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Università degli Studi

di Pavia

EUROPEAN SCHOOL OF ADVANCED STUDIES IN
REDUCTION OF SEISMIC RISK

ROSE SCHOOL

DISPLACEMENT/MIXED FINITE ELEMENT
FORMULATION FOR BEAM AND FRAME PROBLEMS

A Dissertation Submitted in Partial
Fulfilment of the Requirements for the Master Degree in

EARTHQUAKE ENGINEERING

By

CHANDAN SHARMA

Supervisor: Prof. Ferdinando Auricchio

October, 2007



The dissertation entitled “Displacement/Mixed finite element formulation for beam and frame
problems”, by Chandan Sharma, has been approved in partial fulfilment of the requirements for
the Master Degree in Earthquake Engineering.

Prof. Ferdinando Auricchio

Prof. ‘



Abstract

ABSTRACT

In this work two parallel approaches - displacement and mixed finite element based methods
are employed for seeking the solutions of small strain/large displacement of in-plane beam and
frame problems, and further its consistent numerical implementation in a finite element program
is achieved. The adopted kinematics hypothesis is based on the geometrically exact theory for
beams with straight beam element under static loading conditions. An updated lagrangian
approach is used for the structure geometry at any stage. Shear deformation is considered in
both approaches. Shear locking is observed in displacement based formulation which is removed
by reduced integration rule whereas no locking is observed in force based formulation.

Displacement based method is the immediate work from literature- a two-dimensional geomet-
rically exact theory of beams while an independent attempt is made in mixed finite element
method to include the geometric nonlinearity. This uses the approach of Hu-Washizu varia-
tional formulation at element level: with in the general framework of the displacement method
for the solution of the global structural problem. Equilibrium and compatibility are always
satisfied along the element in force based formulation. Some planar problems are studied to
validate the results from both models.

i



Acknowledgements

ACKNOWLEDGEMENTS

I wish to express my heartiest gratitude to Prof. Ferdinando Auricchio, my thesis supervisor,
for his invaluable guidance in this work. I also thanks to him for rendering their valuable time
for discussions in spite of the busy schedule of him. I appreciate him for encouraging me always
to follow the fundamental and theoretical approach towards the work, which greatly helps me in
accomplishing the task. I shall also be greatly thankful to him for helping me in non-academic
issues. It has been a great pleasure to have this relationship with such a friendly and enthusiastic
supervisor.

I shall also be thankful to Dr. Alessandro Reali for some valuable suggestions related to the
work. I also wants to say thanks to my close friend Mr. Gopal Adhikari for helping me in
running the opensees software and their guidance during the work and also for their friendly
relationship that cheers up during my whole stay in pavia. I also thanks to some of Roseschool
friends Davide, Mathew, Rena, Mariana, Surendre, Sunil, oil, for the friendly moments during
my stay in pavia.

ii



Index

CONTENTS

ABSTRACT i

ACKNOWLEDGEMENTS ii

CONTENTS iii

1. INTRODUCTION 1

1.1 Displacement based finite element method . . . . . . . . . . . . . . . . . . . . 1

1.2 Force based formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objective and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. GEOMETRICALLY NON-LINEAR PROBLEMS 6

2.1 Kinematics and deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Large displacement theory of beams . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Constitutive laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

iii



Index

3. DISPLACEMENT BASED FINITE ELEMENT METHOD 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Finite element approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Summary of Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 18

4. MIXED FINITE ELEMENT METHOD 21

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Equilibrium Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Compatibility Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Constitutive laws - section force consistency Equation . . . . . . . . . . 23

4.3 Finite element approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Summary of Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 27

5. EXAMPLES 29

5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.1 Clamped cantilever with concentrated transversal end load . . . . . . . 29
5.1.2 Clamped cantilever subjected to concentrated end moment . . . . . . . 32
5.1.3 One story Portal Frame with transverse loading . . . . . . . . . . . . . 33

6. CONCLUSION 37

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A. APPENDIX 39

A.1 Derivation of geometric stiffness matrix Kg . . . . . . . . . . . . . . . . . . . 39

A.2 Derivation of the stiffness matrix expressed in eq. (4.1.18) . . . . . . . . . . . 39

BIBLIOGRAPHY 41

iv



Chapter 1. Introduction

1. INTRODUCTION

Nonlinear structural analysis has been the subject of very extensive research. More specifi-

cally, several studies on the nonlinear behavior of frames have been conducted over the last four

decades. As the number of these studies is vast, only a few of the works that include nonlinear

geometric effects are listed herein. Most of the past literature are based on the displacement

formulation, with only a few based on force or mixed formulations. Mixed finite element for-

mulation is the recent approach, still in developing stage for analysis in which variable field

-displacement, stresses and strain are interpolated independently. Some of the past literature on

the both element formulation is presented in this chapter and in the end objective of the work

is mentioned.

1.1 DISPLACEMENT BASED FINITE ELEMENT METHOD

Non-linear analysis of beam like structural system has been extensively studied by the displace-

ment based approach in the last four decades of finite element solution method. The approach

can model to three-dimensional deformations of curved beam elements considering both issues

of geometric and material non-linearity under dynamic loading. The state of the art employs

the usual finite element principles means non-linear strain displacement relation are considered,

and polynomial interpolation functions are assumed for the displacement fields. Further the lin-

earization of the equilibrium equations is done for calculating the element parameters in which

displacement field is the primary unknowns. This involves the formation of stiffness matrix

and residual vectors for the global structure and solve by any non-linear solution algorithm

methods(i.e, full or modified Newton Raphson type solution). The development of elements for
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Chapter 1. Introduction

elastic nonlinear analysis of frames started in the sixties. Some of the earliest papers on elastic

nonlinear analysis are, for instance, Argyris et al. (1964)(2) and Connor et al. (1968)(3). In the

development of a geometrically nonlinear beam element, basically an updated Lagrangian or a

total Lagrangian formulation can be employed. One important early study on large displacement

analysis of frame structures is the paper by Bathe and Bolourchi (1979)(4), which presented an

updated Lagrangian and a total Lagrangian formulation for three-dimensional straight beam

elements derived from the principles of continuum mechanics.

A two-dimensional geometrically exact beam theory of straight element beams(rods)was devel-

oped by Reissner( 1972)(1) and was later extended to curved three-dimensional beam element

theory by Reissner(1981)(5), but the exactness in the theory is lost due to the simplifications in

the rotation matrix. The theory later revisited by Simo (1985)(6) and Simo et al. 1986)(7) men-

tioning dynamic form with geometrical aspects for three dimensional beams. Straight beam axis

is the special case of the curved reference axis. The extension of two-dimensional formulations

to three dimensions is by no means trivial for geometric non-linear problems. This is due to the

non-vectorial nature of large rotations in space. In geometrically linear problems, rotations are

considered infinitesimal, and therefore can be treated as vectors. However, in spatial problems

with large displacements, rotations are not vector entities, as can be easily confirmed by verifying

that the commutative property of vectors does not hold for large rotations in space. This can be

treated by imposing a sequence of rotations to a body, around two or three orthogonal axes, and

concluding that the final position of the body depends on the sequence of the imposed rotations.

Other publications on curved beam element is mentioned by Stolarski and Belytschko(1982)(8),

Saje (1991)(9), and Ibrahimbegovic and Frey (1992)(10).

Further some other publications on large displacement inelastic frame analysis, not specifically

for steel frames, are Cichon (1984)(11), Simo et al. (1984)(12), Tuomala and Mikkola (1984)(13),

Nedergaard and Pedersen (1985)(14), Chan (1988)(15), Gendy and Saleeb (1993)(16), Ovunc

and Ren (1996)(17), Park and Lee (1996)(18), and Waszczyszyn and Janus-Michalska (1998)(19).

1.2 FORCE BASED FORMULATION

Displacement based models encounter serious numerical problems in the description of the non-

linear response of structures under severe ground motions. Often, very small subdivision of the

structural members is necessary to obtain reasonable results. Even, so numerical instabilities

are not uncommon specially under cyclic loading.
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Chapter 1. Introduction

Recent studies show that elements which are based on the flexibility method, and thus on force

interpolation functions inside the element, are better suited to describe the nonlinear behavior

of structural members, particularly under conditions of strain softening or load reversal and the

lower number of model degrees of freedom for comparable accuracy in global and local response.

Only a few elements based on the force approach have been proposed for the nonlinear analysis

of frames. A brief description of these elements is given below.

Backlund (1976)(20) proposed a hybrid-type beam element for analysis of elasto- plastic plane

frames with large displacements. In this work, the flexibility matrix is computed based on an

assumed distribution of forces along the element. However, the method also uses displacement

interpolation functions that assume linearly varying curvature and a constant axial strain to

compute the section deformations from the end displacements. Section forces are obtained from

these section deformations using the constitutive relation, but the section forces calculated in

this way are not in equilibrium with the applied loads. These deviations only decrease as the

number of elements is increased in the member discretization. Large displacement effects are

taken into account by updating the structure geometry.

Kondoh and Atluri (1987)(21) employed an assumed-stress approach to derive the tangent stiff-

ness of a plane frame element, subject to conservative or non-conservative loads. The element

is assumed to undergo arbitrarily large rigid rotations but small axial stretch and relative (non-

rigid) point-wise rotations. It is shown that the tangent stiffness can be derived explicitly, if

a plastic-hinge method is employed. Shi and Atluri (1988)(22) extended these ideas to three-

dimensional frames, claiming that the proposed element could undergo arbitrarily large rigid

rotations in space. However, as also noticed by Abbasnia and Kassimali (1995)(23), the rota-

tions of the joints are treated by Shi and Atluri as vectorial quantities. This limits the application

of the element to problems with small rotations, leading to inaccurate results when the proposed

element is used in structures subject to large rotations.

Carol and Murcia (1989)(24) presented a hybrid-type formulation valid for nonlinear material

and second order plane frame analysis. The authors refer to the method as being exact in

the sense that the equilibrium equations are satisfied strictly. However, second order effects

are considered using a linear strain-displacement relation, which restricts the formulation to

relatively small deformations. Besides, the second order effect is not correctly accounted for in

the stiffness matrix expression, leading to an inconsistent tangent stiffness, and consequently

causing low convergence rate.

Neuenhofer and Filippou (1998)(25) presented a force-based element for geometrically nonlinear

3



Chapter 1. Introduction

analysis of plane frame structures, assuming linear elastic material response, and moderately

large rotations. The basic idea of the formulation consists in using a force interpolation func-

tion for the bending moment field that depends on the transverse displacements, such that the

equilibrium equations are satisfied in the deformed configuration. Consistently, the adopted

strain displacement relation is nonlinear. The weak form of this kinematic equation leads to a

relation between nodal displacements and section deformations. In this work, a new method,

called Curvature-Based Displacement Interpolation (CBDI), was proposed in order to derive

the transverse displacements from the curvatures using Lagrangian polynomial interpolation by

integrating twice. The motivation for this work was the extension of the force-based element

proposed in Neuenhofer and Filippou (1997)(26) to include geometrically nonlinear behavior.

This latter work was, in turn, based on the force formulation that was initially proposed by

Ciampi and Carlesimo (1986)(27), and was continually developed in several other works, includ-

ing Spacone (1994)(28), Spacone et al. (1996a)(29), Spacone et al. (1996b)(30), and Petrangeli

and Ciampi (1997)(31).

Further work, Ranzo and Petrangeli (1998)(32) and Petrangeli et al. (1999)(33) introduced

shear effects in the analysis of reinforced concrete structures, following the idea of the force-

based formulation presented in Petrangeli and Ciampi (1997)(31). Another new extension,

accounting for the bond-slip effect in reinforced concrete sections, is presented by Monti and

Spacone (2000)(34).

Souza (2000)(35) proposed a force-based formulation for inelastic large displacement analysis

of planar and spatial frames under the Hellinger-Reissner variational principle. In that study

full geometric-nonlinearity for large displacement is included with the co-rotational formulation.

The formulation was geometrically approximate, as opposed to the geometrically exact theories.

Further material non-linearity is included by fiber-discretization method which means integration

at the material point over the cross-section by appropriate stress-strain relationship.

More recent work by R.L.Taylor (2003)(36) proposed the elasto-plastic mixed beam element

model but with in the regime of small deformation for plane frame structures. The approach

uses the three field (displacement, strain, stress) formulation based on the Hu-Washizu principle

where forces, displacement and strain are interpolated independently using shape functions. The

advantage of using this variational principle is that the shear can be included without giving

concerned about the locking in elements.

It is important to emphasize that exact force distributions are easily determined for one-dimensional

elements only. In case of continuum elements, exact force interpolations functions are not avail-
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Chapter 1. Introduction

able. Therefore, force based formulations seem especially suited for the nonlinear analysis of

frames.

1.3 OBJECTIVE AND SCOPE

The main objective of this dissertation is to present the exact geometric non-linearity beam

theory under the displacement and mixed finite beam element formulation and their consis-

tent numerical implementation in finite element program. For the brevity of the work, elastic

constitutive laws are considered and further the target for analysis is planar beam and frame

structures. Shear effect is included in both models. The work is divided into the chapters with

the following brief overview:

• chapter 2 describe the kinematic hypothesis of the element that is considered for both

models. It also speaks about the compatibility equations and constitutive laws that is

considered in the model.

• chapter 3 describes the model for the displacement based formulation. A brief description

of the variational form that is considered and further the solution algorithm is described

in the end.

• chapter 4 describes the model for the mixed finite beam element. The variational form

that is considered in the model with the solution algorithm in the end is mentioned.

• chapter 5 shows some examples to validate the model. In all the examples their accuracy is

being checked by existing standalone finite element programs and with the results available

in literature.

• The conclusions and possible future work drawn from this study are presented in chapter

6

5



Chapter 2. Geometrically non-linear problems

2. GEOMETRICALLY NON-LINEAR PROBLEMS

The geometrically non-linear analysis of elastic in-plane oriented bodies e.g beams, frames is

presented in updated Lagrangian approach. Displacement and Rotations are unrestricted in

magnitude. The vectorial nature of large rotations is preserved in the plane problems and

therefore commutative property of vectors hold good in this regime. Ressiner (1972)(1) approach

for exact geometrical beam theory for plane frame is implemented in this chapter.

2.1 KINEMATICS AND DEFORMATION

This section introduces the brief summary of the basic equations for finite deformation solid me-

chanics problems, which for detailed description should be referred to R.L. Taylor et al.(2005)(37).

Though the equations is presented in three dimensional plane - the two dimensional plane being

a special case of these. Further the model is also framed in two dimensional plane in the present

work.

In cartesian coordinates the position vector of the material points in a fixed reference config-

uration, also called un-deformed configuration, Ω0, is described in terms of its components as

:

X = XIEI; I = 1, 2, 3 (2.1)

where EI are unit orthogonal base vectors and summation convention is used for repeated indices.

After the body is loaded each material point is described by its position vector, x, in the current
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Figure 2.1: Reference and current deformed configuration for finite deformation problems

deformed configuration, Ω , by the component as:

x = xiei; i = 1, 2, 3 (2.2)

where ei are unit base vectors for the current time t, further common origins and directions of

the reference and current coordinates are used for brevity. The position vector at the current

time is related to the reference configuration position vector through the mapping

xi = φi(XI , t) (2.3)

The mapping function φi is required as part of any solution and is analogous to the displacement

vector, which is mentioned next. Since the common origins and directions for the coordinate are

used, a displacement vector may be introduced as the change between the two frames. Hence

accordingly,

xi = δiI(XI + UI) (2.4)

where δiI is a rank-two shifter tensor between the two coordinate frames, and is defined by a

quantity Kronnecker delta in mathematical literature. Using the shifter, a displacement compo-
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Chapter 2. Geometrically non-linear problems

nent may be written with respect to either the reference configuration or the current configuration

and related through

ui = δiIUI and UI = δiIui (2.5)

Thus either ui or UI can be used equally to develop finite element parameters. A fundamental

measure of deformation is described by the deformation gradient relative to XI given by

FiI =
∂φi
∂XI

(2.6)

with subject to the constraint
J = detFiI > 0 (2.7)

to ensure that material volume elements remain positive. The deformation gradient helps in

mapping a differential line element and volume element in the reference configuration into one

in the current configuration as

dxi =
∂φi
∂XI

dXI and dv = J dV (2.8)

The deformation gradient may be expressed in terms of the displacement as

FiI = δiI +
∂ui
∂XI

= δiI + ui,I (2.9)

Since the deformation gradient is a two-point tensor which is referred to both the reference and

the current configurations. It is common to introduce deformation measures which are completely

related to either the reference or the current configuration. For the reference configuration, the

right Cauchy-Green deformation tensor, CIJ , is introduced as

CIJ = FiIFiJ (2.10)

Alternatively the Green strain tensor, EIJ , is given as

EIJ =
1
2

(CIJ − δIJ) (2.11)

8
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may be used. The Green strain may be expressed in terms of the reference displacements as

EIJ =
1
2

[
∂UI
∂XJ

+
∂UJ
∂XI

+
∂UK
∂XI

∂UK
∂XJ

] (2.12)

Similarly, we can express stresses with respect to reference and current states. Cauchy(true)

stress, σij , and the Kirchhoff stress, τij ,are symmetric measure of stress defined in the current

configuration which are related through the determinant of the deformation gradient as

τij = Jσij (2.13)

The second Piola-Kirchhoff stress, SIJ , is a symmetric stress measure with respect to the ref-

erence configuration and is related to the Kirchhoff stress through the deformation gradient

as
τij = FiISIJFjJ (2.14)

2.2 LARGE DISPLACEMENT THEORY OF BEAMS

The behavior for the bending of a beam for the small strain/large deformation is developed in this

section. Displacement and rotations along the element can be arbitrarily large(Geometrically

exact theory). Such formulation is realistic for most practical slender structures such as beams,

frames and shells. In these developments the normal to the cross-section is followed, as contrasted

to following the tangent to the beam axis, by an orthogonal frame. For keeping the model simple

straight beam element is assumed. The motion for the beam for which the orthogonal triad, ai

of the beam cross-section can be written as

φi ≡ xi = x0
i + ΛiIZI (2.15)

where the orthogonal matrix is related to theaivectors as

Λ = [a1 a2 a3 ] (2.16)

The response in torsion is assumed uncoupled from the axial and flexural response. Consequently,

the displacements and forces associated with torsion are omitted in the following discussion for

9



Chapter 2. Geometrically non-linear problems

Figure 2.2: Displacement field of the beam

simplicity. Therefore the matrix form for the above motion of the beam can be represented as
x1

x2

x3

 =


x
y
z

 =


X
0
0

+


u
v
w

+

Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

Λ31 Λ32 Λ33

 
0
Y
Z

 (2.17)

where the reference coordinate X1(X) is the beam axis X2(Y ), X3(Z) are cross-section axes,

u(X), v(Y ), andw(Z) are displacements of the beam reference axis. Here the rotation matrix

Λ(X) of the beam cross-section does not necessarily remain normal to the beam axis and thus

admits the possibility of transverse shearing deformations. It is also assumed that the cross-

section do not distort in their own planes. We consider the two-dimensional case where the

motion is restricted to the e.g X − Z plane. The orthogonal matrix may then be represented as

Λ =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 (2.18)

Inserting this in eq. (2.2.3) and expanding, the deformed position then is described compactly

10



Chapter 2. Geometrically non-linear problems

as

x = X + u(X) + Z sinβ(X)

y = Y

z = w(X)− Z cosβ(X)

(2.19)

Figure 2.3: Displacement field of the beam

The deformation gradient for this displacement is given by the relation

FiI =

[1 + u,X + Zβ,,X cosβ] 0 sinβ
0 1 0

[w,X − Zβ,,X sinβ] 0 cosβ

 (2.20)

The two non-zero Green strain are obtained using eq. (2.1.12) while, ignoring the quadratic

term in Z, are expressed by

EXX = u,X +
1
2

(u2
,X + w2

,X) + ZΛβ,X = E0 + ZKb

2EXZ = (1 + u,X) sinβ + w,X cosβ = Γ
(2.21)

where E0 and Γ are strains which are constant on the cross-section and Kb measures change in

rotation (curvature) of the cross-sections and where

Λ = (1 + u,X) cosβ − w,X sinβ (2.22)

11



Chapter 2. Geometrically non-linear problems

2.2.1 Constitutive laws

For simplicity, the strains are small and the constitution may be expressed by a linear elastic

relation between the Green-Lagrange strains and the second Piola-Kirchhoff stresses. It can be

expressed as,

SXX = EEXX and SXZ = 2GEXZ (2.23)

where E is the Young’s modulus and G a shear modulus.

12



Chapter 3. Displacement based finite element method

3. DISPLACEMENT BASED FINITE ELEMENT
METHOD

3.1 INTRODUCTION

This chapter describes the small strain/large displacement theory of the plane frame beam col-

umn element based on the displacement method, employing updated lagrangian approach. In

the present work the beam theory developed by Reissner(1972) for two-dimensional beams is con-

sidered here which is able to accommodate large displacement and large rotations. This theory

stand contrast with the corotational approach, means that all the element arrays are handled

directly in the global structure coordinate system, rather than in the local element(rotating)

coordinate system. Therefore, no final local-global transformations for element arrays need to

be done. The material properties, Kinematics hypothesis and deformation assumptions is same

as described in chapter 1. Static unidirectional loading is considered with no inertial term in

the formulation. Shear deformation is considered with reduced quadrature rule to avoid ’shear

locking’. Solution strategy is also mentioned in the end of the chapter. The model is supported

by some examples and also crosschecked by existing standalone programs in the chapters 6.

3.2 VARIATIONAL FORMULATION

Variational description for finite deformation can be derived from Galerkin (weak) or variational

form. The formulation can be done in either the reference configuration or in the current

configuration, which is the standard practice in the finite element approximations. The suggested

process requires the minimization of the total potential energy of the system in terms of a

prescribed displacement field. For the beam column element displacement field is given by eq.

13



Chapter 3. Displacement based finite element method

(2.2.5) and the compatibility relation is given by eq (2.2.7).

The following assumptions are necessary for the given variational principle:

• Conservation of external loads (body forces and boundary tractions).

• Hyperelastic material behavior.

The external loads are conservative if the external work done is equal to the sum of the work

done by imposed forces which mathematically expressed as.

Πext(u) = −
∫

Γt

t
T
u dΓ (3.1)

where Πext(u) denotes the terms from end forces and loading along the length, t are the imposed

tractions on the part Γt of the element boundary Γ. This functional is referred to as the potential

energy of the external loading. A common example of conservative loads are gravity loading (

dead loads) with constant direction.

A material model is hyper-elastic (or Green elastic) if there exists a stored energy functions

W(ε), such that the stress (or second Piola -Kirchhoff stress if we are in reference configuration)

can be expressed as a function of strain ε as

σ =
∂W(ε)
∂ε

(3.2)

If this constitutive relation has a unique inverse, i.e, if W(ε) is strictly convex, a unique strain

ε can be found for a given stress, using the complementary energy density

χ(σ) = σε(σ)−W(ε(σ)) (3.3)

Taking the derivative of eq. (3.1.3) with respect to σ gives

∂χ(σ)
∂σ

= ε(σ) + σ
∂ε(σ)
∂σ

− ∂W(ε(σ))
∂ε

∂ε(σ)
∂σ

= ε(σ) + σ
∂ε(σ)
∂σ

− σ∂ε(σ)
∂σ

= ε(σ)

(3.4)

14



Chapter 3. Displacement based finite element method

The inverse form is possible for most elastic material models in the range of small strain, but

this is not always the case for large elastic strains.

A variational equation for finite elasticity for the beam may be written in the reference config-

uration as,

δΠ =
∫

Ω
(δEXXSXX + 2δEXZSXZ) dV − δΠext (3.5)

By resolving the volume integral into one along the length times an integral over the beam

cross-section area A and define force resultants as

T p =
∫
A
SXX dA, Sp =

∫
A
SXZ dA, M b =

∫
A
SXXZ dA (3.6)

Integrating the above equation using eq. (2.2.9) and eq. (2.2.7) the elastic behaviour of the

beam resultant becomes

T p = EAE0 Sp = κGAΓ, M b = EIKb (3.7)

the variational equation may be written compactly with the help eq. (3.1.6) as

δΠ =
∫

 L
(δE0T p + δΓSp + δKbM b) dX − δΠext (3.8)

where virtual strains with the help of eq. (2.2.7) can be written as

δE0 = (1 + u,X) δu,X + w,X δw,X

δΓ = sinβ δu,X + cosβ δw,X + Λ δβ

δKb = Λ δβ,X + β,X(cosβ δu,X − sinβ δw,X − Γ δβ)

(3.9)

3.3 FINITE ELEMENT APPROXIMATION

A finite element approximation for the displacement field may be introduced as
u
w
β

 = Nα
d(X)


ũα
w̃α
β̃α

 α = 1, 2 (3.10)
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where the shape functions Nα
d(X) for each displacement field are the same. The linear shape

functions is used for each displacement field.

[Nd
1 Nd

2 ] = [(1− X

L
)
X

L
] (3.11)

Figure 3.1: Displacement field shape functions.

Using this approximation eq. (3.1.8) can be manipulated as

δΠ = [δũα δw̃α δβ̃α ]
∫
L

BT
α


T p

Sp

M b

 dX − δΠext (3.12)

where

Bα =

(1 + u,X)Nd
α,X w,X N

d
α,X 0

sin β Nd
α,X cos β Nd

α,X ΛNd
α

β,Xcos β N
d
α,X −β,Xsin β Nd

α,X (ΛNd
α,X − Γβ,X Nd

α)

 (3.13)

or

B = [ B1 B2 ] (3.14)

The non- linear equilibrium equation for a quasi-static problem that is solved at each load step

is given by

Ψn+1 = fn+1︸︷︷︸
externalforce

−
∫
L

BT
α


T pn+1

Spn+1

M b
n+1

 dX

︸ ︷︷ ︸
internalforce(Fint)

= 0 (3.15)
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Chapter 3. Displacement based finite element method

The behavior of axial and bending deformations occur at a cross-section is assumed uncou-

pled. Further the elastic material behavior is assumed given by constitutive laws in eq. (2.2.9),

therefore stress resultants can be expressed as

T p = EAE0, Sp = κGAΓ, M b = EIKb (3.16)

or in matrix form can be expressed as

F = DTE (3.17)

where

DT =

EA κGA
EI

 (3.18)

where F is the stress vector. Further E may be expressed as

E = BT ũ (3.19)

For a Newton-Raphson type solution the tangent stiffness matrix is deduced by a linearization

of eq. (3.1.15) as,

KT =
∫
L

BT ∂F

∂ũ
dX +

∫
L

(∂BT F )
∂ũ

dX (3.20)

where ũ = [ ũ1 w̃1 β̃1 ũ2 w̃2 β̃2 ] and with the assumption that ∂fn+1

∂ũ = 0 means that no load

changes with deformation

Using eq. (3.1.17), eq. (3.1.18) and eq. (3.1.19), the tangent matrix eq. (3.1.20) can be expressed

as

[KT ]6×6 =
∫
L

BTDTB dX︸ ︷︷ ︸
(Km)(6×6)

+[Kg]6×6 (3.21)

where

Kg =
[
(Kg)11 (Kg)12

(Kg)21 (Kg)22

]
(3.22)
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and also

(Kg)αβ =
∫
L

(Nα,X

 T p 0 M b cos β

0 T p −M b sin β

M b cos β −M b sin β 0

Nβ,X +Nα

0 0 0
0 0 0
0 0 G3

Nβ

+Nα,X

0 0 G1

0 0 G2

0 0 −M b Γ

Nβ +Nα

 0 0 0
0 0 0
G1 G2 −M b Γ

Nβ,X) dX (3.23)

where α, β = 1, 2 and

G1 = Sp cos β −M b β,X sin β

G2 = −Sp sin β −M b β,X cos β

G3 = −Sp Γ−M b β,X Λ

(3.24)

More comprehensive derivation of Kg is expressed in Appendix A

3.4 SUMMARY OF SOLUTION ALGORITHM

Description of the solution algorithm for theory developed in previous sections is presented in this

section. Graphical overview of the entire process is presented in the flow chart of the structure

state determination. Full Newton-Raphson method is used for the solution algorithm which

means in particular the tangent stiffness matrix, KT , is reformed at each iterations. The above

interpolation functions will lead to ’shear locking’ and it is necessary to compute integrals for

shear stress by using a ’reduced quadrature’. This implies that for a two-noded beam element,

use one quadrature point exactly in the middle for integrating each element. The solution

strategy can be breakdown in the following steps.

1. The Full Newton Raphson iteration (i) starts with the given load step on global structure

2. For the first iteration step set j = 0

ãj=0
i+1 = ãi

For solution at step (i+ 1) assume the state at the previous step (i) is known.
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3. Start the element state determination. Loop over all the elements in the structure for state

at iteration j.

4. Compute Km, Kg, Fint using eq. (3.1.21) and eq. (3.1.15) .Assemble the global stiffness

matrix and internal force vector.

5. Check convergence on global residual force vector R. If converge move to next load step(

set i = i+ 1 ) and start from step 2, else

6. Solve dã = K−1
T R and update the geometry ãj+1 = ãj + dã Go to step 3

19
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Start from previous converging point on Load 
deflection curve 

Take load step P 

For ele =1, no: of elements 

State determination of 
element  
Compute Km, Kg , Fint from 
eq. (3.1.21) and eq. (3.1.15) 

assemble new structure 
tangent stiffness matrix, Kgl

Assemble structure 
resisting force vector PR

Compute unbalanced 
force vector  PU = P - PR

Is ווPUווsufficiently 
small 

no 

Next ele 

Next iteration 
Next iteration

yes 

Break into small load 
steps ΔP 

Solve PU = Kgldx 

Take new cumulative 
load step  

Update geometry xk = xk-1 +dx 
 

Figure 3.2: Flow chart of structure state determination.
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4. MIXED FINITE ELEMENT METHOD

4.1 INTRODUCTION

This chapter describes the proposed formulation of the plane frame beam column element with

mixed approach in the variational form. The material properties, kinematic hypothesis and de-

formation is same as described in chapter 2 in the present discussion. Formulation follows the

usual step as in displacement based formulation of finding the minimization or stationarity of

the potential function. The approach we now present is based on the use of a three-field (dis-

placement, strain, stress) formulation based on the Hu-Washizu variational principle. The state

determination procedure of the structure iteratively determines the element resisting forces and

stiffness matrix while strictly satisfying element equilibrium and compatibility in each iteration.

This procedure is considerably more involved than for displacement based element. Shear de-

formation can be readily included without inducing the shear locking in the element and , thus

the behavior is independent of the number of integration points along the element.

4.2 VARIATIONAL FORMULATION

For the case at hand, the displacement field is given by eq. (2.2.5), the compatibility relation

with two non zero strains in the corresponding directions given by eq. (2.2.7). For an elastic

material with stress (T, M, S) and strain (E0, Kb, Γ) the Hu- Washizu principle may be written

as
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Chapter 4. Mixed Finite Element Method

Πhw(σ, ε, u) =
∫

Ω
W (ε) dΩ +

∫
Ω
S( Γc − Γ ) dΩ

+
∫

Ω
σ(T p,M, )(Ec(E0,Kb)− E ) dΩ−Πext

(4.1)

where W (ε) is the stored energy function introduced also in eq. (3.1.2) and Πext is the poten-

tial for the body and boundary loading. Here the Γc, Ec comes from the appropriate strain

compatibility equations mentioned in eq. (2.21)

The stationarity of the Hu-Washizu principle is imposed by taking its first variation with respect

to the independent fields (u, ε, σ) and setting it equal to zero

δΠhw =
∂Πhw

∂u
δu+

Πhw

∂S
δS +

Πhw

∂E
δE

= δuΠhw + δSΠhw + δEΠhw − δΠext = 0
(4.2)

which can be re-written as after putting the corresponding terms in the above equation

δΠhw =
∫
L
{δE0 [T c − T ] + δT [u,X +

1
2

(u2
,X + w2

,X)− E0 ]

+ δu,X [(1 + u,X)T + sin β S + cos β,XM ]} dX

+
∫
L
{δKb [M c −M ] + δM [ Λβ,X −Kb ]

+ δw,X[Tw,X − β,X sin βM + cosβ S ]} dX

+
∫
L
{δΓ [Sc − S ] + δS [(1 + u,X) sin β + w,X cos β − Γ ]

+ δβ,X [M Λ ] + δβ [SΛ− Γβ,XM ]} dX− δΠext = 0

(4.3)

The model assumes elastic material behaviour, however the inelastic constitutive forms can be

introduced from any constitutive model in terms of specified strains, strain rates (plasticity), or

functional of strain (viscoelasticity). The equilibrium equations, the compatibility equation and

the consistent force field shape functions with the constitutive laws at section can be deduce

from the above variational form of potential.
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4.2.1 Equilibrium Equation

Since the displacement variations field can be arbitrarily chosen in this derivation (i.e., a displace-

ment interpolation function was not adopted), the equilibrium equations are satisfied pointwise

(strong form).

δuΠhw =
∫
L
{δu,X [(1 + u,X)T + sin β S + cos β,XM ]

+ δw,X[Tw,X − β,Xsin βM + cosβ S ] + δβ,X[MΛ ]

+ δβ[SΛ− Γβ,XM ]} dX− δΠext = 0

(4.4)

4.2.2 Compatibility Equation

The compatibility equations are imposed weakly as from the eq. (4.1.3)

δSΠhw =
∫
L
{δT [u,X +

1
2

(u2
,X + w2

,X)− E0 ] + δM [ Λβ,X −Kb]

+ δS [(1 + u,X) sin β + w,X cos β − Γ ]} dX = 0
(4.5)

If this equation could be satisfied for all statically admissible variations δT, δM, and δS (i.e.,

all virtual force systems in equilibrium), it would imply the strong form of the compatibility

relation eq. (2.2.7)

4.2.3 Constitutive laws - section force consistency Equation

If this equation could be satisfied for all statically admissible variations δE0, δKb, and δΓ con-

sistent approach for section forces equilibrium with the constitutive laws can be deduced

δEΠhw =
∫
L
{δE0 [T c − T ] + δKb [M c −M ]

+ δΓ [Sc − S ] } dX = 0
(4.6)

which means

T c = T

M c = M

Sc = S

(4.7)
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in order to make the stationarity of the variational form.

There is an advantage in deriving the present formulation form a variational principle: it allows

the concentration of all intrinsic characteristics- equilibrium equations, compatibility equations

and constitutive terms of the problem in a single expression. Based on this, it should be clear

that the proposed element formulation can be used to solve more general problems such as, for

instance, elasto-plastic analysis.

We also note that the shear in each element may be computed from moment equilibrium as

S = −∂M
∂X

(4.8)

and, thus it is not necessary to add additional force parameter to the element.

4.3 FINITE ELEMENT APPROXIMATION

The finite element approximations for the displacement, stress, and strain field can be introduced

respectively as,


u
w
β

 = Nα
d(X)


ũα
w̃α
β̃α

 α = 1, 2 (4.9)


E0

Kb

Γ

 =


Nα

E(X)Ẽ0

Nα
Kb(X)K̃b

Nα
Γ(X)Γ̃

 and


T
S
M

 =


Nα

T (X)T̃
Nα

S(X)S̃
Nα

M (X)M̃α

 α = 1, 2 (4.10)

where the shape functions for each field is assumed as,

[Nd
1 Nd

2 ] = [NM
1 NM

2 ] = [(1− X

L
)
X

L
] (4.11)

Nα
E(X) = Nα

Kb(X) = Nα
Γ(X) = Nα

T (X) = Nα
S(X) = 1 (4.12)

Using this approximation the shear force given by eq. (4.1.8) can be re-written as

S = −∂M
∂X

=
1
L

(M̃1 − M̃2) or δS =
1
L

(δM̃1 − δM̃2) (4.13)
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Introducing the above approximation eq. (4.1.9), eq. (4.1.10) and eq. (4.1.13) , into eq. (4.1.3)

we obtain the variational functional form as

δΠhw =
∫
L
{δẼ0 [T c − T ] + δT̃ [u,X +

1
2

(u2
,X + w2

,X)− E0 ]

+ δũα [(1 + u,X)Nd
α,X T + sin β Nd

α,X S + cos β,XNd
α,XM ]} dX

+
∫
L
{δK̃b [M c −M ] + δM̃αN

M
α [ Λβ,X −Kb ]

+ δw̃α [w,XNd
α,X T − β,XNd

α,X sin βM + cosβ Nd
α,X S ]} dX

+
∫
L
{δΓ̃ [Sc − S ]− δM̃αN

M
α,X [(1 + u,X) sin β + w,X cos β − Γ ]

+ δβ̃α [M ΛNd
α,X + SΛNd

α − Γβ,XNd
αM ]} dX− δΠext = 0 α = 1, 2

(4.14)

which can be re-written in more compact form as

δΠ = [δũα δw̃α δβ̃α ]
∫
L

BT
α


T p

Sp

M b

 dX + [δÑ δM̃α ]
∫
L

A1 dX

+ [ δẼ0 δK̃b δΓ̃ ]
∫
L

A2 dX− δΠext = 0

(4.15)

where the matrix Bα is same as eq. (3.1.13) , vector A1, A2 can be given as

A1 =


u,X + 1

2(u2
,X + w2

,X)− E0

N1
M ( Λβ,X −Kb) + [ (1+u,X) sinβ+w,X cosβ−Γ

L ]
N2

M ( Λβ,X −Kb) − [ (1+u,X) sinβ+w,X cosβ−Γ
L ]

 (4.16)

A2 =


T c − T
M c −M
Sc − S

 (4.17)

Applying a linearization to eq . (4.1.15) give the incremental form for a Newton Raphson solution

process as


δã

δf̃
δẽ


T 

Kg HT 0
H 0 −bT
0 −b k


dã

df̃
dẽ

 =


Ra
Re
Rf


 (4.18)
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where ” d ” is an increment, Here Kg is the geometric stiffness matrix which is same as eq.

(3.1.22).the residual expression is given below. More comprehensive derivation can be found in

Appendix A

Rf =
∫
L


T c − T
M c −M
Sc − S

 dX (4.19)

Re =
∫
L


u,X + 1

2(u2
,X + w2

,X)− E0

N1
M ( Λβ,X −Kb) + [ (1+u,X) sinβ+w,X cosβ−Γ

L ]
N2

M ( Λβ,X −Kb) − [ (1+u,X) sinβ+w,X cosβ−Γ
L ]

 dX (4.20)

Ra =
∫
L

BT


T
S
M

 dX − Fext (4.21)

k =

EAL EIL
κGAL

 (4.22)

b = Σqbq =

1 0 0
0 1− Xq

L
Xq
L

0 1
L − 1

L

 (4.23)

where q is the quadrature point of the element H matrix is the following :

H =
∫
L

H1
α dX +

∫
L

H2
α dX (4.24)

where

H1
α =

 (1 + u,X)Nd
α,X w,XN

d
α,X 0

β,Xcos β N
d
α,X N

M
1 −β,Xsin β Nd

α,X N
M
1 (ΛNd

α,X − Γβ,X Nd
α)NM

1

β,Xcos β N
d
α,X N

M
2 −β,Xsin β Nd

α,X N
M
2 (ΛNd

α,X − Γβ,X Nd
α)NM

2

 (4.25)

and

H2
α =

 0 0 0
sin β Nd

α,X

L

cos β Nd
α,X

L
ΛNd

α
L

− sin β Nd
α,X

L − cos β Nd
α,X

L −ΛNd
α

L

 (4.26)
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4.4 SUMMARY OF SOLUTION ALGORITHM

The continuity between elements is enforced only for displacement degrees of freedom between

the elements through the compatibility conditions in eq. (4.1.5) weak form. Forces and strain

may be discontinuous between elements. Therefore, the parameters for forces and strains may

be eliminated at the element level resulting in a stiffness matrix for displacement parameter

determination. The elimination may be performed by static condensation in the following way:

Re-writing matrix eq. (4.1.18) in individual equations as

Kg dã+HT df̃ = Ra

H dã− bT dẽ = Re

−b df̃ + k dẽ = Rf

(4.27)

Eliminating section strain components using third equation of eq. (4.1.27) as

dẽ = k−1 (Rf + b df̃) (4.28)

and substituting back into second equation of eq. (4.1.27) and rearranging terms will generate

stress increment of the element as

df̃ = F−1(H dã−Re) (4.29)

where

F = bTk−1b

Re = Re + bTk−1Rf
(4.30)

are the element flexibility matrix and modified residual vector respectively.

Substituting eq. (4.1.30) back in the first equation of the eq. (4.1.27) and re-arranging the terms

gives

K dã = Ra (4.31)

where

K = Kg +HT F−1H

Ra = Ra +HT F−1Re
(4.32)
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are the element stiffness matrix and modified element residual vector respectively. The resulting

stiffness and residual vector of the element now may be assembled into the global equations in

an identical manner to the usual displacement based formulation. The solution strategy can be

breakdown in the following steps.

1. The Full Newton Raphson iteration (i) starts with the given load step on global structure

2. For the first iteration step j = 0

ãj=0
i+1 = ãi, f̃

j=0
i+1 = f̃i, ẽ

j=0
i+1 = ẽi,

For solution at step (i+ 1) assume the state at the previous step (i) is known.

3. Start the element state determination. Loop over all the elements in the structure for state

at iteration j.

4. Compute Re and Rf at each element and check its convergence. If converge go to step 8,

else make a loop for the convergence of Re and Rf in each element (set k = 0 ), and follow

as

5. Compute element stress parameter using eq. (4.1.29) and update the stresses inside the

element

f̃ jk+1 = f̃ jk + df̃ .

6. Compute Rf again from the updated element stresses and solve for element strain param-

eters using eq. (4.1.28) . Update the strain parameters

ẽjk+1 = ẽjk + dẽ

7. Check convergence of Re and Rf from the updated stress and strain parameters. If not,

go back to step 5

8. Condenses arrays and residual for each element as described in the above section. Assemble

the global stiffness matrix.

9. Check convergence on global residual vector for the displacement Ra. If converge move to

next load step( set i = i+ 1 ) and start from step 2, else follow as

10. Solve dã = K
−1
Ra and update the geometry of the structure

ãj+1 = ãj + dã

Go to step 3 and set (j = j + 1),and follow the steps subsequently

It is necessary to save the parameters for stress, f̃ , and strain ẽ for each element in the load

steps.
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5. EXAMPLES

5.1 EXAMPLES

The objective in this analysis was to investigate the performance of the beam column element

in large displacement and rotation problems by both displacement and forced based elements

models by some examples. For some cases, it should be emphasized that, as most papers only

provide the results in graphical form, only a reasonable accurate comparison can be done, due

to the inaccuracy in obtaining numerical values from the presented plots. Since the minimum

number of load step required to converge strictly depends on the magnitude of the external load.

It is emphasized that no special effort is made to optimize the total number of loading steps

for a given calculation. Unless stated in the following examples, Full Newton Raphson stategy

is employed for non-linear global equations. Through out all the examples discussed below, the

constitutive model defined by eq. (2.2.9) is considered. The model results is cross-checked by the

open source standalone software Opensees(38). Opensees is freely available software based on

the forced based formulation for Earthquake Engineering Simulation and handles both geometric

and material non-linearity. Geometric non-linearity is handle by co-rotational approach.

5.1.1 Clamped cantilever with concentrated transversal end load

The cantilever problem represented in Figure 5.1 has been analyzed elastically (with different

input parameters)in several works, such as Oran and Kassimali(1976)(39), White(1985)(40),

Chan(1988)(41), and among many others. Analytical solutions of this problem were determined

by different authors, including Frish-Fay(1962)(42). The example discuss the issue of large

deflection with moderate rotation analysis relative to the cantilever length. It should be noted
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that the vertical displacement will be around 80 % of the original length.

Figure 5.1: Cantilever Beam with Transverse Loading.

The geometrical and material properties chosen are: Young’S modulus E = 1200, Poisson’s

ration ν = 0 and the square cross-section of unit area A = 1, the length of the cantilever is

L = 10. Further transverse load of P = 10 is applied at the tip of the beam.

Table 5.1: Cantilever under transverse load free end displacement components.
Model No. of elem. Hori. displ verti displ Rot

displacement based element 10 -5.6291 8.2350 1.4382
Mixed finite element 10 -5.6351 8.2448 1.4313

FEAPpv element 5 -5.5262 8.1957 1.4410
Opensees element 5 -5.5418 8.2226 1.4382

It is being observed that the numerical values presented here is very close to the analytical

solution mentioned by Frish-Fay(1962)(42). The exact values is not presented due to imprecision

of the presented plots but could be referred to Souza (2000)(35) for the suitable plots. The

author Souza (2000)(35) also claims in his work that the above problem can be solved by just

one element per member. The results of the model is approximated with different number of

elements is presented in the Table 5.2 and Table 5.3.

Table 5.2: Displacement based formulation.
No. of elem. Hori. displ verti displ Rot

5 -5.7075 8.2874 1.4478
10 -5.6291 8.2350 1.4382
20 -5.6093 8.2208 1.4283

The convergence rate is also shown in the Table 5.4 for the both models.
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(a) Horizontal displacement component. (b) Vertical displacement component.

Figure 5.2: Equilibrium path for the cantilever under transverse load.

Table 5.3: Mixed element formulation.
No. of elem. Hori. displ verti displ Rot

5 -5.7173 8.2988 1.4471
10 -5.6351 8.2448 1.4313
20 -5.6154 8.2310 1.4274

Table 5.4: Convergence rates for cantilever beam.
No. of iterations Residual Norm (DBM) Residual Norm (MFM)

0 1.66667 1.66667
1 625.97970 610.60902
2 118.15220 124.26377
3 10.69949 11.99674
4 0.18409 0.30111
5 0.05465 0.52958
6 0.000561 0.00261
7 2.95×10−5 2.70×10−5

8 2.05×10−7 9.656×10−12

9 1.29×10−8 0
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5.1.2 Clamped cantilever subjected to concentrated end moment

This problem has been analyzed by a number of researchers including Bathe and Bolourch(1979)(4),

Simo and Vu-Quoc(1986)(7), Crisfield(1990)(43) considering the straight beam element. Clearly

for prismatic beam, the exact solution for the deformed shape of this problem is a perfect circle,

since the bending moment, and hence the curvature, is constant along the beam. However,

we make the approximation in the variable field and the subsequent result is tabulated below

for checking the accuracy of the element formulation. The geometrical and material properties

chosen are: Young’S modulus E = 1200, Poisson’s ration ν = 0 and the square cross-section of

unit area A = 1, the length of the cantilever is L = 10. Beam is discretized in ten elements.

Further Bending moment of M = 10π can rolled the beam in half circle theoretically. The free-

end displacement components are presented in Table 5.5, along with the result obtained by the

corresponding model of ten 3-node straight-beam elements as discussed by Simo and Vu-Quoc

(1986)(7) and also by open sees results.

Figure 5.3: Deformed shape of the cantilever beam under free-end moment.

Table 5.5: Cantilever under pure moment load free end displacement components.
Model No. of elem. Hori. displ verti displ Rot

displacement based element 10 -10.3386 6.1034 3.252
Mixed finite element 10 -10.3398 6.1025 -3.252

Simo-Vu model 10 -10.1580 6.1590 -3.090
Opensees model 5 -10.0000 6.4721 -3.141

Analytical Solution – 10.0000 6.3660 -3.141

Figure 5.4 shows the results by both models and also the open sees results is mentioned for cross-
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check. The results of the model is approximated with different number of elements is presented

in the Table 5.6 and Table 5.7.

(a) Horizontal displacement component. (b) Vertical displacement component.

Figure 5.4: Equilibrium path for the cantilever under pure moment load.

Table 5.6: Displacement based formulation.
No. of elem. Hori. displ verti displ Rot

5 -10.9189 5.6890 3.4629
10 -10.3386 6.1034 -3.2522
20 -10.2065 6.1798 -3.2084

Table 5.7: Mixed finite element.
No. of elem. Hori. displ verti displ Rot

5 -10.9461 5.6614 -3.4727
10 -10.3398 6.1025 -3.252
20 -10.2066 6.1797 -3.2084

The convergence rate is also shown in the Table 5.8 for the both models.

5.1.3 One story Portal Frame with transverse loading

The geometrical and material properties chosen are: Young’S modulus E = 1200, Poisson’s

ration ν = 0 and the square cross-section of unit area A = 1, the length of the each section

is L = 10. Each section is discretized into elements and analyzed by both methods and cross

checked by OpenSees results.

33



Chapter 5. Examples

Table 5.8: Convergence rates for cantilever beam.
No. of iterations Residual Norm (DBM) Residual Norm (MFM)

0 5.23333 5.23333
1 182.02560 180.64850
2 22.05138 22.49339
3 0.62304 0.61768
4 0.29973 0.14301
5 0.00157 0.00073
6 6.66×10−6 7.36×10−7

7 1.01×10−12 3.35×10−13

Figure 5.5: One story Portal Frame.

Table 5.9: One story Portal Frame Node 1 displacement components
Model No. of elem. Hori. displ verti displ Rot

displacement based element 5 4.8711 -1.3625 0.3279
displacement based element 10 4.9210 -1.4045 0.3344

Forced based element 5 4.8908 -1.3728 0.3289
Forced based element 10 4.9408 -1.4148 0.3353

Opensees 4 4.9973 -1.27295 -0.3159
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(a) Horizontal displacement component. (b) Vertical displacement component.

Figure 5.6: Equilibrium path for the one story frame transverse load (Node 1).

(a) Horizontal displacement component. (b) Vertical displacement component.

Figure 5.7: Equilibrium path for the one story frame transverse load (Node 2).

Table 5.10: Convergence rate for one story frame analysis.
No. of iterations Residual Norm (DBM) Residual Norm (MFM)

0 1.66667 1.66667
1 11.13538 11.20696
2 0.15455 0.15509
3 0.00047 3.73×10−5

4 1.36×10−5 1.9×10−10

5 3.79×10−8 -
6 1.10×10−9 -
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(a) Horizontal displacement component. (b) Vertical displacement component.

Figure 5.8: Equilibrium path for the one story frame transverse load (Node 1 and with 5 ele-
ments).

(a) Horizontal displacement component. (b) Vertical displacement component.

Figure 5.9: Equilibrium path for the one story frame transverse load (Node 2 and with 5 ele-
ments).
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6. CONCLUSION

This study proposed two models- displacement based and Mixed finite element method restricted

to two-dimensional, small strain/large deformation theory and includes the effects of shear defor-

mation. The proposed models works well in the finite deformation regime under suitable mesh

discretization as shown by the examples. Mixed finite element method can adequately model

the shear deformation without being get locked whereas in Displacement based method reduced

quadrature rule is employed to get rid off locking phenomena in elements. In the mixed finite

element method we used the independent interpolation functions for displacement, stresses and

strains. With the help of the stationarity of the eq. (4.1.6), we obtained the section forces which

is in equilibrium with the applied load. But since we used the linear interpolation functions for

interpolating displacement field of the beam where the analytical solution for the displacement

profile of the beam is cubic in nature, discretization of the member is required in order to con-

verge to the exact solution provided by a theory of finite deformation. The target problems for

the proposed force formulation works well in inelastic structural frames with small deformations

where linear interpolation functions for displacement field can model accurately the displace-

ment of the beam. It is observed that the symmetric tangent stiffness matrix is obtained in both

models.

6.1 FUTURE WORK

1. Non- linear material behavior may be included by integrating the resultants for axial

force, shear force and bending moment over the member cross- section through appropriate

constitutive models.

2. The extension to three- dimensional direction.
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3. The inclusion of distributed element loads by the addition of the exact internal force

distribution function under the give element loads.

4. Extending the formulation for dynamic analysis, through the derivation of a consistent

mass matrix.

5. Extending the formulation to curved beams.

38



Appendix A. APPENDIX

A. APPENDIX

A.1 DERIVATION OF GEOMETRIC STIFFNESS MATRIX KG

The last term in eq. (3.1.20) can be expressed as the following using eq. (3.1.13) and eq. (3.1.15)

[BTF]6×1 =



(1 + u,X)Nd
1,X T + sin β Nd

1,X S + cos β,XNd
1,XM

w,XN
d
1,X T − β,XNd

1,X sin βM + cosβ Nd
1,X S

ΛNd
1,XM + ΛNd

1 S − Γβ,XNd
1 M

(1 + u,X)Nd
2,X T + sin β Nd

2,X S + cos β,XNd
2,XM

w,XN
d
2,X T − β,XNd

2,X sin βM + cosβ Nd
2,X S

ΛNd
2,XM + ΛNd

2 S − Γβ,XNd
2 M


6×1

= {f1, f2, . . . f6}T

(A.1)

[Kg]6×6 =
∫
L

∂(BT F )
∂ũ

dX =
∫
L



∂f1
∂ũ1

∂f1
∂w̃1

∂f1
∂β̃1

∂f1
∂ũ2

∂f1
∂w̃2

∂f1
∂β̃2

∂f2
∂u1
...

∂f6
∂u1

. . . . . . ∂f6
∂β̃2


6×6

dX (A.2)

A.2 DERIVATION OF THE STIFFNESS MATRIX EXPRESSED IN EQ. (4.1.18)

Derivation of the stiffness matrix(eq. 4.1.18) is described considering two nodes per element in

this section;

eq. (4.1.14) can be re-written as
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

δuα
δwα
δβα
δT̃

δM̃1

δM̃2

δẼ0

δK̃b

δΓ̃



T





∫
L
{(1 + u,X)Nd

α,X T + sin β Nd
α,X S + cos β,XNd

α,XM } dX∫
L
{w,XNd

α,X T − β,XNd
α,X sin βM + cosβ Nd

α,X S} dX∫
L
{ΛNd

α,XM + ΛNd
α S − Γβ,XNd

αM } dX∫
L
{u,X +

1
2

(u2
,X + w2

,X)− E0} dX∫
L
{N1

M ( Λβ,X −Kb) + [
(1 + u,X) sinβ + w,X cosβ − Γ

L
]} dX∫

L
{N2

M ( Λβ,X −Kb) − [
(1 + u,X) sinβ + w,X cosβ − Γ

L
]} dX∫

L
{T c − T} dX∫

L
{M c −M} dX∫
L
{Sc − S} dX



−
[
[Fext ]6×1

[φ]6×1

]

︸ ︷︷ ︸
ResidualV ector

= 0

(A.3)

For simplicity residual vector can be expressed as

ResidualV ector = {R1, R2, . . . R12}T (A.4)

Matrix in the eq. (4.1.18) can be computed by taking the partial derivative of the Residual

vector with respect to the element parameters (uα, wα, βα, T̃ , M̃1, M̃2, Ẽ0, K̃b, Γ̃), where α = 1, 2

Kg HT 0
H 0 −bT
0 −b k


12×12

=



∂R1
∂ũα

∂R1
∂w̃α

. . . ∂R1

∂Γ̃
∂R2
∂uα
...

∂R12
∂uα

. . . ∂R12

∂Γ̃


12×12

(A.5)
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