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Abstract

In engineering, thanks to the increasing and intensive use of fibers for reinforce-
ment purposes, it is possible to obtain composite materials which have high mechan-
ical strength and lightness. Such materials exhibit different physical properties and
anisotropy, depending on the orientation of the fibers in the matrix. In the present
thesis, in the context of small strain, we analyze anisotropic materials with a single
family of inextensible fibers. The aim is to propose novel finite element formulations
to be used in the simulation of structures composed of fiber-reinforced materials.
We propose new formulations for the modeling of these materials, based on the use
of well-known optimization methods to treat the inextensible constraint such as the
Lagrange Multiplier, Penalty, and Perturbed Lagrangian approach. For each for-
mulation various finite elements are developed, depending on the number of nodes
(four-node and nine-node quadrangular element), and on the adopted interpolation
for the Lagrange multiplier and displacement field. The proposed finite elements are
tested on several numerical tests, to determine their performance.



Abstract

In ingegneria, grazie al crescente ed intensivo utilizzo di fibre d’armatura, è possi-
bile ottenere materiali compositi dotati di alta resistenza meccanica e leggerezza. Tali
materiali esibiscono diverse proprietà fisiche ed anisotropia, in base all’orientamen-
to delle fibre all’interno della matrice. Nella presente tesi, nel contesto delle piccole
deformazioni, analizziamo materiali anisotropi aventi un’unica famiglia di fibre ine-
stensibili. L’obiettivo è quello di proporre nuove formulazioni agli elementi finiti per
la simulazione di strutture composte da materiali fibro-rinforzati. Proponiamo nuove
formulazioni per la modellazione di questi materiali, basate sull’utilizzo di ben noti
metodi di ottimizzazione vincolata, quali Lagrange Multiplier, Penalty e Perturbed
Lagrangian. Per ogni formulazione sviluppiamo vari elementi finiti, in base al numero
di nodi (elemento quadrangolare a quattro e a nove nodi) e all’interpolazione adottata
per il moltiplicatore di Lagrange e per il campo degli spostamenti. Gli elementi finiti
proposti sono testati attraverso vari test numerici, per determinare le loro prestazioni.
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Chapter 1

Introduction

The use of fiber reinforcements for the development of new and more efficient

materials can be traced back to the 1960s. During the years, the high stiffness and

the specific resistance of the fibers have been exploited to create composite materials,

binding the reinforcement to a continuous matrix [1].

The interest towards advanced composite materials stems from the mechanical

properties of the reinforcement fibers used, which confer a significant increase in

structural efficiency. Historically, one of the first composite materials used in the

context of civil constructions can be considered the reinforced concrete, in which

the matrix is composed of concrete and the fibers are identified by the longitudinal

reinforcement. A recent composite material used in the rehabilitation of existing

structures is the fiber-reinforced polymer, which is composed of fibers (glass, carbon,

steel etc.), embedded in a polymer matrix.

The basic element of fiber-reinforced materials is given by a single unidirectional

fiber layer immersed in a matrix. The superimposition of more layers can give rise

to materials with multidirectional reinforcement. As an example, Figure 1.1 shows

two types of fiber-reinforced systems consisting of unidirectional and bidirectional

reinforcements.

A great advantage of fiber-reinforced materials lies in the high resistance and

stiffness compared to a low specific weight, while a limit for their exploitation is

that the fibers, by themselves, can only transmit tensile uniaxially loads: hence, the

13



Figure 1.1: Examples of fiber-reinforced composite materials. Left: unidirectional reinforcement. Right: bidirec-
tional reinforcement (fabric form).

necessity of a continuous matrix.

Given the widespread use of fiber-reinforced materials, it is clear the need for new

modeling approaches and finite element formulations for the design of structural com-

ponents. To this purpose, it is necessary to take into account the specific properties

of these materials, i.e., the high anisotropy and strength ratio between matrix and

fibers. Fiber-reinforced materials generally present anisotropic physical properties:

for this reason they show a material directional constraint in the mathematical for-

mulation, due to the matrix-reinforcement welding. The present thesis focuses on the

case of inextensible fibers, where the stiffness ratio between matrix and fibers tends

to infinity, due to the presence of a constraint associated to the fibers inextensibility.

To treat the presence of constraints in the modeling formulation, we propose to adopt

methods from constrained optimization [2, 3]. In particular, we adopt the following

three methods:

1. Lagrange Multiplier method

2. Penalty method

3. Perturbed Lagrangian method

From the numerical point of view, this leads to boundary value problems that

cannot be solved through classical displacement-based finite elements. Locking phe-

nomena are in fact very well-known in the literature, as in the case of incompressible

linear elasticity [4]. Therefore, we adopt mixed finite element formulations which are

stable and well-performing in the small strain and isotropic regime.

14



To verify the response of these formulations and to determinate their limits, we

first perform various benchmark tests for isotropic linear elasticity, by using well-

known finite element formulations, such as displacement-based, hybrid assumed-stress

(mixed two-field formulation), enhanced-strain (mixed three-field formulation) and

mixed MINI (mixed Stokes flow formulation). Then, we test the mixed formulations

for anisotropic materials on the same benchmark tests.

The thesis is organized as follows:

• Chapter 2. Finite element procedure. Starting from the differential form of lin-

ear elasticity, the classical finite element procedure is described , which allows

to find the solution of the problem. Particular emphasis is given to the classi-

cal variational principles, which are the basis of the formulations discussed in

Chapter 3.

• Chapter 3. Finite element formulations for isotropic materials. Regarding

isotropic materials, as previously mentioned, some of the well-known FEM for-

mulations are implemented. These formulations are presented in this chapter.

• Chapter 4. Finite element formulations for anisotropic materials. This chapter

treats the main part of the thesis, i.e., the proposed formulations for the mod-

eling of anisotropic materials. A recall to the classic modeling procedure, based

on the invariants derived from the tensor and vector fields, is also provided.

• Chapter 5. Numerical tests. This chapter summarizes the results of the per-

formed benchmark tests and describes the characteristics of the used program-

ming environment.

• Chapter 6. Conclusions and future work. A conclusion on the performance of

each proposed formulation, together with future research direction, is provided.
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Chapter 2

Finite element procedure

In order to evaluate the correctness of the performed benchmark tests, we will use

well-known classical finite element formulations that refer to homogeneous isotropic

linear elastic materials. In addition, some concepts, such as multi-field variational

basis, isoparametric elements, and numerical integration procedures, will be also use-

ful in the study of the formulations that we will discuss in Chapter 4, for transversely

isotropic materials. For this reason, in this chapter we recall some finite element

basic concepts [5, 6, 7]. The finite element method (FEM) is a general approach to

compute the approximate solution for any general differential equation that describes

a physical problem (in our case the elasticity problem). Consequently, this chapter

is structured following the classical finite element procedure, which consists of the

following steps:

Convert differential to integral form

↓

Convert integral to algebraic form (introduction of approximation fields)

↓

Solution of algebraic problem (numerical integration procedure)

16



2.1 Strong form

In this section, we recall the differential form of the linear elastic problem.

2.1.1 3D linear elasticity

Linear elasticity is the mathematical study of how solid objects deform and be-

come internally stressed due to prescribed loading conditions. The fundamental as-

sumptions for linear elasticity are: small strains and linear relationships between the

components of stress and strain. The equations governing a linear elastic bound-

ary value problem (differential equation together with a set of additional constraints,

called boundary conditions) are based on three tensor partial differential equations for

the equilibrium between internal stress and external loads (equilibrium equations) and

six infinitesimal strain-displacement relations (compatibility equations). The system

of differential equations is completed by a set of linear algebraic constitutive relations.

Let us now turn to a more formal description of the linear elasticity problem.

We consider a three-dimensional deformable continuous body, consisting of a do-

main Ω ⊂ R3 and a boundary ∂Ω, subdivided in turn into ∂Ωu and ∂Ωt, representing

respectively the constrained and the free boundary such that ∂Ωu ∪ ∂Ωt = ∂Ω.

With reference to the Cauchy continuum, assuming small strains, the linear elas-

ticity problem is expressed by the following three tensor partial differential equations

(also known as field equations):

equilibrium divσ + b = 0 in Ω

constitutive σ = Dε in Ω

compatibility ε = ∇su in Ω

(2.1)

where σ is the symmetric Cauchy stress tensor, ε is the symmetric infinitesimal

strain tensor, u is the displacement vector, D is the fourth-order elasticity tensor, b

is the body force per unit volume vector, and ∇s is the symmetric gradient operator,

such as:
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ε = ∇su =
1

2

[
∇u+ (∇u)T

]
(2.2)

In order to find the particular solution of Problem (2.1), we introduce the following

boundary conditions:

imposed displacements u = u on ∂Ωu

imposed forces σn = t on ∂Ωt

(2.3)

where u and t are the assigned displacement and surface force field, respectively,

and n is the outward normal vector. Equation (2.3)1 is an essential boundary con-

dition (representing the kinematics congruence between displacements and imposed

displacements on ∂Ωu), while Equation (2.3)2 is a natural boundary condition (rep-

resenting the equilibrium between internal stress and external surface stress on ∂Ωt).

Equations (2.1) have been introduced in tensor notation, but for the purpose of the

FEM programming (discussed in the following chapters), it is useful to use the engi-

neering notation. Taking advantage of the Voigt notation (you can use it by exploiting

the symmetries of ε, σ, and D tensors), the field equations become:

equilibrium [L]T{σ}+ {b} = {0} in Ω

constitutive {σ} = [D][M]{ε} in Ω

compatibility {ε} = [L]{u} in Ω

(2.4)

where the differential operator [L]T , which corresponds to divergence, is defined

as:

[L]T =


∂

∂x
0 0

∂

∂y
0

∂

∂z

0
∂

∂y
0

∂

∂x

∂

∂z
0

0 0
∂

∂z
0

∂

∂y

∂

∂x

 (2.5)

and the algebraic operator [M], which corresponds to double-contraction, is:

18



[M] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


(2.6)

For a homogeneous linear-isotropic material, the stress can be express by the

Hooke’s law, as follows:

{σ} = [DM ] {ε} = λ tr(ε){1}+ 2µ{ε} (2.7)

where λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
are, respectively, the first and

second Lamé constants, E is the Young’s Modulus, ν is the Poisson’s ratio, and D is

the following elasticity tensor :

D = [λ(1⊗ 1) + 2µI] =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(2.8)

2.1.2 2D linear elasticity

In this thesis, we will restrict ourself to isotropic and anisotropic materials in the

two-dimensional context. For this reason it is useful to express all the tensors, vectors,

and matrices treated previously in two-dimensional form.

Specifically, the kinematic quantities take the following form:
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u =

 u

v

 , ε =


εxx

εyy

εxy

 (2.9)

while the static quantities:

b =

 bx

by

 , t =

 tx

ty

 =

 σxxnx + σxyny

σxynx + σyyny

 , σ =


σxx

σyy

σxy

 (2.10)

where

n =

 nx

ny

 (2.11)

The elasticity tensor takes the form:

D =


λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ

 =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1
2
(1− 2ν)


(2.12)

and the operators:

[L]T =


∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x

 [M] =


1 0 0

0 1 0

0 0 2

 (2.13)

2.2 Weak form

The equilibrium differential Equation (2.1)1 represents the strong form of the lin-

ear elasticity problem. When the problem is expressed in this form, it is difficult to

obtain general closed-form solutions. For this reason we resort to numerical approxi-
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mation methods. Here, we adopt the FEM to construct a weak form (also known as

integral form) starting from Equation (2.1)1. Subsequently, by introducing appropri-

ate approximation fields, we can construct the so-called algebraic form (also known

as matrix form), which is easy to solve. To our purpose, we make use of the principle

of virtual work and the general variational principles theory.

The principle of virtual work constitutes an integral formulation of equilibrium.

It states that:

Given a force system F (σ, b, t) and a displacement system D(δu, δε), if for any

system D which satisfies compatibility the following equality holds :

δLext = δLint (2.14)

then system F satisfies equilibrium.

The expressions of the internal and external work are, respectively:

δLint =

∫
Ω

(σ : δε)dV

δLext =

∫
Ω

(b · δu)dV +

∫
∂Ωt

(t · δu)dA
(2.15)

Among all the displacement fields compatible with the kinematic constraints, the

elastic problem solution is the one that makes steady the associated total potential

energy functional of the system.

The internal potential energy is defined as the integral over the entire volume of

the internal energy density W (or strain energy):

Πint(ε) =

∫
Ω

W (ε)dV =
1

2

∫
Ω

[σ : ε]dV (2.16)

If both the constitutive and compatibility equations are implicitly satisfied, the

internal energy can be rewritten as:

Πint(u) =
1

2

∫
Ω

[Dε(u) : ε(u)]dV (2.17)
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Similarly, the external potential energy is defined by:

Πext(u) = −
∫
Ω

[b · u]dV −
∮
∂Ωt

[t · u]dA (2.18)

To simplify the discussion, we omit the integral related to the external surface

forces t. The total potential energy of the system is thus defined as the sum of the

internal energy and external potential energy, as follows:

Π(u) =
1

2

∫
Ω

[Dε(u) : ε(u)]dV −
∫
Ω

[b · u]dV (2.19)

The stationarity of the total potential energy ensures that, a displacement field

u, satisfying the boundary condition (2.3)1, is a solution of the elastic equilibrium

problem (2.1) if it makes stationary the potential energy functional (2.19), as follows:

dΠ(u, δu) =

∫
Ω

[Dε(u) : ε(δu)]dV −
∫
Ω

[b · δu]dV = 0 (2.20)

Applying this potential energy approach, only the equilibrium is respected, but

not the compatibility and constitutive equations.

To overcome this problem, alternatives variational formulations have been pro-

posed. The most generic is the Hu-Washizu functional [8], obtained by imposing

the a-priori fulfilment of the compatibility conditions on the boundary and condition

(2.3)2 and all other equations in weak form. In this way we obtain a functional in

three variables u, ε and σ, as follows:

ΠHW (u, ε,σ) =
1

2

∫
Ω

[ε : Dε]dV −
∫
Ω

[σ : (ε−∇su)]dV −Πext (2.21)

Taking the variation of this functional with respect to u, ε and σ, it is possible

to recover the equilibrium, constitutive, and compatibility equations.

By requiring the compliance of the constitutive equation (2.1)2, we obtain the two

variable mixed functional of Hellinger-Reissner [9, 10], defined as:
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ΠHR(u,σ) = −1

2

∫
Ω

[σ : D−1σ]dV +

∫
Ω

[σ : ∇su]dV −Πext (2.22)

Taking the variation of the functional with respect to u and σ, it is possible to

recover the equilibrium equation and a combination of the constitutive and compati-

bility equations.

2.3 Algebraic form

In this section we introduce the concepts related to the algebraic form, which pro-

vides the introduction of the field approximation based on the domain discretization,

and the numerical integration procedure.

2.3.1 Isoparametric elements and approximations

We introduce the concepts of isoparametric element and numerical quadrature.

It was created to overcome the following difficulties with the classic method for the

construction of the stiffness matrix:

1. The construction of shape functions that satisfy consistency requirements for

higher order elements with curved boundaries becomes increasingly compli-

cated;

2. Integrals that appear in the expressions of the element stiffness matrix and

consistent nodal force vector can no longer be evaluated in simple closed form.

Moreover, the isoparametric method leads to a simple computer program for-

mulation and it is generally applicable to two- and three-dimensional analyses and

non-structural problems. For these reasons, isoparametric elements gave rise to a

large number of formulations.

The most important concept is related to the approximations to both the geometry

and the displacement field. In the superparametric element (term that emphasizes an

unequal treatment), shape functions are used to approximate only the displacement
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field, as shown in Figure 2.1. Evidently, geometry and displacements are not treated

equally. If we proceed to higher order elements, only the displacement field is well-

approximate, whereas the geometry definition remains the same.

Natural
coordinates

Geometry

Shape 
functions

Displacement 
interpolation

Figure 2.1: Superparametric representation.

Instead, using isoparametric elements, geometry and displacements are treated in

the same way (i.e. interpolated with the same set of shape functions), as shown in

Figure 2.2.

Natural
coordinates

Shape 
functions

Geometry

Displacement 
interpolation

Figure 2.2: Isoparametric representation.

Now, we focus on two-dimensional isoprametric representation for quadrilateral

elements. This formulation is general enough to be applied to more complicated

(higher order) elements such as a quadratic plane element with three nodes along an

edge, which can have straight or quadratic curved sides. Higher-order elements have

additional nodes and use different shape functions as compared to linear elements,

but the steps in the development of the stiffness matrices are the same.

Figure (2.3) show the isoparametric elements (or reference frame) using in this

discussion. Isoparametric elements refer to the (ξ, η) coordinates system.
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η

ξ
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34

(-1,-1) (1,-1)

(-1,1) (1,1)
η

ξ

1 2

34

(-1,-1) (1,-1)

(-1,1) (1,1)

5

6

7

8 9

η

(1,0)
2

ξ
1

(0,0)

3
(0,1)

Figure 2.3: Quadrilateral and triangular isoparametric elements.

Hence, using the same shape functions for displacements and coordinates, we

obtain the following discrete fields:

u =

 u

v

 −→
 u ≈ uh =

∑n
i=1Niûi

v ≈ vh =
∑n

i=1Niv̂i

x =

 x

y

 −→
 x =

∑n
i=1Nixi

y =
∑n

i=1Niyi

(2.23)

where (x, y) are the nodal coordinates of actual frame. Now, shape functions are

defined on the reference frame (i.e. Ni = Ni(ξ, η)). It is easier to define the shape

functions on the reference frame because it has a known geometry; possible choices

are shown in Table 2.1.

For each element, the element stiffness matrix can be written asKe =
∫
Ω

[BTDB]dΩ;

then, matrices B and N are (point-to-point):

Bi =


Ni,x 0

0 Ni,y

Ni,y Ni,x

 Ni =

 Ni 0

0 Ni

 (2.24)

Matrix B requires the derivatives of the shape functions respect to x and y;

whereas we need Ni(ξ, η), a change of coordinates from the (ξ, η) parametric space

to the (x, y) physical space is necessary. For this purpose we can use the Jacobian

Matrix F :
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Table 2.1: Two-dimesional shape functions.

Element type Approximation type Shape functions

Quadrilateral

Constant N1 = 1

Bilinear

N1 = 1
4

(1− ξ)(1− η)

N2 = 1
4

(1 + ξ)(1− η)

N3 = 1
4

(1 + ξ)(1 + η)

N4 = 1
4

(1− ξ)(1 + η)

Biquadratic

N1 = 1
4
ξ(ξ − 1)η(η − 1)

N2 = 1
4
ξ(ξ + 1)η(η − 1)

N3 = 1
4
ξ(ξ + 1)η(η + 1)

N4 = 1
4
ξ(ξ − 1)η(η + 1)

N5 = 1
2

(1− ξ2)η(η − 1)

N6 = 1
2
ξ(ξ + 1)(1− η2)

N7 = 1
2

(1− ξ2)η(η + 1)

N8 = 1
2
ξ(ξ − 1)(1− η2)

N9 = (1− ξ2)(1− η2)

Triangular

Constant N1 = 1

Linear

N1 = ξ

N2 = η

N3 = 1− ξ − η

Linear (MINI)

N1 = ξ

N2 = η

N3 = 1− ξ − η

N4 = 27ξη(1− ξ − η)

Quadratic

N1 = ξ(2ξ − 1)

N2 = η(2η − 1)

N3 = (1− 2ξ − 2η)(1− ξ − η)

N4 = 4ξη

N5 = 4η(1− ξ − η)

N6 = 4ξ(1− ξ − η)
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 ∂Ni

∂x
∂Ni

∂y

 = F


∂Ni

∂ξ
∂Ni

∂η

 =

 ∂ξ

∂x

∂η

∂x
∂ξ

∂y

∂η

∂y



∂Ni

∂ξ
∂Ni

∂η

 (2.25)

For the inverse change of coordinates we can use the following matrix:

G =


∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

 (2.26)

Now, matrix B is defined in the physical space, but the domain is still defined on

the parametric space. Evidently it must be a passage of the reference system: this

mapping is made possible by:

∫
Ωe

f(x)dA =

∫
�
f [x(ξ)]Jd� (2.27)

where J = det(G) is the determinant of the Jacobian matrix and the symbol �

(square) indicates the domain of the isoparametric element. Finally, we can write the

expression of the stiffness matrix on the physical space as:

Ke =

∫
Ωe

BTDBJdΩ (2.28)

Thanks to Equation (2.28), we have the algebraic form of the stiffness matrix, but

there is not a closed form solution for this expression. For this reason, we rely on

specific numerical integration methods (quadrature formulas).

2.3.1.1 Gauss-Legendre quadrature

Integration stiffness matrices and load vectors can not be performed analytically

for the general case of isoparametric elements. Instead, stiffness matrices and load vec-

tors are typically evaluated numerically using Gauss-Legendre quadrature. A quadra-

ture rule is an approximation of the definite integral of a function, usually stated as a

weighted sum of function values of specified points within the domain of integration

[11]. An n-point Gauss-Legendre quadrature rule is constructed to yield an exact
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result for polynomials of degree 2n− 1 or less. For the two-dimensional case we use

the following formula:

I =

∫ 1

−1

∫ 1

−1

f(ξ, η)dξdη =
n∑
i=1

n∑
j=1

f(ξi, ηj)wiwj (2.29)

where ξi, ηj are abscissae and wi are the weighting coefficients of the Gauss inte-

gration rule. For different element types and approximations, the Gauss points and

weights are shown in Table 2.2.

Table 2.2: Two-dimesional Gauss-Legendre quadrature.

Element type Approximation type Gauss points Gauss weights

Quadrilateral

Bilinear

(0.577350,0.577350) 1.0000000

(0.577350,-0.577350) 1.0000000

(-0.577350,0.577350) 1.0000000

(-0.577350,-0.577350) 1.0000000

Biquadratic

(-0.774597,-0.774597) -0.308642

(0,-0.774597) 0.493827

(0.774597,-0.774597) 0.308642

(-0.774597,0) 0.493827

(0,0) 0.790123

(0.774597,0) 0.493827

(-0.774597,0.774597) 0.308642

(0,0.774597) 0.493827

(0.774597,0.774597) 0.308642

Triangular

Linear

(0.500000,0.500000) 0.166667

(0,0.500000) 0.166667

(0.500000,0) 0.166667

Linear (MINI)

(0.101286,0.101286) 0.062970

(0.101286,0.797427) 0.062970

(0.797427,0.101286) 0.062970

(0.470142,0.470142) 0.066197

(0.059716,0.470142) 0.066197

(0.470142,0.059716) 0.066197

(0.333333,0.333333) 0.112500

Quadratic

(0.333333,0.333333) -0.281250

(0.600000,0.200000) 0.260417

(0.200000,0.600000) 0.260417

(0.200000,0.200000) 0.260417

Using the Gauss-Legendre quadrature, the element stiffness matrix becomes:
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Ke =

ng∑
ig=1

ng∑
jg=1

BTDBJwigwjg (2.30)

2.4 Some basic formulations

2.4.1 Displacement-based formulations

The most well known approach, implemented in numerical codes for the elastic

problem solution, is based on the principle of minimum total potential energy. Con-

sider the total potential energy functional (2.19). Its stationarity gives:

∫
Ω

δεTσdΩ −
∫
Ω

δuTbdΩ = 0 (2.31)

after exploiting the constitutive relation and the compatibility equation.

Substituting the approximation fields (u ≈ Nuû and ε ≈ Bû) in the weak form

(2.31), we obtain the following algebraic form of the displacement-based formulation:

∫
Ω

[BTDB] ûdΩ −
∫
Ω

NT
u bdΩ = 0 (2.32)

where the element stiffness matrix and the nodal force vector are:

K =

∫
Ω

[BTDB] dΩ

f =

∫
Ω

[NT
u b] dΩ

(2.33)

2.4.2 Two-field mixed formulations

In the previous paragraph we used an irreducible formulation, using the displace-

ment u as the primary variable. Now, we assume that the virtual work principle is

still valid, but we approximate σ independently.

Using this variational approach, the constitutive relation becomes :

σ = D∇su (2.34)
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We proceed with the classical finite element (FE) computational procedure. We

associate to the Hellinger-Reissner functional (2.22) the following variational equa-

tions:

∫
Ω

δσT (∇su− D−1σ)dΩ = 0∫
Ω

δεTσdΩ −
∫
Ω

δuTbdΩ = 0

(2.35)

In order to obtain the algebraic form of the variational problem we introduce the

approximations (u ≈ Nuû, ε ≈ Bû, and σ ≈ Nσσ̂) to write the discrete form of

the problem. Hence, Equations (2.35) become:

−
∫
Ω

[NT
σ D−1Nσ]σ̂dΩ +

∫
Ω

[NT
σ B]ûdΩ = 0∫

Ω

[BTNσ]σ̂dΩ −
∫
Ω

[NT
u b]dΩ = 0

(2.36)

We can thus write the two-field mixed problem in a simple matrix form as:

 Kσσ Kσu

Kuσ 0

 σ̂
û

 =

 0

f

 (2.37)

where the element stiffness matrix and nodal force vector are:

Kσσ = −
∫
Ω

NT
σ D−1NσdΩ

Kσu =

∫
Ω

NT
σ BdΩ

Kuσ = (Kσu)T

f =

∫
Ω

NT
u bdΩ

(2.38)

In this form, the shape functions Nu have still to be continuous, though Nσ can

be discontinuous.

Later, a mixed assumed-stress formulation will be discussed, based on the decom-

position of the displacement field into two components (u = u + uλ). With this

approach, incompatible displacements uλ represent the difference between the dis-
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placement field obtainable through the integration of σ and the actual displacements.

Despite this formulation is more accurate, it is not very effective in generating new

finite elements, because of the excessive number of parameters. For this reason, it has

been proposed the Pian-Sumihara [12] finite element, based on a different approach,

as we will discuss later.

2.4.3 Three-field mixed formulations

It is possible to use an independent approximation to all the essential variables

entering the elasticity problem. We can then use the variational equations resulting

from the stationarity of the three-field Hu-Washizu functional (2.21):

∫
Ω

δεT (Dε− σ)dΩ = 0∫
Ω

δσT (∇su− ε)dΩ = 0∫
Ω

δ(∇su)TσdΩ −
∫
Ω

δuTbdΩ = 0

(2.39)

We can proceed directly by taking the following approximations:

u ≈Nuû σ ≈Nσσ̂ ε ≈Nεε̂ ∇su ≈ Bû (2.40)

which yield an equation system of the following form:


Kεε Kεσ 0

Kσε 0 Kσu

0 Kuσ 0



ε̂

σ̂

û

 =


0

0

f

 (2.41)

where:
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Kεε =

∫
Ω

NT
ε DNεdΩ

Kεσ = −
∫
Ω

NT
ε NσdΩ

Kσε = (Kεσ)T

Kσu =

∫
Ω

NT
σ BdΩ

Kuσ = (Kσu)T

(2.42)

The most important application of the three-field mixed formulation is the so-

called enhanced-strain, based on the enrichment of strain field. In the following chap-

ter we will discuss in detail the enhanced-strain approach.
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Chapter 3

Finite element formulations for

isotropic materials

In this chapter we focus on the presentation of plane isotropic finite elements, used

to verify the conducted benchmark tests. For this purpose, we decide to use some

classical formulations, such as:

• Q1-DB: classical displacement-based four-node element;

• Q1-E4: standard four-node enhanced-strain element with four enhanced modes

[13];

• Q1-E5: standard four-node enhanced-strain element with five enhanced modes

[13];

• Q1-PS: hybrid-stress four-node element with five stress modes [12];

• T1-DB: classical displacement-based three-node element;

• MINI: mixed three-node Stokes flow element [14].

The choice of these formulations is due to the fact that these elements are well-

known and established results are available. In the following, we briefly describe the

main characteristics of the finite elements listed above.
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3.1 Q1-DB and T1-DB: displacement-based ele-

ments

In the context of linear elasticity problems, the most used finite elements are

certainly those with four and three nodes. Their extensive use is due to the simple

numerical implementation. The formulation is based on the concept of stationarity

of potential energy (as discussed in the previous chapter), which coincides with the

principle of virtual work. Hence, the reference potential energy functional and its

variational equations are the following:

Π(u) =
1

2

∫
Ω

[Dε(u) : ε(u)]dΩ −
∫
Ω

[b · u]dΩ (3.1)

∫
Ω

(∇sδu)TD∇sudΩ −
∫
Ω

δuTbdΩ = 0 (3.2)

By introducing the approximations for u (u = Nuû and ε = Bû), we obtain the

algebraic form of displacement-based problem:

∫
Ω

[BTDB]ûdΩ −
∫
Ω

[NT
u b]dΩ = 0 (3.3)

where the stiffness matrix is:

K =

∫
Ω

[BTDB]dΩ (3.4)

Using for both the four-node and three-node formulations (respectively, Q1 and

T1 ), the concept of isoparametric element, the only differences is in the associated

shape functions:
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• Q1 displacement-based formulation

N1 =
1

4
(1− ξ)(1− η)

N2 =
1

4
(1 + ξ)(1 + η)

N3 =
1

4
(1 + ξ)(1− η)

N4 =
1

4
(1− ξ)(1 + η)

(3.5)

• T1 displacement-based formulation

N1 = ξ

N2 = η

N3 = 1− ξ − η

(3.6)

Experience has shown that, in the presence of incompressible material, these finite

elements, show the numerical pathology known as volumetric locking. This is related

to a certain incompressibility constraint (volume must remain constant during the

deformation) that the low-performance finite elements can not satisfy. Numerically,

placing ν → 0.5, we note that the bulk modulus tends to infinity and the displace-

ments tends to zero:

ν → 0.5 ⇒ K =
E

3(1− 2ν)
→∞ ⇒ u→ 0
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3.2 Q1-PS: Pian-Sumihara assumed-stress element

This formulation, initiated by Pian [15], is also known as hybrid stress finite ele-

ment. The Pian-Sumihara element [12] is considered a milestone in the finite element

history: thanks to its good performance, it has been used by other authors for the

construction of new formulations. The Pian-Sumihara formulation can be derived on

the basis of the Hellinger-Reissner functional and on the use of incompatible displace-

ments uλ:

Π(u,uλ,σ) = −1

2

∫
Ω

[σ : D−1σ]dΩ +

∫
Ω

[σ : (∇su+∇suλ)]dΩ −Πext (3.7)

Requiring the stationarity of Equation (3.7), we obtain the following variational

equations:

−
∫
Ω

δσT (D−1σ)dΩ +

∫
Ω

δσT (∇su)dΩ +

∫
Ω

δσT (∇suλ)dΩ = 0∫
Ω

δ(∇su)TσdΩ −
∫
Ω

δuTbdΩ = 0∫
Ω

δ(∇suλ)
TσdΩ = 0

(3.8)

A direct solution of this system of equations is not however comfortable. There-

fore, the additional step to take is to impose condition (3.8)3 a-priori. This corre-

sponds to assume a stress field that annuls on average the typical incompatibility error

of the mixed formulations. Furthermore, Equation (3.8)3 requires that the strains for

the incompatible displacement field should be orthogonal to the assumed stresses.

Furthermore, condition (3.8)3 is used to choose the assumed stress, such as the

one taken orthogonal to the incompatible displacement field:

∫
Ω

δ(∇suλ)
TσdΩ = 0 ⇒ σ∗ (3.9)

Hence, Equations (3.8) reduce to:
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−
∫
Ω

(δσ∗)T (D−1σ∗)dΩ +

∫
Ω

(δσ∗)T (∇su)dΩ = 0∫
Ω

δ(∇su)Tσ ∗ dΩ −
∫
Ω

δuTbdΩ = 0

(3.10)

For the displacement, strain, and assumed stress fields, we introduce the following

approximations:

u ≈Nuû ε ≈ Bû σ∗ ≈N ∗σ σ̂∗ (3.11)

Equations (3.10) can be rewritten in the approximate form:

−
∫
Ω

[(N ∗σ)TD−1N ∗σ ]σ̂∗dΩ +

∫
Ω

[(N ∗σ)TB]ûdΩ = 0∫
Ω

[BTN ∗σ ]σ̂∗dΩ −
∫
Ω

[NT
u b]dΩ = 0

(3.12)

In matrix form, the problem becomes:

 Kσ∗σ∗ Kσ∗u

Kuσ∗ 0

 σ̂∗
û

 =

 0

f

 (3.13)

where:

Kσ∗σ∗ = −
∫
Ω

[(N ∗σ)TD−1N ∗σ ]σ̂∗dΩ

Kσ∗u =

∫
Ω

[(N ∗σ)TB]ûdΩ

Kuσ∗ = (Kσ∗u)T

(3.14)

Now, we discuss the structures of the shape functions to be taken for the Q1PS

four-node element used in the numerical tests. The field of compatible displacement

is approximated with the classical shape functions deriving from the isoparametric

element, i.e.:

Nu =

 N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 (3.15)

where:
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Ni(ξ, η) =
1

4
(1 + ξiξ)(1 + ηiη) i = 1, . . . , 4 (3.16)

The stress interpolation is restricted to each element individually and, thus, can

be discontinuous between adjacent elements. To satisfy the stability condition of

two-field mixed formulations in elasticity (nσ > nu, where nσ and nu stand, respec-

tively, for numbers of freedom in appropriate variables), we need at least five stress

parameters in each element. A possible choice is:

σ =


1 0 0 η 0

0 1 0 0 ξ

0 0 1 0 0





α1

α2

α3

α4

α5


(3.17)

The problem remains to deduce an approximation for the assumed stress field for

the quadrilateral element. Pian and Sumihara used the following approximation:

σ∗ =


1 0 0 a2

1η a2
3ξ

0 1 0 b2
1η b2

3ξ

0 0 1 a1b1η a3b3ξ





α1

α2

α3

α4

α5


(3.18)

where a1, b1, a3 and b3 are defined as:

a1 =
1

4
xiξi a3 =

1

4
xiηi

b1 =
1

4
yiηi b3 =

1

4
yiηi

(3.19)

with i = 1, . . . , 4.
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3.3 Q1-E4 and Q1-E5: enhanced-strain elements

The enhanced-strain formulation, proposed by Simo and Rifai [13], is based on

the Hu-Washizu functional rewritten by decomposing the strain field as follows:

ε = ∇su+ ε̃ (3.20)

The strain field is split in two parts: the first one is the usual displacement-gradient

(compatible) part, while the second one is an added or enhanced-strain (incompatible)

part. The latter allows to improve the rigid response of the standard element (i.e.,

displacement-based), therefore allowing to obtain a high performance finite element.

Hence, the Hu-Washizu functional and its variational equations can be rewritten as:

Π̃HW (u, ε̃,σ) =
1

2

∫
Ω

[(∇su+ ε̃) : D(∇su+ ε̃)]dΩ+

∫
Ω

[σ : ε̃]dΩ−
∫
Ω

[b ·u]dΩ (3.21)

and

∫
Ω

δε̃T [D(∇su+ ε̃)]dΩ −
∫
Ω

δε̃TσdΩ = 0∫
Ω

δ(∇su)T [D(∇su+ ε̃)]dΩ −
∫
Ω

δuTbdΩ = 0∫
Ω

δσT ε̃dΩ = 0

(3.22)

The enhanced-strain formulation must meet the following conditions:

1. ∇su ∩ ε̃ = ∅. This requirement is quite natural, given that ε̃ is intended as an

enrichment of the stain field. Furthermore, it is shown in [13] as it is essential

to ensure the solvency of the discrete system.

2.
∫
Ω
δε̃ : σdV = 0. It is the orthogonality condition between stress and enhanced-

strain fields.

3.
∫
Ω
ε̃dV = 0. The enhanced-strain field is orthogonal with respect to any con-

stant field.
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We introduce, respectively, for displacement, strain, stress, and enhanced-strain

fields, the following approximations:

ε ≈ Bû σ ≈Nσσ̂ u ≈Nuû ε̃ ≈Nen
ˆ̃ε (3.23)

Now, by substituting Equations (3.23) in Equations (3.22) we obtain:

∫
Ω

[NT
enDB]ûdΩ +

∫
Ω

[NT
enDNen]ˆ̃εdΩ −

∫
Ω

[NT
enNσ]σ̂dΩ = 0∫

Ω

[BTDB]ûdΩ +

∫
Ω

[BTDNen]ˆ̃εdΩ −
∫
Ω

NT
u bdΩ = 0∫

Ω

[NT
σNen]ˆ̃εdΩ = 0

(3.24)

The problem can be expressed with the matrix form:


K ε̃ε̃ K ε̃σ K ε̃u

Kσε̃ 0 0

Kuε̃ 0 Kuu




ˆ̃ε

σ̂

û

 =


0

0

f

 (3.25)

where:

K ε̃ε̃ =

∫
Ω

[NT
enDNendΩ

K ε̃σ = −
∫
Ω

[NT
enNσ]dΩ

K ε̃u =

∫
Ω

[NT
enDB]dΩ

Kσε̃ = (K ε̃σ)T

Kuε̃ = (K ε̃u)T

Kuu =

∫
Ω

[BTDB]dΩ

(3.26)
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3.4 MINI: mixed Stokes flow element

For clarity we recall some basic Stokes equations concepts. The steady state of an

incompressible Newtonian fluid can be formulated as a (u,ε,σ,p) four-field problem

as follows:

equilibrium divσ + b = 0 in Ω

constitutive σ = 2µε− p1 in Ω

compatibility ε = ∇su in Ω

incompressibility constraint divu = 0 in Ω

(3.27)

The constitutive equation relates the stress σ to the symmetric part of the veloc-

ity gradient ε through a material constant µ, known as viscosity, and a volumetric

pressure-like scalar contribution p.

The set of Equations (3.27) is completed by the following boundary condition:

u = 0 on ∂Ω (3.28)

Equations (3.27) can be simplified by eliminating ε and σ, thus obtaining a (u,p)

two-field problem:

µ∆u−∇p+ b = 0 in Ω

divu = 0 in Ω
(3.29)

This equation can be derived from the following potential energy functional:

Π(u) =
1

2
µ

∫
Ω

[∇u : ∇u]dΩ −
∫
Ω

[b · u]dΩ (3.30)

where the field u satisfies the constraint (3.27)4. To remove this constraint, we

modify Equation (3.30), by introducing the following Lagrangian function:

L(u, p) =
1

2
µ

∫
Ω

[∇u : ∇u]dΩ −
∫
Ω

[b · u]dΩ −
∫
Ω

[p divu]dΩ (3.31)

Requiring the stationarity of this functional. we obtain:
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µ

∫
Ω

[(∇δu) : ∇u]dΩ −
∫
Ω

[δu · b]dΩ −
∫
Ω

[div(δu)p]dΩ = 0

−
∫
Ω

[δp divu]dΩ = 0

(3.32)

After introducing the following approximation fields:

u ≈Nuû p ≈Npp̂ (3.33)

the variational equations (3.32) can be rewritten in matrix form, as follows:

 Kuu Kup

Kpu 0

 û
p̂

 =

 f
0

 (3.34)

where:

Kuu = µ

∫
Ω

[∇Nu : ∇Nu]dΩ

Kup = −
∫
Ω

[divNT
uNp]dΩ

f =

∫
Ω

[Nu · b]dΩ

(3.35)

Various examples of interpolating functions can be found in the literature. We

focus on the MINI element proposed by Arnold, Brezzi and Fortin [14].

The MINI element is a velocity-pressure finite element for the computation of

Stokes flow. The displacement field is discretized with continuous piecewise linear

functions enriched by bubble functions and the pressure with piecewise linear func-

tions. Given a triangular mesh of Ω, we require that:

1. the components of û are the sum of a linear function plus a standard cubic

bubble function;

2. the components of û are globally continuous functions on Ω.

For the generic element, the elemental degrees of freedom for û are its values

at the triangle vertexes and barycenter. Furthermore, a set of elemental degrees of
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freedom for p̂ is given by its values at the triangle vertexes. The degrees of freedom

for the MINI element are schematically depicted in Figure 3.1.

Figure 3.1: MINI element approximations as proposed in [14].

The bubble functions are internal modes, so that they can be eliminated on the

element level by means of the so-called static condensation procedure.
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Chapter 4

Finite element formulations for

anisotropic materials

The mechanics of fiber-reinforced solids is based on the concept of anisotropic

materials in which the response depends on the fiber direction. In this thesis we

will discuss transversely isotropic materials and we will limit ourselves to the case of

one family of inextensible fibers. In the first part of this chapter we will present the

classical anisotropic formulation, proposed by Spencer [16]. Then, we will introduce

the main argument of this work, namely the proposed finite element formulations

based on constrained optimization methods, in order to impose the inextensibility

constraint in the fiber direction.

4.1 Transverse isotropy

A transversely isotropic material presents physical properties which are symmetric

about an axis that is normal to a plane of isotropy. Such a transverse plane has infinite

planes of symmetry and thus, within this plane, the material properties are the same

in all the directions. This type of material exhibits hexagonal symmetry (though

technically this ceases to be true for tensors of rank 6 and higher), so the number of

independent constants in the (fourth-rank) elasticity tensor are reduced to 5 (from a

total of 21 independent constants in the case of a fully anisotropic solid).
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We consider a material with an isotropic matrix, in which we immerse a fam-

ily of fibers that have different mechanical properties than the matrix. Transversely

isotropic materials are characterized by a preferred direction. Thus, the material

response is invariant with respect to arbitrary rotations around this preferred direc-

tion, to reflections at fibers parallel planes, and to the reflection at that plane, whose

normal is a.

We introduce a fixed rectangular cartesian coordinate system and a unit vector

a in the undeformed configuration as shown in Figure 4.1, that describes the local

fiber direction, and we require that the strain energy depend on this vector, i.e.,

W = W (ε,a).

Y

X

a

Figure 4.1: Fiber-reinforced material.

Starting from a, we can construct the structural tensor of transverse isotropy or

fabric tensor M , as:

M = a⊗ a (4.1)

where ⊗ represents the tensor outer product. The fiber stretch λa can be deter-

mined in terms of the deformation gradient and the fiber direction in the undeformed

configuration:

λ2
a = a · εa (4.2)

In case of transverse isotropy, the free energy function is formulated as a function
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of the isotropic invariants of the strain tensor ε and the fabric tensor M . Under such

an assumption, Spencer [17] presented relations for the strain energy at the material

point in terms of five scalar quantities (invariants) derived from the tensor and vector

fields:

W (ε,a) = W (I1(ε), I2(ε), I3(ε), I4(ε,a), I5(ε,a)) (4.3)

where the set of invariants is defined as:

I1 = tr(ε) ∂I1/∂ε = I

I2 =
1

2
[tr(ε)2 − tr(ε2)] ∂I2/∂ε = I1I − ε

I3 = det(ε) ∂I3/∂ε = I3ε
−1

I4 = a · εa ∂I4/∂ε = a⊗ a

I5 = a · ε2a ∂I5/∂ε = a⊗ (εa) + (aε)⊗ a

(4.4)

where I1, I2, and I3 are the standard invariants of the right Cauchy-Green de-

formation tensor, associated with isotropic material behaviour, while I4 and I5 arise

from the anisotropy introduced by the reinforcing fiber family. These invariants rep-

resent contributions to the strain energy from the properties of the fibers and their

interaction with the other material constituents; I4, for instance, is the square of the

stretch along the fiber direction, as in Equation (4.2). The form (4.3) chosen for the

strain energy, assures the satisfaction of material frame indifference and the material

symmetry restrictions for transverse isotropy.

We now focus on linear transverse isotropic materials in which the strain energy

becomes:

W (ε,a) = W (I1(ε), I2(ε), I4(ε,a), I5(ε,a)) (4.5)

To derive a representation of W and the infinitesimal stress tensor σ as isotropic

tensor-function, the functional basis of the two symmetric second order tensorial

argument σ and M is needed. Assuming the stress to be a linear function of the

strains and providing a stress-free undistorted initial configuration, such terms are
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neglected, which are linear or cubic in the strains. Hence, in the context of plane

strain, for elastic material with one family of fibers, we have the following strain

energy:

W (ε,a) =
1

2
λ(I1)2 + µT tr(ε

2) + αI4I1 + 2(µL − µT )I5 +
1

2
β(I4)2 (4.6)

with only five independent material parameters (elasticity constants) that describe

the transversely isotropic material behaviour. Particularly, λ and µT are Lamé con-

stants relative to isotropic response of the matrix, µL is the shear modulus relative

to response in the fiber direction, α is a coupling parameter, and β measures elastic

response in the fiber direction.

We obtain the following expression for the stress:

σ =[λtr(ε)I + 2µTε]

+ α(a · εa)I + (αtr(ε) + βa · εa)[a⊗ a]

+ 2(µL − µT )[(a⊗ a)ε+ ε(a⊗ a)]

(4.7)

and the elasticity tensor is rewritten as:

D =λ(I ⊗ I) + 2µT II + α[(a⊗ a)⊗ I + I ⊗ (a⊗ a)]

+ βM + 2(µL − µT )IM
(4.8)

The introduced fourth-order tensor IM in index notation reads as MimIjmkl +

MjmImikl.

In matrix notation, the fourth-order elasticity tensor of transversely isotropic ma-

terial for a preferred X1-direction in a Cartesian coordinate system, i.e. a = (1, 0, 0)T ,

reads:
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D =



λ+ 2α + β + 4µL − 2µT λ+ α λ+ α 0 0 0

λ+ α λ+ 2µT λ 0 0 0

λ+ α λ λ+ 2µT 0 0 0

0 0 0 µL 0 0

0 0 0 0 µT 0

0 0 0 0 0 µL


(4.9)

The transformation from engineering constants to those of the invariant represen-

tation [18] and vice-versa are:

• symmetry of the elasticity tensor:

ν12

E22

=
ν21

E11

;
ν13

E33

=
ν31

E11

;
ν23

E33

=
ν32

E22

;

• constants of invariant formulation:

λ =E22(ν23 + ν31ν13)/D

α =E22[ν31(1 + ν32 − ν13)− ν32]/D

β =E11(1− ν32ν23)/D − E22[ν23 + ν13ν31]/D − 4µ12

µL =µ12

µT =µ23

D =1− ν2
32 − 2ν13ν31 − 2ν32ν31ν13

• engineering constants:

E22 = E33; ν23 = ν32; ν12 = ν13; ν21 = ν31; µ12 = µ13;

E11 = −(λµT − 4λµL − λβ − 2αµT + 2µ2
T − βµT − 2αµT − 4µLµT + α2)/(λ+ µT )

E22 = −4µT (λµT − 4λµL − βλ+ 2µ2
T − βµT − 2αµT − 4µTµL + α2)/DT
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ν12 = 2µT (λ+ α)/DT

ν21 = (λ+ α)/(2λ+ 2µT )

ν23 = −(α2 + 2λµT − βλ− 4µLλ)/DT

µ12 = µL

µ23 = µT

DT = 4µLλ+ βλ− 4µ2
T + 4µTα + 2βµT + 8µLµT − α2

4.2 Proposed formulations

By expression (4.6) we note that strain energy is expressed as the sum of isotropic

and anisotropic terms:

W (ε,a) = W ISO(ε) +WANISO(ε,a) (4.10)

where W ISO describes the response of the isotropic matrix, while WANISO de-

scribes the directional contribution of the reinforcement. As shown in the previous

paragraph, the anisotropic component of the strain energy equation is classically ex-

pressed in terms of invariants, which are themselves functions of the strain and the

unit vector a. The idea behind this thesis is to replace this anisotropic term with a

directional equality constraint term. Specifically, we assume that the material does

not extend in the fiber direction a. This means that the constraint is the following:

a · εa = 0 (4.11)

or, equivalently:

ε : M = tr(εM ) = 0 (4.12)

For this purpose, we avail of classical constrained optimization methods [2], such

as:

1. Lagrange Multiplier method
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2. Penalty method

3. Perturbed Lagrange method

Constrained optimization is the process of optimizing an objective function f(x)

with respect to some variables in the presence of constraint g(x). The basic problem

that we consider in this chapter is the minimization of a function subject to equality

constraints:

minimize f(x)

subject to g(x) = 0 (Equality Constraint)
(4.13)

In our case, we assume the isotropic strain energy as objective function. Thus,

the constrained problem can be written as follows:

minimize W ISO(ε)

subject to tr(εM ) = 0 (Equality Constraint)
(4.14)

The constrained problem can be convert into an unconstrained problem by adopt-

ing the following methods [2]:

1. Lagrange Multiplier (LM) Formulation

2. Penalty (PM) Formulation

3. Perturbed Lagrange (PLM) Formulation

4.2.1 Lagrange Multiplier formulation

In mathematical optimization, the Lagrange multiplier method is a strategy for

finding the local minimal/maximal of a function subject to equality constraint:

minimize/maximize f(x)

subject to g(x) = 0
(4.15)
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We require that f(x) and g(x) functions must have continuous first partial deriva-

tives (i.e. C1 functions). We introduce a new variable p, called as Lagrange multiplier,

and a Lagrange function, defined as:

L(x, p) = f(x) + p g(x) (4.16)

If f(x0) is a minimum/maximum of f(x), then there exists p0 such that (x0, p0) is

a stationary point for the Lagrange function. Generally, a point is defined stationary

for a certain function, when all possible partial derivatives of the function, evaluated

at that point, are zero. In other words, a point (x0, p0) is stationary for the Lagrange

function, when:

∇L(x0, p0) = 0 (4.17)

Now, we apply these mathematical concepts to the constrained optimization prob-

lem (4.14). We start with a function W ISO(ε) that we wish to minimize, subject to

the constraint tr(εM ) = 0. Following the lagrange multiplier method, the constraint

is introduced by adding a term to the internal strain energy component of the total

potential energy, as follows:

Π(ε, p) =

∫
Ω

[W ISO(ε) + tr(εM )p]dΩ +Πext(ε) (4.18)

where Πext is the potential energy of external loads and W ISO(ε) is the isotropic

strain energy. Therefore, we define a new strain energy function as:

W (ε, p) =
λ

2
[tr(ε)]2 + µtr(ε2) + tr(εM)p (4.19)

Following the classical finite element approach, we write the variations of the

functional W respect to the two fields, obtaining the residual equations in weak form

∫
Ω

δεT [λtr(ε)1 + 2µε+Mp]dΩ −
∫
Ω

δuTbdΩ = 0∫
Ω

δpT [tr(εM )]dΩ = 0

(4.20)
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Introducing the approximations for u and p, Equations (4.20) can be rewritten,

obtaining the strong form of the problem:

∫
Ω

[BTDB]ûdΩ +

∫
Ω

[BTMN p]p̂dΩ −
∫
Ω

[(Nu)Tb]dΩ = 0∫
Ω

[(N p)TMTB]ûdΩ = 0

(4.21)

We can thus express the problem in matrix form as:

 Kuu Kup

Kpu 0

 û
p̂

 =

 f̂
0

 (4.22)

where the components of the stiffness matrix are:

Kuu =

∫
Ω

[BTDB]dΩ

Kup =

∫
Ω

[BTMN p]dΩ

Kpu =

∫
Ω

[(N p)TMTB]dΩ

(4.23)

It is interesting to highlight the constitutive law related to this formulation. To do

this, it is necessary to calculate the gradient of the strain energy functional, obtaining

the following relations:

∂W

∂ε
(ε, p) = λtr(ε)1 + 2µε+Mp = σ

∂W

∂p
(ε, p) = tr(εM ) = 0

(4.24)

In this way we obtain a system of four equations in four variables:


σxx

σyy

σxy

0

 =


λ+ 2µ λ 0 a2

x

λ λ+ 2µ 0 a2
y

0 0 2µ axay

a2
x a2

y 2axay 0




εxx

εyy

εxy

p

 (4.25)
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4.2.2 Penalty formulation

The Penalty method consist in adding a term (the so-called penalty function)

to the objective function, that consists of a penalty parameter CC , multiplied by a

measure of the constraint violation. The penalty parameter is a non-negative scalar

multiplier to determinate the penalty magnitude. As CC takes higher values, the

approximation becomes increasingly accurate. More rigorously, this method consists

in rewriting the equality constrained problem 4.13 on an unconstrained minimization

as the following problem:

minimize f(x) +
1

2
CC |g(x)|2 (4.26)

Now, we apply penalty method to our problem. Once again, we want to minimize

the isotropic strain energyW ISO(ε) subject to tr(εM) = 0. Hence, the total potential

energy becomes:

Π(ε) =

∫
Ω

[
W (ε) +

1

2
CC [tr(εM )]2

]
dΩ +Πext(ε) (4.27)

where the strain energy is:

W (ε) =
λ

2
[tr(ε)]2 + µtr(ε2) +

1

2
CC [tr(εM )]2 (4.28)

We follow the classical finite element method to derive the formulation. First of

all, we write the residual equation:

∫
Ω

δεT [λtr(ε)1 + 2µε+ CCtr(εM )M ]dΩ −
∫
Ω

δuTbdΩ = 0 (4.29)

By introducing the approximations for u, the residual equation can be rewritten

as:

∫
Ω

[(BTDB) + (CCM
TBM )]ûdΩ −

∫
Ω

(Nu)TbdΩ = 0 (4.30)

where the stiffness matrix is:
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K =

∫
Ω

[(BTDB) + (CCM
TBM )]dΩ (4.31)

We note that in the Penalty Formulation, the constraint is imposed, in an approx-

imated way, by introducing some extra stiffness terms in the global stiffness matrix,

according to the fibers orientation.

Differentiating the strain energy with respect to ε we calculate the stress tensor

and, consequently, we obtain the constitutive law:


σxx

σyy

σxy

 =


λ+ 2µ+ CCa

4
x λ+ CCa

2
xa

2
y 2CCa

3
xay

λ+ CCa
2
xa

2
y λ+ 2µ+ CCa

4
y 2CCaxa

3
y

2CCa
3
xay 2CCaxa

3
y 2µ+ 2CCa

2
xa

2
y



εxx

εyy

εxy

 (4.32)

The Penalty method enables one to transform the constrained problem into an

unconstrained one without introducing additional variables. The constraint condi-

tion is satisfied only approximately for finite values of the penalty parameter. The

main difficulty associated with this method, however, lies in the poor conditioning

of the problem as the penalty is increased to more accurately enforce the constraint

condition. This is a well-understood phenomenon, particularly in the context of in-

compressible and nearly incompressible problems and fluid mechanics. Augmented

Lagrangian (Perturbed) procedures have been thus proposed as a promising way to

partially overcome these difficulties and regularize the penalty formulation.

4.2.3 Perturbed Lagrangian formulation

Perturbed Lagrangian methods have similarities to penalty methods since they

replace a constrained optimization problem by a series of unconstrained problems

and add a penalty term to the objective function; the difference is that the Per-

turbed Lagrangian method adds yet another term (quadratic positive term) in the

Lagrange multiplier function, designed to mimic a Lagrange multiplier. As in the

treatment of the incompressibility constraint, several approximation schemes are pos-
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sible within the context of a perturbed Lagrangian formulation. The Perturbed La-

grangian method consists on a sequential unconstrained minimization of the form:

minimize f(x) + p g(x)− 1

2CC
p2 (4.33)

In our case, the strain energy function is defined as:

W =
λ

2
[tr(ε)]2 + µtr(ε2) + tr(εM )p− 1

2CC
p2 (4.34)

where p is the Lagrange multiplier and CC is the penalty parameter. If the La-

grange multiplier is removed in the element level through static condensation, the

Perturbed Lagrangian formulation becomes identical to the Penalty formulation.

Now, we develop the variational equations governing the problem. We write the

residuals for the two fields:

∫
Ω

δεT [λtr(ε)1 + 2µε+Mp]dΩ −
∫
Ω

δuTbdΩ = 0∫
Ω

δpT [tr(εM )− 1

CC
p]dΩ = 0

(4.35)

Introducing the approximations for u and p, the residual equations become:

∫
Ω

[BTDB]ûdΩ +

∫
Ω

[BTMN p]p̂dΩ −
∫
Ω

[(Nu)Tb]dΩ = 0∫
Ω

[(N p)TMTB]ûdΩ −
∫
Ω

[(N p)T
1

CC
N p]p̂dΩ = 0

(4.36)

Now, we can express the problem in matrix form as follows:

 Kuu Kup

Kpu Kpp

 û
p̂

 =

 f̂
0

 (4.37)

where:
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Kuu =

∫
Ω

[BTDB]dΩ

Kup =

∫
Ω

[BTMN p]dΩ

Kpu = (Kup)T

Kpp = −
∫
Ω

[(N p)T
1

CC
N p]dΩ

(4.38)

In order to show the constitutive relation, we now compute the gradient of the

strain energy functional. We obtain the following relations:


σxx

σyy

σxy

0

 =


λ+ 2µ λ 0 a2

x

λ λ+ 2µ 0 a2
y

0 0 2µ axay

a2
x a2

y 2axay −
1

CC




εxx

εyy

εxy

p

 (4.39)

4.2.4 Developed finite elements

We now introduce an important concept, concerning the different approximation

that can be used for the Lagrange multiplier p, introduced in Lagrange Multiplier

and Perturbed Lagrangian formulations, and for the displacement field u. In this

chapter, we provide a general form for these formulations, without get into specifics

of the approximations.

Specifically, we focus on quadrilateral elements with both four and nine nodes.

For the four-nodes element (Q1), we adopt bilinear shape functions to approximate

u, while for the nine-node element (Q2) we use biquadratic shape functions for u.

For both elements, we make use of the following approximations for p:

• bilinear approximation

p =
4∑
i=1

1

4
(1 + ξξi)(1 + ηηi)p̂i
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• linear approximation

p = p̂0 + axξ + ayη

• constant approximation

p = p̂0

In a qualitative way, Figure 4.2 summarizes all the considered cases and the de-

nominations used in the following chapter. Probably, the most natural choice would

be to adopt the same interpolation for p and u. However, this choice is not suitable,

as demonstrated by the numerical results of Chapter 5.

Displacements Lagrange 
Multiplier

Q1P1

Q1P0

Q1PL

Q2PL

Q2P0

Q2P1

Displacements node

Lagrange Multiplier node

Bilinear Bilinear

Bilinear Constant

Bilinear Linear

Biquadratic Bilinear

Constant

Linear

Biquadratic

Biquadratic

Figure 4.2: Developed finite elements. Displacements and Lagrange multiplier interpolations.
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Chapter 5

Numerical tests

This chapter presents the performed numerical tests. First, the tests have been

performed to evaluate the performances of the isotropic finite elements described in

Chapter 3. The obtained results are compared with results available in technical

literature (see, e.g., [19, 20, 21]). Then, the same numerical tests have been used

to test the performance of the anisotropic finite elements proposed in Chapter 4. In

particular, we perform the following simulations:

1. Traction test to simulate a pure uniaxial traction state on a single element;

2. Bending test to simulate a bending state of a cantilever beam;

3. Cook’s membrane test to simulate a bending state of a beam with unconven-

tional geometry;

4. Two-element distortion test to evaluate the sensibility against mesh distortion

for a cantilever beam in a bending state.

For each test, we assume the material to be, first, isotropic and, then, anisotropic.

In the latter case, three fiber directions are considered, i.e., a = (1, 0), a = (0, 1),

and a = (
√

2/2,
√

2/2).
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5.1 Programming environment overview

To implement the formulations codes and the benchmark tests, we use the AceGen

[22] and AceFEM [23] packages, written and developed by Prof. J. Korelc. Each pack-

age combines the use of Mathematica’s facilities with external handling of intensive

computation through compiled modules.

5.1.1 AceGen

AceGen is a multi-language and multi-environment numerical code generator. By

using the symbolic-numerical approach [24], it derives formulas needed in numerical

procedures and combines several techniques with the symbolic and algebraic capa-

bilities of Wolfram Mathematica, as shown in Figure 5.1. The application’s multi-

language capabilities are useful for rapidly prototyping numerical procedures in script

languages of general problem-solving environments as Wolfram Mathematica.

Figure 5.1: Hybrid system for multi-language and multi-environment finite element code generation [25].

In order to generate a new finite element source code, the following procedure has

to be executed:

1. AceGen Initialization - <<"AceGEN‘". The AceGen package is loaded while

Mathematica is running.
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2. Template Initialization - SMSTemplate. During this phase all the constants that

are needed for proper symbolic-numeric interface are initialized. The essential

template constants are basically the element topology and the number of nodal

degrees of freedom. In order to support the user, AceGen provides a list of

standard element topology, which can be divided into three main groups: 1D,

2D and 3D. During the definition of the template constants, there are a lot of

additional options, which can be easily found in the manual and include the

possibility to define additional nodes (not included in the standard element

topology), the number of spatial dimension, the number of degrees of freedom

per node for all nodes, and arbitrary real values per node.

3. Definition of user subroutines - SMSStandardModule. The user can define his

original subroutine with the default names and arguments. Moreover, the user

can exploit the pre-arranged subroutines, which are able to calculate the tan-

gent matrix and residual for the current values of nodal and element data, the

post-processing quantities, or the sensitivity pseudo-load vector for the current

sensitivity parameters.

4. Code generation - SMSWrite. It’s the last phase of the AceGen procedure where

the element source code is generated.

5.1.2 AceFEM

AceFEM includes a general finite element environment designed to solve multi-

physics and multi-field problems [25]. The main part of the package includes proce-

dures that are not numerically intensive, such as processing of the user input data,

mesh generation, or control of the solution procedures. The numerical module exists

as Mathematica package as well as external program written in C language (gener-

ated by AceGen). The AceFem package contains a large library of finite elements

(solid, thermal, contact, ... , 2D, 3D) including full symbolic input for most of the el-

ements. The AceFem structure could be divided into two main parts. The first one is

a group of useful procedures, written and executed directly inside Mathematica, usu-
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ally not numerically intensive. These procedures consist of some basic pre-processing

and post-processing functions (SMTMesh, SMTShowMesh) which could help the user to

visualize element geometry, meshing, boundary conditions, input data and so on.

The second part of the AceFEM structure is the numerical module. The standard

AceFEM procedure scheme is the following:

1. AceFEM Inizialization - <<AceFEM‘". The AceFEM package is loaded while

Mathematica is running.

2. Input data - SMTInputData. This phase is composed by different and obligatory

commands. The users can load the needed element code and define the data

common to all elements of the specific type. Later, the geometry and the mesh

of the element are defined through a particular function, which define the nodes

coordinates and their connectivity for topological mesh. The topological mesh

is a base on which the actual finite element mesh is constructed.

3. Analysis - SMTAnalysis. This phase checks the correctness of the previously de-

fined input data, and then compiles the element source files and creates dynamic

link library files (dll file) with the user subroutines, or, in the case of MDriver

reads, all the element source files into Mathematica. The SMTAnalysis com-

mand transcripts input data structures into analysis data base structures. When

the analysis phase is initialized, it starts the iterative solution procedure using

a Newton-Raphson iterative procedure. The solution procedure is executed

accordingly to the Mathematica input given by the user through the SMTCon-

vergence. It checks if the convergence conditions for the iterative procedure

have been satisfied.

4. Post-processing. The graphic post-processing of the results can be part of the

analysis (for instance, using SMTShowMesh, SMTPostData) or can be done later

independently of the analysis, by using a special post-processing palette.

61



5.2 Traction test

We consider the square plate of Figure 5.2, subjected, along the edge CD, to a

uniform tensile load q. This configuration generates a state of uniaxial pure traction.

We set: L = 10, q = 1, E = 1000 and ν = 0.3. For this test, we consider the

displacement components of point C.

q

L

L
B C

A D

Y

X

Figure 5.2: Traction test. Geometry and boundary conditions.

The pure uniaxial traction state implies, assuming the configuration of Figure 5.2,

that the stress components σyy and σxy are equal to zero, i.e.:

σyy = 0

σxy = 0
(5.1)

We perform this test because, due to the simple problem configuration, it is easy

to derive an analytical solution and to verify the accuracy of results. By inverting the

elasticity matrix D and by imposing conditions (5.1), we obtain, in a general form,

the inverse constitutive relations as:


εxx

εyy

εxy

 =


S11 S12 S13

S21 S22 S23

S31 S32 S33



σxx

0

0

 (5.2)

After calculating the strain components and integrating, it is easy to calculate the

displacements. In particular, for an isotropic material, the analytical solution is the

following:
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uC = 9.10E − 03

vC = −3.90E − 03
(5.3)

For an anisotropic material (see Figure 5.3), the analytical solutions are respec-

tively:

T1

uC = 0.00E + 00

vC = 0.00E + 00
T2

uC = 7.43E − 03

vC = 0.00E + 00
T3

uC = 6.50E − 03

vC = −6.50E − 03
(5.4)

The explicit calculation of the analytical solutions is shown in Appendix A.

Y

X

Y

X

Y

X

a a a

Figure 5.3: Traction test for anisotropic material, with fiber direction (left) a = (1, 0), (middle) a = (0, 1), (right)
a = (

√
2/2,
√

2/2). The three tests are denoted, respectively, as T1, T2 and T3.

63



5.2.1 Isotropic material

Table 5.1 shows the displacement components varying the Poisson’s ratio: we note

that no locking phenomena occur. Experience shows that, a mesh sensitivity analysis

would not be meaningful. Moreover, this observation is strengthened by the use of the

well-known formulations discussed in Chapter 3, extensively tested in many works.

Table 5.1: Traction test numerical results: isotropic formulations.

Q1-DB Q1-PS Q1-E4

ν uC vC uC vC uC vC

0.3 9.1000E-03 -3.9000E-03 9.1000E-03 -3.9000E-03 9.1000E-03 -3.9000E-03

0.49 7.5990E-03 -7.3010E-03 7.5990E-03 -7.3010E-03 7.5990E-03 -7.3010E-03

0.499 7.5100E-03 -7.4800E-03 7.5100E-03 -7.4800E-03 7.5100E-03 -7.4800E-03

0.4999 7.5010E-03 -7.4980E-03 7.5010E-03 -7.4980E-03 7.5010E-03 -7.4980E-03

0.49999 7.5001E-03 -7.4998E-03 7.5001E-03 -7.4998E-03 7.5001E-03 -7.4998E-03

0.499999 7.5000E-03 -7.5000E-03 7.5000E-03 -7.5000E-03 7.5000E-03 -7.5000E-03

Q1-E5 T1-DB MINI

ν uC vC uC vC uC vC

0.3 9.1000E-03 -3.9000E-03 9.1000E-03 -3.9000E-03 9.1000E-03 -3.9000E-03

0.49 7.5990E-03 -7.3010E-03 7.5990E-03 -7.3010E-03 7.5990E-03 -7.3010E-03

0.499 7.5100E-03 -7.4800E-03 7.5100E-03 -7.4800E-03 7.5100E-03 -7.4800E-03

0.4999 7.5010E-03 -7.4980E-03 7.5010E-03 -7.4980E-03 7.5010E-03 -7.4980E-03

0.49999 7.5001E-03 -7.4998E-03 7.5001E-03 -7.4998E-03 7.5001E-03 -7.4998E-03

0.499999 7.5000E-03 -7.5000E-03 7.5000E-03 -7.5000E-03 7.5000E-03 -7.5000E-03

5.2.2 Anisotropic material

Table 5.2 shows the obtained results. Regarding the Lagrange Multiplier formula-

tion, we note that it provides correct results only with the Q2P1-LM element. Instead,

if the Lagrange multiplier p is interpolated with a constant approximation through-

out the element (Q2P0-LM and Q1P0-LM), the imposed constraint is ineffective. All

the remaining cases (Q1P1-LM, Q1PL-LM, and Q2PL-LM) give completely incorrect

results. It is evident that approximating p with constant and linear approximations

is not enough accurate. Both the Penalty and Perturbed Lagrangian formulations do

not show many problems in the results. In particular, both formulations provide an

excellent behaviour even if we use the Q1 element (advantage in terms of computa-
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tional cost). On the other hand, using the Q2 element and interpolating p constantly

or linearly, the Perturbed Lagrangian formulation provides incorrect results.

Table 5.2: Traction test numerical results: anisotropic formulations. When the constraint is effective, the results
are indicated in green, while the incorrect results are indicated in red. Instead, when the constraint is ineffective,
the results are indicated in black.

Q1P1-LM Q1P0-LM Q1PL-LM Q2P1-LM Q2P0-LM Q2PL-LM

T1
uC Indet. 9.1000E-03 9.1000E-03 4.6923E-19 9.1000E-03 7.4957E-03

vC Indet. -3.9000E-03 -3.9000E-03 -3.2017E-19 -3.9000E-03 -9.8087E-04

T2
uC Indet. 9.1000E-03 9.1000E-03 7.4286E-03 9.1000E-03 1.2019E-02

vC Indet. -3.9000E-03 -3.9000E-03 5.1653E-19 -3.9000E-03 -5.5043E-03

T3
uC 6.5000E-03 9.1000E-03 7.3491E-03 6.5000E-03 9.1000E-03 7.0870E-03

vC -6.5000E-03 -3.9000E-03 -5.6509E-03 -6.5000E-03 -3.9000E-03 -5.9130E-03

Cc = 1.00E+11 Q1-PM Q2-PM

T1
uC 1.0000E-10 1.0000E-10

vC -4.2857E-11 -4.2857E-11

T2
uC 7.4286E-03 7.4286E-03

vC -4.2857E-11 -4.2857E-11

T3
uC 6.5000E-03 6.5000E-03

vC -6.5000E-03 -6.5000E-03

Cc = 1.00E+11 Q1P1-PLM Q1P0-PLM Q1PL-PLM Q2P1-PLM Q2P0-PLM Q2PL-PLM

T1
uC 1.0000E-10 1.0000E-10 1.0000E-10 1.0000E-10 1.0000E-10 -1.6043E-03

vC -4.2857E-11 -4.2857E-11 -4.2857E-11 -4.2857E-11 -4.2857E-11 2.9191E-03

T2
uC 7.4286E-03 7.4286E-03 7.4286E-03 7.4286E-03 7.4286E-03 1.0348E-02

vC -4.2857E-11 -4.2857E-11 -4.2857E-11 -4.2857E-11 -4.2857E-11 -1.6043E-03

T3
uC 6.5000E-03 6.5000E-03 6.5000E-03 6.5000E-03 6.94362E-03 5.5727E-03

vC -6.5000E-03 -6.5000E-03 -6.5000E-03 -6.5000E-03 -6.0638E-03 -7.4273E-03

Now, we test the sensitivity to mesh and to parameter CC for all the considered

formulations.

5.2.2.1 Sensitivity to mesh

Experience shows that, carrying out a traction test with boundary conditions like

in our case, the discretization of the problem is not necessary. Since the problem and

its stress-strain relation is very simple, we should get the exact solution using only

one element. Despite this, we want to verify this affermation. We choose only the

finite elements which provide correct results in Table 5.2, i.e., the Q2P1-LM, Q2-PM

and Q2P1-PLM elements. We perform the traction test, meshing with 1× 1, 10× 10

and 100× 100 elements. The results are shown in Table 5.3. Concerning the Penalty
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and Perturbed Lagrangian formulations, a penalty parameter CC = 1011 is used.

Table 5.3: Traction test numerical results: sensitivity to mesh.

T1 T2 T3

Mesh uC vC uC vC uC vC

Q2P1-LM

1×1 4.6923E-19 -3.2017E-19 7.4286E-03 -5.1653E-19 6.5000E-03 -6.5000E-03

10×10 4.0500E-19 1.6600E-19 7.4286E-03 5.4800E-20 6.7311E-03 -6.2689E-03

100×100 -8.0300E-19 6.1900E-19 7.4286E-03 7.1400E-19 6.6374E-03 -6.3626E-03

Q2-PM

1×1 1.0000E-10 -4.2857E-11 7.4286E-03 -4.2857E-11 6.5000E-03 -6.5000E-03

10×10 1.0000E-10 -4.2900E-11 7.4286E-03 -4.2900E-11 6.5000E-03 -6.5000E-03

100×100 1.0000E-10 -4.2900E-11 7.4286E-03 -4.2900E-11 6.5000E-03 -6.5000E-03

Q2P1-PLM

1×1 1.0000E-10 -4.2857E-11 7.4286E-03 -4.2857E-11 6.5000E-03 -6.5000E-03

10×10 1.0000E-10 -4.2900E-11 7.4286E-03 -4.2900E-11 6.7311E-03 -6.2689E-03

100×100 1.0000E-10 -4.2900E-11 7.4286E-03 -4.2900E-11 6.6374E-03 -6.3626E-03

Therefore, the formulations developed in Chapter 4 are affected by the meshing

only when the fibers are inclined at an angle of 45◦.

5.2.2.2 Sensitivity to CC

Here, we investigate the displacement components by varying the values assigned

to the penalty parameter CC . This analysis, whose results are shown in Figures 5.4

to 5.9, is carried out to establish the convergence value for the Penalty and Perturbed

Lagrangian formulations. Generally, the convergence values are reached for CC = 105.

The Penalty formulation appears to be stable because it does not show odd be-

haviours for both the developed elements (Q1-PM and Q2-PM). Regarding the Per-

turbed Lagrangian formulation, except for the Q1PL-PLM, Q2P0-PLM and Q2PL-

PLM elements, all the developed elements show the same behaviour. Observing

Figures 5.4 to 5.9, similarities between these two formulations are evident.

It is interesting to note that the vertical displacement component increases with

increasing CC in the T3 test. Contrary to what would be expected, it is evident that

the value of the vertical displacement of point C increases with increasing CC . Physi-

cally, this result is due to the presence of the constraint imposed by the fiber direction.
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Figure 5.4: Traction test T1: sensitivity to CC for the Penalty Formulation.

log
10

(C
C

) Parameter
100 105 1010 1015

H
or

iz
on

ta
l d

is
pl

ac
em

en
t o

f p
oi

nt
 C

×10-3

-2

0

2

4

6

8

10
Penalty - T2 test

Q1-PM
Q2-PM

log
10

(C
C

) Parameter
100 105 1010 1015

V
er

tic
al

 d
is

pl
ac

em
en

t o
f p

oi
nt

 C
×10-3

-2

0

2

4

6

8

10
Penalty - T2 test

Q1-PM
Q2-PM

Figure 5.5: Traction test T2: sensitivity to CC for the Penalty Formulation.
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Figure 5.6: Traction test T3: sensitivity to CC for the Penalty Formulation.
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Figure 5.7: Traction test T1: sensitivity to CC for the Perturbed Lagrangian Formulation.
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Figure 5.8: Traction test T2: sensitivity to CC for the Perturbed Lagrangian Formulation.
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Figure 5.9: Traction test T3: sensitivity to CC for the Perturbed Lagrangian Formulation.
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5.3 Bending test

We consider a plane beam, subjected to a couple at one end as depicted in Figure

5.10. Along the edge AB, the horizontal displacement is set equal to zero, while the

point A is constrained along both the directions. Along the edge CD a couple is

applied to generate a bending state. We set: L = 10, H = 2, E = 1500, ν = 0.3 and

f = 15. Meshes of 5× 1, 10× 2, 40× 8 and 80× 16 elements are considered.

L

H

X

Y
f

fA

B C

D

Figure 5.10: Bending test. Geometry and boundary conditions.

If we consider an isotropic material, the analytical solution is given by [21]:


u(x, y) =

2f(1− ν2)

EH
x

(
H

2
− y
)

v(x, y) =
f(1− ν2)

EH

[
x2 +

ν

1− ν
y(y −H)

] (5.5)

where u(x, y) and v(x, y) are the horizontal and vertical displacements, respec-

tively. We focus on the displacement components of point D, where x = L and

y = H. Hence, using Equations (5.5), the displacement components of point D are

the following:

uD = 9.10E − 02

vD = 4.55E − 01
(5.6)

If we consider an anisotropic material (see Figure 5.10), the analytical solutions

are respectively:
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B1

uD = 0.00E + 00

vD = 0.00E + 00
B2

uD = 7.43E − 02

vD = 3.71E − 01
B3

uD = 8.36E − 02

vD = 4.18E − 01
(5.7)

The explicit calculation of the bending test analytical solutions is shown in Ap-

pendix A.

X

Y

X

Y

X

Y
aa a

Figure 5.11: Bending test for anisotropic material, with fiber direction (left) a = (1, 0), (middle) a = (0, 1),
(right) a = (

√
2/2,
√

2/2). The three tests are denoted, respectively, as B1, B2 and B3.

5.3.1 Isotropic material

Table 5.4 shows the displacement components of point D, obtained with a mesh

composed of 80 elements in X-direction and varying the Poisson’s ratio. We note that,

as regards the displacement-based elements (Q1-DB and T1-DB), locking phenomena

occur. Instead, all the other finite elements considered do not exhibit this numerical

problem.

Moreover, it is interesting to evaluate the response of various considered finite

elements, varying the mesh density. The results, assuming for example ν = 0.3 (this

value of Poisson’s ratio does not expect locking phenomena) can be observed in Figure

5.12. We can see that the results for the hybrid assumed-stress and enhanced-strain

elements (Q1-PS, Q1-E4, and Q1-E5) are not affected by a coarse mesh.
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Table 5.4: Bending test numerical results: isotropic formulations.

Q1-DB Q1-PS Q1-E4

ν uD vD uD vD uD vD

0.3 9.0769E-02 4.5396E-01 9.1000E-02 4.5500E-01 9.1000E-02 4.5500E-01

0.49 7.2285E-02 3.6244E-01 7.5990E-02 3.7995E-01 7.5990E-02 3.7995E-01

0.499 5.0031E-02 2.5211E-01 7.5100E-02 3.7550E-01 7.5100E-02 3.7550E-01

0.4999 1.2648E-02 6.3631E-02 7.5010E-02 3.7505E-01 7.5010E-02 3.7505E-01

0.49999 1.5012E-03 7.5190E-03 7.5001E-02 3.7501E-01 7.5001E-02 3.7501E-01

0.499999 1.5323E-04 7.6632E-04 7.5000E-02 3.7500E-01 7.5000E-02 3.7500E-01

Q1-E5 T1-DB MINI

ν uD vD uD vD uD vD

0.3 9.1000E-02 4.5500E-01 8.9653E-02 4.4870E-01 9.0057E-02 4.5063E-01

0.49 7.5990E-02 3.7995E-01 6.6277E-02 3.3324E-01 7.5311E-02 3.7683E-01

0.499 7.5100E-02 3.7550E-01 3.4202E-02 1.7383E-01 7.4429E-02 3.7243E-01

0.4999 7.5010E-02 3.7505E-01 1.1985E-02 5.8901E-02 7.4340E-02 3.7198E-01

0.49999 7.5001E-02 3.7501E-01 7.9808E-03 3.7551E-02 7.4331E-02 3.7194E-01

0.499999 7.5000E-02 3.7500E-01 7.5280E-03 3.5127E-02 7.4331E-02 3.7193E-01
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Figure 5.12: Bending test sensitivity to mesh setting ν = 0.3: isotropic formulations.
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5.3.2 Anisotropic material

For the considered anisotropic formulations, in the absence of constraint (i.e. set-

ting a = (0, 0)) and setting a 80 × 16 mesh, we obtain the solutions shown in Table

5.5.

Table 5.5: Bending test: solutions for anisotropic formulations setting a = (0, 0).

Q1P1-LM Q1P0-LM Q1PL-LM Q2P1-LM Q2P0-LM Q2PL-LM

uD 9.0769E-02 9.0769E-02 9.0769E-02 9.0878E-02 9.1000E-02 9.1000E-02

vD 4.5396E-01 4.5396E-01 4.5396E-01 4.5434E-01 4.5500E-01 4.5500E-01

Q1-PM Q2-PM

uD 9.0769E-02 9.1000E-02

vD 4.5396E-01 4.5500E-01

Q1P1-PLM Q1P0-PLM Q1PL-PLM Q2P1-PLM Q2P0-PLM Q2PL-PLM

uD 9.0769E-02 9.0769E-02 9.0769E-02 9.0878E-02 9.1000E-02 9.1000E-02

vD 4.5396E-01 4.5396E-01 4.5396E-01 4.5434E-01 4.5500E-01 4.5500E-01

These results are useful for evaluation in which cases the imposed constraint is

ineffective (i.e., when the implemented finite elements show an isotropic behaviour).

In the presence of the inextensibility constraint, the obtained results are shown in

Table 5.6. For the meaning of the colors used in the table, see the Paragraph 5.2.2.

As in the previous benchmark test, in case of the Lagrange Multiplier formulation,

we obtain correct results only with the Q2P1-LM element. Instead, the imposed

constraint is ineffective with the Q1P0-LM and Q2P0-LM elements (compare this

values with those shown in Table 5.5), while incorrect results are obtained with the

Q1PL-LM and Q2PL-LM elements.

As regards the Penalty formulation, both the developed finite elements provide

results correct and coherent with the inexensibility imposed constraint.

Leastly, for the Perturbed Lagrangian formulation, we obtain incorrect results

only with the Q2P0-PLM and Q2P1-PLM elements.

Now, we analyze the behaviour of the considered finite elements, by performing a

convergence analysis varying the mesh. Then, we analyze the same results (i.e., the

displacement components of node D) varying the penalty parameter CC .
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Table 5.6: Bending test numerical results: anisotropic formulations. When the constraint is effective, the results
are indicated in green, while the incorrect results are indicated in red. Instead, when the constraint is ineffective,
the results are indicated in black.

Q1P1-LM Q1P0-LM Q1PL-LM Q2P1-LM Q2P0-LM Q2PL-LM

B1
uD 0.0000E+00 9.0769E-02 9.0769E-02 -5.6900E-08 9.1000E-02 9.0973E-02

vD 0.0000E+00 4.5396E-01 4.5396E-01 -5.8525E-08 4.5500E-01 4.5492E-01

B2
uD 7.5545E-03 9.0769E-02 9.0769E-02 7.4184E-02 9.1000E-02 9.0803E-02

vD 0.0000E+00 4.5396E-01 4.5396E-01 3.7089E-01 4.5500E-01 4.5416E-01

B3
uD -3.0789E+206 9.0769E-02 9.1101E-02 8.4483E-02 9.1000E-02 9.1092E-02

vD 6.7854E+206 4.5396E-01 4.5543E-01 4.1405E-01 4.5500E-01 4.5544E-01

Cc = 1.00E+11 Q1-PM Q2-PM

B1
uD 1.5000E-09 1.5000E-09

vD 7.5000E-09 7.5000E-09

B2
uD 7.4194E-02 7.4286E-02

vD 3.7101E-01 3.7143E-01

B3
uD 8.3499E-03 8.4371E-02

vD 3.8473E-02 4.14915E-01

Cc = 1.00E+11 Q1P1-PLM Q1P0-PLM Q1PL-PLM Q2P1-PLM Q2P0-PLM Q2PL-PLM

B1
uD 1.5000E-09 1.9980E-09 1.9980E-09 -5.5400E-08 3.9246E-05 2.8329E-05

vD 7.5000E-09 1.0430E-08 1.0430E-08 -5.1018E-08 2.4033E-05 -4.17686E-05

B2
uD 7.4194E-02 7.4194E-02 7.4194E-02 7.4184E-02 7.4351E-02 7.4189E-02

vD 3.7101E-01 3.7101E-01 3.7101E-01 3.7089E-01 3.7170E-01 3.7102E-01

B3
uD 8.4098E-02 8.4423E-02 8.4732E-02 8.4483E-02 8.4631E-02 8.4717E-02

vD 4.1411E-01 4.1388E-01 4.1516E-01 4.1405E-01 4.1493E-01 4.1532E-01
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5.3.2.1 Sensitivity to mesh

Figures 5.13 to 5.15 show the obtained results for the Lagrange multiplier formu-

lation, varying the mesh density. As previously observed, the formulation provides

incorrect results if interpolating p with constant or linear shape functions, and it is

not affected by the imposed inextensibility constraint in the fiber direction in case

of constant interpolation. On the other hand, the Q2P1-LM element provides the

expected results with a fine mesh.

We now comment on the results obtained for the PM formulation, which are

shown in Figures 5.16 to 5.18. Regarding the B1 test, we do not find any numerical

pathology: the results obtained for the two types of finite element coincide and the

imposed constraint is also effective for coarse meshes. No specific issue is found for

the B2 test, but in this case, to obtain satisfactory results, it is advisable to use a

fairly fine mesh.

Finally, the results obtained for the Perturbed Lagrangian formulation, are shown

in Figures 5.19 to 5.21. Regarding the B1 test, we note that all the used finite

elements reach convergence with a fairly coarse discretization. Also, with regard to

the B2 test, all the elements reach the convergence with a finest discretization. The

same considerations can be made for the B3 test.
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Figure 5.13: Bending test B1: sensitivity to mesh for the Lagrange Multiplier Formulation.

74



Number of elements in X direction
0 10 20 30 40 50 60 70 80

H
or

iz
on

ta
l d

is
pl

ac
em

en
t o

f p
oi

nt
 D

-0.1

0

0.1

0.2

0.3

0.4

0.5
Lagrange Multiplier - B2 test

Q1P1-LM
Q1P0-LM
Q1PL-LM
Q2P1-LM
Q2P0-LM
Q2PL-LM

Number of elements in X direction
0 10 20 30 40 50 60 70 80

V
er

tic
al

 d
is

pl
ac

em
en

t o
f p

oi
nt

 D

-0.1

0

0.1

0.2

0.3

0.4

0.5
Lagrange Multiplier - B2 test

Q1P1-LM
Q1P0-LM
Q1PL-LM
Q2P1-LM
Q2P0-LM
Q2PL-LM

Figure 5.14: Bending test B2: sensitivity to mesh for the Lagrange Multiplier Formulation.

Number of elements in X direction
0 10 20 30 40 50 60 70 80

H
or

iz
on

ta
l d

is
pl

ac
em

en
t o

f p
oi

nt
 D

-0.1

0

0.1

0.2

0.3

0.4

0.5
Lagrange Multiplier - B3 test

Q1P1-LM
Q1P0-LM
Q1PL-LM
Q2P1-LM
Q2P0-LM
Q2PL-LM

Number of elements in X direction
0 10 20 30 40 50 60 70 80

V
er

tic
al

 d
is

pl
ac

em
en

t o
f p

oi
nt

 D

-0.1

0

0.1

0.2

0.3

0.4

0.5
Lagrange Multiplier - B3 test

Q1P1-LM
Q1P0-LM
Q1PL-LM
Q2P1-LM
Q2P0-LM
Q2PL-LM

Figure 5.15: Bending test B3: sensitivity to mesh for the Lagrange Multiplier Formulation.
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Figure 5.16: Bending test B1: sensitivity to mesh for the Penalty Formulation.
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Figure 5.17: Bending test B2: sensitivity to mesh for the Penalty Formulation.
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Figure 5.18: Bending test B3: sensitivity to mesh for the Penalty Formulation.
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Figure 5.19: Bending test B1: sensitivity to mesh for the Perturbed Lagrangian Formulation.
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Figure 5.20: Bending test B2: sensitivity to mesh for the Perturbed Lagrangian Formulation.
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Figure 5.21: Bending test B3: sensitivity to mesh for the Perturbed Lagrangian Formulation.
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5.3.2.2 Sensitivity to CC

We now analyze the results by varying the penalty parameter CC . We can affirm

that, in general, the convergence is reached for CC = 107.

We first focus on the Penalty Formulation results, shown in Figures 5.22 to 5.24.

Regarding the B1 test, the results coincide for all the elements and converge with

the value of the penalty parameter mentioned above. For the B2 test, instead, we

note that satisfactory results are obtained with values of the penalty parameter up

to 1013. Beyond this value, ill-conditioning occurs. Regarding the B3 test, the results

obtained with the Q1-PM element are different from those obtained with the other

cases.

Finally, as regards the Perturbed Lagrangian formulation, we observe that the

results coincide with those shown for the Penalty formulation. In particular, we can

establish that the Q2P1-PLM element is the most performant, because it also pro-

vides results for high values of the CC parameter.
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Figure 5.22: Bending test B1: sensitivity to CC for the Penalty Formulation.
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Figure 5.23: Bending test B2: sensitivity to CC for the Penalty Formulation.
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Figure 5.24: Bending test B3: sensitivity to CC for the Penalty Formulation.
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Figure 5.25: Bending test B1: sensitivity to CC for the Perturbed Lagrangian Formulation.
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Figure 5.26: Bending test B2: sensitivity to CC for the Perturbed Lagrangian Formulation.
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Figure 5.27: Bending test B3: sensitivity to CC for the Perturbed Lagrangian Formulation.
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5.4 Cook’s membrane test

The Cook’s membrane problem is a standard benchmark test for combined bend-

ing and shear response with moderate distortion, named after the author R. D. Cook

who first reported it [26]. This test consists of a tapered panel clamped on the edge

AB and subjected to a shearing load at the free end CD, resulting in a deformation

dominated by a bending response, as shown in Figure 5.28. The analytical solution

of this problem is unknown. Therefore, a reference solution is obtained using a fine

mesh. We set: E = 250, ν = 0.3 and F = 100. Meshes of 5 × 5, 10 × 10, 40 × 40

and 80× 80 are considered. For this test, we consider the displacement components

of point C.

F

48

44
16

C

Y
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D
B

Figure 5.28: Cook’s membrane test. Geometry and boundary conditions.

For the anisotropic material, we assume the configurations shown in Figure 5.29.

Y

X

Y

X

Y

X

a a a

Figure 5.29: Cook’s membrane test for anisotropic material, with fiber direction (left) a = (1, 0), (middle)
a = (0, 1), (right) a = (

√
2/2,
√

2/2). The three tests are denoted, respectively, as C1, C2 and C3.
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5.4.1 Isotropic material

Table 5.7 shows the displacement components of point C, obtained with a mesh

composed of 80 elements in X-direction and varying the Poisson’s ratio. Also in this

case, as shown for the bending test, locking phenomena occur with the displacement-

based elements (Q1-DB and T1-DB). Instead, all the other finite elements do not

exhibit this numerical problem.

Table 5.7: Cook’s membrane test numerical results: isotropic formulations.

Q1-DB Q1-PS Q1-E4

ν uC vC uC vC uC vC

0.3 -6.8401E+00 9.1794E+00 -6.8639E+00 9.1989E+00 -6.8639E+00 9.1989E+00

0.49 -5.5126E+00 7.6704E+00 -5.6743E+00 7.8373E+00 -5.6743E+00 7.8373E+00

0.499 -4.7841E+00 6.8786E+00 -5.6002E+00 7.7503E+00 -5.6002E+00 7.7503E+00

0.4999 -2.6128E+00 4.5546E+00 -5.5926E+00 7.7414E+00 -5.5926E+00 7.7414E+00

0.49999 -6.1128E-01 2.5955E+00 -5.5918E+00 7.7405E+00 -5.5918E+00 7.7405E+00

0.499999 -7.7809E-02 2.1441E+00 -5.5918E+00 7.7404E+00 -5.5918E+00 7.7404E+00

Q1-E5 T1-DB MINI

ν uC vC uC vC uC vC

0.3 -6.8639E+00 9.1989E+00 -6.7643E+00 9.1079E+00 -6.7892E+00 9.1329E+00

0.49 -5.6743E+00 7.8373E+00 -5.1386E+00 7.2750E+00 -5.5999E+00 7.7641E+00

0.499 -5.6002E+00 7.7503E+00 -3.3232E+00 5.3227E+00 -5.5239E+00 7.6746E+00

0.4999 -5.592603905 7.741415142 -1.0030E+00 2.9349E+00 -5.5160E+00 7.6654E+00

0.49999 -5.5918E+00 7.7405E+00 -1.6422E-01 2.1951E+00 -5.5153E+00 7.6645E+00

0.499999 -5.5918E+00 7.7404E+00 -1.8050E-02 2.0890E+00 -5.5152E+00 7.6644E+00

Figure 5.30 shows the results by varying the mesh density. A 80× 80 mesh and a

Poisson’s ratio equal to 0.3 are considered. We can note that all the formulations, as

also seen for the bending test, converge with 80 elements per side.
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Figure 5.30: Cook’s membrane test sensitivity to mesh setting ν = 0.3: isotropic formulations.

5.4.2 Anisotropic material

Setting a 80 × 80 mesh, the obtained results for the Cook’s membrane test are

shown in Table 5.8. Using the Lagrange Multiplier formulation, if we approximate p

with P0 or PL interpolations, the constraint is ineffective. Using the Penalty formu-

lation, we get acceptable results only when the Q2-PM element is used. Finally, as

regards the Perturbed Lagrangian formulation, we note that it provides comparable

results with all the element used.

5.4.2.1 Sensitivity to mesh

Figures 5.31 to 5.33 show the results obtained with the Lagrange Multiplier formu-

lation, varying the mesh size. Once again, if we interpolate the Lagrange multiplier

p with constant or linear shape functions, the imposed constraint turns out to be

ineffective. It remains to analyze the results concerning the Q1P1-LM and Q2P1-LM

elements. As in the previous tests, using the Q2P1-LM element we obtain reliable

results.

Regarding the results for the Penalty formulation, shown in Figures 5.34 to 5.36,

we note that we have satisfactory results only using the Q2-PM element. The Q1-PM

element would provide correct results only when C2 and C3 tests are performed.

Finally, we comment on the results obtained for the Perturbed Lagrangian formu-

lation, shown in Figures 5.37 to 5.39. We note that, as regards this formulation, all
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Table 5.8: Cook’s membrane test numerical results: anisotropic formulations. When the constraint is effective,
the results are indicated in green, while the incorrect results are indicated in red. Instead, when the constraint is
ineffective, the results are indicated in black.

Q1P1-LM Q1P0-LM Q1PL-LM Q2P1-LM Q2P0-LM Q2PL-LM

C1
uC -6.5349E-319 -6.8401E+00 -6.8326E+00 -2.3032E+00 -6.8807E+00 -6.8827E+00

vC 2.0595E+00 9.1794E+00 9.1730E+00 4.3048E+00 9.2147E+00 9.2170E+00

C2
uC -3.6000E-19 -6.8401E+00 -6.8401E+00 -5.8835E+00 -6.8807E+00 -6.8798E+00

vC -2.9628E-268 9.1794E+00 9.1794E+00 7.8872E+00 9.2147E+00 9.2142E+00

C3
uC 5.4700E+158 -6.8401E+00 -6.8440E+00 -1.2975E+00 -6.8807E+00 -6.8831E+00

vC -5.4700E+158 9.1794E+00 9.1826E+00 1.2981E+00 9.2147E+00 9.2165E+00

Cc = 1.00E+05 Q1-PM Q2-PM

C1
uC -1.7838E+00 -2.3189E+00

vC 3.7896E+00 4.3253E+00

C2
uC -5.8692E+00 -5.8843E+00

vC 7.8786E+00 7.8898E+00

C3
uC -1.3565E+00 -1.3602E+00

vC 1.3578E+00 1.3615E+00

Cc = 1.00E+05 Q1P1-PLM Q1P0-PLM Q1PL-PLM Q2P1-PLM Q2P0-PLM Q2PL-PLM

C1
uC -2.2698E+00 -2.3263E+00 -2.3234E+00 -2.3773E+00 -2.4646E+00 -2.4663E+00

vC 4.2714E+00 4.3380E+00 4.3355E+00 4.3982E+00 4.5126E+00 4.5146E+00

C2
uC -5.8692E+00 -5.8772E+00 -5.8772E+00 -5.8953E+00 -5.9210E+00 -5.9202E+00

vC 7.8786E+00 7.8829E+00 7.8829E+00 7.8963E+00 7.9151E+00 7.9147E+00

C3
uC -1.3587E+00 -1.3599E+00 -1.3600E+00 -1.3625E+00 -1.3794E+00 -1.3794E+00

vC 1.3600E+00 1.3612E+00 1.3613E+00 1.3643E+00 1.3822E+00 1.3816E+00
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the developed finite elements provide correct results.
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Figure 5.31: Cook’s membrane test C1: sensitivity to mesh for the Lagrange Multiplier Formulation.
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Figure 5.32: Cook’s membrane test C2: sensitivity to mesh for the Lagrange Multiplier Formulation.

Number of elements in X direction
0 10 20 30 40 50 60 70 80

H
or

iz
on

ta
l d

is
pl

ac
em

en
t o

f p
oi

nt
 C

-2

0

2

4

6

8

10
Lagrange Multiplier - C3 test

Q1P1-LM
Q1P0-LM
Q1PL-LM
Q2P1-LM
Q2P0-LM
Q2PL-LM

Number of elements in X direction
0 10 20 30 40 50 60 70 80

V
er

tic
al

 d
is

pl
ac

em
en

t o
f p

oi
nt

 C

-2

0

2

4

6

8

10
Lagrange Multiplier - C3 test

Q1P1-LM
Q1P0-LM
Q1PL-LM
Q2P1-LM
Q2P0-LM
Q2PL-LM

Figure 5.33: Cook’s membrane test C3: sensitivity to mesh for the Lagrange Multiplier Formulation.
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Figure 5.34: Cook’s membrane test C1: sensitivity to mesh for the Penalty Formulation.
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Figure 5.35: Cook’s membrane test C2: sensitivity to mesh for the Penalty Formulation.
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Figure 5.36: Cook’s membrane test C3: sensitivity to mesh for the Penalty Formulation.

86



Number of elements in X direction
0 10 20 30 40 50 60 70 80

H
or

iz
on

ta
l d

is
pl

ac
em

en
t o

f p
oi

nt
 C

-2

0

2

4

6

8

10
Perturbed Lagrangian (Cc=105) - C1 test

Q1P1-PLM
Q1P0-PLM
Q1PL-PLM
Q2P1-PLM
Q2P0-PLM
Q2PL-PLM

Number of elements in X direction
0 10 20 30 40 50 60 70 80

V
er

tic
al

 d
is

pl
ac

em
en

t o
f p

oi
nt

 C

-2

0

2

4

6

8

10
Perturbed Lagrangian (Cc=105) - C1 test

Q1P1-PLM
Q1P0-PLM
Q1PL-PLM
Q2P1-PLM
Q2P0-PLM
Q2PL-PLM

Figure 5.37: Cook’s membrane test C1: sensitivity to mesh for the Perturbed Lagrangian Formulation.
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Figure 5.38: Cook’s membrane test C2: sensitivity to mesh for the Perturbed Lagrangian Formulation.
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Figure 5.39: Cook’s membrane test C3: sensitivity to mesh for the Perturbed Lagrangian Formulation.
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5.4.2.2 Sensitivity to CC

We analyze the values of the two displacement components of point D, varying the

penalty parameter CC . First, we consider the results shown in Figures 5.40 to 5.42,

which concern the Penalty formulation. Regarding the C1 test we note that the

behaviours of the Q1-PM and Q2-PM elements are different. The Q2-PM element

provides reliable results only when CC = 105. Instead, with regard to C2 and C3 tests,

both the elements show the same results: the Q1-PM element provide, however, more

stable results, while the Q2-PM element shows numerical issues after CC = 1013.

Now, we focus on the Perturbed Lagrangian formulation results, which are shown

in Figures 5.43 to 5.45. First, we note that, concerning the C2 and C3 tests, both

the formulations provide the same results. Rather, the C1 test is interesting. The

Q1P1-PLM element shows the same behaviour of the Q2-PM element: this is an un-

expected results. Instead, all the other elements show a similar behaviour and provide

convergent results with CC = 105.
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Figure 5.40: Cook’s membrane test C1: sensitivity to CC for the Penalty Formulation.
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Figure 5.41: Cook’s membrane test C2: sensitivity to CC for the Penalty Formulation.
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Figure 5.42: Cook’s membrane test C3: sensitivity to CC for the Penalty Formulation.
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Figure 5.43: Cook’s membrane test C1: sensitivity to CC for the Perturbed Lagrangian Formulation.
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Figure 5.44: Cook’s membrane test C2: sensitivity to CC for the Perturbed Lagrangian Formulation.
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Figure 5.45: Cook’s membrane test C3: sensitivity to CC for the Perturbed Lagrangian Formulation.
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5.5 Two-element distortion test

This test is conducted in order to demonstrate the sensibility against mesh distor-

tion. We consider the cantilever beam depicted in Figure 5.46, subjected to a couple

at the edge CD. Along the edge AB, the horizontal displacement is set equal to zero,

while the point A is constrained along both the directions. The aim is to analyze

how the displacements varies with respect to the distortion parameter d. We set:

L = 10, H = 2, E = 3000, ν = 0 and f = 60. We compare the results in terms of the

displacement components of point D.

L/2

H

X

Y
d

L/2

B C

DA

f

Figure 5.46: Two-element Distortion test. Geometry and boundary conditions.

In order to obtain acceptable results, Gifford suggested that element distortions

should be limited to less than 45◦ [27]. Moreover, Lee and Bathe demonstrated that

elements with internal nodes (in this case, the Q2 element) are not affected by the

angular distortion [28].

For an isotropic material, referring to Equation (5.5), the horizontal and vertical

displacements of point D are the following:

uD = 2.00E − 01

vD = 1.00E + 00
(5.8)

If we consider an anisotropic material (see Figure 5.47), the analytical solutions

are respectively:

D1

uD = 0.00E + 00

vD = 0.00E + 00
D2

uD = 2.00E − 01

vD = 1.00E + 00
D3

uD = 1.50E − 01

vD = 7.50E − 01
(5.9)
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Figure 5.47: Two-elements distortion test for anisotropic material, with fiber direction (left) a = (1, 0), (middle)
a = (0, 1), (right) a = (

√
2/2,
√

2/2). The three tests are denoted, respectively, as D1, D2 and D3.

5.5.1 Isotropic material

For the isotropic formulations, the test returns the results shown in Figure 5.48.

Obviously, given the objectives of the test, only quadrilateral elements have been

used, i.e., the Q1-DB, Q1-PS, Q1-E4 and Q1-E5 elements.
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Figure 5.48: Two-elements distortion test sensitivity to mesh distortion: isotropic formulations.

Comparing the results with those available from the literature (see, e.g., [19]), we

can observe that the performed two-element distortion test has been set correctly.

For the case d = 0, the analytical result provided in Equation (5.8) is obtained for all

the formulations, except for the Q1-DB element.

For this test, we decide to evaluate the results without varying the Poisson’s ratio,

because this analysis has already been made for the bending test (considering that

these two tests have the same geometry and boundary conditions).

5.5.2 Anisotropic material

To determine the effect that the imposed inextensibility constraint produces on

the developed finite elements, we need only to observe the results obtained without
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distortion. Hence, setting d = 0, the results are shown in Table 5.9.

Table 5.9: Two-elements distortion test numerical results: anisotropic formulations. When the constraint is
effective, the results are indicated in green, while the incorrect results are indicated in red. Instead, when the
constraint is ineffective, the results are indicated in black.

Q1P1-LM Q1P0-LM Q1PL-LM Q2P1-LM Q2P0-LM Q2PL-LM

D1
uD 0.0000E+00 4.8485E-02 4.8485E-02 -1.7900E-18 2.0000E-01 2.0000E-01

vD 0.0000E+00 2.4242E-01 2.4242E-01 -9.1500E-19 1.0000E+00 1.0000E+00

D2
uD 8.0134E-03 4.8485E-02 4.8485E-02 2.0000E-01 2.0000E-01 2.0000E-01

vD 0.0000E+00 2.4242E-01 2.4242E-01 1.0000E+00 1.0000E+00 1.0000E+00

D3
uD 5.5749E-03 4.8485E-02 4.9485E-02 1.5168E-01 2.0000E-01 2.0113E-01

vD 2.2300E-02 2.4242E-01 2.4759E-01 7.3091E-01 1.0000E+00 1.0062E+00

Cc=1.00E+11 Q1-PM Q2-PM

D1
uD 6.0000E-09 6.0000E-09

vD 3.0000E-08 3.0000E-08

D2
uD 4.8485E-02 2.0000E-01

vD 2.4242E-01 1.0000E+00

D3
uD 5.5749E-03 1.4862E-01

vD 2.2300E-02 7.2703E-01

Cc=1.00E+11 Q1P1-PLM Q1P0-PLM Q1PL-PLM Q2P1-PLM Q2P0-PLM Q2PL-PLM

D1
uD 6.0000E-09 4.8485E-02 4.8485E-02 6.0000E-09 2.0000E-01 2.0000E-01

vD 3.0000E-08 2.4242E-01 2.4242E-01 3.0000E-08 1.0000E+00 1.0000E+00

D2
uD 4.8485E-02 4.8485E-02 4.8485E-02 2.0000E-01 2.0000E-01 2.0000E-01

vD 2.4242E-01 2.4242E-01 2.4242E-01 1.0000E+00 1.0000E+00 1.0000E+00

D3
uD 5.5749E-03 4.8485E-02 4.9485E-02 1.5168E-01 2.0000E-01 2.0113E-01

vD 2.2300E-02 2.4242E-01 2.4755E-01 7.3091E-01 1.0000E+00 1.0062E+00

Observing the values, we note that the conducted test returns the same results

only with the Q2P1-LM, Q2-PM and Q2P1-PLM elements.

5.5.2.1 Sensitivity to mesh distortion

Now we evaluate how the results vary with the mesh distortion parameter d.

Figures 5.49 to 5.51 show the displacement components of point D, for the La-

grange Multiplier formulation. We can observe that the Q2P1-LM element is the

most performing. It is interesting to note that the Q1P0-LM and Q1PL-LM ele-

ments, provide the same results obtained with the isotropic Q1-DB element, shown

in the previous section. Instead, all the other elements provide incorrect results.

With regard to the Penalty formulation, the results are shown in Figures 5.52

to 5.54. We can note that the Q2-PM element is the most performing.
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Finally, with reference to the results shown in Figures 5.55 to 5.57, we comment

on the Perturbed Lagrangian formulation. As seen for the LM formulation, we note

that, in general, for the elements Q1P0-PLM and Q1PL-PLM, the constraint is inef-

fective and the results coincide with those obtained with the Q1-DB isotropic element.
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Figure 5.49: Distortion test D1: sensitivity to mesh distortion for the Lagrange Multiplier Formulation.
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Figure 5.50: Distortion test D2: sensitivity to mesh distortion for the Lagrange Multiplier Formulation.

5.5.2.2 Sensitivity to CC

We analyze now how the results vary with respect to the penalty parameter CC .

We set d = 5, namely the maximum possible distortion.

Observing Figures 5.58 to 5.60, we note that, as regards the Penalty formulation,

we obtain converged results between the Q1-PM and Q2-PM elements used, only
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Figure 5.51: Distortion test D3: sensitivity to mesh distortion for the Lagrange Multiplier Formulation.
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Figure 5.52: Distortion test D1: sensitivity to mesh distortion for the Penalty Formulation.
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Figure 5.53: Distortion test D2: sensitivity to mesh distortion for the Penalty Formulation.
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Figure 5.54: Distortion test D3: sensitivity to mesh distortion for the Penalty Formulation.
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Figure 5.55: Distortion test D1: sensitivity to mesh distortion for the Perturbed Lagrangian Formulation.
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Figure 5.56: Distortion test D2: sensitivity to mesh distortion for the Perturbed Lagrangian Formulation.
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Figure 5.57: Distortion test D3: sensitivity to mesh distortion for the Perturbed Lagrangian Formulation.

when the fibers are arranged horizontally. Convergence is reached for CC = 107. In

the other cases, instead, the results are not convergent.

Finally, we analyze the results obtained regarding the Perturbed Lagrangian for-

mulation, which are shown in Figures 5.61 to 5.63. As already mentioned in the pre-

vious paragraph, the Q1 elements provide incorrect results. Instead, setting d = 5,

we note that varying CC , the Q1 elements provide almost coincident results.
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Figure 5.58: Distortion test D1: sensitivity to CC for the Penalty Formulation.
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Figure 5.59: Distortion test D2: sensitivity to CC for the Penalty Formulation.
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Figure 5.60: Distortion test D3: sensitivity to CC for the Penalty Formulation.
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Figure 5.61: Distortion test D1: sensitivity to CC for the Perturbed Lagrangian Formulation.
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Figure 5.62: Distortion test D2: sensitivity to CC for the Perturbed Lagrangian Formulation.
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Figure 5.63: Distortion test D3: sensitivity to CC for the Perturbed Lagrangian Formulation.
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Chapter 6

Conclusions and future work

The aim of this thesis was to propose a new possible approach, based on con-

strained optimization methods, for the modeling of anisotropic materials. In particu-

lar, we limit our analysis to linear elastic materials reinforced by a family of parallel

inextensible fibers. We proposed different types of finite elements, that differ in the

chosen Lagrange multiplier and displacement interpolation.

Displacements node

Lagrange Multiplier node

Q2P1-LM

Q2-PM

Q2P1-PLM

Element 
Type

Interpolations Strain Energy Function

Figure 6.1: Finite elements for anisotropic materials.

In view of the numerical results presented in Chapter 5, we can affirm that the

application of constrained optimization methods to the modeling of anisotropic ma-

terials turns to be an excellent implementation strategy. We note that the use of

biquadratic shape functions for the displacement field interpolation and of bilinear
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shape functions for the Lagrange multiplier interpolation allows to obtain the best

performances. Figure 6.1 summarizes the three elements.

Now, for the chosen elements, we can summarize and compare the numerical test

results. As regards the Traction test, the results shown in Table 6.1 turn to be

consistent with those that we expect. In particular, we note that, when the fibers

are arranged horizontally (i.e. in the same direction of the applied tensile load), the

imposed inextensibility constraint has effects on both the displacement components

of point C (see Figure 5.2). Instead, when the fibers are arranged vertically, the only

displacement component tending to zero is the vertical one. Finally, in case of fibers

inclined at an angle of 45◦, the point C is constrained to move in the fiber direction.

Table 6.1: Traction test results.

Q2P1-LM Q2-PM Q2P1-PLM

T1
uC 4.6923E-19 1.0000E-10 1.0000E-10

vC -3.2017E-19 -4.2857E-11 -4.2857E-11

T2
uC 7.4286E-03 7.4286E-03 7.4286E-03

vC -5.1653E-19 -4.2857E-11 -4.2857E-11

T3
uC 6.5000E-03 6.5000E-03 6.5000E-03

vC -6.5000E-03 -6.5000E-03 -6.5000E-03

Table 6.2 shows the Bending test results. This test results in a bending-dominated

response, thus we expect greater constraint effects when the fibers are arranged hor-

izontally (we make a comparison with a reinforced concrete cantilever beam, where

the longitudinal reinforcements are represented by the fibers). On the contrary, we

expect minimal constrained effects if the fibers are arranged in vertical or inclined

direction. The results confirm what we expect.

Table 6.2: Bending test results.

Q2P1-LM Q2-PM Q2P1-PLM

B1
uD -5.6900E-08 1.5000E-09 -5.5400E-08

vD -5.8525E-08 7.5000E-09 -5.1018E-08

B2
uD 7.4184E-02 7.4286E-02 7.4184E-02

vD 3.7089E-01 3.7143E-01 3.7089E-01

B3
uD 8.4483E-02 8.4371E-02 8.4483E-02

vD 4.1405E-01 4.1491E-01 4.1405E-01

For the Cook’s membrane test, the results are shown in Table 6.3. This test,
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like the previous one, provides a bending-dominated response. We obtain a good

correspondence with the expected behaviour. Indeed, analyzing the results, we note

that the imposed constraint is more effective when the fibers are inclined at an angle

of 45◦. In the other cases, the considerations done previously are still valid.

Table 6.3: Cook’s membrane test results.

Q2P1-LM Q2-PM Q2P1-PLM

C1
uC -2.3032E+00 -2.3189E+00 -2.3773E+00

vC 4.3048E+00 4.3253E+00 4.3982E+00

C2
uC -5.8835E+00 -5.8843E+00 -5.8853E+00

vC 7.8872E+00 7.8898E+00 7.8963E+00

C3
uC -1.2975E+00 -1.3602E+00 -1.3625E+00

vC 1.2981E+00 1.3615E+00 1.3643E+00

We now come to the two-element distortion test, whose results are shown in Table

6.4. Since we consider a cantilever beam, the same considerations of the effects

produced by the imposed constraint varying the fiber direction, made for the Bending

test, are valid. Observing the results shown in Figures 5.49 to 5.57 , it is interesting

to note that the chosen Q2P1-LM, Q2-PM, and Q2P1-PLM elements, are not affected

by the mesh distortion.

Table 6.4: Two-element distortion test results.

Q2P1-LM Q2-PM Q2P1-PLM

D1
uD -1.7900E-18 6.0000E-09 6.0000E-09

vD -9.1500E-19 3.0000E-08 3.0000E-08

D2
uD 2.0000E-01 2.0000E-01 2.0000E-01

vD 1.0000E+00 1.0000E+00 1.0000E+00

D3
uD 1.5168E-01 1.4862E-01 1.5168E-01

vD 7.3091E-01 7.2703E-01 7.3091E-01

In this thesis we provided the basis for a new approach to the modeling of

anisotropic materials. Since we have shown the good quality of the proposed for-

mulations, it could be useful to extend the present work to the following research

fields:

• Three-dimensional fiber-reinforced linear elastic materials. The generalization

of the proposed formulations to the three-dimensional case should be a natural
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extension of this work. The unit vector that indicates the fiber directions, will

take the form:

a = (ax, ay, az)
T

Appropriate interpolations have to be considered.

• Two fiber-family anisotropic materials. It will be necessary to introduce an

additional unit vector b, indicating the direction of the second family of fibers,

such that the strain energy will be assumed to be a function of strain tensor ε

and of unit vectors a and b:

W = W (ε,a, b)

Therefore, the functionW will include two directional inextensibility constraints.

• Finite strain. At present, an important field concerning anisotropic materials

is certainly that inherent materials with large rotations and strains (e.g., elas-

tomers, plastically-deforming materials, and biological soft tissues). For this

reason, the application of the proposed formulations to thee materials would be

very interesting.
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Appendix A

Analytical solutions

A.1 Traction test

In the context of plane strain and small displacements, the horizontal and vertical

displacement fields of a continuous domain Ω subjected to an uniaxial pure traction

state can be written as follows:

u(x, y) = εxx x+ εxy y

v(x, y) = εxy x+ εyy y
(A.1)

where εxx, εyy, εxy are the strain tensor components and x and y are the Cartesian

coordinates of the generic point in the domain Ω. Therefore, considering Equations

(A.1) and the constitutive relations (4.25) concerning the Lagrange Multiplier formu-

lation, we can provide the following analytical solutions:

u(x, y) = q

[
ay[a

3
yµ+ a2

xay(λ+ 2µ)]x

(a2
x + a2

y)
2µ(λ+ 2µ)

+
[axa

3
yλ− (2µ+ λ)a3

xay]y

2(a2
x + a2

y)
2µ(λ+ 2µ)

]
v(x, y) = q

[
[axa

3
yλ− (2µ+ λ)a3

xay]x

2(a2
x + a2

y)
2µ(λ+ 2µ)

+
ax[−axa2

y(λ+ µ)]y

(a2
x + a2

y)
2µ(λ+ 2µ)

] (A.2)

where q is the uniformly distributed tensile load, a = (ax, ay) is the unit vector

that identify the fiber direction, and λ and µ are the Lamé constants.
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A.2 Bending test

The Bending test carried out in Section 5.3 can be seen as a simplified represen-

tation of the pure bending of a beam (see Figure A.1). The elementary beam theory

predicts that the stress σxx varies linearly with y. Then, we consider the following

Airy stress function:

φ = Ay3 (A.3)

where A is a constant to be determined.

Figure A.1: Pure bending of a beam

The Airy stress function enable us to determine the stress components by applying

the following relations:

σxx =
∂2φ

∂y2
= 6Ay

σyy =
∂2φ

∂x2
= 0

σxy = − ∂2φ

∂x∂y
= 0

(A.4)

Now we want to establish a relation between the moment M and the stress dis-

tribution at the beam ends in integral form to fully define the stress field in terms of

problem parameters. Particularly, setting h = H/2:

M =

∫ h

−h
σxxydy = 6A

∫ h

−h
y2dy = 4Ah3 ⇒ A =

M

4h3
(A.5)

and, therefore, then the stress component σxx, which defines the bending state,
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becomes:

σxx =
3M

2h3
y (A.6)

By applying the strain-displacement conditions and the strain-stress relationship,

we obtain that:

εxx =
∂u

∂x
= S11σxx = S11

3M

2h3
y

εyy =
∂v

∂y
= S21σxx = S21

3M

2h3
y

εxy =
1

2

(
∂u

∂y
+
∂v

∂x

)
= S31σxx = S31

3M

2h3
y

(A.7)

After integrating, we obtain the following displacement field:

u(x, y) = S11
3M

2h3
xy + g(y)

v(x, y) = S12
3M

4h3
y2 + h(x)

(A.8)

Equation (A.7)3, can be separated into two independent relations in x and y. The

first relation is:

S11
3M

2h3
x+ g′(y) + h′(x)− S31

3M

h3
y = 0 ⇒


h′(x) + S11

3M

2h3
x = C1

g′(y)− S31
3M

h3
y = −C1

(A.9)

which leads to:

g(y) = S31
3M

2h3
y2 − C1y + C3 (A.10)

while the second one is:

h(x) = −S11
3M

4h3
x2 + C1x+ C2 (A.11)

By replacing Equations (A.10) and (A.11) into Equations (A.8), we obtain:
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u(x, y) =
3M

2h3

(
S11xy + S31y

2
)
− C1y + C3

v(x, y) =
3M

2h3

(
1

2
S21y

2 − S11x
2

)
+ C1x+ C2

(A.12)

If we consider the following boundary conditions

u(0,−h) = S31
3M

2h
+ C1h+ C3 = 0

v(0,−h) = S21
3M

4h
+ C2 = 0

u(0, h) = S31
3M

2h
− C1h+ C3 = 0

(A.13)

we can compute the constants of integration:

C1 = 0

C2 = −S21
3M

4h

C3 = −S31
3M

2h

(A.14)

Now, setting M =
fH2

6
and replacing the constants of integration in Equations

(A.12), we obtain the following analytical solutions:

u(x, y) =
2f

H

[
S11xy + S31

(
y2 − H2

4

)]
v(x, y) =

2f

H

[
S21

2

(
y2 − H2

4

)
− S11x

2

] (A.15)

Finally, using the Lagrange Multiplier formulation, we provide the generic expres-

sions of the components S11 and S21 of the S tensor:

S11 =
a4
yµ+ a2

xa
2
y(λ+ 2µ)

(a2
x + a2

y)
2µ(λ+ 2µ)

S21 = −
a2
xa

2
y(λ+ µ)

(a2
x + a2

y)
2µ(λ+ 2µ)

(A.16)
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