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Bringing Architecture into Materials

• The evolution of monuments shows us evidence that: 

Introduction

© independent.con.uk© Giza project @Harvard

Khafre Pyramid Complex (Giza, 2570 BC) Eiffel Tower (Paris, 1889)

4459 years

“The art of structure is where to put the holes”. Robert Le Ricolais (1894 – 1977).
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Architected Materials

1. From structure to Architected Materials: it is a matter of scale. For example:

Introduction

© innerbody.com

Human femur head cross-section
Aerospace engineering uses sandwich panels

Courtesy of INVAP

2. Architected Materials distinguished concept is: we can tailor its properties by designing its internal shape.

(ARSAT I communications satellite)
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Design & Manufacturing: friends or foes?

• For example, the first notable contributions answering these questions, have appeared independently:

1984: Additive Manufacturing (first patent).

Design Manufacturing

Introduction

1994: architected materials design in
Computational Mechanics (first paper).

• Today, a positive feedback is promoting Architected Materials: simulation for additive manufacturing.

• Traditionally, research about Architected Materials design and manufacturing has been approach separately.

Can you make it?

Is it worthy?
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• Structured topology: grid of points connected by slender elements.

Introduction

Lattice Materials

• In particular, periodic lattices use the concept of a “unit-cell”.

Unit-cell structure:
Bulk material: 

(5x5x5 tessellation)

• Application: focus on auxetics (mechanical material property).

• One type among the family of Architected Materials.

• Other fields: wave propagation, electromagnetism, heat conduction, …
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• Materials with negative Poisson’s ratio (NPR). This has many characteristics, two of them are:

Introduction

Auxetics – Definition & Characteristics

1. Volume expansion produced by uniaxial stretch:

Initial Deformed: Deformed:

2. Dome shape adopted by a thick plate under bending:

Saddle shape: Dome shape:

(auxetic - NPR)

(auxetic - NPR)
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1. Tissue engineering scaffolds

Motivation

Auxetics – Applications

2. Stents

125 µm

1 mm

Initial Deformed Growing cells

(Spatial Tuning of Poisson’s ratio in scaffolds, Acta Biomat., 2012):

(Buckling response of auxetic cellular tubes, Smart Mater. Struct., 2013):

Structure Kinks induced by bending



• Vector of 4 geometric parameters:
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• A parametric lattice material is introduced, based on the hexagonal honeycomb (provides auxetic behavior).

Motivation

Parametric Lattice Materials

• Geometry imposes constraint on 
the parameters intervals.

and animation …

• Exploit tailored material properties achieved by parametric design.

• The mechanics is described by Euler-Bernoulli beams, and a unit-cell geometry is introduced.
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Motivation

Parametric Solutions by Proper Generalized Decomposition (PGD)

• Solve efficiently and in “one shot” a parametric linear Partial Differential Equation – PDE.

Identify design parameters that produce desired material properties.

• The solutions (known as Computational Vademecums) are explicit in the parameters.

Browse the material properties design space as a post-processing (real time).

• Use Computational Vademecums for optimization or inverse problems. 

(Parametric equilibrium in our lattice material).
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(No need to solve any extra equation + availability of the sensitivities).
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Contributions

• Algebraic PGD: a generic solver for parametric PDE’s
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Discretized parametric PDE – Full Order

• Spatial mesh size:                        system of linear equations, depending on       parameters:

Global Problem

• Global or multidimensional space        of the parameters:

• Weighted residuals method:

• Number of unknowns for a numerical solution (Full Order):
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Separable approximation – Reduced Order

Algebraic PGD

Originality: the Solver box

Apgd

• The unknown is approximated by     terms or “modes” :

Separable input data requirement

• Number of unknowns for one mode: 

with:
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1st : Greedy (sequential computation of terms)

• Start computing compute 

2nd : Alternated directions (linearization)

Compute one       , assuming       and all        known for                                    and           

Compute       assuming all         known for                            

• Fixed-point iterative strategy (leads to a series of local problems):

Inside the Box: Two Ideas

• Weighted residuals: find                                           such that:



Solve :
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Local Problems – Overview

Build linear system and solve :

using

problem

1D problems (     times)



Local Norms

Modal amplitudes & Normalization
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• L2 norm for the 1D parametric functions:

• Non-Euclidean norm for the spatial modes:

• Finally, modal amplitudes:

Very important use for Greedy & Alternated directions Stopping criteria.



Objective

PGD compression
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• Reduce the PGD solution “     ” number of terms while keeping accuracy.

• Least-Squares projection of the PGD solution into the same approximation space.

• A new separable approximation computed with the same Greedy + Alternated directions scheme:

Motivation

• Greedy computation of terms does not enforce orthogonality between modes.

Methodology

Result
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Contributions

• Explicit parametric solutions:

2D lattice materials solved by Algebraic PGD
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Hexagonal Honeycomb

1) Unit-cell with Homogenization

b) Three load cases: two axial and one shear loads + periodic boundary conditions.

• Upscaling: recovering the orthotropic material properties at the macro-scale.

• PGD solver performance.

Parameters:

a) Separable Input Data.
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Separable Input Data: finite elements + parametric dimensions

• Goal: construct global stiffness Matrix in the separated format (a.k.a. affine decomposition)

1. Parametric elemental stiffness (for example, elements in Green):

Hexagonal Honeycomb

2. Separate and              replace and recover affine 

decomposition for               Repeat 

4. Finite element assembly + parametric dependence: affine 

decomposition for 

FE procedures:

Apgd
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Honeycomb unit-cell + Homogenization

PGD Modal Amplitudes

Stop Greedy if:• Three load cases with periodic boundary conditions.

• Total number of modes comparison between PGD & PGD compression.

• Smoother evolution in PGD compression + terms reduction in load cases XX and YY.
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PGD global performance

• We computed symbolically an analytical solution           . Then, evaluate the relative difference against

Monotonic error decay.

Error descend rates particularly slow down in XY.

Maximum relative error < 0.3% for all loads.

Same stopping criteria       same global errors.

Honeycomb unit-cell + Homogenization

• The goal is to show the evolution of the error measured in a global parametric norm.

Average of many points distributed in all intervals.
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PGD local performance

• relative error at a particular set of values

• Local error decay is non-monotonic. Max. relative error: 2.5% for all loads.

Honeycomb unit-cell + Homogenization

• For each set there is one error evolution curve.
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2D Effective Material Properties (Macro-scale)

• The material constitutive matrix           is recovered by upscaling the three unit-cell solutions (post-process).

Honeycomb unit-cell + Homogenization

2D Orthotropic Poisson’s Ratios         and 
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Upscaling:

Honeycomb unit-cell + Homogenization

Effective Orthotropic Poisson’s ratio

4 snapshots in

Auxetic behavior.
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Honeycomb unit-cell + Homogenization

Upscaling:Effective Orthotropic Poisson’s ratio

4 snapshots in

Auxetic behavior.



• Explicit parametric solutions:

3D lattice materials solved by Algebraic PGD
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Contributions
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3D Scaffold

Unit-cell with Homogenization

Parameters:

• Separable Input Data.

(xy planes): same parametrization
of the hexagonal honeycomb

+
Scaffold aspect ratio in z

Geometry:

• Focus on the Poisson’s ratios explicit parametric response.



28

Geometrical parametrization & Separable Input Data

3D Scaffold

• This ensures the structure connection at the points marked with:

• Then, the trigonometric functions required for our Input Data are:

ApgdSVDSingular Value Decomposition:

• Main difference in geometrical parametrization w.r.t. 2D honeycomb is the equality constraint:
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3D Orthotropic Material Properties

3D Scaffold unit-cell + Homogenization

3D Orthotropic Poisson’s Ratios

• Six orthotropic Poisson’s ratios result at the macro-scale. Results will focus on               to analyze the 
PGD solver accuracy.

• The six unit-cell solutions are not shown, but the constitutive matrix           is recovered by upscaling.
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Are these peaks well captured?

3D Scaffold unit-cell + Homogenization

Effective Orthotropic Poisson’s ratio Upscaling:

4 snapshots in

Auxetic for all 
parameters ranges
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Poisson’s ratio             accuracy

3D Scaffold unit-cell + Homogenization

• At peak values of             , the relative error raises above 40%.

• Relative error of the PGD response below, against finite elements:

• Particularity: PGD unit-cell solutions relative errors are below 3%, but these are amplified by the upscaling:
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Material Structure

3D Scaffold

• The material structure is subjected to uni-axial loads.

• I will use this material structure to asses the PGD accuracy where high errors of                
were found using homogenization.

5x5x5 unit-cells pattern:
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• Deformed structures between FE and PGD for uni-axial load Y. Set of parameters:

• Displacements in “z” direction are notably “locked” (PGD w.r.t. FE), in correspondence to          error.

3D Scaffold – Material Structure

PGD local performance

• Immediate actions: local refinement or higher order approximating functions for the parameters. PGD 

advantage: refining affects only 1D problems separately, the costs do not propagate globally.
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Contributions

• PGD least-squares approximation for nonlinear lattice structures.
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Geometrical nonlinearities

Motivations in Lattice Materials

• Buckling, a meaningful effect. • Extreme Poisson’s ratios: full range of applicability.
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A posteriori PGD for geometrical nonlinearities

Beam model
• Large displacements and small strains, finite element software: ADINA.

• Nonlinear strain-displacements relation + linear elastic strain-stress relation.

• Incremental load steps: loading parameter

Stent Load Cases (Radial – Axial)

Multidimensional sampling – Parametric Stent

• Two geometrical parameters,     and      are fixed to reduce the amount of combinations.

• Finite element solutions are run at prescribed values of the parameters.
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A posteriori PGD for geometrical nonlinearities

Method

• Equilibrium configurations (displacements + rotations) are stored in a multidimensional tensor.

• Size of this tensor:                             

• PGD least-squares provides a separated approximation of the multidimensional tensor.

• Same PGD compression algorithm, different input data (multidimensional instead of a separated tensor).

Results

• Explicit parametric solutions (with loading magnitude as an extra parameter).

• Very good accuracy is achieved without an excessive amount of modes.

• General concept: no gain in computational cost, significant reductions in terms of storage.
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Nonlinear Parametric Stent

PGD Least-Squares approximation – Modal Amplitudes

Stop Greedy if:• Two load cases (Radial – Axial).

• Total number of modes for the Axial load is significantly higher (response prompt to buckling).

• Same Greedy stopping criteria for the two loads.
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Nonlinear Parametric Stent

Radial Load – Linear vs. Nonlinear response

Algebraic PGD solver A posteriori PGD A posteriori PGD A posteriori PGD

• Plot in               , 4 different snapshots (Linear, NL:           , NL:           , and NL:            

• Novelty: mechanical property depending on loading parameter 

• For a small loading magnitude, nonlinear and linear response match.

• extreme values change in magnitude and parametric location by the loading
parameter
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Nonlinear Parametric Stent

Axial Load – Linear vs. Nonlinear response

Algebraic PGD solver A posteriori PGD A posteriori PGD A posteriori PGD

• Plot in               , 4 different snapshots (Linear, NL:           , NL:           , and NL:            

• Novelty: mechanical property shows the presence of buckling instabilities.

• Small loading magnitude: nonlinear and linear response match (despite some noise).

• Higher auxetic behavior and higher          more buckling.

• The buckled shape reduces the stent radius locally  lower
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Nonlinear Parametric Stent

Interactive parametric buckling analysis

• A linear (in Red) vs. nonlinear (in Green) PGD solutions of the stent are post-processed interactively in 
a user-friendly web application (HTML based).
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• Concluding remarks & Future works.
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Concluding Remarks

• This thesis contributed to the algebraic PGD solver development. In addition, it proves its value as a 

powerful tool to input different lattice material structures and output explicit parametric solutions.

• The separation of input data for algebraic PGD in lattice structures is carried out using an integrated 

approach of finite element procedures with the parametric dimension.

• A user-friendly web app has been develop to display interactively and in real time, parametric solutions of 

lattice materials and its mechanical properties. This contributes to broaden the applicability of PGD in non-

academic environments.

• The least-squares PGD approximation has been introduced as an approach that “learns from nonlinear finite 

elements data”. In lattice materials, mechanical properties and buckling effects are successfully obtained as 

explicit functions of geometrical parameters and a loading magnitude.
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Future Works

• Regarding material design with tailored properties, this thesis presents a groundwork on top of which the 

PGD vademecum could be further exploited for multi-objective and constrained optimizations.

• Lack of accuracy of the algebraic PGD at some of the Poisson’s ratio extreme values should be tackled 

using local refinement or higher order approximating functions in the parametric space.

• Explicit parametric solutions constructed a priori for geometrically nonlinear lattices deserve future research 

efforts. The feasibility of using algebraic PGD to this end is subjected to the affine decomposition of the 

residual equation.

• A more precise criterion to stop the greedy computation of modes could be based on an error estimation of 

the residual or some quantity of interest.

• In structural analysis, buckling is assed through the solution of an eigenvalue problem. Adopting this 

framework to a parametric setting, and efficiently solve the eigenvalue problem would result in a highly 

valuable tool for lattice materials and structures.
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And thank you all !!!


