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Introd.
°

Displacement-based finite element formulations

@ are on the basis of most of the finite element models used in
computer analysis of structures;

@ assume the configuration variables as primary unknowns;

@ lead to approximate kinematically admissible solutions in
which stress discontinuities may occur across element
boundaries; stress ‘averaging’ procedures are required;

@ are well developed for both linear and nonlinear analyses.




Introd.
°

Equilibrium-based finite element formulations

@ are less common than the displacement-based finite element
formulations;

o lead to approximate statically admissible solutions;

@ have a special appeal for practical design engineers due to the
exact transmission of stresses across interelement boundaries,
thus avoiding the need for ‘averaging’' procedures;

@ are not well studied in the context of the geometrically
nonlinear analysis of framed structures.




Obj.

Objectives and Scope

To present, in the framework of the quasi-static linear elastic
analysis of geometrically exact framed structures modeled using
the three-dimensional Reissner-Simo beam theory:

@ Two dual energy-based variational formulations: one (Primal)
derived from the well known Principle of Stationary Total
Potential Energy, and the other (Dual) resulting from the
Principle of Stationary Total Complementary Energy;

@ An equilibrium-based (hybrid-mixed) finite element
formulation relying on a modified Principle of Complementary
Energy;

@ A duality based method in which both primal and dual
variational problems are studied in conjunction.




BVP
°

Kinematical Considerations

@ The deformed geometry of a beam is described by the
centroidal axis and the set of orientations of cross-sections;

@ Only initially straight beam configurations and initially
undistorted cross-sections are assumed;

@ The geometric shape of the cross-sections is assumed to be
arbitrary and constant along the beam;

@ The cross-sections are assumed to suffer only rigid body
motions during deformation;

@ The beam theory is valid for arbitrarily large displacements
and rotations - Geometrically Exact Beam Theory.




BVP
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Kinematical Considerations (Cont.)

@ The deformed configuration of a beam is described by the
position of the line of centroids of the cross-sections and also
the rotations of the cross-sections:

@ The rotations of the cross-sections are described using the
Euler-Rodrigues formula, which is assumed to be
parameterized through the total rotation vector as follows:

sin 6 1 —cosf

_ 2
Q=1+ 6@+ 2 C]

where ® = Skew(0) and 6 = ||0]]




Reissner-Simo Beam BVP (Material Form)

o Differential Equations
Equilibium  { 77(d)o" +q=0, in Q
Elasticity { o = %’ in Q
Compatibility { " =¢€"(d), in Q

@ Neumann Boundary Conditions: nHo" =q, on Iy

o Dirichlet Boundary Conditions: d =d, on I'p

Remark: If the strain energy W(e") is differentiable and convex,
by means of the Legendre transformation, the constitutive relations
can be alternatively established using the format

_ OW(a")
 Qor

r

€ , in Q




Primal Prob.

Principle of Stationary Total Potential Energy

@ Let Uy and Vi be the kinematically admissible function spaces
U={deH(Q)|d=donTp}
Vi = {6d € H}(Q)| 6d =0 on Tp}

@ The total potential energy associated with vector d is the
one-field functional My(d) : Ux(Q2) — R given by

Mo(d) = [ (W(e'(e) ~a- ) o5~ [a-dlr,

@ Principle of Stationary Total Potential Energy (PSTPE):
vector d € Uy is a solution of the BVP iff 41, = 0 Vdod € Vy,
i.e., a beam is in equilibrium iff its total potential energy takes -
a stationary value for all kinematically admissible displacement|
fields.




Multi-Field Princ.

Hybrid-Multi-Field Variational Principles

@ The PSTPE can be generalized by means of the Lagrangian
multiplier method leading to a Generalized Variational
Principle (GVP);

@ The GVP can afterwards be particularized into different
Hybrid-Multi-Field Principles, e.g.:
@ Principles of Hu-Washizu;
@ Principles of Hellinger-Reissner;

@ Principle of Total Complementary Energy, etc.




Dual Prob.
°

Principle of Stationary Total Complementary Energy

@ Let Us and Vs be the statically admissible function spaces

Us = {(o",d) e (H{(Q)xH(Q))| TZ(d)o"+q = 0in Q and
nHo" —q=0on Iy}

Vs = {(60",d) € HY(Q) x H}(Q)| TZ(d)de" = 0 in Q and
nHéo" =0 on Iy}

@ The complementary energy associated with (o, d) is the
2-field functional M. : Us(2) — R given by

L
MNe(o”,d) = /O [We(o")—o"€"(d)+0"- T/ (d)d] dS—[nHo"-d]r,

@ Principle of Stationary Total Complementary Energy
(PSTCE): the pair (o",d) € Us is a solution of the BVP iff
MNe=0V(de",d) € Vs.




Dual Prob.
°

Hybrid-Mixed Complementary Energy

@ If the equilibrium equations are assumed to be relaxed within
the framework of the PSTCE, the following hybrid-mixed
complementary energy M€ : x(2) — R can be obtained

B

Mé(o’,d,d") = o [We(oh) — oh - €b(db) + ap - db] dS2p
b=1"?>b

+[@-d"Iryur,, +[Ho" - (d—Ind")]r,or,, + [1He" - (d—Jpd)]r,,

@ Jy and Jp represent transformation matrices mapping global
vectors (matrices) onto local element vectors (matrices)
defined on 'y U Ty and Tp, respectively;

@ The functions in class x(£2) consist of pairs
(o), dp) € HO(Qp) x HY(Qp), with 1 < b < B, and a
real-valued vector d" defined on [y U .




Dual Prob.
°

Hybrid-Mixed Complementary Variational Principle

@ The variational (weak) problem
oMg =0, Y(do",dd,dd") € x(Q) is formally equivalent to the
following system of Euler-Lagrange equations

T/ (dp)o} +q, =0in Q,
ep(op) —ep(dp) =0in Qp

G- ndfHo" =0in Ty Uy

d—Jyd" =0in Ty Uy
d—Jpd=0onTp

with 1 < b < B.




Dual FEF
°

Approximations

@ Element variables:

n’ dh — u,~+(uj—u,~)%
m o (m )3 | 4T 6

~lt

o Nodal variables: d" (generalized displacements)

Remarks:

@ As the approximate displacements are one degree greater than the approximate
rotations, this formulation is capable of representing zero shear solutions and is,
thus, completely free from shear locking;

@ Using these approximations, the formulation can provide solutions that satisfy
the equilibrium differential equations in strong form, as well as the stress
continuity conditions (when assuming zero distributed loads);

@ Furthermore, the necessary and sufficient condition for solvability of the discrete
linearized system of equations is fulfilled either for a single element or a patch of|
elements with appropriate boundary conditions (nyr > ny — ny).




Dual FEF
°

Linearized Global System of Equations

@ The linearized global system of equations can be stated as

r(p) + T(p)Ap=0,

P, F AT]
= s T =
P [ Pa ] [A Ke
Keg = AFIAT — K,

(for the classification of the stability of the equilibrium)

2
o°né

° F =g oo

- flexibility matrix
o°n¢ I AT o .
s A= apdTp - equilibrium matrix; A" - compatibility matrix

o K. = 8p ap - stiffness matrix




Dual Anal.

Fully Linear Case (FLC) vs Geom. Nonlinear Case (GNC)

FLC GNC
Mp(d) is convex Mp(d) is nonconvex
Mc(o") is concave (o', d) is a saddle functional
>
€ > (€x,€s) € ek, €s)*

* Extremum conditions of M, and [, are required (Nobel and
Sewell 1972, Gao and Strang 1989)

0= |ﬁpfﬁc|, €x = |ﬁpf ﬂp|, €s = |ﬂc fﬁc|

° ﬁp = infacyy, Mp(d), Me = supyrey, Ne(o”)
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Problem Definition

p P=25x10"

- E=1x10*
vr=20.2
a=2
L=1

h h=0.01

b1 ix b = 0.005
.
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Deformed Configurations
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Cantilever beam subject to an end force

Diagrams of moments for P = 2.5 x 10~ (16FE)
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Lee Frame

Problem Definition

L|P
5
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P = 50000

El = 1.44 x 107
EA = 4.32 x 107
GA' = 1.66 x 107
L =120
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Lee Frame

Deformed Configurations (5FE per leg)
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Lee Frame

Diagrams of moments for P = 10000 (5FE per leg)
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Problem Definition

1%
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N 15
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Deformed Configurations

Lateral Torsion Buckling
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Equilibrium Paths
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Displacement in the Z direction at the tip of the cantilever
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Problem Definition

M =700
E =71240
v =0.31
0=1

L =240
h1 =30

hy, =0.6
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Equilibrium Paths
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Energies (3FE per leg)
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Problem Definition

T = 270
E = 71240
Y v =031
JA X 4 B T L =240
N L s = A=1

11=12=0.0833
J=2.16
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Equilibrium Paths
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Clos.
]

Conclusions

@ The present hybrid-mixed FE formulation, established within
the framework of the geometrically exact (Reissner-Simo)
analysis of 3D framed structures, is:

@ variationally consistent;

o completely free from shear locking;

@ capable of producing statically admissible approximate
solutions;

@ The present duality based method opens a new way on a
posteriori error estimation and on possible bounding aspects
within the framework of geometrically nonlinear analysis of
framed structures.




Clos.
@0

Future Developments

@ Consider higher-order polynomial sets of approximate
functions within the dual FE formulation (p-type refinement
schemes);

@ Consider initially curved beam elements within the framework
of the dual formulation:

@ Incorporate general cross-sectional in-plane changes and
out-of-plane warping phenomena within the framework of the
dual formulation;

@ Include physical nonlinearities within the framework of the
dual formulation;
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Future Developments (Cont.)

@ Extend the dual formulation to shells and membranes;

@ Derive (hybrid-) mixed FE formulations from other (hybrid-)
multi-field variational principles;

@ Investigate, from a mathematical point of view, the numerical
stability of the present dual FE formulation;

@ Investigate alternative error estimation methods which can
provide guaranteed upper bounds of the exact error of the
approximate solutions (considering both global and local
quantities of interest).
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