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Abstract

In this work we focus on the application of collocation in the �eld of isogeometric analysis and

in particular we propose a new approach in the study of orthotropic composite plates based on

this technique.

Isogeometric analysis possesses some intrinsic advantages arising directly from the nature of

the method in terms of high continuity of the shape functions used (B-splines or NURBS ). This

characteristic is emphasized in Chapter 1, after giving ample space to the historycal motivations

which led to the birth of this method, as well as a comparison with the better known Finite

Element Analysis (FEA). For the Galerkin-based methods, the use of numerical integration is

fundamental. This operation is costly from a computational point of view. Consequently we make

use of collocation, described in Chapter 2, which, once known the constitutive behaviour, leads to

the solution using only the shape functions and their derivatives evaluated in special points called

collocation points, which obey some speci�c mathematical requirements, here (2) discussed.

Numerical experiments are shown for structural one-, two-, and three-dimensional problems.

In every chapter dedicated to numerical tests, we emphasize the principal computational aspects

regarding the implementation in Matlab, which has been carried out for every problem shown in

this work, and we also discuss convergence issues of the shown results. In Chapter 3 we focus on

scalar problems and particularly on the solution of Poisson's equations. Furthermore we propose,

in Chapter 4, isotropic linear elasticity problems.

Imposing Neumann boundary conditions, which are widely discussed in Chapter 5, requires spe-

cial attention. We deal with this topic bringing two numerical examples of engineering relevance:

the 2D Patch Test and the Pressurized thick-walled cylinder test.

In the �eld of structural engineering dynamics plays a fundamental role. Consequently we

choose to show the normalized discrete spectrum, which can be found in Chapter 6. In its sim-

plicity, this problem shows the potential of isogeometric collocation, also in comparison to results

achieved with the �nite element method.

The main focus of this work, as already mentioned, is represented by the application of this

method to orthotropic laminated composites, which are widely used in a variety of �elds such

as aerospace or automotive. The interest for their use in the engineering �eld has grown in

recent years because of their light weight and very resistant mechanical properties. One composite

element is made of several layers, each of which shows a privileged in-plane resistence direction, due

to the nature of the orthotropic constitutive behaviour. Consequently, it is natural to assemble

the composite element orientating the layers in an alternated way, which allows to exploit the

mentioned resistence properties. In this new proposed approach, described theoretically in Chapter

7, we average the material properties in order to better exploit collocation properties. This leads

to good results in terms of displacements and in-plane stresses, but to unsatisfactory numerical

values in terms of out-of-plane stresses. We therefore focus on a post-processing recovery technique

of the out-of-plane stresses showing, in Chapter 8, IGA collocation results.
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Sommario

Il presente lavoro di tesi è incentrato sull'applicazione della collocazione nell'analisi isogeomet-

rica ed in particolare presenta un approccio innovativo allo studio di piastre composite ortotrope

basato su tale tecnica.

L'analisi isogeometrica prevede dei vantaggi intrinseci alla natura del metodo in termini di

elevata continuità delle funzioni di forma utilizzate (B-splines o NURBS ). Tale caratteristica viene

enfatizzata nel capitolo 1, dopo aver lasciato ampio spazio alle motivazioni storiche che portano

allo sviluppo di tale metodologia, unite ad un confronto con la più nota analisi agli elementi �niti

(FEA). I metodi di Galerkin prevedono l'utilizzo dell'operazione di integrazione numerica, costosa

da un punto di vista computazionale. Pertanto ci si è avvalsi della collocazione, descritta nel

capitolo 2, che consente di ricavare la soluzione noto il legame costitutivo, a partire dalle sole

funzioni di forma e loro derivate calcolate in punti che soddisfano speci�ci requisiti matematici,

denominati punti di collocazione e qui (2 discussi).

Si presentano quindi i problemi studiati dal monodimensionale al tridimensionale. In ogni

capitolo che rigurda test numerici, si sottolineano i principali aspetti computazonali riguardanti

l'implementazione e�ettuata avvalendosi del software Matlab ed eseguita per ogni problema mostrato

in questo lavoro di tesi. Ampio spazio è lasciato alla discussione della convergenza dei risultati

mostrati. Il capitolo 3 è incentrato su problemi di tipo scalare ed in particolare sulla risoluzione

delle equazioni di Poisson, mentre nel capitolo 4 si discutono problemi riguardanti materiali a com-

portamento lineare elastico isotropo. Particolare attenzione richiede l'imposizione delle condizioni

al contorno di Neumann, ampiamente trattate nel capitolo 5. Tale argomento è discusso portando

due esempi concreti di importanza ingegneristica: il problema bidimensionale di Patch Test e di

Cilindro spesso in pressione.

Nell'ambito dell'ingegneria strutturale la dinamica riveste un ruolo di fondamentale impor-

tanza, pertanto si è scelto di fornire un esempio riguardante il calcolo dello spettro discreto nor-

malizzato, riportato nel capitolo 6. Pur nella sua semplicità tale problema mostra le potenzialità

della collocazione isogeometrica rispetto a quella ottenuta con il metodo agli elementi �niti.

L'applicazione principale del presente elaborato, come già si è sottolineato, riguarda lo studio di

laminati compositi ortotropi, utilizzati in vari campi quali l'industria aerospaziale e automotive.

Il loro interesse ingegneristico è cresciuto negli ultimi anni a causa del loro peso contenuto ed

elevate caratteristiche di resistenza. Un elemento composito è costituito da più strati, ognuno

dei quali presenta una direzione di resistenza privilegiata nel piano dovuta alla natura del legame

costitutivo ortotropo. Pertanto nell'assemblaggio dell'elemento composito si prevede un naturale

orientamento del materiale alternato strato per strato, che consente di sfruttare in termini di

resistenza le proprietà della legge costitutiva adottata. Nell'approccio innovativo introdotto, da

un punto di vista teorico nel capitolo 7, si vanno ad omogeneizzare tali proprietà del materiale

per sfruttare al meglio le proprieta' del metodo di collocazione. Questo porta a buoni risultati in

termini di spostamenti e sforzi nel piano, ma a risultati insoddisfacenti in termini di sforzi fuori

dal piano. Ci si concentra quindi sullo studio di una procedura di post-processing di recupero

degli sforzi fuori piano, esponendo nel capitolo 8, i buoni risultati ottenuti combinando tale post-

processing con la collocazione isogeometrica.
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Chapter 1

Introduction to Isogeometric

Analysis

In this chapter our aim is to introduce Isogeometric Analysis (IGA) from an historical per-

spective and to focus on the main motivations that lead to this method, supplying a parallel with

the well-known Finite Element Analysis (FEA) and stressing some issues that arises in Computer

Aided Design (CAD)-FEA interactions.

1.1 Main reasons that led to isogeometric analysis within

historical framework

Isogeometric analysis arises from the existing gap between the worlds of Finite Element Analysis

(FEA) and Computer-Aided Design (CAD)(see [20]) and seeks to connect these two worlds that are

born independently. Historically CAD generated �les that needed to be translated into analysis-

suitable-geometries, meshed, and input to large-scale �nite element analysis. Any mesh re�nement

operation required interaction with CAD geometry. From a quantitative point of view modelling

phase is now estimated to take over the 80% of the overall analysis time.

Figure 1.1: Increasing complexity in engineering design in terms of manufacturing
time.(Courtesy of General Dynamics / Electric Boat Corporation).

1
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As a tangible example we report Figure 1.1, which demonstrates that nowadays a typical

automobile consists of about 3,000 parts, a �ghter jet over 30,000, the Boeing 777 over 100,000,

and a modern nuclear submarine over 1,000,000, all of which need to be modelled. Clearly in

order to accomplish a full analysis there are many preparatory steps involved, which not only

require modelling but other phases aswell as Figure 1.2 shows. The anatomy of the process has

been studied by Ted Blacker, Manager of Simulation Sciences, Sandia National Laboratories. At

Sandia, mesh generation accounts for about 20% of overall analysis time, whereas creation of the

analysis-suitable geometry requires about 60%, and only 20% of overall time is actually devoted

to analysis itself, as Figure 1.2 clari�es. Indeed the 80/20 modelling/analysis ratio seems to be

a very common industrial experience. Considering that simulation is used in a wide range of

Figure 1.2: Estimation of the relative time costs of each component of the model
generation and analysis process at Sandia National Laboratories. Note that the pro-
cess of building the model completely dominates the time spent performing analysis.
(Courtesy of Michael Hardwick and Robert Clay, Sandia National Laboratories).

�elds, from the scienti�c modeling of natural systems to arti�cial and human ones, remarkable

economic implications arise which require a reduction in terms of analysis time. We can therefore

conclude, from the remarks we made, that the two main reasons that contributed to IGA birth

are represented by the economic dimension of the market and the necessity to improve the time

required by the analysis. Now that we stressed the main motivations that led to IGA, we can

reasonably ask ourselves why this CAD-FEA interaction didn't happened from the beginning. The

answer to this question is contained within the historical framework. In fact FEA developed itself

between the 50's and 60's, while CAD advent is to be traced back only between the 70's and 80's.

However it's only around 2005 that Hughes et al. ([37]) came up with the idea to make this two

worlds interact in the sense that IGA employs typical functions from Computer Aided Design,

such as B-splines and NURBS, as shape functions, concept instead related to FEA. In the end the

basis functions describe both geometry and �eld variables in accordance with the isoparametric
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paradigm. As a consequence making these two worlds interact means, at a practical level, that the

exact CAD geometry is preserved and the geometrical description is unique. Besides a costsaving

simpli�cation of the typically expensive mesh generation and re�nement processes required by

�nite element analysis, thanks to the high-regularity properties of its basis functions, IGA showed

a better accuracy per degree of freedom and an enhanced robustness with respect to standard

�nite elements [20]. To sum up IGA prerogatives as an alternative to FEA in a qualitative way

we can say that IGA:

� provides a precise and e�cient geometry modelling and an integration of design and analysis;

� has smooth basis functions with compact support;

� has superior approximation properties;

� mesh re�nement operations are simpli�ed.

Since the transition from one type of analysis to the other is not direct, a parallel between IGA and

FEA, which summarizes their main features, is here reported in Table 1.1. The aim for this brief

comparison is not to perform a full description of the depicted di�erences, but just to give an idea

of the two kind of analysis. What follows will be clearer in Chapter 2 dedicated to IGA collocation,

where an ample mathematical base will be provided in the �eld of Isogeometric Analysis.

Table 1.1: Comparison between FEA and IGA.

FEA IGA

nodal coordinates and variables control points and variables
element knot span

1 mesh (FE) 2 meshes (physical and control meshes)
interpolatory basis (polynomials) non-interpolatory basis (NURBS)

approximated geometry exact geometry
subdomains patches (parameter space is local to them)
h-re�nement h-p-k re�nements possibilities

To conclude this chapter we want to stress some issues that arise from CAD-FEA interactions:

� CAD operations di�er from FEA ones and in order to support this statement we bring a

practical example. Let's consider a simple lamina, a square with a hole and our goal is to

mesh it in the best possible way. FEA approach will probably divide this �gure into four

equal slices and re�ne each of them. On the other side CAD sees the 2D object as a set of

boolean operations, here reported. The square is parameterized as well as the circle-curve,

which is later on eliminated as a surface from the square.

� In the CAD �eld 3D objects are still bivariate. In fact if we consider a sphere, as example,

FEA considers this element as three dimensional, while CAD approach sees only its outer

surface. This latter remark can be considered less relevant since shells simulation dominates

the market.



Chapter 2

Basic principles of Isogeometric

Collocation

In this chapter our purpose is to outline the principal features of collocation methods and

to present the mathematical de�nitions useful to understand this work of thesis. We therefore

describe B-splines, their geometry and derivatives from which we can construct NURBS (Non

Rational B-splines). In the end we discuss re�nement operations.

2.1 An introduction to collocation

We recall that IGA aims at integrating design and analysis by employing typical functions from

Computer Aided Design for describing both geometry and �eld variables. As a consequence adopt-

ing the isoparametric concept leads to a cost-saving simpli�cation of expensive mesh generation

and re�nement processes required by standard FEA. Moreover, thanks to the high-regularity

properties of its basis functions, IGA has shown a better accuracy per-degree-of-freedom and an

enhanced robustness with respect to standard FEA in a number of applications, as we see in [59],

ranging from solids and structures (see, e.g., Auricchio et al. [7],2010b; Borden et al., 2012 [13];

Caseiro et al., 2014 [17]; Cottrell et al., 2006 [19], 2007 [21]; de Falco et al., 2011 [24]; Dhote et

al., 2014 [26]; Elguedj et al., 2008 [28]; Hughes et al., 2008 [40], 2014 [39]; Lipton et al., 2010 [47];

Morganti et al., 2014 [52]; Reali, 2006 [57]) to �uids (see, e.g., Akkerman et al., 2007 [1]; Bazilevs

et al., 2007 [9]; Bazilevs and Hughes, 2008 [11]; Bu�a et al., 2011 [15]; Liu et al., 2014 [48]; Gomez

et al., 2010 [31]), opening also the door to geometrically �exible discretizations of higher-order

partial di�erential equations in primal form (see, e.g., Auricchio et al., 2007 [4]; Gomez et al.,

2008 [30]; Kiendl et al., 2009 [45]).

However, a well-known important issue of IGA is related to the development of e�cient in-

tegration rules when higher-order approximations are employed. In fact, element-wise Gauss

quadrature, typically used for �nite elements and originally adopted for Galerkin-based IGA, does

not properly take into account inter-element higher continuity leading to sub-optimal array form-

ing costs, signi�cantly a�ecting the performance of IGA methods. In an attempt to address this

issue taking full advantage of the special possibilities o�ered by IGA, isogeometric collocation

schemes have been proposed in [3]. The aim was to optimize the computational cost still relying

on IGA geometrical �exibility and accuracy.

Collocation main idea, in contrast to Galerkin-type formulations, consists of the discretiza-

tion of the governing partial di�erential equations in strong form,evaluated at suitable points.

Consequently, isogeometric collocation does not require integral computation, resulting in a very

fast method providing superior performance with respect to Galerkin formulations in terms of

both assembling operations and order of convergence (computational costs), in particular when

4
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higher-order approximation degrees are adopted[62].

Isogeometric collocation has been particularly successful in the context of structural elements

[8], where isogeometric collocation has proven to be particularly stable in the context of mixed

methods. In particular, Bernoulli�Euler beam and Kirchho� plate elements have been proposed by

[58], and shear-deformable structural elements have been considered in a number of papers. Mixed

formulations both for Timoshenko initially-straight planar beams [22] and for curved spatial rods

[6] have been proposed and studied, and then successfully extended to the geometrically nonlinear

case [66]. Isogeometric collocation has been moreover successfully applied to the solution of Reiss-

ner�Mindlin plate problems in [42], and a new single-parameter formulation for shear-deformable

beams, recently introduced by Kiendl et al. [43], has been solved also via IGA collocation. Since

its introduction, many promising signi�cant works on isogeometric collocation methods have been

published also in other �elds, including phase-�eld modeling [33], contact [49],[46], nonlinear elas-

ticity [46]. Moreover, the combination with di�erent spline spaces, like hierarchical splines, gen-

eralized B-splines, and T-splines, has been successfully tested in [62],[50],[18], while alternative

e�ective selection strategies for collocation points have been proposed in [2],[33],[51]. In general,

IGA collocation methods prove to be a pro�table choice in all those situations where evaluation

and assembly costs are dominant, as in explicit structural dynamics where the computational cost

is dominated by divergence evaluations at quadrature points for the calculation of the residual

force vector ([5],[62]).
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2.2 Basics of NURBS-Based IGA Collocation

In this section, we aim at introducing the basic mathematical concepts of NURBS-based IGA

collocation. After some preliminaries on B-Splines, mainly inspired by [20], we discuss the possible

re�nement techniques o�ered by IGA, and conclude describing NURBS from a mathematical point

of view, in order to enhance the framework presented in Chapter 1. In Chapter 4 we will instead

leave ample space to collocation schemes in a linear elasticity �eld both from a theoretical and a

numerical point of view.

2.2.1 B-splines

B-splines are piece-wise polynomial curves whose components are de�ned as the linear combination

of B-spline basis functions and the components of some points in the space, referred to as control

points. Fixed the order of the B-spline (i.e. the degree of polynomials), in order to construct the

basis functions we have to introduce the so-called knot vector, which is a fundamental ingredient

for this operation.

2.2.1.1 Knot vector

A knot vector in one dimension is a non-decreasing set of coordintes in the parameter space, written

Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξi ∈ R is the ith knot, i is the knot index, i = 1, 2, ..., n + p + 1,

p is the polynomial order, and n is the number of basis functions used to construct the B-spline

curve or the number of control points which de�ne the control mesh. Knots, as we pointed out,

live in the parameter space and they partition this space into elements or knot spans. They can

also be repeated, that is, more that one knot may take on the same value. The multiplicities of

knot values have important implications for the properties of the basis as we will later discuss

further on. A knot vector is said to be uniform if its knots are equally spaced and non-uniform

otherwise. In our work we will use open knot vectors i.e. knot vectors whose �rst and last control

points are repeated p+ 1 times. As a consequence, in one dimenstion, basis functions formed from

open knot vectors are interpolatory at the ends of the parameter space interval [ξ1, ξn+p+1].

2.2.1.2 Basis function

Having de�ned what a knot vector represents, B-splines basis functions are de�ned recursively

starting with piecewise constants (p = 0):

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(2.1)

For p = 1, 2, 3, ..., they are de�ned by

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2.2)

which is referred as Cox�de Boor recursion formula (Cox, 1971; de Boor, 1972 [12]). We remark

that this result is already implemented in the Matlab toolbox used in this work of thesis and

excludes indeterminate mathematical forms as 0
0 . The results of applying (2.1) and (2.2) to the

uniform knot vector Ξ = {0, 1, 2, 3, 4, ...} are presented Figure 2.1. For B-spline functions with

p = 0 and p = 1, we have the same result as for standard piecewise constant and linear �nite

element functions, respectively.
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Figure 2.1: Basis functions of order 0, 1, and 2 for uniform knot vector Ξ =
{0, 1, 2, 3, 4, ...}.

Quadratic B-spline basis functions, however di�er from their FEA counterpart as Figure 2.1

shows. They are each identical but shifted relative to each other, whereas the shape of a quadratic

�nite element function depends on whether it corresponds to an internal node or an end node.

This �homogeneous� pattern continues for the B-splines as we continue to higher-orders. We want

also to recall Figure 2.1 because it can be used in Chapter 6 to understand the di�erent FEA and

IGA behaviour showed in the proposed dynamic 1D test which concerns a free vibrations problem.

Among other functions properties we have that:

� the basis constitutes a partition of unity, that is, ∀ξ

n∑
i=1

Ni,p(ξ) = 1 (2.3)

� each basis function is pointwise non negative Ni,p(ξ) ≥ 0,∀ξ over the entire domain, meaning

that all of the entries of a mass matrix will be positive and therfore implications in developing

lumped mass schemes arise;

� each p−th order function has p − 1 continuous derivatives across the element boundaries

(i.e., across the knots), consideration which represents one of the most distinctive features

of isogeometric analysis;

� the support of the B-spline functions of order p is always p + 1 knot spans, in particular,

when a knot has multiplicity p, the basis function is C0 and interpolatory at that location;

� if a knot has multiplicity of k, the functions are Cp−k-continuous in correspondence;

� the functions are Cp−1-continuous, if internal knots are not repeated.
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This relationship between continuity and the multiplicity of the knots is even more apparent in

Figure 2.2, in which we have a fourth order curve with di�ering levels of continuity at every element

boundary.

Figure 2.2: Quartic (p = 4) basis functions for an open, non-uniform knot vector
Ξ = {0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}.The continuity across an interior el-
ement boundary is a direct result of the polynomial order and the multiplicity of the
corresponding knot value.

At the �rst internal element boundary, ξ = 1, the knot value appears only once in the knot vector,

and so we have the maximum level of continuity possible: Cp−1 = C3. At each subsequent internal

knot value, the multiplicity is increased by one, and so the number of continuous derivatives is

decreased by one. We underline again that when a knot value is repeated p times, in this case

at ξ = 4, the C0 basis is interpolatory. The basis is also interpolatory at the boundary of the

domain, where the open knot vector demands that the �rst and last knot value be repeated p+ 1

times. The result is C−1-continuity, that is, the basis is fully discontinuous, naturally terminating

the domain.

2.2.1.3 Derivatives of B-spline basis function

The derivatives of B-spline basis functions are e�ciently represented in terms of B-spline lower

order bases. For a given polynomial order and knot vector, the derivative of the i−th basis function
is given by

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2.4)

The previous result can be generalized as follows

dk

dkξ
Ni,p(ξ) =

p

ξi+p − ξi

(
dk−1

dk−1ξ
Ni,p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dk−1ξ
Ni+1,p−1(ξ)

)
(2.5)
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and in the end we have after expanding

dk

dkξ
Ni,p(ξ) =

p!

(p− k)!

k∑
j=0

αk,jNi+j,p−k(ξ) (2.6)

α0,0 = 1, (2.7)

αk,0 =
αk−1,0

ξi+p−k+1 − ξi
, (2.8)

αk,j =
αk−1,j − αk−1,j−1

ξi+p−k+1 − ξi+j
j = 1, ..., k − 1, (2.9)

αk,k =
−αk−1,k−1

ξi+p+1 − ξi+k
(2.10)

The denominator of several of these coe�cients can be zero in the presence of repeated knots.

Whenever this happens, the coe�cient is de�ned to be zero. E�cient algorithms for these calcu-

lations can be found in [55].

2.2.2 B-spline curves

We have seen that, given the order of the B-Spline and knowing the knot vector, it is possible to

construct n basis functions Ni,p. Now, if we consider a set of n control points in Rd, we can obtain

the components of the piece-wise polynomial B-Spline curve C(ξ) of order p by taking the linear

combination of the basis functions weighted by the components of control points, as follows

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi (2.11)

where Bi is the i−th control point. The piece-wise linear interpolation of the control points is

called control polygon. In Figure 2.3 we report, as an example, a quadratic 2D B-Spline curve,

where the control points can be seen on the left, while on the right side we can observe the knot

location which di�ers from the control points location and the resulting mesh. We remark that a

(a) Curve and control points (b) Curve and mesh denoted by knot
locations

Figure 2.3: B-spline, piecewise quadratic curve in R2. (a) Control point locations
are denoted by •. (b) The knots, which de�ne a mesh by partitioning the curve into
elements, are denoted by �. Basis functions and knot vector as in Figure 2.5.

B-Spline curve has continuous derivatives of order p− 1, which can be decreased by k if a knot or

a control point has multiplicity k + 1.
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2.2.3 B-Spline Surfaces

Performing tensor products operation, B-spline surfaces can be constructed starting from a net of

nxm control points Bi,j , i = 1, 2, ..., n, j = 1, 2, ...m, that form a control net and considering knot

vectors Ξ = [ξ1, ..., ξn+p+1] and H = [η1, ..., ηm+q+1], where p and q are the polynomial orders.

Having de�ned from the two knot vectors the 1D basis functions Ni,p and Mj,q, we can therefore

construct the B-Spline surface as:

S(ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j (2.12)

2.2.4 B-Spline solids

Tensor product B-spline solids are de�ned in analogous fashion to B-spline surfaces. Given now a

control lattice Bi,j,k, i = 1, 2, ..., n, j = 1, 2, ...,m, k = 1, 2, ..., l, polynomial orders p, q and r and

knot vectors Ξ = [ξ1, ..., ξn+p+1], H = [η1, ..., ηm+q+1] and Z = [ζ1, ..., ζl+rp+1], the B-spline solid

can be de�ned as:

S(ξ, η, ζ) =

n∑
i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,qLk,r(ζ)Bi,j,k (2.13)

2.2.5 Re�nement

In contrast with FEA, IGA as already mentioned possess three di�erent re�nement approaches:

knot insertion, order elevation, and k-re�nement.

2.2.5.1 Knot insertion

The �rst mechanism by which the basis is enriched is knot insertion and, as the name suggests, is

the IGA counterpart of FEA h-re�nement since new knots are inserted and therfore the number

of knot spans is increased. As a matter of fact, knots may be inserted without changing a curve

geometrically or parametrically. Given a knot vector Ξ = [ξ1, ..., ξn+p+1] we can "extend it" to

Ξ = [ξ1 = ξ1, ξ2..., ξn+p+1 = ξn+p+1] such that the old knot vector is contained in the new one.

Therefore the new n + m basis functions derive from Cox De Boor relations (2.1),(2.2), which

apply the enriched knot vector. Also n+m new control points are formed from linear combination

of the old ones B by

B = TpB (2.14)

where

T 0
ij =

{
1 ξi ∈ [ξj , ξj+1)

0 otherwise
(2.15)

and

T q+1
ij =

ξi+q − ξj
ξj+q − ξj

T qij +
ξj+q+1 − ξi+q
ξj+q+1−}ξj+q

for q = 0, 1, 2, ..., p− 1 (2.16)
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A knot insertion example is presented in Figure 2.4.

Figure 2.4: Re�nement: Knot insertion.
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2.2.5.2 Order elevation

As its name implies, the process involves raising the polynomial order of the basis functions used to

represent the geometry. Recalling that the basis has p−mi continuous derivatives across element

boundaries, it is clear that when p is increased, mi must also be increased if we want to preserve

the discontinuities in the various derivatives already existing in the original curve. During order

elevation, the multiplicity of each knot value is increased by one, but no new knot values are

added. As with knot insertion, neither the geometry nor the parameterization are changed. The

process for order elevation begins by replicating existing knots until their multiplicity is equal to

the polynomial order. The next step is to elevate the order of the polynomial on each of these

individual segments. Lastly, excess knots are removed to combine the segments into one, order-

elevated, B-spline curve. Several e�cient algorithms exist which combine the mentioned steps so

as to minimize the computational cost of the process [55]. We report in Figure 2.5 an example of

order elevation, which shows the di�erences between the original setting and the re�ned one.

Figure 2.5: Re�nement: Order elevation.
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2.2.5.3 k-re�nement

If a unique knot value, is inserted between two distinct knot values in a curve of order p, the

number of continuous derivatives of the basis functions at the original knot value is p − 1. If we

subsequently elevate the order to q, the multiplicity of every distinct knot value (including the knot

just inserted) is increased so that discontinuities in the pth derivative of the basis are preserved.

That is, the basis still has p − 1 continuous derivatives at the original knot value, although the

polynomial order is now q. If, instead, we elevate the order of the original, coarsest curve to q and

only then insert the unique knot value, the basis would have q − 1 continuous derivatives at the

original knot value. We refer to this last strategy as k-re�nement. In the end we have stated that

inserting knots and degree elevating operations are not commutative. Since the assertion is not

trivial, in Figure 2.6 we compare p and k-re�nement to stress the di�erent steps who belongs to

these two strategies.

Figure 2.6: Strategy comparison: k-re�nement vs p-re�nement.



2.2. Basics of NURBS-Based IGA Collocation 14

2.2.6 Non-Uniform-Rational B-Splines (NURBS)

A rational B-spline in Rd is the projection of a non-rational (polynomial) B-Spline de�ned in

(d+1)-dimensional homogeneous coordinate space back into d-dimensional physical space. In this

way a great variety of geometric entities can be constructed and in particular conic sections can be

obtained exactly. The projective transformation of a B-Spline curve, or projective curve leads to a

rational polynomial and this is the reason for the name �rational� B-Splines. To obtain a NURBS

curve in Rd, we have to start from a set Bw
i (i = 1, ..., n) of control points (projective points) for

a B-spline curve in Rd+1 with knot vector Ξ. Then the control points for the NURBS curve are:

(Bi)j = (Bw
i )j/wi, j = 1, ..., d (2.17)

with

wi = (Bw
i )d+1 (2.18)

where Bi is the j
th component of the vector Bi and wi is referred to as the ith weight. Therefore

dividing the projective control points by the weights is equivalent to applying the projective

transformation to them. The NURBS basis functions of order p are then de�ned as:

Rpi (ξ) =
Ni,p(ξ)wi
W (ξ)

=
Ni,p(ξ)wi∑n
î=1Nî,p(ξ)wî

(2.19)

where we call weighting function

W (ξ) =

n∑
i=1

Ni,p(ξ)
w
i (2.20)

and their �rst and second derivatives ar referred as

d

dξ
Rpi (ξ) = wi

W (ξ)N ′i,p(ξ)−W ′(ξ)Ni,p(ξ)
(W (ξ))2

(2.21)

where N ′i,p(ξ) = d
dξNi,p(ξ) and W

′(ξ) =
∑n

ˆ(i)=1
N ′
î,p
wî and

(Rpi )
′′(ξ) =

N ′′i,p(ξ)wi∑n
î=1Nî,p(ξ)wi

+
2Ni,p(ξ)wi(

∑n
î=1N

′
î,p

(ξ)wi)
2

(
∑n
î=1Nî,p(ξ)wi)

3
+

−
2N ′i,p(ξ)wi

∑n
î=1N

′
î,p

(ξ)wi +Ni,p(ξ)wi
∑n
î=1N

′′
î,p

(ξ)wi

(
∑n
î=1Nî,p(ξ)wi)

2

(2.22)

The NURBS curve components are the linear combination of the basis functions weighted by the

components of control points:

(C(ξ))j =
n∑
i=1

Rpi (η)Bi (2.23)

Rational surfaces and solids are de�ned in an analogous way in terms of the basis functions,

respectively:

Rp,qi,j (ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

î=1

∑m
ĵ=1Nî,p(ξ)Mĵ,q(η)w ˆi,j

(2.24)

and

Rp,q,li,j,k(ξ, η, ζ) =
Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k∑n

î=1

∑m
ĵ=1Nî,p(ξ)Mĵ,q(η)Lk̂,l(ξ)w ˆi,j,k

(2.25)

We remark that if all weights are equal and therefore we can simplify, obtaining that NURBS

become B-splines.



Chapter 3

B-Splines-Based IGA Collocation for

scalar problems

In the following chapter we introduce the theoretical background that leads to the developement

of a collocation scheme in 1D and we provide several tests in the �eld of scalar problems from one

to three dimensions.

3.1 IGA collocation 1D theoretical formulation

In this section we formulate the collocation scheme in a 1D setting.

Formulation. Let f , a0, a1, be real functions in C
0[a, b], with a < b given real numbers. Let

g0, g1 ∈ R be scalars and BC1, BC1: C
1[a, b] → R be linear operators. We are interested in the

following simple one-dimensional model di�erential problem. Find a real function u ∈ C2[a, b]

such that {
u′′(x) + a1(x)u′(x) + a0(x)u(x) = f(x) ∀x ∈ (a, b)

BCi(u) = gi i = 0, 1
(3.1)

where u′, u′′ represent the �rst and second derivatives of u, respectively (we note that in the

following we will indicate the derivative operator of order i also as Di, i ∈ N). We assume that the

presented equation has one and only one solution u, and that the boundary condition operators

BCi are linearly independent on Ker(D2), that is, on the space of linear functions.

To discretize the presented problem via IGA collocation, we proceed as follows.

Given n ∈ N, let Vn+2 ⊂ C2[a, b] be a NURBS space of dimension n + 2 on the interval [a, b],

associated with a spline space Ŝn+2 ⊂ C2[0, 1] on the parametric interval [0, 1]. With standard

assumptions on the one-dimensional geometrical map F , we consider DF > 0 on the parametric

domain [0, 1]. Given, for all n ∈ N, τ1 < τ2 < ... < τn assigned collocation points in [a, b],we obtain

the following discrete problem: Find un ∈ Vn+2 such that

{
u′′n(τj) + a1(τj)un

′(τj) + a0(τj)un(τj) = f(τj) ∀x ∈ (a, b)

BCi(un) = gi i = 0, 1
(3.2)

3.1.1 Collocation points and theoretical results

The discrete problem is de�ned once a strategy for the selection of the n collocation points is

set. Such a selection is of paramount importance, because it directly in�uences the stability and

convergence properties of the collocation scheme. In the IGA collocation literature, the images

of so-called Greville abscissae (see de Boor, 2001 [23]) have been widely adopted as the default
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3.2. Benchmark: 1D scalar problem 16

choice for collocation points. Greville abscissae are n points easily de�ned from the knot vector

as

ξi =
ξi+1 + ξi+2 + ...+ ξi+p

p
(3.3)

and are well known in the CAD literature for a number of properties, among which the fact that

they typically give a stable interpolation (except in some cases when high degrees are combined

with particular non-uniform meshes). The selection of points guaranteeing a stable interpolation

is a fundamental issue for a collocation scheme, since it is proven in Auricchio et al. (2010a) [3]

that this implies optimal convergence (i.e., of order p− 1) in the W 2,∞-norm (or, equivalently, in

the H2-norm). Such a proof is valid only in 1D and cannot be extended to higher dimensions.

However extensive numerical testing has shown that the convergence rates obtained in 1D are

attained also in higher dimensions. Moreover, optimal convergence rates are not recovered in the

L∞- and W 1,∞-norms (or, equivalently, in the L2- and H1-norms), where it has been numerically

shown that orders of convergence p and p− 1 for even and odd degrees, respectively, are attained.

It is important to note that, despite not being optimal in the L2- and H1-norms as it happens

instead for Galerkin methods, the obtained orders of convergence are increasing with p, whereas

the cost of collocation is much lower than that of Galerkin approaches of the same order, especially

as p increases. This makes IGA collocation very competitive with respect to Galerkin on the basis

of an accuracy-to-computational-cost ratio, in particular when higher degrees (e.g., p > 3) are

adopted (see, e.g., [62]).

3.2 Benchmark: 1D scalar problem

First of all we want recall the L2−norm de�nition, which will be used to verify if our collocation

scheme resembles the known exact displacement solution

errL2
=

√∫
|u− uh|2∫
|u|2

(3.4)

Another L2−norm approximate de�nition is possible accordingly to the Mean Value Theorem for

Integrals, if the considered points are evenly spaced.

errL2
=

√∑
|u− uh|2∑
|u|2

(3.5)

In order to prove the previously discussed convergence rates, we propose the following 1D problem

in [0, 1] {
au(x)′′ + bu(x)′ + cu(x) = f(x)

u(0) = u(1) = 0
(3.6)

which admits the exact solution

u(x) = sin(2πx) (3.7)

The analitical strong form is consequently approximated by B-splines shape functions uh(x) =

Np(ξ)û, while the shape of the loading f is obtained inserting the exact solution, (3.6), in (3.7).

We report in Figure 3.1 the approximate displacement compared with the analytical one, obtained

using p = 2 and 10 control points. We therefore observe that both of them respect the prescribed

boundary conditions.
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Figure 3.1: 1D scalar problem: exact displacement solution compared with the ap-
proximated one for p=2, 10 control points.

We also display Figure 3.2, that reports the number of degrees of freedom compared to the dis-

pacement error in terms of L2−norm, which con�rms the convergence rates discussed in Chapter

2. They are computed calculating the slope starting from the last two numerical values, shown

in the graphic. In order to obtain Figure 3.2 we considered degrees of approximation from 2 to 7

and 10 up to 130 control points for each analysis.
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Figure 3.2: 1D scalar problem convergence test: number of d.o.fs vs displacement error
in terms of L2−norm.
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The obtained convergence rates for this case are reported in Table 3.1 and prove to be p for

even degrees and p− 1 for eve ones.

Table 3.1: 1D scalar problem: comparison between imposed degree of approximation
and obtained order of convergence.

Degree of approximation Order of convergence

2 2.03
3 2.05
4 4.11
5 4.17
6 6.25
7 6.40

3.3 Benchmark: 2D Poisson's equation

Accordingly with what we claimed in the �rst section we extend now our analysis to a 2D case and

in particular we consider bidimentional Poisson's equation in [0, 1]2 to see wether the prescribed

order of convergece are maintained.{
u,xx + u,yy = −f(x, y)

u = 0 ∀(x, y) ∈ ∂ΩD
(3.8)

and we consider as exact solution

u(x, y) = sin(2πx)sin(2πy) (3.9)

To be speci�c this means that the boundary conditions prescribes zero displacement and the

solution is now a double sinusoidal load. The problem we are dealing with is scalar and therefore

an extension of the given error de�nition is not needed.

We therefore substitute our approximation

uh(x, y) = Np(ξ)Mq(η) (3.10)

into (3.8) and obtain our collocation scheme. We stress, with a little abuse of notation which we

keep for all the chapter, that (3.10), as well as (3.2) and (3.11), implies that we are considering

tensor product, spacing all the collocation points.

We consider 1D test results as a model we would like to obtained, accordingly to the considered

case. We therefore plot in Figure 3.3 the exact solution and we compare it with the approximate

one in Figure 3.4. Both the solutions respect the prescribed boundary conditions, in fact at

the limit of the domain we obtain zero displacement and also the shape, showed in 3.3 and 3.4,

resembles the double sinus solution. We also plot the di�erence of the two in Figure 3.5, showing

that by means of p = q = 2 and 10 collocation points per direction a good level of approximation

is obtained.
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Figure 3.3: 2D Poisson's problem: Exact solution.
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Figure 3.4: 2D Poisson's problem: Approximate solution.
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Figure 3.5: 2D Poisson's problem: di�erence between approximate solution and exact
solution.
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In Figure 3.6 we report the number of degrees of freedom compared to the dispacement error in

terms of L2−norm, which again con�rms the convergence rates. This graphic is obtained testing

for each direction degrees of approximation from 2 to 7, using 10 to 130 degrees of freedom and

considering a step of 10 d.o.fs for each convergence analysis. The obtained convergence rates for
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Figure 3.6: 2D scalar problem convergence test: number of d.o.fs vs displacement error
in terms of L2−norm.

this case are reported in Table 3.2 and con�rm the prescribed convergence rates.

Table 3.2: 2D Poisson's problem: comparison between imposed degree of approxima-
tion and obtained order of convergence.

Degree of approximation Order of convergence

2 2.03
3 2.05
4 4.11
5 4.17
6 6.25
7 6.40
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3.4 Benchmark: 3D Poisson's equation

In the end we report our dimentional extension of the order of convergence for a 3D cases. We

therefore consider now Poisson's 3D equation in [0, 1]3 to test if the prescribed order of convergece

are mantained {
u,xx + u,yy + u,zz = −f(x, y, z)

u = 0 ∀(x, y, z) ∈ ∂ΩD
(3.11)

and we consider as exact solution

u(x, y, z) = sin(2πx)sin(2πy)sin(2πz) (3.12)

The solution is now a triple sinus and is accordingly zero at the boundary. We keep the partial

di�erential equation as it is, in strong form and substitute our approximation

uh(x, y, z) = Np(ξ)Mq(η)Ml(ζ) (3.13)

into (3.11) and obtain our collocation scheme to be implemented. In the present chapter we will not

underline implementation aspects since we are widely exposing them in Chapter 4. From Figure

3.7 we can point out that also, as far as the presented 3D case is concerned, we get convergence

and we underline the presence of a little of superconvergence, which is expected for the highest

degrees. Moreover we used a less number of d.o.fs to perform this 3D test due to unavoidably

computational limits. In order to produce Figure 3.7 we used 10 to 30 collocation points per

direction, testing the appromation degrees from 2 to 7.
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Figure 3.7: 3D scalar problem convergence test: number of d.o.fs vs error in terms of
L2−norm.
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As we expect, the obtained order of convergence showed in Table 3.3 con�rms the prescribed

convergence rates.

Table 3.3: 3D Poisson's problem: comparison between imposed degree of approxima-
tion and obtained order of convergence.

Degree of approximation Order of convergence

2 2.21
3 2.27
4 4.66
5 5
6 7.6
7 8



Chapter 4

IGA Collocation for Linear

Elastostatics

In the following chapter we aim at introducing linear elasticity in collocation schemes from a

theoretical point of view. After that we will move to collocation solution schemes showing several

benchmark tests. The proposed problems space from very trivial geometries towards examples

which require the introduction of 'mapping' and the necessity to use NURBS function. This

chapter is fundamental, as far as implementation is concerned and accordingly we propose and

comment two of the several 3D codes implemented in this work of thesis.

4.1 Linear isotropic elasticity

As introduced in Chapter 2 and better exposed in the Chapter 3 collocation methods requires a

solution scheme starting from a strong form, in our case in terms of displacements. In order to

achieve our goal we recall equilibrium equations

σij,j + bi = 0 in Ω (4.2)

σijnj = ti on ∂ΩN (4.3)

ui = ui on ∂ΩD (4.4)

as well as compatibility relations as follows

εij =
ui,j + uj,i

2
(4.5)

To have a well-balanced problem (15 unknown versus 15 equations) we need to also recall consti-

tutive relations

σij = Cijkmεkm (4.6)

We insert compatibility equations in the constitutive ones and �nally we apply them to equilibrium

relations, in order to obtain a solution in terms of displacements in strong form (with i, j = 2, 3,

according to the considered case):

23
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µui,jj + (λ+ µ)uj,ji + bi = 0 in Ω (4.8)

ui = ui on ∂ΩD (4.9)

These two set of equations will prove enough for this chapter, but to complete our scheme we also

report consequentially Neumann B.Cs, whose application will be later discussed in Chapter 6.

µ(ui,j + uj,i)nj + λuj,j = ti on ∂ΩN (4.10)

The next step consist of applying our approximation of the state variables (B-splines for the �rst

class of proposed problems and NURBS for the second one). We remark that in the proposed

tests the exact solution is known and from that, we can recover bi espression using for example

"Matlab Symbolic Toolbox".

4.2 Isotropic linear elasticity tests

For what concernes all the presented results we recall from Chapter 3 that the item that allows to

show whether we are converging or not is the introduced L2 − norm approximation

errL2
=

√∑
|u− uh|2∑
|u|2

(4.11)

The error here considered for the 1D case is extended to the 2D case and 3D case simply consider-

ing, for each case, the appropriate components. We want to underline that, given the simmetry of

the presented problems we will report the results only for the displacement solution in x direction.

4.2.1 Square: 2D linear elasticity problem

As a �rst test we consider a square having side equal to one so that no mapping is required. The

geometry of the problem can be derived from Figure 4.1. The square is clamped at the boundary

and the exact solution is a double sine which we observe respects boundary conditions

u(x, y) = v(x, y) = sin(2πx)sin(2πy) (4.12)

We therefore procede to substitute our displacements approximation in (4.1) in order to obtain

Figure 4.1: Square isotropic linear elastic problem convergence test: geometry of the
problem.

a collocation scheme, as the method states, directly into the partial di�erential equation strong

form, as we widely discussed in Chapter 3.
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We also display Figure 4.2,4.1 that reports the number of degrees of freedom compared to the

dispacement error in terms of L2−norm in x direction, and also Table 4.1, which con�rms the

convergence rates, discussed in Chapter 2. We underline that in order to obtain 4.2 we used 2 to

7 degrees of approximation and 20 to 130 collocations points per direction.
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Figure 4.2: Square isotropic linear elastic problem convergence test: number of d.o.fs
vs error in terms of L2−norm in x direction.

Table 4.1: Square 2D linear elasticity test: comparison between imposed degree of
approximation and obtained order of convergence considering x direction.

Degree of approximation Order of convergence

2 1.9
3 2.05
4 4.07
5 4.17
6 6.21
7 6.40
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4.2.2 Cube: 3D linear elasticity problem

We consider now a cube, whose side is equal to one, as we recall in Figure 4.3, and therefore no

mapping is required. The exact solution consist of a triple sinus loading, as states the reported

equation

u(x, y, z) = v(x, y, x) = sin(2πx)sin(2πy)sin(2πz) (4.13)

Figure 4.3: Cube: geometry of the problem.

From Figure 3.7, obtained using p=q=r from 2 to 7 and 5 to 15 control points per direction,

we point out that also, as far as the 3D cube isotropic linear-elastic case is concerned, we get

convergence and from Table 4.2, we observe that the prescribed order of convergece are mantained.
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Figure 4.4: Cube convergence test: number of d.o.fs vs error in terms of L2−norm

We report below the Matlab code that provided the basis for the previous results, in order to

logically explain the computational steps that brings to the displacement error evaluation.

� The script only requires the degree of approximation as input as well as the number of control
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Table 4.2: Cube 3D linear elasticity test: comparison between imposed degree of
approximation and obtained order of convergence considering x direction.

Degree of approximation Order of convergence

2 2.36
3 2.50
4 5.63
5 5.53
6 9.22
7 4.71

points used along the three directions, as well as material parameters (Young modulus, E,

ans Poisson's coe�cient, ν).

� The �rst operation consists of creating open knot vectors. After that h-re�nement or knot

insertion operation is performed.

� Greville abscissae are computed and we proceed to inizialize the needed quantities.

� Only the active degrees of freedom are selected and therefore we exclude the boundary since

everything is clamped.

� B-splines and their derivatives are computed.

� The following triple "for" loop involves spatially all the collocation points, computes volume

forces and performs tensor product.

� All the necessary quantities are stored in an optimized way taking into account the consti-

tutive relations. In fact in three dimentions three rows of the global sparse sti�ness matrix

and the residual force are considered point by point.

� The storage procedure seeks the non-zero entries vertically using the "�nd" command and

is performed using an inner counter which is updated every time the loop is activated.

� The problem is then solved and the displacements are obtained.

� The displacement control variables need to be re-interpolated as a post-process operation

into a new created spline.

� The error in terms of L2-norm is performed.
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1 f unc t i on e r r o r = IGAcoll_elLin3D (p , q , r ,mcp , ncp , ocp ,E, nu)

2 % 3D IGA co l l o c a t i o n code

3 %

4 % Solve 3D l i n e a r e l a s t i c i t y problem with homogeneous D i r i c h l e t b . c . ' s

and

5 % with a manufactured body load s . t . the a n a l y t i c a l s o l u t i o n i s

a v a i l a b l e

6 %

7 % Input : p = approximation degree ( x i )

8 % q = approximation degree ( eta )

9 % r = approximation degree ( ze ta )

10 % mcp = number o f c o l l o c a t i o n po in t s ( x i )

11 % ncp = number o f c o l l o c a t i o n po in t s ( eta )

12 % ocp = number o f c o l l o c a t i o n po in t s ( ze ta )

13 % E = Young modulus

14 % nu = Poisson ' s r a t i o

15 %% Output : e r r o r = ( approximation o f the ) L2−norm e r r o r

16 % se t mate r i a l parameters

17 mi = E/(2* (1 + nu) ) ;

18 lambda = E*nu/((1 + nu) *(1 − 2*nu) ) ;

19

20 % se t mesh [ l i n e a r parameter i zat ion , c on t i nu i t y C^(p−1) ]
21 c s i = augknt ( [ 0 1 ] , p+1) ; % knot c s i d i r e c t i o n

22 eta = augknt ( [ 0 , 1 ] , q+1) ; % knot eta d i r e c t i o n

23 ze ta = augknt ( [ 0 , 1 ] , r+1) ; % knot zeta d i r e c t i o n

24 hxi = 1/(mcp − p) ;

25 heta = 1/( ncp − q ) ;

26 hzeta = 1/( ocp − r ) ;

27 i n s x i = hxi : hxi :1−hxi ;
28 i n s e t a = heta : heta :1−heta ;
29 i n s z e t a = hzeta : hzeta :1−hzeta ;
30

31 [~ , c s i ] = bspknt ins (p , 0 : 1 / p : 1 , c s i , i n s x i ) ; % [− , i k ] = bspknt ins ( s p l i n e

degree , c . p . , knot seq . , new knot )

32

33 [~ , eta ] = bspknt ins (q , 0 : 1 / q : 1 , eta , i n s e t a ) ;

34

35 [~ , ze ta ] = bspknt ins ( r , 0 : 1 / r : 1 , zeta , i n s z e t a ) ;

36

37 % compute G r e v i l l e a b s c i s s a e ( c o l l o c a t i o n po in t s )

38 c o l l p t x i = aveknt ( c s i , p+1) ;

39 c o l l p t e t a = aveknt ( eta , q+1) ;

40 c o l l p t z e t a = aveknt ( zeta , r+1) ;

41

42 % i n t i a l i z a t i o n s

43 ndof = 3*mcp*ncp ;

44 nbc = 3*(mcp−2)*( ncp−2)*( ocp−2) ;
45 nbci = nbc /3 ;

46 f_gl = ze ro s ( nbc , 1 ) ;

47 row = ze ro s (1 , ndof ^2) ;
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48 c o l = ze ro s (1 , ndof ^2) ;

49 va l = ze ro s (1 , ndof ^2) ;

50 k_nk = ze ro s (3 , nbc ) ;

51

52 % " loop " over a c t i v e c o l l o c a t i o n po in t s

53 i i = 2 :mcp−1;
54 j j = 2 : ncp−1;
55 kk = 2 : ocp−1;
56

57 % se t a c t i v e c o l l o c a t i o n po in t s

58 c o l l p t x i = c o l l p t x i ( i i ) ;

59 c o l l p t e t a = c o l l p t e t a ( j j ) ;

60 c o l l p t z e t a = c o l l p t z e t a ( kk ) ;

61

62 % compute ba s i s f un c t i on s and t h e i r d e r i v a t i v e s at c o l l o c a t i o n pts

63 Nx = spco l ( c s i , p+1, s o r t ( [ c o l l p t x i , c o l l p t x i , c o l l p t x i ] ) ) ; % N1( c s i 1 ) N2(

c s i 1 ) N3( c s i 1 ) ;% N1 ' ( c s i 1 ) N2 ' ( c s i 1 ) N3 ' ( c s i 1 ) ;% N1 ' ' ( c s i 1 ) N2 ' ' (

c s i 1 ) N3 ' ' ( c s i 1 ) . . .

64 % N1( c s i 2 ) N2( c s i 2 ) N3( c s i 2 ) ;

65 Ny = spco l ( eta , q+1, s o r t ( [ c o l l p t e t a , c o l l p t e t a , c o l l p t e t a ] ) ) ;

66 Nz = spco l ( zeta , r+1, s o r t ( [ c o l l p t z e t a , c o l l p t z e t a , c o l l p t z e t a ] ) ) ;

67

68 % cons t ruc t the s t i f f n e s s matrix

69 kk = 0 ;

70 i count = 1 ;

71

72 f o r k = 1 : ocp−2
73 f o r j = 1 : ncp−2
74 f o r i = 1 :mcp−2
75

76 a = 3* i count −2;
77 c = 3* i count ;

78 f 1 = s i n (2* pi * c o l l p t x i ( i ) ) * s i n (2* pi * c o l l p t e t a ( j ) ) * s i n (2* pi * c o l l p t z e t a (

k ) ) ;

79 f 2 = cos (2* pi * c o l l p t x i ( i ) ) * cos (2* pi * c o l l p t e t a ( j ) ) * s i n (2* pi * c o l l p t z e t a (

k ) ) ;

80 f 3 = cos (2* pi * c o l l p t x i ( i ) ) * cos (2* pi * c o l l p t z e t a (k ) ) * s i n (2* pi * c o l l p t e t a (

j ) ) ;

81 f 4 = cos (2* pi * c o l l p t e t a ( j ) ) * cos (2* pi * c o l l p t z e t a (k ) ) * s i n (2* pi * c o l l p t x i (

i ) ) ;

82

83 b1 = 12* pi ^2*mi* f 1 − ( lambda + mi ) *(4* pi ^2* f 2 + 4* pi ^2* f 3 − 4* pi ^2* f 1 )

;

84 b2 = 12* pi ^2*mi* f 1 − ( lambda + mi ) *(4* pi ^2* f 2 + 4* pi ^2* f 4 − 4* pi ^2* f 1 )

;

85 b3 = 12* pi ^2*mi* f 1 − ( lambda + mi ) *(4* pi ^2* f 3 + 4* pi ^2* f 4 − 4* pi ^2* f 1 )

;

86

87 f_gl ( a : c ) = −[b1 ; b2 ; b3 ] ;
88

89 d2Nxi = reshape ( kron (Nx(3* i , 2 : mcp−1) '*Ny(3* j −2 ,2: ncp−1) ,Nz(3*k−2 ,2: ocp
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−1) ) ,1 , nbc i ) ;
90 d2Neta = reshape ( kron (Nx(3* i −2 ,2:mcp−1) '*Ny(3* j , 2 : ncp−1) ,Nz(3*k−2 ,2:

ocp−1) ) ,1 , nbc i ) ;
91 d2Nzeta = reshape ( kron (Nx(3* i −2 ,2:mcp−1) '*Ny(3* j −2 ,2: ncp−1) ,Nz(3*k , 2 :

ocp−1) ) ,1 , nbc i ) ;
92 d2Nxieta = reshape ( kron (Nx(3* i −1 ,2:mcp−1) '*Ny(3* j −1 ,2: ncp−1) ,Nz(3*k

−2 ,2: ocp−1) ) ,1 , nbc i ) ;
93 d2Netazeta = reshape ( kron (Nx(3* i −2 ,2:mcp−1) '*Ny(3* j −1 ,2: ncp−1) ,Nz(3*k

−1 ,2: ocp−1) ) ,1 , nbc i ) ;
94 d2Nxizeta = reshape ( kron (Nx(3* i −1 ,2:mcp−1) '*Ny(3* j −2 ,2: ncp−1) ,Nz(3*k

−1 ,2: ocp−1) ) ,1 , nbc i ) ;
95 midivN = mi*( d2Nxi + d2Neta + d2Nzeta ) ;

96

97 k_nk ( 1 , 1 : 3 : end−2) = midivN + ( lambda+mi) *d2Nxi ;

98 k_nk ( 1 , 2 : 3 : end−1) = ( lambda+mi) *d2Nxieta ;

99 k_nk ( 1 , 3 : 3 : end ) = ( lambda+mi) *d2Nxizeta ;

100

101 k_nk ( 2 , 1 : 3 : end−2) = ( lambda+mi) *d2Nxieta ;

102 k_nk ( 2 , 2 : 3 : end−1) = midivN + ( lambda+mi) *d2Neta ;

103 k_nk ( 2 , 3 : 3 : end ) = ( lambda+mi) *d2Netazeta ;

104

105 k_nk ( 3 , 1 : 3 : end−2) = ( lambda+mi) *d2Nxizeta ;

106 k_nk ( 3 , 2 : 3 : end−1) = ( lambda+mi) *d2Netazeta ;

107 k_nk ( 3 , 3 : 3 : end ) = midivN + ( lambda+mi) *d2Nzeta ;

108

109 [ rowk , colk , va lk ] = f i nd (k_nk) ;

110

111 l = length ( valk ) ;

112

113 row ( kk+1:kk+l ) = 3* i count−3+rowk ;
114

115 c o l ( kk+1:kk+l ) = co lk ;

116 va l ( kk+1:kk+l ) = valk ;

117

118 kk = kk + l ;

119 i count = icount + 1 ;

120 end

121 end

122 end

123

124 row = row ( 1 : kk ) ;

125 c o l = co l ( 1 : kk ) ;

126 va l = va l ( 1 : kk ) ;

127

128 % assemble s t i f f n e s s

129 k_gl = spar s e ( row , co l , val , nbc , nbc ) ;

130 c l e a r row co l va l

131

132 % so l v e l i n e a r system

133 s o l = k_gl\ f_gl ;

134 c l e a r k_gl f_gl
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135

136 % approx r e l a t i v e L^2−norm e r r o r vs the manufactured a n a l y t i c a l

s o l u t i o n

137 c o e f f s 1 = ze ro s (mcp , ncp , ocp ) ;

138 c o e f f s 1 ( 2 : (mcp−1) , 2 : ( ncp−1) , 2 : ( ocp−1) ) = reshape ( s o l ( 1 : 3 : end−2) , (mcp
−2) , ( ncp−2) , ( ocp−2) ) ;

139 bsp l1 = spmak({ c s i , eta , ze ta } , c o e f f s 1 ) ;

140

141 c o e f f s 2 = ze ro s (mcp , ncp , ocp ) ;

142 c o e f f s 2 ( 2 : (mcp−1) , 2 : ( ncp−1) , 2 : ( ocp−1) ) = reshape ( s o l ( 2 : 3 : end−1) , (mcp
−2) , ( ncp−2) , ( ocp−2) ) ;

143 bsp l2 = spmak({ c s i , eta , ze ta } , c o e f f s 2 ) ;

144

145 c o e f f s 3 = ze ro s (mcp , ncp , ocp ) ;

146 c o e f f s 3 ( 2 : (mcp−1) , 2 : ( ncp−1) , 2 : ( ocp−1) ) = reshape ( s o l ( 3 : 3 : end ) , (mcp−2)
, ( ncp−2) , ( ocp−2) ) ;

147 bsp l3 = spmak({ c s i , eta , ze ta } , c o e f f s 3 ) ;

148

149 ptx = l i n s p a c e (0 ,1 ,10*mcp) ;

150 pty = l i n s p a c e (0 ,1 ,10* ncp ) ;

151 ptz = l i n s p a c e (0 ,1 ,10* ocp ) ;

152

153 approx1 = fnva l ( bspl1 , { ptx , pty , ptz }) ;

154 approx2 = fnva l ( bspl2 , { ptx , pty , ptz }) ;

155 approx3 = fnva l ( bspl3 , { ptx , pty , ptz }) ;

156

157 [ xx , yy , zz ] = meshgrid ( ptx , pty , ptz ) ;

158 exact = s i n (2* pi *xx ) .* s i n (2* pi *yy ) .* s i n (2* pi * zz ) ;

159

160 e r r o r 1 = sq r t (sum(sum(sum( ( exact−approx1 ) .^2) ) ) /sum(sum(sum( exact .^2) )

) ) ;

161 e r r o r 2 = sq r t (sum(sum(sum( ( exact−approx2 ) .^2) ) ) /sum(sum(sum( exact .^2) )

) ) ;

162 e r r o r 3 = sq r t (sum(sum(sum( ( exact−approx3 ) .^2) ) ) /sum(sum(sum( exact .^2) )

) ) ;

163

164 e r r o r = [ e r r o r 1 ; e r r o r 2 ; e r r o r 3 ] ;

165 re turn
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4.2.3 Mapping

Up to now we proposed examples which do not require mapping operation. To fully understand

this non trivial change we move to 1D again to build the required map. We recall that the Jacobian

in 1D is

J = x′(x) =
∑
i

N ′(ξ)Bi =
dN

dξ
Bi (4.14)

after the Jacobian is computed the real mapping requires its inversion since we know the derivatives

of the shape functions with respect to ξ.

N ′(ξ) =
dN

dx
=
dN

dξ

dξ

dx
=
dN

dξ
J−1 (4.15)

Thi can be trivially extended to 3D. In the following, we report our Matlab implementation of

IGA collocation to solve 3D elastic problems on mapped geometries. The main di�erences with

respect to the previous code are:

� The code requires the target number of control points and degree of approximation per

direction and provides already the minimum value for the cited quantities.

� From the basic information it constructs the geometry in terms of NURBS to have an idea of

the problem and re�nement is performed in order to reach the target degree of approximation.

� Since the boundary is clamped the actual degrees of freedom are found but put aside for

postprocessing since all the B-Splines informations are required inside the triple "for" loop

for the mapping. The latter prescribes several steps: NURBS are obtained from B-splines

tensor product and put aside; local derivation and normalization is performed; the mapping

goes from local to global as an end.
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1 f unc t i on e r r o r = nrb_IGAcoll_elLin3D (p , q , r ,mcp , ncp , ocp ,E, nu)

2 % 3D IGA co l l o c a t i o n code

3 %

4 % Solve 3D l i n e a r e l a s t i c i t y problem with homogeneous D i r i c h l e t b . c . ' s

and

5 % with a manufactured body load s . t . the a n a l y t i c a l s o l u t i o n i s

a v a i l a b l e

6 %

7 % Input : p = approximation degree ( c s i )

8 % q = approximation degree ( eta )

9 % r = approximation degree ( ze ta )

10 % mcp = number o f c o l l o c a t i o n po in t s ( c s i )

11 % ncp = number o f c o l l o c a t i o n po in t s ( eta )

12 % ocp = number o f c o l l o c a t i o n po in t s ( ze ta )

13 % E = Young modulus

14 % nu = Poisson ' s r a t i o

15 %

16 % quarte r annulus

17 mcp0 = 3 ;

18 ncp0 = 2 ;

19 ocp0 = 2 ;

20 p0 = 2 ;

21 q0 = 1 ;

22 r0 = 1 ;

23 w = ones (mcp0 , ncp0 , ocp0 ) ;

24

25 XX0 = ze ro s (mcp0 , ncp0 , ocp0 ) ;

26 X0 = [1 4 ;

27 1 4 ;

28 0 0 ] ;

29 XX0( : , : , 1 ) = X0 ;

30 XX0( : , : , 2 ) = X0 ;

31

32 YY0 = ze ro s (mcp0 , ncp0 , ocp0 ) ;

33 Y0 = [0 0 ;

34 1 4 ;

35 1 4 ] ;

36 YY0( : , : , 1 ) = Y0 ;

37 YY0( : , : , 2 ) = Y0 ;

38

39 ZZ0 = ze ro s (mcp0 , ncp0 , ocp0 ) ;

40 ZZ0 ( : , : , 2 ) = ones (mcp0 , ncp0 ) ;

41

42 w( 2 , : , : ) = sq r t (2 ) /2 ;

43

44 c s i = [ 0 0 0 1 1 1 ] ;

45 eta = [0 0 1 1 ] ;

46 ze ta = [0 0 1 1 ] ;

47

48 BB = ze ro s (4 ,mcp0 , ncp0 , ocp0 ) ;
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49 BB( 1 , : , : , : ) = XX0.*w;

50 BB( 2 , : , : , : ) = YY0.*w;

51 BB( 3 , : , : , : ) = ZZ0 .*w;

52 BB( 4 , : , : , : ) = w;

53 nurbs = nrbmak(BB,{ c s i eta zeta }) ;

54

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

56 % ptu = l i n s p a c e (0 ,1 ,10*mcp0) ;

57 % ptv = l i n s p a c e (0 ,1 ,10* ncp0 ) ;

58 % ptw = l i n s p a c e (0 ,1 ,10* ocp0 ) ;

59 % pnts = nrbeva l ( nurbs , { ptu , ptv , ptw}) ;

60 % xx = squeeze ( pnts ( 1 , : , : ) ) ;

61 % yy = squeeze ( pnts ( 2 , : , : ) ) ;

62 % zz = squeeze ( pnts ( 3 , : , : ) ) ;

63 % f i gu r e , s u r f ( xx , yy , zz ) , view (3)

64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

65

66 % ref inement

67 inc_p = p − p0 ;

68 inc_q = q − q0 ;

69 inc_r = r − r0 ;

70 nurbs = nrbdege lev ( nurbs , [ inc_p inc_q inc_r ] ) ;

71 h1 = 1/( ncp − p) ;

72 h2 = 1/(mcp − q ) ;

73 h3 = 1/( ocp − r ) ;

74 nurbs = nrbknt ins ( nurbs , { h1 : h1:1−h1 , h2 : h2:1−h2 , h3 : h3:1−h3}) ;
75 mcp = nurbs . number (1 ) ;

76 ncp = nurbs . number (2 ) ;

77 ocp = nurbs . number (3 ) ;

78 % p = nurbs . order (1 )−1;
79 % q = nurbs . order (2 )−1;
80 % r = nurbs . order (3 )−1;
81 nnod = mcp*ncp*ocp ;

82 c s i = nurbs . knots {1} ;

83 eta = nurbs . knots {2} ;

84 ze ta = nurbs . knots {3} ;

85 X = squeeze ( nurbs . c o e f s ( 1 , : , : , : ) . / nurbs . c o e f s ( 4 , : , : , : ) ) ;

86 Y = squeeze ( nurbs . c o e f s ( 2 , : , : , : ) . / nurbs . c o e f s ( 4 , : , : , : ) ) ;

87 Z = squeeze ( nurbs . c o e f s ( 3 , : , : , : ) . / nurbs . c o e f s ( 4 , : , : , : ) ) ;

88 w = squeeze ( nurbs . c o e f s ( 4 , : , : , : ) ) ;

89

90 % compute G r e v i l l e a b s c i s s a e ( c o l l o c a t i o n po in t s )

91 c o l l p t_c s i = aveknt ( c s i , p+1) ;

92 co l lp t_eta = aveknt ( eta , q+1) ;

93 co l l p t_ze ta = aveknt ( zeta , r+1) ;

94

95 % compute ba s i s f un c t i on s and t h e i r d e r i v a t i v e s at c o l l o c a t i o n pts

96 NN = spco l ( c s i , p+1, s o r t ( [ c o l l p t_c s i , c o l l p t_c s i , c o l l p t_c s i ] ) ) ;

97 MM = spco l ( eta , q+1, s o r t ( [ co l lpt_eta , co l lpt_eta , co l lp t_eta ] ) ) ;

98 RR = spco l ( zeta , r+1, s o r t ( [ co l lpt_zeta , co l lpt_zeta , co l l p t_ze ta ] ) ) ;

99
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100 % se t mate r i a l parameters

101 mi = E/(2* (1 + nu) ) ;

102 lambda = E*nu/((1 + nu) *(1 − 2*nu) ) ;

103

104 % i n t i a l i z a t i o n s

105 ndof = 3*nnod ;

106 f_gl = ze ro s ( ndof , 1 ) ;

107 e s t = p^2*ncp^5;

108 row = ze ro s (1 , e s t ) ;% ze ro s (1 , ndof ^2) ;

109 c o l = ze ro s (1 , e s t ) ; % ze ro s (1 , ndof ^2) ;

110 va l = ze ro s (1 , e s t ) ; % ze ro s (1 , ndof ^2) ;

111 k_nk = ze ro s (3 , ndof ) ;

112 IJK = ze ro s (3 , nnod ) ;

113 NNN = ze ro s (nnod , nnod , 3 ) ;

114

115 % se t a c t i v e d . o . f . s

116 A = zero s (mcp , ncp , ocp ) ;

117 A(2 : end−1 ,2: end−1 ,2: end−1) = 1 ;

118 A = reshape (A, 1 , nnod ) ;

119 act_nodes = f i nd (A) ;

120 act_dofs = so r t ( [ 3* act_nodes−2 ,3*act_nodes−1 ,3*act_nodes ] ) ;

121

122 % cons t ruc t the s t i f f n e s s matrix

123 kk = 0 ;

124 i count = 1 ;

125 x = reshape (X, nnod , 1 ) ;

126 y = reshape (Y, nnod , 1 ) ;

127 z = reshape (Z , nnod , 1 ) ;

128

129 f o r k = 1 : ocp

130 f o r j = 1 : ncp

131 f o r i = 1 :mcp

132 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

133 % mapping

134 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

135 Nx = [NN(3* i −2 , : ) ;NN(3* i −1 , : ) ;NN(3* i , : ) ] ; % N,N' ,N' '

136 Ny = [MM(3* j −2 , : ) ;MM(3* j −1 , : ) ;MM(3* j , : ) ] ;
137 Nz = [RR(3*k−2 , : ) ;RR(3*k−1 , : ) ;RR(3*k , : ) ] ;
138

139 N = tens_prod (Nx( 1 , : ) ,Ny ( 1 , : ) ,Nz ( 1 , : ) ,w) ;

140 den_sum = sum(N) ;

141

142 [ dN,ddN ] = loca l_de r i v e (Nx,Ny,Nz ,w) ;

143 [ dN,ddN ] = normalize_shapefun (N, den_sum ,dN,ddN) ;

144 N = N/den_sum ;

145 XYZ = [ y , x , z ] ' ;

146 [~ ,ddN ] = loca l_to_globa l (XYZ,dN,ddN) ;

147 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

148 N = N' ;

149 ddN = ddN ' ;

150 ddNxi2 = ddN( 1 , : ) ;
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151 ddNeta2 = ddN( 2 , : ) ;

152 ddNzeta2 = ddN( 3 , : ) ;

153 ddNxieta = ddN( 4 , : ) ;

154 ddNetazeta = ddN( 5 , : ) ;

155 ddNxizeta = ddN( 6 , : ) ;

156

157 x

158 y

159 p t i = N*x

160 pt j = N*y

161 ptk = N*z ;

162

163 b1 = − mi*(8* p t i ^2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) + 8* pt j ^2* s i n (2* pi *

ptk ) * s i n ( p t i ) * s i n ( p t j ) + 4* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 +

pt j ^2 − 1) + 4* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 −
16) + 4* p t i * s i n (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) +

4* p t i * s i n (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 16) + 4* pt j *

s i n (2* pi *ptk ) * cos ( p t j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 1) + 4* pt j * s i n (2*

pi *ptk ) * cos ( p t j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 16) − 2* s i n (2* pi *ptk ) *

s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 + pt j ^2 − 16) − 4* pi

^2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 + pt j

^2 − 16) ) − ( lambda + mi) *(8* p t i ^2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j )

+ 2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) + 2* s i n (2*

pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 16) + 4* p t i * s i n (2* pi *ptk

) * cos ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) + 2* p t i * s i n (2* pi *ptk ) * cos (

p t j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 1) + 4* p t i * s i n (2* pi *ptk ) * cos ( p t i ) *

s i n ( p t j ) *( p t i ^2 + pt j ^2 − 16) + 2* p t i * s i n (2* pi *ptk ) * cos ( p t j ) * s i n (

p t i ) *( p t i ^2 + pt j ^2 − 16) + 2* pt j * s i n (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j ) *(

p t i ^2 + pt j ^2 − 1) + 2* pt j * s i n (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j ) *( p t i ^2 +

pt j ^2 − 16) + s i n (2* pi *ptk ) * cos ( p t i ) * cos ( p t j ) *( p t i ^2 + pt j ^2 − 1)

*( p t i ^2 + pt j ^2 − 16) + 8* p t i * pt j * s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) −
s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 + pt j ^2

− 16) + 4* pi * p t i * cos (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 −
1) + 4* pi * p t i * cos (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 16)

+ 2* pi * cos (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 +

pt j ^2 − 16) ) ;

164

165

166 b2 = − mi*(8* p t i ^2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) + 8* pt j ^2* s i n (2* pi *

ptk ) * s i n ( p t i ) * s i n ( p t j ) + 4* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 +

pt j ^2 − 1) + 4* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 −
16) + 4* p t i * s i n (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) +

4* p t i * s i n (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 16) + 4* pt j *

s i n (2* pi *ptk ) * cos ( p t j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 1) + 4* pt j * s i n (2*

pi *ptk ) * cos ( p t j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 16) − 2* s i n (2* pi *ptk ) *

s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 + pt j ^2 − 16) − 4* pi

^2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 + pt j

^2 − 16) ) − ( lambda + mi) *(8* pt j ^2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j )

+ 2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) + 2* s i n (2*

pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 16) + 2* p t i * s i n (2* pi *ptk

) * cos ( p t j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 1) + 2* p t i * s i n (2* pi *ptk ) * cos (
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pt j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 16) + 2* pt j * s i n (2* pi *ptk ) * cos ( p t i ) *

s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) + 4* pt j * s i n (2* pi *ptk ) * cos ( p t j ) * s i n ( p t i

) *( p t i ^2 + pt j ^2 − 1) + 2* pt j * s i n (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j ) *( p t i

^2 + pt j ^2 − 16) + 4* pt j * s i n (2* pi *ptk ) * cos ( p t j ) * s i n ( p t i ) *( p t i ^2 +

pt j ^2 − 16) + s i n (2* pi *ptk ) * cos ( p t i ) * cos ( p t j ) *( p t i ^2 + pt j ^2 − 1) *(

p t i ^2 + pt j ^2 − 16) + 8* p t i * pt j * s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) −
s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 + pt j ^2

− 16) + 4* pi * pt j * cos (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 −
1) + 4* pi * pt j * cos (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 16)

+ 2* pi * cos (2* pi *ptk ) * cos ( p t j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 +

pt j ^2 − 16) ) ;

167

168

169 b3 = − mi*(8* p t i ^2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) + 8* pt j ^2* s i n (2* pi *

ptk ) * s i n ( p t i ) * s i n ( p t j ) + 4* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 +

pt j ^2 − 1) + 4* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 −
16) + 4* p t i * s i n (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) +

4* p t i * s i n (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 16) + 4* pt j *

s i n (2* pi *ptk ) * cos ( p t j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 1) + 4* pt j * s i n (2*

pi *ptk ) * cos ( p t j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 16) − 2* s i n (2* pi *ptk ) *

s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 + pt j ^2 − 16) − 4* pi

^2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 + pt j

^2 − 16) ) − ( lambda + mi) *(4* pi * p t i * cos (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j )

*( p t i ^2 + pt j ^2 − 1) − 4* pi ^2* s i n (2* pi *ptk ) * s i n ( p t i ) * s i n ( p t j ) *( p t i

^2 + pt j ^2 − 1) *( p t i ^2 + pt j ^2 − 16) + 4* pi * p t i * cos (2* pi *ptk ) * s i n (

p t i ) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 16) + 4* pi * pt j * cos (2* pi *ptk ) * s i n ( p t i

) * s i n ( p t j ) *( p t i ^2 + pt j ^2 − 1) + 4* pi * pt j * cos (2* pi *ptk ) * s i n ( p t i ) *

s i n ( p t j ) *( p t i ^2 + pt j ^2 − 16) + 2* pi * cos (2* pi *ptk ) * cos ( p t i ) * s i n ( p t j

) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 + pt j ^2 − 16) + 2* pi * cos (2* pi *ptk ) * cos

( p t j ) * s i n ( p t i ) *( p t i ^2 + pt j ^2 − 1) *( p t i ^2 + pt j ^2 − 16) ) ;

170

171 c = 3* i count ;

172 a = c−2;
173

174 f_gl ( a : c ) = −[b1 ; b2 ; b3 ] ;
175 IJK ( : , i count ) = [ p t i ; p t j ; ptk ] ;

176 NNN( icount , : , 1 ) = N;

177 NNN( icount , : , 2 ) = N;

178 NNN( icount , : , 3 ) = N;

179

180 midivN = mi*( ddNxi2 + ddNeta2 + ddNzeta2 ) ;

181 k_nk ( 1 , 1 : 3 : end−2) = midivN + ( lambda+mi) *ddNxi2 ;

182 k_nk ( 1 , 2 : 3 : end−1) = ( lambda+mi) *ddNxieta ;

183 k_nk ( 1 , 3 : 3 : end ) = ( lambda+mi) *ddNxizeta ;

184

185 k_nk ( 2 , 1 : 3 : end−2) = ( lambda+mi) *ddNxieta ;

186 k_nk ( 2 , 2 : 3 : end−1) = midivN + ( lambda+mi) *ddNeta2 ;

187 k_nk ( 2 , 3 : 3 : end ) = ( lambda+mi) *ddNetazeta ;

188

189 k_nk ( 3 , 1 : 3 : end−2) = ( lambda+mi) *ddNxizeta ;

190 k_nk ( 3 , 2 : 3 : end−1) = ( lambda+mi) *ddNetazeta ;
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191 k_nk ( 3 , 3 : 3 : end ) = midivN + ( lambda+mi) *ddNzeta2 ;

192

193 [ rowk , colk , va lk ] = f i nd (k_nk) ;

194

195 l = length ( valk ) ;

196

197 row ( kk+1:kk+l ) = 3* i count−3+rowk ;
198 c o l ( kk+1:kk+l ) = co lk ;

199 va l ( kk+1:kk+l ) = valk ;

200

201 kk = kk + l ;

202 i count = icount + 1 ;

203 end

204 end

205 end

206

207 row = row ( 1 : kk ) ;

208 c o l = co l ( 1 : kk ) ;

209 va l = va l ( 1 : kk ) ;

210

211 % assemble s t i f f n e s s

212 k_gl = spar s e ( row , co l , val , ndof , ndof ) ;

213 c l e a r row co l va l

214

215 % so l v e l i n e a r system

216 s o l = k_gl ( act_dofs , act_dofs ) \ f_gl ( act_dofs ) ;

217 c l e a r k_gl f_gl

218

219 % va lu taz i one + r a f f i n a t a

220 ptu = l i n s p a c e (0 ,1 ,2*mcp) ;

221 ptv = l i n s p a c e (0 ,1 ,2* ncp ) ;

222 ptw = l i n s p a c e (0 ,1 ,2* ocp ) ;

223 pnts = nrbeva l ( nurbs , { ptu , ptv , ptw}) ;

224 x = squeeze ( pnts ( 1 , : , : , : ) ) ;

225 y = squeeze ( pnts ( 2 , : , : , : ) ) ;

226 z = squeeze ( pnts ( 3 , : , : , : ) ) ;

227

228 uu = ze ro s (mcp , ncp , ocp ) ;

229 uu ( 2 :mcp−1 ,2: ncp−1 ,2: ocp−1) = reshape ( s o l ( 1 : 3 : end−2) ,mcp−2,ncp−2,ocp
−2) ;

230 vv = ze ro s (mcp , ncp , ocp ) ;

231 vv ( 2 :mcp−1 ,2: ncp−1 ,2: ocp−1) = reshape ( s o l ( 2 : 3 : end−1) ,mcp−2,ncp−2,ocp
−2) ;

232 ww = ze ro s (mcp , ncp , ocp ) ;

233 ww( 2 :mcp−1 ,2: ncp−1 ,2: ocp−1) = reshape ( s o l ( 3 : 3 : end ) ,mcp−2,ncp−2,ocp−2) ;
234 BB = ze ro s (4 ,mcp , ncp , ocp ) ;

235 BB( 1 , : , : , : ) = uu .*w;

236 BB( 2 , : , : , : ) = vv .*w;

237 BB( 3 , : , : , : ) = ww.*w;

238 BB( 4 , : , : , : ) = w;

239 nurbs_u = nrbmak(BB,{ c s i eta zeta }) ;
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240 pnts_u = nrbeva l ( nurbs_u , { ptu , ptv , ptw}) ;

241 u_val= squeeze ( pnts_u ( 1 , : , : , : ) ) ;

242 v_val = squeeze ( pnts_u ( 2 , : , : , : ) ) ;

243 w_val = squeeze ( pnts_u ( 3 , : , : , : ) ) ;

244

245 exact_u = (x.^2+y.^2−1) . * ( x.^2+y.^2−16) .* s i n (x ) .* s i n (y ) .* s i n (2* pi *z ) ;
246 exact_v = exact_u ;

247 exact_w = exact_u ;

248

249 e r r o r 1 = sq r t (sum(sum(sum( ( exact_u − u_val ) .^2) ) ) /sum(sum(sum( exact_u

.^2) ) ) ) ;

250 e r r o r 2 = sq r t (sum(sum(sum( ( exact_v − v_val ) .^2) ) ) /sum(sum(sum( exact_v

.^2) ) ) ) ;

251 e r r o r 3 = sq r t (sum(sum(sum( ( exact_w − w_val ) .^2) ) ) /sum(sum(sum( exact_w

.^2) ) ) ) ;

252

253 e r r o r = [ e r r o r 1 ; e r r o r 2 ; e r r o r 3 ] ;

254

255

256 %% subrout ine s

257 f unc t i on M=tens_prod (A,B,C,w)

258

259 AB = A'*B;

260 M = AB( : ) *C;

261 M = M( : ) .*w( : ) ;

262

263 end

264 f unc t i on [dN,ddN ] = loca l_de r i v e (Nx,Ny,Nz ,w)

265

266 dN( : , 1 ) = tens_prod (Nx( 2 , : ) ,Ny ( 1 , : ) ,Nz ( 1 , : ) ,w) ; % dNMP/d_xi

267 %

268 dN( : , 2 ) = tens_prod (Nx( 1 , : ) ,Ny ( 2 , : ) ,Nz ( 1 , : ) ,w) ; % dNMP/d_eta

269 %

270 dN( : , 3 ) = tens_prod (Nx( 1 , : ) ,Ny ( 1 , : ) ,Nz ( 2 , : ) ,w) ; % dNMP/d_zeta

271 %−
272 ddN( : , 1 )= tens_prod (Nx( 3 , : ) ,Ny ( 1 , : ) ,Nz ( 1 , : ) ,w) ; % d2NMP/d_xi2

273 %

274 ddN( : , 2 )= tens_prod (Nx( 1 , : ) ,Ny ( 3 , : ) ,Nz ( 1 , : ) ,w) ; % d2NMP/d_eta2

275 %

276 ddN( : , 3 )= tens_prod (Nx( 1 , : ) ,Ny ( 1 , : ) ,Nz ( 3 , : ) ,w) ; % d2NMP/d_zeta2

277 %

278 ddN( : , 4 )= tens_prod (Nx( 2 , : ) ,Ny ( 2 , : ) ,Nz ( 1 , : ) ,w) ; % d2NMP/d_xi_d_eta

279 %

280 ddN( : , 5 )= tens_prod (Nx( 1 , : ) ,Ny ( 2 , : ) ,Nz ( 2 , : ) ,w) ; % d2NMP/d_eta_d_zeta

281 %

282 ddN( : , 6 )= tens_prod (Nx( 2 , : ) ,Ny ( 1 , : ) ,Nz ( 2 , : ) ,w) ; % d2NMP/d_xi_d_zeta

283

284 end

285 f unc t i on [dN,ddN ] = normalize_shapefun (N, den_sum ,dN,ddN)

286 der_sumx = sum(dN( : , 1 ) ) ; % dNMP/d_xi

287 der_sumy = sum(dN( : , 2 ) ) ; % dNMP/d_eta
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288 der_sumz = sum(dN( : , 3 ) ) ; % dNMP/d_zeta

289

290 der2_sumx = sum(ddN( : , 1 ) ) ; % d2NMP/d_xi2

291 der2_sumy = sum(ddN( : , 2 ) ) ; % d2NMP/d_eta2

292 der2_sumz = sum(ddN( : , 3 ) ) ; % d2NMP/d_zeta2

293 der2_sumxy = sum(ddN( : , 4 ) ) ; % d2NMP/d_xi_d_eta

294 der2_sumyz = sum(ddN( : , 5 ) ) ; % d2NMP/d_eta_d_zeta

295 der2_sumxz = sum(ddN( : , 6 ) ) ; % d2NMP/d_xi_d_zeta

296

297 % th i s i s a c t ua l l y R, the NURBS ba s i s f unc t i on : OK

298 ddN( : , 1 ) = ddN( : , 1 ) /den_sum − . . . %d2R/d_xi2

299 (2*dN( : , 1 ) *der_sumx + N*der2_sumx) /den_sum^2 + 2*N*der_sumx^2/den_sum

^3;

300 ddN( : , 2 ) = ddN( : , 2 ) /den_sum − . . . %d2R/d_eta2

301 (2*dN( : , 2 ) *der_sumy + N*der2_sumy) /den_sum^2 + 2*N*der_sumy^2/den_sum

^3;

302 ddN( : , 3 ) = ddN( : , 3 ) /den_sum − . . . %d2R/d_zeta2

303 (2*dN( : , 3 ) *der_sumz + N*der2_sumz ) /den_sum^2 + 2*N*der_sumz^2/den_sum

^3;

304

305 ddN( : , 4 ) = ddN( : , 4 ) /den_sum − (dN( : , 1 ) *der_sumy + . . . %d2R/d_xi_d_eta

306 dN( : , 2 ) *der_sumx + N*der2_sumxy ) /den_sum^2 + 2*N*der_sumx*der_sumy/

den_sum^3;

307 ddN( : , 5 ) = ddN( : , 5 ) /den_sum − (dN( : , 2 ) *der_sumz + . . . %d2R/

d_eta_d_zeta

308 dN( : , 3 ) *der_sumy + N*der2_sumyz ) /den_sum^2 + 2*N*der_sumy*der_sumz/

den_sum^3;

309 ddN( : , 6 ) = ddN( : , 6 ) /den_sum − (dN( : , 3 ) *der_sumx + . . . d2R/d_xi_d_zeta

310 dN( : , 1 ) *der_sumz + N*der2_sumxz ) /den_sum^2 + 2*N*der_sumz*der_sumx/

den_sum^3;

311

312 dN ( : , 1 ) = dN ( : , 1 ) /den_sum − N*der_sumx/den_sum^2; %dR/d_xi

313 dN ( : , 2 ) = dN ( : , 2 ) /den_sum − N*der_sumy/den_sum^2; %dR/d_eta

314 dN ( : , 3 ) = dN ( : , 3 ) /den_sum − N*der_sumz/den_sum^2; %dR/d_zeta

315

316 end

317 %%

318 f unc t i on [dN,ddN ] = loca l_to_globa l (XYZ,dN,ddN)

319

320 D = (XYZ*dN) ' ;

321

322 Dinv = inv (D) ;

323 dN = dN*Dinv ' ; %f i r s t order g l oba l

d e r i v a t i v e s

324 %−−−
325

326 D2 = (XYZ*ddN) ' ;

327

328 RHS = ddN − dN*D2 ' ;

329

330 dxdxi2 = [D(1 , 1 ) ^2 D(1 , 2 ) ^2 D(1 , 3 ) ^2 2*D(1 ,1 ) *D(1 ,2 )
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2*D(1 ,2 ) *D(1 ,3 ) 2*D(1 ,1 ) *D(1 ,3 ) ;

331 D(2 ,1 ) ^2 D(2 , 2 ) ^2 D(2 , 3 ) ^2 2*D(2 ,1 ) *D(2 ,2 )

2*D(2 ,2 ) *D(2 ,3 ) 2*D(2 ,1 ) *D(2 ,3 ) ;

332 D(3 ,1 ) ^2 D(3 , 2 ) ^2 D(3 , 3 ) ^2 2*D(3 ,1 ) *D(3 ,2 )

2*D(3 ,2 ) *D(3 ,3 ) 2*D(3 ,1 ) *D(3 ,3 ) ;

333 D(1 ,1 ) *D(2 ,1 ) D(1 , 2 ) *D(2 ,2 ) D(1 , 3 ) *D(2 ,3 ) D(1 , 1 ) *D(2 ,2 )+D(2 , 1 ) *D(1 ,2 )

D(1 , 2 ) *D(2 ,3 )+D(2 , 2 ) *D(1 ,3 ) D(1 , 1 ) *D(2 ,3 )+D(2 , 1 ) *D(1 ,3 ) ;

334 D(2 ,1 ) *D(3 ,1 ) D(2 , 2 ) *D(3 ,2 ) D(2 , 3 ) *D(3 ,3 ) D(2 , 1 ) *D(3 ,2 )+D(3 , 1 ) *D(2 ,2 )

D(2 , 2 ) *D(3 ,3 )+D(3 , 2 ) *D(2 ,3 ) D(2 , 1 ) *D(3 ,3 )+D(3 , 1 ) *D(2 ,3 ) ;

335 D(1 ,1 ) *D(3 ,1 ) D(1 , 2 ) *D(3 ,2 ) D(1 , 3 ) *D(3 ,3 ) D(1 , 1 ) *D(3 ,2 )+D(3 , 1 ) *D(1 ,2 )

D(1 , 2 ) *D(3 ,3 )+D(3 , 2 ) *D(1 ,3 ) D(1 , 1 ) *D(3 ,3 )+D(3 , 1 ) *D(1 ,3 ) ] ;

336 %−−−−
337

338 dxdxi2 inv = inv ( dxdxi2 ) ;

339 ddN = RHS*dxdxi2inv ' ;

340

341 end

342 end
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4.2.3.1 2D Clamped quarter of annulus

The proposed problem is a bidimensional quarter of annulus clamped on the boundary, where

R1 = 1 and R2 = 4. The geometry of the problem can be better recovered in the Figure 4.5.

Figure 4.5: Clamped quarter of an annulus. Geometry of the problem.

The exact solution to this problem is here reported:

u(x, y) = v(x, y) = (x2 + y2 − 1)(x2 + y2 − 16)sin(x)sin(y) (4.16)

Consequently we show in Figures 4.6 and 4.9 the exact solution, respectively in x and y directions

and we compare it with the approximate one in Figures 4.7 and 4.10. We stress that both solutions

respect the prescribed boundary conditions. We also plot the di�erence of the two considered

solution in Figures 4.8 and 4.11 for each direction, showing that with p = q = 2 and 15 collocation

points per direction a good level of approximation is obtained.
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Figure 4.6: 2D Clamped quarter of an annulus: exact displacement in x direction.

Figure 4.7: 2D Clamped quarter of an annulus: approximate displacement in x direc-
tion.
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Figure 4.8: 2D Clamped quarter of an annulus: displacements di�erence between exact
and approximate solution in x direction.

Figure 4.9: 2D Clamped quarter of an annulus: exact displacement in y direction.
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Figure 4.10: 2D Clamped quarter of an annulus: approximate displacement in y di-
rection.

Figure 4.11: 2D Clamped quarter of an annulus: displacements di�erence between
exact and approximate solution in y direction.
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Here we report the results in terms of convergence, which correspond to what expected also

for the 2D mapped benchmark. We also display Figure 4.12, that reports the number of degrees

of freedom compared to the dispacement error in terms of L2−norm in x direction, which proves

the convergence rates, previously discussed, computed calculating the slope starting from last two

numerical values, shown in the graphic. In order to present Figure 4.12 we considered degrees of

approximation from 2 to 7 and 20 to 130 control points for each direction.
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Figure 4.12: 2D Quarter of annulus convergence test: number of d.o.fs vs error in
terms of L2−norm, considering x direction.

The obtained convergence rates for this case are reported in Table 4.3.

Table 4.3: 2D Quarter of annulus: comparison between imposed degree of approxima-
tion and obtained order of convergence considering x direction.

Degree of approximation Order of convergence

2 2.03
3 2.05
4 4.12
5 4.17
6 6.27
7 6.41
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4.2.3.2 3D Clamped quarter of annulus

We also consider a 3D quarter of annulus case. The geometry of this problem can be detected in

Figure 4.13. In particular Ri = 1 and Re = 4.

R

R

H

i

e

Figure 4.13: 3D Quarter of annulus: geometric de�nition of the problem.

The exact solution for this problem is here reported:

u(x, y) = v(x, y) = w(x, y, z) = (x2 + y2 − 1)(x2 + y2 − 16)sin(x)sin(y)sin(2πz) (4.17)

We can easily verify, analytically, that the presented exact solution respects the boundary condi-

tions, since it's zero on the domain limits. As a conclusion we report the convergency test run for

this 3D case (see Figure 4.14), obtained testing all approximation degrees from 2 to 7 and consid-

ering 5 to 15 control points per directions. The presented results prove to respect the prescribed

rates of convergence as Table 4.4 demonstrates.
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Figure 4.14: 3D quarter or annulus convergence test: number of d.o.fs vs error in terms
of L2−norm in x direction.
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Table 4.4: 3D Quarter of annulus: comparison between imposed degree of approxima-
tion and obtained order of convergence considering x direction.

Degree of approximation Order of convergence

2 2.31
3 2.47
4 5.61
5 6.3
6 11
7 11



Chapter 5

Neumann Boundary Conditions

In this chapter we want be more speci�c regarding the imposition of Neumann boundary con-

ditions. For this purpose in the �rst section we stress their analytical form in engineering notation

and discuss their implementation. After that we show two tests relevant from an engineering point

of view.

5.1 Neumann boundary conditions imposition

Accordingly with Chapter 4 we recall Neumann boundary conditions in terms of dispacements:

µ(ui,j + uj,i)nj + λuj,j = ti on ∂ΩN (5.1)

We therefore proceed to approximate the displacements with the following NURBS shape functions

u(ξ, η, ζ) =
∑
i,j,k

Rp,qi,j,k(ξ, η, ζ)ûi,j,k (5.2)

or in compact form

u = Rû (5.3)

inserting (5.3) into (5.1) we obtain[λR1,1n1 + µ(2R1,1n1 + R1,2n2 + R1,3n3) λR2,2n1 + µR2,1n2

λR1,1n2 + µR1,2n1 λR2,2n2 + µ(2R2,2n2 + R2,1n1 + R2,3n3)

λR1,1n3 + µR1,3n1 λR2,2n3 + µR2,3n2

λR3,3n1 + µR3,1n3

λR3,3n2 + µR3,2n3

λR3,3n3 + µ(2R3,3n3 + R3,1n1 + R3,2n2)

]
·

 û

v̂

ŵ

 =

t1t2
t3


(5.4)

Thanks to (5.4) we can now move on towards implementation aspects of a 3D code that can solve

isotropic linear elasticity problems, which comprehend Neumann boundary conditions applications.

As we pointed out in Chapter 4, the proposed 3D code provides a triple "for" loop over the

collocation points.

This cycle

� allows to perform B-Splines tensor product in order to construct NURBS basis functions;

� performs mapping operation for all collocation points;

� assembles the sti�ness matrix and the residual force vector as sparse quantities.

49
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The code is thought to work three rows of the sti�ness matrix at a time for every considered

collocation point. Since we want to impose Neumann B.Cs inside the loop only on special geometry

occasions, we decide to use 'if cases' within the cycle. As far as if cycles is concerned, inside of

which we impose the prescribed conditions, we distinguish between:

� corners

� edges

� faces

As a �nal comment we remark that in order to enforce equation (5.4) we should project the traction

vector. This projection operation di�ers if we are considering corners, edges or faces, positively or

negative oriented accordingly to the direction identi�ed by the outer normal, if we are imposing

normal traction, or by the tangential versors, if we are enforcing shear conditions.

5.2 Pressurized thick-walled cylinder test

We now consider an in�nitely long and internally pressurized thick-walled cylinder. We take

advantage of the symmetry, considering only a quarter of the cylinder, reducing to the geometry

of u = 0 for x = 0 and v = 0 for y = 0 and assume a radial pressure load P , uniformly distributed

at the inner radius (see [5]). The geometry of the problem can be recovered in Figure 5.1.

Figure 5.1: Clamped quarter of an annulus (mixed B.Cs): geometry of the problem.

For the problem under investigation the analytical exact solution in terms of radial displacement

is

ur(r) =
PR2

i

E(R2
0 −R2

i )
[(1− ν)r + (1 + ν)

R2
0

r
] (5.5)

where r is the radial coordinate, Ri and R0 are the internal and the outer radii, and E and ν are

the Young's modulus and the Poisson's ratio. Setting Ri = 1 and R0 = 4, E = 1 and ν = 0, the
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solution becomes

ur(r) =
P

15
(r +

16

r
) (5.6)

Imposing P = 15/8, we obtain ur(1) = 2.125 and ur(4) = 1, so that we can check our approximated

solution. In Figure 5.2 we plot the obtained approximated solution, while in picture 5.3 we report

the di�erence between the exact solution and the approximate one. The presented results are

obtained using 40x40 control points and p = q = 4, as suggested in [5]. Figure 5.2 shows that we

can exactly capture the analytical solution at the boundary, while in picture 5.3 we stress that,

using this mesh and degree of approximation, the di�erence between the exact and approximate

solution is precise up to 10−5.

Figure 5.2: Clamped quarter of an annulus (mixed B.Cs): obtained approximate
solution.

Figure 5.3: Clamped quarter of an annulus (mixed B.Cs): di�erence between obtained
approximate solution and exact one.
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In Figure 5.4 we plot the relative solution error in the L2-norm versus the total number of

control points in a log-log plane the radial direction and we prove that convergence is attained.

This result is obtained using 20x20 up to 130x130 control points, with a step of 10 control points.

We therefore calculate the slope considering the last two points of the curves showed in 5.4 and we
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Figure 5.4: Clamped quarter of an annulus (mixed B.Cs) convergence test in radial
direction: number of d.o.fs vs error in terms of L2−norm.

obtain the order of convergence of the method for each imposed degree of approximation, which

proves to be in line with what we discussed in section 2.1, i.e. we get p order of convergence for

even degrees, while we obtain p− 1 order for odd degrees, as Table 5.1 states.

Table 5.1: Clamped quarter of an annulus (mixed B.Cs): comparison between imposed
degree of approximation and obtained order of convergence.

Degree of approximation Order of convergence

2 2.03
3 2.05
4 4.11
5 4.17
6 6.29
7 6.43
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5.3 Patch Test

We now consider a square domain Ω of side L = 1, subjected to uniform traction, as shown

in Figure 5.5. Accordingly, we specify the following boundary conditions u = 0 for x = 0 and

v = 0 for y = 0, while we assume a uniform traction q for x = L and traction-free conditions for

y = L (see [5]). The domain consists of a single material and it is represented by a single NURBS

patch. It is worth emphasizing that for this kind of problem it is necessary to explicitly impose

not only traction boundary conditions (as in classical Galerkin methods) but also traction-free

ones (which are instead naturally satis�ed in typical Galerkin methods). Moreover, the problem

under investigation is also characterized by a corner (point A in Figure 5.5) with a combination

of traction boundary condition in one direction and traction-free in the other direction. The

Figure 5.5: Patch traction test: problem geometry and boundary conditions.

analytical problem solution is homogenous and governed by the following strain-stress �exibility

relations: 
ε11

ε22

ε33

ε12

 =
1

E


1 ν ν 0

ν 1 ν 0

ν ν 1 0

0 0 0 1 + ν

 ·


σ11

σ22

σ33

σ12

 (5.7)

Being in a plane-strain situations, enforcing ε33 = 0, it is possible to express ε33 in terms of σ11

and σ22 and then, requiring σ12 = σ22 = 0, it is possible to compute the solution as{
ε11 = 1−ν2

E σ11

ε22 = −ν
E (1 + ν)σ11

(5.8)

Assuming a distributed load per unit length q = 10 and material constants E = 1000 and ν = 0.25,

the displacement components of point A are then uA = 9.375 10−3 and; vA = 3.125 10−3. Such an
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analytical solution is reproduced up to machine precision (10−15) by the numerical one computed

using a single element, illustrating the good behavior of the proposed numerical scheme for the

case under investigation. Figures 5.6 and 5.7 show the horizontal and vertical displacement �elds

(obtained using p = q = 2 and 3x3 control points, i.e., one element), which are linear in the two

coordinate variables, as expected.
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Figure 5.6: Patch traction test: horizontal displacement �eld.
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Figure 5.7: Patch traction test: vertical displacement �eld.



Chapter 6

Spectral approximation

In the �eld of structural engineering dynamics plays a fundamental role. In fact the analysis of

a structure under free motion provides the most important dynamic properties of the structure

itself which are the natural frequencies and the corresponding modal shapes. This structural

information is obtained considering a free vibration problem.

One of the most important results of Galerkin IGA [20], with a fundamental impact on the

solution of structural dynamics problems, is its capability of approximating higher modes, without

introducing spurious �optical branches� in the numerical spectrum. In order to understand this

concept we compare C1-continuous quadratic NURBS functions with the classical C0-continuous

quadratic �nite elements. The results are shown in Figure 6.1, where we report the normalized

frequency results, ωhn/ωn, versus the mode number, n, normalized by the total number of degrees-

of-freedom, N = neq = 999. This Figure 6.1 illustrates the power of IGA NURBS basis functions

Figure 6.1: Fixed��xed rod. Normalized discrete spectra using quadratic �nite ele-
ments and NURBS.

compared with FEA ones. In this case, the �nite element results shows a so-called acoustical

branch for n/N < 0.5 and an optical branch for n/N > 0.5 (see [14]). This branching is due

to the fact that there are two distinct types of di�erence equations for the �nite elements: those

55
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corresponding to the end-point nodes at element boundaries, and those corresponding to mid-point

nodes on element interiors; as shows Figure 6.2. The acoustical branch corresponds to modes in

which the neighbouring end- and mid-point nodes oscillate in phase with each other, and the

optical branch modes are the modes in which they are out of phase. Alternatively, the quadratic

NURBS di�erence equations are all identical (see Figure 2.1), and no such branching takes place.

The same cited characteristic are present also in IGA collocation, as it has been shown in [5].

Figure 6.2: Nodal �nite element basis functions for the quadratic p-method. Note the
two distinct types of functions corresponding to end-nodes and mid-nodes. These lead
to two distinct di�erence equations corresponding to the end-point nodes at element
boundaries and the mid-point nodes in element interiors.

In order to show these prerogatives, the following 1D eigenvalue problem is considered:{
u′′ + ω2u = 0 ∀x ∈ (0, 1)

u(0) = u(1) = 0
(6.1)

for which the exact frequencies ωn are given by

ωn = πn with n = 1, 2, 3, ... (6.2)

Problem (6.1) is solved using the collocation method with Greville abscissae and, in Figure 6.3,

we report the results in terms of normalized discrete spectra, obtained considering a linear param-

eterization and using di�erent degrees of approximation (1000 d.o.fs have been used to produce

each spectrum). It is possible to observe the good behavior of all spectra, which converge for an

increasing degree p as it happens with Galerkin IGA (for more details on eigenvalue problems

solved via IGA collocation, see [3]).
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Figure 6.3: Fixed��xed rod. Normalized discrete spectra.

We also report two relevant graphics (6.4 and 6.5) which show the convergence of the �rst three

eigenvalues which prove to be satisfactory and in agreement with the reference line tendences.
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Figure 6.4: 1D eigenvalue problem with linear parametrization. Convergence of the
�rst three eigenvalues for p=3.
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Chapter 7

A cost-e�ective IGA-Collocation

approach for ortotropic composite

plates

In this chapter we present the main motivations, as well as the theoretical background, which

lead to the proposed approach for an accurate simulation of composite laminates. For instance

composite materials are used in a wide variety of �elds such as aerospace or automotive. Their

study has become more and more important along the past years especially because of their light

weight and very resistant mechanical properties [27]. From a physical point of view composite

laminates are usually made of several layers of highly resistant �bers embedded in a soft matrix.

Laminate structures are subjected to delamination, which means that they tend to damage them-

selves at the interfaces between layers as a mode of failure. The prediction and evaluation of

damage in composite laminates requires an accurate esteem of the three-dimensional stress state

through the thickness, although most of the studies available in the literature consider the laminate

as a two-dimensional element. In order to predict this physical phenomena several approaches are

possible and here summarized:

� two-dimensional theories such as shell approaches prove to be not accurate enough to reliably

predict interlaminar damage and delamination;

� layerwise theories, which rely on heavy computations and hybrid approaches, have been

developed in the �eld of FEA ([16] and [60]) to compute more accurately the mechanical

state inside the laminate;

� over the last decade new methods have been proposed such as Isogeometric Analysis (IGA)

(Hughes et al. [38]) by means of which the shape functions connects CAD �eld, i.e. the

geometry, and what is obtained from a FEA analysis i.e., the state variables, since they are

the same.

As already widely discussed in Chapter 2 this method relies on B-Splines or NURBS (Non Uniform

Rational B-Splines) which possess peculiar mathematical properties, such as high order approxi-

mation due to continuity and lead to new possibilities for re�nement operations, that can be used

to improve the simulation. Moreover, their smoothness guarantees higher accuracy and opens the

door to the discretization of high-order PDEs in primal form. IGA has been successfully used to

solve a wide range of problems from structural �eld (see e.g. [13],[19],[28],[44] and [52]) to �uids

(see e.g. [1] and [9]) and �uid-structure interaction (see e.g. [10]) and [36]). This kind of methods

have already been used to solve composite laminate problems, especially relying on high-order

theories ([64], [41], [61]) or recovering the full 3D stress state taking advantage of 3D isogeometric
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analysis such as in ([61], [34], [35]). In such approaches, each ply of the laminate is delimited by a

C0-continuous interface. Such an approach (referred as "layerwise") is proven to be costly, though

accurate, since it involves a large number of degrees of freedom when a lot of layers are composing

the laminate.

7.1 A brief introduction to 3D strategies for laminates

In this section we brie�y introduce the standard strategies taken into account in [27] as a starting

point. In [27] two types of approach to compute displacements are considered:

� Layerwise approach ([61],[34]), which is similar to higher order FE methods and considers

each layer as one patch through the thickness and C0-continuity at the material discontinu-

ities as can be seen in Figure 7.1 on the left. Since this approach is completely layerwise and,

as a consequence, the main drowback is represented by the fact that the number of degrees

of freedom is proportional to the number of layers. This method uses a standard integration

rule: p+ 1 points in each direction (p being the degree of the shape function).

� Single-element approach, which uses a single element through the thickness (see Figure 7.1

on the right). Its nature strongly reduces the number of degrees of freedom with respect to

the previously mentioned method. To account for the presence of the layers, the material

matrix is homogenized. Such a method in order to get satisfying results is coupled with a

post-processor to improve the solution, as explained in the next section. It should be noted

that the in-plane continuity of the shape functions in both approaches is the same.

In this work we will consider an IGA-collocation approach (see Chapter 2 where NURBS are used

for approximating both geometry and displacements, starting from the strong formulation of the

problem and evaluating what we need at the collocation points in order to post-process the out-of-

plane stresses. We therfore need to average the material through the thickness, due to the nature

Figure 7.1: Isogeometric shape functions used in the two considered approaches. Lay-
erwise approach with C0 lines at material discontinuities on the left and Homogeneized
single-element approach on the right.

of the selected method. To do so we refer to [63] in order to homogenize the material properties to

create an equivalent laminate. Explicit expressions for e�ective elastic constants for general thick
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laminates are presented as follow
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(7.1)

We remark that νk = tk
h stands for the volume fraction of the k − th lamina, where h is the

total thickness and tk is the k − th thickness. From the consideration of stress and displacement

continuity conditions at the interfaces of the laminas, the authors assume that stresses and strains

of the k − th layer can be approximated with the average of the laminate. Starting from this

assumption the averaged constants present the following structure:

� the �rst part simply represents the weighted average of the constants through the thickness;

� the second part stands for a correction of the prior weighted average through the use of

speci�c coe�cient based on the constant itself.
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7.2 Post-processing approach: Reconstruction from Equilib-

rium

We remark that the in-plane stress components are almost correctly captured using the single-

element approach, while the out-of-plane components prove not to be satisfying (as it can be seen

in Figures 8.7, 8.8, 8.9 of Chapter 8 dedicated to test results). This aspect can be explained

making the following remarks:

� displacement solution is continuous in all cases;

� the in-plane stresses are discontinuous along the thickness, due to the constitutive law. In

fact they read information only from layer to layer and are therefore well captured;

� Equilibrium instead prescribes continuity of out-of-plane stresses and in fact using a layerwise

approach the C0 lines (continuous displacements) allow to obtain discontinous strains, that

along with the e�ective properties layer by layer of the material, bring to continous stresses;

� choosing single-element approach the C0 concept at interfaces is unavoidably lost and con-

sequently we get continuous strains that, together with the material properties, bring nec-

essarily to discontinous stresses, violating what derives from equilibrium.

As interlaminar delamination and other fracture processes rely mostly on such out-of-plane com-

ponents, a proper through-the-thickness stress description is required. In order to compute a

more accurate stress state, we choose to use the following post-processing approach based on the

equilibrium equations (as proposed in ([56],[29],[65],[25]), relying on the higher regularity granted

by IGA shape functions. This procedure proves to be successfull in [27] in the �eld of IGA-FE

and therefore we apply it to IGA collocation. In equilibrium state, the stresses inside the material

should satisfy the equilibrium equation

∇ ·σ + b = 0 (7.2)

where∇ · is the divergence operator in compact notation. In engineering notation this is translated

as follows
σ11,1 + σ12,2 + σ13,3 = −b1
σ21,1 + σ22,2 + σ23,3 = −b2
σ31,1 + σ32,2 + σ33,3 = −b3

with σij,k =
∂σij
∂xk

(7.3)

By integrating along the thickness, we recover the out-of-plane stresses as

σ13(z) = −
∫ z

z0

(σ11,1 + σ12,2 + b1)dz + σ13(z0) (7.4)

σ23(z) = −
∫ z

z0

(σ21,1 + σ22,2 + b2)dz + σ23(z0) (7.5)

σ33(z) = −
∫ z

z0

(σ31,1 + σ32,2 + b3)dz + σ33(z0) (7.6)

We stress that, by inserting equations (7.4) and (7.5) into (7.6), the component σ33 can then be

computed as

σ33(z) =

∫ z

z0

(σ11,11 + σ22,22 + 2σ12,12 − b3 + b1,1 + b2,2)dz + σ33(z0) (7.7)
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The integral constants should be chosen to ful�l the boundary conditions at the top or bottom

surfaces.
σij,k = Cijmnεmn,k,
σij,kl = Cijmnεmn,kl,

(7.8)

Remark 1. It should be noted that the integration could be performed from both surfaces and then

averaged in order to divide the resulting error by two. Although it is easy to compute the boundary

conditions in this case, we chose to avoid this as it relies on the perfect knowledge of the stress

boundary conditions on both surfaces (including the loaded one) which are not always available.

Assuming that the elasticity tensor C of equation σ = Cε is constant, the derivatives of the

in-plane components of the stress are computed from displacements as

εmn,k =
1

2
(um,nk + un,mk),

εmn,kl =
1

2
(um,nkl + un,mkl)

(7.9)

Equations (7.9) clearly demonstrates the necessity of a highly regular displacement solution in

order to recover a proper stress state. Such condition can be easily achieved using IGA, due to

the possibility to bene�t from higher order shape functions (B-Splines & NURBS with p > 2).

One could thus reconstruct a good approximation of the outer-plane stress state once an accurate

description of the in-plane stress state is available. The displacement solution computed in this

work is obtained using Non Rational B-Splines in the context of collocation method. This kind of

shape functions can be easily constructed and di�erentiated since many tools are avaiable, as the

one used in this context (Matlab B-Splines and NURBS toolbox, which bene�ts from the results

from [55]).



Chapter 8

Test case: The Pagano layered plate

In this chapter we will calibrate the new proposed approach to simulate composite structure

behaviour. We will therefore describe the considered test case from a theoretical point of view in

the �rst section, and then we will provide several numerical results in the second one.

8.1 Theoretical background

The test case used in this work of thesis is the classical one proposed in the literature by Pagano

[53], since it enables us to simulate the mechanical response of composite laminates. It consists of a

simply supported multilayered 3D plate with a sinusoidal loading on top and a loading-free bottom

face as shown in Figure 8.1. This problem can be easily parameterized which allows to analyze

Figure 8.1: Plate geometry.
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many cases in terms of layer number and distribution. In the following study, a few examples are

considered using di�erent numbers of layers (i.e., 3, 11, and 33). In all these cases, the loading

conditions are the same (namely, a two dimensional sinus with a period equal to twice the length

of the plate), while the thickness of every single layer is set to 1 mm, and the length of the plate is

chosen to be S times larger than the total thickness t of the laminate. The laminate is composed by

orthotropic layers placed orthogonally on top of each other (thus creating a 90/0/90/... laminate).

From the constitutive point of view we have

σ = Cε (8.1)

where the elasticity tensor C can be expressed, using Voigt notation, as:

1
Ex

−νyx

Ey

−νzx
Ez

0 0 0
−νxy

Ex

1
Ey

−νzy
Ez

0 0 0
−νxz

Ex

−νyz

Ey

1
Ez

0 0 0

0 0 0 1
Gyz

0 0

0 0 0 0 1
Gxz

0

0 0 0 0 0 1
Gxy


(8.2)

and the material parameters for these layers are the following:

E1 = 25GPa

G23 = 0.5GPa

Ey = Ez =
Ex
25

Gxy = Gxz =
Gyz
2.5

νxy = νxz = νyz = 0.25

(8.3)

The boundary conditions used in this test are explained graphically in Figure 8.2 and from a

mathematical point of view divided in

� Dirichlet boundary condition

At x = 0, a : σx = v = w = 0

At y = 0, b : σy = u = w = 0
(8.4)

� Neuman boundary condition

σz(x, y,
h

2
) = q0(x, y), q0(x, y) = σsin(px)sin(qy)

σz(x, y,−
h

2
) = τxz(x, y,±

h

2
) = τyz(x, y,±

h

2
) = 0

(8.5)

We remark that for our case study

q0(x, y) = p(x, y) = σ0sin(
πx

St
)sin(

πy

St
), with σ0 = 1 (8.6)

From a computational point of view, the application of the boundary condition has been provided

using an external function wich is based on if cases that we recongnize as follows:

� the 8 corners and the vertical edges have Dirichlet B.Cs: clamped displacements in all
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Figure 8.2: Plate notation and B.Cs

directions;

� faces having outer normal ±ex and relative edges have displacements in x and z directions

clamped and zero stress parallel to the norm component in x direction (mixed conditions);

� faces having outer normal ±ey and relative edges have displacements in y and z directions

clamped and zero stress parallel to the norm component in y direction (mixed conditions)

� the top faces feel the double-sinus loading and has zero shear components (Neuman BCs);

� the bottom face has zero shear components as well as zero normal stress component (Neuman

BCs).

8.1.1 Analytical solution

The analytical solution is derived considering a generalized laminate composed by N orthotropic

layers. The constitutive equations for any layer are expressed byσxσy
σz

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

εxεy
εz

 (8.7)

and by

τyz = C44τyz

τxz = C55τxz (8.8)

τxy = C66τxy
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while the governing �eld equations can be written in terms of the displacement components as

C11u,xx + C66u,yy + C55u,zz + (C12 + C66)v,xy + (C13 + C55)w,xz = 0

(C12 + C66)u,xy + C66v,xx + C22v,yy + C44v,zz + (C23 + C44)w,yz = 0

(C13 + C55)u,xz + (C23 + C44)v,yz + C55w,xx + C44w,yy + C33w,zz = 0

(8.9)

What follows consist of the solution of the problem for one layer. A trial displacement form is

given

u = U(z)cos(px)sin(py)

v = V (z)sin(px)cos(py) (8.10)

w = W (z)sin(px)sin(py)

where U, V, and W are functions of z only, and

p = p(n) =
nπ

a
=

π

St
(8.12)

(n = m = 1, 2, 3, ...)

q = q(m) =
mπ

b
=

π

St

and is inserted, in exponential fashion, in the internal equilibrium equations (8.9) obtaining an

algebraic system. Non-trivial solutions of this system only exist if the determinant of the coe�cient

vanishes, which leads to the equation

γ3 + dγ + f = 0

d =
(3CA+B2)

(−3A2)

f =
(2B3 + 9ABC + 27DA2)

(−27A3)

(8.13)

where

A = C33C44C55

B = p2[C44(C11C33 − C2
13) + C55(C33C66 − 2C13C44)]+

+ q2[C55(C22C33 − C2
23) + C44(C33C66 − 2C23C55)]

C = −p4[C66(C11C33 − C2
13) + C55(C11C44 − 2C13C66)]+

+ p2q2[−C11(C22C33 − C2
23)− 2(C12 + C66)(C13 + C55)(C23 + C44)−

+ 2C44C55C66 + 2C11C23C44 + C12C33(C12 + 2C66) + C13C22(C13 + 2C55)]+

− q4[C66(C22C33 − C2
23) + C44(C22C55 − 2C23C66)]

(8.14)

D = p6C11C55C66 + p4q2[C55(C11C22 − C2
12) + C66(C11C44 − 2C12C55)]+

+ p2q4[C44(C11C22 − C2
12) + C66(C22C55 − 2C12C44)] + q6C22C44C66



8.1. Theoretical background 67

Once the roots of the equation in terms of γ variable are de�ned the general solution can be

written for U, V, W

U(z) =

3∑
j=1

Uj(z)

V (z) =

3∑
j=1

LjUj (8.15)

W (z) =

3∑
j=1

RjWj

where

Uj(z) = FjCj(z) +GjSj(z), (8.17)

(j = 1, 2, 3)

Wj(z) = GjCj(z) + αjFjSj(z)

we stress that Fj and Gj are constant to be determined imposing the boundary conditions. More-

over we have

Cj(z) = cosh(mjz), Sj(z) = sinh(mjz), αj = 1, if

(
γj +

B

3A

)
> 0 (8.19)

Cj(z) = cos(mjz), Sj(z) = sin(mjz), αj = −1, if

(
γj +

B

3A

)
< 0 (8.20)

with

mj =

√∣∣∣∣γj +
B

3A

∣∣∣∣ (8.21)

and

Jj =C33C44m
4
j + αjm

2
j [−p2(C44C55 + C33C66) + q2(C2

23 − C22C33 + 2C23C44)]+

+ (C66p
2 + C22q

2)(C55p
2 + C44q

2)

Lj =
pq

Jj
{αjm2

j [C33(C12 + C66)− (C23 + C44)(C13 + C55)]+ (8.23)

− (C12 + C66)(C55p
2 + C44q

2)}

Rj =
pmj

Jj
[αjm

2
jC44(C13 + C55)− (C13 + C55)(C66p

2 + C22q
2)+

+ q2(C23 + C44)(C12 + C66)]
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Finally, using the strain-displacement relations of linear elasticity in conjunction with the expres-

sions of U(z), V(z) and W(z), we �nd that the stress components are given by

σi = sin(px)sin(qy)

3∑
j=1

MijUj(z), (i = 1, 2, 3) (8.25)

τyz = C44sin(px)cos(qy)

3∑
j=1

(mjLj + qRj)Wj(z) (8.26)

τxz = C55cos(px)sin(qy)

3∑
j=1

(mj + pRj)Wj(z) (8.27)

τxy = C66cos(px)cos(qy)

3∑
j=1

(q + pLj)Uj(z) (8.28)

where

Mij = −pC1i − qC2iLj + αjmjRjC3i, (i, j = 1, 2, 3) (8.29)

We remark that the results showed in the next section provide normalized stress components

according to [53], using the following formulas:

σij =
σij

σ0S2
, i, j = 1, 2 (8.31)

σi3 =
σi3

σ0S
, i = 1, 2 (8.32)

σ33 =
σ33

σ0
(8.33)

8.2 Implementation aspects and Numerical results

8.2.1 Computational aspects

All the results shown in this work have been obtained using an in-house code for what concerns

the displacement solution and the geometry output. As far as the implemented risolutory scheme,

in the spirit of collocation we rewrite the equilibrium equations in terms of displacements second

derivatives combining compatibility equation and constitutive law, keeping the coe�cients as they

present themselves in the constitutive matrix. The displacements second derivatives are therefore

approximated by the derivatives of the NURBS shape functions. On the boundary we apply

consistently Neumann or Dirichlet B.Cs.
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EQUILIBRIUM :

σij,j = 0 inΩ (8.35)

σijnj = ti on ∂ΩN (8.36)

ui = ui on ∂ΩD (8.37)

COMPATIBILITY :

εij =
ui,j + uj,i

2
(8.38)

CONSTITUTIVE LAW :

σij = Cijkmεkm (8.39)

Once that a good displacement solution is obtained we adapt the post processing code ([27])

based on the igatools library (see [54] for further details) to communicate with the IGA-collocation

previously cited solutor. The implementation part can be summarized in Figure 8.3 and summed

up as follows:

� The user need to set the material properties, which will be averaged by the program, as

well as geometry informations (length-to thickness ratio, total thickness, number of points

per layer and in-plane coordinates of the points to compute the solution with a 'vertical

approach') and the minimum information for the IGA-collocation solutor i.e. the number of

control points per direction and the shape functions degree of approximation.

� The program itself call a stress evaluation function, which communicate with the IGA-

collocation solutor in order to obtain a rough displacements solution and the geometry given

in terms of Non Rational B-splines. As far as the collocation solutor, after averaging the

material with an external function, it provides a basic geometry of the problem from the

length to thickness ratio and the total thickness itself, which will be later enriched by re-

�nement operations as described in the �rst chapter. The B-splines are later on constructed

starting from Greville abscissae (see Chapter 2). Because of the geometry, a mapping oper-

ation is required and performanced in the triple "for" cycle loop on the collocation points

and the boundary conditions are applied according to the expected "if" case, (see Chapter

5). Out from the "for" cycle, the problem is solved in an optimized way, because sparse

matrices and vectors are used. Then stresses are calculated through strains, obtained from

the given displacements, and considering the constitutive averaged matrix. We also calcu-

late the derivatives of the stresses that will be fundamental for the post-processing recovery

technique.

� The program perform the outer-plane shear stresses post-processing and consequently the

normal outer-stress post-processing.

� The analytical solution is computed.

� To check if the solution obtained is satisfactory we use the following error rule

error =
max(σanalytic − σpostprocessed)

max(σanalytic)
(8.40)

excluding the boundary, since there the solution is known and brings to an indeterminated

form ( 0
0 ) of the proposed error esteem.
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Figure 8.3: Program Flowchart.
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8.2.2 Numerical results

In this section, we comment the results obtained using the proposed IGA-collocation approach,

which is compared with the analytical solution. In Figures 8.4, 8.5, 8.6, 8.7, 8.8, 8.9 we give a

comparison, for the cases of 3 and 11 layers (length to thickness ratio equal to 10, degree of approx-

imation 6 and 10 collocation points per direction), between analytical stresses and approximate

stresses for the in-plane quantities, while we add also the preprocessed entities for the out-of-plane

stresses. For both cases the in-plane stresses show a good behaviour, as expected, while the out-

of-plane stresses, without post-processing treatment, are discontinuous. This aspect is due to the

fact that high order continuity of the shape functions leads to the continuity of strains, while the

material properties are discontinuous.
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Figure 8.4: Computed σ11 solutions for the 3D Pagano plate problem with 3 layers,
at the top, and 11, at the bottom, at the position X = 0.25L and Y = 0.25L. The
blue solid line represents the analytical solution, the black cross represent the solution
obtained with no post-processing treatment.
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Figure 8.5: Computed σ22 solutions for the 3D Pagano plate problem with 3 layers,
at the top, and 11, at the bottom, at the position X = 0.25L and Y = 0.25L. The
blue solid line represents the analytical solution, the black cross represent the solution
obtained with no post-processing treatment.
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Figure 8.6: Computed σ12 solutions for the 3D Pagano plate problem with 3 layers,
at the top, and 11, at the bottom, at the position X = 0.25L and Y = 0.25L. The
blue solid line represents the analytical solution, the black cross represent the solution
obtained with no post-processing treatment.
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Figure 8.7: Computed σ13 solutions for the 3D Pagano plate problem with 3 layers,
at the top, and 11, at the bottom, at the position X = 0.25L and Y = 0.25L. The
blue solid line represents the analytical solution, the black cross represent the solution
obtained with no post-processing treatment, and the red circles represent the solution
after post-processing treatment.
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Figure 8.8: Computed σ23 solutions for the 3D Pagano plate problem with 3 layers,
at the top, and 11, at the bottom, at the position X = 0.25L and Y = 0.25L. The
blue solid line represents the analytical solution, the black cross represent the solution
obtained with no post-processing treatment, and the red circles represent the solution
after post-processing treatment.
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Figure 8.9: Computed σ33 solutions for the 3D Pagano plate problem with 3 layers,
at the top, and 11, at the bottom, at the position X = 0.25L and Y = 0.25L. The
blue solid line represents the analytical solution, the black cross represent the solution
obtained with no post-processing treatment, and the red circles represent the solution
after post-processing treatment.
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In the following results (Figures 8.11,8.12,8.2.2), we observe that the postprocessed stress state

is very close to the analytical one. Our assertion demonstrates to be accurate since we are sampling

every quarter of length of the plate in both directions. We conclude that the correct stress state is

recovered on the whole plate, and a great improvement is observed everywhere. The results were

obtained using 10 collocations points per direction with shape functions of grade 6 for the case of

11 layers and length to thickness ratio equal to 10. The obtained solution respects the boundary

conditions as far as the out-of-plane stresses, in fact:

� where x = 0 or x = L displacements in x direction exist and so do σ13 as a consequence;

� where y = 0 or y = L displacements in y direction exist and therefore σ23 is di�erent from

zero apart from the corners;

� the sign of the stresses is compatible with the obtained displacements.

We derive our considerations on the dispacements from Figure 8.10.
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Figure 8.10: Displacements inside the domain for �x x-y plane: displacement in x
directon, at the top; in y direction, in the middle; in z direction, at the bottom.
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Figure 8.11: Recovered (red solid line) σ13 compared to the analytical one (blue
crosses) for several in plane positions. L is the total length of the plate, that in
this case is L = 110mm (being L = S t with t = 11mm and S = 10), while the number
of layers is 11.
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Figure 8.12: Recovered (red solid line) σ23 compared to the analytical one (blue
crosses) for several in plane positions. L is the total length of the plate, that in
this case is L = 110mm (being L = S t with t = 11mm and S = 10), while the number
of layers is 11.
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Figure 8.13: Recovered (red solid line) σ33 compared to the analytical one (blue
crosses) for several in plane positions. L is the total length of the plate, that in
this case is L = 110mm (being L = S t with t = 11mm and S = 10), while the number
of layers is 11.
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In order to validate the proposed approach in a wider variety of cases, computations with a

di�erent ratio between the thickness of the plate and its length, namely 10, 20, 50, are performed

for 3 and 11 layers and prove in �gures 8.14, 8.15, that the method converges.
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Figure 8.14: Maximum relative error between post-processed and analytical σ13, at
the top, σ23, at the bottom, obtained considering di�erent length-to-thickness ratios,
while the degree of the shape functions is 6 and the number of layers is 3.
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Figure 8.15: Maximum relative error between post-processed and analytical σ13, at
the top, σ23, at the bottom, obtained considering di�erent length-to-thickness ratios,
while the degree of the shape functions is 6 and the number of layers is 11.
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A simple mesh sensitivity analysis, using 1,2,4,8 elements has been carried out testing shape

function degree of approximation equal to 4 and 6, for S=10. Also in these cases the method prove

(see �gures 8.16, 8.17) to be robust and to converge. We also check the in�uence of the number

of element used in the analysis reported in Figure 8.18 using p=6 and S=20.
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Figure 8.16: Maximum relative error between post-processed and analytical σ13, at
the top, σ23, at the bottom, obtained considering di�erent number of elements and
layers, while the degree of the shape functions is 6 and S=10.
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Figure 8.17: Maximum relative error between post-processed and analytical σ13, at
the top, σ23, at the bottom, obtained considering di�erent number of elements and
layers, while the degree of the shape functions is 4 and S=10.
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Figure 8.18: Maximum relative error between post-processed and analytical σ13 at the
bottom, using di�erent number of elements and layers, while the degree of the shape
functions is 6 and S=20.

From �gures err8.1,8.15,8.16,8.17,8.18 we can conclude that:

� p=4 is not enough to correctly describe the out-of planes stresses σ13 and σ23.

� Using p=6 and 8 elements we can capture the post-processed stresses σ13 and σ23.

� Results shown in Figures 8.14,8.15 agree with the one reported in �gures 8.16,8.18.

For what concerns layers disposition, a good behaviour has been proven for odd plies, since their

natural grouping is symmetric. The proposed method do not apply to even plies disposition

because of the lack of symmetry with respect to the thickness, which a�ects the homogenization,

even though we can foretell that this behaviour tend to soften increasing the length to thickness

ratio as a sort of �scale e�ect�.



Chapter 9

Conclusions and future perspectives

In this work of thesis we introduce the principles of IGA collocation, applying this method to

several linear elasticity examples. The results obtained from an in-house Matlab implementations

prove to be satisfactory for one-, two-, and three-dimentional problems according to L2-norm

convergence plots.

Furthermore a new cost-e�ective approach for an accurate simulation of composite laminates

has been presented. This technique combines a standard 3D coarse collocation isogeometric anal-

ysis with a post-processing based on equilibrium equations.

Since our collocation method is based on the solution of the governing equations in strong form

without the need of integration, to properly describe the variation of the material properties

through the plate thickness, we choose to average them considering an homogeneized response.

In this way, we can obtain satisfactory results, but only in terms of displacements and in-plain

stresses. By means of our inexpensive equilibrium-based post-processing technique (allowed by

the higher-continuity granted by isogeometric analysis), good results are instead recovered also in

terms of out-of-plane stresses, even for coarse meshes.

The post-processing stress-recovery technique is only based on the integration of equilibrium equa-

tions, and all the required components can be easily computed knowing the displacement solution

and the geometry of the problem, taking advantage of the shape function high continuity. As the

IGA-collocation code provides NURBS �elds, its derivation and handling are straightforward and

the whole process (coarse simulation plus post-processing) is far less time consuming than a full

layerwise FEA 3D approach.

The proposed technique has been tested sampling the solution obtained from post-processing

treatment application every quarter of length of the considered plate in both directions, in order

to check the overall quality of the numerical results. In addition to this, other analyses are carried

out in order to test the sensitivity of the method to di�erent length-to-thickness ratios and number

of layers. Morover, a basic mesh sensitivity analysis is presented and, in light of the results, we

conclude that the newly presented approach works well also for very coarse meshes.

Further research topics currently under investigation involve the extension of this approach to

more complex problems involving curved geometries.
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