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Introduction

Displacement-based finite element formulations

are on the basis of most of the finite element models used in
computer analysis of structures;

assume the configuration variables as primary unknowns;

lead to approximate kinematically admissible solutions in
which stress discontinuities may occur across element

boundaries; stress ‘averaging’ procedures are required;

are well developed for both linear and nonlinear analyses.
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Introduction (Cont.)

Equilibrium-based finite element formulations

are less common than the displacement-based finite element
formulations;

lead to approximate statically admissible solutions;

have a special appeal for practical design engineers due to the
exact transmission of stresses across interelement boundaries,
thus avoiding the need for ‘averaging’ procedures;

are not well studied in the context of the geometrically
nonlinear analysis of framed structures.
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Objectives and Scope

To present, in the framework of the quasi-static linear elastic
analysis of geometrically exact framed structures modeled using
the three-dimensional Reissner-Simo beam theory:

Two dual energy-based variational formulations: one (Primal)
derived from the well known Principle of Stationary Total
Potential Energy, and the other (Dual) resulting from the
Principle of Stationary Total Complementary Energy;

An equilibrium-based (hybrid-mixed) finite element
formulation relying on a modified Principle of Complementary
Energy;

A duality based method in which both primal and dual
variational problems are studied in conjunction.
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3D Reissner-Simo Beam Theory

Kinematical Considerations

The deformed geometry of a beam is described by the
centroidal axis and the set of orientations of cross-sections;

Only initially straight beam configurations and initially
undistorted cross-sections are assumed;

The geometric shape of the cross-sections is assumed to be
arbitrary and constant along the beam;

The cross-sections are assumed to suffer only rigid body
motions during deformation;

The beam theory is valid for arbitrarily large displacements
and rotations - Geometrically Exact Beam Theory.
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3D Reissner-Simo Beam Theory

Kinematical Considerations (Cont.)

The deformed configuration of a beam is described by the
position of the line of centroids of the cross-sections and also
the rotations of the cross-sections;

The rotations of the cross-sections are described using the
Euler-Rodrigues formula, which is assumed to be
parameterized through the total rotation vector as follows:

Q = I+
sin θ

θ
Θ+

1− cos θ

θ2
Θ2

where Θ = Skew(θ) and θ = ‖θ‖
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Boundary-Value Problem

Reissner-Simo Beam BVP (Material Form)

Differential Equations

Equilibrium
{

T r
e (d)σ

r + q = 0, in Ω

Elasticity
{

σ
r = ∂W (εr (d))

∂εr
, in Ω

Compatibility
{

ε
r = ε

r (d), in Ω

Neumann Boundary Conditions: nHσ
r = q̄, on ΓN

Dirichlet Boundary Conditions: d = d̄, on ΓD

Remark: If the strain energy W (εr ) is differentiable and convex,
by means of the Legendre transformation, the constitutive relations
can be alternatively established using the format

ε
r =

∂Wc (σ
r )

∂σr
, in Ω
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Principle of Stationary Total Potential Energy

Let Uk and Vk be the kinematically admissible function spaces

Uk = {d ∈ H1(Ω)| d = d̄ on ΓD}

Vk = {δd ∈ H1(Ω)| δd = 0 on ΓD}

The total potential energy associated with vector d is the
one-field functional Πp(d) : Uk(Ω) → R given by

Πp(d) =

∫

Ω
[W (εr (d))− q · d] dS − [q̄ · d]ΓN

Principle of Stationary Total Potential Energy (PSTPE):
vector d ∈ Uk is a solution of the BVP iff δΠp = 0 ∀δd ∈ Vk ,
i.e., a beam is in equilibrium iff its total potential energy takes
a stationary value for all kinematically admissible displacement
fields.
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Hybrid-Multi-Field Variational Principles

The PSTPE can be generalized by means of the Lagrangian
multiplier method leading to a Generalized Variational
Principle (GVP);

The GVP can afterwards be particularized into different
Hybrid-Multi-Field Principles, e.g.:

Principles of Hu-Washizu;

Principles of Hellinger-Reissner;

Principle of Total Complementary Energy, etc.
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Dual Variational Problem

Principle of Stationary Total Complementary Energy

Let Us and Vs be the statically admissible function spaces

Us = {(σr ,d) ∈ (H1(Ω)×H1(Ω))| T r
e (d)σ

r+q = 0 in Ω and

nHσ
r − q̄ = 0 on ΓN}

Vs = {(δσr ,d) ∈ H1(Ω)×H1(Ω)| T r
e (d)δσ

r = 0 in Ω and

nHδσr = 0 on ΓN}

The complementary energy associated with (σr ,d) is the
2-field functional Πc : Us(Ω) → R given by

Πc(σ
r ,d) =

∫ L

0
[Wc (σ

r )−σ
r ·εr (d)+σ

r ·T r
c (d)d] dS−[nHσ

r ·d̄]ΓD

Principle of Stationary Total Complementary Energy
(PSTCE): the pair (σr ,d) ∈ Us is a solution of the BVP iff
δΠc = 0 ∀(δσr ,d) ∈ Vs .
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Dual Variational Problem

Hybrid-Mixed Complementary Energy

If the equilibrium equations are assumed to be relaxed within
the framework of the PSTCE, the following hybrid-mixed
complementary energy Πg

c : χ(Ω) → R can be obtained

Πg
c (σ

r ,d,dΓ) =

B
∑

b=1

∫

Ωb

[Wc(σ
r
b)− σ

r
b · ε

r
b(db) + qb · db] dΩb

+[q̄·dΓ]ΓN∪Γint +[nHσ
r ·(d−JNd

Γ)]ΓN∪Γint +[nHσ
r ·(d−JD d̄)]ΓD

JN and JD represent transformation matrices mapping global
vectors (matrices) onto local element vectors (matrices)
defined on ΓN ∪ Γint and ΓD , respectively;

The functions in class χ(Ω) consist of pairs
(σr

b,db) ∈ H0(Ωb)×H1(Ωb), with 1 ≤ b ≤ B , and a
real-valued vector dΓ defined on ΓN ∪ Γint .
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Dual Variational Problem

Hybrid-Mixed Complementary Variational Principle

The variational (weak) problem
δΠg

c = 0, ∀(δσr , δd, δdΓ) ∈ χ(Ω) is formally equivalent to the
following system of Euler-Lagrange equations

T r
e (db)σ

r
b + qb = 0 in Ωb

ε
r
b(σ

r
b)− ε

r
b(db) = 0 in Ωb

q̄− nJTNHσ
r = 0 in ΓN ∪ Γint

d− JNd
Γ = 0 in ΓN ∪ Γint

d− JD d̄ = 0 on ΓD

with 1 ≤ b ≤ B .
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Equilibrium-Based Finite Element Formulation

Approximations

Element variables:

σ
rh =

[

nr

mr
i + (mr

j −mr
i )

S
L

]

, dh =

[

ui + (uj − ui )
S
L

θ

]

Nodal variables: dΓ (generalized displacements)

Remarks:
As the approximate displacements are one degree greater than the approximate
rotations, this formulation is capable of representing zero shear solutions and is,
thus, completely free from shear locking;

Using these approximations, the formulation can provide solutions that satisfy
the equilibrium differential equations in strong form, as well as the stress
continuity conditions (when assuming zero distributed loads);

Furthermore, the necessary and sufficient condition for solvability of the discrete
linearized system of equations is fulfilled either for a single element or a patch of
elements with appropriate boundary conditions (nσr ≥ nd − nr ).
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Equilibrium-Based Finite Element Formulation

Linearized Global System of Equations

The linearized global system of equations can be stated as

r(p) + T(p)∆p = 0 ,

p =

[

pσr

pd

]

, T =

[

F AT

A Kc

]

Keq = AF−1AT −Kc

(for the classification of the stability of the equilibrium)

F =
∂
2Πg

c

∂p
σ
r ∂p

σ
r
- flexibility matrix

A =
∂
2Πg

c

∂pd∂pσr
- equilibrium matrix; AT - compatibility matrix

Kc =
∂
2Πg

c

∂pd∂pd
- stiffness matrix
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Fully Linear Case (FLC) vs Geom. Nonlinear Case (GNC)

FLC GNC

Πp(d) is convex Πp(d) is nonconvex
Πc (σ

r ) is concave Πc(σ
r ,d) is a saddle functional

ǫ ≥ (ǫk , ǫs) ǫ
≥
<

?(ǫk , ǫs)*

* Extremum conditions of Πp and Πc are required (Nobel and
Sewell 1972, Gao and Strang 1989)

ǫ =
∣

∣Πp − Πc

∣

∣, ǫk =
∣

∣Πp − Πp

∣

∣, ǫs =
∣

∣Πc − Πc

∣

∣

Πp = infd∈Uk
Πp(d), Πc = sup

σ
r∈Us

Πc(σ
r )
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Cantilever beam subject to an end force

Problem Definition

P

x

P = 2.5× 10−5

E = 1× 104

ν = 0.2

α = 5
6

L = 1

h = 0.01

b = 0.005

h

b
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Cantilever beam subject to an end force

Deformed Configurations
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Dual 8FE

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8



Outline Introd. Obj. BVP Primal Prob. Multi-Field Princ. Dual Prob. Dual FEF Dual Anal. Num. Appl. Clos.

Cantilever beam subject to an end force

Diagrams of moments for P = 2.5× 10−5 (16FE)
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Cantilever beam subject to an end force

Energies
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Lee Frame

Problem Definition

P

L

L

L
5

P = 50000

EA = 4.32× 107

GA′ = 1.66× 107

EI = 1.44× 107

L = 120
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Lee Frame

Deformed Configurations (5FE per leg)

Primal

Dual

P = 5000

P = 10000

P = 15000

P = 20000
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Lee Frame

Diagrams of moments for P = 10000 (5FE per leg)
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Lee Frame

Energies for P = 15000
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Right-Angle Cantilever Frame

Problem Definition

1

1

3

3

α = 5
6

P

L

L
X

Y

P = 2

E = 71240

ν = 0.31

h1 = 30

h2 = 0.6

L = 240
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Right-Angle Cantilever Frame

Deformed Configurations

Lateral Torsion Buckling
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Right-Angle Cantilever Frame

Equilibrium Paths

 

 

P

Displacement in the Z direction at the tip of the cantilever
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Right-Angle Simply-Supported Frame under End Moments

Problem Definition

1

1 3

3

MM

LL

X

Y

M = 700

E = 71240

ν = 0.31

α = 5
6

h1 = 30

h2 = 0.6

L = 240
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Right-Angle Simply-Supported Frame under End Moments

Equilibrium Paths

 

 

M
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Right-Angle Simply-Supported Frame under End Moments

Energies (3FE per leg)
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Cable Hockling

Problem Definition

A B T

L

X

Y

1

3

T = 270
E = 71240

ν = 0.31

A = 1

I1 = I2 = 0.0833

J = 2.16

L = 240
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Cable Hockling

Equilibrium Paths

 

 

T

Rotation in the X direction at point B of the cable
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Cable Hockling

Energies for T = 210
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Closure

Conclusions

The present hybrid-mixed FE formulation, established within
the framework of the geometrically exact (Reissner-Simo)
analysis of 3D framed structures, is:

variationally consistent;
completely free from shear locking;
capable of producing statically admissible approximate
solutions;

The present duality based method opens a new way on a
posteriori error estimation and on possible bounding aspects
within the framework of geometrically nonlinear analysis of
framed structures.
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Closure

Future Developments

Consider higher-order polynomial sets of approximate
functions within the dual FE formulation (p-type refinement
schemes);

Consider initially curved beam elements within the framework
of the dual formulation;

Incorporate general cross-sectional in-plane changes and
out-of-plane warping phenomena within the framework of the
dual formulation;

Include physical nonlinearities within the framework of the
dual formulation;
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Closure

Future Developments (Cont.)

Extend the dual formulation to shells and membranes;

Derive (hybrid-) mixed FE formulations from other (hybrid-)
multi-field variational principles;

Investigate, from a mathematical point of view, the numerical
stability of the present dual FE formulation;

Investigate alternative error estimation methods which can
provide guaranteed upper bounds of the exact error of the
approximate solutions (considering both global and local
quantities of interest).
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