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Abstract

ABSTRACT

The concept of Isogeometric Analysis recently introduced by Hughes et al. (2004) is for the first
time applied to the study of structural vibrations.
In this framework, the good behaviour of the method is verified and compared with some classical
finite element results. Numerical experiments are shown for structural one-, two- and three-
dimensional problems in order to test the performances of this promising technique in the field
of the analysis of natural frequencies and modes.

Keywords: NURBS, isogeometric analysis, structural vibrations, discrete spectrum, finite ele-
ment analysis, rotation-free bending elements, weak boundary conditions
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Chapter 1. Introduction

1. INTRODUCTION

The Isogeometric Analysis concept has been recently introduced by Hughes et al. (2004) in

the framework of structural and fluids analysis; for the first time, in this work I investigate the

possibilities of this new method when applied to structural vibrations.

The Isogeometric Analysis consists in an isoparametric analysis approach where basis functions

generated from Non-Uniform Rational B-Splines (commonly referred to as NURBS) are em-

ployed in order to describe both the geometry and the unknown variables of the problem. Its

name (“isogeometric”) is due to the fact that the use of NURBS leads to an exact geometric

description of the domain, while in standard finite element analysis it is necessary to approxi-

mate it by means of a mesh. Note that with “exact” I mean “as exact as CAD modeling can

be”, because NURBS are the standard functions for describing and modeling objects in CAD.

A very interesting example is that, by employing NURBS, every kind of conic section can be

constructed exactly (see Piegl and Tiller (1997) and Rogers (2001)).

The fact that even the coarsest mesh retains exact geometry makes possible a direct refinement,

without going back to the CAD model from which the mesh has been generated; finite element

analysis, instead, needs to interact with the CAD system at every refinement step, except that

for very simple geometries.

Moreover, besides the equivalents of classical finite element h- and p-refinements, another higher-

continuity refinement strategy, named k-refinement, is possible.

Among the many advantages arising from this NURBS-based approach and highlighted in

Hughes et al. (2004), some properties as the high-order continuity of the bases and the mass

matrix point-wise positivity seem to be very suitable and promising for frequency analysis.

So my goal is to investigate the behaviour of this new approach in the context of the structural

1



Chapter 1. Introduction

eigenvalue problems.

I want to stress here that, in general, also Isogeometric Analysis approaches not based on Non-

Uniform Rational B-Splines can be constructed. However, as NURBS are the most widespread

used functions in CAD technology, in this work we only consider NURBS-based Isogeometric

Analysis.

2



Chapter 2. Organization of the Work

2. ORGANIZATION OF THE WORK

The present work is organized in five main Chapters.

The first one consists of a brief introduction to NURBS and Isogeometric Analysis.

In the second one the basic equations of structural vibration theory are summarized.

The third main Chapter refers to 1D problems: the numerical spectra of rod and beam elements

obtained using the new method are studied.

Analogously, in the fourth one 2D problems (membrane and plate elements) are studied.

In the last Chapter, finally, some numerical experiments on a circular thin plate, studied by

means of 3D solid elements, are presented.

3



Chapter 3. NURBS and Isogeometric Analysis

3. NURBS AND ISOGEOMETRIC ANALYSIS

Non-Uniform Rational B-Splines (NURBS) are the standard for describing and modeling curves

and surfaces in computer aided design (CAD) and computer graphics. So these functions are

widely described in CAD and computer graphics literature (refer for instance to Piegl and

Tiller (1997) and to Rogers (2001)) and the aim of this Section is not giving an analytical and

algorithmic description of them; here I just want to introduce them briefly and to present the

guidelines of Isogeometric Analysis, for which an extensive account has been given by Hughes

et al. (2004).

3.1 B-SPLINES

B-Splines are piece-wise polynomial curves whose components are defined as the linear combina-

tion of B-Spline basis functions and the components of some points in the space, referred to as

control points. Fixed the order of the B-Spline (i.e. the degree of polynomials), in order to con-

struct the basis functions we have to introduce the so-called knot vector, which is a fundamental

ingredient for this operation.

3.1.1 Knot Vectors

A knot vector Ξ is a set of non-decreasing real numbers representing a set of coordinate in the

parametric space of the curve:

Ξ = [ξ1, ..., ξn+p+1],

4



Chapter 3. NURBS and Isogeometric Analysis

where p is the order of the B-Spline and n is the number of basis functions (and control points)

necessary to describe it.

A knot vector is said to be uniform if its knots are equally spaced and non-uniform otherwise.

Moreover, a knot vector is said to be open if its first and last knots are repeated p + 1 times.

In the following we always deal with open knot vectors. An important property of theirs is that

basis functions formed from open knot vectors are interpolatory at the ends of the parametric

space interval [ξ1, ξn+p+1], but not, in general, in correspondence of interior knots.

3.1.2 Basis Functions

Given a knot vector Ξ, B-Spline basis functions are defined recursively starting with p = 0

(piece-wise constant basis functions) as:

Ni,0(ξ) =

{

1 if ξi ≤ ξ < ξi+1

0 otherwise,
(3.1)

and for p ≥ 1 as:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (3.2)

In Figure 3.1 we report as an example the n = 9 cubic basis functions generated from the open

knot vector Ξ = [0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1].

An important property of these functions is that they are Cp−1-continuous, if internal knots

are not repeated. If a knot has multiplicity k, the function is Cp−k-continuous in correspon-

dence of that knot. In particular, when a knot has multiplicity p, the basis function is C0 and

interpolatory at that location.

Other remarkable properties are:

- B-Spline basis functions from an open knot vector constitute a partition of unity:
∑n

i=1 Ni,p(ξ) =

1 ∀ξ.

- The support of each Ni,p is compact and contained in the interval [ξi, ξi+p+1].

- B-Spline basis functions are non-negative: Ni,p ≥ 0 ∀ξ.

5
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Figure 3.1: Cubic basis functions from an open knot vector.

3.1.3 B-Spline Curves

We have seen that, given the order of the desired B-Spline and a knot vector, it is possible to

construct n basis functions. Now, given a set of n points in R
d, referred to as control points, we

can obtain the components of the piece-wise polynomial B-Spline curve C(ξ) of order p by taking

the linear combination of the basis functions weighted by the components of control points, so:

C(ξ) =

n
∑

i=1

Ni,p(ξ)Bi, (3.3)

where Bi is the ith control point.

The piece-wise linear interpolation of the control points is called control polygon.

In Figure 3.2 we report, together with its control polygon, a cubic 2D B-Spline curve generated

with the basis functions shown in Figure 3.1.

We remark that a B-Spline curve has continuous derivatives of order p−1, which can be decreased

by k if a knot or a control point has multiplicity k + 1.

A very important property of these curves is the so-called affine covariance, which consists in

the fact that an affine transformation of the curve is obtained by applying the transformation

to its control points.

6
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Figure 3.2: Piece-wise cubic B-Spline curve (solid line) and its control polygon (dotted).

3.1.4 B-Spline Surfaces

By means of tensor products, B-Spline surfaces can be constructed starting from a net of n×m

control points Bi,j (control net) and knot vectors:

Ξ = [ξ1, ..., ξn+p+1] and H = [η1, ..., ηm+q+1].

Defined from the two knot vectors the 1D basis functions Ni,p and Mj,q (with i = 1, ..., n and

j = 1, ...,m) of order p and q respectively, the B-Spline surface is then constructed as:

S(ξ, η) =

n
∑

i=1

m
∑

j=1

Ni,p(ξ)Mj,q(η)Bi,j . (3.4)

3.1.5 B-Spline Solids

By means of tensor products, also B-Spline solids can be constructed. Given an n×m× l control

net and three knot vectors:

Ξ = [ξ1, ..., ξn+p+1], H = [η1, ..., ηm+q+1] and Z = [ζ1, ..., ζl+r+1],

from which the 1D basis functions Ni,p, Mj,q and Lk,r (with i = 1, ..., n, j = 1, ...,m and

k = 1, ..., l) of order p, q and r respectively are defined, the B-Spline solid is then:

S(ξ, η, ζ) =

n
∑

i=1

m
∑

j=1

l
∑

k=1

Ni,p(ξ)Mj,q(η)Lk,l(ζ)Bi,j,k. (3.5)

7
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3.2 NON-UNIFORM RATIONAL B-SPLINES

A rational B-Spline in R
d is the projection of a non-rational (polynomial) B-Spline defined in

(d + 1)-dimensional homogeneous coordinate space back into d-dimensional physical space (for

a complete discussion of these space projections see Rogers (2001) and the references therein).

In this way a great variety of geometric entities can be constructed and in particular conic

sections can be obtained exactly.

The projective transformation of a B-Spline curve yields a rational polynomial and this is the

reason for the name “rational” B-Splines.

To obtain a NURBS curve in R
d, we have to start from a set Bw

i (i = 1, ..., n) of control points

(“projective points”) for a B-Spline curve in R
d+1 with knot vector Ξ. Then the control points

for the NURBS curve are:

(Bi)j =
(Bw

i )j

(Bw
i )d+1

, j = 1, ..., d (3.6)

where (Bi)j is the jth component of the vector Bi and wi = (Bw
i )d+1 is referred to as the ith

weight.

The NURBS basis functions of order p are then defined as:

Rp
i (ξ) =

Ni,p(ξ)wi
∑n

î=1
Nî,p(ξ)wî

(3.7)

and their first and second derivatives are:

(Rp
i )

′(ξ) =
N ′

i,p(ξ)wi
∑n

î=1
N

î,p
(ξ)w

î

−
Ni,p(ξ)wi

∑n
î=1

N ′

î,p
(ξ)wî

(
∑n

î=1
N

î,p
(ξ)w

î
)2

(3.8)

and:

(Rp
i )

′′(ξ) =
N ′′

i,p(ξ)wi
∑n

î=1
Nî,p(ξ)wî

+
2Ni,p(ξ)wi(

∑n
î=1

N ′

î,p
(ξ)wî)

2

(
∑n

î=1
Nî,p(ξ)wî)

3
+

−
2N ′

i,p(ξ)wi

∑n
î=1

N ′

î,p
(ξ)wî + Ni,p(ξ)wi

∑n
î=1

N ′′

î,p
(ξ)wî

(
∑n

î=1
Nî,p(ξ)wî)

2
.

(3.9)

The NURBS curve components are the linear combination of the basis functions weighted by

the components of control points:

C(ξ) =
n

∑

i=1

Rp
i (ξ)Bi. (3.10)

8



Chapter 3. NURBS and Isogeometric Analysis

Rational surfaces and solids are defined in an analogous way in terms of the basis functions,

respectively:

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j
∑n

î=1

∑m
î=1

Nî,p(ξ)Mĵ,q(η)wî,ĵ

(3.11)

and:

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k
∑n

î=1

∑m
î=1

∑l

k̂=1
Nî,p(ξ)Mĵ,q(η)L

k̂,r
(ζ)w

î,ĵ,k̂

. (3.12)

In the following, we summarize the most remarkable properties of NURBS:

- NURBS basis functions from an open knot vector constitute a partition of unity:
∑n

i=1 Rp
i (ξ) =

1 ∀ξ.

- The continuity and supports of NURBS basis functions are the same as for B-Splines.

- NURBS possess the property of affine covariance.

- If all weights are equal, NURBS become B-Splines.

- NURBS surfaces and solids are the projective transformations of tensor product piece-wise

polynomial entities.

3.3 ISOGEOMETRIC ANALYSIS

Hughes et al. (2004) propose the concept of Isogeometric Analysis as an exact geometry alter-

native to standard finite element analysis. In the following the guidelines for such a technique

are reported:

- A mesh for a NURBS patch is defined by the product of open knot vectors. For example,

in 3D a mesh is given by Ξ × H × Z.

- Knot spans subdivide the domain into “elements”.

- The support of each basis function consists of a small number of elements.

- The control points associated with the basis functions define the geometry.

- The isoparametric concept is invoked, that is the unknown variables are represented in

terms of the basis functions which define the geometry. The coefficients of the basis

functions are the degrees-of-freedom, or control variables.

9



Chapter 3. NURBS and Isogeometric Analysis

- Three different mesh refinement strategies are possible: an analogue of classical FEM

h-refinement (by knot insertions), an analogue of classical FEM p-refinement (by degree

elevation of the basis functions, easily possible because of their recursive definition) and

finally a new possibility referred to as k-refinement (which is a sort of high-order/high-

continuity h-refinement).

- The arrays constructed from isoparametric NURBS patches can be assembled into global

arrays in the same way as finite elements (see Hughes (2000), Chapter 2). Compatibility

of NURBS patches is attained by employing the same NURBS edge and surface represen-

tations on both sides of patch interfaces. This gives rise to a standard continuous Galerkin

method and a mesh refinement necessarily propagates from patch to patch. There exists

also the possibility of employing discontinuous Galerkin methods.

- Dirichlet boundary conditions are applied to the control variables. If they are homogeneous

Dirichlet conditions, this results in exact point-wise satisfaction. If they are inhomoge-

neous, the boundary values must be approximated by functions lying within the NURBS

space and this results in a “strong” but approximate satisfaction of the boundary condi-

tions. Constraint equations can be used as a “strong” alternative. Another formulation

that can be employed is to impose Dirichlet conditions “weakly” (we will further discuss

this point later on). Neumann boundary conditions are satisfied naturally as in standard

finite element formulations (see Hughes (2000), Chapters 1 and 2).

When applied to structural analysis, which is the field of interest for the present work, it is

possible to verify (as highlighted in Hughes et al. (2004)) that isoparametric NURBS patches

represent all rigid body motion and constant strain states exactly. So structures assembled from

compatible NURBS patches pass standard “patch tests” (see Hughes (2000), Chapters 3 and 4,

for a description of patch tests).
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Chapter 4. Structural Vibrations

4. STRUCTURAL VIBRATIONS

The goal of this Section is to briefly recall the main equations for structural vibrations; for a

complete discussion on the subject refer to Hughes (2000) and to classical books of structural

dynamics such as Clough and Penzien (1993) and Chopra (2001).

4.1 NATURAL VIBRATION FREQUENCIES AND MODES

Given a multi-degree-of-freedom structural linear system, the undamped, unforced equations of

motion which govern the free vibrations of the system are:

Mü + Ku = 0 (4.1)

where M and K are, respectively, the consistent mass and the stiffness matrices of the system,

u = u(x, t) is the displacement vector and ü =
d2u

dt2
is the acceleration vector.

The free vibrations of the system in its nth natural mode can be described (by variable separation)

by:

u(x, t) = φn(x)qn(t), (4.2)

where φn is the nth natural mode vector and qn(t) is a harmonic function, depending on the nth

natural frequency ωn, of the form:

qn(t) = An cos(ωnt) + Bn sin(ωnt). (4.3)

Combining equations (4.2) and (4.3) gives:

u(x, t) = φn(x)(An cos(ωnt) + Bn sin(ωnt)) (4.4)

11
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which yields:

ü = −ω2
nu. (4.5)

Substituting equation (4.5) into the equations of motion (4.1) gives the following linear system:

(K − ω2
nM)φnqn = 0. (4.6)

Asking for nontrivial solutions of this linear system gives rise to the generalized eigenvalue

problem:

det(K − ω2
nM) = 0, (4.7)

whose solutions are the natural frequencies ωn (with n = 1, ..., N , where N is the number of

degrees-of-freedom of the system) associated to the natural modes φn. Once a natural frequency

ωn is found, it is possible to compute the corresponding natural mode by solving the following

linear system for φn:

(K − ω2
nM)φn = 0. (4.8)

I remark that the natural modes resulting from (4.8) are defined up to a multiplicative normal-

ization constant. Different standard ways of normalization have been proposed, the most used

probably being:

φT
nMφn = 1. (4.9)

In conclusion, in order to employ the concepts of Isogeometric Analysis to study structural

vibrations, the step to perform are:

1. assemble the stiffness matrix K as proposed in Hughes et al. (2004);

2. assemble the mass matrix M in an analogous way;

3. solve the eigenvalue problem (4.7).

Then, if there exists also an interest in computing the natural modes, it is necessary to solve as

many linear systems like (4.8) as the desired modes are.

12
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5. ONE-DIMENSIONAL PROBLEMS

In this Section I analyze by means of Isogeometric Analysis two types of 1D structural problems

corresponding to the solution of the generalized eigenvalue problems arising from 1D Laplace

equation (i.e. structural vibrations of a rod) and from 1D biharmonic equation (i.e. structural

vibrations of a beam).

I stress that, even if in 1D problems I do not take advantages at all of the exact geometry

capability of the formulation, the high continuity and point-wise non-negativity of the basis

functions lead anyway to very good results as shown in the following.

Moreover, I want to remark that in the following examples, due to the simplicity of the geometry,

all the weights are equal to 1 (i.e. NURBS basis functions collapse to B-Splines).

5.1 LONGITUDINAL VIBRATIONS OF AN ELASTIC ROD

To begin with, I study the problem (see Hughes (2000), Chapter 7, for details about the for-

mulation) of the natural structural vibrations of an elastic fixed-fixed rod of unit length, whose

natural frequencies and modes, assuming unit material parameters, are governed by:

u,xx + ω2u = 0 for x ∈]0, 1[

u(0) = u(1) = 0,
(5.1)

and for which the exact solution in terms of natural frequencies is:

ωn = nπ, with n = 1, 2, 3... (5.2)

After writing the weak formulation and performing the discretization, a problem of the form of

(4.7) is easily obtained.

13
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5.1.1 Numerical Experiments

As a first numerical experiment, the generalized eigenproblem (4.7) has been solved with both

FEM and Isogeometric Analysis using quadratic basis functions (note that for linear approxi-

mation both of them have exactly the same basis functions, the so called “hat functions”). The

resulting natural frequencies ωh
n are reported in Figure 5.1. They are normalized with respect

to the exact solution (5.2) and plotted versus the number of modes n, normalized with respect

to the total number of degrees-of-freedom N . To produce the spectra of Figure 5.1, I have

employed for both the formulations a number of degrees-of-freedom N = 999, in order to get

them smooth; they are anyway invariant with N .

Figure 5.1 points out the superior behaviour of NURBS basis function compared with finite

0 0.2 0.4 0.6 0.8 1
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1.1

1.15

1.2
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1.3

n/N

ω
nh /ω

n

quadratic FEM
quadratic NURBS

Figure 5.1: Rod problem: normalized discrete spectra using quadratic finite elements and
NURBS.

elements, which show a very bad second half of the discrete spectrum. This first result confirm

the effectiveness of the idea of employing this new method in structural vibration problems.

I have then performed the same eigenvalue analysis using higher order NURBS basis functions.

The resulting discrete spectra are reported in Figure 5.2; the analyses have been carried on using

N = 1000 degrees-of-freedom (i.e. 1000 control points).

Increasing the order p of the basis functions, the results show higher order of accuracy (2p,

while standard finite elements achieve p+1; see Appendix A for the computation of the order of

accuracy using quadratic and cubic NURBS) and decreasing errors. I have to remark, anyway,
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Figure 5.2: Rod problem: normalized discrete spectra using different order NURBS basis func-
tions.

that increasing p also results in the appearance of strange frequencies at the very end of the

spectrum, referred to in the following as “outlier frequencies” (in analogy with outlier values in

statistics, see for example Motulsky (1995)), whose number and error increase with p. In Figure

5.3, I highlight this behaviour by plotting the last computed frequencies for p = 2, ..., 10.

Moreover, in Figure 5.4 I show a plot of the average relative error over the whole spectrum

(

∑N
n=1(ω

h
n − ωn)/ωn

N
) versus the order p, as compared with the one obtained excluding outlier

frequencies from the average (N = 1000 control points have been employed).

Finally, Figures 5.5-5.7 show that the order of convergence for frequencies computed using

NURBS is O(h2p), as with finite elements.

5.1.2 Analytical Determination of the Discrete Spectrum

Following the derivations of Hughes (2000), Chapter 9, it is possible to compute analytically the

discrete spectra previously determined numerically.

I start from the mass and stiffness matrices for a generic interior element (notice that for interior

elements the basis functions are all the same, see Figure 3.1 as an example, and so the element
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Figure 5.3: Rod problem: last normalized frequencies for p = 2, ..., 10.

matrices). Using quadratic NURBS they are respectively:

Me =
h

120





6 13 1
13 54 13
1 13 6



 and Ke =
1

6h





2 −1 −1
−1 2 −1
−1 −1 2



 , (5.3)

with h = 1/nel = 1/(ncp − p) (being nel the number of elements, ncp the total number of control

points and p = 2 the order of the basis functions). Given Me and Ke, I can write the scalar

equation of motion for the generic interior control point A as:

h

120
(üA−2 + 26üA−1 + 66üA + 26üA+1 + üA+2)+

−
1

6h
(uA−2 + 2uA−1 − 6uA + 2uA+1 + uA+2) = 0.

(5.4)

For compactness, equation (5.4) can be rewritten as:

h2

20
αüA − βuA = 0, (5.5)

where α and β are operators working as follows:

αxi = xi−2 + 26xi−1 + 66xi + 26xi+1 + xi+2,

βxi = xi−2 + 2xi−1 − 6xi + 2xi+1 + xi+2.
(5.6)

Separating the variables as:

uA(t) = φAq(t), (5.7)
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Figure 5.4: Rod problem: average relative error over the whole spectrum (dots) and excluding
outlier frequencies (circles).

and substituting this expression into equation (5.5), after adding and subtracting
(ωhh)2

20
αui, I

obtain:

(q̈ + (ωh)2q)
h2

20
αφA − (

(ωhh)2

20
αφA + βφA)q = 0, (5.8)

whose satisfaction is achieved by selecting φA and q such that:

(
(ωhh)2

20
α + β)φA = 0 (5.9)

and:

q̈ + (ωh)2q = 0. (5.10)

Assuming a solution for equation (5.9) of the form (for fixed-fixed boundary conditions):

φA = C sin(Aωh), with ω = nπ, (5.11)

I can rewrite equation (5.9) as:

(
(ωhh)2

20
α + β) sin(Aωh) = 0. (5.12)

Now, substituting expressions (5.6) for α and β operators and using the trigonometric identity

sin(a ± b) = sin(a) cos(b) ± sin(b) cos(a), I obtain:

(ωhh)2

20
(16 + 13 cos(ωh) + cos2(ωh)) − (2 − cos(ωh) − cos2(ωh)) = 0, (5.13)
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Figure 5.5: Rod problem: order of convergence for the first three frequencies using quadratic
NURBS.

which can be solved for
ωh

ω
, giving:

ωh

ω
=

1

ωh

√

20(2 − cos(ωh) − cos2(ωh))

16 + 13 cos(ωh) + cos2(ωh)
. (5.14)

Equation (5.14) is the analytical expression for the normalized discrete spectrum for our problem,

computed using quadratic NURBS basis functions.

Analogous calculations can be carried on also for higher order approximations.

In Figure 5.8 we report the analytical and the numerical discrete spectra for quadratic and cubic

approximations; for the computation of the numerical discrete spectra, 2000 control points have

been employed. It is possible to see that the only differences are in the outlier frequencies at the

end of the discrete spectrum obtained using cubic NURBS.

The analytical expression for the discrete spectrum, obtained using cubic NURBS, is:

ωh

ω
=

1

ωh

√

42(16 − 3 cos(ωh) − 12 cos2(ωh) − cos3(ωh))

272 + 297 cos(ωh) + 60 cos2(ωh) + cos3(ωh)
, (5.15)

which has been computed with the same procedure detailed for the quadratic case.

Remark 1:

All the numerical results shown up to now have been obtained using control points computed,

starting from the knot vector, with the procedure proposed by Hughes et al. (2004) and referred
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Figure 5.6: Rod problem: order of convergence for the first three frequencies using cubic NURBS.

to as k-refinement. In this way I get a linear parametrization (i.e. constant Jacobian). As seen,

the results obtained are very good, except for the presence at the end of the discrete spectrum

of what we have called outlier frequencies, which get worse for higher order approximations.

A way to avoid this behaviour is to employ equally spaced control points (in Figure 5.9 it is

possible to see the difference between the distribution of 21 control points in the case of linear

parametrization and of equally spaced points, using cubic NURBS), even if this choice corre-

sponds to a nonlinear parametrization (see Figure 5.10 and 5.11 for a plot of the parametrization

x(ξ) and of its Jacobian J(ξ) =
dx(ξ)

dξ
for the cases of equally spaced control points and of linear

parametrization corresponding to Figure 5.9).

Finally, Figure 5.12 shows the discrete spectra computed using equally spaced control points:

they do not have outlier frequencies and perfectly coincide with the ones computed analytically

(and shown in Figure 5.8 for quadratic and cubic NURBS).

However, about this topic more research needs to be done, and it will be the object of future

investigations.

Remark 2:

In this work I deal with consistent mass theory, also because I think it to be more suitable than

lumped mass when high order approximations are involved.

Anyway, I have performed some tests using lumped mass, too. Figure 5.13 shows that the

classical lumped mass formulation, that works well with finite elements, does not work in this

19



Chapter 5. One-Dimensional Problems

0.7 0.8 0.9 1 1.1 1.2 1.3
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

log
10

(n
el

)

lo
g 10

(ω
h n/ω

n−
1)

n = 1
n = 2
n = 3

1 

8 

Figure 5.7: Rod problem: order of convergence for the first three frequencies using quartic
NURBS.

context. The order of accuracy does not increase with the order p (I have only second order

accuracy in each case; see Appendix A for its computation in the quadratic and cubic cases),

while errors increase. However, I think that a higher order of accuracy and better results may

be achieved employing some special non-uniform knot vector and quadrature scheme choices, in

a fashion similar to what is done in Fried and Malkus (1976).

Also about the topic of lumped mass techniques in the framework of Isogeometric Analysis,

extensive research still needs to be carried on.

5.2 TRANSVERSAL VIBRATIONS OF AN EULER-BERNOULLI BEAM

Another interesting 1D problem is the natural structural transversal vibrations of a simply-

supported, unit length Euler-Bernoulli beam (also about this problem refer to Hughes (2000),

Chapter 7, for details about the formulation). For this case, the natural frequencies and modes,

assuming unit material parameters, are governed by the following equations:

u,xxxx − ω2u = 0 for x ∈]0, 1[

u(0) = u(1) = 0,
(5.16)

and the exact solution, in terms of natural frequencies, is:

ωn = (nπ)2, with n = 1, 2, 3... (5.17)
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Figure 5.8: Rod problem: analytical versus numerical discrete spectrum computed using
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Figure 5.9: Distribution of control points for linear parametrization (dots) as compared with
equally spaced control points (asterisks) (cubic NURBS, 21 control points).

Also in this case, after writing the weak formulation and performing the discretization, a problem

of the form of (4.7) is obtained.

5.2.1 Numerical Experiments

The numerical experiments performed for the beam problem are analogous (and their results

are analogous, too) to the ones reported for the rod.

A remark about the formulation is in order before showing the results: while the classical beam

finite element employed to solve problem (5.16) is a 2-node cubic element with two degrees-of-

freedom per node (transversal displacement and rotation), my Isogeometric Analysis formulation

is rotation-free (see for example Engel et al. (2002)). Later in this Section I will also discuss the

problem of the imposition of boundary conditions on rotations.
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Figure 5.10: Plot of the parametrization for the cases of equally spaced control points and of
linear parametrization (cubic NURBS, 21 control points).

In Figure 5.14 I show the discrete spectra obtained using cubic classical finite element and

NURBS basis functions. It is seen that the NURBS solution behaves much better, even if also

in this case two outlier frequencies are present at the end of the spectrum (even if not clearly

evident in the Figure).

Figure 5.15 shows the discrete spectra obtained using different order NURBS basis functions.

The behaviour is similar to the one seen in the case of the rod, included outlier frequencies (see

Figure 5.16).

In Figure 5.17 I show a plot of the average relative error over the spectrum versus the order p

with the exclusion of the outlier frequencies (indeed, their values are so high to make the average

over the whole spectrum completely useless; 1000 control points have been employed).

Moreover, Figures 5.18-5.20 show that also here the order of convergence using NURBS is the

same as using finite elements, that is O(h2(p−1)).

The analytical computation of the discrete spectrum performed for the previous problem can

be carried over in the same way as before also in this case. Employing cubic NURBS shape

functions, for example, gives rise to the following expression:

ωh

ω
=

1

ωh2

√

210(2 − 3 cos(ωh) + cos3(ωh))

272 + 297 cos(ωh) + 60 cos2(ωh) + cos3(ωh)
. (5.18)

In Figure 5.21 I report the analytical and the numerical discrete spectra for cubic and quartic
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Figure 5.11: Plot of the Jacobian of the parametrization for the cases of equally spaced control
points and of linear parametrization (cubic NURBS, 21 control points).

approximations; for the computation of the numerical discrete spectra 2000 control points have

been employed. It is possible to see that also in this case the only differences are in the outlier

frequencies at the end of the numerical discrete spectra.

As already shown for the rod, this behaviour can be cured by means of a different choice in the

distribution of the control points, using, instead of a linear parametrization, a nonlinear one with

control points equally spaced. In this way, I obtain the discrete spectra of Figure 5.22, which

coincide perfectly with the analytically computed ones and do not show any outlier frequency.

5.2.2 Boundary conditions on rotations

I have already mentioned that the formulation I have employed is rotation-free, in the sense that

the only unknowns are the transversal displacements; rotations can be computed as displacement

derivatives, but are not approximated as independent variables.

A problem that may arise is that the boundary conditions for a beam frame are usually given

also on rotations. For example, if I want to study the natural frequencies of one of the simplest

structural member, the cantilever beam, I have to solve the problem (considering unit material

parameters):
u,xxxx − ω2u = 0 for x ∈]0, 1[

u(0) = u,x(0) = 0,
(5.19)
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Figure 5.12: Rod problem: normalized discrete spectra using equally spaced control points.

imposing a zero boundary condition on the rotation of the first end θ(0) = u,x(0). For this

example, I take as reference solution the one computed in Chopra (2001), that is, for our unit

material parameter choice:

ωn = β2
n,

with β1 = 1.8751, β2 = 4.6941, β3 = 7.8548, β4 = 10.996

and βn = (n − 1/2)π for n > 4.

(5.20)

In order to solve this problem, I propose here two strategies, one based on a weak boundary

condition imposition and the other on the Lagrange multiplier technique.

The former consists in using the formulation suggested in Engel et al. (2002), so that, in my

example, I end up with the following expression for the bilinear form A originating the stiffness

matrix (which includes the weak form of the boundary condition plus a stabilization term):

A(vh, uh) =

∫ 1

0
vh
,xxuh

,xxdx + vh
,xu

h
,xx|x=0 + vh

,xxu
h
,x|x=0 + τv,xu,x|x=0, (5.21)

where vh and uh are the discrete test and unknown functions, respectively, and τ is a stabiliza-

tion parameter.

In a way analogous to what is done in Prudhomme et al. (2001) in the framework of Poisson

problems, it can be shown that the choice of τ needs to be proportional to p2/h, where p is the

order of the NURBS bases employed and h = 1/nel is a mesh parameter (nel is the number of

elements used).
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Figure 5.13: Rod problem: normalized discrete spectra using different order NURBS basis
functions; lumped mass formulation.

By means of this formulation I have solved the cantilever beam problem (5.19) and the cor-

responding discrete spectra for different order NURBS are shown in Figure 5.23 (1000 control

points and a stabilization parameter τ = p2/h have been used).

Figure 5.23 shows the same behaviour seen in Figure 5.15, and also here I have to notice the

presence of some outlier frequencies at the end of the spectrum (not evident in Figure 5.23

because of scale choices), which get worse as the order of the bases increases.

The other way to deal with boundary conditions on rotations is the imposition of the constraint

through Lagrange multipliers. In this way we obtain the following bilinear form A:

A(vh, uh) =

∫ 1

0
vh
,xxu

h
,xxdx + λvh

,x|x=0, (5.22)

where λ is the Lagrange multiplier. I have also to add the equation:

µuh
,x|x=0 = 0, (5.23)

where µ is the test counterpart of λ.

Obviously this procedure have the disadvantage of introducing extra (unnecessary) variables

(the multipliers), but it does not need stabilization.

The numerical results are equivalent to the ones of the weak approach, as Figure 5.24 shows.
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Figure 5.14: Beam problem: normalized discrete spectra using cubic finite elements and NURBS.
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Figure 5.15: Beam problem: normalized discrete spectra using different order NURBS basis
functions.
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Figure 5.16: Beam problem: last normalized frequencies for p = 2, ..., 10.
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Figure 5.17: Beam problem: average relative error over the spectrum with the exclusion of
outlier frequencies.
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Figure 5.18: Beam problem: order of convergence for the first three frequencies using quadratic
NURBS.
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Figure 5.19: Beam problem: order of convergence for the first three frequencies using cubic
NURBS.
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Figure 5.20: Beam problem: order of convergence for the first three frequencies using quartic
NURBS.
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Figure 5.21: Beam problem: analytical versus numerical discrete spectrum computed using cubic
and quartic NURBS.
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Figure 5.22: Beam problem: normalized discrete spectra using equally spaced control points.
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Figure 5.23: Cantilever beam with weak constraint imposition: normalized discrete spectra using
different order NURBS basis functions.
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Figure 5.24: Cantilever beam with Lagrange multiplier: normalized discrete spectra using dif-
ferent order NURBS basis functions.
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6. TWO-DIMENSIONAL PROBLEMS

In this Section I present some numerical experiments carried on over the 2D counterparts of the

rod and the Euler-Bernoulli beam problems previously illustrated, which are respectively the

transversal vibrations of an elastic membrane and of a Kirchhoff plate.

6.1 TRANSVERSAL VIBRATIONS OF AN ELASTIC MEMBRANE

The first problem I deal with consists of the study of the transversal vibrations of a simply-

supported, square elastic membrane, whose natural frequencies and modes, assuming unit ma-

terial parameters and edge length, are governed by the Laplace problem:

∇2u(x, y) + ω2u(x, y) = 0 for (x, y) ∈ Ω =]0, 1[×]0, 1[

u(x, y)|∂Ω = 0.
(6.1)

The exact solution in terms of natural frequencies (see for example Meirovitch (1967)) is:

ωmn = π
√

m2 + n2, with m,n = 1, 2, 3... (6.2)

Also for this case, a problem of the form of (4.7) is obtained after the discretization of the weak

formulation.

The numerical results are qualitatively similar to the ones obtained in the study of 1D problems.

In Figure 6.1, I report the normalized discrete spectra obtained employing different order NURBS

basis functions and using a linear parametrization over a 40× 40 control net. Note that l is the

number of modes sorted from the lowest to the highest in frequency, while N is the total number
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of degrees-of-freedom. Moreover, in Figure 6.2 I show a zoom of the lower frequency half of

the spectra to highlight the order of accuracy of the different approximations. Also in this case

the method denotes a bad last part of the spectrum, wider than in 1D cases, but percentually

decreasing as the number of control points increases. For this problem too, this bad behaviour

can be avoided by means of an equally spaced control net as shown in Figure 6.3. Finally Figure

6.4 shows the average relative error over the spectra shown in Figure 6.3.
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Figure 6.1: Membrane problem: normalized discrete spectra using different order NURBS basis
functions (40 × 40 control points).

6.2 TRANSVERSAL VIBRATIONS OF A KIRCHHOFF PLATE

The second 2D problem studied is the analysis of the transversal vibrations of a simply-supported,

square Kirchhoff plate. Its natural frequencies and modes, assuming unit flexural rigidity, density

and edge length, are governed by the biharmonic problem:

∇4u(x, y) − ω2u(x, y) = 0 for (x, y) ∈ Ω =]0, 1[×]0, 1[

u(x, y)|∂Ω = 0,
(6.3)

for which the exact solution in terms of natural frequencies (see for example Meirovitch (1967))

is:

ωmn = π2(m2 + n2), with m,n = 1, 2, 3... (6.4)

Also this formulation gives rise to a problem of the form of (4.7).
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Figure 6.2: Membrane problem: zoom of the low frequency part of the normalized discrete
spectra.

I remark that even in this case, as for the Euler-Bernoulli beam, my NURBS formulation results

in a rotation-free approach. As proposed in Engel et al. (2002), the boundary conditions on

rotations can be imposed in the same way previously discussed for the beam case.

The numerical results are analogous to the ones obtained for the elastic membrane. In Figure

6.5, I report the normalized discrete spectra using a linear parametrization over a 40×40 control

net and in Figure 6.6 I show a zoom of their lower frequency part. Note that I have cut off the

y-axis of the plot of Figure 6.5 to a value of 2.0 because otherwise the outlier frequencies for the

highest order approximations would make the remaining part of the plot completely unreadable

and useless. The same considerations done for the previous 2D example could be repeated, and

in Figure 6.7 I show the spectra obtained employing an equally spaced control net. Finally,

Figure 6.8 shows the average relative error computed over the spectra of Figure 6.7.

34



Chapter 6. Two-Dimensional Problems

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

1.25

l/N

ω
lh /ω

l

p=2, q=2
p=3, q=3
p=4, q=4
p=5, q=5

Figure 6.3: Membrane problem: normalized discrete spectra using an equally spaced control net.
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Figure 6.4: Membrane problem: average relative error of the spectra shown in Figure 6.3.
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Figure 6.5: Plate problem: normalized discrete spectra using different order NURBS basis func-
tions (40 × 40 control points).
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Figure 6.6: Plate problem: zoom of the low frequency part of the normalized discrete spectra.
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Figure 6.7: Plate problem: normalized discrete spectra using an equally spaced control net.
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Figure 6.8: Plate problem: average relative error of the spectra shown in Figure 6.7.
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7. VIBRATIONS OF A CLAMPED THIN CIRCULAR
PLATE USING 3D SOLID ELEMENTS

One of the greatest advantages of Isogeometric Analysis is its capability of working in exact

geometry even for coarse meshes. So, for instance, I can study with few NURBS elements a

circular domain, and not a faceted polygonal one which only tends to be circular (for example a

circle can be represented exactly by means of only three pieces of quadratic NURBS curves, as

shown in their books by Piegl and Tiller (1997) and Rogers (2001)).

Another important feature of this technique, shown in the work of Hughes et al. (2004), is the

fact that, employing the NURBS equivalent of classical finite element p-methods, it is possible

to study thin structures like plates and shells with 3D solid elements.

In this framework, an interesting example is the study of the vibrations of a clamped thin circular

plate. My approach has been to construct a coarse mesh (anyway capable to exactly reproduce

geometry) and then to elevate the order of the basis functions until a sufficient precision in

the approximation of the first three frequencies has been achieved. The exact solution for this

problem under Kirchhoff’s assumptions is presented, for example, in Meirovitch (1967) and is

the following:

ωmn = C2
mn

π2

R2

√

DEt

ρ
[rad/s], (7.1)

where R is the radius of the plate, t is the thickness, DE =
Et3

12(1 − ν2)
is the flexural rigidity

(being E and ν respectively the Young’s modulus and the Poisson’s ratio) and ρ is the density

(mass per unit volume); for the first three frequencies the values of the coefficients Cmn are:

C01 = 1.015, C11 = 1.468 and C02 = 2.007.

38



Chapter 7. Vibrations of a Clamped Thin Circular Plate Using 3D Solid Elements

The data for the problem that I have studied are shown in Table 7.1, where concrete typical

material parameters have been used. Note moreover that the radius to thickness ratio of 100

makes this problem a thin plate, for which Kirchhoff’s assumptions can be considered valid.

The starting control net consists of 9 × 4 × 3 control points and quadratic approximations in

R 2 [m]

t .02 [m]

E 30·106 [KN/m2]

ν .2

ρ 2.320 [t/m3]

Table 7.1: Clamped circular plate: geometric and material parameters.

all the parametric directions are initially employed. Figure 7.1 shows the mesh, consisting in a

very coarse 8 non-zero-volume element patch.

The numerical results as compared with the exact solution are reported in Table 7.2, where p, q

and r are the orders of the basis functions in the circumferential, radial and vertical directions,

respectively, and reveal the good behaviour of this kind of analysis for such a problem.

Moreover, Figures 7.2-7.4 show the shapes of the first three eigenmodes (computed using p = 4,

Figure 7.1: Clamped circular plate: 8 non-zero-volume element mesh.

p q r ω01 [rad/s] ω11 [rad/s] ω02 [rad/s]

2 2 2 138.133 1648.800 2052.440

2 3 2 56.702 267.765 276.684

3 3 2 56.051 126.684 232.788

3 4 2 54.284 124.417 212.451

4 4 2 54.284 113.209 212.451

4 5 2 54.153 112.700 210.840

exact 53.863 112.670 210.597

Table 7.2: Clamped circular plate: numerical results as compared with the exact solution.
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q = 5, r = 2 elements), which qualitatively agree with the ones depicted in Meirovitch (1967).

Figure 7.2: Clamped circular plate: eigenmode corresponding to ω01.

Figure 7.3: Clamped circular plate: eigenmode corresponding to ω11.
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Figure 7.4: Clamped circular plate: eigenmode corresponding to ω02.
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8. CONCLUSIONS

In the present work the recently introduced (see Hughes et al. (2004)) concept of Isogeometric

Analysis has been, for the first time, applied to the study of structural vibrations.

After a review of some basics of Non-Uniform Rational B-Splines and of the main ideas of

Isogemetric Analysis, the determination of the structural frequencies for different problems has

been performed by means of this new kind of analysis.

In particular one-dimensional problems, like rods and beams, and two-dimensional ones, like

membranes and plates, have been studied.

The new method has shown very good results in all these cases and, when compared with

analogous classical finite element results, it has shown a superior behaviour.

Another investigated issue has been the possibility of developing, in a natural way, rotation-free

thin bending elements. The problem of the imposition of boundary conditions on rotations both

weakly and with Lagrange multipliers has been discussed for rotation-free beam elements.

Finally the exact geometry property of the method has been exploited in order to study a three-

dimensional circular problem. In the same example, the capability of the method to study thin

bending structures (a plate in this case) by means of 3D solid elements has also been tested,

obtaining very good results.

Since these preliminary results have shown that this technique could be very important in the

framework of structural vibrations, more research in this context is needed for the future. Some

issues could be deeper studies on different parametrizations (in particular to avoid the appear-

ance of what have been called “outlier frequencies”, which are some strange too high frequencies

at the very end of the discrete spectrum for higher order approximations) and on lumped mass
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formulations. Moreover, the method needs to be tested in different cases of geometrically com-

plicated real structures, where it promises to be very effective in particular as compared with

standard finite element analysis.
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A. COMPUTATION OF THE ISOGEOMETRIC
ANALYSIS ORDER OF ACCURACY FOR THE ROD
PROBLEM

Starting from the analytical expressions for the normalized discrete spectra obtained previously,

it is possible to compute their order of accuracy by means of Taylor expansions.

In the following I show the computation of the order of accuracy for the rod problem using both

consistent and lumped mass formulations and employing quadratic and cubic NURBS.

A.1 ORDER OF ACCURACY EMPLOYING QUADRATIC NURBS AND CON-

SISTENT MASS

The analytical expression for the normalized discrete spectrum in this case is:

ωh

ω
=

1

ωh

√

20(2 − cos(ωh) − cos2(ωh))

16 + 13 cos(ωh) + cos2(ωh)
. (A.1)

First I make use of the expansion cos(x) ∼ 1 − x2/2 + x4/4! − x6/6!, obtaining after simple

computations:

ωh

ω
∼

1

ωh

√

√

√

√

√

√

√

30(ωh)2 −
15

2
(ωh)4 +

11

12
(ωh)6

30 −
15

2
(ωh)2 +

7

8
(ωh)4

, (A.2)

which can be rewritten as:

ωh

ω
∼

√

N

D
(A.3)
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with N and D defined as follows:

N = 30 −
15

2
(ωh)2 +

11

12
(ωh)4,

D = 30 −
15

2
(ωh)2 +

7

8
(ωh)4.

(A.4)

Expression (A.3) can be written as:

ωh

ω
∼

√

√

√

√

√

1

1 +
D − N

N

(A.5)

and, using the expansions
1

1 + x
∼ 1 − x and

√
1 − x ∼ 1 − x/2, it gives rise to:

ωh

ω
∼ 1 +

N − D

2N
. (A.6)

Finally, substituting the expressions (A.4) for N and D, I get that:

ωh

ω
∼ 1 +

(ωh)4

1440
, (A.7)

which reveals that the order of accuracy is equal to 4.

Figure A.1 shows that, for low frequencies, the normalized discrete spectrum has the same

behaviour of the function 1 + (ωh)4/1440 (recall: ωh = πn/nel).
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Figure A.1: Rod problem: normalized discrete spectrum using quadratic NURBS versus 1 +
(ωh)4/1440 for low frequencies.
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A.2 ORDER OF ACCURACY EMPLOYING CUBIC NURBS AND CONSIS-

TENT MASS

Using cubic NURBS, the normalized discrete spectrum is represented by:

ωh

ω
=

1

ωh

√

42(16 − 3 cos(ωh) − 12 cos2(ωh) − cos3(ωh))

272 + 297 cos(ωh) + 60 cos2(ωh) + cos3(ωh)
. (A.8)

Expanding cos(ωh) and repeating the same computations as before, I obtain that:

ωh

ω
∼ 1 +

(ωh)6

60480
, (A.9)

so the order of accuracy in this case is 6 and Figure A.2 confirms this result.
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Figure A.2: Rod problem: normalized discrete spectrum using cubic NURBS versus 1 +
(ωh)6/60480 for low frequencies.

A.3 ORDER OF ACCURACY EMPLOYING LUMPED MASS

Similarly to what have been done in the case of consistent mass, also using a lumped mass

formulation it is possible to compute the analytical expression for the discrete spectrum arising

from the generic interior element equations. In this way, employing quadratic NURBS, I obtain:

ωh

ω
=

1

ωh

√

2

3
(2 − cos(ωh) − cos2(ωh)), (A.10)
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while with cubic NURBS we get:

ωh

ω
=

1

ωh

√

1

15
(16 − 3 cos(ωh) − 12 cos2(ωh) − cos3(ωh)). (A.11)

In this case, these analytical expressions do not reproduce the behaviour of (almost) the whole

numerical spectra, but only of their part before the discontinuous derivative point, as shown in

Figure A.3.
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Figure A.3: Rod problem: analytical versus numerical discrete spectrum computed using
quadratic and cubic NURBS; lumped mass formulation.

But when I compute the order of accuracy I am interested only in the very low frequency part

of the spectrum, so I can carry on the same computation as before.

So, by means of Taylor expansions, I obtain, using quadratic NURBS:

ωh

ω
∼ 1 −

(ωh)2

8
(A.12)

and using cubic NURBS:
ωh

ω
∼ 1 −

(ωh)2

6
. (A.13)

I remark that, as it was already evident from Figure 5.13, by increasing the order p I do not

achieve a better order of accuracy, which for lumped mass formulation is always equal to 2.

Finally Figures A.4 and A.5 confirm the validity of expressions (A.12) and (A.13), respectively.
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Figure A.4: Rod problem: normalized discrete spectrum using cubic NURBS versus 1− (ωh)2/8
for low frequencies; lumped mass formulation.
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Figure A.5: Rod problem: normalized discrete spectrum using cubic NURBS versus 1− (ωh)2/6
for low frequencies; lumped mass formulation.
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