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Abstract

The effects of an explosion have gained an increasing importance in the

phase of load definition in the design of strategical structures, like military

structures, major civil constructions and infrastructures. For this reason

is very important to provide a physics systems to mitigate the effects of

shock-waves on structures. In this thesis work we deal with the study of the

fluid-structure interaction between shock-waves and deformable structures.

The numerical simulations have been run by the commercial Finite Element

code LS−Dyna, an hydro-code particularly suited for simulation of fast dy-

namics, fluid-structure interaction and impacts. After some simple examples

basically acts to validate the methods used for the simulations, we focused

on the model and the simulation of the experimental test carried out in mine

at the University of Naples Federico II, consisting in a blast of a quantity of

5Kg of commercial explosive in proximity of a porous barrier composed by

GFRP pipes stuck in a precast concrete basement. The obtained numerical

results are in substantial agreement with the experimental data and confirm

the effectiveness of such protection systems.
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Sommario

Gli effetti di una esplosione hanno assunto una crescente importanza nella

fase di definizione dei carichi da tenere in considerazione nella progettazione

di strutture strategiche, quali strutture militari, grandi opere civili e infras-

trutture. E’ quindi anche molto importante prevedere dei sistemi fisici per

attenuare l’effetto delle onde d’urto sugli edifici. In questo lavoro di tesi si

affronta lo studio dell’interazione fluido struttura tra onde d’urto generate

da esplosioni e strutture deformabili. Le simulazioni numeriche sono state

condotte utilizzando il codice commerciale LS−Dyna, un idrocodice esplic-

ito adatto per le simulazioni di dinamica veloce, interazione fluido struttura

e impatti. Dopo alcuni esempi elementari tendenzialmente tesi a validare il

metodo usato per le simulazioni, ci si è concentrati sulla modellazione e sim-

ulazione del test sperimentale condotto in cava dall’Università degli Studi

di Napoli Federico II, consistente lo scoppio di un quantitativo di 5Kg di

esplosivo commerciale in prossimità di una barriera porosa composta da tubi

di GFRP incastrati in una base di calcestruzzo prefabbricato. I risultati

numerici ottenuti sono in sostnziale accordo con i dati sperimentali e confer-

mano l’efficacia di tali sistemi di protezione.

IV



Contents

1 Introduction 1

1.1 The SAS project . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 How to deal with an explosive problem . . . . . . . . . . . . . 3

1.3 Faced Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Explosions and Shock-Waves 6

2.1 The Explosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Detonation and Deflagration . . . . . . . . . . . . . . . 7

2.2 Shock-Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Development of a shock-wave generated by a free ex-

plosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Shock-wave parameters for a free field explosion . . . . . . . . 12

2.3.1 Numerical formulations to evaluate the overpressure in

a free field . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Reflection of a Shock-Wave . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Normal Reflection . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Oblique Reflection . . . . . . . . . . . . . . . . . . . . 24

2.5 Shock-Waves effects in the impact by a generic solid . . . . . . 28

2.5.1 Interaction of the shock-wave with a finite solid . . . . 28

2.5.2 Pressure distribution on the front and rear surface . . . 29

V



CONTENTS VI

3 Numerical Methods 33

3.1 Numerical Methods and Element Formulation . . . . . . . . . 33

3.1.1 Explicit method . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Introduction to the Fluid Structure Interaction (FSI) problems 36

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Fluid-Structure Interaction . . . . . . . . . . . . . . . . 38

3.2.3 FSI Problem Formulation . . . . . . . . . . . . . . . . 43

3.2.4 Different formulations to describe the state of a physic

system . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.5 The Lagrangian formulation . . . . . . . . . . . . . . . 48

3.2.6 The Eulerian formulation . . . . . . . . . . . . . . . . . 50

3.2.7 The Arbitrary Lagrangian Eulerian ALE formulation . 52

4 Numerical Simulations of Explosions 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Introduction to the software LS −DYNA . . . . . . . . . . . 58

4.2.1 Input file preparation: the Keyword . . . . . . . . . . . 58

4.3 Simulation of the interaction of a cantilever beam with an

explosion using the CONWEP pure Lagrangian method . . . . 61

4.3.1 The CONWEP function . . . . . . . . . . . . . . . . . 62

4.3.2 Numerical Model . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Analysis and Results . . . . . . . . . . . . . . . . . . . 66

4.4 Multi Material ALE Simulation of an explosion of cubical

charge of 1.67Kg TNT in a cubic box full of air . . . . . . . . 77

4.4.1 Materials and Equation of State . . . . . . . . . . . . . 77

4.4.2 Geometry Mesh and Boundary Conditions . . . . . . . 83

4.4.3 Output Controls and Database Definition . . . . . . . . 85

4.4.4 Analysis Results . . . . . . . . . . . . . . . . . . . . . 86



CONTENTS VII

4.5 FSI Simulation of the interaction of shock-waves with La-

grangian Structures . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Cantilever Beam under 1KG TNT detonation . . . . . . . . . 99

4.6.1 Numerical model . . . . . . . . . . . . . . . . . . . . . 100

4.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7 Standalone column under 1Kg TNT detonation . . . . . . . . 109

4.7.1 Numerical Model . . . . . . . . . . . . . . . . . . . . . 110

4.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Exp. tests and Numerical Simulation 120

5.1 Set up of the experimental tests . . . . . . . . . . . . . . . . . 121

5.1.1 Geometry of the porous barrier of the SAS project used

for the experimental tests . . . . . . . . . . . . . . . . 121

5.1.2 Blast configurations . . . . . . . . . . . . . . . . . . . . 123

5.2 Behaviour of a porous barrier with the interaction with a shock

wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 Numerical Simulationof the SAS project barrier subjected to

explosions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.1 Numerical Model . . . . . . . . . . . . . . . . . . . . . 131

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4.1 Experimental test results . . . . . . . . . . . . . . . . . 136

5.4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . 138

6 Conclusions 148

Bibliography 152



Chapter 1

Introduction

Recent terrorist attacks have contributed in changing the design approach

to critical infrastructures; in fact, malicious disruptions, blasts, or impacts

have unfortunately become part of the possible load scenarios that could act

on buildings during their life spans. Consequently, specific protection inter-

ventions have been introduced to minimize disruptive effects, guarantee the

safety of the occupants,and ,to the extent possible, maintain the functionality

of buildings.

1.1 The SAS project

This work of thesis is inserted within of the SAS (Security of Airport Struc-

tures), a project developed with the aim of designing buildings aimed to

assure protection to strategic structures against terrorist attacks, and then,

to preserve the safety of things and people at risk. This project is addressed

to the study, in a systematic manner, of the complex theme of the security

of structures aimed to the control and the assistance to the air navigation.

The main goal of the research project is to develop and deploy a structural

1



CHAPTER 1. INTRODUCTION 2

fencing system able to protect V HF Omnidirectional Range (V OR) stations

against malicious actions consisting of intrusion and blast loads of relatively

small explosive charges placed in the neighborhood or in contact with the

barrier. The V OR is a radio-navigation system for aircraft, that transmits

V HF waves; from here the necessity to use radio-transparenct materials.

Figure 1.1: VOR station in Sorrento (NA)

The aim of this project is to give the structure an adequate level of pro-

tection, trough the usage of materials permeable to radio frequencies in order

to not interpose with the aeronautical communications of radio-navigation

and air traffic control. Therefore the critical feature of any protective barrier

for this type of buildings is radio transparency, which is necessary to avoid

any disturbance to radio communications of specific frequencies.

Hence, in order to achieve such goals, a discontinuous (porous) barrier

composed by GFRP and precast concrete elements reinforced with GFRP
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bars was designed to take advantage of electromagnetic and mechanical prop-

erties of composites. The proposed barrier provides protection through two

contributions: first, its geometrical and mechanical characteristics ensure

protection against intrusions and blast loads; moreover, its shape provides

an attenuation of the blast shock-wave, adding some level of additional pro-

tection to the facilities located beyond it.

1.2 How to deal with an explosive problem

This works, in particular, deals with the fluid-dynamics simulation of the

experimental test, with the use of a modern hydro-code. The importance of

a numerical simulation stares in the fact that it is possible to minimize the

number of requested experimental tests, that are very expensive, and also

helps us to understand the results of the tests itself. Once a simulation is

validate, by comparing the numerical results with the results of the tests, it

can be used like a design instrument to improve the systems of more complex

structures. So if the scale and the complexity of the problem is very high, the

better way is to reduce to the minimum the experimental tests, and improve

the numerical simulation.

The treatment of the explosion problems in air and the interaction of

the products of the explosions with the structures, result very onerous, both

for the cost of the experimental tests, and for the implementation of the

numerical models. Last problem, carried out at the University of Naples

(Asprone et al., 2009) is due to the fact that the effects in particular of

explosions are loads of high intensity and very low span.

The analysis methodologies most used for the description of the physics

phenomenon, provide a complex discretization of the continuum. So we can



CHAPTER 1. INTRODUCTION 4

differentiate between two typologies of methods. At first, the Lagrangian

methods, used mostly for the mesh of solid elements, and for the solution

of structural mechanical problems, where the deformation are infinitesimal.

In our case a Lagrangian problem is used to simulate a blast effect on a

Lagrangian solid, thanks to a Blast Load function (Pehrson and Bannis-

ter, 1997) available in the hydro-code. Usually, when it is necessary to

deal with problems where there are large deformation, (i.e fluid-dynamics)

the Eulerian formulation is more suited. Finally the ALE (Arbitrary La-

grangian Eulerian) methods, allow us to treat any size of deformations, be-

cause they are methods that combine the two previous formulations.

Our case study, is a Fluid-Structure Interaction problem (FSI). Such prob-

lems can be treated in different ways, that are mentioned in chapter 2.

1.3 Faced Problems

We treat the explosion problem step by step, in the way to understand the

behaviour of the physics phenomenon. In the following chapters we first

describe the physics characterization of an explosion, then the most used nu-

merical methods , with particular care to the methods used in this work, and

the codes used for the calculation. So we want to know how the Lagrangian

structures react to impulsive loads (i.e a pressure wave due to a blast), and at

the same time, the behaviour of the shock-wave in impacting with a structure,

like the barrier token in exam. First of all we have set up a pure lagrangian

model where a cantilever beam interacts with a pressure load due to an ex-

plosion. The pressure enforced on the beam is applied with the CONWEP

function (Pehrson and Bannister, 1997) integrated in the hydro-code. In this

first approach we want to see how the loads due to an explosion are enforced,
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and how the stress propagates in the solid, comparing it with some analytical

results. This approach presents some limitations, that will be explained in

the following, so we consider the ALE formulation to have a more complete

description of an explosion, and observe the subsequent propagation of the

pressure wave, and the interaction with a solid structure. We checked var-

ious theoretical parameters to verify the rightness of the simulation. Then

we introduce a couple of models with the fluid-structure interaction method.

The final numerical model presents the interaction between the shock-wave

due to the explosion of the charge of the experimental test with the porous

barrier. At the end of the work the main results of the simulation have been

reported, and compared with the semi-empirical formulations existing in the

literature and with the results of the experimental tests.



Chapter 2

Explosions and Shock-Waves

2.1 The Explosion

The explosion is a phenomenon of chemical transformation or chemical-

physical transformation that, starting from a solid element, liquid or gaseous,

and generates the formation of a gas at high pressures (Bergano, 1973). Such

a transformation takes place in a very rapid time and, in general, is accom-

panied by the development of energy (for good thermal part) and gas. The

transformation of the internal energy of the explosive, from chemical energy

into thermal energy, determines the characteristic speed of the explosion,

which can be disruptive or propellant.

Any system that for administration of very small quantities of thermal

or mechanical energy and capable of chemically transformation in a very

short time, with the development of energy, gas and vapours, constitutes an

explosive system. An explosive, is a substance, or the mechanical joining

of two or more substances (mixture) that, as a result of specific external

stimuli, become chemically unstable undergoing a decomposition reaction

for combustion. An explosive system is said homogeneous if constituted by

6



CHAPTER 2. EXPLOSIONS AND SHOCK-WAVES 7

a single chemical species and heterogeneous when and instead consists of

several chemicals. The gases produced by the reaction, because of the high

temperatures reached in the explosion, tends to occupy volumes enormously

higher than those corresponding to the starting substances. The explosion

generates, in the external medium, a pressure wave, with short and long

distance effects. The main long distance effect is the creation of a shock-

wave which propagates by creating an overpressure followed by a longer phase

of depression. The pressure wave, when it encounters an object, produces

lesions which can then be aggravated by the wave of depression, such as a wall

can be damaged by the wave and then dropped an explosive wave of suction

or retrograde. From a short distance instead, the explosion acts directly

with shock-waves buttons that cross the objects and are reflected by its free

surfaces so that stress created in it causes the collapse. So the explosives

are substances with high-energy content, which, through the explosion, are

transformed into substances that are stable at much lower energy level. Solid

explosives are solid mixtures or combinations likely to take on the regime of

detonation; we reserve the name of "powder explosives" that take the regime

of deflagration (Seguiti, 1969).

2.1.1 Detonation and Deflagration

The combustion of explosive materials produces energy that generates a

shock-wave. The propagation at high velocity of the enormous quantity

of gas generated by the chemical reaction, is accompanied by a flame and

a noise due to the displacement of the shock-wave. The explosive materi-

als, in order to its chemical compositions and the physics disposition of the

molecules, enforce to the gas a specific propagation velocity. So the anal-

ysis of the shock-wave is an important indication about the velocity of the
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gas projected by the explosion (Seguiti, 1969). Moreover an other important

characteristic data is the confinement of the explosive, because, depending on

this, the explosive substance can burn or explode. Also the chemical reaction

develops with different velocities as a result of various factors: temperature,

concentration of reactive, presence of catalyst. We can talk about explosive

velocities when the explosion develops in a very short time, lower than those

necessary for the transmission of the heat of the reaction trough the medium

for conductivity and radiation and so its stores in the product gas, as a form

of kinetic energy.

The explosive velocities are always high but can change a lot. The explo-

sions that occurs at low velocities are called Deflagrations (also called first

grade explosions), and the explosive that happens at high velocities are called

Detonations (or second grade explosions). The deflagration velocities are

in general of the order of hundred meters per second, and the detonations

velocities are between 1000 and 9000 m/s. However the limits of the de-

flagration velocities cannot be defined with precision, because they depend

on various factors. In fact besides the graining of the powders have influ-

ence the magnitude of the primer, the density of the charge, the diameter

of the charge have great influence. As a function of various factors, first of

all the violence of the initial shock, the deflagration can transform in det-

onation and an explosive normally deflagrating, like the black powder, can

detonate when it is strongly triggered. Conversely the dynamite, that is a

detonating explosive, can deflagrate when weakly triggered. The difference

between deflagration and detonation lies not only in the speed with which

the chemical phenomenon proceeds; the two methods of propagation are in

fact substantially different.

The deflagration is an explosive phenomenon that, due to thermal con-
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ductivity, propagates from the outer surface of the mass to the inside. The

duration of the reaction is lower for thin powders graining (which have greater

surface area per unit weight), so for different graining corresponds different

deflagration velocities. These velocities that are very lower in confront of the

detonation velocities, have lower disruptive effects.

Figure 2.1: Deflagration

The detonation is a so violent phenomenon that cannot be explained

only by the mechanism of combustion and in fact it propagates with the

wave explosive mechanism. In the above wave is associated with a physi-

cal phenomenon (pressure wave or shock wave) and a chemical phenomenon

(combustion reaction, also known as the combustion wave). The two phe-

nomena are mutually supportive so that explosive coexists on the wave face,

the shock wave and the chemical reaction. The detonation is not necessarily

a phenomenon of combustion. In fact, some elements in the detonation do

not undergo oxidation phenomena, but rather a decomposition reaction. In

the explosion of gas mixtures, is defined a period beginning or start of the

detonation, the time interval between the instant at which the mixture ig-
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nites and the instant at which the wave explosive starts . During this period,

the speed of the flame grows very rapidly until it reaches the speed of the

wave explosive. A similar starting period occurs in the detonation of solid

explosives.

Figure 2.2: Detonation

It is dangerous when an deflagrant explosive detonates, but it is also

dangerous when a detonating explosive deflagrates, because in this a lot of

anomalies case can occur, for example when all the charge, or a part of it,

does not reach the detonation regime, but develops in a deflagration regime,

burning with lower velocities. A deflagrant explosive is appreciable when

we want to obtain a pushing effect and not disruptive. On the other hand

a detonating explosive is to prefer when we want to enforce violent and

disruptive forces.

2.2 Shock-Waves

Baker et al. (1983) define the explosion as a process by which a pressure

wave of finite amplitude is generated in air by a rapid release of energy. An

explosion initiates a supersonically moving shock wave. The properties of air
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as a compressible gas together with the high velocity of explosive detonation,

rises the disturbance at the shock front until it is nearly discontinuous. This

is a non-linear process which differs markedly from an acoustic wave (Baker

et al., 1983). The magnitude and distribution of the blast load on a structure

depends on:

• Explosive properties - type and mass

• Casing effects - a free air blast gives a more important peak pressure

than an air blast from a cased charge. On the other hand, cased charge

leads to fragments.

• Distance between detonation and protective structure

• Interaction with ground plane or structure

For military explosives the velocity of the detonation/shock wave ranges

from 6700 to 8840 m/s, the pressure ranges from 18620 to 38620 MPa, while

the temperatures range from about 3800 to 5700 K (Army, 1991).

2.2.1 Development of a shock-wave generated by a free

explosion

After the reaction, the explosive is converted almost instantly in explosive

gas which presents high pressure (105 ÷ 3x105 kgf/cm2 and temperature

(3.5x103 ÷ 4x103 C). (Henrych, 1979). The violent expansion of the gases

means that all the air that surrounds the charge is expelled, and leads the

development of compression waves in the surrounding air, and to the gradual

conversion of chemical energy into mechanical energy, until the gas pressure

reaches the atmospheric pressure. When this equality happens, the explosive
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wave is not anymore supported by the gases, but flow continues to propa-

gate independently. Since the air that surrounds the charge have an higher

pressure, the explosive gases gradually stop and begin to go backward. In

the return phase their pressure begin to increases again since overtaking the

atmospheric pressure and returns the condition for the expansion of the gas

and so on. This comports a free oscillation, that is called pulsation of the

system of the explosive gas.

Figure 2.3: Detonation of a charge and shock-wave formation

2.3 Shock-wave parameters for a free field ex-

plosion

When an explosive is detonated in air, far away from any surface, a over-

pressure wave is generated that propagates with spherical shape. Instead,

when a charge detonates on a rigid surface, without any other reflecting sur-

faces, an hemispheric overpressure wave is generated (Smith and Rose, 2002).
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This two types of explosions are very important, because they represent the

ideal shock-waves that are described and quantified detailed in the literature

(Henrych, 1979; Harold and Brode, 1955; Kingery and Bulmash, 1984).

The main difference between the two typologies of explosion, is that, from

a theoretical point of view, if the surface under the charge is considered pre-

fectly rigid, the shock will be duplicated in comparison to the free explosion

in air. Actually, instead, the direct contact between the charge and a generic

surface causes a loss of energy, due to the formation of a crater on the surface

itself.

The main parameters for the description of a shock-wave generated by an

explosion are:

• The peak of positive overpressure

• The peak of negative overpressure

• The time arrival

• The duration of the positive and negative phase

• The positive and negative impulse

The impulse are defined as the integral of the positive and negative phase.

All these quantities, are represented in the figure 2.4.

In the analysis of this trend, other factors are defined, like the shock front

velocity and the Mach number of the wave, that are not necessary to evaluate

the dynamics pressure that an explosion enforces to every surrounding solid.

It is evident that the pressure, the time arrival and the impulse, that are

the three most important parameters of a free explosion in air, depend on

the amount of detonating explosive and on the distance where are evaluated.

We observe that the trend of the peak overpressure and the impulse decrease
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Figure 2.4: Typical trend of the overpressure

with the increasing of the distance, while in an almost specular way, the time

arrival increases with the increasing of the distance, like show in figure 2.5

(Smith and Rose, 2002).

2.3.1 Numerical formulations to evaluate the overpres-

sure in a free field

Many authors, trough accurate experimental analyses on the explosive phe-

nomena, developed some formulations to compute the peak overpressure of a

free field explosion in air. One of the most important is described in Henrych

(1979).

The principal parameters of a shock-wave due to an explosion of an ideal

gas in air, can be evaluated using the numerical method of H. Brode (Harold

and Brode, 1955). He introduced the dimensionless parameters p̂ (pressure),
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Figure 2.5: Trend of the overpressure, impulse and time arrival, for a 1Kg equivalent

TNT

ρ̂ (density), û (velocity), obtained trough the ratio of the values in the con-

sidered point and the atmospheric values po, ρ0, cz0 (defined as "international

atmospheric standard), where cz0 is the sound velocity. From the conducted

analyses he evaluate some expressions that define the overpressure due to a

free field explosion in air. Before reviewing these formula, we introduce the

concept of scaled distance R and equivalent TNT weight.

Scaled distance and equivalent TNT weight

By scaling the parameters determined from experiments results, the results

are generalized and thus can be used for the simulation of blasts of varying

energy or varying distances. Essentially, Hopkinson (Army, 1991) introduce

the idea that the behaviour of an explosion depends essentially on scaled
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parameters R and W . In particular, the scaled distance is:

R =
R

3
√
W

[m/Kg1/3] (2.1)

where R is the distance (range) from the explosive blast center and W is

the weight of equivalent TNT of the charge.

Also it is possible to introduce an equivalent weight of explosive, depend-

ing on the different explosive characteristic:

W =
WsQws

Qwt

[Kg] (2.2)

where Ws is the weight of the real explosive, Qws is the specific heat of the

real explosive, Qwt, that is equal to 1000Kcal/Kg, is the specific heat of

TNT.

Back to the experimental analyses, H.L.Brode (Harold and Brode, 1955)

derived the sequent expressions, that define the overpressure due to an free

field explosion in air. The peak overpressure [kp/cm2]of the shock-wave ∆pφ

can be written in the form:

∆pφ =
6.7

R
3 + 1 for ∆pφ ≥ 10

∆pφ =
0.975

R
+

1.455

R
2 +

5.85

R
3 − 0.019 for 0.1 ≤ ∆pφ ≤ 10

(2.3)

∆pφ = pφ − p0 (2.4)

where R is the scaled distance [m/kg1/3] between the considerate point and

the center of the charge, W is the equivalent TNT charge [Kg], pφ is the

pressure on the front of the shock-wave and p0 is the atmospheric pressure.
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It is possible to compare equations (2.3) with others written by other

authors:

∆pφ =
10.7

R
3 − 1 [kp/cm2] for R ≤ 1

∆pφ =
0.76

R
+

2.55

R
2 +

6.5

R
3 [kp/cm2] for 1 ≤ R ≤ 15

(2.5)

The first formula has been derived by Naumyenko and Petrovsky (1956)

and the second one by Sadovsky (1952). They achieved the formulations

from the develop of similar model and the coefficent have been derived ex-

perimentally. Another formulation, mostly used for the evaluation of the

peak overpressure in free air was supplied by Henrych (1979). He on the

basis of experimental results developed the following formulations:

∆pΦ =
14.0717

R
+

5.5397

R
2 − 0.3572

R
3 +

0.00625

R
4 [kp/cm2] for 0.05 ≤ R ≤ 0.3

∆pΦ =
6.1938

R
− 0.3262

R
2 +

2.1324

R
3 [kp/cm2] for 0.3 ≤ R ≤ 1

∆pΦ =
0.622

R
+

4.05

R
2 +

3.288

R
3 [kp/cm2] for 1 ≤ R ≤ 10

(2.6)

that are right again for charges in equivalent TNT weight.

The values of the last formulation give , for a chemical explosion of

TNT,information about what happens for all the values of R until the center

of the charge (on the surface of the charge, R ≈ 0.05 and ∆pΦ = 640 kp/cm2).

In the abacus shown in 2.6 the typical trends of all the main parameters of

a shock-wave with no limit of R are represented.

Between the interval 1 ≤ R ≤ 10 these formulations can be used for all

the chemical or nuclear explosives, giving similar results. The research job
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Figure 2.6: Trend of the incident overpressure , ∆pΦ, reflected overpressure ∆pΦr,

impulse im , time arrival tφ and positive phase duration τ [ref ]

on the explosions of TNT charges made by Henrych allows to derive the

formulation to evaluate the duration of the overpressure τ [s]:

τ
3
√
W

= 10−3
(

0.107 + 0.444R + 0.264R
2 − 0.129R

3
+ 0.0335R

4
)

0.05 ≤ R ≤ 3

(2.7)

where
τ

3
√
W

measured in [s/kg1/3], is a scaled time.

The surface under the curve overpressure-time is defined as specific im-

pulse im of the shock-wave. For (Sadovsky, 1952)
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im =
∫ t

0
∆p (t) dt = A

3

√
W 2

R
[kp · s/m2] R > 0.5

im =
15W

R2
[kp · s/m2] R < 0.25

(2.8)

Where A = 34 ÷ 36 is a constant.

For Henrych the formulations are:

im
3
√
W

= 663− 1115

R
+

629

R
2 −

100.4

R
3 [kp · s ·m−2 · kg−1/3] for 0.4 ≤ R ≤ 0.75

im
3
√
W

= −32.2− 211

R
+

211

R
2 −

80.1

R
3 [kp · s ·m−2 · kg−1/3] for 0.75 ≤ R ≤ 3

(2.9)

The shock-wave is followed by an rarefaction or depression wave for ac-

cording to the relation:

0 < pmin < p0 = 1 atm (2.10)

where pmin > 0 is the minimum pressure of the rarefaction wave. So an

under-pressure ∆pmin is defined, that is given by:

∆pmin = pmin − p0 < 0 (2.11)

From the theoretical works by Brode (Harold and Brode, 1955) and from

the experimental did by Henrych (1979), the following approximate relation-

ships are obtained:
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∆pmin ≈ −
0.35

R
[kp/cm2] R > 1.6 m/kg1/3

τ ≈ 4.25
3
√
W

cz0
= 1.25x10−2 · 3

√
W [s]

i ≈ im

(
1− 1

2R

)
[kp · s/m2]

λ ≈ 340τ

(2.12)

where τ is the duration of the negative phase, i is the specific impulse of

the rarefaction wave , and λ is the length of the rarefaction wave. The time

dependence of the entire explosive wave (shock and rarefaction wave) can be

express by the analytic relation:

∆p(t) =
∆

pφ
cosαie

−f(t/τ)cos

(
αt
t

τ
+ αt

)
(2.13)

where the function f (t/τ) and the constants αt and αt depend on the shape

of overpressure and on the values of τ and τ . In particular, the parameters αt

and αt are determined from the condition that, at point t = τ and t = τ + τ ,

the value of ∆p(t) have to be equal to 0.

Kingery (Kingery and Bulmash, 1984) calculates the shock front velocity

depending on pressure as :

u = c0

(
1 +

γ + 1

2γ

pmax
p0

)1/2

(2.14)

where

• The parameter γ (ratio of specific heat of air) depend also on the over-

pressure and can be taken from a table in (Kingery et al., 1964) and is
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defined as :

γ =
cp
cv

(2.15)

with cp being the specific heat at constant pressure and cv the specific

heat at constant volume. Both the specific heat ratio and the speed of

sound depend on the temperature, the pressure, the humidity, and the

CO2 concentration. Kingery and Bulmash (1984) defines the variation

of the specific heat ratio with a range of 1.402 to 1.176

• c0 is the sound velocity in air (331 m/sec)

• pmax is the peak of the overpressure

• p0 is the atmospheric pressure (101.3 KPa)

2.4 Reflection of a Shock-Wave

When a shock-wave impacts in perpendicular way on a rigid surface infinitely

extended, the direction of the air flow in the shock-wave is progressively

inverted by increasing the static pressure on the surface and generating a

reflected pressure wave. This phenomenon is called "loading on the face" and

the assessment of reflected pressures in calculations of the load generated by

the outbreak, is very important as it can be 20 times higher than the pressure

incident, depending on the strength of the incident pressure. When the whole

phenomenon of reflection is complete, the reflected wave back toward to the

source of the explosion. In reality, however, it is very unlikely that the shock

wave generated by an explosion would affect an entire surface with a zero

angle, and is much more likely to impact with an angle of incidence greater

than zero.



CHAPTER 2. EXPLOSIONS AND SHOCK-WAVES 22

Figure 2.7: Typical trend of the incident and reflected wave (ref9)

Depending on the angle of incidence, two distinct situations may occur:

at shallow angles (typically < 40 ◦ ) it generates a regular reflection where

the incident wave precedes the wave reflected from the surface; at angles

of incidence higher, it generates a wave of Mach following the union of the

shock wave incident and the reflected one. The configuration where most

commonly can be observed the formation of a wave of Match is the one

where the charge is placed at a certain height from the ground, therefore the

parameter that affects the formation of the aforementioned wave is Hc (i.e.

the distance between the charge and the surface).
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This scheme is shown in Figure 2.8, where are indicated the incident

wave and reflected and is illustrated the formation of the branch of Mach.

A practical example that can arise in such a situation can be represented by

the detonation of a charge in an urban environment. It is obvious that only

a few surfaces of buildings will be affected by the shock wave orthogonally,

while most will be hit by a shock wave with an angle of incidence greater

than zero.

Figure 2.8: Schematic representation of the Mach front formation (ref9)

2.4.1 Normal Reflection

In the shock wave the air particles are compressed and in continuous motion,

therefore in the normal incidence of the wave with a rigid barrier the reflected

overpressure will become greater than the one existing in the wave before the

incidence. The parameters of the atmosphere at rest are: p0,ρ0 ,T0 ,u0 = 0

and the parameters of the incident wave are pφ ,ρφ ,Tφ ,uφ. At the instant of
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the impact of the shock front on the barrier, a reflecting wave is produced

that propagates in the opposite direction. The parameters of this front are

denoted as Nr,pφr ,ρφr ,Tφr ,uφr (Henrych, 1979). Just before the incidence, it

is possible to write ,for the incident shock front, the sequent relationship:

uφ =

√
(pφ − p0)

(
1

ρ0

− 1

ρφ

)
(2.16)

and just after the incidence :

uφ + uφr =

√
(pφr − p0)

(
1

ρ0

− 1

ρφr

)
(2.17)

Using the adiabatic shock, the solution of the equation (2.17) can be

written as follows:

∆pφr = pφr − p0 = 2∆pφ +
6∆p2

φ

∆pφ + 7p0

=
8∆p2

φ + 14∆pφ

∆pφ + 7.2
(2.18)

where ∆pφ expressed in [kp/cm2]. Following this formulation, the ratio

∆pφr/∆pφ is between 2 and 8.

2.4.2 Oblique Reflection

In the oblique incidence of the shock wave, the reflection phenomenon is

very complex and therefore, accurate results can be obtained only by exper-

imental testing. In order to determine the quantitative parameters of the

phenomenon, the speed of the particles of the incident wave front, uφ , is

shifted into two components, one parallel to the surface of incidence, namely

uφ1 , and are normal to the surface, namely uφ2 . The normal component

is reflected according to the rules described in the previous paragraph. The

tangential component, instead, generates a motion of the compressed air
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along the surface, moving to the right of the vertical reflected particles. The

reflected shock front propagates in the compressed air and preheated by the

incident wave; It propagates with a higher velocity than the incident wave

and accordingly we observe that β > α (2.9 (a)). The point A, intersection

between the reflected fronts and incidents, and the barrier surface, moves on

the surface with the velocity:

cA =
N

sinα
(2.19)

Figure 2.9: Reflection of an incident wave (a); Formation of the Mach wave front (b);

The tangential component of the incident wave velocity is uφ1 = uφ sinα,

while the normal component is Nr1 = Nr sinβ. We consider a small incident

angle α, it results Nr1 < cA, so with the increment of α the velocity cA

decreases, and with the increment of β the velocity Nr1 increases. At a

certain angle α, that depends on the overpressure of the incident wave front,

the velocity N1 is equal to cA, and their intersection point generates the

point A. From at the instant when Nr1 = cA, with another increment of α,

the point A moves away from the barrier, generating new shock-wave, and
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such a composition of the incident and reflected wave is denoted "principle

of Mach" . The front of this wave moves along the surface of the barrier

bringing with itself the triple point, that is the intersection of the three

wave. If the incident wave front starts from a point that belongs to the

barrier surface (intersection point A), the reflection is defined as "double

impact" or "regular reflection". For a Mach wave, as is shown in the figure

2.10 , the reflection is called "triple impact" or "non regular reflection".

Figure 2.10: Schematich representation of the regular reflection and the non-regular

reflection (Smith and Rose, 2002)

In the figure 2.11 (a) it is shown how the boundary of the two types

of reflection depends on the overpressure ∆pφ and the angle α between the

incident wave front and the barrier. The reflected overpressure ∆pφr can be

evaluated as:

∆pφr = kr · ∆pφ (2.20)

where kr is defined as amplification coefficient.

From the graphic shown below 2.11 (b) it is possible to derive the co-

efficient of amplification kr, against the variation of α. It is evident that
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the maximum increment of the overpressure is verified when α = 0 or when

α = 40÷ 70◦, that corresponds with the transition between the regular and

non-regular reflection. The impulse of the reflected shock-wave is computed

with the sequent formulations:

ir = A
3
√
W 2

R
[kp · s/m2] R ≥ 0.5 3

√
W [m]

ir = 24
W

R2
[kp · s/m2] R ≤ 0.25 3

√
W [m]

(2.21)

Figure 2.11: boundary between regular and non-regular reflection as a function of α and

∆pφ (a); representation of the amplification coefficient kr as a function of α and ∆pφ (b);
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2.5 Shock-Waves effects in the impact by a generic

solid

2.5.1 Interaction of the shock-wave with a finite solid

Probably the simplest scenario that can be analyzed in the case of loading due

to an explosion is the one of a solitary building (or set of buildings far apart),

oriented in the direction of the explosion, and loaded by a wave of ideal shock

(2.12). In a situation like this we observe a particular phenomenon on the

face directly subjected to the explosion.

Figure 2.12: Graphic representation of the interaction between the shock-wave with a

generic solid

In fact, unlike what happens on infinite surfaces, the pressure acting

on the front face of the building is reduced by the pressure acting on the

side faces. This also leads to a reduction in the positive phase and then the

"time of cancellation" occurs before. The result of these complex interactions

between the waves is that the total loading on the front face (the impulse)
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is lower than that assumed on that face, but higher than that the one is

generated on the side faces. The main factors that define the trend of the

pressure and the duration of the time of cancellation are basically the mass

of the charge, the distance of the load from the building and the dimensions

of the front face of the building. Figure 2.13 shows the comparison between

two pressure-time diagrams on the central face of a building considering at

first a face of infinite extensions and then one finite face.

Figure 2.13: Trend of the pressure with the time on a finite and infinite surface

2.5.2 Pressure distribution on the front and rear surface

The effects of a shock-wave (Henrych, 1979) on structures differs accordingly

with the intrinsic characteristics of the type of the explosive used, the distance

of the point of explosion, the size of the feedstock and the shape of the body.

Since a theoretical solution of the problem has not been yet proposed, in the

following we present only experimental results obtained in rooms of explosion
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(Army, 1991). With reference to the figure 2.14, in the area nearest to the

explosion, the structures are subjected to the effects of the incident wave. The

structure is at first stressed by the pressure reflected from the top, then the

shock wave reaches the surface of the ground (at the time greater thanH/czφ)

by immersing the entire structure in a layer of compressed air which apply on

the structure a stress state in all directions (omnidirectional) resulting from

the reflected overpressure.

Figure 2.14: Effects of a shock-wave on the surfaces of a generic solid: (a) action of

the wave for an explosion very near to the ground ;(b) action of the incident wave in a

non-regular reflection
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The tension that occurs on the surface of the structure subjected to the

effects of the main wave and the tension that instead occurs upon contact

with the reflected shock-wave are evidently different. In fact, the wall that

faces the epicenter of the explosion (2.14 (b)) is stressed by the reflection of

the overpressure of the shock wave which propagates along the surface. So

the overpressure acts gradually first on the lateral walls, then on the upper

horizontal surface (i.e on the roof), and then on the backward surface. After

the shock wave has hit the front wall, the wall is bypassed and the action of

pressure on it decreases rapidly. The effect of the impact on the front wall

fades after the time:

∆t1 =
3x

czφr
(2.22)

where x is the smallest between the two dimension B/2 andH that are shown

in the figure 2.15, while czφr is the sound velocity of the reflected shock-wave

given by the formula:

czφ = 20.1
√
Tφ (2.23)

After this instant, the action of overpressure on the front of the wall is

given by the sum of the overpressure of the incident wave and the velocity

of impact of the overpressure amplified by a pressure coefficient kp (0.8÷ 1).

When the shock wave reaches the rear wall, it begin to create the vortices at

the edges and due to this phenomenon of suction a reduction of the overpres-

sure occurs . The overpressure on the back of the wall increases with time

and reaches the maximum at the time:

∆t2 =
5x

czφr
(2.24)
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Figure 2.15: (a) Trend of the pressure by time on the front surface of the considering

solid ;(b) Trend of the pressure by time on the back surface of the considering solid

The dependence of the overpressure from the time on the back of the wall

can be considered as shown in figure 2.15. Finally, we can define the values

of the pressure on the body as the difference between the pressure in front

and the one on the back of the wall. The shift of the time step (i.e. the

time interval in which the passage of the overpressure occurs ) between the

beginning and the end of the overpressure is:

∆t3 =
L

N
(2.25)



Chapter 3

Numerical Methods and

Introduction to Fluid Structure

Interaction problems

3.1 Numerical Methods and Element Formula-

tion

The following sections show the theory behind the numerical methods used in

this paper. First there will be a description of the numerical time integration

and the attributes of explicit and implicit methods. After this we make an

introduction to the Fluid Structure Interaction problems, with some theory

and methods used to resolve this kind of problems. We do this because some

problems, e.g. the interaction of pressure waves with structures, that we will

face in the sequent sections are solved using this theory. In what follows we

restrict to the case of Finite Elements Methods. Then we compile a summary

of the three different Finite Element Formulations, that are:

33
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• Lagrangian Formulation

• Eulerian Formulation

• Arbitrary Lagrangian Eulerian (ALE) formulation

The difference between these formulations stems from how the mesh conforms

to material motion. A particular care will be given to the ALE methods,

because is the most used for the Fluid-Structures Interaction problems.

3.1.1 Explicit method

LS-DYNA mainly uses explicit time integration to solve nonlinear dynamic

problems, e.g. explosions/blast loading. This section is based in particular on

LS-DYNA theory manual (Hallquist, 2006). In implicit methods, the equa-

tions of dynamics are combined with the time integration operator, and the

displacements are found directly. In explicit methods, on the contrary, at first

the accelerations are determined from the equations of dynamics and then in-

tegrated to obtain the displacements. The implicit methods require solution

of a set of non-linear algebraic equations at each time step. Furthermore,

iterations need to be performed for each time step of implicit integration to

control the error and prevent divergence. Therefore, the number of numerical

operations per each time step can be three orders of magnitude larger than

for explicit integration. Thus, the advantage of implicit method for three-

dimensional ,transient, problems becomes marginal (Miller and Joldes, 2006).

This means that each time increment is computationally inexpensive and it-

erative convergence is not an issue. All the explicit methods are conditionally

stable, that means that a limitation to the time increment always exist. If

the critical time step ∆tcr ,defined in the following lines, is exceeded, the

numerical process becomes unstable. Because of the small time increments
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required, explicit methods are ideal for high-speed dynamics simulations, like

explosions.

The semi-discrete equation of motion of a MDOF (multi degrees of free-

dom) system is:

[M ] {ü (t)}+ [C] {u̇ (t)}+
{
Rint (t)

}
=
{
Rext (t)

}
(3.1)

where:

• M is the Mass matrix

• C is the Damping matrix

• u, u̇, ü are respectively the displacement, velocity and acceleration

• Rint is the Internal force vector, K ∗u in case of linear elastic material,

where K is the stiffness matrix

• Rext is the External force vector

LS −Dyna uses the explicit central difference scheme to integrate the equa-

tions of motion. For the central difference method to be explicit, lumped mass

have to be employed. This eliminates solution of equations and increases the

critical time increment.

ün = M−1 (Rn
ext − Cu̇n −Rn

int) (3.2)

u̇n+1/2 = u̇n−1/2 + ün∆tn (3.3)

un+1 = un + u̇n+1/2∆tn+1/2 (3.4)

∆tn+1/2 =
1

2

(
∆tn + ∆tn+1

)
(3.5)
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The geometry is updated by adding the displacement increments to the initial

geometry. The critical time increment for the central difference method is

determined from the highest natural frequency ωmax and the damping ratio

ζ.

∆tcr ≤
2

ωmax

(√
1− ζ2 − ζ

)
(3.6)

For an non damped system, the critical time increment becomes:

∆tcr ≤
2

ωmax
=
L

cd
(3.7)

where L is the element length and cd is the speed of sound in the material.

The critical time increment have to be small enough that the information

does not propagate more than one element length during a single time step.

3.2 Introduction to the Fluid Structure Inter-

action (FSI) problems

3.2.1 Introduction

In fluid-structure interaction (FSI) problems, one or more solid structures

interact with an internal or surrounding fluid flow. FSI problems play promi-

nent roles in many scientific and engineering fields, yet a comprehensive study

of such problems remains a challenge due to their strong non-linearity and

multidisciplinary nature. For most FSI problems, analytical solutions to the

model equations are impossible to obtain, whereas laboratory experiments

are limited in scope; thus to investigate the fundamental physics involved in

the complex interaction between fluids and solids, numerical simulations may

be employed (Richter, 2010). Fluid-structure interaction problems describe

the coupled dynamics of fluid mechanics and structure mechanics. They are
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classical multi-physics problems. First of all we have do give the definition

of a coupled system.

A coupled system S is one in which physically or computationally het-

erogeneous mechanical components interact dynamically. By S1 and S2 we

denote two subsystems. The coupled system S is called one-way, if there is

no feedback between the subsystems and two-way, if there is feedback be-

tween the subsystems. The concept of coupled systems can be generalized

to multi-coupled systems with subsystems (S1, . . . , SN) . This can be

multi-structure-fluid interaction, fluid-structure-fluid-interaction (e.g. water-

boat-air). We then call a fully coupled system multi-way coupled. In most

problems it cannot be decided if the problem is one-way or two-way. Regard-

ing the interaction of a very slow driving car with the surrounding air, the

influence of the air on the car can be neglected. At a certain speed however,

the aerodynamic resistance plays an important role.

The numerical procedures to solve these FSI problems may be broadly

classified into two approaches: the monolithic approaches and the partitioned

approaches. It is understood that the distinction between the monolithic and

partitioned approaches may be viewed differently by researchers from differ-

ent fields. In this paper, we intend to define these two approaches from the

engineering application point of view. The monolithic approach treats the

fluid and structure dynamics in the same mathematical framework to form a

single system of equations for the entire problem, which is solved simultane-

ously by a unified algorithm. In contrast, the partitioned approaches treat

the fluid and the structure as two computational fields which can be solved

separately with their respective mesh discretization and numerical algorithm.

The interfacial conditions are used explicitly to communicate information be-

tween the fluid and structure solutions.
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3.2.2 Fluid-Structure Interaction

In the following, we introduce a prototypical fluid-structure interaction prob-

lem: figure 3.1 shows a flow domain with an obstacle. We call the common

domain Ω, the flow domain Ωf and the structure domain Ωs

Figure 3.1: Fluid-structure interaction domain

Now assume that the fluid domain Ωf is filled with air, and Ωs is a rigid

moving body of steel. This movement will set the fluid into motion. The air

however will not significantly act on the obstacle:

Figure 3.2: Fluid motion imposed by moving structure

This problem is a one-way fluid-structure interaction problem. The move-

ment of the structure controls the motion of the fluid but the fluid’s motion

does not impair the movement of the structure.

Next assume, that the flow is driven by an inflow condition and the ob-

stacle is an elastic structure. The evolving flow will act on the surface of the

structure and will cause a deformation. This deformation changes the flow

domain:
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Figure 3.3: Fluid-structure interaction

Due to the deformation of the obstacle, the flow domain is altered. Here,

there is a real feedback between both subsystems and the coupling is two-

way. Both coupled problems have in commons, that they are formulated

on moving domains. Here, the common domain Ω keeps the same, but the

subdomains of the fluid Ωf and the solid Ωs problem change with time: Ω =

Ωf (t) ∪ Ωs(t). This is one of the main difficulties connected with the mod-

elling of fluid-structure interaction problems as well the design of numerical

methods for their solution. The different degree in coupling and interac-

tion is important for the treatment of the problems. We will consider all

fluid-structure interaction problems as time-dependent problems S(t). The

solution is approximated at time-steps t1, t2, ... :

Figure 3.4: Time-approximation of the coupled problem

In every time-step tn −→ tn+1 both problems need to be solved. The
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solution Sn+1 depends on the state of both sub-problems at time tn as well

as on the interaction between both sub-problems. The straightforward way

for simulation the coupled problem is the monolithic approach: we simulta-

neously solve the fluid and the structure problem at the same time.

Figure 3.5: Monolithic solution of the coupled system

For this approach, we need to formulate both sub-problems, fluid and

structure, as one combined problem. Sometimes however the coupling be-

tween both problems suggests a staggering of the solutions. Considering the

problem described in Figure 3.5, the flow field has no influence on the body,

which is moved by some external mechanism. Here, it may be advisable to

first solve for the new shape of the structure and flow domain and then for

the flow field:

This configuration can now be treated with standard methods: the struc-

ture deformation is computable with a structure solver, the flow problem can

be computed separately with a fluid dynamics code. Unfortunately, interest-

ing fluid-structure interaction problems are mostly two-way coupled. Still, it

is possible to numerically decouple the interaction problem. These methods

are called partitioned approaches:

In every time-step tn −→ tn+1 both problems are solved separately. The
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Figure 3.6: Staggered solution of the coupled system

Figure 3.7: Partitioned solution of the coupled system
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flow problem Sf at time tn + 1 depends on the flow and on the structure

problem at time tn, but the interaction at time tn+1 is not taken into ac-

count. For the structures problem the same approach is used. In terms of

time-stepping methods this approach can be called a semi-explicit approach:

while the fluid and structure dynamics itself is considered in an implicit

fashion, the interaction between both problems is included in an explicit way

giving rise to stability problems and asking for small time steps. An ad-

vantage of the partitioned approach is that different solvers can be used for

the different sub-problems. The coupling between fluid and structure comes

into the problem by means of boundary conditions on the interface between

both sub-domains. Aside, this decoupling allows for a parallel solution of the

fluid and the structure problem. However, in most applications the coupling

between both problems is too strong for partitioned approaches.

A further development of the partitioned approaches are the strongly cou-

pled partitioned approaches. The two sub-problems are solved independently

in a decoupled way. Every time-step tn −→ tn+1 is however iterated yield-

ing approximate solutions S(tn+1)if and S(tn+1)is . To compute the i − th

iterative, the solution at time tn and the last approximations S(tn+1)i−1
f and

S(tn+1)is are considered:

The strongly coupled partitioned approach still allows for the use of dif-

ferent solvers for the fluid and structure dynamics subsystem. Due to the

outer iteration, stability problems are damped, even though not removed. If

a very large number of sub-iterations is necessary to find the stable state, the

strongly coupled partitioned approach can be less efficient than the mono-

lithic solution of the coupled problem.
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Figure 3.8: Strongly coupled partitioned approach for the coupled system

3.2.3 FSI Problem Formulation

As said in the previous section we consider a computational domain, denoted

by Ω, with an external boundary Γ. The domain includes the structural

domain, Ωs , and the fluid domain, Ωf ; i.e., Ω = Ωf ∪ Ωf . The fluid-

structure interface is defined by Γs = Ωf ∩ Ωf (Hou et al., 2012) .

Figure 3.9: Schematic of the fluid and solid domains in a FSI problem

The equations of motion for the fluid and structure may be expressed in
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the same index form, as a result of the D’ Alembert ’s principle:

ρv̇i − σij,j + fi = 0 (3.8)

where fi is the body force, such as gravity. Specifically, in the structural

domain, the equation is written as:

ρsv̇sij,j + f si = 0 in Ωs (3.9)

where the superscript, s, denotes the quantity associated with the struc-

ture. Note that the velocity, vsi , is the material (or total) time derivative

of the displacement field usi , i.e., vsi = u̇si . Eq. (3.8) is usually given in

the Lagrangian description. The first two terms in Eq. (3.8) are associated

with inertia and internal stresses, respectively. For example, for linear elastic

materials, the structural stress follows the linear Hooke ’s law;

σsij = λδijεij + 2Gεij (3.10)

where the structural stress is a function of the strains, and the Lame

constants λ and G, which are defined by:

εij =
1

2
(ui,j + ui,j) (3.11)

G =
E

2 (1 + ν)
(3.12)

λ =
Eν

(1 + ν) (1− 2ν)
(3.13)
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where E and ν are the Young ’s modulus and the Poisson ’s ratio, respec-

tively. In the fluid domain, the equation is given by:

pf v̇fi − σ
f
ij,j + f fi in Ωf (3.14)

which is usually represented by the Eulerian description. Thus, in the

inertia term, one has

v̇fi =
dvfi
dt

=
∂dfi
∂t

+ vfj v
f
i,j (3.15)

Assuming that the incompressible Newtonian fluid model is used here,

the fluid stress is then given by:

σfij = −pδij + τij (3.16)

where

τij = 2µ (eij − δijekk/3) eij =
(
vfj,i + vfi,j

)
(3.17)

Note that p is the static pressure which may be viewed as the necessary

force to enforce the incompressibility condition, vfi,i = 0. To maintain the no-

slip condition along the fluid-structure interface Γs, the following Dirichlet

and Neumann conditions can be imposed,

vsi = vfi on Γs (3.18)

σsijni = σfijni on Γs (3.19)
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Eq. (3.19) is in fact the differentiation of the displacement condition that

both fields share the same interface,

xsi = xfi on Γs (3.20)

or an interface profile that is smooth in time and space, some FSI meth-

ods consider Eq. (3.20) as the Dirichlet constraint, instead of Eq. (3.18)

.

3.2.4 Different formulations to describe the state of a

physic system

The Lagrangian formulation (Belytschko et al., 2000) is typically used to

describe solid mechanics problems. The problem is described with a large

number of particles having a certain mass, where the motion of a single

particle is observed in space and time. The problem is exactly defined when

the motion of every single particles is known. The Lagrangian formulation

is very simple to use when the number of particles is small. The method

become more complex to describe a large number of particles.

In the Eulerian formulation the problem is observed from a fixed point of

the space that does not follow the motion of the single particle. In a interval

of time ∆t the particles can flow trough the observation point. Its motion

is exactly defined when they passed trough that point. In the observation

point the field variables are time dependent.

The main difference between Lagrangian and Eulerian formulation is that in

the first one x, y and z are variable coordinates, where in the second method

x, y and z are fixed coordinates of the defined field.
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Figure 3.10: Lagrangian and Eulerian formulation

Governing equations for a dynamic finite element code

Typically, any dynamic finite element code needs to consider 3 physical laws.

These laws are given in terms of spatial coordinates and are thus initially

considered Eulerian, given in local form.

• Conservation of mass

• Conservation of linear and angular momenta

• Conservation of energy

ρ̇+ ρvi,j = 0 (3.21)

σji,j + ρbi = ρv̇i (3.22)

σij = σji (3.23)

ρE,t = (σijvi),j + bjvj + (kijθ,j),i + ρs (3.24)

E is definend by the equation (3.25), where V 2 = vivi

E = W int +
V 2

2
(3.25)
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The variables σij, b, kij, θ, and s, are the stress tensor, body force, thermal

conductivity tensor, temperature and specific source term respectively.

3.2.5 The Lagrangian formulation

In the Lagrangian frame the mesh moves with the deformation of the ma-

terial. In the this formulation each element represents the same part of

material from the beginning to the end of the analysis. The fluid domain can

be described trough a model of material that skips the calculation of the devi-

atoric stress. Consequently, the quadrature points are also locked within the

material, making storage of variables very convenient for history dependent

materials. The treatment of boundary conditions is also very straightfor-

ward as they are always incident with the material domain. In addition, the

stiffness and mass matrices determined by the Lagrangian formulation are

always symmetric by the law of conservation of angular momentum, which

can easily be utilized to reduce computational time. However, in systems

with large element deformation, the Jacobian determinant of the deforma-

tion gradient tensor, equation (3.26), may attain negative values, resulting in

negative mass and energy densities. It is also the issue of the stable time-step

decreasing as a function of the smallest dimension of the deformed element.

Since there is no convection of any properties in the Lagrangian formulation,

the conservation of mass is given by stating that the mass of the elements are

equal for subsequent time-steps. This implies that the density can be easily

solved for, equation (3.28).

ρ (X, t) , J (X, t) = ρ0 (X) (3.26)

J (X, t) = Det (F ) (3.27)
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F =

∣∣∣∣∣∣∣
∂x1

∂X1

∂x1

∂X2
∂x2

∂X1

∂x2

∂X2

∣∣∣∣∣∣∣
which also simplifies the conservation of momentum and energy equations

to:

∂σij
∂Xj

+ pbi = pv̇i (3.28)

ρĖint = Dijσij −
∂kijθij
Xi

(3.29)

When compared to the Eulerian and ALE formulation, the algebra needed

to solve a Lagrangian system is far less complex, as the constitutive equations

are solved using material points.

The figure 3.11 shows the resolutive process of a simple problem with

fluid using the Lagrangian formulation. It supposes that the force is applied

only in the central node. The result of the applied force is the displacement

of the central node in a time step calculation. If the force does not stop

or changes, the node moves to a new position in the next timestep and the

mesh deforms always more following the material flow.

Figure 3.11: Solution of a problem according to Lagrangian formulation
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3.2.6 The Eulerian formulation

The Eulerian finite element formulation assumes that the mesh is incident

with spatial reference points that do not change as the material deforms. The

material properties are thus updated by using a combination of convection

and source terms within the elements. It is no issue with decreasing stable

time-step or negative mass, as elements do not deform. However there are

errors associated with the difference algorithms used to solve the convective

terms that lead to smearing of discontinuities and attenuation, which effec-

tively separates variables travelling at different frequencies. The fact that

the nodes are also fixed while the material moves and deforms is problem-

atic, as the solution variables need to be mapped into the material domain

to get history variables locked to material points. Last but not least, moving

boundaries also pose problems, as rigid Eulerian nodes can not conform to

the moving bundaries. This makes the Eulerian formulation most appro-

priate in fluid mechanics where history variables usually are not needed for

moving points.

The governing equations for the Eulerian formulation in terms of spatial

points is equal to what is given in paragraph 3.2.4. However, in solid me-

chanics one is usually interested in obtaining derivatives locked to material

points. The differential equation for a volume moving with the material flow

becomes:

Df

Dt
= f,[x] + f,ivi (3.30)

Where vi is the material velocity. The governing differential equations

from section 3.2.4 will take the form:
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ρ,t[x] + p,ivi + pvi,i = 0 (3.31)

ρ
[
vi,t[χ]

+ vi,jvj

]
= σji,j + pbi (3.32)

ρ
(
E,t[x] + E,ivi

)
= (σijvi),j + bjvj + (kijθ,j),i + ps (3.33)

Applying the Eulerian formulation for fluids mechanics, the flux of fluid

flows trough the fixed nodes of themesh in the observing space. Although the

Eulerian mesh apparently does not move and deform during the analysis,

it actually change its position and shape only during the single timestep.

The reason why stares in using the Lagrangian formulation in the single

timestep. Considering the example of the previous section 3.11. Because of

the load on the central node, the observed node change his position during

the calculation in a timestep (the mesh deforms). Then this timestep the

analysis stops and this two approximations are applied:

• Mesh smoothing: all the nodes of the Eulerianmesh, that have moved

due to the load, are token back to the original position;

• Advection: the internal variables (stress, flux fields, velocity fields) for

all nodes that have moved are recalculated (interpolated) so that they

have the same spatial distribution before the mesh smoothing. So the

mesh smoothing does not influence the internal variables distribution.

This procedure is repeated at each timestep of the analysis and gives an

undeformed mesh.
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Figure 3.12: Solution of a problem according to Eulerian formulation

3.2.7 The Arbitrary Lagrangian Eulerian ALE formula-

tion

The basic difference between Lagrangian, Eulerian and ALE element formu-

lations, is how the mesh is constructed. In the Lagrangian formulation the

mesh follows material points, while in the Eulerian formulation the mesh is

locked to spatial reference points. The ALE formulation (Alia and Souli,

2005) takes the best from both methods, as it relieves the distortion in La-

grangian elements, and handles the moving boundaries unlike Eulerian meth-

ods. In this formulation the mesh moves and deforms partially because it

follows the material (Lagrangian formulation), while at the same time the

material can flow trough the it (Eulerian formulation). The ALE formula-

tion is particularry useful when dealing with different materials, in particular

when the coupling between a structure studied by Lagrangian frame and a

fluid, typically studied by Eulerian frame, have to be solved. This problem

arises when the moving mesh of the solid detach from the fixed Eulerian mesh

of the fluid, due to the interaction.

The ALE settlement procedure is similar to the Eulerians. The only

difference stares in the mesh smoothing. In the Eulerian formulation the

nodes are put back to their original position, instead in the ALE formulation
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the position of the moved nodes is calculated in accordance of the average

distance of the contiguous nodes.

Figure 3.13: Solution of a problem according to ALE formulation

The Eulerian formulation presents numerical problems, such dissipation

and dispersion, due to the energy flow of the mass trough the elements.

Moreover, for the Eulerian mesh, a lot of elements could need the entire

space where the material can be during the simulation process. The advan-

tage of the ALE formulation is in fact the dejection of the dissipation and

the dispersion, thanks to the possibility of reducing the domain trough op-

eration of translation, rotation and deformation of the mesh in a controlled

way. In fact it is clear that, minimizing the mesh dimension, the mass flows

trough the elements reduces, giving minimal dispersion and dissipation, as

well as the computational time. So, in theory, the Eulerian formulation can

be seen like a particular case of the ALE formulation, by the fact that for

each is done the remesh (or mesh smoothing) and the advection, with the

differences written before.

Now we describe the ALE formulation trough the Navier Stokes equa-

tions (Alia and Souli, 2005). Since the Eulerian formulation is a particular

case of the ALE finite element formulation, a general ALE point of view is

described for compressible Navier Stokes equations. The ALE approach

is based on the arbitrary movement of a reference domain, which will cor-
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respond to the finite element mesh. This domain is introduced as a third

domain additionally to the common material and spatial domains. These

domains correspond to the Lagrangian and Eulerian domains, respectively.

In ALE formulation, the air-blast problem is formulated in the coordinate

of the reference domain. The arbitrary movement of this reference frame,

accompanied by a mesh-moving algorithm, enables us to rather conveniently

deal with moving boundaries, free surfaces and large deformations.

Let’s consider a reference system coordinates and time dependent function

f . Its total time derivative with respect to a reference coordinate can be

described as:

df
(−→
X, t

)
dt

=
∂f (−→x , t)

∂t
+ (−→v −−→w ) ·

−−→
gradf (−→x , t) (3.34)

where
−→
X is the Lagrangian coordinate, −→x is the ALE coordinate, −→v

is the particle velocity and −→w is the velocity of the reference coordinate,

which will represent the grid velocity for the numerical simulation, and the

system of reference will be later the ALE grid. Let Ωf ∈ R3 represent the

domain occupied by the fluid particles, and let ∂Ωf denote its boundary. The

equations of mass, momentum and energy conservation for a Newtonian fluid

in ALE formulation in the reference domain, are given by:

∂ρ

∂t
+ ρ · div (−→v ) + (−→v −−→w ) · grad (ρ) = 0 (3.35)

ρ
∂−→v
∂t

+ ρ (−→v −−→w ) · grad (−→v ) =
−→
div
(
σ
)

+
−→
f (3.36)

ρ
∂e

∂t
+ ρ (−→v −−→w ) ·

−−→
grad (e) = σ : grad (−→v ) (3.37)
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where ρ is the density and σ is the total Cauchy stress given by:

(
σ
)

= −pId+ µ
(
grad (−→v ) + grad (−→v )

T
)

(3.38)

where p is the pressure and µ is the dynamic viscosity. For compressible

flow, (3.35) are completed by an equation of state that relies pressure to

density and internal energy. In the energy equation (3.35), e is the internal

energy by unit volume, the temperature is computed using an average heat

capacity Cv:

ρe = Cv ·T (3.39)

If, in the previous equation −→w = 0 is set, we shift from the ALE formu-

lation to the Eulerian formulation, because it is imposed a null velocity to

the reference coordinates. This assumption deletes the smoothing and the

mesh nodes result as fixed.



Chapter 4

Examples of Numerical

Simulation of explosions and

interaction with Lagrangian

Structures using LS-Dyna

4.1 Introduction

In this section we want to show how we can apply an explosive load in the

software LS−Dyna. First of all we make a brief introduction to the software

with the focus on the philosophy of the program and the organization of the

input data. For the simulations we used two methods. First of all a pure

Lagrangian method is implemented, where no explosive part is constructed,

but it’s used a particular Load Function native in LS−Dyna. This method

is called CONWEP (Pehrson and Bannister, 1997) and uses the theoretical

Brode function (Harold and Brode, 1955) to apply the load on the structure.

With this method we try to simulate the effects of an explosion of 0.1Kg of

56
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TNT and a steel cantilever beam positioned in front of the explosive. We

want to show how the stress in x direction propagates along the beam.

The other method is the multi material ALE that we have described theo-

retically in the previous chapter. With this method we can see the formation

and the propagation in air of the blast wave. With the first simulation we

only show the propagation of a cubic blast wave in a open domain with no

interaction. In the second simulation we also show the interaction with the

cantilever beam used in the Lagrangian exercise, so we can compare the

propagation of the x- stress along the beam axis with the two different meth-

ods. With theMMALE (multi material ALE) method, we have to construct

both the model of the explosive and the one of the air as the continuum where

the air blast can propagate. For the problem with no interaction, we first

construct the cubic mesh of the free field of the air. Then we choose a cubic

region and we assign the properties of the explosive. Thus we have at least

two *Parts.

Finally when we model the interaction of the blast wave with a Lagrangian

structure, we have to set a FSI (Fluid Structure Interaction) problem. In

addition to the parts of the air and the explosive, we also have to model

the parts of one or more Lagrangian structures, were the interaction takes

part.These parts have to intersect the nodes of the ALE parts of air, otherwise

we would have no interaction. In Fluid Structure Interaction problems we

have to define the Master and the Slave parts of the problem. In general

the Master is an ALE, or Eulerian parts, which is the the part that imposes

forces or pressure in the interaction, instead the Slaves parts are Lagrangian,

and are the part that are invested by the interaction.
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4.2 Introduction to the software LS −DYNA

LS−DYNA is a general purpose finite element code whose goal is to analyze

the large deformation statics and dynamics response of structures subjected

to various loads, including coupling with fluids. It works trough an explicit

dynamics solver and needs a pre and post-processing software. In particular

the pre-processing is the phase where the geometry, the material, the mesh

and the load are defined, while with the term post-processing we denote the

phase where we elaborate the results of the simulation . In our case we use

the native software LS − PREPOST by Livermore Software Technology

Corporation also note as LSTC . The pre-processing phase ends with the

creation of a Keyword file, which is processed by LS −DYNA

4.2.1 Input file preparation: the Keyword

A data block , that is the file generated by LS−PREPOST , begins with a

keyword followed by the data pertaining to that section. When we read the

keyword file and we find a word (i.e. *MAT), we know that the following

data represent the description of a particular section (in case of *MAT, we

refer to the material). The next keyword encountered during the reading

of the block data defines the end of the block and the beginning of a new

block. A keyword have to be left justified with the ” ∗ ” contained in col-

umn one. A dollar sign in column one precedes a comment and causes the

input line to be ignored. Data blocks are not a requirement for LS−DYNA

but they can be used to group nodes and elements for our convenience. In

order to solve any kind of problem, the first step is to create geometry and

a mesh and define the node. As an example, we consider a mesh consisting

of only one brick element and 8 node points. Also, we use default values
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Figure 4.1: Eight node solid element

for many of the parameters in the input file . The first line of the input file

have to begin with *KEYWORD. This identifies the file as containing the

keyword format. The first input block is used to define solution control and

output parameters. The *CONTROL TERMINATION keyword have

to be used to specify the problem termination time. Additionally, one of the

many output options should be used to control the printing interval of re-

sults (e.g., *DATABASE BINARY D3PLOT). To obtain a time history

output we have to set also *DATABASE BYNARY THDT and set the

end time that we want. The second input block is used to define the model

geometry, mesh, and material parameters. The following description and

map may help to understand the data structure in this block. The keyword

*PART represents a series of elements and nodes with the same character-

istics, such as the material, the equation of state (in the case of fluids) and

the element formulation (Lagrangian, Eulerian or ALE). We consider 1 part,

the cubic block, and use the *PART keyword to begin the definition of the
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finite element model. The keyword *PART contains data that point to other

attributes of this part, e.g., material properties. Keywords for these other

attributes, in turn, point elsewhere to additional attribute definitions. The

organization of the keyword input looks like this:

Figure 4.2: Keyword philosophy

The figure shows the general philosophy of the input organization and how

various entities are related to each other. In this figure the data included for

the keyword, *ELEMENT, is the element identifier, EID, the part iden-

tifier, PID, and the nodal point identifier, the NID, defining the element

connectivity: N1 N2 N3 N4 N5 N6 N7 and N8. The nodal coordinates are

defined in the *NODE section where each NID should be defined just once.

A part identifier *PART keyword has unique part identifier, PID, a section

identifier, SID, where the section element formulation is specified and so on.

The material constants are defined in the *MAT section where constitu-

tive data are defined for all elements type including solids, shells, beam and

other else. Equation of state, which is used only with certain *MAT mate-
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rials for solid elements, is defined in the *EOS section. Since many elements

in LS − DYNA use uniformly reduced numerical integration, zero energy

deformation modes may be developed. These modes are controlled numeri-

cally by either an artificial stiffness or viscosity which resists the formation of

these undesirable modes. The hourglass control can optionally be specified

by using the input in the *HOURGLASS section.

4.3 Simulation of the interaction of a cantilever

beam with an explosion using the CON-

WEP pure Lagrangian method

One of the very useful features in LS−DYNA is the ability to simulate the

detonation of an explosive and the loading caused by it.

In this problem we want to simulate the interaction of a cantilever beam,

with an spherical explosion. In order to do that, we use the CONWEP

function to directly apply the pressure load due to the explosion on the

surface of impact. The beam has a length of 2m and a square cross section

of 10cm for each side. The charge is positioned at a distance of 6m from the

surface of impact. The weight of the charge is 0.1 Kg and the explosive used

is TNT . After the simulation we want to see the wave propagation along the

length of the beam, in the x-direction. To validate the experiment we also

perform a convergence analysis with different mesh density, because we want

to see how the density mesh influence the accuracy of the results. For better

see the wave propagation along the beam axis, we analyze the problem by

setting the Poisson ratio ν = 0.
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Figure 4.3: Description of the CONWEP cantilever problem

4.3.1 The CONWEP function

LS − DYNA , trough the CONWEP function, allows users to simulate

blasts using the Kingery and Bulmash function (Kingery and Bulmash,

1984) that provides pressure loads due to explosives in conventional weapons.

CONWEP is a well known "tool" in structural analysis when looking at

blast loading. To avoid computational cost and complexity by doing CFD-

analysis, one can simplify by using ConWep.

The CONWEP algorithm takes in account the angle of incidence by

combining the reflected pressure (normal-incidence) value and the incident

pressure (side-on incidence) value. Accordingly, The LS − DYNA blast-

loading model is modified so that it can calculate the angle of incidence and

then take the sum.

Pressure Load = Pr cos2 θ + Ps(1 + cos2 θ − 2 cos θ) (4.1)

where Pr is the reflected pressure and Ps is the incident pressure.

When cosθ is negative (i.e., the surface is not facing the point of explo-

sion), then iressureLoad equal the incidentPressure, but the arrival time

and the incident pressure are not adjusted in any way to account for shad-

owing by the intervening structure.
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CONWEP is implemented in LS-DYNA as ∗LOADBLAST. With the

Keyword Load Blast we define an airblast function for the application of

pressure loads due to explosives in conventional weapons. The implementa-

tion is based on a report by Randers − Pehrson and Bannister (Pehrson

and Bannister, 1997) where it is mentioned that this model is adequate for

use in engineering studies of vehicle responses due to the blast from land

mines.

With this method we do not explicitly simulate the progress of the shock

wave in air, but we just apply a specific pressure on a surface of the La-

grangian solid. This method is computationally less expensive than the ALE

method at the cost of accuracy: CONWEP is unable to account for confine-

ment (focusing of the blast due to geometry) or shadowing (when an object

is blocking a surface from direct loading).

The input data required by the CONWEP model are:

• weight: equivalent mass of TNT

• x0 y0 z0: coordinates of the point of explosion, in problem length units

• t0: delay time between when the DYNA problem starts and the istant

of the explosion, in problem time unit. It can be negative.

• nunit: units switch: we use in this problem Kg ,m ,Pa, µs

• isurf: type of blast:

– 1 : surface blast

– 2 : air blast

In addition, the LS−DYNA model requires a list of the surface segments

that will experience the blast loading. This is done in the same manner as
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with the Brode model, except that the load curve number is −2 instead of

−1.

4.3.2 Numerical Model

The model is constituted by a single part that represents the cantilever beam.

The beam have have a length of 2m in x direction, and a square cross section

of 0.01 m2. So the dimension in y and z direction is 0.1m.

Material Properties

Once modelled the geometry we set the material properties. First of all

we have to go to the *MAT tab in the third page of the program choose

one of the proposed materials and edit it. We choose the material *MAT

ELASTIC with the following properties:

• Density: 7810 Kg/m3

• Young Modulus (E) : 2 x 1011 Pa

• Possion Ratio (ν) : 0.3

We have to set a number ID and a name for the material. After doing this,

we have to tell the program which element formulation has to be used for the

*PART of the beam. We choose in the *SECTION SOLID the element

formulation ”1” that corresponds to the Lagrangian formulation. Now to

assign the material properties and the element definitions to the model we

go to the *PART tab and we set SECID an MID as 1, because 1 is the ID

of the element formulation and the material properties.



CHAPTER 4. NUMERICAL SIMULATIONS OF EXPLOSIONS 65

Loads and Boundary conditions

In our case the beam is clamped in one of the extremity. Thus we have to set

the clamps in all the nodes at x = 0. To do this we first have to set the list

of the nodes in the tab *SetD selecting the nodes directly from the model

(*SET NODE). Then in the tab *SPC we choose the degrees of freedom

that we want to block.

We are now ready to set the blast load on the opposite surface of the

beam. First of all we set the surface where the pressure is applied in the

*SetD tab. This time we select *SET SEGMENT and from the model we

peak all the element of the surface. Then we define the load in the *LOAD

BLAST tab. As described earlier we have to set all the parametres as

follows:

• WGT= = 0.1 Kg (weight of the charge)

• x0=0 y0=0 z0=0 (position of the charge)

• TBO=0.0001s (time-zero of the explosion)

• IUNIT=2 (Kg ,m, s, Pa)

• ISURF=2 (airblast)

Blast requires us to define at least two load curves even though they may

remain unreferenced. We go in the *DEFINE tab to edit the curves. We

insert the default abscissa, A1 and ordinate B1 values which correspond to

time and load respectively and the next set of values as 1 and 1. Now to

apply the load we select again the *LOAD tab and select SEGMENT SET

from the list. For blast we are required to enter the Load Curve ID LCID

as −2.
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4.3.3 Analysis and Results

As written before, we perform this analysis considering three different mesh

densities and with two different configuration of material properties.

We require the program to give us a photography of the model every 0.001

seconds, with an end termination of 0.3 seconds. So we can clearly see the

propagation of the x stresses along the beam. We also ask the program to

give us the time history of some elements to see exactly some characteristic

values of the problem, such as the time arrival ta of the wave and the intensity

of the x− stresses.

First mesh configuration

in the first mesh configuration the domain has been discretized by:

• 60 elements in x direction

• 3 elements in y direction

• 3 elements in z direction

So the single element is hexaedral with eight node per element and is exactly

cubic. Then we have 540 elements and 976 nodes (figure 4.4) .

Results

The program gives us a photography of the model every 0.001 seconds, with

an end termination of 0.3 seconds. Thus we can see clearly the propagation

of the x stresses along the beam.

As we can see, the contours of the wave are not well defined, due to the

coarse mesh.



CHAPTER 4. NUMERICAL SIMULATIONS OF EXPLOSIONS 67

Figure 4.4: first mesh configuration

Figure 4.5: propagation of x-stress 1

Second mesh configuration

in the second mesh configuration the domain has been discretized by:

• 200 elements in x direction

• 10 elements in y direction

• 10 elements in z direction

So the single element is hexaedral with eight node per element and is exactly

cubic. Overall we have 2000 elements and 88641 nodes.
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Figure 4.6: propagation of x-stress 2

Figure 4.7: history of the x-stress in the central element of the impact surface

Results

The program gives us a photography of the model every 0.001 seconds, with

an end termination of 0.3 seconds. So we can see clearly the propagation of

the x stresses along the beam.
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Figure 4.8: history of the x-stress in the central element of the beam

Figure 4.9: history of the x-stress in the central elements along the beam

As we can see, the contours of the wave are better defined with respect to

the first mesh configuration. Also the intensity of the stresses are different.
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Figure 4.10: second mesh configuration

Figure 4.11: propagation of x-stress 1

Third mesh configuration

in the third mesh configuration the domain has been discretized by:

• 600 elements in x direction

• 30 elements in y direction

• 30 elements in z direction
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Figure 4.12: propagation of x-stress 2

Figure 4.13: history of the x-stress in the central element of the impact surface

So the single element is hexaedral with eight node per element and is exactly

cubic. Overall we have 540000 elements and 577561 nodes.
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Figure 4.14: history of the x-stress in the central element of the beam

Figure 4.15: history of the x-stress in the central elements along the beam

Results

The program gives us a photography of the model every 0.001 seconds, with

an end termination of 0.3 seconds. So we can see clearly the propagation of
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the x stresses along the beam.

Figure 4.16: propagation of x-stress 1

Figure 4.17: propagation of x-stress 2

As we can see, the contours of the wave are very well defined, due to a

very fine mesh. Instead the results are not very different between the second

and the third mesh.
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Figure 4.18: history of the x-stress in the central element of the impact surface

Figure 4.19: history of the x-stress in the central element of the beam

Discussion

From the results we can clearly see that the density of the mesh is very

important for the accuracy of the results. It is evident that in the first mesh
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Figure 4.20: history of the x-stress in the central elements along the beam

time = 0.11 sec x-stress

first mesh -2.16 KPa

second mesh -5.59 Kpa

third mesh -7.11 KPa

Table 4.1: peak of negative stress in the three meshes

configuration the results are very influenced by the very coarse mesh.

In this tables we show the values of the x-stress in the three different

mesh configuration at the same time. In the first one we want to evidence a

peak of the negative value and in the second one a peak of the positive value.

The wave intensity along the beam decreases evidently, something that

should not happen. In fact in the second and third mesh configuration this

phenomenon does not occurs. We can also say that the results with the

second and the third mesh are quite similar, so is not necessary to increase

the density of the mesh more than the second one. The comparison of the
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time = 0.17 sec x-stress

first mesh 1.61 KPa

second mesh 4.92 KPa

third mesh 6.28 KPa

Table 4.2: peak of positive stress in the three meshes

x-stress history of the three mesh are shown in the figure 4.21.

Figure 4.21: comparison of the x-stress history with the different mesh densities
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4.4 Multi Material ALE Simulation of an ex-

plosion of cubical charge of 1.67Kg TNT in

a cubic box full of air

In this simulation we want to represent the propagation of the shock-wave

due to the explosion of 1.67 Kg of TNT in a free cubic field. The cubic

shape explosive is placed in one of the corner of the cubic free field. The

length is 10 cm long to represent a charge of 1.67 Kg of TNT . The field of

the air is represented with a box of 100 cm per side. With this simulation

we want to see how a shock wave propagate in a free field. To avoid the

reflection of the wave in the face were the explosive is modelled, we have

to add a specific non-reflecting boundary condition. Both the air and the

explosive are modelled with the ALE formulation. After the simulation we

compare the results of the simulation with the analytical solution available

in the literature. The quantity that we want to focus are the progress of the

peak of overpressure in function of the scaled distance and the velocity of the

shock front. In this and in all the other problems developed with the ALE

formulation we choose a set of consistent units that are: g,cm,µs and Mbar.

4.4.1 Materials and Equation of State

Material Model for Air

Air is modelled with 8 node finite elements using the hydrodynamic material

model ∗MAT NULL. For solids elements equation of state can be called

trough this material model to avoid deviatoric stress calculation. The pa-

rameter that we have to set for this material model is only the density: ρ

= 0.001255 g/cm3. The model requires also an equation of state, pressure



CHAPTER 4. NUMERICAL SIMULATIONS OF EXPLOSIONS 78

cut-off and viscosity coefficient to be defined. The viscosity and pressure

cut-off are set to zero, because pressure cannot be negative and the viscosity

forces are negligible.

EOS polynomial equation of state

The ideal gas law (gamma law) is used as the equation of state for air.

This polytropic equation of state is given by considering the general linear

polynomial equation of state (Alia and Souli, 2005)

p = C0 + C1µ+ C2µ
2 + C3µ

3 + E
(
C4 + C5µ+ C6µ

2
)

(4.2)

For ideal gas, this equation can be reduced using appropriate coefficents:

• C0=C1=C2=C3=C6= 0

• C4 = C5=γ -1

by setting µ as:

µ =
ρ

ρ0

− 1 (4.3)

we obtain:

p = (γ − 1)
ρ

ρ0

E (4.4)

where ρ0 and ρ are the initial and current density of air, E is the specific

internal energy (with the units of pressure) and γ is the polytropic ratio

of specific heats. For the diatomic molecules, including air, this adiabatic

expansion coefficient is γ = 1.4. Here the numerical values used for air are:

• γ = 1.4

• E0 = 2.5e−6 Mbar
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• ρ0 = 1.293e−3 g/cm3

Note that the equation (4.4) gives at time t = 0, an initial pressure

P0 = 1bar, for γ = 1.4 and E0 = 2.5bar.

The polytropic form Eq (4.4) is related to the ideal gas law via:

pv = RT (4.5)

where R is the gas constant and T is absolute temperature.

To be thermodynamically consistent, the air material have to be initial-

ized with a non-zero internal energy so that its initial pressure is non-zero.

The air can leak out of the mesh if appropriate boundary conditions are

not imposed at the external boundary, to avoid initial air leakage, a 1 bar

pressure boundary condition is assumed.

Material Model for TNT

For the material model of the explosive, in our case TNT, we have chosen

the HIGH EXPLOSIV E BURN material model with 8th node finite el-

ements. The explosive material model requires density, detonation velocity

Vd, the Chapman Jouguet pressure Pcj, and a equation of state for pressure.

Throughout this section, various subscripts will be used. These are s for an

isentrope, h for a Hugoniot, CJ for the CJ state, and 0 for the initial state.

Chapman Jouguet pressure generally refers to the detonation pressure, which

is somewhat lower than the initial shock front pressure . The assumption of

Chapman and Jouguet (Coleburn, 1964) (equation (4.2)) states (figure 4.22)

that for a plane detonation wave to be propagated steadily, the Rayleigh

line, which is derived from the mass and momentum conservation, have to

be tangent at the CJ point to the Hugoniot curve of the gaseous products

that is derived from the energy conservation.
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Figure 4.22: Hugoniot curve and Rayleigh line

In a steady state process, these are assumed to be produced with an

infinite reaction rate in order to attain the chemical equilibrium. As shown

in figure 4.22, the shock front, which advances through the explosive with a

detonation velocity V d compresses the explosive particles from a status point

(P0, v0) to another one (P1, v1), defined by the intersection of the Rayleigh

line and the Hugoniot curve for the explosive. After the completion of the

detonation process, the interaction process takes place. A produced gas with

high pressure and temperature expands outward by generating a pressure

wave. Due to the high pressure, the gaseous products can be assumed to be

inviscid, and thus viscous forces are ignored. In air explosion, the pressure

wave moves with the gas air interface. The fluid layer at the pressure wave

is a mixture of gas and air, which makes it more complex from a simulation
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point of view.

EOS John Wilkins Lee equation of state

An essential part of the numerical models, used to simulate high explosives

and their detonating products, is the equation of state (EOS) relating energy,

pressure and density. Both theoretical and empirical approaches have been

employed to describe explosive equations of state (Thiel et al., 1983). Various

types of EOS describe the state of detonation products. Jones Wilkins Lee

(JWL) EOS is widely used because of its simplicity and due to the fact that

most high explosives are well modelled by this equation of state. The defi-

nition of the JWL equation of state starts from its isentropic form, namely:

ps = A(−R1V ) +B(−R2V ) + CV ω+1 (4.6)

where p is the pressure and the subscript s denotes reference to isentropic

compression or expansion. A, B, R1, R2 and ω are user defined constants

which the performance values are:

• A=5.409405 Mbar

• B=0.093726 Mbar

• R1=4.5

• R2=1.1

• ω = 0.35

• E=0.08 Mbar

• V0=0.8
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The imput parameters for this equation are given by Dobratz (Dobratz,

1981) for a large variety of high explosive materials.

For reacted products, R1 is chosen to be about four times R2, so that

the first term dominates at high pressures, the second term is significant at

intermediate pressures, and the third term prevails at low pressures.

After several calculation reported in (Alia and Souli, 2005) the JWL

equation of state becomes:

PJWL(V,E) = A

(
1− ω

R1V

)
e−R1V +B

(
1− ω

R2V

)
e−R2V +

ωE

V
(4.7)

The first term of JWL equation, known as high pressure term, dominates

first for V close to one (figure 4.23).

Figure 4.23: Variation of JWL pressure with respect to the relative volume

The second term is influential in the JWL pressure for V close to two.
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Observe that in the expanded state (V → ∞), the JWL equation of state

reduces only to the third term:

p =
ω

V
E (4.8)

The last term is the polytropic equation of state for air. With ω = γ − 1

, the JWL pressure matches asymptotically the ideal gas pressure for large

volumes.

4.4.2 Geometry Mesh and Boundary Conditions

We have built a three dimensional model to develop the simulation. The

cubic field has a side of 100cm and the length of side of the cubic part of the

explosive is 10cm. Using the density of the explosive we can easily compute

the mass of the explosive, that is 1.67Kg. First of all only the mesh of the air

was constructed. Then with the command *MoveCpy we are able to move

(or copy) some elements from the part of air and assign to it the properties

of the explosive part. The cubical charge is surrounded by the air mesh such

that there is one-to-one node match at the boundary between the explosive

model and the air models.

We create a mesh with fixed element size. The mesh has 2cm element

size. Thus the model consists of 125000 elements. So to reduce the size of the

models we have put the charge in one of the corner and in order not to have

the reflection of the wave along the faces of the cubic field, we impose specific

boundary conditions with the keyword *Boundary non reflecting in all

the faces of the cube. To do this we first s have to create a *Segment Set

and then assign to this selection of elements the non reflection conditions.

One other thing to do is to define the type of element that we want to

use. So in the *Section keyword we have to define both the parts of air and
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Figure 4.24: Mesh of the first model with element size=2cm

explosive as solids element with element formulation 11 that corresponds to

the Multi Material Ale formulation, that we have in detail described in the

previous section. When there are more than one ALE part we have to de-

fine each part in the section called *Ale Multi Material Group Part.

Moreover when high explosive are present in the model we have to define

the point source of the detonation with the keyword *Initial Detonation.

In the *Part card we summarize all the information about the air and the

explosive, setting the materials, the EOS, the element formulation and op-

tionally the hourglass control. If the hourglass control is not defined a default

value is computed by the software.
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Figure 4.25: Imposition of the non reflecting conditions

4.4.3 Output Controls and Database Definition

In the explicit time integration, the time step length is determined by the

smallest element size in the model. Therefore, the mesh density should be

as uniform as possible. Unnecessarily small elements should be avoided, be-

cause they make the time step size small, thus increasing the computational

time. Extremely large elements should be avoided as they decrease accu-

racy. Mixing of small and large elements in the same model should be also

avoided as much as possible because such models tend to reduce simulation

accuracy. Fluids are especially difficult to model because they undergo large

deformations, and element shapes and sizes can change considerably dur-

ing the Lagrangian cycle of the ALE time step. The Van Leer algorithm

(Leer, 1984) is applied to remap the conservative variables. An explosion is

a complex phenomenon, which requires good modelling techniques.
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We set the termination time such that the pressure wave reaches the op-

posite face of the cube, so we set T = 500µs and a photography of the

progress of the problem every 1 µs. So we can clearly see the wave propaga-

tion. Then we also want to see the pressure time history in various point of

the field to evaluate some characteristics parameters such as the peak of the

overpressure and the shock front velocity. We take the series of the gauges

along the edge so that we can compare the results of the analysis with the

experimental formulas of Heinrych (Henrych, 1979), to evaluate the rightness

of the calculations.

4.4.4 Analysis Results

During the explosion simulation, a gas bubble forms and expands. Conse-

quently, air adjacent elements are violently pushed in front of the bubble. A

high velocity shock front starts from the explosive source to the surrounding

air. A shock is a narrow discontinuity in the pressure wave, and therefore

would require fine mesh resolution in order to capture a reasonably accurate

shock peak pressure. We now want to see if the air mesh is fine enough to

match accurately the shock pressure that originates from the explosive.

Formation and propagation of the shock-wave

First of all in this problem we want to validate the hydrodynamic multi

material ALE approach to simulate the detonation of explosive material and

the subsequent propagation of the pressure wave. So the first thing that we

want to see is the formation and the propagation of the shock-wave. Some

picture of the pressure wave propagation at different times are shown in the

pictures 4.26 , 4.27 ,4.28 ,4.29 .

As shown in the pictures, in a first time, the presence of the reacted
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Figure 4.26: Pressure wave propagation t= 50µs

Figure 4.27: Pressure wave propagation t= 130µs
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Figure 4.28: Pressure wave propagation t= 260µs

Figure 4.29: Pressure wave propagation t= 500µs
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explosive is very important, so that there is a region near the explosive at

very high pressure. Going forward in time we can see that this high pressure

region quickly dissolves, and the shock-wave propagates. The other thing

that it is possible to see is the peak of the overpressure. The scale range is

fixed and setted to 2 MPa, and we can clearly see that the pressure in the

shock front decrease rapidly as a function of the distance of the detonation.

Time History data

A shock-wave has a lot of characteristic parameters such as its shape, the

time arrival, the peak of overpressure and the shock front velocity. To show

this phenomena we investigate a time history in different points of the cubic

field. First of all we present the time history of a single point, to show the

basic shape of the pressure wave, and then we compare it with the other

ones to show the decreasing peak of the overpressure. The figure 4.30 shows

the element history of element n.20 and the figure 4.31 shows it again in

comparison with the other element of the same edge with steps of 10cm. It

is clearly visible the decrease of the peak of pressure.

To validate these results we compare the values of the Henrych analytic

formula, that give us the values of the overpressure in function of the scaled

distance defined by the (5.2). We show a graphic with in abscissa the scaled

distance R and in ordinate the peak of the overpressure. The empirical

formulations given by Henrych are:
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Figure 4.30: Thime History element n.20 dist: 40cm

Figure 4.31: Thime History from element n.20 to element step: 10cm
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∆pΦ =
14.0717

R
+

5.5397

R
2 − 0.3572

R
3 +

0.00625

R
4 [kp/cm2] for 0.05 ≤ R ≥ 0.3

∆pΦ =
6.1938

R
− 0.3262

R
2 +

2.1324

R
3 [kp/cm2] for 0.3 ≤ R ≥ 1

∆pΦ =
0.622

R
+

4.05

R
2 +

3.288

R
3 [kp/cm2] for 1 ≤ R ≥ 10

(4.9)

For 1.67 Kg of TNT and for a distance from 0.14m to 1m we obtain the

graphic of figure 4.32

Figure 4.32: Comparison between Heynrich trend and simulation

that show the typical trend given by the Henrych’s formulations and the

trend of the value obtained with the simulation. The value of the overpressure
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are given in the table 4.4.4

Dist R Scaled Distance R Henrych Overpressure Simulation Overpressure

(m) (m/kg1/3) (Kp/cm2) (Kp/cm2)

0.14 0.118 331.93 780.54

0.20 0.169 221.59 311.39

0.26 0.219 148.33 146.54

0.32 0.270 111.29 75.98

0.38 0.320 81.06 44.19

0.44 0.371 56.13 30.62

0.50 0.421 41.35 27.94

0.56 0.472 31.93 26.63

0.62 0.523 25.60 24.29

0.68 0.573 21.14 20.77

0.74 0.624 17.88 17.02

0.80 0.674 15.42 13.96

0.86 0.725 13.52 11.96

0.92 0.775 12.09 10.53

0.98 0.826 10.80 10.25

Table 4.3: Comparison between the values of the overpressure by Henrych

and by the numerical simulation

In order to validate the symmetry of the problem, we show in a unique

figure 4.33 the graphs of the time history of the overpressure in three different

points, that have the same distance from the detonation. We see that the

graphs are perfectly overlapping.



CHAPTER 4. NUMERICAL SIMULATIONS OF EXPLOSIONS 93

Figure 4.33: Thime History in the same elements of different faces of the cubic field

Shock Front velocity

The arrival time of the shock-wave front at different points can be used to

calculate the velocity of the shock front. With the knowledge of this velocity

the pressure can also be obtained trough the Rankine-Hugioniot relationship.

Kingery (Kingery and Bulmash, 1984) calculates the shock front velocity

depending on pressure as :

u = c0

(
1 +

γ + 1

2γ

pmax
p0

)1/2

(4.10)

where

• The parameter γ (ratio of specific heat of air) depend also on the over-

pressure and can be taken from a table in (Kingery et al., 1964) and is

defined as :

γ =
cp
cv

(4.11)
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with cp being the specific heat at constant pressure and cv the specific

heat at constant volume. Both the specific heat ratio and the speed of

sound depend on the temperature, the pressure, the humidity, and the

CO2 concentration. Kingery (Kingery and Bulmash, 1984) defines the

variation of the specific heat ratio with a range of 1.402 to 1.176

• c0 is the sound velocity in air (331 m/sec)

• pmax is the peak of the overpressure

• p0 is the atmospheric pressure (101.3 KPa)

Using this formula and with the peaks of the overpressure computed in

the simulations we calculate the different velocities of the shock front in

function of the distance from the charge. We can also compare these results

with the velocity calculated with a simple difference method from the data

of the simulations. We take the peaks of two elements history at different

distance from the charge and, assuming constant the velocity between the

two peaks with the basic formula of uniform rectilinear motion (s/t) we can

easily calculate the velocity of the shock front. We also have to assumes the

first velocity equal to the detonation velocity D = 6930m/s. The results are

shown in picture 4.34.

These results are validates by the graphic always by Kingery (Kingery and

Bulmash, 1984) that shows the trend of the various parameters of a shock-

wave. In particular the lines that describe the trend of the velocity appear

at the bottom of the graphic and confirm the rightness of the simulation. As

we can see, in the region near the explosive, the velocity is quite similar to

the detonation velocity D that depends on the explosive material and has
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Figure 4.34: Comparison with the velocity calculated with Kingery and manually from

the data

the order of magnitude of the wave propagation in solids like:

D =

√
K

ρ
(4.12)

Where K is the elasticity modulus of the explosive and ρ his density. We

can also see that the velocity computed appears higher that the velocity set in

the pre-processing job. This can be due to the fact that the explosive required

a very fine mesh. Nevertheless the velocity in the region more distant from

the detonation point, the velocity are well reproduced.
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Figure 4.35: Trend of the shock-parameters by Kingery
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4.5 FSI Simulation of the interaction of shock-

waves with Lagrangian Structures

4.5.1 Introduction

In this kind of problems we set up the interaction of an explosion, simu-

lated trough the Multi Material Ale formulation described before, with a

Lagrangian structure. We are in the case where there is a fluid in motion

(air) at high pressure that interacts with a solid initially standing. We have

to set up a Fluid Structure Interaction simulation. In the case described

before 4.3.1 we not model the explosive and the subsequent pressure wave

propagation, but we direct apply the pressure load. Here we want to show if

it is possible model the pressure load with the Fluid Structure Interaction.

The ALE formulation has a more elevated computational cost with respect

to the CPNWEP method, thas does not take in account some aspects such

as:

• the region of enforcement of the pressure load is single. There is no

interaction in other parts of the structure

• the reflecting wave is not computed

CONWEP capabilities is very indicate to have an idea of blasts problems

and for specific applications, where the explosive is very near to the structure.

The Fluid Structure Interaction problems, in the other hand, takes in account

all these situations because the fluid is modelled and can interact with all the

Lagrangian elements. In particular ALE formulation with FSI is necessary

when dealing with problems in wich reflected waves are not a negligible part

of the problem i.e. ground reflection and other obstacles. The Fluid Structure
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Interaction problems are computationally very expensive so the model, and

the mesh have to be very well designed.

To set up a Fluid Structure Interaction problem in LS−DYNA we have

at least one ALE part and one Lagrangian part and we can use two ways:

• Coupling of the ALE and Lagrangian formulation with the command

*Costrained Lagrange in Solid

• Merge the contact nodes (double) between the mesh of the fluid field

(ALE or Eulerian) and the mesh of the structures.

With the first method we need to accurately set the option of the com-

mand to have a right interaction. In particular we have to define what is

the *Part of the model that enforces the stresses to the others. This part

is called Master and usually is the fluid ALE part. Then we have also to

define one or more parts that undergo the interaction, that are usually the

solid Lagrangian parts. These are called Slaves parts In order for a fluid-

structure interaction (FSI) to occur, a Lagrangian (structure or slave) mesh

have to spatially overlap with an ALE (fluid or master) mesh. Each mesh

should be defined with independent node ID. LS −DYNA searches for the

spatial intersection of between the Lagrangian and ALE meshes. Where the

meshes overlap, there is the possibility that interaction may occur. With the

second method we have to know that the shared nodes works as Lagrangian

’s.

In the sequent sections we construct 2 models to verify if a Fluid Structure

Interaction problem is suitable to simulate explosive situations. The first

simple problem considers an explosion in front of cantilever beam and the

second one the explosion in front of a standalone column. In the first one
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the interaction is only between the shock-wave and the beam. In the second

one the interaction is other than with the column also with the ground.

4.6 Cantilever Beam under 1KG TNT detona-

tion

In this problem we want to show the interaction of a cantilever beam under

a shock-wave due to the explosion of 1Kg of TNT . The beam have the same

geometry of the one used for the conwep simulation (4.3). To have visible

interaction between the blast wave and the beam we have to set the charge

near the beam at the distance of 1m. Also the charge is set as 1Kg due to

the mesh design, in particular to the fact that we need a minimum of element

for the explosive to have a good simulation. In this problem we want to show

the pressure wave that impact and enforce the stress to the cantilever beam.

We should see the wave that deforms and the reflecting wave. We can also

see the x-stress propagation.

Figure 4.36: Description of the physic problem
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4.6.1 Numerical model

We build a model with an uniform mesh of hexahedral elements with 8 nodes

per element. We set and discretized the domain of the air, of the beam and

the explosive as follows:

• Air (ALE Part 1)

– 300cm in x direction with 150 elements

– 30cm in y direction with 15 elements

– 50cm in z direction with 30 elements

• Explosive (ALE Part 2)

– 10cm in all the directions with 5 elements

• Beam (Lagrangian Part 3)

– 200cm in x direction with 100 elements

– 10cm in y direction with 10 elements

– 10cm in z direction with 10 elements

As we have written before in order to obtain an interaction, the slave

part, in our case the beam, have to intersect the part of the master, the air

(figure 4.38) . Thus first we model the air and then moving or deleting some

part of its we construct the mesh of the other parts. We remember that the

nodes of the air and the explosive have to be coincident, but the mesh of the

column and the ground have to intersect the mesh of the air, in order to have

a correct interaction . After this we can assign all the needed parameters to

each part present in the model. In figure 4.37 we show the entire mesh of
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Figure 4.37: Mesh of the fsi-cantilever model

Figure 4.38: Intersection between air and beam

the model and a focus to show the intersections between the mesh of the air

and the mesh of the beam .

The element formulation used for the air and the explosive is the multi ma-

terial ALE elements. Having more than one ALE part, we have to summarize

them in the card *ALE MULTI MATERIAL GROUP. In the *CONTROL

ALE section, we have to define the parameters of the mesh smoothing and

the advection of the ALE mesh. We choose to turn off the smoothing of the

ALE mesh, setting the option AFACT equal to 0. Always in this section we
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set the pressure applied to the free surfaces of the ALE mesh boundary equal

to the atmospheric pressure. The field of the air needs the *BOUNDARY

NON REFLECTING conditions, in order to not have the reflection of the

wave at the end of the MMALE boundaries.

Materials and Equation of State

Regarding the materials for the air and the explosive, they are the same

used for the previous simulation. So we used the *MAT NULL with the

air associated with the *EOS POLYNOMIAL with the parameters of

air, and the *MAT HIGH EXPLOSIVE BURN with the *EOS JWL

with the parameters of the TNT. The beam instead refers to the Lagrangian

elements formulation. Similarly to the conwep problem we choose the *MAT

ELASTIC and we set a low Young modulus in the way to better appreciate

the x-stress propagation in the beam. For the same reason the Poisson ratio

is set as 0. With this choice we only have longitudinal wave propagation.

The parameters of air and TNT are summarized in tables 4.4 4.5 (Aquelet

and Souli, 2008).

mid ro pc mu terod cerod vm pr

1 0.001225 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.4: MAT NULL parameters of air

mid ro D Pcj beta k g siav

1 1.67 0.747 0.25 0.00 0.00 0.00 0.00

Table 4.5: MAT HIGH EXPLOSIVE BURN parameters of air

For what concerns the parameters of air we have only to set the density
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(ro). For the explosive material we have to specify also the detonation ve-

locity D and the Chapman Jouget pressure. The other parameters are not

strictly needed (Hallquist, 2006).

The parameters of the EOS for the air and for the TNT are summarized

in tables 4.6 4.7.

eosid c0 c1 c2 c3 c4 c5 c6 e0 v0

1 -1.0e-06 0.00 0.00 0.00 0.40 0.40 0.00 2.58e-06 1.0

Table 4.6: EOS LINEAR POLYNOMIAL parameters for air

eosid a b r1 r2 omeg e0 v0

2 5.409 0.0937 4.5000 1.1000 0.35 0.08 0.80

Table 4.7: EOS JWL parameters for TNT

The meaning of each terms of the two EOS are specified in the previous

sections.

4.6.2 Results

Here we show the results of the simulation. First of all the progression of

the shock-wave and the impact with the beam are shown. We observe the

wave that changes shape and the reflecting wave. Then the stress in the

beam begins to propagate. Then we show a time-history graphics with the

incident wave progression, the reflecting wave and the x-stress propagation.

Then by using the time history data we calculate the propagation velocity of

the wave inside the beam, and we compare it with its analytical value.

As we can see the reflected pressure is lower than the incident pressure.

This because the reflecting surface is very small and the wave switches to
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Figure 4.39: Shock-Wave propagation t=120 µs

Figure 4.40: Shock-Wave propagation t=298 µs

the side of the beam. In the pictures 4.45 4.46 we focus on the x-stress

propagation in the beam.

As we can see in the time history data at the beginning we have com-

pressive x-stress , and also after the wave reaches the clamps. Then, in the

second turn the x-stress are reversed and the elements are in traction. The

propagation is not well defined like in the CONWEP simulation with the
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Figure 4.41: Shock-Wave propagation t=354 µs

Figure 4.42: Shock-Wave propagation t=469 µs

fine mesh, because the shape of the pressure function is altered, due to the

presence of the air, that in this simulation is modelled.

We compute also the history of another element far from the previous one

by 40cm. So we can calculate the velocity of the wave propagation in the

beam, assuming it constant in that time interval.
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Figure 4.43: Incident arrival pressure

Figure 4.44: Incident pressure and reflected pressure

With the data downloaded by the history files we take the time of the

two negative peak of pressure of the two different elements. The data are

summarized in the table 4.8 .
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Figure 4.45: X-stress propagation 1

Figure 4.46: X-stress propagation 2

time (µs) x-stress (Mbar)

958.9 −2.63e−4

1039.36 −2.45e−4

Table 4.8: Time and intensity of the peak of stresses in the two elements
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Figure 4.47: History of the x-stress propagation in the central element of the beam

Figure 4.48: History of the x-stress propagation in the two different element of the beam

With the formula of the wave propagation in solids:

D =

√
K

ρ
(4.13)

Where K is the Elasticity modulus of the beam and ρ his density, the
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computed value of the wave propagation velocity is 4582m/s. The two values

are in good accordance, so we can say that the result are in good agreement

with what we expect.

The computed velocity and the analytical one are summarised in the table

4.9 :

Computed velocity Analytic velocity

4972m/s 4583m/s

Table 4.9: Computed and Analytic velocity

4.7 Standalone column under 1Kg TNT deto-

nation

In this model we simulate the interaction of the pressure wave generated by

1Kg of TNT positioned in front of a standalone column at the distance of

0.7m. The height of the column is 1.5m with a square cross section which

sides are 0.12m. The height of the charge is set as 0.75m exactly at the

middle height of the beam. In this model the interaction is not only with

the column, but we consider also the reflection of the ground. We will focus

on the incident pressure wave and the reflected wave. We expect also that

the pressure wave switches to the side of the column and reaches the region

beside the beam. We expect also that the pressure contour runs along the

eight of the beam and continue his trend when reaches the top of the beam.

The other things that we want to investigate are the contours of the effective

V on −Mises stresses and the displacement along the height of the beam.

The figurative description of the model is represented in the picture 4.49.
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Figure 4.49: Figurative description of the model

4.7.1 Numerical Model

Also in this problem we choose to adopt a uniform mesh of solid elements with

hexaedral shape with eight nodes per element. In this model we have 4 parts:

two ALE parts that are the air and the explosive and two Lagrangian parts

that are the column and the ground. The dimension and the discretization

of the model are summarized as follows:

• Air (ALE Part 1)

– 100cm in x direction with 50 elements

– 30cm in y direction with 15 elements

– 200cm in z direction with 100 elements
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• Explosive (ALE Part 2)

– 10cm in all the directions with 5 elements

• Beam (Lagrangian Part 3)

– 12cm in x direction with 6 elements

– 12cm in y direction with 6 elements

– 150cm in z direction with 75 elements

• Ground (Lagrangian Part 4)

– 102cm in x direction with 51 elements

– 32cm in y direction with 16 elements

– 2cm in z direction with 1 element

For the construction of the mesh we follow the same steps used for the

previous model. First of all we model the air and then, moving or deleting

some parts of its we construct the mesh of the other parts. We remember

that the nodes of the air and the explosive have to be coincident, but the

mesh of the column and the ground have to intersect the mesh of the air, in

order to have a correct interaction.

We assign the properties of non-reflection to all the faces of the mesh

of the air and we impose the pressure applied to the free surfaces of the

ALE mesh boundary equal to the atmospheric pressure. Having two parts

that interact with the pressure wave we have also to define a *SET PART,

where we define the two Lagrangian parts. So when it is requested to tell

the program what is the Slave of the interaction, we set this part set. This

is a mandatory step when we have more that one slaves parts as written in

Hallquist (2006). All the other setting are equal to the previous simulation.
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Figure 4.50: Mesh of the fsi-column model

Materials and Equation of State

For what concerns the materials of the ALE parts, the air and the explosive,

they are the same of the previous model, and also the equation of state are

the same. The Lagrangian part has new material properties and in particular

we assign for the ground the properties of a rigid body. In order to do this

we choose the properties of the elastic material, but we have set a very high
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Young modulus. For the column we have assigned the properties of the steel.

So both the parts of the column and of the ground are modelled using the

elastic material properties. In this kind of material properties we have only

to set the density and the Young modulus of the material. The properties of

the two materials are summarized in the tables 4.10 4.11.

mid ro E pr da db

3 7.8 2.100 0.00 0.00 0.00

Table 4.10: MAT ELASTIC parameters of the column

mid ro E pr da db

4 5.00 2100.00 0.00 0.00 0.00

Table 4.11: MAT ELASTIC parameters of the ground

4.7.2 Results

We made this kind of simulation because we want to check if it is possible the

interaction with more than one slave part, and if it works well. So the first

important thing to verify, is to control if the interaction takes part both with

the column and the ground. Then we see that the contour of the pressure

impacts first with the beam and then reaches the ground. After this there

is a concentration of pressure at the basement of the column. The pressure

wave runs along the height of the beam and continues its propagation when

the higher point is reached. In the picture 4.51 (a) we see the beginning of

the wave propagation, in 4.51 (b) the wave impacts the column, in 4.52 (a)

we can see the ground reflecting, so is verified that the interaction happens
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in all the slave parts, and we can see also a contour of pressure beside the

beam and in 4.52 (b) the pressure reaches the higher point of the column

and continues. In the first picture the column is filled with a static colour to

better identify its position.

Figure 4.51: fsi-column contour of pressure t=120 µs and t=180µs

A certain quantity of pressure continue at the side of the beam and reach

the region beside the column. We want to check how much is the pressure

that pass at the side of the beam and compare this value with the intensity of

pressure without the column. So a previous simulation without the column

has been run. We compare this value of pressure with the pressure detected in

the element exactly behind the column and in the element always behind the

column but in the left border of the mesh. So we expect an higher pressure

in this element because of the passage of the wave at the side of the column.

The comparison between the pressure with and without the column in

the two sensors are summarized in table (4.12) :
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Figure 4.52: fsi-column contour of pressure t=430 µs and t=660µs

Figure 4.53: Incident and reflected pressure

Now we focus on the distribution of the stresses in the beam, so we

choose to investigate the effective Von-Mises stresses, because in this case we
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Figure 4.54: Position of the sensor

Sensor 1 Sensor 2

Without Column 2.67 MPa 2.51 MPa

With Column 0.274 MPa 0.863 MPa

Table 4.12: Detected pressure in the two element with and without the col-

umn

have not a preferential direction of propagation. We expect that the stresses

begin at the center of the beam and rapidly reaches the two extremities of

the column. After this short time the column begins to move and the stresses

are concentrated at the basement of the beam.

It’s important to see the different maximum value and the trend of the

stresses in different point of the beam. So we choose to check the history

data in the elements positioned in the center of the height of the column, at

the top and at the bottom of the column. First we show only the history

of the central element, to evidence the fact that there is first an impulsive

force and then a second smoothed load 4.57. In picture 4.58 is shown the
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Figure 4.55: fsi-column contour of Von Mises stress t= µs and t=µs

Figure 4.56: fsi-column contour of Von Mises stress t= µs

comparison of the three elements. We can easily note that in the element

at the bottom of the column the stresses are significantly higher, but less
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impulsive, due to the presence of the ground that make a reflected wave.

Figure 4.57: history of the von mises stress in the central element of the column

Figure 4.58: comparison of the histories of the von mises stress in the three different

elements

An other thing that is significant to see is the displacement in x direction.

We show the displacement of elements from top to the bottom of the column.
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We expect that the maximum value of displacement are at the top of the

column, and decreased up to zero going towards the bottom of the column.

Figure 4.59: displacement in x-direction of element from top to the bottom of the column



Chapter 5

Experimental tests on the SAS

GFRP porous barrier and

Numerical Simulation

From the analysis of the previous chapters it is evident that in literature

there are enough models to evaluate the peak of the reflected overpressure

in the open space, only considering the interaction with the ground, i.e in

a system where there is any protection between the source of the explosion

and the target. There are also models that consider the interaction of the

reflected waves with rigid barriers (Army, 1990). Using these models, we

are able to evaluate the peak overpressure and compare it with the case of

absence of protection. Conversely the analysis of the reduction of the peak

overpressure, in case of porous or permeable protective barriers, can not be

performed on the bases of existing model.

In this chapter we describe the experimental tests carried out in mine at

the University of Naples Federico II. We define the blast configuration and

check the experimental data. Therefore we develop a numerical model act

120
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to simulate the experimental test. Finally we compare the numerical results

with the experimental data. In particular we evaluate the reduction of the

overpressure due to the presence of the barrier.

5.1 Set up of the experimental tests

5.1.1 Geometry of the porous barrier of the SAS project

used for the experimental tests

The barrier used for the experimental test in mine is formed by an unique

modulus of 2m obtained from the fencing used for the SAS project. This

barrier consists in a series of tubular elements in GFRP stuck in precast

reinforced concrete modulus.

Figure 5.1: Presentation of the configuration of blast test performed in mine

Each concrete modulus is stuck to the ground trough reinforced con-

crete micro-pipes made, then all of them are assembled each other with

joints. This particular assembly system allows to have a compact barrier

and easy to build. On each concrete modulus an unique tubular element of
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Figure 5.2: Dimensions of one concrete modulus of the SAS project

GFRP is installed . The precast modulus, composed of concrete basement

and bars reinforced with glass fiber, always respecting the requirements of

radio-transparency and ensuring an higher durability with respect to steel,

is conceived with very small dimension in order to confer to the structure an

high versatility.

A schematic representation of the dimensions of a single concrete mod-

ulus is shown in the figure 5.2; in figure 5.3 is represented the expected

reinforcement scheme.

The external diameter of the vertical elements, in composite, is 85mm,

and the established step between two elements is 150mm, while the distance

between the axis of two adjacent cylindrical elements is 65mm.

The mechanical properties of the concrete and the GFRP bars are sum-

marized in the table 5.1.1 (Asprone et al., 2009)
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Figure 5.3: Schematic representation of the reinforcement of a concrete modulus used

in the barrier of the SAS project

Property GFRP Concrete

Elastic Modulus (MPa) 40789 24607

Shear Modulus (MPa) 16316 9843

Tensile Strength (MPa) 648 3

Compressive Strength 648 30

Table 5.1: Mechanical properties of the material that compose the barrier

5.1.2 Blast configurations

The experimental tests have been performed in a mine in the province of

Naples. The schematic representation of the test configuration is shown in

figure 5.4. In the blast test a constant weight of the charge (W = 5Kg), and

fixed values of height of the barrier (Hb = 3m), height of the charge from the

ground (Hc = 1.5m), height of the pressure gauges from the ground (Ht =
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1.5m) and distance of the target behind the porous barrier (Dt = 4m) have

been considered, while the distance between the explosive and the barrier

(De) is different in the different tests.

Figure 5.4: Schematic representation of the configuration using during the tests

In the first case the explosive was placed at the distance of De = 5m

from the barrier , in the second test the explosive was placed at the distance

of De = 3m from the barrier and finally in the last case the explosive was

placed at the distance of

De = 0.5m

from the barrier. The schematic representation of the three blast configura-

tions performed are shown in figure 5.5, 5.6 ,5.7.

As we notice from the schemes, in the first and the second blast other

pressure gauges (S2,S3,S4) are placed immediately before the barrier, while

in the third test this is not possible, because of the low distance between

the position of the explosive and the barrier. For this reason the pressure

gauges (S2 ,S3 ,S4 ) are placed immediately behind the barrier at a distance

of 1m . Finally it is possible to notice that in all the three cases also contact

pressure gauges close to the barrier (T1 ,T2 ,T3 ) are placed, that allowed
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Figure 5.5: First test
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Figure 5.6: Second test
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Figure 5.7: Third test

us to evaluate the peaks of reflected overpressure after the contact with the

barrier.
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5.2 Behaviour of a porous barrier with the in-

teraction with a shock wave

In this section we study the effect of the porosity of a barrier with the inter-

action of a shock-wave. The model proposed by Hadassah and Doyle (2007)

take the assumption that the barrier is perfectly rigid and standing and shows

the basics physics of the development of the field flow. The model consist in

a sequence of cylindrical pole. The distance W/D indicates the real measure

of the porosity of the barrier, where W is the middle point of the cylinder

and D the point at the upper surface of the domain. The values taken in

exam are for W/D equal to 0.75 , 1 and 2 , to simulate the interaction of

more or less porous barriers .

We use the Shlieren pictures (Hadassah and Doyle, 2007) to understand

the motion of the pressure wave.

Figure 5.8 shows some instants of the diffraction of the shock-wave on

a cylinder. The initial impact of the shock wave with the cylinder causes

a normal reflection (figure 5.8 (b)). The point generated from the impact,

continues to move on the surface of the cylinder until the angle of the wedge

between the principal shock wave and the reflected shock-wave becomes too

small and a triple point is created. (figure 5.8 (c,d)).

The reflected shock wave propagates on the surface of the cylinder un-

til an impact between the two branches occurs ( figure 5.9 (a,b)). After

the branches of Mach impacted beyond the pole, the complexity of the flow

increases rapidly, because once this initial system of reflected wave is gener-

ated, they continue to hurts each other and multiplies along the length of the

domain, and thus is difficult to follow their trend and shape. In figure 5.9

(c), the shock arcs overtake the incident pressure wave, so the reflected waves
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Figure 5.8: Interaction of the wave with the poles t=-0.068 t=-0.032

move quickly than the incidents. Actually none of these reflected waves over-

take the frontal part of the shock-wave because once reached the incident

wave, are incorporated by it (figure 5.9 (c,d)). When the reflected waves

intersect each other beyond the cylinder (figure 5.9 (c)), the new shock front

is accelerated. The wave front that is initially curved, after the passage be-

tween the barrier, is linearized. This phenomenon is more evident when the

porosity is low, because the number of reflection per unit time increases, and

thus the interaction between the curved wave and the wave front occurs later.

It is possible to say that the cylindrical barrier acts like a convergent canal,

accelerating the inflow of the Mach waves as it passes between the pore.

The sudden pressure increment trough this normal reflection causes the

separation of the boundary layer, generating vortices beyond the cylinder

(figure 5.10 (e,f)). The porosity takes an important role for the creation
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Figure 5.9: Interaction of the wave with the poles t=0.150 t=0.350

and the shape of such vortices. It is possible to notice from figure 5.10 (f)

that when the ratio W/D decreases, the region of the vortices increases and

the vortices are bigger and stronger, dragging much more fluid behind the

barrier.

Figure 5.10: Vortices formation behind the barrier
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5.3 Numerical Simulationof the SAS project bar-

rier subjected to explosions

In this section we face the numerical simulation of the interaction of the blast

wave due to the explosion of 5Kg of commercial explosive and the porous

barrier described before. We use for the simulation the ALE method and

we set up a fluid structure interaction problem, were the field of the air is

the Master and the barrier is the Slave of the interaction. In this problem

of interaction we have to define well the parts of the Slave. The interaction

is not only with the barrier but we have to take in account also the ground

reflection. Another thing to do is to distinguish between the part of the

barrier that concerns the basement and the one that belongs to the pipes,

because the first is treated as rigid and the second is treated as deformable.

Also the ground as assumption is treated as rigid. The pressure wave impacts

the barrier: a certain amount of pressure is reflected, the wave returns back

in the direction of the source of the explosion, and other amount of pressure

pass trough the barrier as described in section 5.2. The blast configuration

does not follow the experimental test because we place the charge at the

same height of the experiment, but ad a different distance. The explosive is

placed at a distance of 1.5m from the barrier. We choose it because it is the

minimum safe stand-off distance for the barrier in order to have no damages

due to the explosion (Asprone et al., 2009). Thus we have the values of

pressure when the barrier resist to blast.

5.3.1 Numerical Model

The model of the barrier provides a representation of the existing barrier in

full scale. Also in this problem we choose to set up an uniform mesh. The
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elements used are hexahedral with eight nodes per element. The elements of

the air and the explosive have to share nodes, while the mesh of the barrier,

both the pipes and the basement, and the mesh of the ground, intersect the

mesh of the air in order to let the program find the nodes were the interaction

takes part. For the construction of the mesh we follow the same steps used

for the previous problems. So first of all we model the air and then moving

or deleting some part of its we construct the mesh of the other parts. The

domain of the air is 6.5m length in x-direction, 4m large in y-direction and

4m high in z-direction. We want to give some much space over and at side of

the barrier, because we know that the modelled air influences the rightness

of the results in comparison to the experimental data, because the amount of

the compressed air that passes at the side of the barrier in the reality cannot

be checked. So we give some space to let the air surround the barrier and

reach its backside, in order to make as real as possible the simulation.

For what concerns the model of the poles of the barrier we do an ap-

proximation, due to the complex geometry of the real barrier. The barrier

consists in cave cylinder of GFRP. In the model the cylindrical shape is re-

placed using a parallelepiped shape. In order not to change the mechanical

behaviour of the barrier we set the same bending stiffness. Then we compute

an equivalent Young modulus Eeq , by calculating the moment of inertia of

the two shapes we can easily calculate the equivalent elastic modulus Eeq.

Eeq =
E · I
Ieq

(5.1)

where E is the elastic modulus of the GFRP bars, I the moment of inertia

of the cylindrical pipe, and Ieq the inertia of the barrier of the model. The

dimension and the shape of the real barrier and the modelled barrier are

shown in figure 5.11
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Figure 5.11: Shape of the real barrier and the modeled Barrier

The modelled poles have the following dimension:

• 8cm in x and y direction

• 250cm in z direction

As said before all the Lagrangian parts have to intersect the mesh of the

air, as shown in the figure 5.12.

Thus the model consists of 5 parts; 2 ALE Parts (explosive and air) and

3 Lagrangian parts (ground, basement and bars). Some picture of the model

are represented in the figures 5.13 5.14

The element formulation used for the air and the explosive is the n.11 that

refers to multi material ALE elements. Having more than one ALE part, we

have to summarize them in the card *ALE MULTI MATERIAL GROUP. In

the *CONTROL ALE section, we have to define the parameters of the mesh

smoothing and the advection of the ALE mesh. We choose to turn off the

smoothing of the ALE mesh, setting the option AFACT equal to 0. Always
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Figure 5.12: Intersections between the poles and the air

Figure 5.13: Entire model with all the 5 parts
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Figure 5.14: Entire model with only the lagrangian parts

in this section we set the pressure applied to the free surfaces of the ALE

mesh boundary equal to the atmospheric pressure. The elements formulation

used for the the barrier, both the basement and the pipes, and the elements

of the ground is the n.1 that refers to the Lagrangian Solids. The field of the

air needs the *BOUNDARY NON REFLECTING conditions, in order not

to have the reflection of the wave at the boundary of the domain.

For what concerns the material of the ALE parts, the air and the explo-

sive, they are the same that we used in the previous models, and also the

equations of state are the same. The Lagrangian parts have new material

properties and in particular we assign to the ground and the basement of

the barrier the properties of a rigid body. In order to do this we have al-

ways chosen the properties of the elastic material, but we have set a very

high Y oung modulus. For the column we have assigned the properties of
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the GFRP, but with the equivalent elastic modulus Eeq calculated in (5.1) .

Both the parts of the column and the ground are modelled using the elastic

material properties. In this kind of material properties we have only to set

the density and the Young modulus of the material. The properties of the

elastic materials are summarized in the tables 5.2 , 5.3 , 5.4 .

mid ro E pr da db

3 2.5 100.0 0.00 0.00 0.00

Table 5.2: MAT ELASTIC parameters of the basement

mid ro E pr da db

4 10.0 100.0 0.00 0.00 0.00

Table 5.3: MAT ELASTIC parameters of the ground

mid ro E pr da db

5 1.8 0.02.00 0.00 0.00 0.00

Table 5.4: MAT ELASTIC parameters of the GFRP bars

All the units are consistent (g,cm,µs,Mbar)

5.4 Results

5.4.1 Experimental test results

In this section we show the results of the experimental data achieved in

(Asprone et al., 2009), for all the three tests. We check the pressure of the
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sensors S1 and S6, shown in figure 5.5 , 5.6, 5.7, that shows the pressure

with and without the barrier. In the second test the pressure gauge S1 has

not worked well, so we have calculated the free field reflected pressure with

the Henrych formula with the amplification coefficent k (2.20).

Figure 5.15: Comparison between the pressure at the gauges S1 and S6 in the first blast

Now we can compile the table 5.5 with the reduction of pressure in per-

centage.

S1 vs S6 5 Kg at 5m 5 Kg at 3m 5 Kg at 0.5m

Reduction in % 12 % 47 % 36 %

Table 5.5: Reduction of the overpressure with the barrier in the three blast

tests
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Figure 5.16: Comparison between the pressure at the gauges S1 and S6 in the second

blast

5.4.2 Numerical results

Here we show the results of the numerical simulations. We first show some

instants of the pressure wave propagation, and then we check the history data

to evaluate the pressure behind the barrier. We model the explosive charge

at the distance of 1, 5m from the barrier, that is the minimum distance

that not cause the failure of such protection system (Asprone et al., 2009).

For this reason we are able to catch the maximum pressure reduction due

to this kind of barrier. We take in exam the pressure exactly behind the

barrier (pressure gauge S6 in figure (5.7)). To make the comparison with the

overpressure without the barrier, once again we use the Henrych formulation

(Henrych, 1979) with the amplification coefficent k (figure 2.11 (b)). We do

not evaluate this overpressure from a simulation that would be too much

computationally expensive. The pressure is evaluated at different distances
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Figure 5.17: Comparison between the pressure at the gauges S1 and S6 in the third

blast

behind the barrier, thus we can verify at what distance from the barrier we

have the higher pressure and the higher pressure reduction, having placed

the charge at 1.5m from the barrier.

In figure 5.19 we can see that the pressure wave, first overlaps the barrier

at the top side, and we can only see a little gleam of pressure passes trough

the barrier, that shows that, there is the interaction between the wave and

the poles.

In a second moment we can clearly see that the shock-wave passes trough

between the bars and joins the pressure that had passed at the top of the

barrier. It is evident also the pressure wave reflected from the barrier (figure

5.20).

Finally we see that the two waves form an unique front, and we can

also see that the reflected wave returns to the source of the explosion, and
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Figure 5.18: Contour of pressure at time=500 µs

Figure 5.19: Contour of pressure at time=4000 µs

decreases more quickly than the pressure than the pressure that passes trough

the barrier (figure 5.21).

To highlight also the pressure wave that passes at the side of the barrier

we take two instants with a top visualization. Also in this images it is clear

that first the pressure passes at the side of the barrier, and then it passes
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Figure 5.20: Contour of pressure at time=5200 µs

Figure 5.21: Contour of pressure at time=9100 µs

trough. (figures 5.22 5.23)

Due to the high computational time we can not perform the simulation

with the charge positioned at 3m from the barrier, which experimental data

are provided by the group of the University of Naples. Conversely the simu-

lation about the charge at the distance of 0.5m is not very significant because
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Figure 5.22: Contour of pressure at time=4000 µs

Figure 5.23: Contour of pressure at time=9100 µs

in that case the barrier does not resist to the blast, and other phenomena

occurs, like failure of the barrier, which are not included in the numerical

model. For all these reasons we cannot compare the data of the experiments

with the data of the simulation, but we can use them to have an idea, if

the simulation results are in good agreement with the tests data. In our
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case the values of pressure at the highest distance behind the barrier is in an

element positioned at the distance of 3m (total distance from the center of

the explosive D = 4.5m) (figure 5.29) and it is about 72KPa. The values

of pressure in the third test at sensor S6, is of the same order of magnitude

(75KPa). So probably the values of the simulation are a little bit higher

than the results of the experimental test, but in acceptable manner and the

behaviour of the blast-wave it exactly the same.

Back to the simulation results, in the table 5.6 we summarize the pressure

evaluation in different elements behind the barrier, compare this results with

the values without the barrier, and check the difference in percentage. Here

we show the procedure used to derive the overpressure in air with a charge

of 5Kg of TNT .

R =
R

3
√
W

[m/Kg1/3] (5.2)

The scaled distance R is always greater than 1 so the overpressure is

evaluated by:

∆pΦ =
0.622

R
+

4.05

R
2 +

3.288

R
3 [kp/cm2] for 1 ≤ R ≥ 10 (5.3)

α = arctg
D

Hc

(5.4)

where α is the angle of incidence, D the distance from the center of the

explosive and Hc the height of the explosive.

Then the coefficent k is evaluated with the graphic in figure (2.11 (b)).

The results of the computation of the free overpressure, the evaluated

overpressure behind the barrier by the numerical simulation, and the reduc-
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tion factor between the two pressures (with and without the barrier) are

summarized in table 5.6.

Distance α k Pressure Pressure Reduction

D without barrier with barrier factor

(m) (C◦) (KPa) (KPa) (%)

2.0 59,06 2 253,61 118,67 58,72

2.5 59,06 1,8 253,61 117,21 48,65

3.0 63,47 1,8 191,06 100,02 47,65

3.5 66,83 1,8 159,68 83,54 47,68

4.0 69,47 1,6 119,86 79,06 34,04

4.5 71,60 1,6 102,52 72,66 29,12

Table 5.6: Calculated Overpressure with ground reflecting without barrier

In figures 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, the time history graphs of the

pressure behind the barrier at the difference distance with highlighting the

reduction factor in percentage.
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Figure 5.24: Time history of pressure behind the barrier D=2m

Figure 5.25: Time history of pressure behind the barrier D=2.5m
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Figure 5.26: Time history of pressure behind the barrier D=3m

Figure 5.27: Time history of pressure behind the barrier D=3.5m
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Figure 5.28: Time history of pressure behind the barrier D=4m

Figure 5.29: Time history of pressure behind the barrier D=4.5m



Chapter 6

Conclusions

In this work of thesis the problem of the numerical simulation of the be-

haviour of deformable structures subjected to explosive load has been stud-

ied. In our specific case we analyze the effectiveness of a porous barrier in

the reduction of the pressure wave due to an explosion. The numerical model

is accompanied by the experimental tests set up in mine at the University

of Naples Federico II. The results of those tests help us to verify the right-

ness of our model. The numerical model treated in this work is inserted in

the SAS project, that has the goal of design structures that can grant pro-

tection of strategics airport buildings subjected to terrorist action, and to

preserve the incolumity of people and things at risk. Has been developed in

the "Homeland Security of the research center AMRA".

Before achieving this goals we introduce the empirical and experimental

models present in the literature, to step by step confront and validate the

performed simulations.

With the first simulation, trough the CONWEP function, we have fronted

the first approach with the simulation of explosive loads. This kind of nu-

merical model is strictly usable in specific cases, where the wave does not

148
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undergo reflections, thus the explosive have to be very near to the target.

We can derive that the stress propagation along the longitudinal axis of the

cantilever beam is influenced by the density of the mesh. From the conver-

gence analysis that we have performed we see that the best configuration in

terms of precision of results and computational time effort is the second one.

In fact, the shape of the wave is well defined, it is perfectly reflected after

one turn, and there is not decrement of intensity in going forward with time.

Also the third finest configuration respects this standard, but the computa-

tional time and the size of the model are higher, and the difference between

the results is not enough to justify the size of the model.

From the model of the free explosion in air we have simulated the de-

velopment and the propagation of a shock-wave of a cubical explosion. We

denoted that at the beginning the shape of the modelled explosive influences

the shape of the wave, but after small instants the wave takes the classi-

cal spheric shape. From this model we have highlighted some of the major

characteristics of the shock wave, like the time arrival, the peak overpressure

and the propagation velocity in the fluid. From the tables and the graphics

constructed we derive that the trend of the overpressure in function of the

scaled distance R is in good agreement with the trend evaluated with the

Henrych formulations (Henrych, 1979), and the shock front velocity always

in function of the scaled distance follows well the trend proposed by Kingery

and Bulmash (1984).

The two models with Fluid Structure Interaction helped us to understand

the behaviour of a shock-wave that impacts a structure. From the model with

the cantilever beam, the interaction is only with the beam, and we check the

stress propagation along the longitudinal axis, to compare the result with

the CONWEP function. The result shows that the the trend of the stresses
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is the same, but their shape is not very well defined, because the shape of the

shock-wave that arrives at the face of impact is altered by the propagation in

air. We also compare the velocity of the stress propagation in the beam with

the one calculated analytically , and we can observe that the two values are

in good agreement. In the model with the standalone column the interaction

occurs also with the ground, modelled as rigid. Here we have evaluated

the reflected pressure, and the pressure that reaches the back side of the

column to check the reduction of pressure. Also we check the trend of the

Von-Mises stress and we derive that in the region at the base of the column

there are the highest values of stresses. The last evaluated thing is the trend

of the displacement in the elements from top to the bottom of the column.

Obviously the higher values are registered at the top of the column, and

decrease until zero, going to the base of the column.

The last model provide the simulation of the porous barrier subjected to

the explosion at 1, 5m from it. From this model we have a visual approach

of the phenomenon of the passage of a shock-wave trough a porous barrier,

described in section 5.2 (Hadassah and Doyle, 2007). We see the pressure

that impacts the barrier; the wave first overlaps the structure at the top, and

then after the interaction with the bars, passes trough them and continues its

propagation. The wave passes also at the side of the barrier so, at a certain

point, there is the conjunction of all the fronts to form a unique contour.

We evaluate the pressure behind the barrier at different distance behind the

barrier, precisely from 0.5m to 3m and we compute the reduction between

these values and the ones calculated without the protection with the Henrych

formula and the amplification factor k (2.20) . Then calculate the reduction

factor in percentage; the higher reduction of pressure is at the point nearest

to the barrier (0, 5m), where the pressure is reduced by the presence of the
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barrier by 58%. In the farther point to the barrier the reduction factor drops

to the 29%.

At the end of this thesis work we can see that a porous barrier, that

respects the standard of radio transparency, is suitable to the protection of

medium charge, at a distance greater than 1, 5m, granted a reduction of the

overpressure in the regions behind it until 58%.
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