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Nonlocal and strain-gradient elasticity
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Sta) = [ Ko 9)E() dy, &)
D

for some suitable kernel k.

Vidoli (Sapienza) Strain-gradients and fracture mechanics 2/ 42



Nonlocal and strain-gradient elasticity

For nonlocal elasticity:
Sta) = [ Ko 9)E() dy, (1)
D
for some suitable kernel k.

Strain-gradient (second-gradient) elasticity is a particular case of (1) for kernels which
decay sufficiently fast.

Vidoli (Sapienza) Strain-gradients and fracture mechanics 2/ a2



Nonlocal and strain-gradient elasticity

For nonlocal elasticity:
Sta) = [ Ko 9)E() dy, (1)
D
for some suitable kernel k.

Strain-gradient (second-gradient) elasticity is a particular case of (1) for kernels which
decay sufficiently fast.

Suppose k(z,y) — 0 as ||y — z|| > ¢;

Vidoli (Sapienza) Strain-gradients and fracture mechanics 2/ 42



Nonlocal and strain-gradient elasticity

For nonlocal elasticity:
Sta) = [ Ko 9)E() dy, (1)
D
for some suitable kernel k.

Strain-gradient (second-gradient) elasticity is a particular case of (1) for kernels which
decay sufficiently fast.

Suppose k(z,y) — 0 as ||y — z|| > £; then for £ sufficiently small and differentiable
strain/stress fields from (1) one obtains (Eringen, 1983)

(S — 2A8)(z) = C(x)E(x),
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Nonlocal and strain-gradient elasticity

For nonlocal elasticity:
S(e) = [ ke 0) () dy, (1)
D
for some suitable kernel k.

Strain-gradient (second-gradient) elasticity is a particular case of (1) for kernels which
decay sufficiently fast.

Suppose k(z,y) — 0 as ||y — z|| > £; then for £ sufficiently small and differentiable
strain/stress fields from (1) one obtains (Eringen, 1983)

(S — 2A8)(z) = C(x)E(x),

or
S(z) = C(x)E(x) + P AE(x)

both distinguished features of strain-gradient theories.
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Outline

Despite being the simplest form of nonlocal elasticity much remains to be done in terms
of:
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Relevant basic references

@ Mindlin Micro-structure in linear elasticity. Arch Rat Mech Anal 16, 1964

Sokolowski Theory of couple-stresses in bodies with constrained rotations. In CISM
Courses and Lectures 26, 1970

o Germain La méthode des puissances virtuelles en mécanique des milieux continus:
Théorie du second gradient. J Mécanique 12, 1973

Eringen On differential equations of nonlocal elasticity. J App/ Phys 54, 1983

PS: (Aifantis, /JSS 2011) reviews the relevant anglo-saxon literature.
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Stored elastic energy

Denote: placement: z. := xa(X;), X € D
deformation: Fui := Xa,i,
rotation and stretch: F,; = Ra; Uji, R € Ortht, U € Sym
strain:  Ejj := (Uni Unj — 045)/2,
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Stored elastic energy

Denote: placement: z. := xa(X;), X € D
deformation: Fui := Xa,i,
rotation and stretch: F,; = Ra; Uji, R € Ortht, U € Sym
strain:  Ejj := (Uni Unj — 8i5)/2,

The stored elastic energy v is assumed to depend on both the deformation F' and its
gradient VF. The request for ¢ to be objective means that:

Y(F, VF) =¢(QF, QVF), VQ € Orth
The objectivity condition with Qga = Rag implies

Y(Fui, Faij) = Y(QpaFai, QsaFais) =
=(98;Uji, Rap Rat,j Ui + Ukij),

where both RTVR and VU appear.
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Stored elastic energy

Fortune&Vallée (2001) have solved the nonlinear compatibility equations

curl (RU) =0

Vidoli (Sapienza) Strain-gradients and fracture mechanics 6/ 42



Stored elastic energy

Fortune&Vallée (2001) have solved the nonlinear compatibility equations
curl (RU) =0

to obtain explicitly RT VR in terms of VU, namely
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where €., is the Levi-Civita alternator.
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Stored elastic energy

Fortune&Vallée (2001) have solved the nonlinear compatibility equations
curl (RU) =0

to obtain explicitly RT VR in terms of VU, namely

_ Efim _ Ly
RafRal,k = detU (Uml (curl U)nl QU” (CurlU)ij 5mn> Unk

where €., is the Levi-Civita alternator. Hence we conclude that every objective stored
energy must be written in the form:

Y(F, VF) = (U, VU) = (B, VE)

Remark: this result readily extends to continua with gradient of arbitrary order!

Y(F, VF, VVF,..)=¢(E, VE, VVE, ...
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Decomposition of strain gradient VE

Every third order tensor, say E;jk, symmetric with respect to its first two indices can be
decomposed:

_ 1 ~ ~
Eijr = Eijr + 3 (Ejkl By +€in Elj) ;
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Decomposition of strain gradient VE
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- 1 . -
Eijx = Eijr + 3 (Ejkl Epi + €irt Elj) ,
where

= Eijkx + Eiki + Erij

ijk = 3 , completely symmetric (10 comp.)

By = eijr Bijk, deviatoric (8 comp.)
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Decomposition of strain gradient VE

Every third order tensor, say E;jk, symmetric with respect to its first two indices can be
decomposed:

- 1 . -
Eijx = Eijr + 3 (Ejkl Epi + €irt Elj) ,
where

= Eijkx + Eiki + Erij

ijk = 3 , completely symmetric (10 comp.)

By = eijr Bijk, deviatoric (8 comp.)

For infinitesimal deformations, the strain gradient components E:
By =w, w=curly,

These are the only strain-gradient components used in "couple-stress"
or Cosserat theories where ¢ = ¢(E, gradw).
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Principle of Virtual Working

Corresponding to ¢(E, VE), one obtains

oy
OE,-]- ’

oY
OEij 1’

Sij = P =

as the second Piola-Kirchhoff stress and hyperstress.
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Principle of Virtual Working

Corresponding to ¢(E, VE), one obtains

_ 9
T OEy’

oY
8E¢j’k7

Sij Pijr =

as the second Piola-Kirchhoff stress and hyperstress.

The associated internal working

Wing = /D (Sij Eij + Pin EU;,) = ..
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Principle of Virtual Working

Corresponding to ¢(E, VE), one obtains

oy
OE,-]- ’

oY
8E¢j’k7

Sij = Pijr =

as the second Piola-Kirchhoff stress and hyperstress.

The associated internal working
Wint = / (Sij Eij + Pin E7Jh) =..
D

corresponds, integrating by parts, to model more refined contact actions:

. . 8 -(\ g .
.= / baXa +/ taXa +/ TC\:[L + / faXa = Wext
* oD* oD* on JooD*
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Balance equations and Cauchy theorem

The resulting balance equations are expressed as (Germain, 1973):
[Foi (Sij — Pijri)]; + Jba =0, on D,
Foi (Sij — Piji,ie) nj — (QBJ-FMPL-J-;an)ﬁ = Jsta, on 0D,
FoiPijkngn; = JsTa on 0D,
[QBjFaiPijknevs] = Jrfa on 00D,
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Balance equations and Cauchy theorem

The resulting balance equations are expressed as (Germain, 1973):
[Fai (Sij — Pijek)] j +Jba =0, on D,
Foi (Sij — Pijii) nj — (QpjFaiPijeng) g = Jsta, on 0D,
FoiPijkngn; = JsTa on 0D,

[QBjFaiPijknevs] = Jrfa on 90D,

The quantity:
Se =S —divP

is usually called the effective stress.
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A thicker boundary ...

The boundary is actually composed by two-layers:
/ L, e _ / _ Oxe
a5 — t 5
aD* on op=  On

\t

D

"Couple-stress" theories
Sokolowski(1970)

Vidoli (Sapienza)

D

Complete strain-gradient theories

Germain (1973)
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. with possible edges 00D*

Wext = ... +/ faXa
80D*

For instance:

fi = [PiBrnkve] =
n = z’Bk(nng - n,:l/];)

with n* and v* the normal and the
Darboux tangent-normal vectors.
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. with possible edges 00D*

Wext = ... +/ faXa
80D*

For instance:

fi = [PiBrnkve] =
n = in(nng - n;l/];)

with n* and v* the normal and the
Darboux tangent-normal vectors.

The only hyperstresses which does not imply edge tractions are in the form:
P=m®I Pijk = T 0jm Omk,

for some vector field 7 = 7(E, VE). (PodioGuidugli&Vianello, 2010) %
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Linear isotropic constitutive relations

The simplest case is to assume ¢ (E, VE) to be a quadratic form (neoHookean).
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Linear isotropic constitutive relations

The simplest case is to assume ¢ (E, VE) to be a quadratic form (neoHookean).
The Piola-Kirchhoff stress and hyperstress are then linear in E and VE:

oY(E, VE
Sij = % = Cijnk Enk + Hijnkm Enk,m,
ij
OU(E, VE
Pijn = wéEih) = Hijnim Erm + Gijhkmn Erm,n.
7,
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Linear isotropic constitutive relations

The simplest case is to assume ¢ (E, VE) to be a quadratic form (neoHookean).
The Piola-Kirchhoff stress and hyperstress are then linear in E and VE:

oY(E, VE
Sij = % = CijneFEnk + Hijnkm Enk,m,
ij
OW(E, VE
Pijn = wéEih) = Hijnim Erm + Gijhkmn Erm,n.
7,

Using results of (Suiker&Chang, 2000) for high-order isotropic tensors, we obtain:
Cijrr = ANBij6r 4 1 (6ik851 + 6ad5k) , Hijrp =0
Gijkipg = 2 (8ij0ki0pq + 0ijOkpdiq + 0ikdiq0up + Giqdikbip) +
¢3 (8i50kq0p) + ¢5 (8:k0510pq + 6ik8jpdiq + 0i10ikdpq + dipdixdig) +
€11 (5il5jp5kq + 5iz75jl‘§kq) +
c15 (8i10;q0kp + 0ipdjqOkt + Siqd;10kp + 0iq0jpOki)
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Convexity of stored energy

For the energy 1 to be convex in both its arguments, since H = 0 then, as usual:

w>0, 3\ +2u > 0.
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Convexity of stored energy

For the energy 1 to be convex in both its arguments, since H = 0 then, as usual:

w>0, 3\ +2u > 0.

The conditions for the ca, ¢3, ¢5, c11 and c15 can be computed by using the Sylvester
criterion® on the Voigth representation of G;xipg, @ 18 x 18 matrix.

LA matrix is positive definite iff the determinants of all its upper-left submatrices are %
positive.
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Convexity of stored energy

For the energy 1 to be convex in both its arguments, since H = 0 then, as usual:
w>0, 3\ +2u > 0.

The conditions for the ca, ¢3, ¢5, c11 and c15 can be computed by using the Sylvester
criterion® on the Voigth representation of G;xipg, @ 18 x 18 matrix.

A suitable decomposition of P and VE:
P = {ﬁllh Piao + ﬁ133, P32 — 1323, -~~>13123}7
VE = {E111, E122 + E133, E32 — Ezs, ---,E123},

reduces to 3 the maximal dimension of the constitutively coupled blocks and renders the
application of the Sylvester criterion feasible.

LA matrix is positive definite iff the determinants of all its upper-left submatrices are %
positive.
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Hyperstress and strain-gradient decompositions

By standard graph theory algorithms (MinimumBandwidthOrdering, MinCut... )

_ P 7 2v1—72 3 _ B
Pioo+ P33 | =| 2v1—72 4dn+vr2 2 F122 4+ F133 | -
Py — Pos V3 273 V4 Eso — Fos
Py 2 -1 -1 En _ _
Poy =75 -1 2 -1 oo |, Pi2sz = 3v2E123,
ﬁss -1 -1 2 Ess

Piaa — Piaz = 370 (5‘122 - E133) , Ps2 4 Pa3 =675 (E32 + E23> y e

2
where v1 = 2 (c11 + 2¢15) 4+ 4ca + c3 + 4es, 2 = 4 (c11 + 2¢15), 73 = 3(405 — 2c2 — 2¢3),

8 4
Y4 = §(3611 — 3c15 — 4ea + 2¢3 + 2¢5), 15 = §(011 —c15).
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Hyperstress and strain-gradient decompositions

By standard graph theory algorithms (MinimumBandwidthOrdering, MinCut... )

_ Pu 71 2vi—v2 3 _ Ein
Pioo+ P33 | =| 2v1—72 4dn+vr2 2 F122 4+ F133 | -
Pso — Pos V3 273 V4 Eso — Fos
Py 2 -1 -1 En _ _
Poy =75 -1 2 -1 oo |, Pi2sz = 3v2E123,
ﬁss -1 -1 2 Ess

Piaa — Piaz = 370 (5‘122 - E133) , Ps2 4 Pa3 =675 (E32 + E23> y e

2
where v1 = 2 (c11 + 2¢15) 4+ 4ca + c3 + 4es, 2 = 4 (c11 + 2¢15), 73 = 3(405 —2c3 — 2c3),

8 4
Y4 = §(3011 — 3c15 — 4ea + 2¢3 + 2¢5), 15 = §(011 —c15).

These reduce to the "couple stress" relations derived by (Sokolowski, 1970) iff

2
=12 =73=0, ya=4C1—n)p, v5= 542(1 +n)
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Convexity of stored energy

Finally, G is positive definite iff (dell'lsola, Sciarra, Vidoli, 2009):

52
>0, 0<vy2 <5y, >—"2—, 75 >0,
571 — 72
or in terms of the constitutive parameters ¢;:
c11
c11 >0, -5 <c5 <c11, Sc3 +4cr1 > 25,

)

c3 (3C11 + C15) + 2 (C%l - 56% — 6c15Cc2 — 20%5 + c11 (262 + 015))

4c15 — 10c3 — 8¢

cs >
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Convexity of stored energy

Finally, G is positive definite iff (dell'lsola, Sciarra, Vidoli, 2009):

52
>0, 0<vy2 <5y, >—"2—, 75 >0,
571 — 72
or in terms of the constitutive parameters ¢;:
c11
c11 >0, -5 <c5 <c11, Sc3 +4cr1 > 25,

)

c3 (3C11 + C15) + 2 (C%l - 563 — 6c15Cc2 — 20%5 + c11 (262 + 015))

cs >
5 4c15 — 10c3 — 8¢

Some results of (Unger& Aifantis, 2000) in antiplane second gradient elasticity were obtained
assuming (c5 4+ c11 + c15) > 0 which is in contradiction with (2), and corresponds to a strictly
concave energy.

®
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Under plane strain hypothesis 2D

Even in linear isotropic materia
symmetric deformations!

couple-stress" are constitutively coupled to completely
Elll Y1 291 —7v2 3 Elll

Py | = 21— 4+ 93
Pso V3

E:122
73 Y4 Fs3o
E111 and Pipy

E122 and P22
Vidoli (Sapienza)

Strain-gradients and fracture mechanics
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Characteristic lengths [vi/u] = £2

For general isotropic strain-gradient materials:

¥ = (Eij, Eijk)

272+ 975 2 + 675 2 1671 + ... + 5495 P2
== "P (A L el N N )

2 s
61t “w 144p H

+ the coupling parameter 3
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Characteristic lengths [vi/u] = £2

For isotropic couple-stress materials:

2= 3 G =1642 2 at67s 2=0
2p s 16 1

+ the coupling parameter v3 = 0
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Characteristic lengths [vi/u] = £2

For isotropic Lazar-Maugin materials:

Y =AEiiEj; /2 + pEi; Eij + ¢ A Eiiym Ejjm /2 + ¢ p Eijom Eijm

2 . )
b =2 f§=%(3+/\/u) t=c 2 =c(24+Mpn
. dhc A 2v
+ the coupling parameter v3 = ——— A
3u o 1—-2v
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When strain-gradient effects are important?

W(E, VE):%CE-E+%GVE~VE
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When strain-gradient effects are important?

Y(E, VE) = i(E) + ¢2(VE)
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When strain-gradient effects are important?

Y(E, VE) = i(E) + ¢2(VE)

In which processes
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When strain-gradient effects are important?

A simple one-dimensional analysis call for displacement fields with:
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When strain-gradient effects are important?

A simple one-dimensional analysis call for displacement fields with:

o either high spatial oscillations: porous, granular, microstructured materials

. Y2 KG 2
u=1usin(kx = S~ ———0 = (kY
ko) = 5= Tep = *0
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o either high spatial oscillations: porous, granular, microstructured materials

. Y2 KG 2
u=1usin(kx = S~ ———0 = (kY
ko) = 5= Tep = *0

@ or localization phenomena: stress concentrations, fracture, boundary layers
o (a— 1G] _ (a—1)%
Y1 (@ —z)?|C (2 —x0)?

u=1u(z—x)* =
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When strain-gradient effects are important?

A simple one-dimensional analysis call for displacement fields with:

o either high spatial oscillations: porous, granular, microstructured materials

. V2 K|G] 2
u=1usin(kx = S~ ——" = (k/
he) = 5= Ter —®9

@ or localization phenomena: stress concentrations, fracture, boundary layers
Y2 (a=17|G| _ (a—1)*
Y1 (@ —z)?|C (2 —w0)?

u=1u(z—x)* =

< )QQ
=

LB

O
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When "couple stress" are sufficient?

@ Torsion of a prismatic strain-gradient cylinder; for a circular section the torsional
stiffness is:

R2
Ki=plp+pli A=pA (7+£f),

being R the cross-section radius and ¢, the torsional characteristic length.
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When "couple stress" are sufficient?

@ Torsion of a prismatic strain-gradient cylinder; for a circular section the torsional
stiffness is:

R2
Ki=plp+pli A=pA (7+Zf),

being R the cross-section radius and ¢, the torsional characteristic length.

o (Radi, 2008) solved the mode Il fracture under the antiplane hypothesis using the
standard couple-stress theory

o ;2 AN
Aw— plPAAw =0
pew—p v .
®

His results are extended to the complete second-gradient case by simply renaming
the constants: all relevant effects are already included.

®
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When "couple stress" are not sufficient?

F.ve:F.'Ue"‘Ui

The Flamant-Boussinesq problem: a simple contact problem at the micro scale
Ve —
+ F-
2

(%

3 =
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When "couple stress" are not sufficient?

F.ve:F.'Ue"‘Ui

The Flamant-Boussinesq problem: a simple contact problem at the micro scale
Ve —
+ F-
2

(%

3 =

B2
F Oxn
= F- v + .
x 2 On
Membrane piercing, material nanoindentation, surface tension problems...
Vidoli (Sapienza)
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When "couple stress" are not sufficient?

Moreover for a general isotropic material 3 couples the E and E deformations!
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When "couple stress" are not sufficient?

Moreover for a general isotropic material 3 couples the E and E deformations!

Finally there are problems where the differential elongation components (i.e. Ei1,1),
neglected by couple-stress theories, play a dominant role:

@ Fracture in mode | and |l
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When "couple stress" are not sufficient?

Moreover for a general isotropic material 3 couples the E and E deformations!

Finally there are problems where the differential elongation components (i.e. Ei1,1),
neglected by couple-stress theories, play a dominant role:

@ Fracture in mode | and |l

D)
<l
Mode I
Vidoli (Sapienza) Strain-gradients and fracture mechanics
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What we have studied?

The three classical opening modes for a general material with £, £, 5, £ and 73

Mode I Mode III
For Lazar-Maugin materials For couple-stress materials
(Grentzelou & Georgiadis, JMPS 2009) (Radi, 1JSS 2008)
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Griffith laws

Let £ = / 1) be the stored energy and L(t) the crack length at time(load) ¢.
D
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Griffith laws
Let £ = / 1) be the stored energy and L(t) the crack length at time(load) ¢.
D
GRIFFITH LAWS

t
1. L /: the crack can only grow;

o€
2. —a—L(t,L(t)) < @G: the energy release rate is bounded from above by the toughness G;

o€ .
3. (B—L(t, L(t)) + G) L = 0: the crack will not grow unless the energy release rate is critical.
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Griffith laws

Let £ = / 1) be the stored energy and L(t) the crack length at time(load) ¢.
D

Let ¢(-,t) : Do — D a one-parameter transformation of the reference configuration.

Vidoli (Sapienza)

GRIFFITH LAWS

1L
o€
2. 5 (LL) <@
o :
3. (ﬁ(t,L(t)) +G) L=0
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Griffith laws

Let £ = / 1) be the stored energy and L(t) the crack length at time(load) ¢.
D

GRIFFITH LAWS

1L
o
2. 5 (LL) <@

3. (%(t,L(t)) + G) L=0

Let ¢(-,t) : Do — D a one-parameter transformation of the reference configuration.
Since ¢ = ¢ (E, VE) one obtains:

&= &3 . — /;D{Qp b+ (gl — ul,m(i)’m> + 7 (Qz — uz,mém),qnq}

[ [ (o )] O
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Energy Release Rate for crack-opening

For a map ¢ to describe crack opening choose:
X+ Ley,

S(X, L) = X+<1_||X—0|I—T0

if || X — ol <o,
r1(L) — 7o
X,

) Ley, if ro<||X —o| <ri(L):=r9+al

if 71(L) <|IX —oll

Vidoli (Sapienza)

o
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Energy Release Rate for crack-opening

For a map ¢ to describe crack opening choose:
X+ Ley,

(X 1) X+<1_ IX = oll — 7o

if | X — ol <o,
Ley, if ro<||X —o| <ri(L):=r9+al
ri(L) —ro
X,

if 71(L) <|IX —oll

This correspond to:

¢=elv v¢:03

$=0, Vé=0,

forr <ry,

for r > rq,

Vidoli (Sapienza)
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Generalized J-integral

For each By C Dg with inner radius 7, < ro and outer radius 7, > 71

Vidoli (Sapienza)
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Generalized J-integral

Ta

For each By C Dg with inner radius 7, < ro and outer radius 7, > 71
n,

(¥n1 —tiugs — miugigng) — (o uz,1)|P;r + (fi ul,1)|P—

:J(Ta)
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Generalized J-integral

For each By C Dg with inner radius 7, < ro and outer radius 7, > 71
n,
Ty

(¥n1 —tiugs — miugigng) — (o uz,1)|P;r + (fi ul,1)|P—

:J(Ta)

’

The energy release rate for the whole Dy is:

Tqa—0

Epy = lim J(T,)
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Generalized J-integral

For each By C Dg with inner radius 7, < ro and outer radius 7, > 71

En, =/ (Yn1—trug s —mugng) — (7 uz¢1)|p+ + (fi Uz,1)|p— = J(Ta)
Fa a a

The energy release rate for the whole Dy is:

Ep, = lim J(T,)

7q—0

o Iy, #T, as T, does include the end points!
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Generalized J-integral

For each By C Dg with inner radius 7, < ro and outer radius 7, > 71

En, =/F (¥m1 —trugs — miu1gmg) — (f uz¢1)|p“+ + (fi Uz,1)|pa— =:J(Ta)

The energy release rate for the whole Dy is:

Ep, = lim J(T,)

7q—0

o Iy, #T, as T, does include the end points!

@ The limit is well-posed since: J(fa) =0 forre, <ro

ora
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T #T: does it matter?
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T #T: does it matter?

For LM materials Gourgiotis & Georgiadis have found the solution of mode | and Il
3 0 3(16v — 11) 30 3(11 — 16v) 30
v = r2 {Al ((3—8u)cos7+7 cos—>+A (7
2 32v — 41 2 32v — 41
) 12 0  3(11—16v) _ 36 50
+Bj sin — + By ( sin sin — + sin —)]
2 37 — 32v 2 32v — 37
3 0  3(13—16v) _ 30 3(16v — 13) . 30
vg= 12 {Al ((978u)sin7+7sin—)+A2(7 sin — —
2 32v — 41 32v — 41 2

0 3(13 — 16v) 30 56
—Bj cos — + Ba (7 cos — -+ cos —)]
2 32v — 37 2 2

with Ay = A1 (32v — 35)/6.

Vidoli (Sapienza)
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T #T': does it matter?

Ty

For LM materials Gourgiotis & Georgiadis have found the solution of mode | and Il
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T #T': does it matter?

For LM materials Gourgiotis & Georgiadis have found the solution of mode | and Il
NNRREEE

d(v) ci(v) ca(v) Ax Aq
J = c1(v) en1(v) ei2(v) B, . By
ca(v) e1a(v) ean(v) Bs Bo

The J-integral is not a quadratic diagonal form of the amplitude factors!

Responsible for the coupling out-of-diagonal terms are the edge-forces contributions.

Vidoli (Sapienza)
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What we have studied?

Having established the correct expression for the energy release rate:

Ep, = lim {/ (Yn1 —tiw, — Tiwigng) — (frw) pr + (fi ’“’“)P*]
T

r—0

we study the classical opening modes for a general material (4, £y, L5, e, 73)

Mode II Mode III
For Lazar-Maugin materials For couple-stress materials
(Gourgiotis & Georgiadis, JMPS 2009) (Radi, 1JSS 2008)

O
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Asymptotic solutions

if 7 > d; then v, (E) is dominant

u o /7 (FAR FIELD)

Vidoli (Sapienza)

Strain-gradients and fracture mechanics

©

DA

20 / 42



Asymptotic solutions

if 7 > d; then v, (E) is dominant

u o /7 (FAR FIELD)

if » < dg then ¥2(VE) is dominant

3/2
UO(T/
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Asymptotic solutions

if 7 > d; then v, (E) is dominant

u o /7 (FAR FIELD)

if » < dg then ¥2(VE) is dominant

3/2
wocr?
For each mode:
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Asymptotic solutions

if > d; then 1 (F) is dominant

u o /7 (FAR FIELD)

if r < dy then ¢2(VE) is dominant
woc r’/?
For each mode:

estimate the distance d at which ¢1(E) ~ ¢2(VE)

Vidoli (Sapienza)
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Asymptotic solutions

if > d; then 1 (F) is dominant

u o /7 (FAR FIELD)

if r < dy then ¢2(VE) is dominant

3/2
UXT

For each mode:
@  estimate the distance d at which ¢ (E) ~ ¢2(VE)

o describe the detailed solution inside r < dy

Vidoli (Sapienza) Strain-gradients and fracture mechanics 29 / 42



Asymptotic solutions: bulk and boundary equations

Bulk equation for antiplane mode: v = {0, 0, w}

Bulk equations for plane modes: u = {vr, vo, 0}
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Asymptotic solutions: bulk and boundary equations
Bulk equation for antiplane mode: v = {0, 0, w}

pAw+ pl? AAw =0
Bulk equations for plane modes: u = {vr, ve, 0}

wAY + (A =+ p) V(dive) — p A [/i Av + (02 = 02) curl curl v] =0
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Asymptotic solutions: bulk and boundary equations

Bulk equation for antiplane mode: v = {0, 0, w}

forr<dr = [fAAw:O

Bulk equations for plane modes: u = {vr, vo, 0}

forr<dy = A [/i Av + (02 = 02) curl curl v] =0
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Asymptotic solutions: bulk and boundary equations
Bulk equation for antiplane mode: v = {0, 0, w}

forr<dr = [fAAw =0

Bulk equations for plane modes: u = {vr, vo, 0}

forr<dy = A [(5 Av + (02 = 02) curl curl v] =0

Asymptotic solutions are found as:
w=r*W(0), v =1V, (0), ve =1Vp(0),

solving differential boundary problems for the functions W, V;., Vp in [—7, 7]:
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Asymptotic solutions: bulk and boundary equations

Bulk equation for antiplane mode: v = {0, 0, w}

forr<dr = /f AAw =0
Bulk equations for plane modes: u = {vr, vo, 0}

forr<dy = A [(5 Av + (02 = 02) curl curl v] =0

Asymptotic solutions are found as:
w=r*W(0), v =1V, (0), ve =1Vp(0),
solving differential boundary problems for the functions W, V;., Vp in [—7, 7]:
t=0, on thelips £* & 0
7=0, on thelips £* L \\\

f=0, inthetipo i =
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Antiplane mode

The asymptotic strain-gradient solution is:

_ 3/2 3 Sln0/2 o 370
w(r, 0) = Cpr (716 /) =3 sin 2 |,
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Antiplane mode
The asymptotic strain-gradient solution is:
3sinf/2 10)

_ 3/2 e
w(r, 0) = Cgr (16(45/&5)2—3 sin B

. L .
while the standard far-field solution is wy = Kg+/7 sin 3
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Antiplane mode

The asymptotic strain-gradient solution is:

_ 3/2 3 Sln0/2 o 370
w(r, 0) = Cpr (716 /) =3 sin 2 |,

. . Lo .0
while the standard far-field solution is wy = Kg+/7 sin 5

Matching w(0 = 7) and wy(6 = ) and imposing 11 ~ 12 we estimate the radius of
validity d//s as function of £ /¢ € [0, 2]:
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Antiplane mode

The asymptotic strain-gradient solution is:

_ 3/2 3 Sln0/2 o 370
w(r, 0) = Cpr (716 /) =3 sin 2 |,

. . Lo .0
while the standard far-field solution is wy = Kg+/7 sin 3

Matching w(0 = 7) and wy(6 = ) and imposing 11 ~ 12 we estimate the radius of
validity d//s as function of £ /¢ € [0, 2]:

For most materials:
d~ 0.5

In agreement with (Radi, 1JSS 2008) estimate

obtained by Wiener-Hopf technique

0.0 05 10 15 20

f/ts %
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Plane strain modes

Imposing only ¢ = 0 and 7 = 0 on the lips...

...the asymptotic strain-gradient solution is both symmetric:
ol =1r3/2 [Cy (—2c0860/2 + (2/5 — ke) cos 50/2) 4+ Cy (—ka cos 30/2 + k7 cos 50/2)],
vl =1r3/2[Ca ((2/5 — 6ke)sin0/2 — (2/5 — ke) sin50/2) +
+C4 (kg sin€/2 — 2sin360/2 — k7 sin50/2)] ,
and skew-symmetric:
ol = ¢3/2[Cy (k1 sin0/2 + ko sin 30/2 + k3 sin 50/2) + Cs3 (kg sin /2 + ks sin 50/2)]
vl = 73/2 [Cy (=2 cos 30/2k3 cos 50/2) + C3 (=2 cos 6/2 + ks cos 56/2)],

for k1... ks assigned functions of the material characteristic lengths £., ¢y, €5, 3.
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Plane strain modes

Imposing only ¢ = 0 and 7 = 0 on the lips...

...the asymptotic strain-gradient solution is both symmetric:
y
ol =1r3/2 [Cy (—2c0860/2 + (2/5 — ke) cos 50/2) 4+ Cy (—ka cos 30/2 + k7 cos 50/2)],
vl =1r3/2[Ca ((2/5 — 6ke)sin0/2 — (2/5 — ke) sin50/2) +
+C4 (kg sin€/2 — 2sin360/2 — k7 sin50/2)] ,

and skew-symmetric:
ol = ¢3/2[Cy (k1 sin0/2 + ko sin 30/2 + k3 sin 50/2) + Cs3 (kg sin /2 + ks sin 50/2)]
vl = 73/2 [Cy (=2 cos 30/2k3 cos 50/2) + C3 (=2 cos 6/2 + ks cos 56/2)],

for k1... ks assigned functions of the material characteristic lengths £., ¢y, €5, 3.

Two constants for the symmetric and two for the skew-symmetric mode!
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Plane strain modes: symmetric part

When evaluating the edge force f in the crack tip o one obtains:

fi=[Piknkve] = fi=aCe+pC4, fo=f3=0
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Plane strain modes: symmetric part

When evaluating the edge force f in the crack tip o one obtains:

fi=[Piknkve] = fi=aCe+pC4, fo=f3=0

P

For a vanishing edge force in o the constants C> and C4 are related!
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Plane strain modes: symmetric part

When evaluating the edge force f in the crack tip o one obtains:

fi=[Piknkve] = fi=aCe+pC4, fo=f3=0

For a vanishing edge force in o the constants C> and C4 are related!

Hence in plane strain-gradient elasticity there is only one symmetric opening mode (heir
of mode 1), but two skew-symmetric opening modes.

®
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Plane strain modes: symmetric part

For the symmetric part of the solution:
vl = Crr3/2 (=2c0s0/2 + h1 cos30/2 + ha cos 50/2) ,
v = Crr3/2 (h3sin@/2 + hqsin36/2 — ha sin560/2)
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Plane strain modes: symmetric part
For the symmetric part of the solution:
vl = Crr3/2 (=2c0s0/2 + h1 cos30/2 + ha cos 50/2) ,
v = Crr3/2 (h3sin@/2 + hqsin36/2 — ha sin560/2)
Matching with the standard far-field solution of mode |
up = K/ {(5 — 8v)cos(0/2) — cos(30/2), (8v — 7)sin(8/2) + sin(36/2), 0}
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Plane strain modes: symmetric part
For the symmetric part of the solution:
vl = Crr3/2 (=2c0s0/2 + h1 cos30/2 + ha cos 50/2) ,
v = Crr3/2 (h3sin@/2 + hqsin36/2 — ha sin560/2)
Matching with the standard far-field solution of mode |
up = K/ {(5 — 8v)cos(0/2) — cos(30/2), (8v — 7)sin(8/2) + sin(36/2), 0}

and imposing 11 =~ 12, we estimate the radius d/{. as function of £, £5 and v
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Strain-gradient materials and cohesive forces
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Strain-gradient materials and cohesive forces

Barenblatt COD solution:

wp(r) = 2 {(\; + 000 \(f) ds) Vr+ (R3/2 +/ 3955/2 s) r3/2+.4.:|
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Strain-gradient materials and cohesive forces

Barenblatt COD solution:

wp(r) = % (—}% /0Oo %ds—i— /Ooo 3‘[}8(;/)2 ds) 2 4 with g(s) = g(P)(s)
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Strain-gradient materials and cohesive forces

Barenblatt COD solution:

wi(r) = % (/Ooo g?ffg ds) P32 4 with §(s) = §(P)(s)
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Strain-gradient materials and cohesive forces

Barenblatt COD solution:

2 > g
wi(r) = —— / 96 4} #3214 with g(s) = §(P)(s)
37T,LL 0 53/2
Strain-Gradient COD solution:
. 3242 3/2
wsa(r) = fim w=Cn g om0+
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Strain-gradient materials and cohesive forces

Barenblatt COD solution:

wi(r) = % (/Ooo g?ffg ds) P32 4 with §(s) = §(P)(s)

Strain-Gradient COD solution:

32 02

w r)= lim w=Cg ——— 73/2 4 .
sa(r) = lim LT
Strain-Gradient materials can be seen as “equivalent” to cohesive forces ... %
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Equivalent cohesive force and energy release for antiplane mode

2 o0 322 727 0202 (842 — 02
(/ g3(8)ds)=om75 =Ty g PREGEE-6) o,
0

3mp s3/2 362 — 1662 (1662 — 342)° o
N2
8r 41
—~ 6F 108 NE
= O
o N »n
o 106 %Y
S 4 &
= 104 =
= _j <
[ = =
2 -10.2
0——’// ‘ 0
0.0 0.5 1.0 15 2.0
le/ls
For LM materials £ /45 = v/2 %
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Equivalent cohesive force and energy release for inplane opening

For purely symmetric far-field data (only C1 # 0), the equivalent cohesive force T7...
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Equivalent cohesive force and energy release for inplane opening

For purely symmetric far-field data (only C1 # 0), the equivalent cohesive force T7...
£2 24 22 [2 £2 2
T; =8192ué2C; [—S <2304—S — 32 <9—b + 80) pLRE (3—1’ + 16) )] /
° 2 o 2 2 2
e e e e e
e4 42 44 e2 EQ Z2 2 6
3 (452 —32(135-L + 872 ) == +960-% — 2304 | = + (16 —3-2 ) +34560-= | =
1% % o e e 2 o

4 a
«(9-L+16(1-9-= .
Z& [E
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Equivalent cohesive force and energy release for inplane opening

For purely symmetric far-field data (only C1 # 0), the equivalent cohesive force T7...

£2 24 22 l2 22 2
T; =8192ué2C; [ s <2304—S — 32 (9—b +80> pEANE (3—1’ + 16) )] /
° 02 o4 2 2 2
e e e e e
Z4 42 44 Z2 ZQ ZZ 2 ZG
3(45-L —32(135-L +872) —= + 9602 — 2304 | -2 + (16 —3-2 | + 34560-= | «
o4 Z] o4 2 2 2 I

: : :
02 02

(902 y16(1-9-= .
2 £

. and the energy release rate Jr

e

Jr = 1152me202 (367 — 873 — 16 (L — 305) (e — £5)) (=363 + 83 + 16 (Le + £) (Ce +3£5) ) *
(230465 (8162 — 725 + 89662 ) + 1662 (48¢2 (104+5 — 26162) + 27 (873 — 3¢2) (962 + 83) +
vioet) 5 (st (50 20n) 9 (0 95) (3 )+ (s 30
(362 + 8v3) + 6553668 ) + £ (362 — 845 — 1662 ) 2 (942 + 245 + 1662) — 995328¢5 ) /
[(963 + 247 + 16 (¢2 — 9¢2) ) (3262 (—13563 + 360~ — 872¢2) + 32 (32002 (363 — 83 +

+5 (8'\/3 - 3@3) 2 _ 2304@‘;) +e2 (7342, +8v3 + 16[3) 24 34560152‘)2] %
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Equivalent cohesive force and energy release for inplane opening

[
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Equivalent cohesive force and energy release for inplane opening

/te ‘
1—
For LM materials T7 = 128[301
9—

; for couple-stress 77 = 0.
24v
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Equivalent cohesive force and energy release for inplane opening

|
-
A

L

0.4 0.6 0.8 1.0 12
(/e

1—
For LM materials T7 = 1282301972:; for couple-stress T7 = 0.
— 24v

(1—2v)(7—4v)

For LM materials J; = 1287ng (B —8)?
— 8v

; for couple-stress J; = 0. %
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Observable deformations for antiplane mode

r>dr >d

r<dp <d
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Observable deformations for antiplane mode

r>dr >d r<dp <d

120

~

?
(]
[
S 60f The inversion angle «; is a monotone
< function of the ratio £ /¢!
30t
o] . .

0.0 0.5 1.0 1.5 2.0 %
ti/ts
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Observable deformations for inplane opening

Deformations at critical value of the energy release rate

7| -

o o o o
= N w >

Ur (/4)-ur (0)/(2 ug(m)

o
o

0.0 0.5 1.0 15 20 25
lolle

[m] = =
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Current work and future directions

Vidoli (Sapienza) Strain-gradients and fracture mechanics 41 / 42



Current work and future directions

o Identification from geometry to strain-gradient moduli

= (&37&7,...)
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Current work and future directions

o Identification from geometry to strain-gradient moduli

:\:‘:‘5 = (€e7£b7 )

@ Cohesive forces and strain-gradient materials (bi- and tri-linear cohesive models)

41 / 42
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Current work and future directions

o Identification from geometry to strain-gradient moduli

= (657&7,..‘)

@ Cohesive forces and strain-gradient materials (bi- and tri-linear cohesive models)

@ Numerical implementations (FE, NURBS, dedicated SG elements)
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Current work and future directions
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