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Nonlocal and strain-gradient elasticity

For nonlocal elasticity:

S(x) =

∫
D
k(x, y)E(y) dy, (1)

for some suitable kernel k.

Strain-gradient (second-gradient) elasticity is a particular case of (1) for kernels which
decay sufficiently fast.

Suppose k(x, y)→ 0 as ‖y − x‖ > `; then for ` sufficiently small and differentiable
strain/stress fields from (1) one obtains (Eringen, 1983)

(S − `2∆S)(x) = C(x)E(x),

or
S(x) = C(x)E(x) + `2∆E(x)

both distinguished features of strain-gradient theories.
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Outline

Despite being the simplest form of nonlocal elasticity much remains to be done in terms
of:

basic analysis problems (existence theorems, notion of quasi-convexity ...)

analytical solutions of classical elasticity problems;

measurement and identification of relevant constitutive parameters;

numerical implementation.
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Relevant basic references

Mindlin Micro-structure in linear elasticity. Arch Rat Mech Anal 16, 1964

Sokolowski Theory of couple-stresses in bodies with constrained rotations. In CISM
Courses and Lectures 26, 1970

Germain La méthode des puissances virtuelles en mécanique des milieux continus:
Théorie du second gradient. J Mécanique 12, 1973

Eringen On differential equations of nonlocal elasticity. J Appl Phys 54, 1983

PS: (Aifantis, IJSS 2011) reviews the relevant anglo-saxon literature.
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Stored elastic energy

Denote: placement: xα := χα(Xi), X ∈ D
deformation: Fαi := χα,i,

rotation and stretch: Fαi = Rαj Uji, R ∈ Orth+, U ∈ Sym

strain: Eij := (Uhi Uhj − δij)/2,

The stored elastic energy ψ is assumed to depend on both the deformation F and its
gradient ∇F . The request for ψ to be objective means that:

ψ(F, ∇F ) = ψ(QF, Q∇F ), ∀Q ∈ Orth

The objectivity condition with Qβα = Rαβ implies

ψ(Fαi, Fαi,j) = ψ(QβαFαi, QβαFαi,j) =

= ψ(δβjUji, Rαβ Rαl,j Uli + Uki,j),

where both R>∇R and ∇U appear.
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Stored elastic energy

Fortune&Vallée (2001) have solved the nonlinear compatibility equations

curl (RU) = 0

to obtain explicitly R>∇R in terms of ∇U , namely

RαfRαl,k =
εflm
detU

(
Uml (curlU)nl −

1

2
Uij (curlU)ij δmn

)
Unk

where εflm is the Levi-Civita alternator. Hence we conclude that every objective stored
energy must be written in the form:

ψ(F, ∇F ) = ψ̂(U, ∇U) = ψ̃(E, ∇E)

Remark: this result readily extends to continua with gradient of arbitrary order!

ψ(F, ∇F, ∇∇F, ...) = ψ̃(E, ∇E, ∇∇E, ...)
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Decomposition of strain gradient ∇E

Every third order tensor, say Eij,k, symmetric with respect to its first two indices can be
decomposed:

Eij,k = Ẽijk +
1

3

(
εjkl Êli + εikl Êlj

)
,

where

Ẽijk =
Eij,k + Ejk,i + Eki,j

3
, completely symmetric (10 comp.)

Êli = εljk Eij,k, deviatoric (8 comp.)

For infinitesimal deformations, the strain gradient components Ê:

Êli ≡ ωl,i, ω = curlu,

These are the only strain-gradient components used in "couple-stress"
or Cosserat theories where ψ = ψ(E, gradω).
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Êli = εljk Eij,k, deviatoric (8 comp.)

For infinitesimal deformations, the strain gradient components Ê:
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Principle of Virtual Working

Corresponding to ψ(E,∇E), one obtains

Sij =
∂ψ

∂Eij
, Pijk =

∂ψ

∂Eij,k
,

as the second Piola-Kirchhoff stress and hyperstress.

The associated internal working

Wint =

∫
D

(
Sij Ėij + Pijh Ėij,h

)
= ...

corresponds, integrating by parts, to model more refined contact actions:

... =

∫
D∗

bαχ̇α +

∫
∂D∗

tαχ̇α +

∫
∂D∗

τα
∂χ̇α
∂n

+

∫
∂∂D∗

fαχ̇α = Wext
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Balance equations and Cauchy theorem

The resulting balance equations are expressed as (Germain, 1973):

[Fαi (Sij − Pijk,k)],j + J bα = 0, on D,

Fαi (Sij − Pijk,k) nj − (QBjFαiPijknk),B = JStα, on ∂D,

FαiPijknknj = JSτα on ∂D,

〚QBjFαiPijknkνB〛 = JLfα on ∂∂D,

The quantity:
Se := S − divP

is usually called the effective stress.
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A thicker boundary ...

The boundary is actually composed by two-layers:∫
∂D∗

τα
∂χ̇α
∂n

=

∫
∂D∗

τt
∂χ̇t
∂n

"Couple-stress" theories
Sokolowski(1970)

+

∫
∂D∗

τn
∂χ̇n
∂n

Complete strain-gradient theories
Germain (1973)
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... with possible edges ∂∂D∗

Wext = ...+

∫
∂∂D∗

fαχ̇α

For instance:

fi = 〚PiBknkνB〛 =

= PiBk(n+
k ν

+
B − n

−
k ν
−
B )

with n± and ν± the normal and the
Darboux tangent-normal vectors.

The only hyperstresses which does not imply edge tractions are in the form:

P = π ⊗ I, Pijk = πi δjm δmk,

for some vector field π = π(E,∇E). (PodioGuidugli&Vianello, 2010)
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Linear isotropic constitutive relations

The simplest case is to assume ψ(E, ∇E) to be a quadratic form (neoHookean).
The Piola-Kirchhoff stress and hyperstress are then linear in E and ∇E:

Sij =
∂ψ(E, ∇E)

∂Eij
= CijhkEhk + HijhkmEhk,m,

Pijh =
∂ψ(E, ∇E)

∂Eij,h
= HijhkmEkm + GijhkmnEkm,n.

Using results of (Suiker&Chang, 2000) for high-order isotropic tensors, we obtain:

Cijkl = λ δijδkl + µ
(
δikδjl + δilδjk

)
, Hijklp = 0

Gijklpq = c2
(
δijδklδpq + δijδkpδlq + δikδjqδlp + δiqδjkδlp

)
+

c3
(
δijδkqδlp

)
+ c5

(
δikδjlδpq + δikδjpδlq + δilδjkδpq + δipδjkδlq

)
+

c11

(
δilδjpδkq + δipδjlδkq

)
+

c15

(
δilδjqδkp + δipδjqδkl + δiqδjlδkp + δiqδjpδkl

)
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Convexity of stored energy

For the energy ψ to be convex in both its arguments, since H = 0 then, as usual:

µ > 0, 3λ+ 2µ > 0.

The conditions for the c2, c3, c5, c11 and c15 can be computed by using the Sylvester
criterion1 on the Voigth representation of Gijklpq, a 18× 18 matrix.

A suitable decomposition of P and ∇E:

P = {P̃111, P̃122 + P̃133, P̂32 − P̂23, ..., P̃123},

∇E = {Ẽ111, Ẽ122 + Ẽ133, Ê32 − Ê23, ..., Ẽ123},

reduces to 3 the maximal dimension of the constitutively coupled blocks and renders the
application of the Sylvester criterion feasible.

1A matrix is positive definite iff the determinants of all its upper-left submatrices are
positive.
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application of the Sylvester criterion feasible.

1A matrix is positive definite iff the determinants of all its upper-left submatrices are
positive.
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reduces to 3 the maximal dimension of the constitutively coupled blocks and renders the
application of the Sylvester criterion feasible.

1A matrix is positive definite iff the determinants of all its upper-left submatrices are
positive.

Vidoli (Sapienza) Strain-gradients and fracture mechanics 13 / 42



Hyperstress and strain-gradient decompositions

By standard graph theory algorithms (MinimumBandwidthOrdering, MinCut... ) P̃111

P̃122 + P̃133

P̂32 − P̂23

 =

 γ1 2γ1 − γ2 γ3

2γ1 − γ2 4γ1 + γ2 2γ3

γ3 2γ3 γ4

  Ẽ111

Ẽ122 + Ẽ133

Ê32 − Ê23

 , ...

 P̂11

P̂22

P̂33

 = γ5

 2 −1 −1
−1 2 −1
−1 −1 2

  Ê11

Ê22

Ê33

 , P̃123 = 3γ2Ẽ123,

P̃122 − P̃133 = 3γ2

(
Ẽ122 − Ẽ133

)
, P̂32 + P̂23 = 6γ5

(
Ê32 + Ê23

)
, ...

where γ1 = 2 (c11 + 2c15) + 4c2 + c3 + 4c5, γ2 = 4 (c11 + 2c15), γ3 =
2

3
(4c5 − 2c2 − 2c3),

γ4 =
8

9
(3c11 − 3c15 − 4c2 + 2c3 + 2c5), γ5 =

4

9
(c11 − c15).

These reduce to the "couple stress" relations derived by (Sokolowski, 1970) iff

γ1 = γ2 = γ3 = 0, γ4 = 4`2(1− η)µ, γ5 =
2

3
`2(1 + η)µ,
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Convexity of stored energy

Finally, G is positive definite iff (dell’Isola, Sciarra, Vidoli, 2009):

γ1 > 0, 0 < γ2 < 5γ1, γ4 >
5γ2

3

5γ1 − γ2
, γ5 > 0,

or in terms of the constitutive parameters ci:

c11 > 0, −
c11

2
< c15 < c11, 5c3 + 4c11 > 2c15,

c5 >
c3 (3c11 + c15) + 2

(
c211 − 5c22 − 6c15c2 − 2c215 + c11 (2c2 + c15)

)
4c15 − 10c3 − 8c11

(2)

Some results of (Unger& Aifantis, 2000) in antiplane second gradient elasticity were obtained
assuming (c5 + c11 + c15) > 0 which is in contradiction with (2), and corresponds to a strictly
concave energy.
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Under plane strain hypothesis 2D

Even in linear isotropic material "couple-stress" are constitutively coupled to completely
symmetric deformations! P̃111

P̃122

P̂32

 =

 γ1 2 γ1 − γ2 γ3

2 γ1 − γ2 4 γ1 + γ2 γ3

γ3 γ3 γ4

 Ẽ111

Ẽ122

Ê32



Ẽ111 and P̃111 Ẽ122 and P̃122 Ê32 and P̂32
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P̃122

P̂32

 =

 γ1 2 γ1 − γ2 γ3

2 γ1 − γ2 4 γ1 + γ2 γ3

γ3 γ3 γ4

 Ẽ111

Ẽ122

Ê32


→ φ,2

Ẽ111 and P̃111 Ẽ122 and P̃122 Ê32 and P̂32
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Characteristic lengths [γi/µ] = `2

For general isotropic strain-gradient materials:

ψ = ψ(Eij , Eij,k)

`2t =
2γ2 + 9γ5

6µ
`2b =

γ4 + 6γ5

µ
`2s =

16γ1 + ...+ 54γ5

144µ
`2e =

γ1

µ

+ the coupling parameter γ3
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Characteristic lengths [γi/µ] = `2

For isotropic couple-stress materials:

ψ = ψ(Eij , Êij)

`2t =
3γ5

2µ
`2b = 16 `2s `2s =

γ4 + 6γ5

16µ
`2e = 0

+ the coupling parameter γ3 = 0
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Characteristic lengths [γi/µ] = `2

For isotropic Lazar-Maugin materials:

ψ = λEiiEjj/2 + µEijEij + c λEii,mEjj,m/2 + c µEij,mEij,m

`2t = 2c `2b =
16 c

9
(3 + λ/µ) `2s = c `2e = c (2 + λ/µ)

+ the coupling parameter γ3 = −4λ c

3µ

(
λ

µ
=

2ν

1− 2ν

)
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When strain-gradient effects are important?

ψ(E, ∇E) =
1

2
CE · E +

1

2
G∇E · ∇E
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When strain-gradient effects are important?
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When strain-gradient effects are important?

ψ(E, ∇E) = ψ1(E) + ψ2(∇E)
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When strain-gradient effects are important?

ψ(E, ∇E) = ψ1(E) + ψ2(∇E)

In which processes
ψ2(∇E)

ψ1(E)
≥ 1 ?
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When strain-gradient effects are important?

A simple one-dimensional analysis call for displacement fields with:

either high spatial oscillations: porous, granular, microstructured materials

u = ū sin(k x) ⇒ ψ2

ψ1
' k2‖G‖
‖C‖ = (k `)2

or localization phenomena: stress concentrations, fracture, boundary layers

u = ū (x− x0)α ⇒ ψ2

ψ1
' (α− 1)2‖G‖

(x− x0)2‖C‖ =
(α− 1)2`2

(x− x0)2
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When "couple stress" are sufficient?

Torsion of a prismatic strain-gradient cylinder; for a circular section the torsional
stiffness is:

Kt = µIP + µ `2t A = µA

(
R2

2
+ `2t

)
,

being R the cross-section radius and `t the torsional characteristic length.

(Radi, 2008) solved the mode III fracture under the antiplane hypothesis using the
standard couple-stress theory

µ∆w − µ `2 ∆∆w = 0

His results are extended to the complete second-gradient case by simply renaming
the constants: all relevant effects are already included.

...
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When "couple stress" are not sufficient?

The Flamant-Boussinesq problem: a simple contact problem at the micro scale

F · ve = F · ve + vi
2

+ F · ve − vi
2

=

= F · χ̇ +
F

2

∂χ̇n
∂n

`

Membrane piercing, material nanoindentation, surface tension problems...
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When "couple stress" are not sufficient?

Moreover for a general isotropic material γ3 couples the Ẽ and Ê deformations!

Finally there are problems where the differential elongation components (i.e. E11,1),
neglected by couple-stress theories, play a dominant role:

Fracture in mode I and II
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What we have studied?

The three classical opening modes for a general material with `t, `b, `s, `e and γ3

For Lazar-Maugin materials
(Grentzelou & Georgiadis, JMPS 2009)

For couple-stress materials
(Radi, IJSS 2008)
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Griffith laws

Let E =

∫
D
ψ be the stored energy and L(t) the crack length at time(load) t.
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Griffith laws

Let E =

∫
D
ψ be the stored energy and L(t) the crack length at time(load) t.

GRIFFITH LAWS

1. L
t
↗: the crack can only grow;

2. −
∂E
∂L

(t, L(t)) ≤ G: the energy release rate is bounded from above by the toughness G;

3.
(
∂E
∂L

(t, L(t)) +G

)
L̇ = 0: the crack will not grow unless the energy release rate is critical.
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Griffith laws

Let E =

∫
D
ψ be the stored energy and L(t) the crack length at time(load) t.

DHtLD0

ΞX
ΦH× , tL

gH× , tL

u v
GRIFFITH LAWS

1. L
t
↗

2. −
∂E
∂L

(t, L(t)) ≤ G

3.
(
∂E
∂L

(t, L(t)) +G

)
L̇ = 0

Let φ(·, t) : D0 → D a one-parameter transformation of the reference configuration.
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Griffith laws

Let E =

∫
D
ψ be the stored energy and L(t) the crack length at time(load) t.

DHtLD0

ΞX
ΦH× , tL

gH× , tL

u v
GRIFFITH LAWS

1. L
t
↗

2. −
∂E
∂L

(t, L(t)) ≤ G

3.
(
∂E
∂L

(t, L(t)) +G

)
L̇ = 0

Let φ(·, t) : D0 → D a one-parameter transformation of the reference configuration.
Since ψ = ψ(E,∇E) one obtains:

Ė =
∂E
∂t

∣∣∣∣
t→0

=

∫
∂D

[
ψ φ̇l nl + tl

(
ġl − ul,mφ̇m

)
+ τl

(
ġl − ul,mφ̇m

)
,q
nq

]
+

∫
∂∂D

[
fl

(
ġl − ul,mφ̇m

)]
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Energy Release Rate for crack-opening

For a map φ to describe crack opening choose:

φ(X, L) =



X + Le1, if ‖X − o‖ ≤ r0,

X +

(
1−
‖X − o‖ − r0
r1(L)− r0

)
Le1, if r0 < ‖X − o‖ ≤ r1(L) := r0 + αL

X, if r1(L) < ‖X − o‖
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Energy Release Rate for crack-opening

For a map φ to describe crack opening choose:

φ(X, L) =



X + Le1, if ‖X − o‖ ≤ r0,

X +

(
1−
‖X − o‖ − r0
r1(L)− r0

)
Le1, if r0 < ‖X − o‖ ≤ r1(L) := r0 + αL

X, if r1(L) < ‖X − o‖

This correspond to:

φ̇ = e1, ∇φ̇ = 0, for r ≤ r1,

φ̇ = 0, ∇φ̇ = 0, for r > r1,
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Generalized J-integral

For each B0 ⊂ D0 with inner radius ra < r0 and outer radius rb > r1
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Generalized J-integral

For each B0 ⊂ D0 with inner radius ra < r0 and outer radius rb > r1

ĖB0 =

∫
Γa

(
ψ n1 − tl ul,1 − τl ul,1q nq

)
−
(
fl ul,1

)∣∣
P+
a

+
(
fl ul,1

)∣∣
P−
a

=: J(Γa)
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ĖB0 =

∫
Γa

(
ψ n1 − tl ul,1 − τl ul,1q nq

)
−
(
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)∣∣
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a

+
(
fl ul,1
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=: J(Γa)

The energy release rate for the whole D0 is:

ĖD0 = lim
ra→0

J(Γa)
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(
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)∣∣
P−
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=: J(Γa)

The energy release rate for the whole D0 is:

ĖD0 = lim
ra→0

J(Γa)

Γa 6= Γa as Γa does include the end points!
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Generalized J-integral

For each B0 ⊂ D0 with inner radius ra < r0 and outer radius rb > r1

ĖB0 =

∫
Γa

(
ψ n1 − tl ul,1 − τl ul,1q nq

)
−
(
fl ul,1

)∣∣
P+
a

+
(
fl ul,1

)∣∣
P−
a

=: J(Γa)

The energy release rate for the whole D0 is:

ĖD0 = lim
ra→0

J(Γa)

Γa 6= Γa as Γa does include the end points!

The limit is well-posed since:
∂

∂ra
J(Γa) = 0 for ra < r0
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Γ 6= Γ: does it matter?
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Γ 6= Γ: does it matter?

For LM materials Gourgiotis & Georgiadis have found the solution of mode I and II

vr = r
3
2

[
A1

(
(3− 8ν) cos

θ

2
+

3(16ν − 11)

32ν − 41
cos

3θ

2

)
+ A2

(
3(11− 16ν)

32ν − 41
cos

3θ

2
+ cos

5θ

2

)

+B1 sin
θ

2
+ B2

(
12

37− 32ν
sin

θ

2
+

3(11− 16ν)

32ν − 37
sin

3θ

2
+ sin

5θ

2

)]

vθ = r
3
2

[
A1

(
(9− 8ν) sin

θ

2
+

3(13− 16ν)

32ν − 41
sin

3θ

2

)
+ A2

(
3(16ν − 13)

32ν − 41
sin

3θ

2
− sin

5θ

2

)

−B1 cos
θ

2
+ B2

(
3(13− 16ν)

32ν − 37
cos

3θ

2
+ cos

5θ

2

)]
with A2 = A1(32ν − 35)/6.
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Γ 6= Γ: does it matter?

For LM materials Gourgiotis & Georgiadis have found the solution of mode I and II

J =

 d(ν) c1(ν) c2(ν)
c1(ν) e11(ν) e12(ν)
c2(ν) e12(ν) e22(ν)

 A1

B1

B2

 ·
 A1

B1

B2


The J-integral is not a quadratic diagonal form of the amplitude factors!
Responsible for the coupling out-of-diagonal terms are the edge-forces contributions.
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What we have studied?

Having established the correct expression for the energy release rate:

ĖD0 = lim
r→0

[∫
Γ

(ψ n1 − tl ul,1 − τl ul,1q nq)− (fl ul,1)P+ + (fl ul,1)P−

]
we study the classical opening modes for a general material (`t, `b, `s, `e, γ3)

For Lazar-Maugin materials
(Gourgiotis & Georgiadis, JMPS 2009)

For couple-stress materials
(Radi, IJSS 2008)
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Asymptotic solutions

if r > dI then ψ1(E) is dominant

u ∝
√
r (FAR FIELD)

if r < dII then ψ2(∇E) is dominant

u ∝ r3/2

For each mode:

estimate the distance d at which ψ1(E) ' ψ2(∇E)

describe the detailed solution inside r < dII
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Asymptotic solutions: bulk and boundary equations

Bulk equation for antiplane mode: u = {0, 0, w}

Bulk equations for plane modes: u = {vr, vθ, 0}
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Asymptotic solutions: bulk and boundary equations

Bulk equation for antiplane mode: u = {0, 0, w}

µ∆w + µ `2s ∆∆w = 0

Bulk equations for plane modes: u = {vr, vθ, 0}

µ∆v + (λ+ µ)∇(div v)− µ∆
[
`2e ∆v + (`2e − `2s) curl curl v

]
= 0
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for r < dII ⇒ ∆
[
`2e ∆v + (`2e − `2s) curl curl v

]
= 0

Asymptotic solutions are found as:

w = rαW (θ), vr = rαVr(θ), vθ = rαVθ(θ),

solving differential boundary problems for the functions W , Vr, Vθ in [−π, π]:
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for r < dII ⇒ `2s ∆∆w = 0

Bulk equations for plane modes: u = {vr, vθ, 0}

for r < dII ⇒ ∆
[
`2e ∆v + (`2e − `2s) curl curl v

]
= 0

Asymptotic solutions are found as:

w = rαW (θ), vr = rαVr(θ), vθ = rαVθ(θ),

solving differential boundary problems for the functions W , Vr, Vθ in [−π, π]:

t = 0, on the lips L±

τ = 0, on the lips L±

f = 0, in the tip o
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Antiplane mode

The asymptotic strain-gradient solution is:

w(r, θ) = CIIIr
3/2

(
3 sin θ/2

16 (`s/`t)2 − 3
− sin

3θ

2

)
,
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− sin
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)
,

while the standard far-field solution is wf = KIII
√
r sin

θ

2
.

Vidoli (Sapienza) Strain-gradients and fracture mechanics 31 / 42



Antiplane mode

The asymptotic strain-gradient solution is:

w(r, θ) = CIIIr
3/2

(
3 sin θ/2

16 (`s/`t)2 − 3
− sin

3θ

2

)
,

while the standard far-field solution is wf = KIII
√
r sin

θ

2
.

Matching w(θ = π) and wf (θ = π) and imposing ψ1 ' ψ2 we estimate the radius of
validity d/`s as function of `t/`s ∈ [0, 2]:
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Matching w(θ = π) and wf (θ = π) and imposing ψ1 ' ψ2 we estimate the radius of
validity d/`s as function of `t/`s ∈ [0, 2]:
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For most materials:

d ' 0.5`s

In agreement with (Radi, IJSS 2008) estimate

obtained by Wiener-Hopf technique

Vidoli (Sapienza) Strain-gradients and fracture mechanics 31 / 42



Plane strain modes

Imposing only t = 0 and τ = 0 on the lips...

...the asymptotic strain-gradient solution is both symmetric:

vI
r = r3/2 [C2 (−2 cos θ/2 + (2/5− k6) cos 5θ/2) + C4 (−k2 cos 3θ/2 + k7 cos 5θ/2)] ,

vI
θ = r3/2 [C2 ((2/5− 6k6) sin θ/2− (2/5− k6) sin 5θ/2) +

+C4 (k8 sin θ/2− 2 sin 3θ/2− k7 sin 5θ/2)] ,

and skew-symmetric:

vII
r = r3/2 [C1 (k1 sin θ/2 + k2 sin 3θ/2 + k3 sin 5θ/2) + C3 (k4 sin θ/2 + k5 sin 5θ/2)] ,

vII
θ = r3/2 [C1 (−2 cos 3θ/2k3 cos 5θ/2) + C3 (−2 cos θ/2 + k5 cos 5θ/2)] ,

for k1... k8 assigned functions of the material characteristic lengths `e, `b, `s, γ3.

Two constants for the symmetric and two for the skew-symmetric mode!
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Plane strain modes: symmetric part

When evaluating the edge force f in the crack tip o one obtains:

fi = 〚PiBknkνB〛 ⇒ f1 = αC2 + β C4, f2 = f3 = 0

For a vanishing edge force in o the constants C2 and C4 are related!

Hence in plane strain-gradient elasticity there is only one symmetric opening mode (heir
of mode I), but two skew-symmetric opening modes.

Vidoli (Sapienza) Strain-gradients and fracture mechanics 33 / 42



Plane strain modes: symmetric part

When evaluating the edge force f in the crack tip o one obtains:

fi = 〚PiBknkνB〛 ⇒ f1 = αC2 + β C4, f2 = f3 = 0

For a vanishing edge force in o the constants C2 and C4 are related!

Hence in plane strain-gradient elasticity there is only one symmetric opening mode (heir
of mode I), but two skew-symmetric opening modes.

Vidoli (Sapienza) Strain-gradients and fracture mechanics 33 / 42



Plane strain modes: symmetric part

When evaluating the edge force f in the crack tip o one obtains:

fi = 〚PiBknkνB〛 ⇒ f1 = αC2 + β C4, f2 = f3 = 0

For a vanishing edge force in o the constants C2 and C4 are related!

Hence in plane strain-gradient elasticity there is only one symmetric opening mode (heir
of mode I), but two skew-symmetric opening modes.

Vidoli (Sapienza) Strain-gradients and fracture mechanics 33 / 42



Plane strain modes: symmetric part

For the symmetric part of the solution:

vI
r = CI r

3/2 (−2 cos θ/2 + h1 cos 3θ/2 + h2 cos 5θ/2) ,

vI
θ = CI r

3/2 (h3 sin θ/2 + h4 sin 3θ/2− h2 sin 5θ/2) ,
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Plane strain modes: symmetric part

For the symmetric part of the solution:

vI
r = CI r

3/2 (−2 cos θ/2 + h1 cos 3θ/2 + h2 cos 5θ/2) ,

vI
θ = CI r

3/2 (h3 sin θ/2 + h4 sin 3θ/2− h2 sin 5θ/2) ,

Matching with the standard far-field solution of mode I

uf = KI
√
r {(5− 8ν) cos(θ/2)− cos(3θ/2), (8ν − 7) sin(θ/2) + sin(3θ/2), 0}
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Plane strain modes: symmetric part

For the symmetric part of the solution:

vI
r = CI r

3/2 (−2 cos θ/2 + h1 cos 3θ/2 + h2 cos 5θ/2) ,

vI
θ = CI r

3/2 (h3 sin θ/2 + h4 sin 3θ/2− h2 sin 5θ/2) ,

Matching with the standard far-field solution of mode I

uf = KI
√
r {(5− 8ν) cos(θ/2)− cos(3θ/2), (8ν − 7) sin(θ/2) + sin(3θ/2), 0}

and imposing ψ1 ' ψ2, we estimate the radius d/`e as function of `b, `s and ν
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Strain-gradient materials and cohesive forces

P

R

g

dI
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Strain-gradient materials and cohesive forces

P

R

g

dI

Barenblatt COD solution:

wB(r) =
2

πµ

[(
P
√
R

+

∫ ∞
0

g(s)
√
s
ds

) √
r +

(
P

R3/2
+

∫ ∞
0

g(s)

3 s3/2
ds

)
r3/2 + ...

]

Vidoli (Sapienza) Strain-gradients and fracture mechanics 35 / 42



Strain-gradient materials and cohesive forces

P

R

g

dI

Barenblatt COD solution:

wB(r) =
2

πµ

(
−

1

R

∫ ∞
0

ĝ(s)
√
s
ds+

∫ ∞
0

ĝ(s)

3 s3/2
ds

)
r3/2 + ... with ĝ(s) = ĝ(P )(s)
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Strain-gradient materials and cohesive forces

P

R

g

dI

Barenblatt COD solution:

wB(r) =
2

3π µ

(∫ ∞
0

ĝ(s)

s3/2
ds

)
r3/2 + ... with ĝ(s) = ĝ(P )(s)
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Strain-gradient materials and cohesive forces

P

R

g

dI

Barenblatt COD solution:

wB(r) =
2

3π µ

(∫ ∞
0

ĝ(s)

s3/2
ds

)
r3/2 + ... with ĝ(s) = ĝ(P )(s)

Strain-Gradient COD solution:

wSG(r) = lim
θ→π

w = CIII
32 `2s

3`2t − 16`2s
r3/2 + ...
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Strain-gradient materials and cohesive forces

P

R

g

dI

Barenblatt COD solution:

wB(r) =
2

3π µ

(∫ ∞
0

ĝ(s)

s3/2
ds

)
r3/2 + ... with ĝ(s) = ĝ(P )(s)

Strain-Gradient COD solution:

wSG(r) = lim
θ→π

w = CIII
32 `2s

3`2t − 16`2s
r3/2 + ...

Strain-Gradient materials can be seen as “equivalent” to cohesive forces ...
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Equivalent cohesive force and energy release for antiplane mode

2

3πµ

(∫ ∞
0

g3(s)

s3/2
ds

)
= CIII

32 `2s
3`2t − 16`2s

=: TIII JIII =
72π `2s `

2
t

(
8 `2s − `2t

)(
16 `2s − 3 `2t
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III
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Equivalent cohesive force and energy release for inplane opening

For purely symmetric far-field data (only CI 6= 0), the equivalent cohesive force TI ...
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For purely symmetric far-field data (only CI 6= 0), the equivalent cohesive force TI ...

TI = 8192µ `2e CI

[
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(
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)2
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∗

∗
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... and the energy release rate JI

JI = 1152π`2e`
2
s

(
3`2b − 8γ3 − 16 (`e − 3`s) (`e − `s)

) (
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Equivalent cohesive force and energy release for inplane opening

For LM materials TI = 128`2eCI
1− ν

9− 24ν
; for couple-stress TI = 0.

For LM materials JI = 128π`2e
(1− 2ν)(7− 4ν)

(3− 8ν)2
; for couple-stress JI = 0.
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Observable deformations for antiplane mode

r > dI > d r < dII < d
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Observable deformations for antiplane mode

r > dI > d r < dII < d
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The inversion angle αi is a monotone
function of the ratio `t/`s!
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Observable deformations for inplane opening

Deformations at critical value of the energy release rate
∣∣∣∣ ∂E∂L

∣∣∣∣ = Ḡ
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This “ovalization” effect can be measured; its intensity is a monotone function of `b/`e!
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Current work and future directions

Identification from geometry to strain-gradient moduli

⇒ (`e, `b, ...)
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Current work and future directions

Identification from geometry to strain-gradient moduli

⇒ (`e, `b, ...)

Cohesive forces and strain-gradient materials (bi- and tri-linear cohesive models)

Numerical implementations (FE, NURBS, dedicated SG elements)

Experimental tests to measure the material characteristic lengths

Kt = µA

(
R2

2
+ `2t

)
Methods based on measures of

torsional/bending rigidity (Lakes, IJSS 1986)

αi = 2 cos−1

(
2√

16− 3(`t/`s)2

)
Direct measurement of analytical effects
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