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Chapter 1IntrodutionThe orret blood irulation is a neessary ondition for the adequate supplyof oxygen and other substanes to all tissues, whih, in return, is synonymous withardiovasular health, survival of surgial patients, longevity and quality of life. Itis also well known that some very frequent ardiovasular diseases, like hypertensionor ongestive heart failure, are related to the behavior of blood �ow. Diseases ofthe arterial wall, suh as arterioslerosis, are the leading ause of death in westernsoiety. Many studies have shown that there is a orrelation between 'disturbed'blood �ow patterns in large arteries and the development of arterial disease; however,the spei� ausative link between blood �ow and arterial disease remain partiallyunknown. This is in part due to the signi�ant omplexity of arterial blood �owpatterns.It is therefore extremely important to obtain as many informations as possibleabout blood irulation and interations that blood �ow develops interating withvessel walls. A powerful devie is represented by the employment of mathematialmodels whih may reprodue the harateristis of suh a physial system at di�erentlevels of auray. On one hand we an obtain high levels of preision, e.g. through ofthree-dimensional blood �ow models, but on the other hand it is useful to implementsimpli�ed models in order to study the pressure and �ow rate propagation of bloodthrough the irulatory system. Suh models may be onvenient beause they allowsboth to redue the omputational osts and to onsider a greater number of vesselsinto the models with respet to the 3D models.The purpose of this projet is to reate a numerial solver in order to simulatethe general patterns of pressure and blood �ow waves that propagate into the ar-diovasular system. To obtain suh a result we used a simpli�ed one-dimensional2



formulation for the physial system governing the blood irulation into the mainarterial vessels.This projet is organized as follows:
• In this hapter we will present general informations about the ardiovasularsystem physiology, desribing heart and blood vessel main strutures. Thenwe will fous on hemodynamis, explaining the funtions of irulatory systemand introduing the role played by omputational models applied to blooddynamis; to this purpose we will brie�y present the state of art onerningthe one-dimansional formulation of blood �ow in arteries;
• In Chapter 2 we will disuss the mathematial formulation of the 1D model forblood �ow in arteries; �rst the equations related to the onservation of massand momentum for a single one-dimensional vessel will be derived, togetherwith an algebrai pressure-area relation and suitable boundary onditions.Then we will present the numerial spae-time shemes for the disretizationof suh equations. One the mathematial model for one single vessel has beenobtained, we will apply it to the ase of a vessel bifuration.
• In Chapter 3 we will show how we implemented the one-dimensional modelthrough a pre-post proess FEM software, GiD1: the numerial solver will beprogrammed in FORTRAN90 and then imported into a GiD problem type.Suh a software will be used also for input data management and for theanalysis of results;
• In Chapter 4 we will show the results obtained by numerial simulation of the1D model using GiD and we will disuss what we have obtained omparing itwith physiologial data and other studies present in literature;
• In the appendies, we will give some notes about GiD, the software developedat CIMNE and used in this projet to program the numerial solver for theone-dimensional blood �ow model. Moreover we will present the FORTRAN90soure odes used to implement the FEM solver for the blood �ow model.1GiD is an interative graphial interfae for de�nition, preparation and visualization of all thedata related to a numerial solution. See Appendix A for details3



1.1 Cardiovasular SystemThe ardiovasular system is the transport system of the body wih, by means ofblood, arries oxygen and nutrients to the body and arries away waste substanes(e.g. arbon dioxide) to the kidneys for exertion; it is omposed by a pulsatile pump,the heart, and a branhed network of vessels, the vasular system, whih drive bloodthrough tissues and organs.

Figure 1.1: Shemati representation of ardiovasular system, inluding arterial and venousirulations1.1.1 Vasular systemVasular system an be divided in two kinds of vessel: arteries and veins. Theformer pumps blood away from the heart, while the latter arries blood toward theheart. Arteries (�g.1.2) are often lassi�ed relating to their tasks and main tissue4



omponents. The biggest arteries in the irulatory system are alled ondutionor elasti arteries; average size arteries are alled musular or distribution arteries,whilst the smallest ones are de�ned as arterioles. Veins lassi�ation is generallybased only on the vessel dimension and inludes small veins, average dimensionveins and large veins.A omplete but very thin squamous epithelial ell layer, alled endothelium, ov-ers both heart internal surfae (so alled ardia endothelium) and vessels internaloating (vasular endothelium). The subdivisions of veins and arteries present dif-ferent quantities of smooth musular and onnetive tissue, organized in spei�layers that an vary depending on the lass of vessels onsidered.The most internal layer of arteries and veins the tunia intima. It is omposed bya ontinuous lining of endothelium (simple squamous epithelium), whih ontains athin onnetive tissue layer (sub-endothelial onnetive tissue) adjoint with endothe-lium. Sometimes in this ase we an �nd a ertain thikness layer omposed by anelasti �bre provided with little gaps (internal elasti lamina). The intermediatelayer, alled tunia media, is usually the thikest of the three layers and is typiallyomposed by smooth musular (espeially in arteries), elasti �bres, ollagen �bres,amorphous intraellular substanes and ells that produe suh materials. The ex-ternal layer, alled tunia adventitia, is an outer onnetive tissue sheath, but alsoan ontain smooth musulature in bigger veins. In this ase the onnetive tissueis omposed by ollagen �bres, elasti �bres, intraellular substanes and ells thatprodue suh materials.

Figure 1.2: Shemati representation of artery layers. From http://hemodynamis.udavis.edu/5



1.1.2 Classi�ation of arterial vesselsConduting or elasti arteriesThey are large vessels, with very strong and relatively elasti walls, whose fun-tion is to drive the bulk of blood outgoing from the heart to the regions of the bodywhere it has to be distributed.Suh vessels must withstand a great head of pressure to pump blood againstthe peripheral system resistane aused by the distal arterial network. Then theelasti �bers omposing the wall allow some strething and narrowing of the ves-sel in response to the inoming pressure, and the ollagen �bers limit the strethpermitted.Elasti arteries inlude aorta, pulmonary arteries, ommon arotid, sulaviaartery and ommon ilia arteries. The lumen of suh arteries is very large but theirwalls appear to be very thin ompared to the vessel diameter (ratio about 1:10).Distribution or musular arteriesOne the blood has reahed the region of distribution (e.g. the limbs) it will behandled by smaller, but still fairly large, distribution or musular arteries, whihsend it to the next sub-regions omposed by smaller arteries.Suh vessels, like femoral, renal and ulnar arteries, are mainly omposed bysmooth musulature with smaller quantities of elasti tissue; the smooth musle ofthe wall makes them very extensible, and also provides for a ounter fore to beexerted. In fat as the vessel expands, smooth musle ells are strethed; reatingto this they begin to ontrat.The ontration mehanism of the ondution arteries dampens out the pulsa-tions of the �ow to provide a steady supply of blood at normal pressure into thefollowing arterial bed omposed by arterioles and apillaries.ArteriolesArterioles represent the smallest branhes in the arterial network. Given thatthe transition between di�erent artery types is gradual and not the same for all thesituations, researhers have ome to set several de�nition of an arteriole. Some ofthem de�ne it as an artery with a diameter equal or less than 300 µm having one,three or four smooth musular ell layers, whih are disposed in a irular way into6



the tunia media. Other researhers sustain that arterioles have a diameter inludedfrom 40 to 200 µm and they use also the ratio between wall thikness and lumendiameter as a tool to de�ne an arteriole: in normal onditions this ratio is about1:2.The arterioles o�er a onsiderable resistane to blood �ow beause of the dereas-ing of setion with respet to the upstream vessels. This area of high resistane tothe blood �ow serves several funtions: �rst, together with the ondution arteries,it onverts the pulsatile ejetion of blood form the heart into a steady �ow throughthe apillaries; seond, if no resistane were present and a high pressure persistedinto the apillary bed, there would be a onsiderable loss of blood volume into thetissues beause of the exhange of �uid aross the apillary walls.CapillariesCapillaries are blood vessels without any kind of overing and are simply shapedas endothelial pipes. The surfae area of apillaries, in human beings, is about6000 m2. They usually have a diameter between 7 and 10 µm, barely su�ient asleukoytes and erythroytes ould �ow through the vessel lumen. The total area ofa apillary transversal setion is about 800 times greater than the aorta transversalsetion. The �ow through apillaries is about 0.4 mm/se ompared with the 320mm/se �ow evaluated into the aorta. Pressure in apillaries an reah values up to35 mm Hg in arterial tips but an derease up to 10 mm Hg in venous tips.1.1.3 Funtion of arteriesAs already written, the di�erent types of artery in the vasular system have adi�erent amount of elasti tissue; for this reason the vessel sti�ness, expressed bythe elasti modulus is not the same in every vessel.Applied to the wall of an artery, this infers a strutural property. The funtionalonsequene of having elasti tissue in the wall is that these arteries an expand toaommodate added volume. This behaviour of the vessel walls re�ets itself on thepressure and �ow waves of blood during irulation into the vasular system.The pressure in a vessel, for example the aorta, signi�antly hanges with in-reasing distane from the heart. The peak of the pressure pulse delays downstreamindiating wave propagation along the aorta with a ertain wave speed. Moreover,7



the shape of the pressure pulse hanges and shows an inrease in amplitude, a steep-ing of the front and only a moderate fall of the mean pressure.This wave phenomenon is a diret onsequene of the distensibility of the arterialwall, allowing a partial storage of the blood injeted from the heart due to an inreaseof pressure and the elasti response of the vessel. The ross-setional area of thevessels depends on the pressure di�erene over the wall. This pressure di�erene isalled the transmural pressure and an be denoted by ptr. This transmural pressureonsists of several parts. First, there exists a hydrostati omponent proportionalto the blood density ρ, the gravity aeleration g and the height h. Next, a timedependent part p0 and a periodi time dependent part, p ∼. So, the transmuralpressure takes the following form
ptr = ρgh + p0 + p∼ (1.1)The relationship between transmural pressure and ross-setional area A of the vesselis in most ases non-linear and may be rather ompliated. Moreover it varies fromone vessel to the other. For negative transmural pressure values the vessel an evenollapse. Important quantities with respet to this relationship are the omplianeor alternatively the distensibility of the vessel. Compliane may be de�ned as thepartial derivative between the ross-setional area A and pressure p:

C =
∂A

∂p
(1.2)The distensibility D is de�ned as the ratio of the ompliane and the ross-setionalarea and hereby is given by:

D =
1

A

∂A

∂p
=

C

A
(1.3)For thin walled tubes, with radius a and wall thikness h, without onsideringlongitudinal strain, distensibility an be derived as follows:

D =
2a

h

1 − σ2

E
(1.4)where σ denotes the Poisson ratio and E the Young modulus. From 1.4 we an seethat besides the properties of the vessel material (E,σ) also its geometrial properties(a,h) play an important role.The �ow is driven by the pressure gradient and hereby determined by the prop-agation of the pressure wave. Normally the pressure wave may have a pulsatingprogress. In order to desribe suh �ow phenomena it an be possible to make a dis-tintion between steady and unsteady part of the onsidered pulse. Assuming that8



the unsteady part an be desribed by means of linear theory, we an introdue theonept of pressure and �ow waves whih are superpositions of several harmonis:
p∼ =

N
∑

n=1

pne
niωt Q∼ =

N
∑

n=1

Qneniωt (1.5)Here pn and Qn are the omplex Fourier oe�ients and hereby p∼ and Q∼ arethe omplex pressure and the omplex �ow, σ denotes the angular frequeny of thebasi harmoni. Atual pressure and �ow an be obtained by taking the real part ofthese omplex funtions. Normally spoke 6 to 10 harmonis are su�ient to desribethe most important features of the pressure wave.As mentioned before the blood �ow is driven by the fore ating on the bloodindued by the pressure gradient. The relation of these fores to the resulting motionof blood is expressed through the longitudinal impedane:
Zl =

− ∂p

∂x

Q
(1.6)The longitudinal impedane is a omplex number de�ned by omplex pressures andomplex �ows. It an be alulated by frequeny analysis of the pressure gradientand the �ow that have been reorded simultaneously. As it expresses the �ow in-dued by a loal pressure gradient, it is a property of a small (in�nitesimal) segmentof the vasular system and depends on loal properties of the vessel. The longitudi-nal impedane plays an important role in the haraterisation of vasular segments.It an be measured by a simultaneous determination of the pulsatile pressure at twopoints in the vessel with a known small longitudinal distane apart from eah othertogether with the pulsatile �ow.A seond important quantity is the input impedane de�ned as the ratio ofthe pressure and the �ow at a spei� ross-setion of the vessel:

Zi =
p

q
(1.7)The input impedane is not a loal property of the vessel but a property of a spei�site in the vasular system. If some input ondition is imposed on a ertain site inthe system, then the input impedane only depends on the properties of the entirevasular tree distal to the ross-setion where it is measured and is often referredto as a harateristi impedane. In general the input impedane at a ertain sitedepends on both the proximal and distal vasular net.9



The ompliane of an arterial segment is haraterized by the transverse impedanede�ned by:
Zt =

p
∂Q

∂x

= − p
∂A
∂t

(1.8)This quantity expresses the �ow drop due to the storage of the vessel aused bythe radial motion of its wall (being A the ross-setional area) at a given pressure.1.1.4 HeartThe heart is the musular organ of the irulatory system; approximately thesize of a lenhed �st, it ats as a double pump driving blood, feeding and wastingproduts along the two distint irulations, the pulmonary iruit and the systemiiruit (see �gure 1.1). In order to maintain these two iruits separate, heart isdivided in two distint parts, eah one having two hambers (�g. 1.3).

Figure 1.3: Heart anatomy. Image taken from http://si2135d1-pm68.morris.umn.edu/ pzmy-ers/MyersLab/The right side of the heart has to pump blood, through the vessels belonging tothe pulmonary iruit, to oxygenate blood in lungs. Left side of the heart providethe blood pumping to the vessels whih ompose the systemi iruit.Blood pumping is provided through the alternation of a ontration phase, alledsystole, with a relaxation phase, the diastole; the repetition of these two phases rep-10



resents a beat or ardia yle (�g.1.4), whih is the simplest parameter to evaluatethe heart ativity. The average pumping rate of the left ventrile is about 70 bpm(beats per minute), whih orresponds to a period of about 0.85 seonds for eahardia yle.Sine eah side of the heart has an atrium and a ventrile, we have two valvesfor eah side, an inlet one and an outlet one. Venous blood omes to the rightatrium from the two ava veins, the superior vein and the inferior vein. Thenblood �ows through triuspid valve into the right ventrile, where is pumped duringsystole phase trough another valve, the semi-lunar valve, and goes along pulmonaryarteries �nally reahing lungs. Oxygenated blood then returns from lungs to the leftatrium passing trough the pulmonary veins; one the atrium is �lled, the mitral orthe biuspid valve opens and blood an reah the left ventrile. From this loationblood passes through the aorti semilunar valve and enters the aorta where it willbe distributed to the whole body going along the systemi irulation.

Figure 1.4: Cardia yle notes. AV stands for atria-to-ventriles valves. Image taken fromhttp://si2135d1-pm68.morris.umn.edu/ pzmyers/MyersLab/teahing/Bi104/
11



1.2 Rheology of bloodBlood volume is omposed by formed elements (about 45%) and plasma (about55%). The plasma is a diluted eletrolyte solution ontaining about 8 perent byweight of three major types of proteins: �brinogen, globulin and albumin in water.Fibrinogen is involved in blood oagulation through a proess of polymerization thattransform �bronogen into �brin. Globulin is a arrier of lipids and other water sol-uble substanes and also ontains antibodies that resist from the attaks of bateriaand virus. Albumin is the main ontributor to the total olloid osmoti pressure ofplasma and play an important role in the balane of water metabolism.The formed elements in blood onsists of 95% red blood ells, 0.13% white bloodells and about 4.9% platelets. The white blood ells, also known as leuoytesonsist of monoytes, lymphoites, and basophils. Monoytes that leave the ir-ulation and enter the tissues develop into marophages. Neutrophils, monoytes,and marophages are olletively known as phagoytes sine they an engulf andingest bateria and other foreign partiles. Platelets are ells without a nuleus;they an repair the damaged vessel walls and also an help blood through thrombusformation. The majority of the formed elements are red blood ells that onsistof hemoglobin surrounded by �exible red ell membrane. The primary funtion ofhemoglobin in the red blood ell is to transport oxygen from the lungs to the livingtissue of the body.Beause of its heterogeneous omposition, blood rheology, that is the relation-ship between the strain and stress tensors, is hard to de�ne. In fat rheologibehaviour of blood depends on several fators like pressure, temperature, and vesselgeometry whih values an vary in time; moreover the e�ets aused by trauma orin�ammatory proesses an hange even more the normal behaviour of blood �ow.Several studies have been made in order to give a mathematial desription of bloodbehaviour; we may now onsider its main harateristi.Indiate with T the stress tensor and with D the strain tensor: D = [Dij ] =

[1
2
(ui,j + uj,i)], where u is the �uid veloity �eld. We an de�ne the onstitutiverelationship between T and D as follows:T = −pI+ S(D) (1.9)where I is the identity Kroneker tensor,p is the pressure, pI is the isotropi stresstensor omponent and S(D) is the deviatori omponent. If the relationship between12



S and D is linear, and S takes zero values when the �uid is at rest, then we havea newtonian �uid. However in generi onditions this relationship is not linear andthe deviatori omponent does not vanish if the �uid has zero veloity. In this asewe assume the �uid as non newtonian and it has the following harateristi:For what onerns the blood we an expose its main rheologial harateristisas follows:Pseudo-elasti behaviour. Like non-newtonian �uids, blood shows a nonlinear relationship between shear stress and shear rate. For this kind of �uids wemay de�ne the apparent visosity as the ratio between shear stress and shear rate.If apparent visosity dereases when shear rate inreases, we have a pseudo-plasti�uid; otherwise we have a dilatant �uid (�g. 1.5).

Figure 1.5: Relationship between shear rate and shear stress in a non-newtonian �uidMiro-irulation e�ets. Blood rheologi properties may hange when vesseldiameter redues to a dimension omparable with the one of a red blood ell. Infat, when the diameter is less than 12 µm, blood annot be onsidered as a on-tinuous anymore. When the vessel diameter assumes values less than 500 µm, it isexperimentally possible to observe a redution in apparent visosity. This behaviouris alled Fahraeus-Lindqvist e�et and is essentially due to two auses: �rst, whenblood is arried away into a vessel smaller than the oming one, the plasma willeasily �ow away, while the blood formed omponents will be slowed down beauseof ollisions between them and the vessel wall near the entrane. This phenomenonwill derease the red blood ell onentration (hematorit) and, onsequently, theapparent visosity. Seond, we an experimentally observe that hematorit assumeshigher values in the entral lumen region than near the walls. For this reason, owing13



to a vessel branhing whih auses a diameter redution, the region lose to thewalls beomes more relevant than the entral zone and there will be a dereasingof hematorit and apparent visosity. However this harateristi doesn't onernwith big and middle size arteries, and it will not be onsidered during the modelimplementation.All these rheologi harateristis are essentially due to the presene of red bloodells. In fat the plasma an be onsidered as a newtonian �uid, and white bloodells and platelets represent a small perentage of the blood volume and their miro-sopial e�et on rheology may be negleted. When the red blood ells onentrationis less them 12% of the total weight, blood has a newtonian behaviour.For middle and big arteries, in physiologi onditions, the rheologial newtonianmodel for blood is onsidered aeptable for a �rst level approximation. In fat wean experimentally disover that for values of D in the proximity of artery walls,visosity is independent from any value of D. Sine for our 1D model we onsideronly big and middle arteries, by default we will treat blood as a newtonian �uidwith density 1.021x103 kg m−3 and visosity equals to 0.004 kg m−1 s−1 (at 37 °C ),haraterized by the following onstitutive law:T = −pI + 2µD (1.10)where µ is the visosity of the �uid.1.3 HemodynamisHemodynamis is an important �eld of ardiovasular physiology dealing withblood pumping and irulation through the ardiovasular system. Classial hemo-dynamis deals with in vivo and in vitro measurements of pressure, �ow and re-sistane. The diret extrapolation of suh quantities is di�ult sine the bloodirulation is within the living body of human beings and so there must be a om-promise between the auray of measurements and their invasive level. Also theemploy of straightforward alulations an hardly handle the ompliated dynamiphenomena of blood �ow. Hene, omputational simulation had beome neessaryand has been proved to be valid.Computational Hemodynamis applies numerial tehniques to support the in-vestigators of physiologial and pathologial phenomena onerning blood �ow in theardiovasular system. In reent years, the development of omputational methods14



together with the inreasing omputing hardware performanes have enabled om-putational Hemodynamis to beome an important tool for analyzing the behaviorof blood �ow in vessels.The mathematial modeling of hemodynamis problems, like the study of blood�ow and its mehanial and biohemial interations with the vessel walls is veryomplex. Together with the equations desribing the motion of an inompressible�uid, we have to onsider advetion di�usion equations for the dynamis of solutedlipids, oxygen and drugs; moreover, spei� interation models for the osmosis ofthese substanes with the wall may be taken into aount. Finally, we have tode�ne a strutural model that desribes the mehanial behaviour of the vessel walloupled with the blood �ow.The development of a numerial solution for suh hemodynamis problems musttake into aount some ompromises related to several aspets; at one hand wehave to provide all those informations about the problem that will be essential forthe omprehension of the involved phenomena. On the other hand it is neessaryto allow a numerial treatment of the model at reasonable omputational osts.For this purpose the hoie of the model may be oriented either to an auratemodelization of a loalized system or a heavily simpli�ed representation of a moreglobal physial system; the former ase implies the appliation of 2D/3D modelswith the oupling �uid-struture [29℄[3℄, while the latter refers to onsider the wholesystem as a network of ompartments whose features are treated as mean or lumpedparameters [14℄A possible ompromise between these approahes is represented by the one-dimensional wave propagation model, whih involves solving the governing equationsof blood �ow in a one-dimensional domain and assumes that dominant omponentof the blood �ow veloity is oriented along the vessel axis.1.3.1 The one-dimensional modelThe one-dimensional modelling, and its appliation to the human arterial system,was introdued for the �rst time by Euler in 1775[2℄ who derived the partial di�er-ential equations expressing the onservation of momentum and mass for an invisid�uid. I order to lose the problem, he suggested two possible, but experimentallynot realisti, onstitutive equations whih desribe the behaviour of an elasti wallwith hanges in the lumenal pressure. Euler did not reognise the wave-like nature15



of the �ow and was not able to �nd a solution for his system of equation.The wave nature of the arterial �ow was �rst desribed by Young[36℄ who derivedthe wave speed in analogy to Newton theory of the speed of sound in air. In 1877Moens[13℄ and Kortweg[8℄ independently published analyses of �ow in thin-walledelasti vessels, deriving what is now known as the Moens-Kortweg equation for thewave speed. Riemann[20℄, in the 1860, provided the analytial solution for thegeneral equations for 1D model when he introdued the method of harateristis;suh tool was �rst applied to arterial �ow more than 50 years ago by Anliker ando-workers[26℄[27℄ and Skalak[23℄.The system of equations derived by Euler is omposed by non-linear partial dif-ferential equations analogous to the shallow-water equations of hydrodynamis orthe one-dimensional invisid equations of gas dynamis. However, under physiologi-al onditions of the arterial system, suh equations are only weakly non-linear andtherefore many harateristis of the �ow may be aptured using a linearised system.This is the approah of Womersley[35℄ (1957) who linearised the two dimensionalequations for the �ow in straight, irular elasti pipes and obtained the wave solu-tion by Fourier tehniques. This linear analysis has beome the "standard" modelof waves in arteries and is found in most hemodynamis books. The suess of thelinearised model and the apparently periodi nature of the arterial system has on-vined most researhers sine Womersley to analyse arterial �ow in the frequenydomain rather than the time domain, using the "eletrial analogy" pressure-voltageand �ow-urrent.Although the body of work using the frequeny domain is onsiderable, manyaspets of the physiologial waveforms have yet to be understood; moreover thereare some limiting aspets onerning the solution of suh a problem in the frequenydomain. Firstly the frequeny domain may lead to the impliit assumption that thearterial system is in a state of permanent "steady osillation" that may ontinueeven when the foring from the heart is stopped. However, the harateristi speedof wave propagation is su�iently fast that the time sale to propagate informationthrough the whole arterial system is muh smaller than the duration of the ardiayle. It is generally observed, in resting onditions, that �ow in large arteriesappears at rest during late diastole. Seondly, the aorti valve is an essentiallynon-linear element dividing the ardia yle into systole and diastole. Sine thefrequeny domain annot distinguish between these two phases of ht ardia yle,an idential systoli behaviour of the ventrile during systole (and the arterial system16



during diastole) ould be masked simply by hanges in the fundamental frequeny.An alternative approah to simulate the one-dimensional arterial system is towork in a spae-time domain instead of a frequeny analysis;...

17



Chapter 2Problem formulationIn hapter I we gave a preliminary base of knowledge about the ardiovasu-lar system, introduing both the physiologial bakground and possible models tobe used for the numerial haraterization of its funtioning. In this hapter wefous on the mathematial formulation related to the one-dimensional model ofthe vasular network, aounting for several aspets: �rstly, the derivation of thegoverning equations for this kind of model is detailed aounting for geometrialand physial assumptions, de�nition of the omputation domain and attribution ofsuitable boundary onditions. Seondly, the governing system we obtained is numer-ially solved by means of time-spae integration shemes adopting the �nite elementtheory. Suh shemes will be further implemented into a numerial solver whih,oupled with GiD1 pre-post proess interfae permits to alulate the numerialsolution of the problem and to display the obtained results.2.1 Governing equationsThe governing equations for 1D blood �ow model in arteries an be derivedonsidering a single vessel (�g. 2.1). Sine we are adopting a one-dimensionalformulation, several simplifying hypothesis must be taken into aount; startingfrom the geometry, we an assume the arterial vessel as a long, straight ylinderof length L (�g. 2.1). Doing this, we deided not to onsider loal urvatures sothat the axial oordinate z represents also the preferential diretion of the bloodmotion. The new ylindrial domain Ωc, desribed using a ylindrial oordinate1See appendix A. 18



Figure 2.1: Sketh of a single ompliant vesselsystem (r, θ, z), is de�ned as follows:
Ωc = {(r, θ, z) : 0 ≤ r ≤ R(z, t), θ ∈ [0, 2π), z ∈ (0, L)}for ∀t > 0, indiating with er, eθ and ez the radial, irumferential and axial unitvetors.

Figure 2.2: One-dimensional ylindri domain for a single arterial vessel and detail of the irularsetion S(t, z)The assumption of a ylindrial geometry for the vessel is not the only simpli-fying hypothesis adopted for the one-dimensional model; sine we wish to studyhow pressure and �ow waves propagate into the arterial system without onsideringhemodynami details, we analyze the blood �ow in terms of transversally averagedarea and �ow rate alulated on the vessel setion; mean setional values anywaygive a good desription of the wave propagation in arteries [15℄[28℄ and allow toavoid onsidering the radial and angular omponents of veloity.Following this approah we assume axial symmetry for all the omponents in-volved (area, veloity and pressure), whih are funtions of z and t only, and radialdisplaements along the radial diretion solely. The latter hypothesis means thateah axial setion S remains irular at all times, i.e., for z ∈ [0, L] and t > 0 wehave:
S = S(z, t) = {(r, θ, z) : 0 ≤ r ≤ R(z, t), 0 ≤ θ ≤ 2π}19



At eah point of the setion surfae we may write η = ηer, where η = R−R0 isthe displaement with respet to a referene radius R0
2.2.1.1 Mass onservation equationConsidering the vessel de�ned in �g. 2.2, the priniple of mass onservationrequires that the rate of hange of mass within the domain Ωc plus the net mass�ux out of the domain is zero. Sine we onsider transversally averaged values forarea and axial veloity, they may be de�ned as:

A(t, z) =

∫

S(t,z)

dσ = πR2(t, z) (2.1)
uz(t, z) = ū(t, z)s

(

r

R(t, z)

)

, ū(t, z) =

∫

S(t,z)

uzdσ (2.2)
Q(t, z) = A(t, z)ū (2.3)where ū is the mean veloity on eah setion and s : R → R is a veloity pro�lefuntion. We assumed this pro�le does not vary in time, thinking s as representativeof an average �ow on�guration.Denoting the vessel volume as V (t) =

∫ L

0
Adz, and assuming there are no in�l-trations through the side walls, the mass onservation an be written as

ρ
dV (t)

dt
+ ρQ(L, t) − ρQ(0, t) = 0 (2.4)where ρ is the blood density. If in�ltration does our we must add a soureterm to this equation [32℄[31℄.To determine the one-dimensional equation of mass onservation, we insert V (t) =

∫ L

0
Adz into (2.4) and, sine we an write

Q(L, t) − Q(0, t) =

∫ L

0

∂Q

∂z
dz,we obtain

ρ
d

dt

∫ L

0

A(z, t)dz + ρ

∫ L

0

∂Q

∂z
dz = 0.As we assume L independent of time, we an inlude the time derivative inside theintegral to have

ρ

∫ L

0

{∂A

∂t
+

∂Q

∂z

}

dz = 02As referene state we indiate a generi steady state of the 1D system, where we have thesetion A = A0 = πR2

0
and the blood mean veloity ū ≈ 020



Sine we have not spei�ed the vessel length L, the domain is arbitrary and so theabove equation must be true for any value of L. We therefore obtain the di�erentialequation for the mass onservation related to the one-dimensional model:
∂A

∂t
+

∂Q

∂z
= 0 (2.5)2.1.2 Momentum equationThe momentum equation states that the rate of hange of momentum within theintegration domain Ωc plus the net �ux of the momentum out of the domain itselfis equal to the applied fores on the domain and an be expressed over an arbitrarylength L as

d

dt

∫ L

0

ρQdz + (αρQu)L − (αρQu)0 = F (2.6)where F is de�ned as the applied fores in the z-diretion ating on the domain;again we have not onsidered �ux losses through the side walls of Ωc. The equation(2.6) inludes a momentum-�ux orretion oe�ient α, also alled Coriolis oe�-ient, whih aounts for the fat that the momentum �ux alulated with averagedquantities (ū) does not onsider the non-linearity of setional integration of �uxmomentum. So we may assume
∫

S
ρū2dσ ≡ αρū2A = αρQū ⇒ α(z, t) =

∫

S ū2dσ

Aū2
=

∫

S s̄2dσ

AIn general α may vary in time and spae, yet in our model is taken onstant asa onsequene of (2.2). There are several hoies for the pro�le law s; one is thelassial paraboli funtion s(y) = 2(1−y2), orresponding to the Poiseuille solutionfor steady �ows in irular tubes. Another pro�le law often used for blood �ow inarteries [24℄ is a power law of the type
s(y) = γ−1(γ + 2)(1 − yγ) (2.7)Figure 2.3 shows the pro�le trend adopting several values for γ.To omplete the equation (2.6) we need to de�ne the applied fores F whihtypially involve a pressure and a visous fore ontribution, i.e.

F = (PA)0 − (PA)L +

∫ L

0

∫

∂S
P̂nzdsdz +

∫ L

0

fdz (2.8)21
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Figure 2.3: Veloity pro�les for blood �ow in arteries onsidering several values of γwhere ∂S represents the boundary of the setion S, nz is the z-omponent of thesurfae normal and f stands for the frition fore per unit of length. The pressurefore ating on the side walls, given by the double integral, an be simpli�ed sinewe assumed both onstant setional pressure and axial symmetry of the vessel; sowe have
∫ L
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P
∂A

∂z
dz (2.9)If we �nally ombine equations (2.6),(2.8) and (2.9) we obtain the momentumonservation for the omputation domain expressed as
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P
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dz +

∫ L
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fdz (2.10)To obtain the one-dimensional di�erential equation for the momentum we notethat
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whih, inserted into (2.10), taking L independent of time and ρ onstant, gives
ρ

∫ L

0

{∂Q

∂t
+

∂(αQu)

∂z

}

dz =

∫ L
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∂z
+ P
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∂z
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dzOne again this relationship is satis�ed for an arbitrary length L and therefore anonly be true when the integrands are equal. So the one-dimensional equation forthe momentum onservation beomes
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∂P

∂z
+

f

P
. (2.11)The visous term in the equation (2.8) may be also expressed as a funtion ofthe veloity pro�le s(y). Considering an in�nitesimal portion T of the domain Ωc

Figure 2.4: In�nitesimal portion T of Ωc(�g. 2.4), we an write:
∫ L

0

fdz ⇒ µ
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∫
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]The term ∂uz/∂z is assumed to be muh smaller than the others, and moreoverwe may split n into its radial and axial omponents, nr = nrer and nz = nzez.Consequently we have

∫

T
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Again the term ∇uz · nz may not be onsidered, being proportional to ∂uz/∂z.Realling the relation (2.2) we obtain
∫

T
∆uz =

∫

ΓT

∇uz · ernrdσ =

∫

ΓT

ū

R
s′(1)n · erdσ ≈ 2πūs′(1)beause nrdσ an be expressed as 2πRdz. Passing this term to the limit as dz → 0and substituting it with f/ρ into the equation (2.11) we �nally obtain
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+ Krūwhere

Kr = −2πνs′(1)is the frition parameter for our one-dimensional system, whih depends on thekinemati visosity ν =
µ

ρ
of the �uid and the veloity pro�le s.2.2 Vessel wall mehanial modellingOne we obtained the two governing equations (2.5) and (2.11), it is possible towrite the one-dimensional system as
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= 0, z ∈ (0, L), t > 0 (2.12a)

∂Q

∂t
+

∂

∂z

(

α
Q2

A

)

+
A

ρ

∂P

∂z
+ KR

Q

A
= 0, z ∈ (0, L), t > 0 (2.12b)where the unknowns are A, Q and P . As we an notie the number of variablesis greater than the number of equations (three unknowns for the two equations (2.5)and (2.11); therefore one equation more is needed in order to solve this system.For this reason we introdue an algebrai relationship between area and pressure,deriving it from a mehanial model for the vessel wall displaement. In this projetwe onsidered the generalised string model [18℄, whih an be expressed as

ρwh0
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∂3η

∂t∂z2
+ b̃η = (P − Pext) (2.13)where η is the radial displaement de�ned previously and Pext is the pressureexternal to the vessel, here taken onstant.24



Eah term of the equation (2.13) has its own physial signi�ane: the �rst one isthe inertia term, proportional to the wall aeleration. The seond term is a Voigt-type, visoelasti term, proportional to the radial displaement veloity. The thirdterm is related to the longitudinal pre-stress state of the vessel wall, and aounts forthe longitudinal tensions ating on arteries. The fourth term is another visoelastiterm while the last term is the elasti response funtion. Besides ρw is the vesseldensity, h0 is the wall thikness, ã, b̃ and c̃ are three positive oe�ients. We andevelop the last term of (2.13) being
η = R − R0 =⇒ η =
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π
, with A0 = πR2

0and
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Eh0

kR2
0

=
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, with k = 1 − ξ2where E is the Young modulus of elastiity and ξ represents the Poisson ratio,typially taken to be ξ = 0.5 (then k = 0.75) sine biologial tissue is pratiallyinompressible.It is known that, under physiologial onditions, the elasti response of the mainarteries is the dominating e�et, while the other inertial and visoelasti terms givea negligible ontribution. Consequently, a �rst model whih relates pressure andarea may be

P − Pext = b̃η = β1

√
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√
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(2.14)where
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√
π

1 − ξ2is a funtion of z through the Young modulus, E(z). In general, the algebrairelationship may be expressed as
P = Pext + F(A; A0, β) (2.15)where we outlined that the pressure will depend not only on A, but also on A0and on a set of oe�ients β = {β1, β2, . . . βn} whih aounts for the physial andmehanial harateristis of the arterial vessel. Both A0 and β are given funtionsof z, but they do not vary in time. It is required that F be at least a C1 funtionof its arguments and be de�ned for eah positive value of A and A0. In addition wemust have, for all the allowable values of A, A0 and β that

∂F
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> 0 , and F(A0; A0, β) = 025



There are several examples of algebrai pressure-area relationship for one-dimensionalmodels of arterial �ow [9℄[24℄; here we assumed the relationship (2.14), where β =

{β1} and, for the sake of simpliity, Pext = 0. Then funtion F an be written as
F(A; A0, β1) = β1

√
A −

√
A0

A0

(2.16)2.3 The �nal modelThe derivation of the above pressure-area dependene allows to lose our one-dimensional system (2.12), replaing the pressure term with the algebrai relation-ship (2.14). To this purpose we also introdue the following quantity
c1 = c1(A; A0, β) =

√

A

ρ

∂F
∂A

(2.17)whih represents the propagation speed of waves along the ylindrial vessel.The two-equation system we �nally obtained may be written in a quasi-linearform, using the matrix notation. So we have
∂U

∂t
+ H(U)

∂U

∂z
+ B(U) = 0, z ∈ (0, L), t > 0 (2.18)where

U =

[

A

Q

]

H(U) =





0 1
A

ρ

∂F
∂A

− αū2 2αū



 =







0 1

c2
1 − α

(

Q

A

)2

2α
Q

A







B(U) =





0

−KR

Q

A
+

A

ρ

∂F
∂A0

dA0dz +
A

ρ

∂F
∂β

dβ
∂dz 

(2.19)
In our modelling,A0 and β1 are taken onstant along the axial diretion z beausewe assume that both the initial area A0 and the Young modulus E do not vary inspae; so the expression of B aounts only for the frition term depending on KR.The non-linear form (2.18) for the governing system may be transformed into aonservation form as 26



∂U

∂t
+

∂F (U)

∂z
− S(U) = 0, z ∈ (0, L), t > 0 (2.20)where

F (U) =





Q

α
Q2

A
+ C1



 (2.21)is the �ux vetor, and
S(U ) = −B(U) −





0
∂C1

∂A0

dA0dz +
∂C1

∂β

dβdz 

 (2.22)aounts for the soure term of the system. C1 is a primitive of the wave speed
c1, given by

C1(A; A0, β) =

∫ A

A0

c2
1(τ ; A0, β)dτApplying the relationships (2.16) and (2.17), we obtain

c1 =

√

β1

2ρA0

A
1

4 ⇒ C1 =
β1

3ρA0

A
3

2 (2.23)2.4 Charateristi analysisOne of the methods for solving nonlinear systems of partial di�erential equations,like our one-dimensional model, is the harateristi analysis [22℄[17℄; onsidering(2.18), we an alulate the eigenvalues for the matrix H(U)

λ1,2 = α
Q

A
± cα (2.24)where

cα =

√

c2
1 + α(α − 1)

Q2

A2Sine the Coriolis oe�ient α ≥ 1, cα is a real number; besides, under the assump-tion that A > 0, indeed a neessary ondition to have physial relevant solution,
c1 > 0; therefore we have cα > 0 whih means H has two real distint eigenvaluesand so, by de�nition, the system (2.18) is stritly hyperboli. For typial values ofveloity, vessel setion and mehanial parameter β1 enountered in main arteriesunder physiologial onditions, we �nd that λ1 > 0 and λ2 < 0.27



Indiating with (l1, l2) and (r1 r2) the two ouples of left and right eigenvetorsof H , we may de�ne the matries R, L and Λ as
L =

[

lT1

lT2

]

, R =
[

r1 r2

]

, Λ =

[

λ1 0

0 λ2

]

. (2.25)Here we onsidered, for simpliity, α = 13; sine left and right eigenvetors aremutually orthogonal, we hoose them so that LR = I, being I the identity matrix,without loss of generality. The matrix H beomes
H = RΛLand the system (2.18) takes the equivalent form

L
∂U

∂t
+ ΛL

∂U

∂z
+ LB(U) = 0, z ∈ (0, L), t > 0 (2.26)We introdue a hange of variables suh that

∂W1

∂U
= l1,

∂W2

∂U
= l2 (2.27)

W1 and W2 are alled harateristi variables of the hyperboli system. Bysetting W = [W1 W2]
T the system (2.26) may be elaborated into

∂W

∂t
+ Λ

∂W

∂z
+ G = 0, z ∈ (0, L), t > 0 (2.28)with

G = LB − ∂W

∂A0

dA0dz − ∂W

∂β

dβdzUnder the assumption that A0 and β1 are onstant in spae and taking B neg-ligible4, the equation (2.28) beomes
∂W

∂t
+ Λ

∂W

∂z
= 0, z ∈ (0, L), t > 0whih is a system of deoupled salar equations written as

∂Wi

∂t
+ λi

∂Wi

∂z
= 0, z ∈ (0, L), t > 0, i = 1, 2. (2.29)3The value of α usally varies between 1 and 4/34Assuming B ≈ 0 is onsistent with the fat that, in the ase of 1D models, the visous soureterm in the momentum equation is negligible under the physiologial onditions onerning mainarteries. 28



From (2.29) we have that W1 and W2 are onstant along the two harateristiurves in the (z, t) plane (�g. 2.5) desribed bydzdt = λ1 and dzdt = λ2

Figure 2.5: Diagram of harateristis in the (z, t) plane. The solution on the point R is obtainedby the superimposition of the two harateristis W1 and W2The expression for the left eigenvetors l1 and l2 is given by
l1 = ς

[

cα − αū

1

]

, l2 = ς

[

−cα − αū

1

]

,where ς = ς(A, ū) is any arbitrary smooth funtion of its arguments with ς > 0.Here we have expressed l1 and l2 as funtions of (A, ū) instead of (A, Q) in order tosimplify the next developments.For an hyperboli system of two equations is always possible to �nd the hara-teristi variables loally, that is in a small neighbourhood of any point U [5℄, yetthe existene of global harateristis is not in general guaranteed. Assuming α = 1the relationships (2.27) take the form
∂W1

∂A
= ςc1,

∂W1

∂ū
= ςA (2.30a)

∂W2

∂A
= −ςc1,

∂W2

∂ū
= ςA (2.30b)29



We now show that a set of global harateristi variables exist for the problemat hand. Sine we note, from 2.30, that W1,2 are exat di�erentials being
∂2Wi

∂A∂ū
=

∂2Wi

∂ū∂Afor any value of A and ū; we also have that c1 does not depend on ū and then, fromthe above relationships we obtain
c1

∂ς

∂ū
= ς + A

∂ς

∂AIn order to satisfy this relation we have to hoose ς = ς(A) suh that ς = −A
∂ς

∂A
.To do this we an take ς = A−1.As a onsequene we an write

∂W1 =
c1

A
∂A + ∂ū, ∂W2 = −c1

A
∂A + ∂ū (2.31)Taking (A0, 0) as a referene state for our variables (A, ū), we an integrate theabove relationships obtaining

W1 = ū +

∫ A

A0

c1(ǫ)

ǫ
dǫ , W2 = ū −

∫ A

A0

c1(ǫ)

ǫ
dǫIntroduing the expression (2.23) for c1 we have

W1,2 =
Q

A
± 4

(
√

β1

2ρA0

A
1

4 − c0

) (2.32)with c0 is the wave speed related to the referene state.We �nally an write the variables (A, Q) in terms of the harateristi ones,
A =

(

2ρA0

β1

)2(
W1 − W2

8

)4

, Q = A
W1 + W2

2
(2.33)2.5 Boundary onditionsBy the harateristi analysis of the one-dimensional model we pointed out thehyperboli nature of one-dimensional system for blood �ow in arteries; onsequentlythe solution is given by the superimposition of two waves whose eigenvalues λ1,2represent the propagation speeds of suh waves. As we have seen previously, theyalways have opposite sign and so blood �ow is sub-ritial ; under this ondition, we30



Figure 2.6: Sketh of the two harateristis entering the domain.need two boundary onditions to lose the governing system: one at the inlet setion
z = 0 and the other at the outlet z = L (�g. 2.6).An important lass of boundary onditions is represented by the so-alled non-re�eting or absorbing onditions [30℄[6℄, whih allow the simple wave assoiatedwith the harateristis to enter or leave the domain without spurious re�etions.Absorbing boundary onditions an be imposed by de�ning values for the waveentering the domain; in our ase λ1 > 0 and λ2 < 0 so W1 is the entering harater-isti in z = 0 and W2 the inlet harateristi in z = L. We have











W1(t) = g1(t), for z = 0 and t > 0,

W2(t) = g2(t), for z = L and t > 0,

(2.34)being g1(t) and g2(t) two given funtions.This kind of boundary onditions is suitable when we onsider the outlet, ordistal, setion of the vessel, where the values of area or �ow rate are not knownbefore the omputation. On the ontrary for inlet setion we often impose onditionson the physial variables of the system, as pressure or �ow rate. Suh values an betaken, for example, from experimental measurements.
2.6 Numerial disretizationThe system (2.20) has been disretized using both a straightforward Galerkinand a Taylor-Galerkin sheme [1℄. The latter is the �nite element ounterpart of theLax-Wendro� [10℄ �nite di�erene sheme.31



Considering the equation (2.20) and having H =
∂F

∂U
we may write

∂U

∂t
= S − ∂F

∂z
(2.35)

∂2U

∂t2
=

∂S

∂U

∂U

∂t
− ∂

∂z

(

H
∂U

∂t

)

=

=
∂S

∂U

(

S − ∂F

∂z

)

− ∂HB

∂z
+

∂

∂z

(

H
∂F

∂z

) (2.36)For simpliity, the dependene of S and F from U is dropped. Starting fromthe above equations, we now onsider the time intervals (tn, tn+1), for n = 0, 1, . . .with tn = n∆t, being ∆t the time step; then we disretize the equation in timeusing a Taylor series whih inludes �rst and seond order derivatives of U ; forthe straightforward Galerkin sheme only �rst order terms will be onsidered, whilefor the Taylor-Galerkin sheme we will aount for both terms. Therefore we ob-tain the following semi-disrete shemes for the approximation Un+1 of U(tn+1),respetively:
• Straightforward Galerkin sheme:

Un+1 = Un − ∆t

(

∂F n

∂z
− Sn

)

, n = 0, 1, . . . (2.37)
• Taylor-Galerkin sheme:

Un+1 = Un − ∆t
∂

∂z

[

F n +
∆t

2
HnSn

]

− ∆t2

2

[

SU

∂F n

∂z
− ∂

∂z

(

Hn ∂F n

∂z

)]

+∆t

(

Sn +
∆t

2
SUSn

)

, n = 0, 1, . . . (2.38)where SU =
∂Sn

∂U
and F n, stands for F (Un), just as Hn, Sn and Sn

U
; the value

U 0 is given by the initial onditions.For eah time interval (tn, tn+1) we apply a spatial disretization arried outusing the Galerkin �nite element method [12℄[11℄. To this purpose we subdivide thedomain Ω = {z : z ∈ (0, L)}, whih is the 1D ounterpart of the 3D domain Ωc,into a �nite number Nel of linear elements having length l (�g. 2.7).Moreover we introdue a trial funtion spae, T , and a weighting funtion spae,
W . These spaes are both de�ned to onsist of all suitably smooth funtions andto be suh that

T = {U(z, t)|U(z, 0) = U 0(z) on Ωc at t = t0} , W = {W (z)}32



Figure 2.7: One-dimensional linear meshConsidering the ase of a straightforward Galerkin sheme, we multiply the equation(2.37) for the weight funtion W and we integrate it over the domain Ωc obtaining,for ∀t > t0

∫

Ω

W
(

Un+1 − Un
) dΩ = ∆t

[
∫

Ω

∂W

∂z
F ndΩ +

∫

Ω

SnWdΩ]+

−∆t
[

WF̄ r
n|z=L − WF̄ l

n|z=0

] (2.39)The �ux term F n has been integrated by parts so we must aount for boundaryterms at the inlet (z = 0) and at the outlet (z = L) of the domain. Equation (2.39)must be veri�ed for every W in W .Starting from the weak form of the problem (2.39) we build the subspaes T
hand W

h for the trial and weighting funtion spaes T and W de�ning them as
T

h = {Û(z, t)|Û (z, t) =
N
∑

j=1

U j(t)Nj(z); U(t0) = Ū(zj) = U 0
j}

W
h = {W (z)|W (z) =

N
∑

j=1

WjNj(z)}
(2.40)where Nj is the standard linear �nite element shape funtion (�g. 2.8) assoiatedwith the j-th node, loated at z = zj , and U j the value of Û at the node j. Sinewe are using the Galerkin method, the base shape funtions de�ned above are usedas weighting.Adopting the following notation

(W, U)Ωc
=

∫

Ωc

W · UdΩ,and onsidering the sum of eah element ontribution
∫

Ω

· · · =
∑

el

∫

Ωe

· · · ,33



Figure 2.8: Sketh of a 1D shape funtionthe equation (2.39) beomes
∑

el

(Ni, Nj)Ωe

(

Un+1
j − Un

j

)

= ∆t
∑

el

[

(Ni,z, Nj)Ωe
F n

j + (Ni, Nj)Ωe
Sn

j

]

−

−∆t
[

NiF̄ r
n|z=L − NiF̄ l

n|z=0

]

i, j = 1, 2 (2.41)Now we fous on a simple mesh omposed by two element, i and i+1, and threenodes; then we highlight the ontribution made by eah single node de�ning, in amatrix form
Mc = (Ni, Nj)Ωe

=
l

6

[

2 1

1 2

] (2.42)
Mf = (Ni,z, Nj)Ωe

=
1

2

[

−1 −1

1 1

] (2.43)
Mc is the so-alled onsistent mass matrix. Afterwards we assembly the 2-element mesh: 34
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+ (b..) (2.44)where (b..) means boundary onditions and represents the two boundary termsin equation (2.41). It is possible to adopt a simpli�ed or lumped form for the matrix
Mc [11℄, summing up the rows into the diagonal, obtaining

Ml =
l

6

[

3 0

0 3

]

=
l

2
I (2.45)For a generi internal node i we �nally have

Un+1
i = Un

i +
∆t

l

(

F n
i+1 − F n

i−1

)

+
∆t

3

(

Sn
i−1 + 4Sn

i + Sn
i+1

) (2.46)For what onerns the border nodes, we have to onsider also the ontributiongiven by boundary onditions; starting from the equation (2.44), we have the term
(b..), represented by

∆t
[

NiF̄ r
n|z=L − NiF̄ l

n|z=0

]

, i = 1, 2whih implies the knowledge of the �ux terms depending from the values of A and
Q at inlet and outlet setions. To extrat them we need the two harateristivariables W1 and W2 at eah border to reover U(A, Q) using the equation (2.33).To this purpose we adopted a tehnique based on the extrapolation of the outgoingharateristis [21℄. Having the frition parameter KR small with respet to theother equation terms in (2.20), we assume that in the viinity of the boundaries the�ow is governed by the harateristi system (2.29). At the generi time step n wehave Un known and we linearise the eigenvalues λ1,2 of (2.20) by taking their valuesrespetively at setion z = L and z = 0 for t = tn. Then we derive a �rst orderapproximation of the outgoing harateristis at time tn+1,whih is35



W n+1
2 (0) = W n

2 (−λn
2 (0)∆t)

W n+1
1 (L) = W n

1 (−λn
1 (L)∆t)By using these information together with the values of W1(0)n+1 and W2(L)n+1already given by (2.34), we are able to ompute U(0)n+1 and U(L)n+1, through(2.33), and in this way we derive the �ux terms at boundaries.Analogously to what we have done for the straightforward Galerkin sheme, it ispossible to derive the disretized form of the one-dimensional system in the ase weemploy a Taylor-Galerkin sheme. Starting from the equation (2.38) and proeedingin the same way as before, we obtain the following expression:

∑
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Un+1
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j
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= ∆t
∑
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[(Ni,z, Nj)Ωe
F n

LW (U j) + (Ni, Nj)Ωe
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∑
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∑
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(Ni,z, Nj)Ωe
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j

∂F n
j

∂z

)

−

−∆t
[

NiF̄ r
n|z=L − NiF̄ l

n|z=0

]

i, j = 1, 2 (2.47)where we have assumed
F n

LW (U j) = F n +
∆t

2
HnF nand

Sn
LW (U j) = Sn +

∆t

2
BU

nF nWe hoose to use, for time integration, both a seond and a fourth order expliitRunge-Kutta sheme; suh methods are di�used in omputational �uid dynamis [7℄,and show good properties, e.g. ease of programming, simple treatment of boundaryonditions and good stability [11℄. About this last onept, Galerkin and Taylor-Galerkin require a time step limitation in order to keep the solution stable. Referringto a linear stability analysis, as in referene [16℄, we indiate that the followingondition should be satis�ed 36



∆t ≤ CFL min
0≤i≤N

[

li
max(λ1,i, λ2,i)

]

, (2.48)where λ1,i indiates the eigenvalue λ1 at the mesh node i and CFL is the so-alledCourant-Friedrihs-Levy number ; for the ase of a seond-order Taylor Galerkinsheme we assume CFL =
√

3
3
[16℄2.7 Bifuration treatmentThe one-dimensional model of a single artery an be extended to handle thevasular network by imposing suitable onditions at the bifurations between vessels.In order to manage a branhing zone, when using a 1D formulation, we adopt thetehnique alled domain bifuration[19℄. As showed in �gure 2.9, we divide thedomain Ω into three partitions Ω1, Ω2 and Ω3; doing this we have 3 sub-problemswhih must be oupled imposing adequate boundary onditions. Then we haveto evaluate six variable, (Ai, Qi) with i = 1 : 3, orresponding to the problemunknowns, area and �ow rate, for eah one of the vessels omposing the branhing.

Figure 2.9: Domain deomposition for a generi bifuration ontaining one inlet vessel and twooutgoing vessels.The simplest ondition we an impose is to require the mass onservation throughthe bifuration and and therefore the �ow rate balane an be written37



Q1 = Q2 + Q3remembering that the �ow moves from the subdomain Ω1 to the subdomains Ω2and Ω3. Other two assumptions an be obtained from the requirement of ontinuityof the momentum �ux at the bifuration. This lead to onsider the total pressureterm ontinuous at the boundary. So we may write
P1 +

1

2
ρ

(

Q1

A1

)2

= P2 +
1

2
ρ

(
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A2

)2

P1 +
1

2
ρ

(

Q1

A1

)2

= P3 +
1

2
ρ

(

Q3

A3

)2The remaining three relationships an be derived using the harateristi vari-ables. Sine we have a hyperboli system, eah bifuration vessel has one hara-teristi assoiated with that setion belonging to the branhing. So we will onsider
W1 for the inlet artery while we will take W 1

2 and W 2
2 for the two outgoing vessels.The �nal system we obtain for as single bifuration is the following:
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(2.49)
We an solve it through the Newton-Raphson tehnique for di�erential systemsof non-linear equations.
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Chapter 3Implementation of the numerialsolverIn the previous hapter we introdued the mathematial formulation onerningthe one-dimensional model of blood �ow in arteries; we have de�ned the set ofgoverning equations and boundary onditions whose numerial integration providesan approximated solution for our hemodynami problem.In this hapter we deal with the reation of a omputation tool neessary to solvesuh a one-dimensional system and display the obtained results whih, as alreadydesribed, are related to the propagation of blood pressure and �ow rate waves intothe ardiovasular system.We an divide the reation proess of this solver module, or problem type, intotwo phases:
• Implementation of the numerial solver;
• Coupling of the solver with a graphial interfae for data management andvisualization of results;The omputational ore of the problem type is represented by a �nite elementode programmed in FORTRAN901; then the graphial user interfae is provided byGiD2, whih is a pre-post proess �nite element software developed at CIMNE3. GiDallows to de�ne, prepare and visualize all the data related to a numerial solution;1See appendix B for a more detailed treatment2See appendix A for details3Ciéntro Internátional de Metodos Numérios en Ingénieria, Barelona, Spain39



these data inlude the de�nition of the geometry, materials, onditions, solutioninformations and other parameters. The software an also generate a mesh for �niteelement, �nite volume or �nite di�erene analysis and write the informations for anumerial simulation program in its desired format.

Figure 3.1: Flowhart desribing the exeution of a GiD problem typeFigure (3.1) shows the general sheme adopted by GiD for the preparation andthe exeution of a standard problem type; we note that the pre and post proessphases, respetively for what onerns the reation of the INPUT FILE and thevisualization of results, are both supported by the graphial interfae. Instead theomputation setion (represented by the box SOLVER), where the numerial solu-tion is alulated, an be seen as a omponent external to GiD; so it is possible,on the one hand, to ustomize the pre-post proess interfae, modifying the �lesomposing GiD problem type (see Appendix A) and, on the other hand, to programany solver and ouple it with the rest of the omputation tool, just ontrolling thatthe OUTPUT FILE does respet the GiD format for reading results.We now brie�y present the various parts omposing the problem type we reatedfor the one-dimensional model of blood �ow in arteries, following a ertain numberof steps organized as follows1. Starting the problem, with the reation of the model geometry;40



2. Creation of the material de�nition �le;3. Creation of the ondition de�nition �le;4. Creation of the general on�guration �le;5. Creation of the alulation program �le and the exeution �les;6. Exeution of the alulation module and visualizing the results through GiD;The point 1-4 an be referred to the pre-proess phase, whih provides the INPUTFILE (�g. 3.1) entering the SOLVER (point 5). The last point, whih deals with thevisualization of results, is referable to the post-proess phase and will be onsideredin next hapter.3.1 Geometry of the modelFirst of all the geometry of the objets omposing the problem at hand mustbe de�ned; afterwards this operation has been ompleted, we an proeed imposingneessary onditions and other properties over the model and �nally alulate thesolution of our hemodynami problem.In GiD a generi geometry an be realized, in a way similar to a CAD (ComputerAided Design) system, through the de�nition of the points and lines omposing theobjet we want draw.Sine we are onsidering a one-dimensional model, the problem variables arefuntions only of the longitudinal oordinate z in spae, while the setional om-ponents an be negleted; for this reason we an make two assumption about thevessel representation adopted into GiD interfae. For a simpli�ation purpose we�rst replae the three-dimensional vessel geometry with a single line, having thesame length as the 3D tube and representing its longitudinal axis. Furthermore, itis useful to de�ne a loal referene system for eah vessel of the model, in order toonsider only the axial z omponent when we work with the �nite element ode. Theorigin of eah loal axis system is positioned on the inlet node of the orrespondingvessel (the inlet setion in a 3D representation), and the z-oordinate has the samediretion as the blood �ow one.A single vessel is onsidered in �gure 3.2 where we note the two mentionedassumptions; if we work with models ontaining more than one arterial vessel, aloal axis must be reated for eah artery (�g. 3.3).41



Figure 3.2: Comparison between a 3D vessel geometry and the 1D representation used in GiDproblem type3.2 De�nition of materialsFor the one-dimensional model of the arterial network, the de�nition of mate-rials onerns the mehanial and geometrial haraterization of the arterial wallsurrounding eah vessel.It is possible to assign suh properties seleting between those arteries whoseparameters are inluded in tables 3.2 and 3.2. These data are referred to a simpli�edarterial network ontaining the 55 largest arteries in the human body (�g. 3.5); itwas proposed and modelled using eletrial iruits for the �rst time by Westerhof[34℄. This referene provides data for diameters, wall thikness, length and elastimoduli for eah of the 55 arteries. As we an see from the �gure 3.4, the left windowontains the mehanial and geometrial values de�ned into tables. The user hasthe possibility to modify suh quantities, either hanging only some of the listedproperties or reating a new vessel with a ompletely di�erent haraterization (�g.3.4, the right window).3.3 Boundary and bifuration onditionsThe boundary onditions for a one-dimensional model, as written in the pre-vious hapter, have to be de�ned both at inlet and outlet setions of the arterial42



No. Name of the vessel l (m) r (m) h (m) E (106Pa
)  (m

s

)1 Asending Aorta 4.0 1.470 0.163 0.4 4.672 Aorti Arh I 2.0 1.263 0.126 0.4 4.433 Brahioephali 3.4 0.699 0.080 0.4 4.474 R. Sublavian I 3.4 0.541 0.067 0.4 4.935 R. Carotid 17.7 0.473 0.063 0.4 5.116 R. vertebral 14.8 0.240 0.045 0.8 8.587 R. Sublavian II 42.2 0.515 0.067 0.4 5.058 R. radius 23.5 0.367 0.043 0.8 6.789 R. ulnar I 6.7 0.454 0.046 0.8 6.3110 R. interosseus 7.9 0.194 0.028 1.6 10.6411 R. ulnar II 17.1 0.433 0.046 0.8 6.4512 R. int. arotid 17.6 0.382 0.045 0.8 6.8013 R. ext. arotid 17.7 0.382 0.043 0.8 6.5714 Aorti arh II 3.9 1.195 0.115 0.4 4.3515 L. arotid 20.8 0.413 0.063 0.4 5.4716 L. int. arotid 17.6 0.334 0.045 0.8 7.2717 L. ext. arotid 17.7 0.334 0.042 0.8 7.0218 Thorai aorta I 5.2 1.120 0.110 0.4 4.3919 L. Sublavian I 3.4 0.474 0.066 0.4 5.2320 L. vertebral 14.8 0.203 0.045 0.8 9.2321 L. Sublavian II 42.2 0.455 0.067 0.4 5.3822 L. radius I 23.5 0.324 0.043 0.8 7.2123 L. ulnar I 6.7 0.401 0.046 0.8 6.7124 L. interosseous 7.9 0.172 0.028 1.6 11.2325 L. ulnar II 17.1 0.383 0.046 0.8 6.8726 Interostals 8.0 0.317 0.049 0.4 5.5127 Thorai aorta II 10.4 1.071 0.100 0.4 4.2828 Abdominal aorta I 5.3 0.920 0.090 0.4 4.3829 Celia I 2.0 0.588 0.064 0.4 4.62Table 3.1: Physiologial data of the 55 main arteries used in the one-dimensionalmodel. From [34℄[25℄ and [33℄. Part 1 of 2, vessels from 1 to 2943



No. Name of the vessel l (m) r (m) h (m) E (106Pa
)  (m

s

)30 Celia II 1.0 0.200 0.064 0.4 7.9331 Hepati 6.6 0.458 0.049 0.4 4.5832 Gastri 7.1 0.375 0.045 0.4 4.8533 Spleni 6.3 0.386 0.054 0.4 5.2434 Sup. mesenteri 5.9 0.499 0.069 0.4 5.2135 Abdominal aorta II 1.0 0.843 0.080 0.4 4.3236 L. renal 3.2 0.350 0.053 0.4 5.4537 Abdom. aorta III 1.0 0.794 0.080 0.4 4.4538 R. renal 3.2 0.350 0.053 0.4 5.4539 Abdominal aorta IV 10.6 0.665 0.075 0.4 4.7040 Inf. mesenteri 5.0 0.194 0.043 0.4 6.6041 Abdominal aorta V 1.0 0.631 0.065 0.4 4.5042 R. om. ilia 5.9 0.470 0.060 0.4 5.0043 L. om. ilia 5.8 0.470 0.060 0.4 5.0044 L. ext. ilia 14.4 0.482 0.053 0.8 6.5745 L. int. ilia 5.0 0.301 0.040 1.6 10.2146 L. femoral 44.3 0.361 0.050 0.8 7.3747 L. deep femoral 12.6 0.356 0.047 0.8 7.2048 L. post tibial 32.1 0.376 0.045 1.6 9.6949 L. ant. tibial 34.3 0.198 0.039 1.6 12.4450 R. ext. ilia 14.5 0.482 0.053 0.8 6.5751 R. int. ilia 5.0 0.301 0.040 1.6 10.2152 R. femoral 44.4 0.361 0.050 0.8 7.3753 R. deep femoral 12.7 0.356 0.047 0.8 7.2054 R. post tibial 32.2 0.375 0.045 1.6 9.7155 R. ant. tibial 34.3 0.197 0.039 1.6 12.46Table 3.2: Physiologial data of the 55 main arteries used in the one-dimensionalmodel. From [34℄[25℄ and [33℄. Part 2 of 2, vessels from 30 to 5544



Figure 3.3: Sheme of a bifuration ontaining three vessels. As we note eah vessel has its ownloal referene axis (pink olor), rotated with respet to the global referene system (red olor).network; moreover, sine we also onsider the presene of bifurations between ves-sels, it is neessary to identify those arteries omposing the branhing and apply theompatibility onditions over them (see setion 2.7 of hapter 2).For what onerns boundary onditions, at the inlet we an hoose the type ofknown variable, pressure or �ow rate, and modify a ertain number of parametersrelated to the entering waveform (�g. 3.6): if we selet a half sine wave pro�le (�g.3.8 right), we an modify the initial and the maximum amplitude value of the urve,while if we use a physiologial-type known funtion (�g. 3.8 left), no parametersneeds to be modi�ed.The boundary onditions at the outlet setion depend upon the applied value ofterminal resistane RT . If we assume the ase of absorbing ondition, then RT = 0and there should not be any wave re�etion at the outlet setion. In the other situ-ation, that is onsider a ertain ontribution of terminal resistane whih simulatesthe distal part of the arterial network, then RT 6= 0. The value of RT an be settled45



Figure 3.4: GiD windows ontaining material properties. Left window: vessel types belongingto arterial network de�ned [25℄,[34℄ and [33℄. Right window: ustomizable vessel with user-de�nedpropertiesby the user through the GiD window shown in �g. 3.6.The presene of a bifuration in the arterial network must be de�ned indiatingthose vessels omposing the seleted branhing; we have to follow the 55 arterymodel in order to selet the orret vessels. Figure 3.7 shows the list of bifurationand the arteries belonging to eah of them.3.4 General on�guration of the problemThe on�guration of a problem type in GiD, besides the attribution of boundaryonditions and material properties, also needs the de�nition of several parametersrelated to:
• The general data (e.g. blood rheologi parameters, graphial visualizationparameters);
• Data onerning the numerial solution (tolerane parameters for iterativeshemes, integration period);3.4.1 General dataAs shown in �gure 3.9, suh informations inlude the problem title, the unitsystem, the density and visosity of blood, the initial pressure in the aorti root4,the Coriolis oe�ient and the type of veloity pro�le (�g. 2.3) adopted for the 1Dformulation. For the last parameter we an hoose between a �at veloity pro�le(γ = 0), a paraboli pro�le (γ = 2) and power-law pro�le [24℄ (γ = 9).4With the term aorti root we refer to the setion of aorta losest to the semilunar valve out ofthe left ventrile 46



Figure 3.5: Connetivities between the 55 main arteries of the human body. From [22℄
47



Figure 3.6: GiD window for boundary onditions assignment.Beyond suh informations, the GiD problem type allows the user to hoose whihresults show during the post-proess and how many temporal step write, and sub-sequently display, into the output �le.The visualization of results into GiD post-proess is done transforming the 1Drepresentation of the model geometry, adopted during the pre-proess phase, into athree-dimensional mesh, used only for graphial purposes, whih gives a representa-tion of results learer than the one we may have by means of the one-dimensionalsketh. For this reason the user must set, through the parameter Setion ontournodes (�g. 3.9), the number of nodes lying on the border of eah setion in order tobuild the 3D mesh omposed by triangular elements (�g. 3.10).3.4.2 Numerial integration dataThe proess of numerial integration involves the on�guration of several param-eters, some of them onerning the toleranes for approximation errors and othersrelated to the integration period. Figure 3.11 shows the list of parameter whosevalues an be inserted by the user. We have:
• The number of ardia yles onsidered for the simulation. The user anhoose between three lasses of ardia frequeny: Standard, with a generivalue of 72 bpm, Tahyardia, with 110 bpm and Brahyardia with 55 beatsper minute. It is also possible to hange the time duration of the ardia yle,48



Figure 3.7: Bifuration assignment windowpaying attention not to insert too low values; if we derease under a period of0.3 seonds, whih represents the duration of heart systole phase, the ompletesimulation of a heart beat would not be aomplished.
• The spae-time integration sheme to use; the hoie is between straightfor-ward Galerkin - Taylor Galerkin and 2nd - 4th Runge Kutta (R-K) shemes.
• The maximum number of steps to alulate using R-K shemes;
• The CFL parameter, de�ned by (2.48), for the maximum time step de�nition;
• The αs stabilization parameter (for straightforward Galerkin only);
• In the ase we use the adaptive step size ontrol for Runge-Kutta shemes, itis possible to de�ne the minimum time step and the error tolerane;
• The error tolerane of Newton-Raphson iterative sheme for the solution ofnon-linear equations related to the ompatibility relationships at bifurations49



Figure 3.8: Inlet known pressure pro�les. Left graph: polynomial-interpolated funtion basedon physiologial data. Right graph: half-sine wave pro�le. Data referred to a single ardia yle.

Figure 3.9: GiD general data windowand the pseudo-harateristi evaluation at the outlet boundaries;
3.5 The numerial solverAll the informations related to �nite element mesh, material and geometrialproperties, and problem general parameters are assembled together by GiD in aalulation �le, whih is indiated by the INPUT FILE in �g. 3.1; these datarepresent the starting point of the numerial solver.The �nite element ode we programmed (see Appendix B) �rst reads the infor-mation oming from this alulation �le, then starts solving the numerial problemfollowing this general sheme: 50



Figure 3.10: Correspondene between 1D and 3D representation of a single vessel into GiDproblem type.START(1) Input data reading;t=t0; ⇒ Initial timeU=U0; ⇒ Initial values(2)WHILE (t < T)Evaluate ∆t < CFL l

max(λ1,2)
;(3)FOR (i=1:Number of elements)alulate rhs-element;rhs-global = rhs-global + rhs-element;51



Figure 3.11: Windows for the assignment of numerial analysis parameters.END(4) Apply boundary and bifuration onditions
U(t + ∆t) = U(t) + ∆t(rhs-global);
t = t + ∆t;END(5) write output resultsSTOPIn order to brie�y explain the sheme above, we fous on �ve points, enumeratedfrom 1 to 5:1. Input data reading: from GiD pre-proess, the problem data are loaded andread by the program;2. WHILE loop: main temporal loop whih provides the solution array U , asde�ned in (2.19), for eah temporal step; the number of step is not a prioride�ned, beause at eah iteration we have to alulate the maximum stepfollowing the relationship (2.48). For this reason we employed a WHILE loopinstead of a FOR one;3. FOR loop: seondary loop whih alulates, for eah linear mesh element, the52



ontribution given by the right-hand side (rhs-element in the sheme above)of equation (2.41) or (2.47), depending if we use straightforward Galerkin orTaylor-Galerkin sheme respetively.4. Apply boundary and bifuration onditions: all the element ontribu-tions are assembled into a global right-hand side (rhs-global in the sheme) towhih boundary and bifuration onditions are applied;5. (5) write output results: The results are written in an OUTPUT FILE(�g. 3.1) following the indiations, given during pre-proess (�g. 3.9), aboutthe type of variables (pressure, vessel setion, �ow rate or blood veloity) andthe number of temporal steps to be saved for post-proess visualization.During the exeution of the program, the user an ontrol the development ofthe alulus through a window (�g. 3.12) displaying some general informations, e.g.the number of nodes and elements related to the liner 1D mesh, and the number ofiterations already omputed. In the ase of interruptions, e.g. due to not onvergeneor exeeded limit of maximum iterations, a message to sreen will appear.

Figure 3.12: GiD window for monitoring numerial alulation
53



Chapter 4Numerial resultsThe omputational tool we implemented oupling the GiD interfae with a �niteelement ode allows to numerially simulate the blood �ow in the arterial networkthrough a one-dimensional formulation. In this hapter we will show the resultsobtained by the approximated solution of suh a hemodynami problem; �rst weonsider a simple geometry omposed by one single vessel in order to validate themodel and also ompare the various spae-time shemes that we programmed. Af-terwards we will deal with the vasular network omposed by the 55 main humanarteries, whose struture and properties have been presented respetively in �g. 3.5and in tables 3.2 and 3.2.4.1 Inlet pro�lesThe orret imposition of a suitable perturbation whih enters the problem do-main is fundamental for the orret development of pressure or �ow rate wavesthrough the arteries. At the inlet setion of our model we have to impose, in or-der to satisfy the mathematial requirements for hyperboli models, exatly oneboundary ondition related to the entering harateristi W1 (see eq. 2.34). Inthe majority of ases we use to express suh a ondition in terms of physial vari-ables, like area or �ow rate; doing this we have the possibility, using suh quantities,to on�gure a ertain type of pro�les similar to a physiologial ones, obtained forexample by experimental data.When we presented the on�guration of the GiD problem type, we introdued in�gure 3.8 two inlet pro�les of pressure in time. Through the pressure-area relation-ship, derived by the elasti model (see eq. 2.13) of the arterial wall, it is possible54



to obtain the orresponding value of area. The other possibility is to introdue afuntion expressing the �ow rate variation at the inlet of the arterial network. Thisrelationship, taken as an approximation of a real physiologial pro�le, an be writtenas














































Q = Q0 if 0 ≤ t < 0.05s

Q = Q0 + ∆Q sin

(

π
t − 0.05

0.21

) if 0.05s ≤ t < 0.26s

Q = Q0 −
∆Q

10
sin

(

π
t − 0.26

0.03

) if 0.26s ≤ t ≤ 0.29s

Q = Q0 if t > 0.29s

(4.1)
where Q0 is the initial �ow rate and ∆Q represents the peak of �ow rate reahed bythe half sine wave. The above funtion follows the trend given by of the physiologial
Q pro�le, in proximity of the semilunar valve out of the left ventrile, as showedin �gure 4.1. Here we assumed the duration of 0.83 seonds, for this single yle,onsidering a standard ardia frequeny of 72 bpm, typial of a normal healthyperson. For di�erent values of frequeny, e.g. in the ase of pathologi situations(brahyardia, tahyardia) it is possible to modify the duration of the diastoliphase, whih omes after the half sine wave propagation and is the only heart-ratedependent part of the ardia yle, as explained in �gure 4.1.The imposition of this kind of pro�le, or equally a pressure known funtion, allowsto evaluate the wave propagation through arteries, �rst imposing a no-re�etingoutput ondition for the ase of a single vessel, then omparing suh an 'absorbingbehaviour' of the outlet setion with the imposition of a terminal resistane for thease of an artery network. Beyond this aspet it is also possible to observe thedistribution of the �ux into the vasular system, omparing numerial values withexperimental data.4.2 Case I: model of a single arteryWe onsider the modelling of a single artery having mehanial and geometrialproperties referred to the Thorai aorta I in table 3.2. Here we resume suhproperties: 55



Figure 4.1: Lower image: input �ow rate pro�le for the 1D model. Upper image: �ow rate pro�leout of the left ventrile. From http://www.zoo.u�.edu/ourses/pb4723/.Name Thorai aorta IRadius 1.120 mLength 80 mWall thikness 0.110 mElasti modulus 400000 PaIn this ase we assume a length of 80 m in order to better evaluate the wavepropagation through the artery. We simulated our one-dimensional problem impos-ing both pressure and �ow rate at the inlet setion, and adopting a no-re�etingondition at the outlet. The time period onsidered is 1.66 seonds, orrespondingto the duration of two omplete ardia yles in standard frequeny onditions (72bpm).Through the evaluation of the results we an outline some onsiderations aboutthe numerial shemes we implemented into our �nite element ode. Figure 4.3shows the �ow rate in time related to a single vessel, the thorai aorta, alulatedusing both a straightforward Galerkin and a Taylor-Galerkin sheme. Analyzingthe wave pro�les we note that the Galerkin obtained solution has a positive �owrate inreasing, after the main pulse has passed. This behaviour does not onformwith the physiologial �ow trend (�g. 4.1), whih presents a small derease of �ow56



Figure 4.2: Result visualization through GiD post-proess interfae. In this ase we onsidermean setional values of �ow rate in a ertain time instant.rate due to the pressure drop at the end of the systoli phase. On the ontrary thepro�le resulting from the simulation with a Taylor-Galerkin sheme seem to betterreprodue the physiologial trend for Q in time.Another aspet that we an evaluate is the variation of the solution when on-sidering di�erent veloity pro�les. We an hange the slope of the funtion (2.7)through the modi�ation of the oe�ient γ, so we ompare the two most ommonpro�les whih are the paraboli one (γ = 2) and the power-law one (γ = 9).As we an see in �gure 4.4, the �ow rate trend does not signi�antly hange withrespet to the applied pro�le. This behaviour of the numerial solution aordswith the assumption that, for one-dimensional modellings of blood �ow in mainarteries, the visous term gives an inferior ontribution with respet to the otherterms. Therefore we do not properly onsider it, espeially when we work withharateristi variables, beause we an deouple the harateristi system (2.29),as already disussed in setion 2.4. 57
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Figure 4.3: Comparison between the solutions, related to blood �ow propagation into a 80 mlength Thorai aorta, obtained using straightforward Galerkin and Taylor-Galerkin shemes. Weimposed a known pressure pro�le at the inlet and no terminal resistane has been applied.4.3 Case II: 55 artery networkThe simpli�ed vasular network (sheme in �g. 3.5) has been represented, troughthe GiD interfae, as we an see from �gure 4.6. The orientation of vessels in themodel does not in�uene the omputation of the numerial solution, �rst beause wede�ned a loal referene system for eah artery, in order to work always with onlyan axial omponent, and seond beause we do not onsider, at bifurations, thatblood �ow hanges depending on the value of the angles formed by the branhingvessels. This assumption is oherent sine the solution of our problem, does notsigni�antly hange if we onsider or not a ertain dependene from the branhingdegree of a bifuration; for details see [4℄.4.3.1 Terminal resistaneIn the previous model of a single vessel we applied only an absorbing onditionat the outlet setion. For a more realisti simulation of blood �ow, the ontributiongiven by the distal omponents of the ardiovasular system, whih are not part ofthe 55 artery network, must be onsidered.58
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Figure 4.4: Comparison between �ow rate waveforms obtained using di�erent veloity pro�les;
γ = 2 the paraboli one and γ = 9 for the power law pro�le. Taylor-Galerkin sheme applied. Againwe imposed a known pressure pro�le at the inlet and no terminal resistane has been applied.For this reason we assumed that the downstream miro-irulation ats as an'obstale' to the blood �ow oming from the main arteries; this resistive e�et an beexpressed, using an analogy with eletri iruits (4.5), with a relationship betweenpressure and �ow rate of the type

P = Q · RT ,where RT is represents terminal resistane. The magnitude of this term is di�erentdepending on the position we onsider over the vasular network; table 4.3.1 showsthe di�erent values of RT orresponding to the terminal vessels of our model. Suh

Figure 4.5: Sheme of the resistive model adopted to simulate re�eting outlet onditions59



Figure 4.6: GiD representation of the 55 artery network60



quantities have been alulated by Stergiopulos and Parker [25℄; here we adopt thevalues modi�ed by Wang and Parker [33℄.No. Artery RT

(

109Pa · s
m3

) No. Artery RT

(

109Pa · s
m3

)

6 Right vertebral 6.01 32 Gastri 5.418 Right radius 5.28 33 Spleni 2.3210 Right interosseous 84.3 34 Sup. mesenteri 0.9311 Right ulnar II 5.28 36 Left renal 1.1312 Right int. arotid 13.9 40 Inf. mesenteri 6.8813 Right ext. arotid 13.9 45 Left ext. Ilia 7.9416 Left int. arotid 13.9 47 Left deep femoral 4.7717 Left ext. arotid 13.9 48 Left post. tibial 4.7719 Left vertebral 6.01 49 Left ant. tibial 5.5922 Left radius 5.28 51 Right int. ilia 7.9424 Left interosseous 84.3 52 Right deep. femoral 4.7725 Left ulnar II 5.28 54 Right post. tibial 4.7726 Interostals 1.39 55 Right ant. tibial 5.5931 Hepati 3.63Table 4.1: Values of terminal resistane for the 55 artery model. Data taken from[33℄.4.3.2 Asending-desending aortaThe numerial solution of the arterial network model provides values of setionarea and �ow rate at eah node of the 1D linear mesh generated by GiD. In order tovalidate the �nite element ode whih alulates suh results, we have ompared themean pro�les of �ow rate derived from our model with the ones obtained throughmagneti resonane imaging (MRI).Thanks to the ollaboration with the Santa Creu I Sant Pau Hospital of Barelona,we have available a set of high-resolution MR images orresponding to several se-tions of the asending-desending aorta segments; by means of a software for image61



elaboration, the FLOW MEDIS 4.1,1 we are able to extrat a time pro�le for themean �ow rate over the onsidered setions. Figure 4.7 shows, taking as referene ourGiD model of the artery network, the disposition of the four setion orrespondingto the ones whose experimental MRI data are available.

Figure 4.7: Flow rate values at four loations (A,B,C,D setions) in the aorta. Comparisonbetween 1D-model pro�les, obtained applying/not applying terminal resistane, and MRI imagingdata.The following graphis ontain the trend of di�erent �ow rate pro�les, relatedboth to the numerial results and the magneti resonane values, at setions A,B,Cand D of the �gure 4.7.As we an note, the �ow rate in the asending aorta, whih is the artery segmentdiretly linked to the left ventrile, is not modi�ed by the presene of terminalresistanes in distal vessel with respet to the totally absorbing on�guration of thenetwork; when the distane from the heart inreases, the in�uene of suh termsbegins revealing through a derease of the �ow rate, due to the 'obstale' reatedby the peripheral tissues and ating on the �owing blood.1FLOW MEDIS - MRI Volume Analysis. Manufaturer: Philips Medial Systems. For moreinformations: www.medial.philips.om 62
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Figure 4.8: Flow rate pro�les at the root of the asending aorta (setion A).
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Figure 4.9: Flow rate pro�les at the top of the asending aorta (setion B).
The pro�les extrated by numerial simulations aords with the �ow rate trendharateristi of MRI data, both for what onerns the peak values and the timeprogress, above all in the phase of initial systole, when blood omes out from theheart and begin propagating into the systemi irulation; for what onerns the latesystole, we note small di�erenes between numerial and experimental pro�les. Thismay be due to the fat that the inlet �ow rate we imposed at the inlet dereasedfaster if ompared with the smoother pro�le related to the physiologial data (see�g. 4.1). 63
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Figure 4.10: Flow rate pro�les in the aorti arh (setion C).
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Figure 4.11: Flow rate pro�les in the beginning of the desending aorta (setion D).4.3.3 Flow distributionIn order to validate the numerial solution of the one-dimensional problem on-erning the blood �ow into erebral and limb irulation, we an demonstrate thatthe ardia output is distributed in a orret way following typial physiologialvalues2. At rest onditions, approximately 1/3 of the volume �ow oming out fromthe heart is direted into the upper-aorti irulation, whih inludes the erebraland upper limbs vessels; the remaining 2/3 pass through the aorta and reahes theentral and lower irulation, inluding e.g. renal and mesenteri arteries, and thelower limb vessels.2The physiologial onsiderations whih follow are taken from the websitehttp://users.rn.om//jkimball.ma.ultranet/BiologyPages/C/Cirulation2.htm64



Vessel name Q
(

ml
sec

) % of total �owBrahioephali 105Left arotid 26Left sublavian I 40171 34%Thorai aorta I 350 66%total �ow 521Table 4.2: Table ontaining �ow rate values for those arteries involved in the eval-uation of blood distribution.We evaluated the �ow rate values measured in those arteries whih bifurate fromthe aorti segment to go into the upper irulation together with the pro�le relatedto the thorai aorta, whih on the ontrary drives blood to the entral and lowerarteries. We have taken values respetively from the brahioephali (�g. 4.12), leftarotid (�g. 4.13), left sublavian (�g. 4.14) and thorai (�g. 4.15) arteries; theglobal blood �ow passing into the �rst three vessels, during a standard ardia yle,really represents the 2/3 of the total volume �ow pumped out by the heart, whilethe remaining 1/3 is driven through the aorta. Table 4.3.3 shows suh results.Another situation that an be onsidered is the �ow into the lower limbs. Figure4.16 shows the pro�le related to the terminal segment of abdominal aorta whihbifurates into the left (�g. 4.18) and right (�g. 4.17) ommon ilia arteries. As wean note the �ow divides exatly in two parts, aording with the fat that, in eahlower limbs the blood �ow rate must be the same.
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Figure 4.12: Flow rate pro�les in Brahioephali artery (No. 3 in table 3.2).
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Figure 4.13: Flow rate pro�les in left arotid artery (No. 15).66
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Figure 4.14: Flow rate pro�les in left sublavian artery I (No. 9).
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Figure 4.15: Flow rate pro�les in Thorai Aorta (No. 18).67
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Figure 4.16: Flow rate pro�les in abdominal aorta V (No. 41).
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Figure 4.17: Flow rate pro�les in right ommon ilia artery (No. 43).68
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Figure 4.18: Flow rate pro�les in left ommon ilia artery (No. 42).
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Chapter 5Conlusion and future prospetsIn this projet we developed a omputational tool, already alled problem type,for solving the one-dimensional problem for blood �ow in arteries. We oupled a�nite element ode programmed in FORTRAN together with a graphial interfae,suitably modi�ed for our hemodynami model, whih has been provided by GiD,a pre-post proess software for �nite elements problems. Finally we applied ouromputational tool to a simpli�ed vasular network ontaining the main humanarteries.As we already explained in the introdution hapter, one-dimensional models giveuseful informations about the evolution of averaged quantities along the arterial tree;as we demonstrated in the previous hapter, they allow a good desription of �owrate waves in arteries at a reasonable omputational ost. In fat, for what onernsour numerial solver, the alulation times and the memory used for data alloationare widely supported by a ommon personal omputer; for example, a ompletesimulation of the whole 55 artery network lasts about 20 minutes, a time whih isseveral order of magnitude lower than three-dimensional �uid dynami models.Regarding to 3D models, the employ of a one-dimensional formulation an beuseful when we onsider a multi-sale approah for the blood �ow problem in ar-teries [3℄; the simpli�ed 1D model allows the imposition of more realisti boundaryonditions for three dimensional alulations.The problem type we developed, as well as the orret mean �ow simulation,gives the opportunity to on�gure several parameters diretly from the graphialuser interfae (as explained in hapter 3) without the neessity to modify the �niteelement ode; to this purpose one of the further appliations for this 1D model isthe simulation of the arterial network in pathologi onditions, e.g. the presene70



of stenosis, or onsidering the introdution of mehanial devies, e.g a stent. Inthese ases we an modify the geometrial and mehanial properties of the involvedarteries in order to aount for the ontribution of suh external omponents insertedin the vasular system.The natural evolution of this model, starting from the 55 artery network, is onthe one hand the employment of more omplex formulations for what onerns boththe arterial wall modelling and the type of inlet pro�les, whih ould be as muhrealisti as possible with respet to the simpli�ed waveforms used in this projet.On the other hand there is the possibility to ouple our network with other modelsof vasular sub-systems; for example we ould onsider the Willis irle1 in orderto expand the 1D model inluding also the erebral miro-irulation. Doing so wean improve the quality of obtained results mainly for two reasons: �rst, the simpleresistane models used to replae the distal omponents of the ardiovasular systemannot reprodue their hemodynami behaviour as properly as a diret numerialsimulation. Seond the e�ets of �ow redistribution, as observed from numerialtests, outline that blood �ow, in a ertain zone of the network, is not independentfrom the whole irulation in the remaining part.

1The irle of anastomosed arteries (roughly pentagonal in outline) at the base of the brain,with the posterior ommuniating artery on either side joining posterior erebral (branhes of thebasilar artery) to the anterior erebral (branhes of the internal arotid artery) arteries. By thisfull irulation to all parts of the brain an be maintained even when the arotid or vertebralarteries are bloked. 71



Appendix AThe GiD softwareGiD is an interative graphial user interfae used for the de�nition, preparationand visualization of all the data related to a numerial simulation. This data inludesthe de�nition of the geometry, materials, onditions, solution information and otherparameters. The program an also generate a mesh for �nite element, �nite volumeor �nite di�erene analysis and write the information for a numerial simulationprogram in its desired format. It is also possible to run the numerial simulationfrom within GiD and to visualize the results of the analysis.GiD an be ustomized and on�gured by users so that the data required for theirown solver modules may be generated.These solver modules may then be inludedwithin the GiD software system.The program works, when de�ning the geometry, similar to a CAD (ComputerAided Design) system but with some di�erenes. The most important one is that thegeometry is onstruted in a hierarhial mode. This means that an entity of higherlevel (dimension) is onstruted over entities of lower level; two adjaent entities willthen share the same lower level entity.All materials, onditions and solution parameters an also be de�ned on thegeometry without the user having any knowledge of the mesh: the meshing is doneone the problem has been fully de�ned. The advantages of doing this are that,using assoiative data strutures, modi�ations an be made to the geometry andall other information will automatially be updated and ready for the analysis run.Full graphi visualization of the geometry, mesh and onditions is available foromprehensive heking of the model before the analysis run is started. More om-prehensive graphi visualization features are provided to evaluate the solution re-sults after the analysis run. This post-proessing user interfae is also ustomizable72



depending on the analysis type and the results provided.A.1 GiD basisGiD is a geometrial system in the sense that, having de�ned the geometry, all theattributes and onditions (i.e., material assignments, loading, onditions, et.) areapplied to the geometry without any referene or knowledge of a mesh. Only wheneverything is de�ned, the meshing of the geometrial domain is arried out. Thismethodology failitates alterations to the geometry while maintaining the attributesand onditions de�nitions. Alterations to the attributes or onditions an simulta-neously be made without the need of reassigning to the geometry. New meshes analso be generated if neessary and all the information will be automatially assignedorretly.GiD also provides the option of de�ning attributes and onditions diretly onthe mesh one this has been generated. However, if the mesh is regenerated, it isnot possible to maintain these de�nitions and therefore all attributes and onditionsmust be then rede�ned.In general, the omplete solution proess an be de�ned as:1. De�ne geometry - points, lines, surfaes, volumes;
• Use other failities;
• Import geometry from CAD;2. De�ne attributes and onditions;3. Generate mesh;4. Carry out simulation;5. View results;Depending upon the results in step (5) it may be neessary to return to one ofthe steps (1), (2) or (3) to make alterations and rerun the simulations.Building a geometrial domain in GiD is based on the following four geomet-rial levels of entities: points, lines, surfaes and volumes. Entities of higher levelare onstruted over entities of lower level; two adjaent entities an therefore sharethe same level entity. A few examples are given:73



1. example 1: One line has two lower level entities (points), eah of them atan extreme of the line. If two lines are sharing one extreme, they are reallysharing the same point, whih is a unique entity;2. example 2: When reating a new line, what is being really reated is a lineplus two points or a line with existing points reated previously;3. example 3: When reating a volume, this is reated over a set of existingsurfaes whih are joined to eah other by ommon lines. The lines are, inturn, joined to eah other by ommon points;All domains are onsidered in 3-dimensional spae but if there is no variation inthe third oordinate (into the sreen) the geometry is assumed to be 2-dimensionalfor analysis and results visualization purposes. Thus, to build a geometry with GiD,the users must �rst de�ne points, join these together to form lines, reate losedsurfaes from the lines and de�ne losed volumes for the surfaes. Many otherfailities are provided for reating the geometrial domain; these inlude: opying,moving points, automati surfae reation, et.The geometrial domain an be reated in a series of layers where eah one isa separate part of the geometry. Any geometrial entity (points, lines, surfaes orvolumes) an belong to a partiular layer. It is then possible to view and manipulatesome layers and not others. The main purpose of the use of layers is to o�er avisualization and seletion tool, but they are not used in the analysis. An exampleof the use of layers might be a hair where the four legs, seat, bakrest and sidearms are the di�erent layers.GiD has the option of importing a geometry or a mesh that has been reated bya external CAD program. At present, this an be done via a DXF, IGES, Parasolid,ACIS, VDA, STL or NASTRAN interfaes available inside GiD.Attributes and onditions are applied to the geometrial entities (points,lines, surfaes and volumes) using the data input dialog box. These menus arespei� to the partiular solver that will be utilized for the simulation and, therefore,the solver needs to be de�ned before attributes are de�ned.One the geometry and attributes have been de�ned, the mesh an be generatedusing the mesh generation tools supplied within the system. Strutured and unstru-tured meshes ontaining triangular and quadrilateral surfae meshes or tetrahedraland hexahedral volume meshes may be generated. The automati mesh generation74



faility utilizes a bakground mesh onept for whih the users are required to supplya minimum number of parameters.Simulations are arried out from within GiD by using the alulate menu.Indeed, spei� solvers require spei� data that must have been prepared previously.A number of solvers may be inorporated together with the orret pre-proessinginterfaes.The �nal stage of graphi visualization is �exible in order to allow the usersto ritially evaluate the results quikly and easily. The menu items are generallydetermined by the results supplied by the solver module. This not only redues theamount of information stored but also allows a ertain degree of user ustomization.One of the major strengths of GiD is the ability for the users to de�ne and on-�gure their own graphi user interfae within GiD. This is done by reating someon�guration �les whih de�ne new windows, where the �nal user will enter data,suh as materials or onditions. The format that GiD uses to write a �le ontainingthe neessary data in order to run the numerial simulation program must also bede�ned in a similar way. This pre-proessor or data input interfae will thus betailored spei�ally for the users simulation program, but using the failities andfuntionality of the GiD system.The user's simulation program an then be inluded within GiD so that it maybe run utilizing the alulate menu option.The third step onsists of writing an interfae program that provides the resultsinformation in the format required by the GiD graphi visualizer, thereby on�guringthe post-proessing menus. This post analysis interfae may be inluded fully intothe GiD system so that it runs automatially one the simulation run has terminated.A.2 Problem type ustomizationWhen GiD is to be used for a partiular type of analysis, it is neessary toprede�ne all the information required from the user and to de�ne the way the �nalinformation is given to the solver module. To do so, some �les are used to desribeonditions, materials, general data, units systems, symbols and the format of theinput �le for the solver. We all problem type to this olletion of �les used toon�gure GiD for a partiular type of analysis.Due to the voation of GiD as general purpose pre and post proessor, theon�guration for the di�erent analysis must be performed aording to the partiular75



spei�ations of every solver. This implies the neessity of reating spei� datainput �les for every solver. However, GiD allows to perform this on�gurationproess inside itself without any hange in the solver and without having to programany independent utility.

Figure A.1: Flowhart desribing the exeution of a GiD problem typeTo on�gure these �les means to de�ne the data that must be input by the user, aswell as the materials to be implemented and other geometrial and time-dependentonditions. It is also possible to add some symbols or drawings to represent thede�ned onditions. GiD gives the opportunity of working with units when de�ningthe properties of the mentioned data, but there must be a on�guration �le whereit ould be found the de�nition of the units systems. It must be also de�ned theway that all this data must be written inside a �le that will be the input �le to beread by the orresponding solver.The de�nition of a problem type implies the reation of a diretory with theproblem type name and the extension .gid. The series of �les must be insidethe problem type diretory. The name for most of them will be omposed by thesame problem type's name and an extension referring to their funtion. Consideringproblem_type_name to be the name of the problem type and projet_name thename of the projet, the diagram of the �le on�guration is the following:76



Figure A.2: Problem type �owhart inluding �le on�guration.
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A.2.1 Con�guration �lesThese �les, whose loation into the problem type struture is showed in �gureA.2, generate the onditions and material properties, as well as the proper generalproblem and intervals data to be transferred to the mesh, giving at the same timethe hane to de�ne geometrial drawings or symbols to represent some onditionson the sreen. Now a brief desription is given related to those �les whih play animportant role into the problem type struture.Condition �le (.nd)The �le with extension's name .nd ontains all the information about the on-ditions that an be applied to di�erent entities. The ondition an adopt di�erent�eld values for every entity. This type of information inludes, for instane, allthe displaement onstraints and applied loads in a strutural problem or all thepresribed and initial temperatures in a thermal analysis.A ondition an be onsidered as a group of �elds ontaining the name of thereferred ondition, the geometri entity over whih it is applied, the mesh entityover whih it will be transferred, its orresponding properties and their values.Material �le (.mat)This �le projetname.mat inlude originally the de�nition of di�erent materialsthrough their properties. These are base materials as they an be used as templatesduring the pre-proessing step for the reation of newer ones.The user an de�ne as many materials as desired and with a variable numberof �elds. All the unused materials will not be taken in onsideration when writingthe data input �les for the solver. Alternatively, they an be useful to generate amaterials library.Conversely to the ase of onditions, the same material an be assigned to di�er-ent geometrial entities levels (lines, surfaes or volumes) and even an be assigneddiretly to the mesh elements. In a similar way as a ondition was de�ned, a ma-terial an be onsidered as a group of �elds ontaining its name, its orrespondingproperties and their values. 78



Problem and interval data (.prb)The �le projetname.prb ontains all the information about the general problemand intervals data. The general problem data is all the information required forperforming the analysis and it does not onern any partiular geometrial entity.This di�ers from the previous de�nitions of onditions and materials properties,whih are assigned to di�erent entities. Example of general problem data an be thetype of solution algorithm used by the solver, the value of the various time steps,onvergene onditions and so on.Within this data, the user may onsider the de�nition of spei� problem data(for the whole proess) and intervals data (variable values along the di�erent solutionintervals). An interval would be the subdivision of a general problem that ontainsits own partiular data. Typially, one an de�ne a di�erent load ase for everyinterval or, in dynami problems, not only variable loads, but also hanging thevarious time steps, onvergene onditions and so on.Template �le (.bas)One the user has generated the mesh, assigned the onditions and the materialsproperties, as well as the general problem and intervals data for the solver, it isneessary to produe the data input �les to be proessed by that program.To manage this reading, GiD employs a �le alled problem_type_name.bas,where problem_type_name is the name of the working diretory of the problemtype without the .bas extension.This template �le desribes the format and struture of the required data input�le for the solver that is used in a partiular ase.
Figure A.3: Interation between pre proess and solver by means of the template .bas �leThese �les work as interfae from GiD standard results to the spei� data inputfor any individual solver module. This allows to omplete the proess of running79



the analysis as one step more within the system, and to visualize results duringpost-proess.A.3 Post-proess data �lesIn the GiD postproess you an study the results obtained from a solver program.The ommuniation between the solver and the GiD Postproess is made using �les.The solver program has to write the results in a �le that must have the extension.flavia.res and its name must be the projet name.The solver program an also (it is not mandatory) give to GiD the postproessmesh, and should have the extension .flavia.msh. If this mesh is not provided bythe solver program, GiD uses in the post-proess, the preproess mesh.

Figure A.4: Post-proess �le reationSo, post-proessing �les are ASCII �les and an be separated into two ategories:
• Mesh Data File: projetname.flavia.msh for volume and surfae (3D or 2D)mesh informations; it should ontain nodal oordinates of the 3D mesh, andits nodal onnetivities and the material of eah element;
• Result Data File: projetname.flavia.res for nodal variables. GiD allowsthe user to de�ne as many nodal variables as desired, as well as several stepsand analysis ases (limited only by the memory of the mahine).
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Appendix BFinite element ode Arteries-1D.exeHere we present a general sheme onerning the �nite element ode whih rep-resents the omputational ore of our GiD problem type. This program, developedin Fortran 90, links together pre and post proess phases, as it reeives input dataon�gured through the graphial interfae and reates an output result �le that willbe used during postproess.B.1 Input-output data �lesConsidering a generi problem related to 1D blood �ow model, the input infor-mations, required by the solver, are provided by two di�erent �les whose strutureis the following1. "projetname".dat, is the omputation �le reated by GiD after the pre-proess phase is terminated; it ontains, in order:
• Finite mesh parameters: the number and oordinates of mesh nodes to-gether with the number and onnetivities of mesh elements;
• Geometrial and mehanial properties of eah vessel: length, wall thik-ness, Young Modulus, Poisson Ratio and initial wave speed;
• General properties, e.g. projet name, type of veloity pro�le, blooddensity and visosity;
• Numerial parameters, e.g. error toleranes, seletion of spae-time shemeand maximum number of iterations;
• List of boundary nodes, eah one with its applied onditions;81



For more informations, hapter 3 ontains all the interfae windows in whihsuh parameters an be on�gured and modi�ed.2. bifurations.dat: this �le ontains the list of all bifurations belonging to thearterial network, and for eah one of them are indiated, in order, the enteringand the outgoing vessels;The program reates two output �les, one aounting for 3D mesh properties andthe other ontaining the results. Brie�y they are strutured as follows:1. "projetname".�avia.msh: ontains both the node oordinates and theelement onnetions of the three-dimensional mesh used for the postproessvisualization of results;2. "projetname".�avia.res: It is the result �le whih GiD reads during post-proess and an ontain values of Area, Flow rate, pressure and veloity oneah node belonging to the 3D output mesh. The user, during pre-proess,an selet how many time steps write in suh a �le and also establish whihquantities share during post-proess (also see �gure 3.9 in hapter 3);B.2 Finite element ode �owhartThe �nite element ode is omposed by a main routine whose struture is shema-tized in table B.2. We start with the data aquisition from the input �les previouslydesribed, �rst reading the bifuration list and then the pre-proess informationsprovided by GiD; one that all these data are alloated in memory, we are ready toompute the numerial solution. To do this, we need, on the one hand, to transform3D oordinates of the pre-proess geometry into a 1D referene system for eah vesselin the model, in order to work only with the axial quantity z and neglet the otherylindrial omponents (r, θ). One the other hand we must impose initial data whihallow to start alulating the approximated solution of our hemodynami problem.Two routines, external to the main struture, are used to arry out suh operations:1. OMOG_TRANSF:
• Input variables: trans_type.
• Output variables:omog. 82



This routine applies a homogeneous transformation to eah node oordinatefrom 3D pre-proess to 1D format. Both the rotation matrix and the enteroordinates for eah vessel referene system are read from GiD input �le andassembled into a 4x4 homogeneous transformation matrix. For the generi i-thartery we have:
Ai

t =

[

Ri di

0 1

]

,being Ri the i-th rotation matrix and di the (x, y, z) enter omponents. Theoutput variable omog represents the matrix Ai
t and, depending on the value oftrans_type, we may have:

• trans_type = 1: pass from 3D to 1D notation. Then
P1D = AT

t
P3D =⇒ omog = AT

t

• trans_type = 2: pass from 1D to 3D notation. Then
P3D = AtP1D =⇒ omog = Atwith P1D and P3D de�ned as 4x1 arrays ontaining node oordinates in 1Dand 3D notation respetively:

P1D =

[

d1D

0

]

P3D

[

=
d3D

0

]

2. INITIAL_VALUES(2):
• Output variables:At0, Qt0Through this routine we evaluate initial values of area At0 and �ow rate Qt0into eah vessel of our network; by default we have values of A0 related to thereferene on�guration of the arterial tree in rest onditions (see also hapter2). For what onerns the �ow rate we know that, at rest, blood veloity isthe same in every network loation so it is true the relationship

ui = u0 ⇒ Qi

Ai

=
Q0

A0
⇒ Qi = Q0

Ai

A0between the vessel 0, where we apply an initial ondition on blood �ow, andthe generi vessel i belonging to the network.83



Now we have 1D oordinates and initial solution values, it is possible to applythe numerial spae-time sheme for solving the problem. Before doing this, wegenerate the 3D mesh for post-proess visualization of results; to this purpose weuse the meshing routine indiated into the sheme B.2 with the number 3:3. MESHING: this routine allows the reation of a 3D mesh simply onsidering1D nodes lying on vessel axial diretions; eah one of these nods beomesthe enter of a new irular setion, with referene radius R0, whih has aertain number of points projeted, along radial diretion, from the enter tothe border irumferene (�g. B.1).

Figure B.1: Left �gure: sketh of a 3D-mesh setion. The number of radial nodes an be settledinto GiD preproess (see �g. 3.9 in hapter 3). Right �gure: side wall meshing for a generi vessel.The element are triangular and link nodes belonging to di�erent radial setions.Moreover these nodes are onneted to form a ylindrial surfae of triangularelements over the side walls of eah artery (�g. B.1);The omputation ore of our �nite element ode is represented in the sheme B.2by the blok SOLVER (L1). When the program exeution arrives at this point, itenters a WHILE loop whih iterates in time from t0 to tend = t0 + T , where T isthe integration period of our problem. As shown in table B.2, we move step by stepevaluating the solution matrix U 1 for eah time instant i.The blok RK L(2) represent the point in the WHILE loop where U is om-puted. As explained in hapter 2, we employ an expliit Runge-Kutta (RK) shemefor time integration; the program allows to hoose between a 2nd and a 4th order1For every time step, the solution is omposed by values of A and Q at eah 1D mesh node. Sothe dimension of U , and also the rhs term used further, is 2 x number of nodes.84



RK, while for our shematization we onsider only the 4th order one, whose strutureis
Un+1 = Un +

∆t

6
(K1 + 2K2 + 2K3 + K4)

K1 = fn,

K2 = f(tn + ∆t
2

, Un + ∆t
2

K1),

K3 = f(tn + ∆t
2

, Un + ∆t
2

K2),

K4 = f(tn+1, Un + ∆tK3).

(B.1)
The 2nd order Runge-Kutta sheme has a struture similar the 4th order one,whih onsider only two intermediate evaluation for eah step ∆t:

Un+1 = Un +
∆t

2
K2

K1 = fn,

K2 = f(tn + ∆t
2

, Un + ∆t
2

K1),The sheme RK L(2) in table B.2 shows the numerial sheme: �rst we set thetime step ∆ti in order to satisfy the CFL onvergene ondition (see the relationship(2.48) in hapter 2), then we proeed with the RK routine. The disrete equation toevaluate an be expressed, simplifying the (2.46) we derived in hapter 2, as follows
Un+1 − Un

∆t
= rhs(tn, Un) (B.2)For eah intermediate rhs evaluation Ki, i = 1 : 4, we use the �nite elementroutine RHS L(3); by means of a loop over the linear elements of the 1D mesh,we �rst evaluate the single ontribution provided by eah element and little by littlewe assembly it into the global right hand side matrix2 for the whole mesh. Onethis operation is terminated, we have to omplete the rhs term with the boundaryonditions not introdued during the element loop. The �owhart RHS L(3) fromtable B.2 shematize all these operations, and inludes the following blok:4. UPDATE BOUNDARY VALUES: It is an updating routine for boundarynodes inluding inlet, outlet and branhing points. For eah one of theseonditions we at in the following ways2Analogously to U , also the term rhs has dimension 2 x number of 1D mesh nodes.85



• Inlet nodes: here we impose the known value of area or �ow rate de-pending on the inlet pro�le onsidered (see hapter 2);
• Bifuration nodes: in this ase we have to solve the six equation sys-tem (see (2.49) in hapter 2) in order to obtain (A, Q) values at vesselinterfaes belonging to eah bifuration. Suh quantities must respet theompatibility relationships de�ned in the non-linear equations ontainedinto (2.49);
• Outlet nodes: we have two possible outlet onditions: the �rst is theabsorbing one, and we use the pseudo-harateristi evaluation (see se-tion 2.6) to extrat values of area and �ow rate. The other onditionaounts for the resistive term RT and in this ase we apply the relation-ship between �ow and pressure:

P = QRT .Now the rhs term is omplete, we an use it to evaluate the orrespondingintermediate step into the RK sheme; proeeding in this way we �nally obtain thesolution of equation (B.2) for the urrent i-th step. Then the program exits fromthe RK L(2) routine and returns into the SOLVER L(1) blok. Here we have thewriting phase of the obtained result:5. OUTPUT: reates the postproess �le, whose format is reognized by GiD,and writes the results whih an be showed through the software graphialinterfae. This routine is not exeuted at eah time step, but with a er-tain frequeny in order to �nally write the approximated number of iterationde�ned during pre-proess (see �gure 3.9 in hapter 3);
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MAIN
PROGRAM START

⇓BIFURC_READ =⇒ Branhing onnetions reading
⇓INPUT =⇒ 1D preproess data reading
⇓OMOG_TRANSF(1) =⇒ Change of oordinates
⇓Computation of initialINITIAL_VALUES(2) =⇒ solution values U0at time t = t0

⇓3D mesh generation =⇒ MESHING (3)
⇓SOLVER (L1)
⇓Solution alulated
⇓STOPTable B.1: Main program �owhart: input data are read and alloated in memory,while the de�nition of initial onditions allow to start alulating the approximatedsolution.
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SOLVER L(1)MAIN =⇒ tend = t0 + T

⇓
i = 1

⇓Loop: WHILE ti < tend

⇓RK (L2)
⇓Solution U(ti+1, z)at step i + 1 alulated
⇓Write U(ti+1, z) =⇒ OUTPUT (5)in post-proess �le
⇓

ti+1 = ti + ∆ti

⇓
i = i + 1

⇓Return to MainTable B.2: Solver routine �owhart.
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RK L(2)SOLVER L(1) =⇒ ∆ti < CFL(h/λ)

⇓RK_4 (∆ti)
K1 = rhs(ti, U

i) ⇐⇒ RHS L(3)
⇓

K2 = rhs(ti + ∆ti
2

, U i + ∆ti
2

K1) ⇐⇒ RHS L(3)
⇓

K3 = rhs(ti + ∆ti
2

, U i + ∆ti
2

K2) ⇐⇒ RHS L(3)
⇓

K4 = rhs(ti+1, U
i + ∆tiK3) ⇐⇒ RHS L(3)

⇓
U i+1 = U i + ∆ti

6
(K1 + 2K2 + 2K3 + K4)

⇓
U i+1 alulated =⇒ Return to SOLVER (L1)RHS L(3) RK L(2) =⇒ UK , tK

⇓DO j = 1,Num_elementsExtrat element nodes j1 and j2

⇓Evaluate rhsj(U
K
j1, U

K
j2)

⇓
RHS = RHS + rhsj(U

K
j1, U

K
j2)END

⇓UPDATE BOUNDARY VALUES (4) =⇒ Return to RK (L2)Table B.3: Runge-Kutta and FEM routines89
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