

A nonlocal cohesive zone model for finite thickness interfaces:

mathematical formulation, numerical implementation and materials science applications

Dr. Ing. Marco Paggi

Politecnico di Torino, Dept. Structural and Geotechnical Engineering

Seminar at the University of Pavia. April 8, 2011, Pavia, Italy

Outline

- 1. Interfaces in engineering and materials science
- 2. A nonlocal cohesive zone model (CZM) for finite thickness interfaces based on damage mechanics
- 3. Interpretation of molecular dynamics (MD) simulations
- 4. Application to polycrystalline materials
- 5. Conclusions and future perspectives

M. Paggi, P. Wriggers: "A nonlocal cohesive zone model for finite thickness interfaces – Part I: mathematical formulation and validation with molecular dynamics", **Comp. Mat. Sci.**, Vol. 50 (5), 1625-1633, 2011.

M. Paggi, P. Wriggers: "A nonlocal cohesive zone model for finite thickness interfaces – Part II: FE implementation and application to polycrystalline materials", **Comp. Mat. Sci.**, Vol. 50 (5), 1634-1643, 2011.

Interfaces in forming processes

Microcrack formation in CaMg08 (courtesy of Dr. M. Schaper)

P. Kustra, A. Milenin, M. Schaper, A. Gridin: "Multi scale modeling and intepretation of tensile test of Magnesium alloys in microchamber for the SEM", **Computer Methods in Materials Science**, 9:207-214, 2009.

Interfaces in hard-metals for cutting tools

Fracture of a coarse grained WC-10 wt% Co alloy

H. E. Exner, L. Sigl, M. Fripan, O. Pompe: "Fractography of critical and subcritical cracks in hard materials", **Int. J. Refractory Metals and Hard Materials**, 19:329-334, 2001.

Interfaces in solar cells

Microcracked photovoltaic modules

Interfaces in hierarchical biological materials

R. De Santis et al.: Ch. 6 in Modeling of Biological Materials, Birkhäuser, Boston, 2007.

Hierarchical polycrystalline materials

Z.K. Fang et al.: "Fracture resistant super hard materials and hardmetals composite with functionally graded microstructure", **Int. J. Refr. Metals & Hard Mat.**, 19:453-459, 2001.

Interfaces in engineering

Linking of micro- and macro-scales using the FE² method

C.B. Hirschberger, S. Ricker, P. Steinmann, N. Sukumar: "Computational multiscale modelling of heterogeneous material layers", **Engineering Fracture Mechanics**, 76:793-812, 2009.

Interfaces in engineering

S. Li, M.D. Thouless, A.M. Waas, J.A. Schroeder, P.D. Zavattieri: "Use of mode-I cohesive-zone models to describe the fracture of adhesively-bonded polymer-matrix composite", **Composites Science and Technology** 65:281-293, 2005.

Cohesive Zone Models (CZMs)

$$E_2 = E_2(1-D)$$

where damage, *D*, is related to the deformation level of the layer 2:

$$D = \begin{cases} 0 & \text{for} \quad \delta_2 \leq \delta_e \\ 1 & \text{for} \quad \delta_2 = \delta_c \end{cases}$$

• 1st Stage: all materials behave linear elastically ($0 < \delta_2 \le \delta_e$)

$$\delta = \delta_1 + \delta_2 + \delta_3 = \left(\frac{l_1}{E_1} + \frac{l_2}{E_2} + \frac{l_3}{E_3}\right)\sigma$$

• 2nd Stage: progressive damage in material 2 ($\delta_e < \delta_2 < \delta_c$)

$$\delta = \left[\frac{l_1}{E_1} + \frac{l_2}{E_2(1-D)} + \frac{l_3}{E_3}\right]\sigma$$

• 3rd Stage: failure of the layer 2 ($\delta_2 = \delta_c$)

$$\sigma = 0$$

We put into evidence the increment of axial displacement with respect to the undamaged case:

$$\delta = \left[\frac{l_1}{E_1} + \frac{l_2}{E_2(1-D)} + \frac{l_3}{E_3}\right]\sigma$$
$$\delta = \left(\frac{l_1}{E_1} + \frac{l_2}{E_2} + \frac{l_3}{E_3}\right)\sigma + g_N$$

$$g_N = \left[\frac{l_2}{E_2(1-D)} - \frac{l_2}{E_2}\right]\sigma = \frac{l_2D}{E_2(1-D)}\sigma$$

1

Damage evolution law

$$D = \left(\frac{w}{w_c}\right)^{\alpha} \quad \text{where} \quad \begin{cases} w = (\delta_2 - \delta_e) \\ w_c = (\delta_c - \delta_e) \end{cases}$$

Stress-anelastic displacement relationship, $\sigma = f(g_N)$:

$$\sigma = \frac{E_2}{l_2} \frac{1 - \left(\frac{w}{w_c}\right)^{\alpha}}{\left(\frac{w}{w_c}\right)^{\alpha}} g_N$$

where:

$$w = g_N - \delta_e + \sigma l_2 / E_2$$

Analogy with a nonlocal CZM

Analogy with a nonlocal CZM

Stage	Trimaterial system with finite thickness interface & DM	Bimaterial system with zero- thickness interface & CZM
1st	$\delta = \left(\frac{l_1}{E_1} + \frac{l_2}{E_2} + \frac{l_3}{E_3}\right)\sigma$	$\delta = \left(\frac{h_1}{E_1} + \frac{h_3}{E_3}\right)\sigma$
2nd	$\delta = \left(\frac{l_1}{E_1} + \frac{l_2}{E_2} + \frac{l_3}{E_3}\right)\sigma + g_N$	$\delta = \left(\frac{h_1}{E_1} + \frac{h_3}{E_3}\right)\sigma + g_N$

A perfect analogy exists if $(h_1+h_3=l_1+l_2+l_3)$:

$$h_1 = l_1 + \frac{E_1}{E_2} \left(\frac{E_2 - E_3}{E_1 - E_3} \right) l_2$$
$$h_3 = l_3 + \frac{E_3}{E_2} \left(\frac{E_1 - E_2}{E_1 - E_3} \right) l_2$$

$$g_N = f^{-1}(\sigma) = \frac{l_2 D}{E_2(1-D)}\sigma$$

Examples in uniaxial tension (Mode I)

Uniaxial tensile test: the effect of the parameter α

Stress vs. anelastic displacement

The evolution of damage

The Mode I model can be generalized by introducing an effective dimensionless opening displacement:

$$\lambda = \sqrt{\left(\frac{w}{w_c}\right)^2 + \left(\frac{u}{u_c}\right)^2}, \quad \lambda \le 1 \quad \text{and} \quad D = \lambda^{\alpha}$$

$$\frac{\sigma}{\sigma_e} = \frac{1 - \lambda^{\alpha}}{\lambda^{\alpha}} k_N \frac{g_N}{\delta_c}$$
$$\frac{\tau}{\tau_e} = \frac{1 - \lambda^{\alpha}}{\lambda^{\alpha}} k_T \frac{g_T}{\psi_c}$$

Mode II and Mode Mixity

Zhou et al., **Mech. Mater.**, 40:832-845, 2008 **Tungsten (bcc crystal)** $l_2=3$ Å, $E_1=384$ GPa, $E_2=9$ GPa $\delta_e=0.1$ Å, $\delta_c=9.0$ Å, $\alpha=0.2$

MD results

Nonlocal CZM

0.8

1.0

Zhou et al., **Mech. Mater.**, 40:832-845, 2008 **Tungsten (bcc crystal)** $l_2=3$ Å, $E_1=384$ GPa, $E_2=9$ GPa $\delta_e=0.1$ Å, $\delta_c=9.0$ Å, $\alpha=0.2$

MD results

Nonlocal CZM predictions

Spearot et al., Mech. Mater., 36:825-847, 2004 **Copper (fcc crystal)** $2l_2+l_1=43.38$ Å, $E_1=E_2=110$ GPa δ_{e} =0.2 Å, δ_{c} =8.0 Å, α=0.9

9

6

3

n

0.0

0.2

MD-nonlocal CZM comparison

Shape of the nonlocal CZM

 g_N / δ_c

0.4

0.6

0.8

1.0

Yamakov et al., JMPS, 54:1899-1928, 2006 Aluminum, α=0.05

Twinning mechanism

Cleavage mechanism

FE implementation of the nonlocal CZM

$$\mathbf{u} = (u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}, u_{4}, v_{4})^{\mathrm{T}}$$

$$\mathbf{u}^{*} = \mathbf{R}\mathbf{u}$$

$$\Delta \mathbf{u}^{*} = (u_{4}^{*} - u_{1}^{*}, v_{4}^{*} - v_{1}^{*}, u_{3}^{*} - u_{2}^{*}, v_{3}^{*} - v_{2}^{*})^{\mathrm{T}} \longrightarrow \Delta \mathbf{u}^{*} = \mathbf{L}\mathbf{u}^{*}$$

$$\mathbf{g} = \mathbf{N}\Delta\mathbf{u}^{*}$$

$$\mathbf{g} = \mathbf{N}\mathbf{L}\mathbf{R}\mathbf{u} = \mathbf{B}\mathbf{R}\mathbf{u}$$

M. Ortiz and A. Pandolfi: "Finite-deformation irreversible cohesive elements for three-dimensional crack propagation analysis", **IJNME**, 44:1267-1282, 1999.

FE implementation of the nonlocal CZM

$$G_{int} = \int_{S} \delta \mathbf{g}^{\mathrm{T}} \mathbf{t} \, dS = \delta \mathbf{u}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \int_{S} \mathbf{B}^{\mathrm{T}} \mathbf{t} \, dS \qquad \mathbf{t} = (\tau, \sigma)^{\mathrm{T}}$$
$$\Delta G_{int} = \delta \mathbf{u}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \int_{S} \mathbf{B}^{\mathrm{T}} \mathbf{C} \mathbf{B} \, dS \mathbf{R} \mathbf{u}$$
$$\mathbf{t} = \mathbf{C} \mathbf{g} = \mathbf{C} \mathbf{B} \mathbf{R} \mathbf{u} \qquad \mathbf{c} = \begin{bmatrix} \frac{\partial \tau}{\partial g_{T}} & \frac{\partial \tau}{\partial g_{N}} \\ \frac{\partial \sigma}{\partial g_{T}} & \frac{\partial \sigma}{\partial g_{N}} \end{bmatrix}$$

Residual vector and tangent stiffness matrix:

$$\mathbf{F} = \mathbf{R}^{\mathrm{T}} \sum_{ip=1}^{2} \mathbf{B}_{ip}^{\mathrm{T}} \mathbf{t}_{ip} l/2$$
$$\mathbf{K} = \mathbf{R}^{\mathrm{T}} \left(\sum_{ip=1}^{2} \mathbf{B}_{ip}^{\mathrm{T}} \mathbf{C}_{ip} \mathbf{B}_{ip} l/2 \right) \mathbf{R}$$

Newton-Raphson loop for the computation of t and C

$$\tau = \tau_e \frac{1 - \lambda^{\alpha}}{\lambda^{\alpha}} \frac{g_T}{\psi_e}$$
$$\sigma = \sigma_e \frac{1 - \lambda^{\alpha}}{\lambda^{\alpha}} \frac{g_N}{\delta_e}$$

$$\lambda = \sqrt{\left(\frac{w}{w_c}\right)^2 + \left(\frac{u}{u_c}\right)^2}$$

$$w = g_N - \delta_e + \sigma rac{l_2}{E_2}$$
 $u = g_T - \psi_e + au rac{l_2}{G_2}$

$$\mathbf{C} = -\mathbf{A} \begin{bmatrix} \frac{G_2}{l_2} & 0\\ 0 & \frac{E_2}{l_2} \end{bmatrix} + \begin{bmatrix} \frac{G_2}{l_2} + \frac{\tau}{g_T} & 0\\ 0 & \frac{E_2}{l_2} + \frac{\sigma}{g_N} \end{bmatrix}$$

Convergence of the proposed algorithm

Quadratic convergence of the nested Newton-Raphson loop

Convergence of the proposed algorithm

Newton-Raphson loop coupled with an asymptotic expansion solution for the initial values

Benson et al., Mat. Sci. Engng. A 319-321, 854-861, 2001

Comparison with Gaussian and Weibull distributions assumed in stochastic fracture mechanics studies

Simulation of a uniaxial tensile test

Crack patterns and strain localization

Grain-size effects

d_m=10 μm

Grain-size effects

The Hall-Petch law $\sigma_p \propto d_m^{-1/2}$ is predicted as a consequence of $l_2 \propto d_m^{0.7}$ Inversion of the Hall-Petch law at the nanoscale can be the result of the anomalous increase of interface thicknesses

- 1. A nonlocal CZM based on DM has been proposed for finite thickness interfaces
- 2. This model overcomes the classical separation between NLFM and DM
- 3. The parameters of the nonlocal CZM can be related to MD simulations
- 4. Realistic statistical distributions of NLFM parameters
- 5. Novel interpretation to the deviation from the Hall-Petch law at the nanoscale

Future developments

3D Modelling of crack propagation in polycrystals and competition between interface decohesion and crystal plasticity

Vigoni Project 2011-2012 granted by DAAD, MIUR, AIT: "3D modelling of crack propagation in polycrystalline materials" Principal Investigators: M. Paggi, P. Wriggers

Acknowledgements

The support of the Alexander von Humboldt Foundation is gratefully acknowledged

Alexander von Humboldt Stiftung/Foundation

Special thanks to: Prof. Dr.-Ing. habil. Peter Wriggers