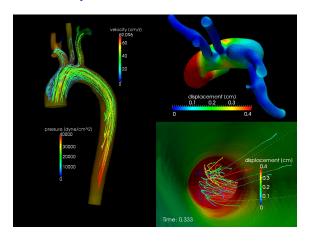
Patient-Specific Velocity Boundary Conditions from Phase Contrast Magnetic Resonance Imaging

Andrea Torti

Università degli Studi di Pavia

February 26, 2014

Supervisor: Simone Morganti, PhD

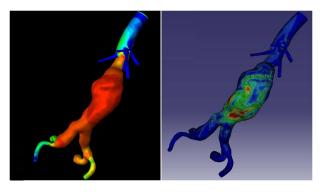

- Computational Fluid Analysis in the Biomedical Field
- Goal of the thesis
- From PC MRI data to patient-specific velocity profiles
- Conclusions and Future Works

- Computational Fluid Analysis in the Biomedical Field
- Goal of the thesis
- From PC MRI data to patient-specific velocity profiles
- Conclusions and Future Works

- Computational Fluid Analysis in the Biomedical Field
- Goal of the thesis
- From PC MRI data to patient-specific velocity profiles
- Conclusions and Future Works

- Computational Fluid Analysis in the Biomedical Field
- Goal of the thesis
- From PC MRI data to patient-specific velocity profiles
- Conclusions and Future Works

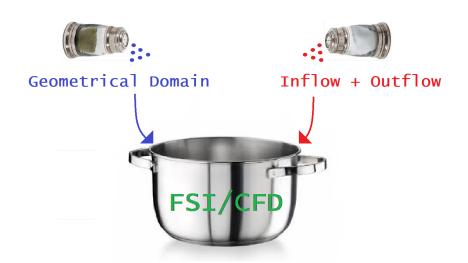
Computational Fluid Analysis

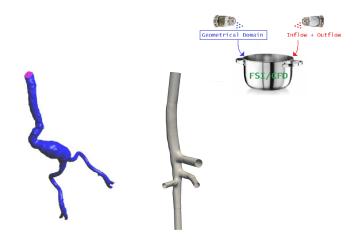

Computational Fluid Analysis (FSI/CFD) is:

- non-invasive
- potentially very accurate
- predictive

Therefore very useful in the Biomedical field

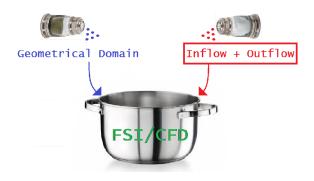
Computational Fluid Analysis (FSI/CFD)


A widely investigated issue for practical purposes:


- Gerbeau and Vidrascu, 2003 —> Algorithms for FSI
- Papaharilaou et al., 2006 —> FSI for Abdominal Aortic Walls Stress
- Bluestein et al., 2008 —> FSI for Abdominal Aortic Aneurysm

FSI/CFD Recipe

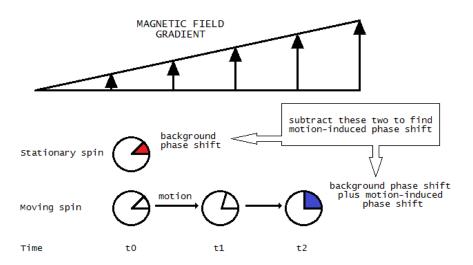
What is needed?



Geometrical Domain - Patient-Specific Approach

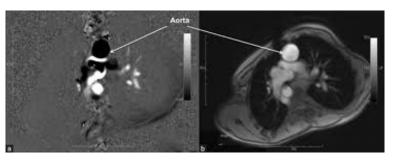
- Nealand and Kerckhoffs, 2009 —> Progress in Patient-Specific Approaches
- Auricchio et al., 2014 —> CFD for TEVAR evaluation

Aim of the thesis



GOAL

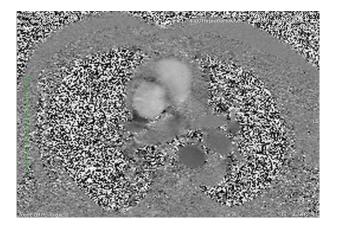
Definition of a time and space-dependent Aortic Inflow using Patient-Specific Data from Phase Contrast Magnetic Resonance Imaging


Available Data - PC MRI

PC-MRI: physical principles

PC MRI

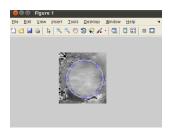
Two kinds of data



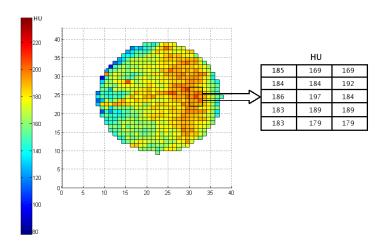
Unlike standard MRI, PC-MRI also employs information from phase maps

Clinical Data

30 phase maps (ascending aorta slice) extracted via PC MRI at I.R.C.C.S. San Donato, Milan

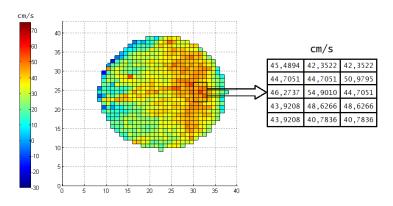

Image Cropping and Segmentation

1) Rectangular, Automatic Cropping with ImageJ

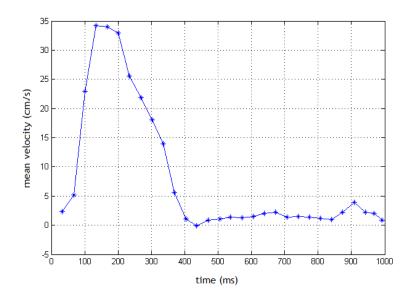


2) Elliptical, Semi-Automatic Segmentation with Matlab

From Images to Matrices

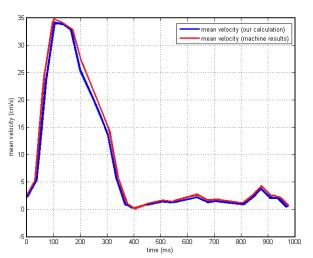


Once in Matlab, each image is related to a matrix, whose cells contain values in Hounsfield units (HU, from 0 to 255, measuring tissue density).

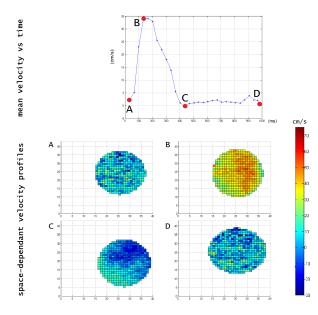

From Hounsfiel Units to Velocities

- In PC-MRI, mid-gray represents steady tissues (HU0 = 127)
- $HU_{max} = 255 \longrightarrow MRI V_{enc}$ (in this case, 200 cm/s)
- Being $R = V_{enc}/HU_{max}$, we can use the following relation:

$v(i,j) = (HU(i,j)\text{-}HU_0)R$



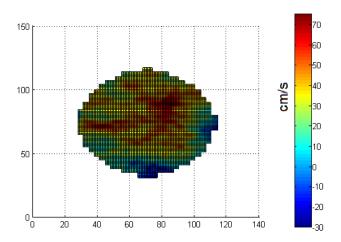
Mean Velocities Calculations


Comparing Datasets

Our Data vs Machine-provided Data

In blue, our plot representing mean velocity vs time, compared to the data provided by I.R.C.C.S. San Donato (in red)

Results


Conclusions

In the present work:

- literature review on computational fluid analysis
- collection of patient-specific PC MRI data
- elaboration of the provided data to obtain time- and space-dependant velocity profiles

Obtained patient-specific aortic inflow from PC MRI is in good agreement with machine-provided data

Future Work: Data interpolation

- Data are represented on a finer grid (but still discrete!)
- We would need an interpolant function —> (LIFE V)

Patient-Specific Velocity Boundary Conditions from Phase Contrast Magnetic Resonance Imaging

Andrea Torti

Università degli Studi di Pavia

February 26, 2014

Supervisor: Simone Morganti, PhD