωq̃ is discretised with 10 × 10 × 10 elements,

and Iq4
is discretised with 10 elements.

With nspan = 1, the displacement fields are plotted with variable order of B-

spline polynomials in Figure 6.5 and 6.6. All the displacement fields are computed

with 5 PGD modes. It is observed that polynomials with higher degree improve the

error which is computed by Err = ‖Uref − Uref‖/‖Uref‖. However, it can be seen

that the displacement contours are almost the same for all the results. For a better

comparison of the spatial distribution of errors, the differences from the reference

displacement field Uref −Uref is plotted in Figure 6.7 and 6.8.

For the mechanical model with LC A, the error concentration areas include both

the hole edge and the right end where loads are applied. For the model with LC B,

the error concentration areas emerge from the hole edge, and expands to the bulk

area in the plate as the polynomial order p elevates.

By setting the polynomial order p from 1 to 6, and the knot span nspan from 1

to 6, we computed all the 36 cases to investigate the convergence of the displacement

field, as shown in Figure 6.9. The displacement field computed with p = 6 and

nspan = 6 is taken as the reference.
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Figure 6.5: Displacement fields computed with PGD with different discretisations of pa-
rameter spaces for LC A.

Similarly, the sensitivities with respect to the engineering parameters are also

computed, using the same strategy. The reference results is plotted in Figure 6.10

and 6.11. For the mechanical model with LC A, areas on the right end where loads

are applied have higher sensitivities with respect to the parameters E1, E2 and ν12,

while the right part of the hole edge has higher sensitivities with respect to G12. For

the model with LC B, areas near the hole edge have higher sensitivities with respect

to E1, E2 and G12, while the upper and lower free end have higher sensitivities with

respect to ν12.

The convergence analysis is plotted in Figure 6.12 and 6.13. It can be seen that for

both LCs, the relative errors for ∂U/∂E2 and ∂U/∂G12 are significantly improved.

For example, in LC A, the relative error of ∂U/∂E2 dropped more than 100% from

p = 1 and nspan = 1 to p = 6 and nspan = 6.

6.7 Summary

In the PGD separated representation, the 4-dimensional parametric space is separated

as the tensor product of a 3D space and a 1D space. The parametric spaces are rep-
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6. NURBS shape function discretisation of parameter spaces

Figure 6.6: Displacement fields computed with PGD with different discretisations of pa-
rameter spaces for LC B.

resented with NURBS geometrically, and the parametric functions are approximated

with B-spline shape functions accordingly. Therefore, k-refinement methodology from

isogeometric analysis can be used.

It is shown that the PGD results are improved by B-spline shape functions with

higher order, and the convergences of both displacement field and the sensitivities

with respect to the parameters are investigated.

We would like to address that although FE is used for the spatial discretisation

throughout this chapter, it is possible to replace it with NURBS shape functions as

IGA does. Consequently, the NE-PGD framework could be fully enhanced with the

higher continuity feature of NURBS shape functions.
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6.7. Summary

Figure 6.7: Differences of displacement fields computed with PGD with different discreti-
sations of parameter spaces for LC A.

Figure 6.8: Differences of displacement fields computed with PGD with different discreti-
sations of parameter spaces for LC B.
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6. NURBS shape function discretisation of parameter spaces

Figure 6.9: Convergence of the displacement field. Left: LC A. Right: LC B.

Figure 6.10: Reference sensitivity fields computed with PGD, parametric space polyno-
mial order p = 6, number of knot span (element) nspan = 6, LC A.

Figure 6.11: Reference sensitivity fields computed with PGD, parametric space polyno-
mial order p = 6, number of knot span (element) nspan = 6, LC B.
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6.7. Summary

Figure 6.12: Convergence of the sensitivities. LC A.

Figure 6.13: Convergence of the sensitivities. LC B.
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Chapter 7

Nonlinear problems with

PGD

In this chapter, we will enter a more colourful world of nonlinear problems. In biome-

chanics, many biological tissues have been observed nonlinear behaviours, such as hy-

perelastic large deformation and large strain, of mechanical response to loads. There

are numerous constitutive models describing the stress-strain relationships for those

nonlinear mechanisms, details can be found in numerous literature such as mono-

graphs by Simo and Hughes [1998], Holzapfel [2000], Bonet and Wood [2008].

As a first step towards the application of PGD framework for parametrised prob-

lems in nonlinear elasticity, this chapter is dedicated to the boundary value problems

in large strain theory with St.Venant-Kirchhoff material model. There are several

previous work on this topic, such as Niroomandi et al. [2013a,b], Ladevèze [2016].

In those works, however, either high order nonlinear terms were discarded or addi-

tional techniques, such as the Asymptotic Numerical Method (ANM) or the large

time increment (LATIN) method Ladevèze [1999], were employed. In this chapter

we introduce a simple but effective PGD framework with Picard linearisation of the

nonlinear operators. Both spatial and parametric domain are discretised with stan-

dard FE method. For the spatial domain, the total Lagrange formulation is used to

write the FE equations.

Due to the nonlinearity of the problems, conventional PGD framework does not

applicable any more. This requires linearisation of the formulas. In this case, Picard
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linearisation is used since it is naturally compatible with the alternative direction

iteration in the conventional PGD framework. To generalise to the nonlinear problem,

a nonlinear term is added to the right-hand side, which makes the non-intrusive

framework not available. Therefore, the implementation throughout this chapter has

to be intrusive. In-house Matlab codes are programmed for the implementation.

Notations in this chapter are slightly modified from previous chapters to better

adapt the nonlinear formulations.

7.1 A brief review of large strain theory

In this section, for better explanation in consistent notation and further extension

to PGD formulation, we briefly review large strain theory in continuum mechanics

under Lagrangian description.

7.1.1 Large strain kinematics

Let Ω0 be a deformable continuum body in reference configuration with material

coordinates denoted by X : Ω0 → R
3, and its deformed or current configuration Ω

with spatial coordinates denoted by x : Ω→ R
3. The deformation is a map from the

reference configuration to current configuration φ : X 7→ x = φ(X), as illustrated in

Figure 7.1. The deformation gradient F ∈ R
3×3 is defined as

F =
∂φ(X)

∂X
=

∂u

∂X
+ I = ∇0u + I, (7.1)

where∇0 := ∂/∂X, whilst I ∈ R
3×3 denotes the identity tensor and u the Lagrangian

displacement of a material point

u(X) = x−X = φ(X)−X. (7.2)

For the convenience of establishing work-energy equilibrium, even the problem is

time-independent, we define the virtual (Lagrangian) velocity as

v = u̇ =
∂u

∂t
, (7.3)

and rate of deformation gradient is derived with Equation 7.1 and 7.3:

Ḟ = ∇0v. (7.4)
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Reference
configuration

Deformed
configuration

Figure 7.1: Deformation of a continuum body.

To measure the deformation under Lagrange description, we use Green-Lagrange

strain which is defined as

E =
1

2
(F T F − I). (7.5)

7.1.2 Stress and equilibrium

Considering that we will be focused on St.Venant-Kirchhoff constitutive relationship,

the second Piola-Kirchhoff stress, denoted by S, is taken as the stress measure. It is

well-known that Green-Lagrange strain and second Piola-Kirchhoff stress consists a

work conjugate pair in large strain theory. In rate form, the inner virtual work of the

system, denoted as δWint, reads

δWint =
∫

Ω0

S : δĖ dV, (7.6)

where the virtual strain rate is

δĖ =
1

2
(δḞ T F + F T δḞ ), (7.7)

and the variation of deformation gradient rate is

δḞ = ∇0δv. (7.8)

Now let ∂Ω0 be the boundary of Ω0, we assume that

∂Ω0 = Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅, (7.9)

where ΓD and ΓN is the part of ΓN with Dirichlet and Neumann boundary condition

prescribed respectively. To solve the displacement field u from a boundary value
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7. Nonlinear problems with PGD

problem, with prescribed Dirichlet boundary condition u = uD on ΓD, we introduce

the trial function space U and the test function space V as

U := {u ∈ H1(Ω0) : u = uD on ΓD},

V := {δv ∈ H1(Ω0) : δv = 0 on ΓD}.
(7.10)

To simplify the formulas, we ignore all external body forces. The external virtual

work, denoted as δWext, under surface traction loading T = T0N̂ , where T0 is the

amplitude and N̂ is unit normal vector on the surface, reads

δWext =
∫

ΓN

T · δv dA =
∫

ΓN

T0N̂ · δv dA. (7.11)

It is convenient to define the abstract forms as:

a(u, δv) := δWint(u, δv) =
∫

Ω0

S : δĖ dV,

l(δv) := δWext(δv) =
∫

ΓN

T · δv dA.
(7.12)

where a(u, δv) and l(δv) are abstract forms that linearly depend on δv, but the

former is nonlinearly dependent on u. Now the principle of virtual work can be

written as

δW = δWint − δWext = 0

=⇒ a(u, δv) = l(δv),
(7.13)

which introduces the weak form of the problem: find u ∈ U , such that Equation 7.13

holds ∀δv ∈ V .

7.2 PGD formulation with Picard linearisation

As mentioned before, PGD is a technique to build the reduced order model, especially

powerful in dealing with PDE with multiple parameters that are stated in the equa-

tions. In particular, when dependency on the parameters is able to be represented

in separated functions, the quantity of interest is assumed to have a decomposition

of a certain set of reduced basis. Each reduced basis is a product of the separated

functions, which we prefer to mention as modes. The modes are computed in the of-

fline phase sequentially, generating the so-called PGD vademecum, which enables the

efficient online computations. In this section the routine of PGD offline computation

is reviewed, addressing that the alternative direction iteration, also known as Picard

iteration, linearises the nonlinear form in Equation 7.13.
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7.2.1 Separated representation

Following the general notation introduced in Chapter 3 and Section 7.1, without

loosing generality, we take the material property as the PGD extra-coordinate. Con-

sider the range of shear modulus µ, denoted by Iµ, is known, as discussed before,

displacement u is considered as a function of both material location X ∈ Ω0 and

shear modulus µ ∈ Iµ, denoted as u = u(X, µ) ∈ U ⊗ L2(Iµ). Now PGD separated

representation Equation 3.13 can be written as

u(X, µ) ≈ un(X, µ) =
n∑

i=1

χi(X)Mi(µ), (7.14)

where χi(X) ∈ U is a function of material location referred to the ith spatial mode,

and Mi(µ) ∈ L2(Iµ) a function of shear modulus referred to the ith parametric mode.

Following Equation 3.11, we generalise the abstract forms Equation 7.12 by inte-

grating over Iµ:

A(u, δv) :=
∫

Iµ

a(u, δv) dµ,

L(δv) :=
∫

Iµ

l(δv) dµ.
(7.15)

Note that the linearity of PGD generalised abstract forms A(u, δv) and L(δv) de-

pends on that of the original forms a(u, δv) and l(δv) respectively.

7.2.2 Picard linearisation

As introduced previously, the PGD generalised abstract forms Equation 7.15 are

generally nonlinear on u. Due to the nonlinearity, now unlike Equation 3.15, we

have:

A(χnMn, δv) 6= L(δv)−A(un−1, δv). (7.16)

To overcome this fatal problem which disables the alternative direction iteration,

Picard linearisation is adopted since it is naturally consistent with this iteration

scheme. As it is usually the case, we assume that it is possible to divide abstract

form a(u, δv) into a linear part and a nonlinear part:

a(u, δv) = aL(u, δv) + aNL(u, δv), (7.17)

where the linear part aL(u, δv) is bilinear as we discussed before, while aNL(u, δv) is

nonlinear on u. In iterations with Picard linearisation, the nonlinear part is approx-
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7. Nonlinear problems with PGD

imated with the formerly obtained results ũ:

aNL(u, δv) ≈ aNL(ũ, δv). (7.18)

Then we obtain the linearised weak form of problem Equation 7.13:

aL(u, δv) ≈ l(δv)− aNL(ũ, δv). (7.19)

Accordingly, we the PGD generalised weak form is defined as following:

AL(u, δv) :=
∫

Iµ

aL(u, δv) dµ,

ANL(u, δv) :=
∫

Iµ

aNL(u, δv) dµ,
(7.20)

and we have also A(u, δv) = AL(u, δv) +ANL(u, δv). Now the linearised weak form

reads

AL(u, δv) ≈ L(δv)−ANL(ũ, δv). (7.21)

Considering the PGD alternative direction iteration, when the first n − 1 modes

are obtained, that is un−1 is known. The natural option we have is letting ũ = un−1

for the Picard linearisation, so that the sequential enrichment of the modes is enabled

as

un = ũ + χnMn = un−1 + χnMn, (7.22)

AL(χnMn, δv) = L(δv)−ANL(un−1, δv)−AL(un−1, δv). (7.23)

The alternative direction scheme now reads:

1. Assuming un−1 and Mn are known, let δv = Mnδχn, solve the mechanical

problem for χn from

AL(χnMn, Mnδχn) = L(Mnδχn)−ANL(un−1, Mnδχn)−AL(un−1, Mnδχn);

(7.24)

2. Assuming un−1 and χn are known, let δv = χnδMn, solve the mechanical

problem for Mn from

AL(χnMn, χnδMn) = L(χnδMn)−ANL(un−1, χnδMn)−AL(un−1, χnδMn).

(7.25)
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Remark 7.1 (On the choice of linearisation methods). We choose Picard linearisa-

tion instead of Newton-Raphson method. Despite that Picard linearisation is consis-

tent with PGD alternative direction iteration, it does not require rewriting the problem

in an incremental formulation and computing the Jacobians. The price we have to

pay is achieving a slower convergence rate.

Remark 7.2 (Linearised alternative direction iteration). By direct comparison of the

alternative direction iteration schemes before and after Picard linearisation, it can be

seen the latter scheme has only added a nonlinear term at the right-hand side. In

fact, it is possible to rewrite Equation 7.23 as

AL(χnMn, δv) = L(δv)−A(un−1, δv). (7.26)

However, to make the formulation conceptually clear, this rewritten is not adopted in

following contents.

7.3 Application to St.Venant-Kirchhoff material

with discretised formulation

The macroscopic mechanical behaviour of a material under certain loadings is de-

scribed by a corresponding constitutive law, or stress-strain relationship. For hyper-

elastic materials, strain energy density Ψ is used to characterise the energy stored

during deformation of a material.

The simplest example of a hyperelastic material is the St.Venant-Kirchhoff model,

which is defined by a strain energy function Ψ as

Ψ(E) =
1

2
λ(tr E)2 + µE : E. (7.27)

where λ and µ are the Lamé coefficients, in particular, µ is the shear modulus. The

second Piola-Kirchhoff stress is computed as

S =
∂Ψ(E)

∂E
= λ(tr E)I + 2µE. (7.28)

Note that the relationship between S and E is linear.
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7. Nonlinear problems with PGD

We now derive in detail the formulation. All the formulas is expanded and ex-

pressed by u and δv. Considering

E =
1

2
(F T F − I) =

1

2

(

∇0u +∇T
0 u +∇T

0 u∇0u
)

= ∇s
0u +

1

2
∇T

0 u∇0u, (7.29)

δĖ =
1

2
(δḞ T F + F T δḞ ) =

1

2

[

∇T
0 δv(∇0u + I) + (∇T

0 u + I)∇0δv
]

= ∇s
0δv +

1

2
(∇T

0 δv∇0u +∇T
0 u∇0δv),

(7.30)

tr E = tr∇s
0u + tr

∇T
0 u∇0u

2
= tr∇0u +

1

2
tr(∇T

0 u∇0u), (7.31)

where the symmetric gradient operator is defined as ∇s
0 = (∇0 + ∇T

0 )/2. We may

write the second Piola-Kirchhoff stress as a function of the displacement u:

S = λ(tr∇0u)I + 2µ∇s
0u +

λI

2
tr(∇T

0 u∇0u) + µ∇T
0 u∇0u. (7.32)

Then with Equation 7.30 and 7.32 we can explicitly calculate the abstract form

a(u, δv) as

a(u, δv) =
∫

Ω0

S : δĖ dV =
∫

Ω0

[λ(tr∇0u)(tr∇0δv) + 2µ∇s
0u : ∇0δv] dV

︸ ︷︷ ︸

linear part

+
∫

Ω0

λ(tr∇0u)∇0u : ∇0δv dV

+
∫

Ω0

2µ∇0u∇
s
0u : ∇0δv dV

+
∫

Ω0

λ

2
tr(∇T

0 u∇0u)(∇0u + I) : ∇0δv dV

+
∫

Ω0

µ(∇0u + I)∇T
0 u∇0u : ∇0δv dV.

(7.33)

Applying the Picard scheme, we divide a(u, δv) into a linear part and a nonlinear

part

aL(u, δv) =
∫

Ω0

[λ(tr∇0u)(tr∇0δv) + 2µ∇s
0u : ∇0δv] dV,

aNL(u, δv) =
∫

Ω0

λ(tr∇0u)∇0u : ∇0δv dV +
∫

Ω0

2µ∇0u∇
s
0u : ∇0δv dV

+
∫

Ω0

λ

2
tr(∇T

0 u∇0u)(∇0u + I) : ∇0δv dV

+
∫

Ω0

µ(∇0u + I)∇T
0 u∇0u : ∇0δv dV.

(7.34)
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Accordingly, the generalised abstract forms can also be divided and calculated ex-

plicitly

AL(u, δv) =
∫

Iµ

∫

Ω0

[λ(tr∇0u)(tr∇0δv) + 2µ∇s
0u : ∇0δv] dV dµ,

ANL(u, δv) =
∫

Iµ

∫

Ω0

λ(tr∇0u)∇0u : ∇0δv dV dµ

+
∫

Iµ

∫

Ω0

2µ∇0u∇
s
0u : ∇0δv dV dµ

+
∫

Iµ

∫

Ω0

λ

2
tr(∇T

0 u∇0u)(∇0u + I) : ∇0δv dµ

+
∫

Iµ

∫

Ω0

µ(∇0u + I)∇T
0 u∇0u : ∇0δv dV dµ.

(7.35)

7.3.1 Alternating direction iteration scheme

To derive the detailed alternative direction iteration scheme, we use LHS and RHS

to denote left- and right-hand side respectively. The derivation of the mechanical

problem Equation 7.24 is only detailed, and the resultant formulas can also be used

for the parametric problem after proper modifications.

For the mechanical problem Equation 7.24, the left-hand side reads

LHS = AL(χnMn, Mnδχn) =
∫

Iµ

∫

Ω0

λM2
n tr(∇0χn) tr(∇0δχn) dV dµ

+
∫

Iµ

∫

Ω0

2µM2
n∇

s
0χn : ∇0δχn dV dµ

= λ
∫

Iµ

M2
n dµ

∫

Ω0

tr(∇0χn) tr(∇0δχn) dV

+ 2
∫

Iµ

µM2
n dµ

∫

Ω0

∇s
0χn : ∇0δχn dV.

(7.36)

As indicated by Equation 7.23, there are three terms on the right-hand side. The

first term deals with the prescribed loads, it reads

RHS1 = L(Mnδχn) =
∫

Iµ

∫

ΓN

T ·Mnδχn dA dµ =
∫

Iµ

Mn dµ
∫

ΓN

T · δχn dA.

(7.37)
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The second term is nonlinear, and it is the most complex term, which reads

RHS2 = ANL

(
n−1∑

i=1

χiMi, Mnδχn

)

= λ
∫

Iµ

∫

Ω0

(
n−1∑

i=1

Mi tr∇0χi

)

Mn





n−1∑

j=1

Mj∇0χj : ∇0δχn



 dV dµ

+ 2
∫

Iµ

∫

Ω0

µ

(
n−1∑

i=1

Mi∇0χi

)



n−1∑

j=1

Mj∇
s
0χj



 : Mn∇0δχn dV dµ

+
λ

2

∫

Iµ

∫

Ω0

tr





(
n−1∑

i=1

Mi∇
T
0 χi

)



n−1∑

j=1

Mj∇0χj









n−1∑

k=1

Mk∇0χk : Mn∇0δχn dV dµ

+
λ

2

∫

Iµ

∫

Ω0

tr





(
n−1∑

i=1

Mi∇
T
0 χi

)



n−1∑

j=1

Mj∇0χj







Mn tr (∇0δχn) dV dµ

+
∫

Iµ

∫

Ω0

µ

(
n−1∑

i=1

Mi∇0χi

)



n−1∑

j=1

Mj∇
T
0 χj





(
n−1∑

k=1

Mk∇0χk

)

: Mn∇0δχn dV dµ

+
∫

Iµ

∫

Ω0

µ





n−1∑

j=1

Mj∇
T
0 χj





(
n−1∑

k=1

Mk∇0χk

)

: Mn tr (∇0δχn) dV dµ

= λ
n−1∑

i=1

n−1∑

j=1

∫

Iµ

MiMjMn dµ
∫

Ω0

(tr∇0χi) (∇0χj : ∇0δχn) dV

+ 2
n−1∑

i=1

n−1∑

j=1

∫

Iµ

µMiMjMn dµ
∫

Ω0

(∇0χi∇
s
0χj) : ∇0δχn dV

+
λ

2

n−1∑

i=1

n−1∑

j=1

n−1∑

k=1

∫

Iµ

MiMjMkMn dµ
∫

Ω0

tr
(

∇T
0 χi∇0χj

)

(∇0χk : ∇0δχn) dV

+
λ

2

n−1∑

i=1

n−1∑

j=1

∫

Iµ

MiMjMn dµ
∫

Ω0

tr
(

∇T
0 χi∇0χj

)

tr(∇0δχn) dV

+
n−1∑

i=1

n−1∑

j=1

n−1∑

k=1

∫

Iµ

µMiMjMkMn dµ
∫

Ω0

(∇0χi∇
T
0 χj∇0χk) : ∇0δχn dV

+
n−1∑

j=1

n−1∑

k=1

∫

Iµ

µMjMkMn dµ
∫

Ω0

(∇T
0 χj∇0χk) : ∇0δχn dV.

(7.38)

Now we consider the third term. In fact, it is similar to the left-hand side. Recall
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Equation 7.14, and by mimicking Equation 7.36, we have

RHS3 = AL

(
n−1∑

i=1

χiMi, Mnδχn

)

=
∫

Iµ

∫

Ω0

λ

(
n−1∑

i=1

Mi tr∇0χi

)

Mn tr∇0χn dV dµ

+
∫

Iµ

∫

Ω0

2µ

(
n−1∑

i=1

Mi∇
s
0χi

)

: Mn∇0δχn dV dµ

= λ
n−1∑

i=1

∫

Iµ

MiMn dµ
∫

Ω0

tr(∇0χi) tr(∇0δχn) dV

+ 2
n−1∑

i=1

∫

Iµ

µMiMn dµ
∫

Ω0

∇s
0χi : ∇0δχn dV.

(7.39)

In total, the right-hand side is calculated as

RHS = RHS1 − RHS2 − RHS3. (7.40)

For the parametric problem, the formulation is similar and is omitted here. In the

coming discretised formulation, implementation of both mechanical and parametric

problem will be detailed.

7.3.2 Discretised formulation for parametric modes

First we introduce the discretised form of the parametric space Ωµ. Since we discuss

the case of only one parameter µ, the parametric space Ωµ = Iµ is 1D. For this

1D case, any discretisation scheme should apply. We would choose finite element

method for its robustness and optimality. The ith parametric mode Mi(µ) is then

approximated by

Mi(µ) ≈
nnd1∑

a=1

Ña(µ)ω̂i
a = NT ωi, (7.41)

where nnd1 is number of nodes used for the discretisation, N = (Ñ1, Ñ2, . . . , Ñnnd1)
T

is a column vector composed by nodal shape functions Ña(µ) which is independent

of any PGD mode, and ωi is a column vector containing the nodal DOFs ω̂i
a.

For convenience, we define the following mass-like matrices

M :=
∫

Iµ

NNT dµ,

H :=
∫

Iµ

µNNT dµ,
(7.42)
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and the following load-like vectors

Q :=
∫

Iµ

N dµ,

S
ij
1 :=

∫

Iµ

NNT ωiω
T
j N dµ,

S
ij
2 :=

∫

Iµ

µNNT ωiω
T
j N dµ,

S
ijk
3 :=

∫

Iµ

NNT ωiω
T
j NNT ωk dµ,

S
ijk
4 :=

∫

Iµ

µNNT ωiω
T
j NNT ωk dµ,

(7.43)

where M and H are constant mass-like matrices, Q is constant vector while S1, S2,

S3, S4 are mode-dependent vectors. That is, the S vectors are different from one PGD

mode to another, because the nodal DOF vectors of parametric modes are included.

In particular, S1 and S2 relate to two modes, whilst S3 and S4 relate to three modes.

Then we may approximate the necessary integrals in following discretised formu-

las: ∫

Iµ

Mn dµ ≈ ωT
n Q,

∫

Iµ

M2
n dµ ≈ ωT

n Mωn,
∫

Iµ

µM2
n dµ ≈ ωT

n Hωn,
∫

Iµ

MiMjMn dµ ≈ ωT
n S

ij
1 ,

∫

Iµ

µMiMjMn dµ ≈ ωT
n S

ij
2 ,

∫

Iµ

MiMjMkMn dµ ≈ ωT
n S

ijk
3 ,

∫

Iµ

µMiMjMkMn dµ ≈ ωT
n S

ijk
4 .

(7.44)

Typically Gaussian quadrature is used to compute the integrals numerically.

7.3.3 Discretised formulation for spatial modes

We now introduce the discretised form of the physical space in total Lagrange for-

mulation. For convenience, we consider only one element. The ith spatial mode is

typically discretised with 3D finite elements

χi(X) ≈
nnd∑

a=1

Na(X)ϕ̂i
a, (7.45)
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where Na(X) is the shape function and ϕ̂i
a is the nodal DOF vector. Number of

nodes is denoted by nnd.

Gradient of the spatial mode with respect to material coordinates is computed as

∇0χi ≈
nnd∑

a=1

ϕ̂i
a ⊗

∂Na

∂X
. (7.46)

Usually the material coordinates X is based on a standard isoparametric element,

and the shape functions are represented by the parent coordinates ξ = (ξ, η, ζ),

X =
nnd∑

a=1

Na(ξ)X̂a, (7.47)

where X̂a denotes DOF vector in material coordinates.

Using the chain rule, we reach the shape function routine to obtain the gradients

∂Na

∂X
=

∂Na(ξ)

∂ξ

∂ξ

∂X
=

(

∂X

∂ξ

)−T
∂Na(ξ)

∂ξ
, (7.48)

where the Jacobian is

∂X

∂ξ
=

nnd∑

a=1

X̂a ⊗
∂Na(ξ)

∂ξ
. (7.49)

Trace of the gradient of ith spatial mode χi is its divergence in material coordi-

nates

tr(∇0χi) = DIVχi =
nnd∑

a=1

ϕ̂i
a ·

∂Na

∂X
. (7.50)

We define vectorised formulation following the Voigt convention

B0 :=

[

∂N1

∂X1

,
∂N1

∂X2

,
∂N1

∂X3

,
∂N2

∂X1

,
∂N2

∂X2

,
∂N2

∂X3

, . . . ,
∂Nnnd

∂X1

,
∂Nnnd

∂X2

,
∂Nnnd

∂X3

]T

, (7.51)

ϕi :=
[

ϕ̂T
1 , ϕ̂T

2 , . . . , ϕ̂T
nnd

]T

i
, (7.52)

where B0 is a vector composed by derivatives of shape functions, and ϕi is a rear-

ranged vector of nodal DOFs. Now Equation 7.50 can be written as

tr(∇0χi) = B0ϕi. (7.53)
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In addition, we define the following B matrices

B1 :=


























∂N1

∂X1

∂N2

∂X1

. . . ∂Nnnd

∂X1

∂N1

∂X1

∂N2

∂X1

. . . ∂Nnnd

∂X1

∂N1

∂X1

∂N2

∂X1

. . . ∂Nnnd

∂X1

∂N1

∂X2

∂N2

∂X2

. . . ∂Nnnd

∂X2

∂N1

∂X2

∂N2

∂X2

. . . ∂Nnnd

∂X2

∂N1

∂X2

∂N2

∂X2

. . . ∂Nnnd

∂X2

∂N1

∂X3

∂N2

∂X3

. . . ∂Nnnd

∂X3

∂N1

∂X3

∂N2

∂X3

. . . ∂Nnnd

∂X3

∂N1

∂X3

∂N2

∂X3

. . . ∂Nnnd

∂X3


























, (7.54)

B2 :=


























∂N1

∂X1

∂N2

∂X1

. . . ∂Nnnd

∂X1

∂N1

∂X2

∂N2

∂X2

. . . ∂Nnnd

∂X2

∂N1

∂X3

∂N2

∂X3

. . . ∂Nnnd

∂X3

∂N1

∂X1

∂N2

∂X1

. . . ∂Nnnd

∂X1

∂N1

∂X2

∂N2

∂X2

. . . ∂Nnnd

∂X2

∂N1

∂X3

∂N2

∂X3

. . . ∂Nnnd

∂X3

∂N1

∂X1

∂N2

∂X1

. . . ∂Nnnd

∂X1

∂N1

∂X2

∂N2

∂X2

. . . ∂Nnnd

∂X2

∂N1

∂X3

∂N2

∂X3

. . . ∂Nnnd

∂X3


























, (7.55)

Bs :=
1

2
(B1 + B2), (7.56)

and dimension of all these matrices is 9× 3nnd. With the help of the B matrices, the

gradients can be simplified as

∇0χi := B1ϕi, (7.57)

∇T
0 χi := B2ϕi, (7.58)

∇s
0χi := Bsϕi. (7.59)

For convenience, we introduce the following stiffness-like matrices L1 and L2:

L1 :=
∫

Ω0

B0B
T
0 dV,

L2 :=
∫

Ω0

BT
1 Bs dV,

(7.60)
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and the following load-like vectors:

R
ij
1 :=

∫

Ω0

(BT
0 ϕi)(B

T
1 B1ϕj) dV,

R
ij
2 :=

∫

Ω0

BT
1 [(B1ϕi)⊙ (Bsϕj)] dV,

R
ijk
3 :=

∫

Ω0

(ϕT
i BT

1 B1ϕj)(B
T
1 B1ϕk) dV,

R
ij
4 :=

∫

Ω0

(ϕT
i BT

1 B1ϕj)B0 dV,

R
ijk
5 :=

∫

Ω0

BT
1 [(B1ϕi)⊙ (B2ϕj)⊙ (B1ϕk)] dV,

R
ij
6 :=

∫

Ω0

BT
1 [(B2ϕi)⊙ (B1ϕj)] dV,

(7.61)

where L1 and L2 are constant matrices, while the R vectors are mode-dependent.

Note that operator ⊙ means converting Voigt vectors back to matrices, perform

matrix multiplication and then transform the product matrix to Voigt vector.

Now we may simplify the necessary integrals in following discretised formulas:

∫

Ω0

tr(∇0χn) tr(∇0δχn) dV ≈ δϕT
n L1ϕn, (7.62)

∫

Ω0

∇s
0χn : ∇0δχn dV ≈ δϕT

n L2ϕn, (7.63)
∫

Ω0

(tr∇0χi) (∇0χj : ∇0δχn) dV ≈ δϕT
n R

ij
1 , (7.64)

∫

Ω0

(∇0χi∇
s
0χj) : ∇0δχn dV ≈ δϕT

n R
ij
2 , (7.65)

∫

Ω0

tr
(

∇T
0 χi∇0χj

)

(∇0χk : ∇0δχn) dV ≈ δϕT
n R

ijk
3 , (7.66)

∫

Ω0

tr
(

∇T
0 χi∇0χj

)

tr(∇0δχn) dV ≈ δϕT
n R

ij
4 , (7.67)

∫

Ω0

(∇0χi∇
T
0 χj∇0χk) : ∇0δχn dV ≈ δϕT

n R
ijk
5 , (7.68)

∫

Ω0

(∇T
0 χj∇0χk) : ∇0δχn dV ≈ δϕT

n R
ij
6 . (7.69)

7.3.4 Discretised formulation of PGD alternative direction

iteration scheme

Now we may rewrite the discretised PGD generalised weak form in the discretised

formulation. Again, we take the mechanical problem for example, as the resultant

formulation could be modified for the parametric problem.
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• Consider Equation 7.36, we have

LHS = δϕT
n

[

λ(ωT
n Mωn)L1 + 2(ωT

n Hωn)L2

]

ϕn. (7.70)

• Consider Equation 7.37, for simplicity, we assume T is a known constant

RHS1 =
∫

Iµ

Mn dµ
∫

ΓN

T · δχn dA :≈ δϕT
n F(ωT

n Q), (7.71)

where F is the well-known nodal force vector.

• Consider Equation 7.39, it is similar to the LHS

RHS3 ≈ δϕT
n

n−1∑

i=1

[

λ(ωT
n Mωi)L1 + 2(ωT

n Hωi)L2

]

ϕi. (7.72)

• Consider the large RHS2 Equation 7.38, it can be written in matrix formulation

as

RHS2 = δϕT
n

n−1∑

i=1

n−1∑

j=1

[

λ(ωT
n S

ij
1 )Rij

1 + 2(ωT
n S

ij
2 )Rij

2 +
λ

2
(ωT

n S
ij
1 )Rij

4 + (ωT
n S

ij
2 )Rij

6

+
n−1∑

k=1

(

λ

2
(ωT

n S
ijk
3 )Rijk

3 + (ωT
n S

ijk
4 )Rijk

5

)]

.

(7.73)

Finally, we obtain the discretised formulation for PGD alternative direction iter-

ation:

1. Mechanical problem: Assuming known ϕi, ωi, (i = 1, . . . , n − 1) and ωn, solve

ϕn by LHS = RHS, where

LHS =
[

λ(ωT
n Mωn)L1 + 2(ωT

n Hωn)L2

]

ϕn,

RHS = F(ωT
n Q)−

n−1∑

i=1

n−1∑

j=1

[

λ(ωT
n S

ij
1 )Rij

1 + 2(ωT
n S

ij
2 )Rij

2 +
λ

2
(ωT

n S
ij
1 )Rij

4

+ (ωT
n S

ij
2 )Rij

6 +
n−1∑

k=1

(

λ

2
(ωT

n S
ijk
3 )Rijk

3 + (ωT
n S

ijk
4 )Rijk

5

)]

−
n−1∑

i=1

[

λ(ωT
n Mωi)L1 + 2(ωT

n Hωi)L2

]

ϕi;

(7.74)
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2. Parametric problem: Assuming known ϕi, ωi, (i = 1, . . . , n − 1) and ϕn, solve

ωn by LHS = RHS, where

LHS =
[

λ(ϕT
n L1ϕn)M + 2(ϕT

n L2ϕn)H
]

ωn,

RHS = Q(ϕT
n F)−

n−1∑

i=1

n−1∑

j=1

[

λ(ϕT
n R

ij
1 )Sij

1 + 2(ϕT
n R

ij
2 )Sij

2 +
λ

2
(ϕT

n R
ij
4 )Sij

1

+ (ϕT
n R

ij
6 )Sij

2 +
n−1∑

k=1

(

λ

2
(ϕT

n R
ijk
3 )Sijk

3 + (ϕT
n R

ijk
5 )Sijk

4

)]

−
n−1∑

i=1

[

λ(ϕT
n L1ϕi)M + 2(ϕT

n L2ϕi)H
]

ωi.

(7.75)

Remark 7.3 (On the monolithic solver). Comparing the finally obtained formulations

and the conventional PGD alternative direction iteration scheme, it can be seen that

the Picard linearisation works quite implicitly on the right-hand side. It implies that

the proposed scheme can be implemented based on a conventional PGD code after

adding to the right-hand side a linearised term, achieving a monolithic PGD solver

with Picard linearisation.

Remark 7.4 (On the mode-dependent vectors). For both parametric and mechanical

problems, there are mode-dependent vectors (the S and R vectors) which occur only in

the second term on the right-hand side of each problem. As we already discussed, the

second right-hand side term comes from Picard linearisation of the nonlinear problem.

It is interesting to point out that this linearisation essentially turns the nonlinearity

of the problem into interactions of PGD modes.

Remark 7.5 (On the efficiency of practical implementation). It is obvious that the

computational cost of proposed scheme would grow exponentially with the number of

required modes, because in the second right-hand side term the sums include mode-

dependent vectors which have to be updated during the iterations. However, the vectors

depend only on modes that should have been obtained in previous modal enrichment,

which enables a more efficient parallel implementation in the code.

7.4 Numerical example

In this section, a numerical example is presented with implementation of the Picard

linearised PGD framework. To simplify the problem, only one material parameter is
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7. Nonlinear problems with PGD

used as the extra coordinate.

7.4.1 Material properties

The range of Young Modulus is assumed to be E ∈ [10, 100] MPa. If we fix the

Poisson’s ratio ν = 0.49, the possible range of the Lamé constants λ and µ can be

obtained as

λ =
Eν

(1 + ν)(1− 2ν)
∈ [164.43, 1644.3] MPa,

µ =
E

2(1 + ν)
∈ [3.3557, 33.557] MPa.

Since St.Venant-Kirchhoff constitutive model is used, to adapt the problem with only

one variable material parameter, we fix λ = 400 MPa and specify range µ ∈ [4, 40]

MPa. For reference, in fact, we have set:

E =
µ(3λ + 2µ)

λ + µ
∈ [11.96, 116.36] MPa,

ν =
λ

2(λ + µ)
∈ [0.454, 0.495].

7.4.2 Mechanical model

The classical mechanical model, plate with a round open hole in the centre with

unidirectional tension applied, is again used for this example. However, here the

plate is square, 3D hexahedral mesh is used, and only one eighth of the plate is

modelled with proper symmetric boundary conditions. The FE mesh is illustrated in

Figure 7.2.

Symmetric boundary conditions have been applied, and nodal tension forces are

applied on nodes lying on the right end in x direction. The total load magnitude is

24 N, which is uniformly distributed on the right end.

7.4.3 SVD analysis

To assess the parametric dependency of the model, we use standard nonlinear FE

methods to compute a series of results U(µi) with specified samples of parameters µi,

and then perform SVD on the matrix composed by obtained results of nodal displace-

ment DOF vectors. From Figure 7.3 it can be seen that norm of the displacement
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7.4. Numerical example

Figure 7.2: Illustration of the model (1/8 model due to symmetry). Edge length both
50 mm, hole radius 10 mm, model thickness 2 mm.

DOF U is nonlinearly dependent on the shear modulus µ. The FE results forms a

matrix [U(µi)], where each column corresponds a DOF vector computed with spec-

ified shear modulus µi. The singular values for this matrix is plotted in Figure 7.4,

from which we can see the first 10 singular values drop significantly as much as 1010

times. This indicates that 10 PGD modes is accurate enough to approximate the

high-fidelity results.
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Figure 7.3: Dependency of displacement norm ‖U‖ on parameter µ.
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Figure 7.4: Singular value spectrum for each parameter.

7.4.4 PGD results

We compute the global nodal displacement vector using the proposed Picard linearised

PGD scheme, which reads:

Un
PGD(µ) =

n∑

i=1

Mi(µ)ϕi =
n∑

i=1

ωT
i N(µ)ϕi, (7.76)

where ϕi and ωi denote the spatial and parametric DOF vectors respectively. As it is

discussed, 10 PGD modes is computed to compose the PGD vademecum. Figure 7.5

shows the amplitudes and computational costs. The computational costs, as discussed

before, grow quasi-exponentially. However, with this price paid, the acceleration in

the online phase is fascinating, as shown in Table 7.1. The offline computation for the

PGD vademecum is performed with Matlab R2012a on a workstation (CPU: 4×Intel

Xeon E7540 2.00 GHz, 24 cores in total, 64 GB RAM), whilst the online computation

and reference FE solution are performed with Matlab R2017b on a desktop PC (CPU:

Intel Core i5-3470 3.20 GHz, 4 cores in total, 16 GB RAM). No explicit parallelisation

has been used.

Table 7.1: Acceleration of PGD in a typical online computation

PGD CPU time FE CPU time Acceleration ratio

Offline 13.0 h — —
Online 0.001024 s 5.19553 s 4784.1

Since PGD vademecum has enabled extremely fast computation of the displace-

ment DOFs, it is possible to perform a post-compression on the approximated results
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Figure 7.5: Amplitude of the mode ‖ϕi‖ · ‖ωi‖ decreases with modal index i, while
computational cost increases when more modes are computed.

using again the SVD technique. That is, perform SVD for [UPGD(µi)] instead of on

[U(µi)]. It is interesting to compare the normalised amplitudes between PGD modes

and previously computed singular values, as shown in Figure 7.6. It can be seen that

from the convergence rate point of view, PGD results is less optimal than SVD re-

sults. However, after the post-compression, PGD results could approximate the SVD

results.

The computed 10 parametric modes are plotted in Figure 7.7, and the spatial

modes are illustrated in Figure 7.8.

To assess the accuracy, the relative errors are computed on selected parameter

values, using FE results as the reference. The relative errors are computed as ‖UPGD−

UFE‖/‖UFE‖ and listed in Table 7.2.

Table 7.2: Relative error for selected parameters

No. µ [MPa] Relative error

1 4.0 0.079%
2 20.0 0.017%
3 40.0 0.031%
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Figure 7.6: Compare between SVD singular values and PGD amplitudes. It shows the
less optimality of PGD before compression.
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Figure 7.7: First 10 PGD parametric modes.

7.5 Summary

As a preliminary step towards applying a consistent PGD framework in nonlinear

problem, we have introduced a Picard linearised formulation under Lagrange descrip-

tion of large deformation solid mechanics. The key is adding a nonlinear term at the

right-hand side of the PGD generalised weak form, which could increase the computa-

tional cost to the offline phase. However, considerable acceleration during the online

phase is obtained, enabling extremely fast simulations for this nonlinear problem up

to about 1 kHz.
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Figure 7.8: First 10 PGD spatial modes.
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Chapter 8

Conclusions and future work

This thesis has been dedicated to the exploration of simulation tools/methods for

biomechanical applications with the intention of applying reduced order modelling

techniques. The multidisciplinary research involves biomechanics, medical image

processing, numerical methods for PDEs, reduced order modelling techniques, non-

intrusive coupling of computer codes, and even machine learning algorithms from

data science. In this final chapter we are about to make some conclusive remarks

on the presented work, and try to make some reasonable predictions on the possible

future works.

8.1 Conclusive remarks

For the foundation of a biomechanical application, in Chapter 2 we have established

an FE model of human proximal femur based on CT images. Previously, in vitro

experimental tests have been performed, providing data for the validation of the FE

model. The model is capable of considering both homogeneous and inhomogeneous

material property distributions under isotropic assumption and simple calibration. It

is demonstrated that the strain results extracted from both experiment and simulation

on same locations match well. The validated FE model with inhomogeneous material

properties is further used for PGD application in Chapter 5.

A non-intrusive PGD scheme is proposed in Chapter 3. We used in-house devel-

oped Matlab code to control the two-loop alternative direction iteration flow, and
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called Abaqus as an external FE solver for each fictitious mechanical problem. It

is known that commercial FE packages, such as Abaqus, is widely used in industry.

This scheme is able to act as a bridge connecting academic research products, such

as PGD, to industrial applications. FE discretisation is used for both spatial model

and the parameter space, considering material properties or loading locations as ex-

tra coordinates. Numerical benchmark example showed that this non-intrusive PGD

scheme is working flawlessly under the Matlab-Abaqus implementation.

Using the FE model built in Chapter 2, it is observed that due to some physical or

geometric limitations, the parameter space could be subjected to certain constraints.

Those constraints could cause conventional PGD separation of variables fail for the

parameters, because they are no more Cartesian. To cure this problem, Chapter 4

proposed a collective strategy to separate the parametric functions in selectively, that

is, instead of separating the full parameter space into independent 1D subspaces, we

keep the most correlated parameters unseparated in 2D/3D subspaces, and solve the

parametric modes in a parameter space in 2D/3D. This strategy is demonstrated by

numerical examples and it is shown that the convergence rate is improved, which

could possibly compensate the increased computational cost. It is also noted that

the non-intrusive scheme is also applicable for the parametric problem, leading to a

fully non-intrusive PGD implementation.

To take advantage of the proposed tools into the real biomechanical problem,

we used the non-intrusive PGD scheme plus the collective separation strategy for

constrained parameter space to investigate the simulation of the femur mechanics in

Chapter 5. As a typical biomechanical problem, the material properties is unknown,

and it is solved from an identification problem utilising the PGD vademecum. In

addition, the exact loading location on the hip joint is also unknown. A further

PGD vademecum is generated with variable loading location, which has the ability of

providing real-time simulation of mechanical response of the femur under arbitrary

loads.

It is well-known that NURBS shape functions, such as the B-splines, are able

to provide exact descriptions of smooth geometries and high-order continuities. For

many practical applications, such as parameter identification problems, high-order

continuity improves the parameter sensitivity of the quantity of interest. Having stud-

ied in Chapter 6, we demonstrated this using a classical example for 2D orthotropic

materials with four constitutive parameters. Applying the collective separation strat-
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egy proposed in Chapter 4, we separated the parameter space into a 3D subspace and

a 1D space, both of which are discretised with B-spline shape functions. We used

k-refinement for high-order discretisations, inspired by the IGA methodologies. As a

result, significant improvements of the sensitivities have been observed.

To further explore the capability of the PGD framework, in Chapter 7 we have

developed a consistent PGD framework for nonlinear solid mechanics involving the

large strain theory. The nonlinearity in the abstract form prohibits the conventional

alternative direction iteration. To solve this problem, we separated the nonlinear form

on the left-hand side into a linear part and a nonlinear part, and then used Picard

linearisation for the nonlinear part. Consequently, a new nonlinear term is added to

the right-hand side, increasing the computational cost considerably. The increased

cost is because the computational complexity caused by nonlinearity is transformed

into interaction terms of known PGD modes. The more modes are obtained, the

higher the computational cost will be. Therefore, the offline phase could be acceler-

ated using parallelisation techniques. Finally, the framework is demonstrated with a

classical example, using St.Venant-Kirchhoff constitutive model.

8.2 Future works

All the findings and methods presented in this thesis forms a foundation for further

research developments, especially for projects towards more complex applications in

biomechanical problems. In this final section, we discuss some possible directions for

future works that could be carried out.

Although the PGD-based complete patient-specific real-time simulation frame-

work for the femur has been established, a final product is to be created for practical

clinical applications. This product could be a software package, highlighting the on-

line phase of the reduced order modelling. To meet its fast-response and multi-query

requirements, proper computational visualisation libraries such as OpenGL and VTK,

are necessary for the implementation. Modern simulation Apps, similar to those in

literature Quesada et al. [2016b], Aguado et al. [2017], could be developed on different

platforms of portable devises such as iOS and Android.

The non-intrusive PGD scheme could be implemented using other high-efficiency

programming languages such as C/C++ and FORTRAN. Alternative to Abaqus,

other commercial FEM software, such as ANSYS (Ansys Inc., USA), NASTRAN
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(MSC software, USA), are also able to be used as the external solver.

Considering the NURBS shape functions, there are many techniques from the IGA

community could improve the efficiency of the discretisations of parameter spaces. For

instance, in current implementations, standard Gaussian quadrature is used for the

numerical integration of necessary mass-like matrices, and this could be very expen-

sive when high-order B-splines are used. More efficient quadrature rules, such as

Gauss-Lobatto, could be implemented Hughes et al. [2010]. In addition, the spatial

discretisation can also use NURBS in the standard IGA approach when necessary.

Further techniques, such collocation method Auricchio et al. [2010] are likely to im-

prove the solution of spatial/mechanical problems.

Geometric parametrisation for the shape of biological tissues is a well-known open

question. Attempts have been made in the literature such as Rozza et al. [2013],

Iapichino et al. [2016] with RB and Ammar et al. [2014], Zlotnik et al. [2015b],

González et al. [2018] with PGD. The dimensionality of complex geometry can be

reduced using NURBS with high-accuracy description as presented in Al Akhras

et al. [2017]. It is believed combining NURBS description with PGD could facilitate

the reduction of the model, and IGA would be naturally introduced for the spatial

problem.

To further investigate PGD application on nonlinear problems, the Picard scheme

could be improved by using parallelisation for the offline computation. Although

Lagrange description in large strain theory has been used, current implementation

is limited to St.Venant-Kirchhoff constitutive model thanks to its simplicity. Since

other hyperelastic material models, such as Neo-Hookean and Mooney-Rivlin, are

more commonly used in biomechanics, it is necessary to generate the nonlinear PGD

framework to those cases.
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Appendix A

PGD formulation for static

condensation

This appendix introduces the PGD formulation for linear elasticity problems using

static condensation to apply boundary conditions. Three cases have been considered:

1. Taking Dirichlet boundary condition as the extra coordinate.

2. Taking material properties as extra coordinates, with prescribed Dirichlet bound-

ary condition.

3. Taking material properties as extra coordinates, with prescribed Dirichlet and

Neumann boundary conditions.

A.1 Variable Dirichlet boundary condition

Consider the following standard static condensation




Kd Kdf

KT
df Kf








Ud

Uf



 =




Rd

Ff



 , (A.1)

where the stiffness matrix K is partitioned, with subscript d denotes Dirichlet bound-

ary, and subscript f denotes the free boundary. The displacement DOF U and load

vector F are also partitioned accordingly. In this case, prescribed displacement Ud is
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A. PGD formulation for static condensation

variable, while the external load Ff is known. We can solve the displacement of free

nodes and the reaction force by

Uf = K−1
f

(

Ff −KT
dfUd

)

,

Rd = KdUd + KdfUf .
(A.2)

Consider the following PGD separated representation of the free displacement:

Un
f (g) =

n∑

i=1

Uiωi(g), (A.3)

the corresponding weak form is

Kf

∫

ωnUn
f (g) dg =

∫ (

Ff −KT
dfUd

)

ωn dg. (A.4)

With the assumption of

Ud = g · Iu, (A.5)

where Iu = [1, 1, . . . , 1]T , the weak form turns into

Kf

n∑

i=1

Ui

∫

ωnωi dg =
∫

Ff ωn dg −KT
dfIu

∫

g ωn dg. (A.6)

Then the PGD alternative direction iteration reads:

1. Assume ωi are known, solve Un from

KfUn

∫

ω2
n dg =

∫

Ff ωn dg −KT
dfIu

∫

g ωn dg −Kf

n−1∑

i=1

∫

ωnωi dg; (A.7)

2. Assume Ui are known, solve ωn from

UT
n KfUn

∫

ω∗
nωn dg = UT

n

∫

Ff ω∗
n dg −UT

n KT
dfIu

∫

g ω∗
n dg

−UT
n Kf

n−1∑

i=1

Ui

∫

ω∗
nωi dg.

(A.8)

Discretise ω(g) with FE method as

ωi(g) ≈ NT (g) di, (A.9)

where N is the shape function vector, and di is the DOF vector.
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A.2. Prescribed Dirichlet BC with variable material properties

We define the following matrices for convenience:

M =
∫

NNT dg, (A.10)

P =
∫

gN dg, (A.11)

Q =
∫

N dg. (A.12)

The discretised formulation reads:

1. Assume di are known, solve Un from

KfUn(dT
n Mdn) = Ff(d

T
n Q)−KT

dfIu(dT
n P)−Kf

n−1∑

i=1

Ui(d
T
n Mdi); (A.13)

2. Assume Ui are known, solve dn from

(UT
n KfUn)Mdn = (UT

n Ff)Q− (UT
n KT

dfIu)P−UT
n Kf

n−1∑

i=1

Ui(Mdi). (A.14)

A.2 Prescribed Dirichlet BC with variable

material properties

In case of only displacement boundary condition is prescribed, with no external force,

consider the following static condensation




Kd Kdf

KT
df Kf








Ud

Uf



 =




Rd

0



 , (A.15)

we can solve
Uf = −K−1

f KT
dfUd,

Rd = KdUd + KdfUf =
(

Kd −KdfK
−1
f KT

df

)

Ud.
(A.16)

Suppose the material property µ is unknown, consider the following PGD sepa-

rated representation:

Un
f (µ) =

n∑

i=1

Uiωi(µ), (A.17)

the corresponding weak form is

∫

ωn(µ)Kf(µ)Un
f (µ) dµ = −

∫

ωn(µ)KT
df(µ)Ud dµ, (A.18)
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A. PGD formulation for static condensation

which can be rewritten as

n∑

i=1

(∫

Kf(µ)ωn(µ)ωi(µ) dµ
)

Ui = −
(∫

KT
df(µ)ωn(µ) dµ

)

Ud. (A.19)

The PGD alternative direction iteration reads:

1. Assume ωi are known, solve Un from

(∫

Kf(µ)ωnωn dµ
)

Un = −
(∫

KT
df(µ)ωn dµ

)

Ud −
n−1∑

i=1

(∫

Kf(µ)ωnωi dµ
)

Ui;

(A.20)

2. Assume Ui are known, solve ωn from

UT
n

(∫

Kf(µ)ωnωn dµ
)

Un = −UT
n

(∫

KT
df(µ)ωn dµ

)

Ud

−UT
n

n−1∑

i=1

(∫

Kf(µ)ωnωi dµ
)

Ui.
(A.21)

Discretise ωi(µ) with FE method as

ωi(µ) ≈ NT (µ) ωi, (A.22)

and suppose that

K(µ) = µK̂, (A.23)

we define the following matrices for convenience:

H =
∫

µNNT dµ, (A.24)

P =
∫

µN dµ. (A.25)

The discretised formulation reads:

1. Assume ωi are known, solve Un from

K̂fUn(ωT
n Hωn) = −K̂T

dfUd(ωT
n P)− K̂f

n−1∑

i=1

Ui(ω
T
n Hωi); (A.26)

2. Assume Ui are known, solve ωn from

(UT
n K̂fUn)Hωn = −(UT

n K̂T
dfUd)P−UT

n K̂f

n−1∑

i=1

Ui(Hωi). (A.27)
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A.3. Prescribed BC with variable material properties

A.3 Prescribed BC with variable material

properties

In case of both displacement boundary condition and external force are prescribed,

consider the following static condensation



Kd Kdf

KT
df Kf








Ud

Uf



 =




Rd

Ff



 , (A.28)

we can solve

Uf = K−1
f (Ff −KT

dfUd),

Rd = KdUd + KdfUf =
(

Kd −KdfK
−1
f KT

df

)

Ud + KdfK
−1
f Ff .

(A.29)

Suppose the material property µ is unknown, consider the following PGD sepa-

rated representation:

Un
f (µ) =

n∑

i=1

Uiωi(µ). (A.30)

the corresponding weak form is
∫

ωn(µ)Kf(µ)Un
f (µ) dµ =

∫

ωn(µ)Ff dµ−
∫

ωn(µ)KT
df(µ)Ud dµ, (A.31)

which can be rewritten as

n∑

i=1

(∫

Kf(µ)ωn(µ)ωi(µ) dµ
)

Ui =
∫

Ffωn(µ) dµ−
(∫

KT
df(µ)ωn(µ) dµ

)

Ud. (A.32)

The PGD alternative direction iteration reads:

1. Assume ωi are known, solve Un from
(∫

Kf(µ)ωnωn dµ
)

Un =
∫

Ffωn dµ−
(∫

KT
df(µ)ωn dµ

)

Ud

−
n−1∑

i=1

(∫

Kf(µ)ωnωi dµ
)

Ui;
(A.33)

2. Assume Ui are known, solve ωn from

UT
n

(∫

Kf(µ)ωnωn dµ
)

Un = UT
n

∫

Ffωn dµ−UT
n

(∫

KT
df(µ)ωn dµ

)

Ud

−UT
n

n−1∑

i=1

(∫

Kf(µ)ωnωi dµ
)

Ui.

(A.34)
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A. PGD formulation for static condensation

Discretise ωi(µ) with FE method as

ωi(µ) ≈ NT (µ) ωi, (A.35)

and suppose that

K(µ) = µK̂, (A.36)

we define the following matrices for convenience:

H =
∫

µNNT dµ, (A.37)

P =
∫

µN dµ, (A.38)

Q =
∫

N dµ. (A.39)

The discretised formulation reads:

1. Assume ωi are known, solve Un from

K̂fUn(ωT
n Hωn) = Ff(ω

T
n Q)− K̂T

dfUd(ωT
n P)− K̂f

n−1∑

i=1

Ui(ω
T
n Hωi); (A.40)

2. Assume Ui are known, solve ωn from

(UT
n K̂fUn)Hωn = (UT

n Ff)Q− (UT
n K̂T

dfUd)P−UT
n K̂f

n−1∑

i=1

Ui(Hωi). (A.41)
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Appendix B

PGD formulation for Young

modulus and Poisson’s ratio

This appendix is dedicated to the derivation of PGD formulation taking both Young

modulus E and Poisson’s ratio ν as the extra coordinates. The 2D case of plane stress

is considered for instance. However, the resultant formulation can be generalised to

plane strain and 3D case with proper modifications.

B.1 Basics of plane stress elasticity

For plane stress problems, there are two independent parameters of the material

property: E, ν. Assume the ranges for the properties are given.

The stress-strain relationship reads:







σ1

σ2

τ12








=
E

1− ν2








1 ν 0

ν 1 0

0 0 1−ν
2















ε1

ε2

γ12








. (B.1)

B.2 PGD separated representation

With nodal displacement vector U as the unknown, we have

Um
PGD(E, ν) =

m∑

i=1

χiαi(E)ωi(ν). (B.2)
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B. PGD formulation for Young modulus and Poisson’s ratio

The PGD alternative direction iteration reads:

1. Assume αn(E), ωn(ν) and Un−1
PGD are know, solve χn from

∫

IE

∫

Iν

Kχnα2
nω2

n dE dν =
∫

IE

∫

Iν

[

F−
n−1∑

i=1

Kχiαiωi

]

αnωn dE dν; (B.3)

2. Assume χn, ωn(ν) and Un−1
PGD are know, solve αn(E) from

αn

∫

Iν

χT
n Kχnω2

n dν =
∫

Iν

χT
n

[

F−
n−1∑

i=1

Kχiαiωi

]

ωn dν; (B.4)

3. Assume αn(E), χn and Un−1
PGD are know, solve ωn(ν) from

ωn

∫

IE

χT
n Kχnα2

n dE =
∫

IE

χT
n

[

F−
n−1∑

i=1

Kχiαiωi

]

αn dE. (B.5)

B.3 Decomposition of elemental stiffness matrix

With definition of

D1 :=








1 1 0

1 1 0

0 0 0








, D2 :=








1 −1 0

−1 1 0

0 0 1








, (B.6)

we may write:

D =
E

1− ν2








1 ν 0

ν 1 0

0 0 1−ν
2








=
E

2(1− ν)
D1 +

E

2(1 + ν)
D2 (B.7)

The element stiffness matrix can be decomposed by

K =
∫

Ωe

BT DB dV =
E

2(1− ν)
K1 +

E

2(1 + ν)
K2, (B.8)

where B = [B1, B2, . . . , Bn] is the strain-displacement matrix for n-node elements

with shape functions Ni, and the stiffness-like matrices are defined by

K1 :=
∫

Ωe

BT D1B dV,

K2 :=
∫

Ωe

BT D2B dV.
(B.9)
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B.3. Decomposition of elemental stiffness matrix

Now we may rewrite, for instance, the LHS for the mechanical problem as:

∫

IE

∫

Iν

Kχnα2
n(E)ω2

n(ν) dE dν = K1χn

∫

IE

Eα2
n(E) dE

∫

Iν

1

2(1− ν)
ω2

n(ν) dν

+ K2χn

∫

IE

Eα2
n(E) dE

∫

Iν

1

2(1 + ν)
ω2

n(ν) dν.

(B.10)

B.3.1 Discretised formulation

Consider the following FE discretisation:

αi(E) = NT
E(E)αi, (B.11)

ωi(ν) = NT
ν (ν)ωi, (B.12)

for convenience, we define the following matrices

H :=
∫

IE

ENENT
E dE,

G1 :=
1

2

∫

Iν

1

1− ν
NνNT

ν dν,

G2 :=
1

2

∫

Iν

1

1 + ν
NνNT

ν dν.

(B.13)

and the following vectors

Q :=
∫

IE

NE dE,

P :=
∫

Iν

Nν dν.
(B.14)

The integrals can be obtained by:

∫

IE

Eα2
n(E) dE = αT

n Hαn, (B.15)

∫

Iν

1

2(1− ν)
ω2

n(ν) dν = ωT
n G1ωn, (B.16)

∫

Iν

1

2(1 + ν)
ω2

n(ν) dν = ωT
n G2ωn, (B.17)

∫

IE

αn(E) dE = αT
n Q, (B.18)

∫

Iν

ωn(ν) dν = ωT
n P. (B.19)

Finally the discretised PGD alternative direction iteration scheme reads
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B. PGD formulation for Young modulus and Poisson’s ratio

1. Assume αn, ωn and Un−1
PGD are know, solve χn from LHS = RHS, where

LHS = (αT
n Hαn)

[

(ωT
n G1ωn)K1 + (ωT

n G2ωn)K2

]

χn,

RHS = F(αT
n Q)(ωT

n P)−
n−1∑

i=1

(αT
n Hαi)

[

(ωT
n G1ωi)K1 + (ωT

n G2ωi)K2

]

χi;

(B.20)

2. Assume χn, ωn and Un−1
PGD are know, solve αn from LHS = RHS, where

LHS =
[

(ωT
n G1ωn)(χT

n K1χn) + (ωT
n G2ωn)(χT

n K2χn)
]

Hαn,

RHS = (χT
n F)Q(ωT

n P)−
n−1∑

i=1

[

(ωT
n G1ωi)(χ

T
n K1χi) + (ωT

n G2ωi)(χ
T
n K2χi)

]

Hαi;

(B.21)

3. Assume αn, χn and Un−1
PGD are know, solve ωn from LHS = RHS, where

LHS = (αT
n Hαn)

[

(χT
n K1χn)G1 + (χT

n K2χn)G2

]

ωn,

RHS = P(αT
n Q)(χT

n F)−
n−1∑

i=1

(αT
n Hαi)

[

(χT
n K1χi)G1 + (χT

n K2χi)G2

]

ωi.

(B.22)
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Appendix C

Nonlinear dimensionality

reduction for geometric

parameters

In order to find an appropriate approach for geometric parametrisation of biome-

chanical tissues, it is necessary to reduce the high dimensionality of the images which

contains geometric description of the shape. Present appendix is designated for a

brief discussion on the dimensionality reduction which is based on manifold learning

method which comes from machine learning techniques.

C.1 Nonlinear dimensionality reduction with

Isomap

Science and engineering researchers often work with large volumes of data involving

large dimensions. In this case, the data we are working with has a 512×512 resolution

for each image in each CT image set that contains 456 images, so the total dimension

of each sample of data is 119 537 664. It is believed the data must contain much

redundancy, it is necessary to find meaningful low-dimensional structures hidden in

their high-dimensional representations Lee and Verleysen [2007].
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C. Nonlinear dimensionality reduction for geometric parameters

Consider a group of data, in which each sample can be flattened to a m-dimensional

vector x ∈ R
m. Mathematically, it is assumed that the data live in a m-dimensional

manifold M ⊆ R
m. For analyses involving large volumes of data, SVD or PCA can

be used as it is discussed in Chapter 1. However, in most cases, the global structure

of M is nonlinear, and SVD or PCA works only for linear manifolds or locally on

nonlinear ones. Various techniques have been developed to find the implicit connec-

tions between local behaviour and global structures on nonlinear manifolds, such as

curvilinear component analysis (CCA) Demartines and Herault [1997], kernel PCA

(kPCA), locally linear embedding (LLE) Roweis and Saul [2000], etc.

As mentioned in Chapter 1, it is not trivial to reduce the dimensionality of the

geometric shape space to a reasonable low order due to its nonlinearity. Inspired by

latest literature such as Meng et al. [2015], González et al. [2018], it is worth trying to

investigate the power of nonlinear dimension reduction techniques. In this appendix,

we use Isomap Tenenbaum et al. [2000] to perform the dimensionality reduction on

the nonlinear manifold of geometric shape. Isomap can be regarded as a type of

kPCA, using the geodesic distance matrix as the kernel, it can also be interpreted as

an extension from the classical multi-dimensional scaling (MDS) Kruskal and Wish

[1978], Cox and Cox [2001]. Isomap can also be embedded into the LLE framework

Saxena and Gupta [2004].

The idea of Isomap is to find a global pairwise distance matrix of data samples, and

perform spectral decomposition on the distance matrix, obtaining the low-dimensional

manifold P through truncation on the dominant eigenvalues and eigenvectors. The

key to the construction of the distance matrix is, instead of computing Euclidean

distance globally, the global distance is accumulated by local Euclidean distances

through a weighted graph of the high-dimensional data. The procedure is as follows:

1. Input a set of n data points xi ∈M ⊆ R
m, (i = 1, 2, . . . , n), usually m≫ n;

2. Build a graph of the data points with K-nearest neighbour (KNN) or ǫ-ball

method;

3. Weight the graph by labelling each edge with Euclidean length

d(i, j) = ‖xi − xj‖E; (C.1)

4. Compute all pairwise graph distance matrix D using a shortest path algorithm:
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C.1. Nonlinear dimensionality reduction with Isomap

• Floyd-Warshall, O(n3): Dij = min{d(i, j), d(i, k)+d(k, j)}, (k = 1, 2, . . . , K),

• Dijkstra’s algorithm, O(Kn2 log n);

5. Convert the matrix of distances D into a Gram matrix S by double centering

Sij = −
1

2
Hik(Dkl)

2Hlj,

Hij = δij −
1

n
;

(C.2)

6. Compute spectral decomposition

S = UΛUT; (C.3)

7. A P -dimensional representation Ŷ is obtained by taking the first P rows of Y

Y = Λ1/2UT,

S = YTY;
(C.4)

8. Output a quasi-isometric, P -dimensional embedding (P = 2 for a 2D plot) with

data points ŷi ∈ P ⊆ R
P , (i = 1, 2, . . . , n).

Typically, there are two approaches to estimate the error of Isomap results:

• Cost function approach: compute the pairwise spatial distance matrix D̂ in

the lower-dimensional manifold, and the corresponding Gram matrix Ŝ, then

the cost function is

E = ‖S− Ŝ‖L2 , (C.5)

where ‖A‖L2 =
√
∑

i,j A2
ij is the Frobenius norm.

• Residual variance approach: compute the Pearson product-moment correla-

tion coefficient between the flattened pairwise spatial distance matrices in each

space, and then the residual variance is

r = 1− ρ2
D,D̂

, (C.6)

where ρ
D,D̂ =

cov(D, D̂)

σDσ
D̂

is the Pearson correlation coefficient.

The only free parameter for Isomap is the nearest neighbour number K or the

radius of the neighbourhood ball ǫ. Taking K for example, an optimal choice is chosen

following Samko et al. [2006]:

151



C. Nonlinear dimensionality reduction for geometric parameters

1. Find SK : the minimas of cost functions E(K) calculated with selected range of

K;

2. Find the optimal Kopt = arg min
K∈SK

(r) = arg min
K∈SK

(

1− ρ2
D,D̂

)

.

In practice implementation of Isomap, we used a Python function provided by

the machine learning package Scikit Learn http://scikit-learn.org/stable/

modules/generated/sklearn.manifold.Isomap.html. The main input parameters

for this Isomap function are:

• neighbours algorithm: K-nearest or ǫ-ball.

• number of neighbours K or ball radius ǫ.

• number of lower dimensional space P (P = 2 by default).

• shortest path method: FW (Floyd-Warshall) or D (Dijkstra).

C.2 Geometric shape analysis of proximal femur

To analysis the geometric shape of human proximal femur, we have collected 25

samples of CT image sets as illustrated in Figure C.1. The resolution of all CT

images are the same, but the number of slices is different from one set to another.

To obtain a uniform dimension of description of the data, all the CT images are

segmented into STL surfaces, and then level sets are created based on the distance

fields to the femur surfaces, as shown in Figure C.2. The level sets have a uniform

dimension of 25× 21× 61, and thus the dimension of each sample is 32 025.

Applying the Isomap algorithm on the collected data, the 2D and 3D embedding

is plotted in Figure C.3 and C.4 respectively. From the embedding plots we can

observe the essential parameter could be the length and radius of the shaft. The

residual variance for the dimension of embedded low-dimensional space is plotted in

Figure C.5. It can be seen the residual variance drops to below 5× 10−4 when n ≥ 3.

However, unlike PCA analysis, Isomap cannot provide the eigenshapes corresponding

to each low-dimensional embedding.
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C.2. Geometric shape analysis of proximal femur

Figure C.1: Collected femur samples. Left: individual view. Right: Pile-up view.

Figure C.2: A level set example.
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C. Nonlinear dimensionality reduction for geometric parameters
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Figure C.3: 2D embedding of Isomap result.
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Figure C.4: 3D embedding of Isomap result.
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C.2. Geometric shape analysis of proximal femur
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Figure C.5: Residual variance of Isomap result.
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