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Chapter 1Introdu
tionThe 
orre
t blood 
ir
ulation is a ne
essary 
ondition for the adequate supplyof oxygen and other substan
es to all tissues, whi
h, in return, is synonymous with
ardiovas
ular health, survival of surgi
al patients, longevity and quality of life. Itis also well known that some very frequent 
ardiovas
ular diseases, like hypertensionor 
ongestive heart failure, are related to the behavior of blood �ow. Diseases ofthe arterial wall, su
h as arterios
lerosis, are the leading 
ause of death in westernso
iety. Many studies have shown that there is a 
orrelation between 'disturbed'blood �ow patterns in large arteries and the development of arterial disease; however,the spe
i�
 
ausative link between blood �ow and arterial disease remain partiallyunknown. This is in part due to the signi�
ant 
omplexity of arterial blood �owpatterns.It is therefore extremely important to obtain as many informations as possibleabout blood 
ir
ulation and intera
tions that blood �ow develops intera
ting withvessel walls. A powerful devi
e is represented by the employment of mathemati
almodels whi
h may reprodu
e the 
hara
teristi
s of su
h a physi
al system at di�erentlevels of a

ura
y. On one hand we 
an obtain high levels of pre
ision, e.g. through ofthree-dimensional blood �ow models, but on the other hand it is useful to implementsimpli�ed models in order to study the pressure and �ow rate propagation of bloodthrough the 
ir
ulatory system. Su
h models may be 
onvenient be
ause they allowsboth to redu
e the 
omputational 
osts and to 
onsider a greater number of vesselsinto the models with respe
t to the 3D models.The purpose of this proje
t is to 
reate a numeri
al solver in order to simulatethe general patterns of pressure and blood �ow waves that propagate into the 
ar-diovas
ular system. To obtain su
h a result we used a simpli�ed one-dimensional2



formulation for the physi
al system governing the blood 
ir
ulation into the mainarterial vessels.This proje
t is organized as follows:
• In this 
hapter we will present general informations about the 
ardiovas
ularsystem physiology, des
ribing heart and blood vessel main stru
tures. Thenwe will fo
us on hemodynami
s, explaining the fun
tions of 
ir
ulatory systemand introdu
ing the role played by 
omputational models applied to blooddynami
s; to this purpose we will brie�y present the state of art 
on
erningthe one-dimansional formulation of blood �ow in arteries;
• In Chapter 2 we will dis
uss the mathemati
al formulation of the 1D model forblood �ow in arteries; �rst the equations related to the 
onservation of massand momentum for a single one-dimensional vessel will be derived, togetherwith an algebrai
 pressure-area relation and suitable boundary 
onditions.Then we will present the numeri
al spa
e-time s
hemes for the dis
retizationof su
h equations. On
e the mathemati
al model for one single vessel has beenobtained, we will apply it to the 
ase of a vessel bifur
ation.
• In Chapter 3 we will show how we implemented the one-dimensional modelthrough a pre-post pro
ess FEM software, GiD1: the numeri
al solver will beprogrammed in FORTRAN90 and then imported into a GiD problem type.Su
h a software will be used also for input data management and for theanalysis of results;
• In Chapter 4 we will show the results obtained by numeri
al simulation of the1D model using GiD and we will dis
uss what we have obtained 
omparing itwith physiologi
al data and other studies present in literature;
• In the appendi
es, we will give some notes about GiD, the software developedat CIMNE and used in this proje
t to program the numeri
al solver for theone-dimensional blood �ow model. Moreover we will present the FORTRAN90sour
e 
odes used to implement the FEM solver for the blood �ow model.1GiD is an intera
tive graphi
al interfa
e for de�nition, preparation and visualization of all thedata related to a numeri
al solution. See Appendix A for details3



1.1 Cardiovas
ular SystemThe 
ardiovas
ular system is the transport system of the body wih
, by means ofblood, 
arries oxygen and nutrients to the body and 
arries away waste substan
es(e.g. 
arbon dioxide) to the kidneys for exertion; it is 
omposed by a pulsatile pump,the heart, and a bran
hed network of vessels, the vas
ular system, whi
h drive bloodthrough tissues and organs.

Figure 1.1: S
hemati
 representation of 
ardiovas
ular system, in
luding arterial and venous
ir
ulations1.1.1 Vas
ular systemVas
ular system 
an be divided in two kinds of vessel: arteries and veins. Theformer pumps blood away from the heart, while the latter 
arries blood toward theheart. Arteries (�g.1.2) are often 
lassi�ed relating to their tasks and main tissue4




omponents. The biggest arteries in the 
ir
ulatory system are 
alled 
ondu
tionor elasti
 arteries; average size arteries are 
alled mus
ular or distribution arteries,whilst the smallest ones are de�ned as arterioles. Veins 
lassi�
ation is generallybased only on the vessel dimension and in
ludes small veins, average dimensionveins and large veins.A 
omplete but very thin squamous epithelial 
ell layer, 
alled endothelium, 
ov-ers both heart internal surfa
e (so 
alled 
ardia
 endothelium) and vessels internal
oating (vas
ular endothelium). The subdivisions of veins and arteries present dif-ferent quantities of smooth mus
ular and 
onne
tive tissue, organized in spe
i�
layers that 
an vary depending on the 
lass of vessels 
onsidered.The most internal layer of arteries and veins the tuni
a intima. It is 
omposed bya 
ontinuous lining of endothelium (simple squamous epithelium), whi
h 
ontains athin 
onne
tive tissue layer (sub-endothelial 
onne
tive tissue) adjoint with endothe-lium. Sometimes in this 
ase we 
an �nd a 
ertain thi
kness layer 
omposed by anelasti
 �bre provided with little gaps (internal elasti
 lamina). The intermediatelayer, 
alled tuni
a media, is usually the thi
kest of the three layers and is typi
ally
omposed by smooth mus
ular (espe
ially in arteries), elasti
 �bres, 
ollagen �bres,amorphous intra
ellular substan
es and 
ells that produ
e su
h materials. The ex-ternal layer, 
alled tuni
a adventitia, is an outer 
onne
tive tissue sheath, but also
an 
ontain smooth mus
ulature in bigger veins. In this 
ase the 
onne
tive tissueis 
omposed by 
ollagen �bres, elasti
 �bres, intra
ellular substan
es and 
ells thatprodu
e su
h materials.

Figure 1.2: S
hemati
 representation of artery layers. From http://hemodynami
s.u
davis.edu/5



1.1.2 Classi�
ation of arterial vesselsCondu
ting or elasti
 arteriesThey are large vessels, with very strong and relatively elasti
 walls, whose fun
-tion is to drive the bulk of blood outgoing from the heart to the regions of the bodywhere it has to be distributed.Su
h vessels must withstand a great head of pressure to pump blood againstthe peripheral system resistan
e 
aused by the distal arterial network. Then theelasti
 �bers 
omposing the wall allow some stret
hing and narrowing of the ves-sel in response to the in
oming pressure, and the 
ollagen �bers limit the stret
hpermitted.Elasti
 arteries in
lude aorta, pulmonary arteries, 
ommon 
arotid, su

laviaartery and 
ommon ilia
 arteries. The lumen of su
h arteries is very large but theirwalls appear to be very thin 
ompared to the vessel diameter (ratio about 1:10).Distribution or mus
ular arteriesOn
e the blood has rea
hed the region of distribution (e.g. the limbs) it will behandled by smaller, but still fairly large, distribution or mus
ular arteries, whi
hsend it to the next sub-regions 
omposed by smaller arteries.Su
h vessels, like femoral, renal and ulnar arteries, are mainly 
omposed bysmooth mus
ulature with smaller quantities of elasti
 tissue; the smooth mus
le ofthe wall makes them very extensible, and also provides for a 
ounter for
e to beexerted. In fa
t as the vessel expands, smooth mus
le 
ells are stret
hed; rea
tingto this they begin to 
ontra
t.The 
ontra
tion me
hanism of the 
ondu
tion arteries dampens out the pulsa-tions of the �ow to provide a steady supply of blood at normal pressure into thefollowing arterial bed 
omposed by arterioles and 
apillaries.ArteriolesArterioles represent the smallest bran
hes in the arterial network. Given thatthe transition between di�erent artery types is gradual and not the same for all thesituations, resear
hers have 
ome to set several de�nition of an arteriole. Some ofthem de�ne it as an artery with a diameter equal or less than 300 µm having one,three or four smooth mus
ular 
ell layers, whi
h are disposed in a 
ir
ular way into6



the tuni
a media. Other resear
hers sustain that arterioles have a diameter in
ludedfrom 40 to 200 µm and they use also the ratio between wall thi
kness and lumendiameter as a tool to de�ne an arteriole: in normal 
onditions this ratio is about1:2.The arterioles o�er a 
onsiderable resistan
e to blood �ow be
ause of the de
reas-ing of se
tion with respe
t to the upstream vessels. This area of high resistan
e tothe blood �ow serves several fun
tions: �rst, together with the 
ondu
tion arteries,it 
onverts the pulsatile eje
tion of blood form the heart into a steady �ow throughthe 
apillaries; se
ond, if no resistan
e were present and a high pressure persistedinto the 
apillary bed, there would be a 
onsiderable loss of blood volume into thetissues be
ause of the ex
hange of �uid a
ross the 
apillary walls.CapillariesCapillaries are blood vessels without any kind of 
overing and are simply shapedas endothelial pipes. The surfa
e area of 
apillaries, in human beings, is about6000 m2. They usually have a diameter between 7 and 10 µm, barely su�
ient asleuko
ytes and erythro
ytes 
ould �ow through the vessel lumen. The total area ofa 
apillary transversal se
tion is about 800 times greater than the aorta transversalse
tion. The �ow through 
apillaries is about 0.4 mm/se
 
ompared with the 320mm/se
 �ow evaluated into the aorta. Pressure in 
apillaries 
an rea
h values up to35 mm Hg in arterial tips but 
an de
rease up to 10 mm Hg in venous tips.1.1.3 Fun
tion of arteriesAs already written, the di�erent types of artery in the vas
ular system have adi�erent amount of elasti
 tissue; for this reason the vessel sti�ness, expressed bythe elasti
 modulus is not the same in every vessel.Applied to the wall of an artery, this infers a stru
tural property. The fun
tional
onsequen
e of having elasti
 tissue in the wall is that these arteries 
an expand toa

ommodate added volume. This behaviour of the vessel walls re�e
ts itself on thepressure and �ow waves of blood during 
ir
ulation into the vas
ular system.The pressure in a vessel, for example the aorta, signi�
antly 
hanges with in-
reasing distan
e from the heart. The peak of the pressure pulse delays downstreamindi
ating wave propagation along the aorta with a 
ertain wave speed. Moreover,7



the shape of the pressure pulse 
hanges and shows an in
rease in amplitude, a steep-ing of the front and only a moderate fall of the mean pressure.This wave phenomenon is a dire
t 
onsequen
e of the distensibility of the arterialwall, allowing a partial storage of the blood inje
ted from the heart due to an in
reaseof pressure and the elasti
 response of the vessel. The 
ross-se
tional area of thevessels depends on the pressure di�eren
e over the wall. This pressure di�eren
e is
alled the transmural pressure and 
an be denoted by ptr. This transmural pressure
onsists of several parts. First, there exists a hydrostati
 
omponent proportionalto the blood density ρ, the gravity a

eleration g and the height h. Next, a timedependent part p0 and a periodi
 time dependent part, p ∼. So, the transmuralpressure takes the following form
ptr = ρgh + p0 + p∼ (1.1)The relationship between transmural pressure and 
ross-se
tional area A of the vesselis in most 
ases non-linear and may be rather 
ompli
ated. Moreover it varies fromone vessel to the other. For negative transmural pressure values the vessel 
an even
ollapse. Important quantities with respe
t to this relationship are the 
omplian
eor alternatively the distensibility of the vessel. Complian
e may be de�ned as thepartial derivative between the 
ross-se
tional area A and pressure p:

C =
∂A

∂p
(1.2)The distensibility D is de�ned as the ratio of the 
omplian
e and the 
ross-se
tionalarea and hereby is given by:

D =
1

A

∂A

∂p
=

C

A
(1.3)For thin walled tubes, with radius a and wall thi
kness h, without 
onsideringlongitudinal strain, distensibility 
an be derived as follows:

D =
2a

h

1 − σ2

E
(1.4)where σ denotes the Poisson ratio and E the Young modulus. From 1.4 we 
an seethat besides the properties of the vessel material (E,σ) also its geometri
al properties(a,h) play an important role.The �ow is driven by the pressure gradient and hereby determined by the prop-agation of the pressure wave. Normally the pressure wave may have a pulsatingprogress. In order to des
ribe su
h �ow phenomena it 
an be possible to make a dis-tin
tion between steady and unsteady part of the 
onsidered pulse. Assuming that8



the unsteady part 
an be des
ribed by means of linear theory, we 
an introdu
e the
on
ept of pressure and �ow waves whi
h are superpositions of several harmoni
s:
p∼ =

N
∑

n=1

pne
niωt Q∼ =

N
∑

n=1

Qneniωt (1.5)Here pn and Qn are the 
omplex Fourier 
oe�
ients and hereby p∼ and Q∼ arethe 
omplex pressure and the 
omplex �ow, σ denotes the angular frequen
y of thebasi
 harmoni
. A
tual pressure and �ow 
an be obtained by taking the real part ofthese 
omplex fun
tions. Normally spoke 6 to 10 harmoni
s are su�
ient to des
ribethe most important features of the pressure wave.As mentioned before the blood �ow is driven by the for
e a
ting on the bloodindu
ed by the pressure gradient. The relation of these for
es to the resulting motionof blood is expressed through the longitudinal impedan
e:
Zl =

− ∂p

∂x

Q
(1.6)The longitudinal impedan
e is a 
omplex number de�ned by 
omplex pressures and
omplex �ows. It 
an be 
al
ulated by frequen
y analysis of the pressure gradientand the �ow that have been re
orded simultaneously. As it expresses the �ow in-du
ed by a lo
al pressure gradient, it is a property of a small (in�nitesimal) segmentof the vas
ular system and depends on lo
al properties of the vessel. The longitudi-nal impedan
e plays an important role in the 
hara
terisation of vas
ular segments.It 
an be measured by a simultaneous determination of the pulsatile pressure at twopoints in the vessel with a known small longitudinal distan
e apart from ea
h othertogether with the pulsatile �ow.A se
ond important quantity is the input impedan
e de�ned as the ratio ofthe pressure and the �ow at a spe
i�
 
ross-se
tion of the vessel:

Zi =
p

q
(1.7)The input impedan
e is not a lo
al property of the vessel but a property of a spe
i�
site in the vas
ular system. If some input 
ondition is imposed on a 
ertain site inthe system, then the input impedan
e only depends on the properties of the entirevas
ular tree distal to the 
ross-se
tion where it is measured and is often referredto as a 
hara
teristi
 impedan
e. In general the input impedan
e at a 
ertain sitedepends on both the proximal and distal vas
ular net.9



The 
omplian
e of an arterial segment is 
hara
terized by the transverse impedan
ede�ned by:
Zt =

p
∂Q

∂x

= − p
∂A
∂t

(1.8)This quantity expresses the �ow drop due to the storage of the vessel 
aused bythe radial motion of its wall (being A the 
ross-se
tional area) at a given pressure.1.1.4 HeartThe heart is the mus
ular organ of the 
ir
ulatory system; approximately thesize of a 
len
hed �st, it a
ts as a double pump driving blood, feeding and wastingprodu
ts along the two distin
t 
ir
ulations, the pulmonary 
ir
uit and the systemi

ir
uit (see �gure 1.1). In order to maintain these two 
ir
uits separate, heart isdivided in two distin
t parts, ea
h one having two 
hambers (�g. 1.3).

Figure 1.3: Heart anatomy. Image taken from http://s
i2135d1-pm68.morris.umn.edu/ pzmy-ers/MyersLab/The right side of the heart has to pump blood, through the vessels belonging tothe pulmonary 
ir
uit, to oxygenate blood in lungs. Left side of the heart providethe blood pumping to the vessels whi
h 
ompose the systemi
 
ir
uit.Blood pumping is provided through the alternation of a 
ontra
tion phase, 
alledsystole, with a relaxation phase, the diastole; the repetition of these two phases rep-10



resents a beat or 
ardia
 
y
le (�g.1.4), whi
h is the simplest parameter to evaluatethe heart a
tivity. The average pumping rate of the left ventri
le is about 70 bpm(beats per minute), whi
h 
orresponds to a period of about 0.85 se
onds for ea
h
ardia
 
y
le.Sin
e ea
h side of the heart has an atrium and a ventri
le, we have two valvesfor ea
h side, an inlet one and an outlet one. Venous blood 
omes to the rightatrium from the two 
ava veins, the superior vein and the inferior vein. Thenblood �ows through tri
uspid valve into the right ventri
le, where is pumped duringsystole phase trough another valve, the semi-lunar valve, and goes along pulmonaryarteries �nally rea
hing lungs. Oxygenated blood then returns from lungs to the leftatrium passing trough the pulmonary veins; on
e the atrium is �lled, the mitral orthe bi
uspid valve opens and blood 
an rea
h the left ventri
le. From this lo
ationblood passes through the aorti
 semilunar valve and enters the aorta where it willbe distributed to the whole body going along the systemi
 
ir
ulation.

Figure 1.4: Cardia
 
y
le notes. AV stands for atria-to-ventri
les valves. Image taken fromhttp://s
i2135d1-pm68.morris.umn.edu/ pzmyers/MyersLab/tea
hing/Bi104/
11



1.2 Rheology of bloodBlood volume is 
omposed by formed elements (about 45%) and plasma (about55%). The plasma is a diluted ele
trolyte solution 
ontaining about 8 per
ent byweight of three major types of proteins: �brinogen, globulin and albumin in water.Fibrinogen is involved in blood 
oagulation through a pro
ess of polymerization thattransform �bronogen into �brin. Globulin is a 
arrier of lipids and other water sol-uble substan
es and also 
ontains antibodies that resist from the atta
ks of ba
teriaand virus. Albumin is the main 
ontributor to the total 
olloid osmoti
 pressure ofplasma and play an important role in the balan
e of water metabolism.The formed elements in blood 
onsists of 95% red blood 
ells, 0.13% white blood
ells and about 4.9% platelets. The white blood 
ells, also known as leu
o
ytes
onsist of mono
ytes, lympho
ites, and basophils. Mono
ytes that leave the 
ir-
ulation and enter the tissues develop into ma
rophages. Neutrophils, mono
ytes,and ma
rophages are 
olle
tively known as phago
ytes sin
e they 
an engulf andingest ba
teria and other foreign parti
les. Platelets are 
ells without a nu
leus;they 
an repair the damaged vessel walls and also 
an help blood through thrombusformation. The majority of the formed elements are red blood 
ells that 
onsistof hemoglobin surrounded by �exible red 
ell membrane. The primary fun
tion ofhemoglobin in the red blood 
ell is to transport oxygen from the lungs to the livingtissue of the body.Be
ause of its heterogeneous 
omposition, blood rheology, that is the relation-ship between the strain and stress tensors, is hard to de�ne. In fa
t rheologi
behaviour of blood depends on several fa
tors like pressure, temperature, and vesselgeometry whi
h values 
an vary in time; moreover the e�e
ts 
aused by trauma orin�ammatory pro
esses 
an 
hange even more the normal behaviour of blood �ow.Several studies have been made in order to give a mathemati
al des
ription of bloodbehaviour; we may now 
onsider its main 
hara
teristi
.Indi
ate with T the stress tensor and with D the strain tensor: D = [Dij ] =

[1
2
(ui,j + uj,i)], where u is the �uid velo
ity �eld. We 
an de�ne the 
onstitutiverelationship between T and D as follows:T = −pI+ S(D) (1.9)where I is the identity Krone
ker tensor,p is the pressure, pI is the isotropi
 stresstensor 
omponent and S(D) is the deviatori
 
omponent. If the relationship between12



S and D is linear, and S takes zero values when the �uid is at rest, then we havea newtonian �uid. However in generi
 
onditions this relationship is not linear andthe deviatori
 
omponent does not vanish if the �uid has zero velo
ity. In this 
asewe assume the �uid as non newtonian and it has the following 
hara
teristi
:For what 
on
erns the blood we 
an expose its main rheologi
al 
hara
teristi
sas follows:Pseudo-elasti
 behaviour. Like non-newtonian �uids, blood shows a nonlinear relationship between shear stress and shear rate. For this kind of �uids wemay de�ne the apparent vis
osity as the ratio between shear stress and shear rate.If apparent vis
osity de
reases when shear rate in
reases, we have a pseudo-plasti
�uid; otherwise we have a dilatant �uid (�g. 1.5).

Figure 1.5: Relationship between shear rate and shear stress in a non-newtonian �uidMi
ro-
ir
ulation e�e
ts. Blood rheologi
 properties may 
hange when vesseldiameter redu
es to a dimension 
omparable with the one of a red blood 
ell. Infa
t, when the diameter is less than 12 µm, blood 
annot be 
onsidered as a 
on-tinuous anymore. When the vessel diameter assumes values less than 500 µm, it isexperimentally possible to observe a redu
tion in apparent vis
osity. This behaviouris 
alled Fahraeus-Lindqvist e�e
t and is essentially due to two 
auses: �rst, whenblood is 
arried away into a vessel smaller than the 
oming one, the plasma willeasily �ow away, while the blood formed 
omponents will be slowed down be
auseof 
ollisions between them and the vessel wall near the entran
e. This phenomenonwill de
rease the red blood 
ell 
on
entration (hemato
rit) and, 
onsequently, theapparent vis
osity. Se
ond, we 
an experimentally observe that hemato
rit assumeshigher values in the 
entral lumen region than near the walls. For this reason, owing13



to a vessel bran
hing whi
h 
auses a diameter redu
tion, the region 
lose to thewalls be
omes more relevant than the 
entral zone and there will be a de
reasingof hemato
rit and apparent vis
osity. However this 
hara
teristi
 doesn't 
on
ernwith big and middle size arteries, and it will not be 
onsidered during the modelimplementation.All these rheologi
 
hara
teristi
s are essentially due to the presen
e of red blood
ells. In fa
t the plasma 
an be 
onsidered as a newtonian �uid, and white blood
ells and platelets represent a small per
entage of the blood volume and their mi
ro-s
opi
al e�e
t on rheology may be negle
ted. When the red blood 
ells 
on
entrationis less them 12% of the total weight, blood has a newtonian behaviour.For middle and big arteries, in physiologi
 
onditions, the rheologi
al newtonianmodel for blood is 
onsidered a

eptable for a �rst level approximation. In fa
t we
an experimentally dis
over that for values of D in the proximity of artery walls,vis
osity is independent from any value of D. Sin
e for our 1D model we 
onsideronly big and middle arteries, by default we will treat blood as a newtonian �uidwith density 1.021x103 kg m−3 and vis
osity equals to 0.004 kg m−1 s−1 (at 37 °C ),
hara
terized by the following 
onstitutive law:T = −pI + 2µD (1.10)where µ is the vis
osity of the �uid.1.3 Hemodynami
sHemodynami
s is an important �eld of 
ardiovas
ular physiology dealing withblood pumping and 
ir
ulation through the 
ardiovas
ular system. Classi
al hemo-dynami
s deals with in vivo and in vitro measurements of pressure, �ow and re-sistan
e. The dire
t extrapolation of su
h quantities is di�
ult sin
e the blood
ir
ulation is within the living body of human beings and so there must be a 
om-promise between the a

ura
y of measurements and their invasive level. Also theemploy of straightforward 
al
ulations 
an hardly handle the 
ompli
ated dynami
phenomena of blood �ow. Hen
e, 
omputational simulation had be
ome ne
essaryand has been proved to be valid.Computational Hemodynami
s applies numeri
al te
hniques to support the in-vestigators of physiologi
al and pathologi
al phenomena 
on
erning blood �ow in the
ardiovas
ular system. In re
ent years, the development of 
omputational methods14



together with the in
reasing 
omputing hardware performan
es have enabled 
om-putational Hemodynami
s to be
ome an important tool for analyzing the behaviorof blood �ow in vessels.The mathemati
al modeling of hemodynami
s problems, like the study of blood�ow and its me
hani
al and bio
hemi
al intera
tions with the vessel walls is very
omplex. Together with the equations des
ribing the motion of an in
ompressible�uid, we have to 
onsider adve
tion di�usion equations for the dynami
s of solutedlipids, oxygen and drugs; moreover, spe
i�
 intera
tion models for the osmosis ofthese substan
es with the wall may be taken into a

ount. Finally, we have tode�ne a stru
tural model that des
ribes the me
hani
al behaviour of the vessel wall
oupled with the blood �ow.The development of a numeri
al solution for su
h hemodynami
s problems musttake into a

ount some 
ompromises related to several aspe
ts; at one hand wehave to provide all those informations about the problem that will be essential forthe 
omprehension of the involved phenomena. On the other hand it is ne
essaryto allow a numeri
al treatment of the model at reasonable 
omputational 
osts.For this purpose the 
hoi
e of the model may be oriented either to an a

uratemodelization of a lo
alized system or a heavily simpli�ed representation of a moreglobal physi
al system; the former 
ase implies the appli
ation of 2D/3D modelswith the 
oupling �uid-stru
ture [29℄[3℄, while the latter refers to 
onsider the wholesystem as a network of 
ompartments whose features are treated as mean or lumpedparameters [14℄A possible 
ompromise between these approa
hes is represented by the one-dimensional wave propagation model, whi
h involves solving the governing equationsof blood �ow in a one-dimensional domain and assumes that dominant 
omponentof the blood �ow velo
ity is oriented along the vessel axis.1.3.1 The one-dimensional modelThe one-dimensional modelling, and its appli
ation to the human arterial system,was introdu
ed for the �rst time by Euler in 1775[2℄ who derived the partial di�er-ential equations expressing the 
onservation of momentum and mass for an invis
id�uid. I order to 
lose the problem, he suggested two possible, but experimentallynot realisti
, 
onstitutive equations whi
h des
ribe the behaviour of an elasti
 wallwith 
hanges in the lumenal pressure. Euler did not re
ognise the wave-like nature15



of the �ow and was not able to �nd a solution for his system of equation.The wave nature of the arterial �ow was �rst des
ribed by Young[36℄ who derivedthe wave speed in analogy to Newton theory of the speed of sound in air. In 1877Moens[13℄ and Kortweg[8℄ independently published analyses of �ow in thin-walledelasti
 vessels, deriving what is now known as the Moens-Kortweg equation for thewave speed. Riemann[20℄, in the 1860, provided the analyti
al solution for thegeneral equations for 1D model when he introdu
ed the method of 
hara
teristi
s;su
h tool was �rst applied to arterial �ow more than 50 years ago by Anliker and
o-workers[26℄[27℄ and Skalak[23℄.The system of equations derived by Euler is 
omposed by non-linear partial dif-ferential equations analogous to the shallow-water equations of hydrodynami
s orthe one-dimensional invis
id equations of gas dynami
s. However, under physiologi-
al 
onditions of the arterial system, su
h equations are only weakly non-linear andtherefore many 
hara
teristi
s of the �ow may be 
aptured using a linearised system.This is the approa
h of Womersley[35℄ (1957) who linearised the two dimensionalequations for the �ow in straight, 
ir
ular elasti
 pipes and obtained the wave solu-tion by Fourier te
hniques. This linear analysis has be
ome the "standard" modelof waves in arteries and is found in most hemodynami
s books. The su

ess of thelinearised model and the apparently periodi
 nature of the arterial system has 
on-vin
ed most resear
hers sin
e Womersley to analyse arterial �ow in the frequen
ydomain rather than the time domain, using the "ele
tri
al analogy" pressure-voltageand �ow-
urrent.Although the body of work using the frequen
y domain is 
onsiderable, manyaspe
ts of the physiologi
al waveforms have yet to be understood; moreover thereare some limiting aspe
ts 
on
erning the solution of su
h a problem in the frequen
ydomain. Firstly the frequen
y domain may lead to the impli
it assumption that thearterial system is in a state of permanent "steady os
illation" that may 
ontinueeven when the for
ing from the heart is stopped. However, the 
hara
teristi
 speedof wave propagation is su�
iently fast that the time s
ale to propagate informationthrough the whole arterial system is mu
h smaller than the duration of the 
ardia

y
le. It is generally observed, in resting 
onditions, that �ow in large arteriesappears at rest during late diastole. Se
ondly, the aorti
 valve is an essentiallynon-linear element dividing the 
ardia
 
y
le into systole and diastole. Sin
e thefrequen
y domain 
annot distinguish between these two phases of ht 
ardia
 
y
le,an identi
al systoli
 behaviour of the ventri
le during systole (and the arterial system16



during diastole) 
ould be masked simply by 
hanges in the fundamental frequen
y.An alternative approa
h to simulate the one-dimensional arterial system is towork in a spa
e-time domain instead of a frequen
y analysis;...
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Chapter 2Problem formulationIn 
hapter I we gave a preliminary base of knowledge about the 
ardiovas
u-lar system, introdu
ing both the physiologi
al ba
kground and possible models tobe used for the numeri
al 
hara
terization of its fun
tioning. In this 
hapter wefo
us on the mathemati
al formulation related to the one-dimensional model ofthe vas
ular network, a

ounting for several aspe
ts: �rstly, the derivation of thegoverning equations for this kind of model is detailed a

ounting for geometri
aland physi
al assumptions, de�nition of the 
omputation domain and attribution ofsuitable boundary 
onditions. Se
ondly, the governing system we obtained is numer-i
ally solved by means of time-spa
e integration s
hemes adopting the �nite elementtheory. Su
h s
hemes will be further implemented into a numeri
al solver whi
h,
oupled with GiD1 pre-post pro
ess interfa
e permits to 
al
ulate the numeri
alsolution of the problem and to display the obtained results.2.1 Governing equationsThe governing equations for 1D blood �ow model in arteries 
an be derived
onsidering a single vessel (�g. 2.1). Sin
e we are adopting a one-dimensionalformulation, several simplifying hypothesis must be taken into a

ount; startingfrom the geometry, we 
an assume the arterial vessel as a long, straight 
ylinderof length L (�g. 2.1). Doing this, we de
ided not to 
onsider lo
al 
urvatures sothat the axial 
oordinate z represents also the preferential dire
tion of the bloodmotion. The new 
ylindri
al domain Ωc, des
ribed using a 
ylindri
al 
oordinate1See appendix A. 18



Figure 2.1: Sket
h of a single 
ompliant vesselsystem (r, θ, z), is de�ned as follows:
Ωc = {(r, θ, z) : 0 ≤ r ≤ R(z, t), θ ∈ [0, 2π), z ∈ (0, L)}for ∀t > 0, indi
ating with er, eθ and ez the radial, 
ir
umferential and axial unitve
tors.

Figure 2.2: One-dimensional 
ylindri
 domain for a single arterial vessel and detail of the 
ir
ularse
tion S(t, z)The assumption of a 
ylindri
al geometry for the vessel is not the only simpli-fying hypothesis adopted for the one-dimensional model; sin
e we wish to studyhow pressure and �ow waves propagate into the arterial system without 
onsideringhemodynami
 details, we analyze the blood �ow in terms of transversally averagedarea and �ow rate 
al
ulated on the vessel se
tion; mean se
tional values anywaygive a good des
ription of the wave propagation in arteries [15℄[28℄ and allow toavoid 
onsidering the radial and angular 
omponents of velo
ity.Following this approa
h we assume axial symmetry for all the 
omponents in-volved (area, velo
ity and pressure), whi
h are fun
tions of z and t only, and radialdispla
ements along the radial dire
tion solely. The latter hypothesis means thatea
h axial se
tion S remains 
ir
ular at all times, i.e., for z ∈ [0, L] and t > 0 wehave:
S = S(z, t) = {(r, θ, z) : 0 ≤ r ≤ R(z, t), 0 ≤ θ ≤ 2π}19



At ea
h point of the se
tion surfa
e we may write η = ηer, where η = R−R0 isthe displa
ement with respe
t to a referen
e radius R0
2.2.1.1 Mass 
onservation equationConsidering the vessel de�ned in �g. 2.2, the prin
iple of mass 
onservationrequires that the rate of 
hange of mass within the domain Ωc plus the net mass�ux out of the domain is zero. Sin
e we 
onsider transversally averaged values forarea and axial velo
ity, they may be de�ned as:

A(t, z) =

∫

S(t,z)

dσ = πR2(t, z) (2.1)
uz(t, z) = ū(t, z)s

(

r

R(t, z)

)

, ū(t, z) =

∫

S(t,z)

uzdσ (2.2)
Q(t, z) = A(t, z)ū (2.3)where ū is the mean velo
ity on ea
h se
tion and s : R → R is a velo
ity pro�lefun
tion. We assumed this pro�le does not vary in time, thinking s as representativeof an average �ow 
on�guration.Denoting the vessel volume as V (t) =

∫ L

0
Adz, and assuming there are no in�l-trations through the side walls, the mass 
onservation 
an be written as

ρ
dV (t)

dt
+ ρQ(L, t) − ρQ(0, t) = 0 (2.4)where ρ is the blood density. If in�ltration does o

ur we must add a sour
eterm to this equation [32℄[31℄.To determine the one-dimensional equation of mass 
onservation, we insert V (t) =

∫ L

0
Adz into (2.4) and, sin
e we 
an write

Q(L, t) − Q(0, t) =

∫ L

0

∂Q

∂z
dz,we obtain

ρ
d

dt

∫ L

0

A(z, t)dz + ρ

∫ L

0

∂Q

∂z
dz = 0.As we assume L independent of time, we 
an in
lude the time derivative inside theintegral to have

ρ

∫ L

0

{∂A

∂t
+

∂Q

∂z

}

dz = 02As referen
e state we indi
ate a generi
 steady state of the 1D system, where we have these
tion A = A0 = πR2

0
and the blood mean velo
ity ū ≈ 020



Sin
e we have not spe
i�ed the vessel length L, the domain is arbitrary and so theabove equation must be true for any value of L. We therefore obtain the di�erentialequation for the mass 
onservation related to the one-dimensional model:
∂A

∂t
+

∂Q

∂z
= 0 (2.5)2.1.2 Momentum equationThe momentum equation states that the rate of 
hange of momentum within theintegration domain Ωc plus the net �ux of the momentum out of the domain itselfis equal to the applied for
es on the domain and 
an be expressed over an arbitrarylength L as

d

dt

∫ L

0

ρQdz + (αρQu)L − (αρQu)0 = F (2.6)where F is de�ned as the applied for
es in the z-dire
tion a
ting on the domain;again we have not 
onsidered �ux losses through the side walls of Ωc. The equation(2.6) in
ludes a momentum-�ux 
orre
tion 
oe�
ient α, also 
alled Coriolis 
oe�-
ient, whi
h a

ounts for the fa
t that the momentum �ux 
al
ulated with averagedquantities (ū) does not 
onsider the non-linearity of se
tional integration of �uxmomentum. So we may assume
∫

S
ρū2dσ ≡ αρū2A = αρQū ⇒ α(z, t) =

∫

S ū2dσ

Aū2
=

∫

S s̄2dσ

AIn general α may vary in time and spa
e, yet in our model is taken 
onstant asa 
onsequen
e of (2.2). There are several 
hoi
es for the pro�le law s; one is the
lassi
al paraboli
 fun
tion s(y) = 2(1−y2), 
orresponding to the Poiseuille solutionfor steady �ows in 
ir
ular tubes. Another pro�le law often used for blood �ow inarteries [24℄ is a power law of the type
s(y) = γ−1(γ + 2)(1 − yγ) (2.7)Figure 2.3 shows the pro�le trend adopting several values for γ.To 
omplete the equation (2.6) we need to de�ne the applied for
es F whi
htypi
ally involve a pressure and a vis
ous for
e 
ontribution, i.e.

F = (PA)0 − (PA)L +

∫ L

0

∫

∂S
P̂nzdsdz +

∫ L

0

fdz (2.8)21
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Figure 2.3: Velo
ity pro�les for blood �ow in arteries 
onsidering several values of γwhere ∂S represents the boundary of the se
tion S, nz is the z-
omponent of thesurfa
e normal and f stands for the fri
tion for
e per unit of length. The pressurefor
e a
ting on the side walls, given by the double integral, 
an be simpli�ed sin
ewe assumed both 
onstant se
tional pressure and axial symmetry of the vessel; sowe have
∫ L

0

∫

∂S
P̂ nzdsdz =

∫ L

0

P
∂A

∂z
dz (2.9)If we �nally 
ombine equations (2.6),(2.8) and (2.9) we obtain the momentum
onservation for the 
omputation domain expressed as

d

dt

∫ L

0

ρQdz + (αρQu)L − (αρQu)0 = (PA)0 − (PA)L +

+

∫ L

0

P
∂A

∂z
dz +

∫ L

0

fdz (2.10)To obtain the one-dimensional di�erential equation for the momentum we notethat
(αρQu)L − (αρQu)0 =

∫ L

0

∂(αρQu)

∂z
dz

(PA)0 − (PA)L = −
∫ L

0

∂(PA)

∂z
dz22



whi
h, inserted into (2.10), taking L independent of time and ρ 
onstant, gives
ρ

∫ L

0

{∂Q

∂t
+

∂(αQu)

∂z

}

dz =

∫ L

0

{

−∂(PA)

∂z
+ P

∂A

∂z
+ f
}

dzOn
e again this relationship is satis�ed for an arbitrary length L and therefore 
anonly be true when the integrands are equal. So the one-dimensional equation forthe momentum 
onservation be
omes
∂Q

∂t
+ α

∂

∂z

(

Q2

A

)

= −A

ρ

∂P

∂z
+

f

P
. (2.11)The vis
ous term in the equation (2.8) may be also expressed as a fun
tion ofthe velo
ity pro�le s(y). Considering an in�nitesimal portion T of the domain Ωc

Figure 2.4: In�nitesimal portion T of Ωc(�g. 2.4), we 
an write:
∫ L

0

fdz ⇒ µ

∫

T
∆uz = µ

∫

∂T
∇uz · n = µ

[
∫

S−

∂uz

∂z
+

∫

S+

∂uz

∂z
+

∫

ΓT

∇uz · n
]The term ∂uz/∂z is assumed to be mu
h smaller than the others, and moreoverwe may split n into its radial and axial 
omponents, nr = nrer and nz = nzez.Consequently we have

∫

T
∆uz =

∫

ΓT

(∇uz · nz + ∇uz · ernr)dσ23



Again the term ∇uz · nz may not be 
onsidered, being proportional to ∂uz/∂z.Re
alling the relation (2.2) we obtain
∫

T
∆uz =

∫

ΓT

∇uz · ernrdσ =

∫

ΓT

ū

R
s′(1)n · erdσ ≈ 2πūs′(1)be
ause nrdσ 
an be expressed as 2πRdz. Passing this term to the limit as dz → 0and substituting it with f/ρ into the equation (2.11) we �nally obtain

∂Q

∂t
+ α

∂

∂z

(

Q2

A

)

= −A

ρ

∂P

∂z
+ Krūwhere

Kr = −2πνs′(1)is the fri
tion parameter for our one-dimensional system, whi
h depends on thekinemati
 vis
osity ν =
µ

ρ
of the �uid and the velo
ity pro�le s.2.2 Vessel wall me
hani
al modellingOn
e we obtained the two governing equations (2.5) and (2.11), it is possible towrite the one-dimensional system as

∂A

∂t
+

∂Q

∂z
= 0, z ∈ (0, L), t > 0 (2.12a)

∂Q

∂t
+

∂

∂z

(

α
Q2

A

)

+
A

ρ

∂P

∂z
+ KR

Q

A
= 0, z ∈ (0, L), t > 0 (2.12b)where the unknowns are A, Q and P . As we 
an noti
e the number of variablesis greater than the number of equations (three unknowns for the two equations (2.5)and (2.11); therefore one equation more is needed in order to solve this system.For this reason we introdu
e an algebrai
 relationship between area and pressure,deriving it from a me
hani
al model for the vessel wall displa
ement. In this proje
twe 
onsidered the generalised string model [18℄, whi
h 
an be expressed as

ρwh0
∂2η

∂t2
− γ̃

∂η

∂t
− ã

∂2η

∂z2
− c̃

∂3η

∂t∂z2
+ b̃η = (P − Pext) (2.13)where η is the radial displa
ement de�ned previously and Pext is the pressureexternal to the vessel, here taken 
onstant.24



Ea
h term of the equation (2.13) has its own physi
al signi�
an
e: the �rst one isthe inertia term, proportional to the wall a

eleration. The se
ond term is a Voigt-type, vis
oelasti
 term, proportional to the radial displa
ement velo
ity. The thirdterm is related to the longitudinal pre-stress state of the vessel wall, and a

ounts forthe longitudinal tensions a
ting on arteries. The fourth term is another vis
oelasti
term while the last term is the elasti
 response fun
tion. Besides ρw is the vesseldensity, h0 is the wall thi
kness, ã, b̃ and c̃ are three positive 
oe�
ients. We 
andevelop the last term of (2.13) being
η = R − R0 =⇒ η =

√
A −

√
A0√

π
, with A0 = πR2

0and
b̃ =

Eh0

kR2
0

=
πEh0

kA0
, with k = 1 − ξ2where E is the Young modulus of elasti
ity and ξ represents the Poisson ratio,typi
ally taken to be ξ = 0.5 (then k = 0.75) sin
e biologi
al tissue is pra
ti
allyin
ompressible.It is known that, under physiologi
al 
onditions, the elasti
 response of the mainarteries is the dominating e�e
t, while the other inertial and vis
oelasti
 terms givea negligible 
ontribution. Consequently, a �rst model whi
h relates pressure andarea may be

P − Pext = b̃η = β1

√
A −

√
A0

A0
(2.14)where

β1 =
Eh0

√
π

1 − ξ2is a fun
tion of z through the Young modulus, E(z). In general, the algebrai
relationship may be expressed as
P = Pext + F(A; A0, β) (2.15)where we outlined that the pressure will depend not only on A, but also on A0and on a set of 
oe�
ients β = {β1, β2, . . . βn} whi
h a

ounts for the physi
al andme
hani
al 
hara
teristi
s of the arterial vessel. Both A0 and β are given fun
tionsof z, but they do not vary in time. It is required that F be at least a C1 fun
tionof its arguments and be de�ned for ea
h positive value of A and A0. In addition wemust have, for all the allowable values of A, A0 and β that

∂F
∂A

> 0 , and F(A0; A0, β) = 025



There are several examples of algebrai
 pressure-area relationship for one-dimensionalmodels of arterial �ow [9℄[24℄; here we assumed the relationship (2.14), where β =

{β1} and, for the sake of simpli
ity, Pext = 0. Then fun
tion F 
an be written as
F(A; A0, β1) = β1

√
A −

√
A0

A0

(2.16)2.3 The �nal modelThe derivation of the above pressure-area dependen
e allows to 
lose our one-dimensional system (2.12), repla
ing the pressure term with the algebrai
 relation-ship (2.14). To this purpose we also introdu
e the following quantity
c1 = c1(A; A0, β) =

√

A

ρ

∂F
∂A

(2.17)whi
h represents the propagation speed of waves along the 
ylindri
al vessel.The two-equation system we �nally obtained may be written in a quasi-linearform, using the matrix notation. So we have
∂U

∂t
+ H(U)

∂U

∂z
+ B(U) = 0, z ∈ (0, L), t > 0 (2.18)where

U =

[

A

Q

]

H(U) =





0 1
A

ρ

∂F
∂A

− αū2 2αū



 =







0 1

c2
1 − α

(

Q

A

)2

2α
Q

A







B(U) =





0

−KR

Q

A
+

A

ρ

∂F
∂A0

dA0dz +
A

ρ

∂F
∂β

dβ
∂dz 

(2.19)
In our modelling,A0 and β1 are taken 
onstant along the axial dire
tion z be
ausewe assume that both the initial area A0 and the Young modulus E do not vary inspa
e; so the expression of B a

ounts only for the fri
tion term depending on KR.The non-linear form (2.18) for the governing system may be transformed into a
onservation form as 26



∂U

∂t
+

∂F (U)

∂z
− S(U) = 0, z ∈ (0, L), t > 0 (2.20)where

F (U) =





Q

α
Q2

A
+ C1



 (2.21)is the �ux ve
tor, and
S(U ) = −B(U) −





0
∂C1

∂A0

dA0dz +
∂C1

∂β

dβdz 

 (2.22)a

ounts for the sour
e term of the system. C1 is a primitive of the wave speed
c1, given by

C1(A; A0, β) =

∫ A

A0

c2
1(τ ; A0, β)dτApplying the relationships (2.16) and (2.17), we obtain

c1 =

√

β1

2ρA0

A
1

4 ⇒ C1 =
β1

3ρA0

A
3

2 (2.23)2.4 Chara
teristi
 analysisOne of the methods for solving nonlinear systems of partial di�erential equations,like our one-dimensional model, is the 
hara
teristi
 analysis [22℄[17℄; 
onsidering(2.18), we 
an 
al
ulate the eigenvalues for the matrix H(U)

λ1,2 = α
Q

A
± cα (2.24)where

cα =

√

c2
1 + α(α − 1)

Q2

A2Sin
e the Coriolis 
oe�
ient α ≥ 1, cα is a real number; besides, under the assump-tion that A > 0, indeed a ne
essary 
ondition to have physi
al relevant solution,
c1 > 0; therefore we have cα > 0 whi
h means H has two real distin
t eigenvaluesand so, by de�nition, the system (2.18) is stri
tly hyperboli
. For typi
al values ofvelo
ity, vessel se
tion and me
hani
al parameter β1 en
ountered in main arteriesunder physiologi
al 
onditions, we �nd that λ1 > 0 and λ2 < 0.27



Indi
ating with (l1, l2) and (r1 r2) the two 
ouples of left and right eigenve
torsof H , we may de�ne the matri
es R, L and Λ as
L =

[

lT1

lT2

]

, R =
[

r1 r2

]

, Λ =

[

λ1 0

0 λ2

]

. (2.25)Here we 
onsidered, for simpli
ity, α = 13; sin
e left and right eigenve
tors aremutually orthogonal, we 
hoose them so that LR = I, being I the identity matrix,without loss of generality. The matrix H be
omes
H = RΛLand the system (2.18) takes the equivalent form

L
∂U

∂t
+ ΛL

∂U

∂z
+ LB(U) = 0, z ∈ (0, L), t > 0 (2.26)We introdu
e a 
hange of variables su
h that

∂W1

∂U
= l1,

∂W2

∂U
= l2 (2.27)

W1 and W2 are 
alled 
hara
teristi
 variables of the hyperboli
 system. Bysetting W = [W1 W2]
T the system (2.26) may be elaborated into

∂W

∂t
+ Λ

∂W

∂z
+ G = 0, z ∈ (0, L), t > 0 (2.28)with

G = LB − ∂W

∂A0

dA0dz − ∂W

∂β

dβdzUnder the assumption that A0 and β1 are 
onstant in spa
e and taking B neg-ligible4, the equation (2.28) be
omes
∂W

∂t
+ Λ

∂W

∂z
= 0, z ∈ (0, L), t > 0whi
h is a system of de
oupled s
alar equations written as

∂Wi

∂t
+ λi

∂Wi

∂z
= 0, z ∈ (0, L), t > 0, i = 1, 2. (2.29)3The value of α usally varies between 1 and 4/34Assuming B ≈ 0 is 
onsistent with the fa
t that, in the 
ase of 1D models, the vis
ous sour
eterm in the momentum equation is negligible under the physiologi
al 
onditions 
on
erning mainarteries. 28



From (2.29) we have that W1 and W2 are 
onstant along the two 
hara
teristi

urves in the (z, t) plane (�g. 2.5) des
ribed bydzdt = λ1 and dzdt = λ2

Figure 2.5: Diagram of 
hara
teristi
s in the (z, t) plane. The solution on the point R is obtainedby the superimposition of the two 
hara
teristi
s W1 and W2The expression for the left eigenve
tors l1 and l2 is given by
l1 = ς

[

cα − αū

1

]

, l2 = ς

[

−cα − αū

1

]

,where ς = ς(A, ū) is any arbitrary smooth fun
tion of its arguments with ς > 0.Here we have expressed l1 and l2 as fun
tions of (A, ū) instead of (A, Q) in order tosimplify the next developments.For an hyperboli
 system of two equations is always possible to �nd the 
hara
-teristi
 variables lo
ally, that is in a small neighbourhood of any point U [5℄, yetthe existen
e of global 
hara
teristi
s is not in general guaranteed. Assuming α = 1the relationships (2.27) take the form
∂W1

∂A
= ςc1,

∂W1

∂ū
= ςA (2.30a)

∂W2

∂A
= −ςc1,

∂W2

∂ū
= ςA (2.30b)29



We now show that a set of global 
hara
teristi
 variables exist for the problemat hand. Sin
e we note, from 2.30, that W1,2 are exa
t di�erentials being
∂2Wi

∂A∂ū
=

∂2Wi

∂ū∂Afor any value of A and ū; we also have that c1 does not depend on ū and then, fromthe above relationships we obtain
c1

∂ς

∂ū
= ς + A

∂ς

∂AIn order to satisfy this relation we have to 
hoose ς = ς(A) su
h that ς = −A
∂ς

∂A
.To do this we 
an take ς = A−1.As a 
onsequen
e we 
an write

∂W1 =
c1

A
∂A + ∂ū, ∂W2 = −c1

A
∂A + ∂ū (2.31)Taking (A0, 0) as a referen
e state for our variables (A, ū), we 
an integrate theabove relationships obtaining

W1 = ū +

∫ A

A0

c1(ǫ)

ǫ
dǫ , W2 = ū −

∫ A

A0

c1(ǫ)

ǫ
dǫIntrodu
ing the expression (2.23) for c1 we have

W1,2 =
Q

A
± 4

(
√

β1

2ρA0

A
1

4 − c0

) (2.32)with c0 is the wave speed related to the referen
e state.We �nally 
an write the variables (A, Q) in terms of the 
hara
teristi
 ones,
A =

(

2ρA0

β1

)2(
W1 − W2

8

)4

, Q = A
W1 + W2

2
(2.33)2.5 Boundary 
onditionsBy the 
hara
teristi
 analysis of the one-dimensional model we pointed out thehyperboli
 nature of one-dimensional system for blood �ow in arteries; 
onsequentlythe solution is given by the superimposition of two waves whose eigenvalues λ1,2represent the propagation speeds of su
h waves. As we have seen previously, theyalways have opposite sign and so blood �ow is sub-
riti
al ; under this 
ondition, we30



Figure 2.6: Sket
h of the two 
hara
teristi
s entering the domain.need two boundary 
onditions to 
lose the governing system: one at the inlet se
tion
z = 0 and the other at the outlet z = L (�g. 2.6).An important 
lass of boundary 
onditions is represented by the so-
alled non-re�e
ting or absorbing 
onditions [30℄[6℄, whi
h allow the simple wave asso
iatedwith the 
hara
teristi
s to enter or leave the domain without spurious re�e
tions.Absorbing boundary 
onditions 
an be imposed by de�ning values for the waveentering the domain; in our 
ase λ1 > 0 and λ2 < 0 so W1 is the entering 
hara
ter-isti
 in z = 0 and W2 the inlet 
hara
teristi
 in z = L. We have











W1(t) = g1(t), for z = 0 and t > 0,

W2(t) = g2(t), for z = L and t > 0,

(2.34)being g1(t) and g2(t) two given fun
tions.This kind of boundary 
onditions is suitable when we 
onsider the outlet, ordistal, se
tion of the vessel, where the values of area or �ow rate are not knownbefore the 
omputation. On the 
ontrary for inlet se
tion we often impose 
onditionson the physi
al variables of the system, as pressure or �ow rate. Su
h values 
an betaken, for example, from experimental measurements.
2.6 Numeri
al dis
retizationThe system (2.20) has been dis
retized using both a straightforward Galerkinand a Taylor-Galerkin s
heme [1℄. The latter is the �nite element 
ounterpart of theLax-Wendro� [10℄ �nite di�eren
e s
heme.31



Considering the equation (2.20) and having H =
∂F

∂U
we may write

∂U

∂t
= S − ∂F

∂z
(2.35)

∂2U

∂t2
=

∂S

∂U

∂U

∂t
− ∂

∂z

(

H
∂U

∂t

)

=

=
∂S

∂U

(

S − ∂F

∂z

)

− ∂HB

∂z
+

∂

∂z

(

H
∂F

∂z

) (2.36)For simpli
ity, the dependen
e of S and F from U is dropped. Starting fromthe above equations, we now 
onsider the time intervals (tn, tn+1), for n = 0, 1, . . .with tn = n∆t, being ∆t the time step; then we dis
retize the equation in timeusing a Taylor series whi
h in
ludes �rst and se
ond order derivatives of U ; forthe straightforward Galerkin s
heme only �rst order terms will be 
onsidered, whilefor the Taylor-Galerkin s
heme we will a

ount for both terms. Therefore we ob-tain the following semi-dis
rete s
hemes for the approximation Un+1 of U(tn+1),respe
tively:
• Straightforward Galerkin s
heme:

Un+1 = Un − ∆t

(

∂F n

∂z
− Sn

)

, n = 0, 1, . . . (2.37)
• Taylor-Galerkin s
heme:

Un+1 = Un − ∆t
∂

∂z

[

F n +
∆t

2
HnSn

]

− ∆t2

2

[

SU

∂F n

∂z
− ∂

∂z

(

Hn ∂F n

∂z

)]

+∆t

(

Sn +
∆t

2
SUSn

)

, n = 0, 1, . . . (2.38)where SU =
∂Sn

∂U
and F n, stands for F (Un), just as Hn, Sn and Sn

U
; the value

U 0 is given by the initial 
onditions.For ea
h time interval (tn, tn+1) we apply a spatial dis
retization 
arried outusing the Galerkin �nite element method [12℄[11℄. To this purpose we subdivide thedomain Ω = {z : z ∈ (0, L)}, whi
h is the 1D 
ounterpart of the 3D domain Ωc,into a �nite number Nel of linear elements having length l (�g. 2.7).Moreover we introdu
e a trial fun
tion spa
e, T , and a weighting fun
tion spa
e,
W . These spa
es are both de�ned to 
onsist of all suitably smooth fun
tions andto be su
h that

T = {U(z, t)|U(z, 0) = U 0(z) on Ωc at t = t0} , W = {W (z)}32



Figure 2.7: One-dimensional linear meshConsidering the 
ase of a straightforward Galerkin s
heme, we multiply the equation(2.37) for the weight fun
tion W and we integrate it over the domain Ωc obtaining,for ∀t > t0

∫

Ω

W
(

Un+1 − Un
) dΩ = ∆t

[
∫

Ω

∂W

∂z
F ndΩ +

∫

Ω

SnWdΩ]+

−∆t
[

WF̄ r
n|z=L − WF̄ l

n|z=0

] (2.39)The �ux term F n has been integrated by parts so we must a

ount for boundaryterms at the inlet (z = 0) and at the outlet (z = L) of the domain. Equation (2.39)must be veri�ed for every W in W .Starting from the weak form of the problem (2.39) we build the subspa
es T
hand W

h for the trial and weighting fun
tion spa
es T and W de�ning them as
T

h = {Û(z, t)|Û (z, t) =
N
∑

j=1

U j(t)Nj(z); U(t0) = Ū(zj) = U 0
j}

W
h = {W (z)|W (z) =

N
∑

j=1

WjNj(z)}
(2.40)where Nj is the standard linear �nite element shape fun
tion (�g. 2.8) asso
iatedwith the j-th node, lo
ated at z = zj , and U j the value of Û at the node j. Sin
ewe are using the Galerkin method, the base shape fun
tions de�ned above are usedas weighting.Adopting the following notation

(W, U)Ωc
=

∫

Ωc

W · UdΩ,and 
onsidering the sum of ea
h element 
ontribution
∫

Ω

· · · =
∑

el

∫

Ωe

· · · ,33



Figure 2.8: Sket
h of a 1D shape fun
tionthe equation (2.39) be
omes
∑

el

(Ni, Nj)Ωe

(

Un+1
j − Un

j

)

= ∆t
∑

el

[

(Ni,z, Nj)Ωe
F n

j + (Ni, Nj)Ωe
Sn

j

]

−

−∆t
[

NiF̄ r
n|z=L − NiF̄ l

n|z=0

]

i, j = 1, 2 (2.41)Now we fo
us on a simple mesh 
omposed by two element, i and i+1, and threenodes; then we highlight the 
ontribution made by ea
h single node de�ning, in amatrix form
Mc = (Ni, Nj)Ωe

=
l

6

[

2 1

1 2

] (2.42)
Mf = (Ni,z, Nj)Ωe

=
1

2

[

−1 −1

1 1

] (2.43)
Mc is the so-
alled 
onsistent mass matrix. Afterwards we assembly the 2-element mesh: 34



l

6









2 1

1 4 1

1 2









·









Un+1
i−1 − Un

i−1

Un+1
i − Un

i

Un+1
i+1 − Un

i+1









=
∆t

2









−1 −1

1 0 −1

1 1

















F n
i−1

F n
i

F n
i+1









+

+
l∆t

6









2 1

1 4 1

1 2

















Sn
i−1

Sn
i

Sn
i+1









+

+ (b.
.) (2.44)where (b.
.) means boundary 
onditions and represents the two boundary termsin equation (2.41). It is possible to adopt a simpli�ed or lumped form for the matrix
Mc [11℄, summing up the rows into the diagonal, obtaining

Ml =
l

6

[

3 0

0 3

]

=
l

2
I (2.45)For a generi
 internal node i we �nally have

Un+1
i = Un

i +
∆t

l

(

F n
i+1 − F n

i−1

)

+
∆t

3

(

Sn
i−1 + 4Sn

i + Sn
i+1

) (2.46)For what 
on
erns the border nodes, we have to 
onsider also the 
ontributiongiven by boundary 
onditions; starting from the equation (2.44), we have the term
(b.
.), represented by

∆t
[

NiF̄ r
n|z=L − NiF̄ l

n|z=0

]

, i = 1, 2whi
h implies the knowledge of the �ux terms depending from the values of A and
Q at inlet and outlet se
tions. To extra
t them we need the two 
hara
teristi
variables W1 and W2 at ea
h border to re
over U(A, Q) using the equation (2.33).To this purpose we adopted a te
hnique based on the extrapolation of the outgoing
hara
teristi
s [21℄. Having the fri
tion parameter KR small with respe
t to theother equation terms in (2.20), we assume that in the vi
inity of the boundaries the�ow is governed by the 
hara
teristi
 system (2.29). At the generi
 time step n wehave Un known and we linearise the eigenvalues λ1,2 of (2.20) by taking their valuesrespe
tively at se
tion z = L and z = 0 for t = tn. Then we derive a �rst orderapproximation of the outgoing 
hara
teristi
s at time tn+1,whi
h is35



W n+1
2 (0) = W n

2 (−λn
2 (0)∆t)

W n+1
1 (L) = W n

1 (−λn
1 (L)∆t)By using these information together with the values of W1(0)n+1 and W2(L)n+1already given by (2.34), we are able to 
ompute U(0)n+1 and U(L)n+1, through(2.33), and in this way we derive the �ux terms at boundaries.Analogously to what we have done for the straightforward Galerkin s
heme, it ispossible to derive the dis
retized form of the one-dimensional system in the 
ase weemploy a Taylor-Galerkin s
heme. Starting from the equation (2.38) and pro
eedingin the same way as before, we obtain the following expression:
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el
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= ∆t
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∑

el

(

(Ni,z, Nj)Ωe
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∂F n
j

∂z

)

−

−∆t
[

NiF̄ r
n|z=L − NiF̄ l
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]

i, j = 1, 2 (2.47)where we have assumed
F n

LW (U j) = F n +
∆t

2
HnF nand

Sn
LW (U j) = Sn +

∆t

2
BU

nF nWe 
hoose to use, for time integration, both a se
ond and a fourth order expli
itRunge-Kutta s
heme; su
h methods are di�used in 
omputational �uid dynami
s [7℄,and show good properties, e.g. ease of programming, simple treatment of boundary
onditions and good stability [11℄. About this last 
on
ept, Galerkin and Taylor-Galerkin require a time step limitation in order to keep the solution stable. Referringto a linear stability analysis, as in referen
e [16℄, we indi
ate that the following
ondition should be satis�ed 36



∆t ≤ CFL min
0≤i≤N

[

li
max(λ1,i, λ2,i)

]

, (2.48)where λ1,i indi
ates the eigenvalue λ1 at the mesh node i and CFL is the so-
alledCourant-Friedri
hs-Levy number ; for the 
ase of a se
ond-order Taylor Galerkins
heme we assume CFL =
√

3
3
[16℄2.7 Bifur
ation treatmentThe one-dimensional model of a single artery 
an be extended to handle thevas
ular network by imposing suitable 
onditions at the bifur
ations between vessels.In order to manage a bran
hing zone, when using a 1D formulation, we adopt thete
hnique 
alled domain bifur
ation[19℄. As showed in �gure 2.9, we divide thedomain Ω into three partitions Ω1, Ω2 and Ω3; doing this we have 3 sub-problemswhi
h must be 
oupled imposing adequate boundary 
onditions. Then we haveto evaluate six variable, (Ai, Qi) with i = 1 : 3, 
orresponding to the problemunknowns, area and �ow rate, for ea
h one of the vessels 
omposing the bran
hing.

Figure 2.9: Domain de
omposition for a generi
 bifur
ation 
ontaining one inlet vessel and twooutgoing vessels.The simplest 
ondition we 
an impose is to require the mass 
onservation throughthe bifur
ation and and therefore the �ow rate balan
e 
an be written37



Q1 = Q2 + Q3remembering that the �ow moves from the subdomain Ω1 to the subdomains Ω2and Ω3. Other two assumptions 
an be obtained from the requirement of 
ontinuityof the momentum �ux at the bifur
ation. This lead to 
onsider the total pressureterm 
ontinuous at the boundary. So we may write
P1 +

1

2
ρ

(

Q1
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)2

= P2 +
1

2
ρ

(

Q2

A2

)2

P1 +
1

2
ρ

(
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)2

= P3 +
1

2
ρ

(

Q3

A3

)2The remaining three relationships 
an be derived using the 
hara
teristi
 vari-ables. Sin
e we have a hyperboli
 system, ea
h bifur
ation vessel has one 
hara
-teristi
 asso
iated with that se
tion belonging to the bran
hing. So we will 
onsider
W1 for the inlet artery while we will take W 1

2 and W 2
2 for the two outgoing vessels.The �nal system we obtain for as single bifur
ation is the following:
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(2.49)
We 
an solve it through the Newton-Raphson te
hnique for di�erential systemsof non-linear equations.
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Chapter 3Implementation of the numeri
alsolverIn the previous 
hapter we introdu
ed the mathemati
al formulation 
on
erningthe one-dimensional model of blood �ow in arteries; we have de�ned the set ofgoverning equations and boundary 
onditions whose numeri
al integration providesan approximated solution for our hemodynami
 problem.In this 
hapter we deal with the 
reation of a 
omputation tool ne
essary to solvesu
h a one-dimensional system and display the obtained results whi
h, as alreadydes
ribed, are related to the propagation of blood pressure and �ow rate waves intothe 
ardiovas
ular system.We 
an divide the 
reation pro
ess of this solver module, or problem type, intotwo phases:
• Implementation of the numeri
al solver;
• Coupling of the solver with a graphi
al interfa
e for data management andvisualization of results;The 
omputational 
ore of the problem type is represented by a �nite element
ode programmed in FORTRAN901; then the graphi
al user interfa
e is provided byGiD2, whi
h is a pre-post pro
ess �nite element software developed at CIMNE3. GiDallows to de�ne, prepare and visualize all the data related to a numeri
al solution;1See appendix B for a more detailed treatment2See appendix A for details3Ciéntro Internátional de Metodos Numéri
os en Ingénieria, Bar
elona, Spain39



these data in
lude the de�nition of the geometry, materials, 
onditions, solutioninformations and other parameters. The software 
an also generate a mesh for �niteelement, �nite volume or �nite di�eren
e analysis and write the informations for anumeri
al simulation program in its desired format.

Figure 3.1: Flow
hart des
ribing the exe
ution of a GiD problem typeFigure (3.1) shows the general s
heme adopted by GiD for the preparation andthe exe
ution of a standard problem type; we note that the pre and post pro
essphases, respe
tively for what 
on
erns the 
reation of the INPUT FILE and thevisualization of results, are both supported by the graphi
al interfa
e. Instead the
omputation se
tion (represented by the box SOLVER), where the numeri
al solu-tion is 
al
ulated, 
an be seen as a 
omponent external to GiD; so it is possible,on the one hand, to 
ustomize the pre-post pro
ess interfa
e, modifying the �les
omposing GiD problem type (see Appendix A) and, on the other hand, to programany solver and 
ouple it with the rest of the 
omputation tool, just 
ontrolling thatthe OUTPUT FILE does respe
t the GiD format for reading results.We now brie�y present the various parts 
omposing the problem type we 
reatedfor the one-dimensional model of blood �ow in arteries, following a 
ertain numberof steps organized as follows1. Starting the problem, with the 
reation of the model geometry;40



2. Creation of the material de�nition �le;3. Creation of the 
ondition de�nition �le;4. Creation of the general 
on�guration �le;5. Creation of the 
al
ulation program �le and the exe
ution �les;6. Exe
ution of the 
al
ulation module and visualizing the results through GiD;The point 1-4 
an be referred to the pre-pro
ess phase, whi
h provides the INPUTFILE (�g. 3.1) entering the SOLVER (point 5). The last point, whi
h deals with thevisualization of results, is referable to the post-pro
ess phase and will be 
onsideredin next 
hapter.3.1 Geometry of the modelFirst of all the geometry of the obje
ts 
omposing the problem at hand mustbe de�ned; afterwards this operation has been 
ompleted, we 
an pro
eed imposingne
essary 
onditions and other properties over the model and �nally 
al
ulate thesolution of our hemodynami
 problem.In GiD a generi
 geometry 
an be realized, in a way similar to a CAD (ComputerAided Design) system, through the de�nition of the points and lines 
omposing theobje
t we want draw.Sin
e we are 
onsidering a one-dimensional model, the problem variables arefun
tions only of the longitudinal 
oordinate z in spa
e, while the se
tional 
om-ponents 
an be negle
ted; for this reason we 
an make two assumption about thevessel representation adopted into GiD interfa
e. For a simpli�
ation purpose we�rst repla
e the three-dimensional vessel geometry with a single line, having thesame length as the 3D tube and representing its longitudinal axis. Furthermore, itis useful to de�ne a lo
al referen
e system for ea
h vessel of the model, in order to
onsider only the axial z 
omponent when we work with the �nite element 
ode. Theorigin of ea
h lo
al axis system is positioned on the inlet node of the 
orrespondingvessel (the inlet se
tion in a 3D representation), and the z-
oordinate has the samedire
tion as the blood �ow one.A single vessel is 
onsidered in �gure 3.2 where we note the two mentionedassumptions; if we work with models 
ontaining more than one arterial vessel, alo
al axis must be 
reated for ea
h artery (�g. 3.3).41



Figure 3.2: Comparison between a 3D vessel geometry and the 1D representation used in GiDproblem type3.2 De�nition of materialsFor the one-dimensional model of the arterial network, the de�nition of mate-rials 
on
erns the me
hani
al and geometri
al 
hara
terization of the arterial wallsurrounding ea
h vessel.It is possible to assign su
h properties sele
ting between those arteries whoseparameters are in
luded in tables 3.2 and 3.2. These data are referred to a simpli�edarterial network 
ontaining the 55 largest arteries in the human body (�g. 3.5); itwas proposed and modelled using ele
tri
al 
ir
uits for the �rst time by Westerhof[34℄. This referen
e provides data for diameters, wall thi
kness, length and elasti
moduli for ea
h of the 55 arteries. As we 
an see from the �gure 3.4, the left window
ontains the me
hani
al and geometri
al values de�ned into tables. The user hasthe possibility to modify su
h quantities, either 
hanging only some of the listedproperties or 
reating a new vessel with a 
ompletely di�erent 
hara
terization (�g.3.4, the right window).3.3 Boundary and bifur
ation 
onditionsThe boundary 
onditions for a one-dimensional model, as written in the pre-vious 
hapter, have to be de�ned both at inlet and outlet se
tions of the arterial42



No. Name of the vessel l (
m) r (
m) h (
m) E (106Pa
) 
 (m

s

)1 As
ending Aorta 4.0 1.470 0.163 0.4 4.672 Aorti
 Ar
h I 2.0 1.263 0.126 0.4 4.433 Bra
hio
ephali
 3.4 0.699 0.080 0.4 4.474 R. Sub
lavian I 3.4 0.541 0.067 0.4 4.935 R. Carotid 17.7 0.473 0.063 0.4 5.116 R. vertebral 14.8 0.240 0.045 0.8 8.587 R. Sub
lavian II 42.2 0.515 0.067 0.4 5.058 R. radius 23.5 0.367 0.043 0.8 6.789 R. ulnar I 6.7 0.454 0.046 0.8 6.3110 R. interosseus 7.9 0.194 0.028 1.6 10.6411 R. ulnar II 17.1 0.433 0.046 0.8 6.4512 R. int. 
arotid 17.6 0.382 0.045 0.8 6.8013 R. ext. 
arotid 17.7 0.382 0.043 0.8 6.5714 Aorti
 ar
h II 3.9 1.195 0.115 0.4 4.3515 L. 
arotid 20.8 0.413 0.063 0.4 5.4716 L. int. 
arotid 17.6 0.334 0.045 0.8 7.2717 L. ext. 
arotid 17.7 0.334 0.042 0.8 7.0218 Thora
i
 aorta I 5.2 1.120 0.110 0.4 4.3919 L. Sub
lavian I 3.4 0.474 0.066 0.4 5.2320 L. vertebral 14.8 0.203 0.045 0.8 9.2321 L. Sub
lavian II 42.2 0.455 0.067 0.4 5.3822 L. radius I 23.5 0.324 0.043 0.8 7.2123 L. ulnar I 6.7 0.401 0.046 0.8 6.7124 L. interosseous 7.9 0.172 0.028 1.6 11.2325 L. ulnar II 17.1 0.383 0.046 0.8 6.8726 Inter
ostals 8.0 0.317 0.049 0.4 5.5127 Thora
i
 aorta II 10.4 1.071 0.100 0.4 4.2828 Abdominal aorta I 5.3 0.920 0.090 0.4 4.3829 Celia
 I 2.0 0.588 0.064 0.4 4.62Table 3.1: Physiologi
al data of the 55 main arteries used in the one-dimensionalmodel. From [34℄[25℄ and [33℄. Part 1 of 2, vessels from 1 to 2943



No. Name of the vessel l (
m) r (
m) h (
m) E (106Pa
) 
 (m

s

)30 Celia
 II 1.0 0.200 0.064 0.4 7.9331 Hepati
 6.6 0.458 0.049 0.4 4.5832 Gastri
 7.1 0.375 0.045 0.4 4.8533 Spleni
 6.3 0.386 0.054 0.4 5.2434 Sup. mesenteri
 5.9 0.499 0.069 0.4 5.2135 Abdominal aorta II 1.0 0.843 0.080 0.4 4.3236 L. renal 3.2 0.350 0.053 0.4 5.4537 Abdom. aorta III 1.0 0.794 0.080 0.4 4.4538 R. renal 3.2 0.350 0.053 0.4 5.4539 Abdominal aorta IV 10.6 0.665 0.075 0.4 4.7040 Inf. mesenteri
 5.0 0.194 0.043 0.4 6.6041 Abdominal aorta V 1.0 0.631 0.065 0.4 4.5042 R. 
om. ilia
 5.9 0.470 0.060 0.4 5.0043 L. 
om. ilia
 5.8 0.470 0.060 0.4 5.0044 L. ext. ilia
 14.4 0.482 0.053 0.8 6.5745 L. int. ilia
 5.0 0.301 0.040 1.6 10.2146 L. femoral 44.3 0.361 0.050 0.8 7.3747 L. deep femoral 12.6 0.356 0.047 0.8 7.2048 L. post tibial 32.1 0.376 0.045 1.6 9.6949 L. ant. tibial 34.3 0.198 0.039 1.6 12.4450 R. ext. ilia
 14.5 0.482 0.053 0.8 6.5751 R. int. ilia
 5.0 0.301 0.040 1.6 10.2152 R. femoral 44.4 0.361 0.050 0.8 7.3753 R. deep femoral 12.7 0.356 0.047 0.8 7.2054 R. post tibial 32.2 0.375 0.045 1.6 9.7155 R. ant. tibial 34.3 0.197 0.039 1.6 12.46Table 3.2: Physiologi
al data of the 55 main arteries used in the one-dimensionalmodel. From [34℄[25℄ and [33℄. Part 2 of 2, vessels from 30 to 5544



Figure 3.3: S
heme of a bifur
ation 
ontaining three vessels. As we note ea
h vessel has its ownlo
al referen
e axis (pink 
olor), rotated with respe
t to the global referen
e system (red 
olor).network; moreover, sin
e we also 
onsider the presen
e of bifur
ations between ves-sels, it is ne
essary to identify those arteries 
omposing the bran
hing and apply the
ompatibility 
onditions over them (see se
tion 2.7 of 
hapter 2).For what 
on
erns boundary 
onditions, at the inlet we 
an 
hoose the type ofknown variable, pressure or �ow rate, and modify a 
ertain number of parametersrelated to the entering waveform (�g. 3.6): if we sele
t a half sine wave pro�le (�g.3.8 right), we 
an modify the initial and the maximum amplitude value of the 
urve,while if we use a physiologi
al-type known fun
tion (�g. 3.8 left), no parametersneeds to be modi�ed.The boundary 
onditions at the outlet se
tion depend upon the applied value ofterminal resistan
e RT . If we assume the 
ase of absorbing 
ondition, then RT = 0and there should not be any wave re�e
tion at the outlet se
tion. In the other situ-ation, that is 
onsider a 
ertain 
ontribution of terminal resistan
e whi
h simulatesthe distal part of the arterial network, then RT 6= 0. The value of RT 
an be settled45



Figure 3.4: GiD windows 
ontaining material properties. Left window: vessel types belongingto arterial network de�ned [25℄,[34℄ and [33℄. Right window: 
ustomizable vessel with user-de�nedpropertiesby the user through the GiD window shown in �g. 3.6.The presen
e of a bifur
ation in the arterial network must be de�ned indi
atingthose vessels 
omposing the sele
ted bran
hing; we have to follow the 55 arterymodel in order to sele
t the 
orre
t vessels. Figure 3.7 shows the list of bifur
ationand the arteries belonging to ea
h of them.3.4 General 
on�guration of the problemThe 
on�guration of a problem type in GiD, besides the attribution of boundary
onditions and material properties, also needs the de�nition of several parametersrelated to:
• The general data (e.g. blood rheologi
 parameters, graphi
al visualizationparameters);
• Data 
on
erning the numeri
al solution (toleran
e parameters for iteratives
hemes, integration period);3.4.1 General dataAs shown in �gure 3.9, su
h informations in
lude the problem title, the unitsystem, the density and vis
osity of blood, the initial pressure in the aorti
 root4,the Coriolis 
oe�
ient and the type of velo
ity pro�le (�g. 2.3) adopted for the 1Dformulation. For the last parameter we 
an 
hoose between a �at velo
ity pro�le(γ = 0), a paraboli
 pro�le (γ = 2) and power-law pro�le [24℄ (γ = 9).4With the term aorti
 root we refer to the se
tion of aorta 
losest to the semilunar valve out ofthe left ventri
le 46



Figure 3.5: Conne
tivities between the 55 main arteries of the human body. From [22℄
47



Figure 3.6: GiD window for boundary 
onditions assignment.Beyond su
h informations, the GiD problem type allows the user to 
hoose whi
hresults show during the post-pro
ess and how many temporal step write, and sub-sequently display, into the output �le.The visualization of results into GiD post-pro
ess is done transforming the 1Drepresentation of the model geometry, adopted during the pre-pro
ess phase, into athree-dimensional mesh, used only for graphi
al purposes, whi
h gives a representa-tion of results 
learer than the one we may have by means of the one-dimensionalsket
h. For this reason the user must set, through the parameter Se
tion 
ontournodes (�g. 3.9), the number of nodes lying on the border of ea
h se
tion in order tobuild the 3D mesh 
omposed by triangular elements (�g. 3.10).3.4.2 Numeri
al integration dataThe pro
ess of numeri
al integration involves the 
on�guration of several param-eters, some of them 
on
erning the toleran
es for approximation errors and othersrelated to the integration period. Figure 3.11 shows the list of parameter whosevalues 
an be inserted by the user. We have:
• The number of 
ardia
 
y
les 
onsidered for the simulation. The user 
an
hoose between three 
lasses of 
ardia
 frequen
y: Standard, with a generi
value of 72 bpm, Ta
hy
ardia, with 110 bpm and Bra
hy
ardia with 55 beatsper minute. It is also possible to 
hange the time duration of the 
ardia
 
y
le,48



Figure 3.7: Bifur
ation assignment windowpaying attention not to insert too low values; if we de
rease under a period of0.3 se
onds, whi
h represents the duration of heart systole phase, the 
ompletesimulation of a heart beat would not be a

omplished.
• The spa
e-time integration s
heme to use; the 
hoi
e is between straightfor-ward Galerkin - Taylor Galerkin and 2nd - 4th Runge Kutta (R-K) s
hemes.
• The maximum number of steps to 
al
ulate using R-K s
hemes;
• The CFL parameter, de�ned by (2.48), for the maximum time step de�nition;
• The αs stabilization parameter (for straightforward Galerkin only);
• In the 
ase we use the adaptive step size 
ontrol for Runge-Kutta s
hemes, itis possible to de�ne the minimum time step and the error toleran
e;
• The error toleran
e of Newton-Raphson iterative s
heme for the solution ofnon-linear equations related to the 
ompatibility relationships at bifur
ations49



Figure 3.8: Inlet known pressure pro�les. Left graph: polynomial-interpolated fun
tion basedon physiologi
al data. Right graph: half-sine wave pro�le. Data referred to a single 
ardia
 
y
le.

Figure 3.9: GiD general data windowand the pseudo-
hara
teristi
 evaluation at the outlet boundaries;
3.5 The numeri
al solverAll the informations related to �nite element mesh, material and geometri
alproperties, and problem general parameters are assembled together by GiD in a
al
ulation �le, whi
h is indi
ated by the INPUT FILE in �g. 3.1; these datarepresent the starting point of the numeri
al solver.The �nite element 
ode we programmed (see Appendix B) �rst reads the infor-mation 
oming from this 
al
ulation �le, then starts solving the numeri
al problemfollowing this general s
heme: 50



Figure 3.10: Corresponden
e between 1D and 3D representation of a single vessel into GiDproblem type.START(1) Input data reading;t=t0; ⇒ Initial timeU=U0; ⇒ Initial values(2)WHILE (t < T)Evaluate ∆t < CFL l

max(λ1,2)
;(3)FOR (i=1:Number of elements)
al
ulate rhs-element;rhs-global = rhs-global + rhs-element;51



Figure 3.11: Windows for the assignment of numeri
al analysis parameters.END(4) Apply boundary and bifur
ation 
onditions
U(t + ∆t) = U(t) + ∆t(rhs-global);
t = t + ∆t;END(5) write output resultsSTOPIn order to brie�y explain the s
heme above, we fo
us on �ve points, enumeratedfrom 1 to 5:1. Input data reading: from GiD pre-pro
ess, the problem data are loaded andread by the program;2. WHILE loop: main temporal loop whi
h provides the solution array U , asde�ned in (2.19), for ea
h temporal step; the number of step is not a prioride�ned, be
ause at ea
h iteration we have to 
al
ulate the maximum stepfollowing the relationship (2.48). For this reason we employed a WHILE loopinstead of a FOR one;3. FOR loop: se
ondary loop whi
h 
al
ulates, for ea
h linear mesh element, the52




ontribution given by the right-hand side (rhs-element in the s
heme above)of equation (2.41) or (2.47), depending if we use straightforward Galerkin orTaylor-Galerkin s
heme respe
tively.4. Apply boundary and bifur
ation 
onditions: all the element 
ontribu-tions are assembled into a global right-hand side (rhs-global in the s
heme) towhi
h boundary and bifur
ation 
onditions are applied;5. (5) write output results: The results are written in an OUTPUT FILE(�g. 3.1) following the indi
ations, given during pre-pro
ess (�g. 3.9), aboutthe type of variables (pressure, vessel se
tion, �ow rate or blood velo
ity) andthe number of temporal steps to be saved for post-pro
ess visualization.During the exe
ution of the program, the user 
an 
ontrol the development ofthe 
al
ulus through a window (�g. 3.12) displaying some general informations, e.g.the number of nodes and elements related to the liner 1D mesh, and the number ofiterations already 
omputed. In the 
ase of interruptions, e.g. due to not 
onvergen
eor ex
eeded limit of maximum iterations, a message to s
reen will appear.

Figure 3.12: GiD window for monitoring numeri
al 
al
ulation
53



Chapter 4Numeri
al resultsThe 
omputational tool we implemented 
oupling the GiD interfa
e with a �niteelement 
ode allows to numeri
ally simulate the blood �ow in the arterial networkthrough a one-dimensional formulation. In this 
hapter we will show the resultsobtained by the approximated solution of su
h a hemodynami
 problem; �rst we
onsider a simple geometry 
omposed by one single vessel in order to validate themodel and also 
ompare the various spa
e-time s
hemes that we programmed. Af-terwards we will deal with the vas
ular network 
omposed by the 55 main humanarteries, whose stru
ture and properties have been presented respe
tively in �g. 3.5and in tables 3.2 and 3.2.4.1 Inlet pro�lesThe 
orre
t imposition of a suitable perturbation whi
h enters the problem do-main is fundamental for the 
orre
t development of pressure or �ow rate wavesthrough the arteries. At the inlet se
tion of our model we have to impose, in or-der to satisfy the mathemati
al requirements for hyperboli
 models, exa
tly oneboundary 
ondition related to the entering 
hara
teristi
 W1 (see eq. 2.34). Inthe majority of 
ases we use to express su
h a 
ondition in terms of physi
al vari-ables, like area or �ow rate; doing this we have the possibility, using su
h quantities,to 
on�gure a 
ertain type of pro�les similar to a physiologi
al ones, obtained forexample by experimental data.When we presented the 
on�guration of the GiD problem type, we introdu
ed in�gure 3.8 two inlet pro�les of pressure in time. Through the pressure-area relation-ship, derived by the elasti
 model (see eq. 2.13) of the arterial wall, it is possible54



to obtain the 
orresponding value of area. The other possibility is to introdu
e afun
tion expressing the �ow rate variation at the inlet of the arterial network. Thisrelationship, taken as an approximation of a real physiologi
al pro�le, 
an be writtenas
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Q = Q0 if 0 ≤ t < 0.05s

Q = Q0 + ∆Q sin

(

π
t − 0.05

0.21

) if 0.05s ≤ t < 0.26s

Q = Q0 −
∆Q

10
sin

(

π
t − 0.26

0.03

) if 0.26s ≤ t ≤ 0.29s

Q = Q0 if t > 0.29s

(4.1)
where Q0 is the initial �ow rate and ∆Q represents the peak of �ow rate rea
hed bythe half sine wave. The above fun
tion follows the trend given by of the physiologi
al
Q pro�le, in proximity of the semilunar valve out of the left ventri
le, as showedin �gure 4.1. Here we assumed the duration of 0.83 se
onds, for this single 
y
le,
onsidering a standard 
ardia
 frequen
y of 72 bpm, typi
al of a normal healthyperson. For di�erent values of frequen
y, e.g. in the 
ase of pathologi
 situations(bra
hy
ardia, ta
hy
ardia) it is possible to modify the duration of the diastoli
phase, whi
h 
omes after the half sine wave propagation and is the only heart-ratedependent part of the 
ardia
 
y
le, as explained in �gure 4.1.The imposition of this kind of pro�le, or equally a pressure known fun
tion, allowsto evaluate the wave propagation through arteries, �rst imposing a no-re�e
tingoutput 
ondition for the 
ase of a single vessel, then 
omparing su
h an 'absorbingbehaviour' of the outlet se
tion with the imposition of a terminal resistan
e for the
ase of an artery network. Beyond this aspe
t it is also possible to observe thedistribution of the �ux into the vas
ular system, 
omparing numeri
al values withexperimental data.4.2 Case I: model of a single arteryWe 
onsider the modelling of a single artery having me
hani
al and geometri
alproperties referred to the Thora
i
 aorta I in table 3.2. Here we resume su
hproperties: 55



Figure 4.1: Lower image: input �ow rate pro�le for the 1D model. Upper image: �ow rate pro�leout of the left ventri
le. From http://www.zoo.u�.edu/
ourses/p
b4723/.Name Thora
i
 aorta IRadius 1.120 
mLength 80 
mWall thi
kness 0.110 
mElasti
 modulus 400000 PaIn this 
ase we assume a length of 80 
m in order to better evaluate the wavepropagation through the artery. We simulated our one-dimensional problem impos-ing both pressure and �ow rate at the inlet se
tion, and adopting a no-re�e
ting
ondition at the outlet. The time period 
onsidered is 1.66 se
onds, 
orrespondingto the duration of two 
omplete 
ardia
 
y
les in standard frequen
y 
onditions (72bpm).Through the evaluation of the results we 
an outline some 
onsiderations aboutthe numeri
al s
hemes we implemented into our �nite element 
ode. Figure 4.3shows the �ow rate in time related to a single vessel, the thora
i
 aorta, 
al
ulatedusing both a straightforward Galerkin and a Taylor-Galerkin s
heme. Analyzingthe wave pro�les we note that the Galerkin obtained solution has a positive �owrate in
reasing, after the main pulse has passed. This behaviour does not 
onformwith the physiologi
al �ow trend (�g. 4.1), whi
h presents a small de
rease of �ow56



Figure 4.2: Result visualization through GiD post-pro
ess interfa
e. In this 
ase we 
onsidermean se
tional values of �ow rate in a 
ertain time instant.rate due to the pressure drop at the end of the systoli
 phase. On the 
ontrary thepro�le resulting from the simulation with a Taylor-Galerkin s
heme seem to betterreprodu
e the physiologi
al trend for Q in time.Another aspe
t that we 
an evaluate is the variation of the solution when 
on-sidering di�erent velo
ity pro�les. We 
an 
hange the slope of the fun
tion (2.7)through the modi�
ation of the 
oe�
ient γ, so we 
ompare the two most 
ommonpro�les whi
h are the paraboli
 one (γ = 2) and the power-law one (γ = 9).As we 
an see in �gure 4.4, the �ow rate trend does not signi�
antly 
hange withrespe
t to the applied pro�le. This behaviour of the numeri
al solution a

ordswith the assumption that, for one-dimensional modellings of blood �ow in mainarteries, the vis
ous term gives an inferior 
ontribution with respe
t to the otherterms. Therefore we do not properly 
onsider it, espe
ially when we work with
hara
teristi
 variables, be
ause we 
an de
ouple the 
hara
teristi
 system (2.29),as already dis
ussed in se
tion 2.4. 57
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Figure 4.3: Comparison between the solutions, related to blood �ow propagation into a 80 
mlength Thora
i
 aorta, obtained using straightforward Galerkin and Taylor-Galerkin s
hemes. Weimposed a known pressure pro�le at the inlet and no terminal resistan
e has been applied.4.3 Case II: 55 artery networkThe simpli�ed vas
ular network (s
heme in �g. 3.5) has been represented, troughthe GiD interfa
e, as we 
an see from �gure 4.6. The orientation of vessels in themodel does not in�uen
e the 
omputation of the numeri
al solution, �rst be
ause wede�ned a lo
al referen
e system for ea
h artery, in order to work always with onlyan axial 
omponent, and se
ond be
ause we do not 
onsider, at bifur
ations, thatblood �ow 
hanges depending on the value of the angles formed by the bran
hingvessels. This assumption is 
oherent sin
e the solution of our problem, does notsigni�
antly 
hange if we 
onsider or not a 
ertain dependen
e from the bran
hingdegree of a bifur
ation; for details see [4℄.4.3.1 Terminal resistan
eIn the previous model of a single vessel we applied only an absorbing 
onditionat the outlet se
tion. For a more realisti
 simulation of blood �ow, the 
ontributiongiven by the distal 
omponents of the 
ardiovas
ular system, whi
h are not part ofthe 55 artery network, must be 
onsidered.58
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Figure 4.4: Comparison between �ow rate waveforms obtained using di�erent velo
ity pro�les;
γ = 2 the paraboli
 one and γ = 9 for the power law pro�le. Taylor-Galerkin s
heme applied. Againwe imposed a known pressure pro�le at the inlet and no terminal resistan
e has been applied.For this reason we assumed that the downstream mi
ro-
ir
ulation a
ts as an'obsta
le' to the blood �ow 
oming from the main arteries; this resistive e�e
t 
an beexpressed, using an analogy with ele
tri
 
ir
uits (4.5), with a relationship betweenpressure and �ow rate of the type

P = Q · RT ,where RT is represents terminal resistan
e. The magnitude of this term is di�erentdepending on the position we 
onsider over the vas
ular network; table 4.3.1 showsthe di�erent values of RT 
orresponding to the terminal vessels of our model. Su
h

Figure 4.5: S
heme of the resistive model adopted to simulate re�e
ting outlet 
onditions59



Figure 4.6: GiD representation of the 55 artery network60



quantities have been 
al
ulated by Stergiopulos and Parker [25℄; here we adopt thevalues modi�ed by Wang and Parker [33℄.No. Artery RT

(

109Pa · s
m3

) No. Artery RT

(

109Pa · s
m3

)

6 Right vertebral 6.01 32 Gastri
 5.418 Right radius 5.28 33 Spleni
 2.3210 Right interosseous 84.3 34 Sup. mesenteri
 0.9311 Right ulnar II 5.28 36 Left renal 1.1312 Right int. 
arotid 13.9 40 Inf. mesenteri
 6.8813 Right ext. 
arotid 13.9 45 Left ext. Ilia
 7.9416 Left int. 
arotid 13.9 47 Left deep femoral 4.7717 Left ext. 
arotid 13.9 48 Left post. tibial 4.7719 Left vertebral 6.01 49 Left ant. tibial 5.5922 Left radius 5.28 51 Right int. ilia
 7.9424 Left interosseous 84.3 52 Right deep. femoral 4.7725 Left ulnar II 5.28 54 Right post. tibial 4.7726 Inter
ostals 1.39 55 Right ant. tibial 5.5931 Hepati
 3.63Table 4.1: Values of terminal resistan
e for the 55 artery model. Data taken from[33℄.4.3.2 As
ending-des
ending aortaThe numeri
al solution of the arterial network model provides values of se
tionarea and �ow rate at ea
h node of the 1D linear mesh generated by GiD. In order tovalidate the �nite element 
ode whi
h 
al
ulates su
h results, we have 
ompared themean pro�les of �ow rate derived from our model with the ones obtained throughmagneti
 resonan
e imaging (MRI).Thanks to the 
ollaboration with the Santa Creu I Sant Pau Hospital of Bar
elona,we have available a set of high-resolution MR images 
orresponding to several se
-tions of the as
ending-des
ending aorta segments; by means of a software for image61



elaboration, the FLOW MEDIS 4.1,1 we are able to extra
t a time pro�le for themean �ow rate over the 
onsidered se
tions. Figure 4.7 shows, taking as referen
e ourGiD model of the artery network, the disposition of the four se
tion 
orrespondingto the ones whose experimental MRI data are available.

Figure 4.7: Flow rate values at four lo
ations (A,B,C,D se
tions) in the aorta. Comparisonbetween 1D-model pro�les, obtained applying/not applying terminal resistan
e, and MRI imagingdata.The following graphi
s 
ontain the trend of di�erent �ow rate pro�les, relatedboth to the numeri
al results and the magneti
 resonan
e values, at se
tions A,B,Cand D of the �gure 4.7.As we 
an note, the �ow rate in the as
ending aorta, whi
h is the artery segmentdire
tly linked to the left ventri
le, is not modi�ed by the presen
e of terminalresistan
es in distal vessel with respe
t to the totally absorbing 
on�guration of thenetwork; when the distan
e from the heart in
reases, the in�uen
e of su
h termsbegins revealing through a de
rease of the �ow rate, due to the 'obsta
le' 
reatedby the peripheral tissues and a
ting on the �owing blood.1FLOW MEDIS - MRI Volume Analysis. Manufa
turer: Philips Medi
al Systems. For moreinformations: www.medi
al.philips.
om 62
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Figure 4.8: Flow rate pro�les at the root of the as
ending aorta (se
tion A).
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Figure 4.9: Flow rate pro�les at the top of the as
ending aorta (se
tion B).
The pro�les extra
ted by numeri
al simulations a

ords with the �ow rate trend
hara
teristi
 of MRI data, both for what 
on
erns the peak values and the timeprogress, above all in the phase of initial systole, when blood 
omes out from theheart and begin propagating into the systemi
 
ir
ulation; for what 
on
erns the latesystole, we note small di�eren
es between numeri
al and experimental pro�les. Thismay be due to the fa
t that the inlet �ow rate we imposed at the inlet de
reasedfaster if 
ompared with the smoother pro�le related to the physiologi
al data (see�g. 4.1). 63
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Figure 4.10: Flow rate pro�les in the aorti
 ar
h (se
tion C).
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Figure 4.11: Flow rate pro�les in the beginning of the des
ending aorta (se
tion D).4.3.3 Flow distributionIn order to validate the numeri
al solution of the one-dimensional problem 
on-
erning the blood �ow into 
erebral and limb 
ir
ulation, we 
an demonstrate thatthe 
ardia
 output is distributed in a 
orre
t way following typi
al physiologi
alvalues2. At rest 
onditions, approximately 1/3 of the volume �ow 
oming out fromthe heart is dire
ted into the upper-aorti
 
ir
ulation, whi
h in
ludes the 
erebraland upper limbs vessels; the remaining 2/3 pass through the aorta and rea
hes the
entral and lower 
ir
ulation, in
luding e.g. renal and mesenteri
 arteries, and thelower limb vessels.2The physiologi
al 
onsiderations whi
h follow are taken from the websitehttp://users.r
n.
om//jkimball.ma.ultranet/BiologyPages/C/Cir
ulation2.htm64



Vessel name Q
(

ml
sec

) % of total �owBra
hio
ephali
 105Left 
arotid 26Left sub
lavian I 40171 34%Thora
i
 aorta I 350 66%total �ow 521Table 4.2: Table 
ontaining �ow rate values for those arteries involved in the eval-uation of blood distribution.We evaluated the �ow rate values measured in those arteries whi
h bifur
ate fromthe aorti
 segment to go into the upper 
ir
ulation together with the pro�le relatedto the thora
i
 aorta, whi
h on the 
ontrary drives blood to the 
entral and lowerarteries. We have taken values respe
tively from the bra
hio
ephali
 (�g. 4.12), left
arotid (�g. 4.13), left sub
lavian (�g. 4.14) and thora
i
 (�g. 4.15) arteries; theglobal blood �ow passing into the �rst three vessels, during a standard 
ardia
 
y
le,really represents the 2/3 of the total volume �ow pumped out by the heart, whilethe remaining 1/3 is driven through the aorta. Table 4.3.3 shows su
h results.Another situation that 
an be 
onsidered is the �ow into the lower limbs. Figure4.16 shows the pro�le related to the terminal segment of abdominal aorta whi
hbifur
ates into the left (�g. 4.18) and right (�g. 4.17) 
ommon ilia
 arteries. As we
an note the �ow divides exa
tly in two parts, a

ording with the fa
t that, in ea
hlower limbs the blood �ow rate must be the same.
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Figure 4.12: Flow rate pro�les in Bra
hio
ephali
 artery (No. 3 in table 3.2).
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Figure 4.13: Flow rate pro�les in left 
arotid artery (No. 15).66
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Figure 4.14: Flow rate pro�les in left sub
lavian artery I (No. 9).
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Figure 4.15: Flow rate pro�les in Thora
i
 Aorta (No. 18).67
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Figure 4.16: Flow rate pro�les in abdominal aorta V (No. 41).
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Figure 4.17: Flow rate pro�les in right 
ommon ilia
 artery (No. 43).68
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Figure 4.18: Flow rate pro�les in left 
ommon ilia
 artery (No. 42).
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Chapter 5Con
lusion and future prospe
tsIn this proje
t we developed a 
omputational tool, already 
alled problem type,for solving the one-dimensional problem for blood �ow in arteries. We 
oupled a�nite element 
ode programmed in FORTRAN together with a graphi
al interfa
e,suitably modi�ed for our hemodynami
 model, whi
h has been provided by GiD,a pre-post pro
ess software for �nite elements problems. Finally we applied our
omputational tool to a simpli�ed vas
ular network 
ontaining the main humanarteries.As we already explained in the introdu
tion 
hapter, one-dimensional models giveuseful informations about the evolution of averaged quantities along the arterial tree;as we demonstrated in the previous 
hapter, they allow a good des
ription of �owrate waves in arteries at a reasonable 
omputational 
ost. In fa
t, for what 
on
ernsour numeri
al solver, the 
al
ulation times and the memory used for data allo
ationare widely supported by a 
ommon personal 
omputer; for example, a 
ompletesimulation of the whole 55 artery network lasts about 20 minutes, a time whi
h isseveral order of magnitude lower than three-dimensional �uid dynami
 models.Regarding to 3D models, the employ of a one-dimensional formulation 
an beuseful when we 
onsider a multi-s
ale approa
h for the blood �ow problem in ar-teries [3℄; the simpli�ed 1D model allows the imposition of more realisti
 boundary
onditions for three dimensional 
al
ulations.The problem type we developed, as well as the 
orre
t mean �ow simulation,gives the opportunity to 
on�gure several parameters dire
tly from the graphi
aluser interfa
e (as explained in 
hapter 3) without the ne
essity to modify the �niteelement 
ode; to this purpose one of the further appli
ations for this 1D model isthe simulation of the arterial network in pathologi
 
onditions, e.g. the presen
e70



of stenosis, or 
onsidering the introdu
tion of me
hani
al devi
es, e.g a stent. Inthese 
ases we 
an modify the geometri
al and me
hani
al properties of the involvedarteries in order to a

ount for the 
ontribution of su
h external 
omponents insertedin the vas
ular system.The natural evolution of this model, starting from the 55 artery network, is onthe one hand the employment of more 
omplex formulations for what 
on
erns boththe arterial wall modelling and the type of inlet pro�les, whi
h 
ould be as mu
hrealisti
 as possible with respe
t to the simpli�ed waveforms used in this proje
t.On the other hand there is the possibility to 
ouple our network with other modelsof vas
ular sub-systems; for example we 
ould 
onsider the Willis 
ir
le1 in orderto expand the 1D model in
luding also the 
erebral mi
ro-
ir
ulation. Doing so we
an improve the quality of obtained results mainly for two reasons: �rst, the simpleresistan
e models used to repla
e the distal 
omponents of the 
ardiovas
ular system
annot reprodu
e their hemodynami
 behaviour as properly as a dire
t numeri
alsimulation. Se
ond the e�e
ts of �ow redistribution, as observed from numeri
altests, outline that blood �ow, in a 
ertain zone of the network, is not independentfrom the whole 
ir
ulation in the remaining part.

1The 
ir
le of anastomosed arteries (roughly pentagonal in outline) at the base of the brain,with the posterior 
ommuni
ating artery on either side joining posterior 
erebral (bran
hes of thebasilar artery) to the anterior 
erebral (bran
hes of the internal 
arotid artery) arteries. By thisfull 
ir
ulation to all parts of the brain 
an be maintained even when the 
arotid or vertebralarteries are blo
ked. 71



Appendix AThe GiD softwareGiD is an intera
tive graphi
al user interfa
e used for the de�nition, preparationand visualization of all the data related to a numeri
al simulation. This data in
ludesthe de�nition of the geometry, materials, 
onditions, solution information and otherparameters. The program 
an also generate a mesh for �nite element, �nite volumeor �nite di�eren
e analysis and write the information for a numeri
al simulationprogram in its desired format. It is also possible to run the numeri
al simulationfrom within GiD and to visualize the results of the analysis.GiD 
an be 
ustomized and 
on�gured by users so that the data required for theirown solver modules may be generated.These solver modules may then be in
ludedwithin the GiD software system.The program works, when de�ning the geometry, similar to a CAD (ComputerAided Design) system but with some di�eren
es. The most important one is that thegeometry is 
onstru
ted in a hierar
hi
al mode. This means that an entity of higherlevel (dimension) is 
onstru
ted over entities of lower level; two adja
ent entities willthen share the same lower level entity.All materials, 
onditions and solution parameters 
an also be de�ned on thegeometry without the user having any knowledge of the mesh: the meshing is doneon
e the problem has been fully de�ned. The advantages of doing this are that,using asso
iative data stru
tures, modi�
ations 
an be made to the geometry andall other information will automati
ally be updated and ready for the analysis run.Full graphi
 visualization of the geometry, mesh and 
onditions is available for
omprehensive 
he
king of the model before the analysis run is started. More 
om-prehensive graphi
 visualization features are provided to evaluate the solution re-sults after the analysis run. This post-pro
essing user interfa
e is also 
ustomizable72



depending on the analysis type and the results provided.A.1 GiD basi
sGiD is a geometri
al system in the sense that, having de�ned the geometry, all theattributes and 
onditions (i.e., material assignments, loading, 
onditions, et
.) areapplied to the geometry without any referen
e or knowledge of a mesh. Only wheneverything is de�ned, the meshing of the geometri
al domain is 
arried out. Thismethodology fa
ilitates alterations to the geometry while maintaining the attributesand 
onditions de�nitions. Alterations to the attributes or 
onditions 
an simulta-neously be made without the need of reassigning to the geometry. New meshes 
analso be generated if ne
essary and all the information will be automati
ally assigned
orre
tly.GiD also provides the option of de�ning attributes and 
onditions dire
tly onthe mesh on
e this has been generated. However, if the mesh is regenerated, it isnot possible to maintain these de�nitions and therefore all attributes and 
onditionsmust be then rede�ned.In general, the 
omplete solution pro
ess 
an be de�ned as:1. De�ne geometry - points, lines, surfa
es, volumes;
• Use other fa
ilities;
• Import geometry from CAD;2. De�ne attributes and 
onditions;3. Generate mesh;4. Carry out simulation;5. View results;Depending upon the results in step (5) it may be ne
essary to return to one ofthe steps (1), (2) or (3) to make alterations and rerun the simulations.Building a geometri
al domain in GiD is based on the following four geomet-ri
al levels of entities: points, lines, surfa
es and volumes. Entities of higher levelare 
onstru
ted over entities of lower level; two adja
ent entities 
an therefore sharethe same level entity. A few examples are given:73



1. example 1: One line has two lower level entities (points), ea
h of them atan extreme of the line. If two lines are sharing one extreme, they are reallysharing the same point, whi
h is a unique entity;2. example 2: When 
reating a new line, what is being really 
reated is a lineplus two points or a line with existing points 
reated previously;3. example 3: When 
reating a volume, this is 
reated over a set of existingsurfa
es whi
h are joined to ea
h other by 
ommon lines. The lines are, inturn, joined to ea
h other by 
ommon points;All domains are 
onsidered in 3-dimensional spa
e but if there is no variation inthe third 
oordinate (into the s
reen) the geometry is assumed to be 2-dimensionalfor analysis and results visualization purposes. Thus, to build a geometry with GiD,the users must �rst de�ne points, join these together to form lines, 
reate 
losedsurfa
es from the lines and de�ne 
losed volumes for the surfa
es. Many otherfa
ilities are provided for 
reating the geometri
al domain; these in
lude: 
opying,moving points, automati
 surfa
e 
reation, et
.The geometri
al domain 
an be 
reated in a series of layers where ea
h one isa separate part of the geometry. Any geometri
al entity (points, lines, surfa
es orvolumes) 
an belong to a parti
ular layer. It is then possible to view and manipulatesome layers and not others. The main purpose of the use of layers is to o�er avisualization and sele
tion tool, but they are not used in the analysis. An exampleof the use of layers might be a 
hair where the four legs, seat, ba
krest and sidearms are the di�erent layers.GiD has the option of importing a geometry or a mesh that has been 
reated bya external CAD program. At present, this 
an be done via a DXF, IGES, Parasolid,ACIS, VDA, STL or NASTRAN interfa
es available inside GiD.Attributes and 
onditions are applied to the geometri
al entities (points,lines, surfa
es and volumes) using the data input dialog box. These menus arespe
i�
 to the parti
ular solver that will be utilized for the simulation and, therefore,the solver needs to be de�ned before attributes are de�ned.On
e the geometry and attributes have been de�ned, the mesh 
an be generatedusing the mesh generation tools supplied within the system. Stru
tured and unstru
-tured meshes 
ontaining triangular and quadrilateral surfa
e meshes or tetrahedraland hexahedral volume meshes may be generated. The automati
 mesh generation74



fa
ility utilizes a ba
kground mesh 
on
ept for whi
h the users are required to supplya minimum number of parameters.Simulations are 
arried out from within GiD by using the 
al
ulate menu.Indeed, spe
i�
 solvers require spe
i�
 data that must have been prepared previously.A number of solvers may be in
orporated together with the 
orre
t pre-pro
essinginterfa
es.The �nal stage of graphi
 visualization is �exible in order to allow the usersto 
riti
ally evaluate the results qui
kly and easily. The menu items are generallydetermined by the results supplied by the solver module. This not only redu
es theamount of information stored but also allows a 
ertain degree of user 
ustomization.One of the major strengths of GiD is the ability for the users to de�ne and 
on-�gure their own graphi
 user interfa
e within GiD. This is done by 
reating some
on�guration �les whi
h de�ne new windows, where the �nal user will enter data,su
h as materials or 
onditions. The format that GiD uses to write a �le 
ontainingthe ne
essary data in order to run the numeri
al simulation program must also bede�ned in a similar way. This pre-pro
essor or data input interfa
e will thus betailored spe
i�
ally for the users simulation program, but using the fa
ilities andfun
tionality of the GiD system.The user's simulation program 
an then be in
luded within GiD so that it maybe run utilizing the 
al
ulate menu option.The third step 
onsists of writing an interfa
e program that provides the resultsinformation in the format required by the GiD graphi
 visualizer, thereby 
on�guringthe post-pro
essing menus. This post analysis interfa
e may be in
luded fully intothe GiD system so that it runs automati
ally on
e the simulation run has terminated.A.2 Problem type 
ustomizationWhen GiD is to be used for a parti
ular type of analysis, it is ne
essary toprede�ne all the information required from the user and to de�ne the way the �nalinformation is given to the solver module. To do so, some �les are used to des
ribe
onditions, materials, general data, units systems, symbols and the format of theinput �le for the solver. We 
all problem type to this 
olle
tion of �les used to
on�gure GiD for a parti
ular type of analysis.Due to the vo
ation of GiD as general purpose pre and post pro
essor, the
on�guration for the di�erent analysis must be performed a

ording to the parti
ular75



spe
i�
ations of every solver. This implies the ne
essity of 
reating spe
i�
 datainput �les for every solver. However, GiD allows to perform this 
on�gurationpro
ess inside itself without any 
hange in the solver and without having to programany independent utility.

Figure A.1: Flow
hart des
ribing the exe
ution of a GiD problem typeTo 
on�gure these �les means to de�ne the data that must be input by the user, aswell as the materials to be implemented and other geometri
al and time-dependent
onditions. It is also possible to add some symbols or drawings to represent thede�ned 
onditions. GiD gives the opportunity of working with units when de�ningthe properties of the mentioned data, but there must be a 
on�guration �le whereit 
ould be found the de�nition of the units systems. It must be also de�ned theway that all this data must be written inside a �le that will be the input �le to beread by the 
orresponding solver.The de�nition of a problem type implies the 
reation of a dire
tory with theproblem type name and the extension .gid. The series of �les must be insidethe problem type dire
tory. The name for most of them will be 
omposed by thesame problem type's name and an extension referring to their fun
tion. Consideringproblem_type_name to be the name of the problem type and proje
t_name thename of the proje
t, the diagram of the �le 
on�guration is the following:76



Figure A.2: Problem type �ow
hart in
luding �le 
on�guration.
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A.2.1 Con�guration �lesThese �les, whose lo
ation into the problem type stru
ture is showed in �gureA.2, generate the 
onditions and material properties, as well as the proper generalproblem and intervals data to be transferred to the mesh, giving at the same timethe 
han
e to de�ne geometri
al drawings or symbols to represent some 
onditionson the s
reen. Now a brief des
ription is given related to those �les whi
h play animportant role into the problem type stru
ture.Condition �le (.
nd)The �le with extension's name .
nd 
ontains all the information about the 
on-ditions that 
an be applied to di�erent entities. The 
ondition 
an adopt di�erent�eld values for every entity. This type of information in
ludes, for instan
e, allthe displa
ement 
onstraints and applied loads in a stru
tural problem or all thepres
ribed and initial temperatures in a thermal analysis.A 
ondition 
an be 
onsidered as a group of �elds 
ontaining the name of thereferred 
ondition, the geometri
 entity over whi
h it is applied, the mesh entityover whi
h it will be transferred, its 
orresponding properties and their values.Material �le (.mat)This �le proje
tname.mat in
lude originally the de�nition of di�erent materialsthrough their properties. These are base materials as they 
an be used as templatesduring the pre-pro
essing step for the 
reation of newer ones.The user 
an de�ne as many materials as desired and with a variable numberof �elds. All the unused materials will not be taken in 
onsideration when writingthe data input �les for the solver. Alternatively, they 
an be useful to generate amaterials library.Conversely to the 
ase of 
onditions, the same material 
an be assigned to di�er-ent geometri
al entities levels (lines, surfa
es or volumes) and even 
an be assigneddire
tly to the mesh elements. In a similar way as a 
ondition was de�ned, a ma-terial 
an be 
onsidered as a group of �elds 
ontaining its name, its 
orrespondingproperties and their values. 78



Problem and interval data (.prb)The �le proje
tname.prb 
ontains all the information about the general problemand intervals data. The general problem data is all the information required forperforming the analysis and it does not 
on
ern any parti
ular geometri
al entity.This di�ers from the previous de�nitions of 
onditions and materials properties,whi
h are assigned to di�erent entities. Example of general problem data 
an be thetype of solution algorithm used by the solver, the value of the various time steps,
onvergen
e 
onditions and so on.Within this data, the user may 
onsider the de�nition of spe
i�
 problem data(for the whole pro
ess) and intervals data (variable values along the di�erent solutionintervals). An interval would be the subdivision of a general problem that 
ontainsits own parti
ular data. Typi
ally, one 
an de�ne a di�erent load 
ase for everyinterval or, in dynami
 problems, not only variable loads, but also 
hanging thevarious time steps, 
onvergen
e 
onditions and so on.Template �le (.bas)On
e the user has generated the mesh, assigned the 
onditions and the materialsproperties, as well as the general problem and intervals data for the solver, it isne
essary to produ
e the data input �les to be pro
essed by that program.To manage this reading, GiD employs a �le 
alled problem_type_name.bas,where problem_type_name is the name of the working dire
tory of the problemtype without the .bas extension.This template �le des
ribes the format and stru
ture of the required data input�le for the solver that is used in a parti
ular 
ase.
Figure A.3: Intera
tion between pre pro
ess and solver by means of the template .bas �leThese �les work as interfa
e from GiD standard results to the spe
i�
 data inputfor any individual solver module. This allows to 
omplete the pro
ess of running79



the analysis as one step more within the system, and to visualize results duringpost-pro
ess.A.3 Post-pro
ess data �lesIn the GiD postpro
ess you 
an study the results obtained from a solver program.The 
ommuni
ation between the solver and the GiD Postpro
ess is made using �les.The solver program has to write the results in a �le that must have the extension.flavia.res and its name must be the proje
t name.The solver program 
an also (it is not mandatory) give to GiD the postpro
essmesh, and should have the extension .flavia.msh. If this mesh is not provided bythe solver program, GiD uses in the post-pro
ess, the prepro
ess mesh.

Figure A.4: Post-pro
ess �le 
reationSo, post-pro
essing �les are ASCII �les and 
an be separated into two 
ategories:
• Mesh Data File: proje
tname.flavia.msh for volume and surfa
e (3D or 2D)mesh informations; it should 
ontain nodal 
oordinates of the 3D mesh, andits nodal 
onne
tivities and the material of ea
h element;
• Result Data File: proje
tname.flavia.res for nodal variables. GiD allowsthe user to de�ne as many nodal variables as desired, as well as several stepsand analysis 
ases (limited only by the memory of the ma
hine).
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Appendix BFinite element 
ode Arteries-1D.exeHere we present a general s
heme 
on
erning the �nite element 
ode whi
h rep-resents the 
omputational 
ore of our GiD problem type. This program, developedin Fortran 90, links together pre and post pro
ess phases, as it re
eives input data
on�gured through the graphi
al interfa
e and 
reates an output result �le that willbe used during postpro
ess.B.1 Input-output data �lesConsidering a generi
 problem related to 1D blood �ow model, the input infor-mations, required by the solver, are provided by two di�erent �les whose stru
tureis the following1. "proje
tname".dat, is the 
omputation �le 
reated by GiD after the pre-pro
ess phase is terminated; it 
ontains, in order:
• Finite mesh parameters: the number and 
oordinates of mesh nodes to-gether with the number and 
onne
tivities of mesh elements;
• Geometri
al and me
hani
al properties of ea
h vessel: length, wall thi
k-ness, Young Modulus, Poisson Ratio and initial wave speed;
• General properties, e.g. proje
t name, type of velo
ity pro�le, blooddensity and vis
osity;
• Numeri
al parameters, e.g. error toleran
es, sele
tion of spa
e-time s
hemeand maximum number of iterations;
• List of boundary nodes, ea
h one with its applied 
onditions;81



For more informations, 
hapter 3 
ontains all the interfa
e windows in whi
hsu
h parameters 
an be 
on�gured and modi�ed.2. bifur
ations.dat: this �le 
ontains the list of all bifur
ations belonging to thearterial network, and for ea
h one of them are indi
ated, in order, the enteringand the outgoing vessels;The program 
reates two output �les, one a

ounting for 3D mesh properties andthe other 
ontaining the results. Brie�y they are stru
tured as follows:1. "proje
tname".�avia.msh: 
ontains both the node 
oordinates and theelement 
onne
tions of the three-dimensional mesh used for the postpro
essvisualization of results;2. "proje
tname".�avia.res: It is the result �le whi
h GiD reads during post-pro
ess and 
an 
ontain values of Area, Flow rate, pressure and velo
ity onea
h node belonging to the 3D output mesh. The user, during pre-pro
ess,
an sele
t how many time steps write in su
h a �le and also establish whi
hquantities share during post-pro
ess (also see �gure 3.9 in 
hapter 3);B.2 Finite element 
ode �ow
hartThe �nite element 
ode is 
omposed by a main routine whose stru
ture is s
hema-tized in table B.2. We start with the data a
quisition from the input �les previouslydes
ribed, �rst reading the bifur
ation list and then the pre-pro
ess informationsprovided by GiD; on
e that all these data are allo
ated in memory, we are ready to
ompute the numeri
al solution. To do this, we need, on the one hand, to transform3D 
oordinates of the pre-pro
ess geometry into a 1D referen
e system for ea
h vesselin the model, in order to work only with the axial quantity z and negle
t the other
ylindri
al 
omponents (r, θ). One the other hand we must impose initial data whi
hallow to start 
al
ulating the approximated solution of our hemodynami
 problem.Two routines, external to the main stru
ture, are used to 
arry out su
h operations:1. OMOG_TRANSF:
• Input variables: trans_type.
• Output variables:omog. 82



This routine applies a homogeneous transformation to ea
h node 
oordinatefrom 3D pre-pro
ess to 1D format. Both the rotation matrix and the 
enter
oordinates for ea
h vessel referen
e system are read from GiD input �le andassembled into a 4x4 homogeneous transformation matrix. For the generi
 i-thartery we have:
Ai

t =

[

Ri di

0 1

]

,being Ri the i-th rotation matrix and di the (x, y, z) 
enter 
omponents. Theoutput variable omog represents the matrix Ai
t and, depending on the value oftrans_type, we may have:

• trans_type = 1: pass from 3D to 1D notation. Then
P1D = AT

t
P3D =⇒ omog = AT

t

• trans_type = 2: pass from 1D to 3D notation. Then
P3D = AtP1D =⇒ omog = Atwith P1D and P3D de�ned as 4x1 arrays 
ontaining node 
oordinates in 1Dand 3D notation respe
tively:

P1D =

[

d1D

0

]

P3D

[

=
d3D

0

]

2. INITIAL_VALUES(2):
• Output variables:At0, Qt0Through this routine we evaluate initial values of area At0 and �ow rate Qt0into ea
h vessel of our network; by default we have values of A0 related to thereferen
e 
on�guration of the arterial tree in rest 
onditions (see also 
hapter2). For what 
on
erns the �ow rate we know that, at rest, blood velo
ity isthe same in every network lo
ation so it is true the relationship

ui = u0 ⇒ Qi

Ai

=
Q0

A0
⇒ Qi = Q0

Ai

A0between the vessel 0, where we apply an initial 
ondition on blood �ow, andthe generi
 vessel i belonging to the network.83



Now we have 1D 
oordinates and initial solution values, it is possible to applythe numeri
al spa
e-time s
heme for solving the problem. Before doing this, wegenerate the 3D mesh for post-pro
ess visualization of results; to this purpose weuse the meshing routine indi
ated into the s
heme B.2 with the number 3:3. MESHING: this routine allows the 
reation of a 3D mesh simply 
onsidering1D nodes lying on vessel axial dire
tions; ea
h one of these nods be
omesthe 
enter of a new 
ir
ular se
tion, with referen
e radius R0, whi
h has a
ertain number of points proje
ted, along radial dire
tion, from the 
enter tothe border 
ir
umferen
e (�g. B.1).

Figure B.1: Left �gure: sket
h of a 3D-mesh se
tion. The number of radial nodes 
an be settledinto GiD prepro
ess (see �g. 3.9 in 
hapter 3). Right �gure: side wall meshing for a generi
 vessel.The element are triangular and link nodes belonging to di�erent radial se
tions.Moreover these nodes are 
onne
ted to form a 
ylindri
al surfa
e of triangularelements over the side walls of ea
h artery (�g. B.1);The 
omputation 
ore of our �nite element 
ode is represented in the s
heme B.2by the blo
k SOLVER (L1). When the program exe
ution arrives at this point, itenters a WHILE loop whi
h iterates in time from t0 to tend = t0 + T , where T isthe integration period of our problem. As shown in table B.2, we move step by stepevaluating the solution matrix U 1 for ea
h time instant i.The blo
k RK L(2) represent the point in the WHILE loop where U is 
om-puted. As explained in 
hapter 2, we employ an expli
it Runge-Kutta (RK) s
hemefor time integration; the program allows to 
hoose between a 2nd and a 4th order1For every time step, the solution is 
omposed by values of A and Q at ea
h 1D mesh node. Sothe dimension of U , and also the rhs term used further, is 2 x number of nodes.84



RK, while for our s
hematization we 
onsider only the 4th order one, whose stru
tureis
Un+1 = Un +

∆t

6
(K1 + 2K2 + 2K3 + K4)

K1 = fn,

K2 = f(tn + ∆t
2

, Un + ∆t
2

K1),

K3 = f(tn + ∆t
2

, Un + ∆t
2

K2),

K4 = f(tn+1, Un + ∆tK3).

(B.1)
The 2nd order Runge-Kutta s
heme has a stru
ture similar the 4th order one,whi
h 
onsider only two intermediate evaluation for ea
h step ∆t:

Un+1 = Un +
∆t

2
K2

K1 = fn,

K2 = f(tn + ∆t
2

, Un + ∆t
2

K1),The s
heme RK L(2) in table B.2 shows the numeri
al s
heme: �rst we set thetime step ∆ti in order to satisfy the CFL 
onvergen
e 
ondition (see the relationship(2.48) in 
hapter 2), then we pro
eed with the RK routine. The dis
rete equation toevaluate 
an be expressed, simplifying the (2.46) we derived in 
hapter 2, as follows
Un+1 − Un

∆t
= rhs(tn, Un) (B.2)For ea
h intermediate rhs evaluation Ki, i = 1 : 4, we use the �nite elementroutine RHS L(3); by means of a loop over the linear elements of the 1D mesh,we �rst evaluate the single 
ontribution provided by ea
h element and little by littlewe assembly it into the global right hand side matrix2 for the whole mesh. On
ethis operation is terminated, we have to 
omplete the rhs term with the boundary
onditions not introdu
ed during the element loop. The �ow
hart RHS L(3) fromtable B.2 s
hematize all these operations, and in
ludes the following blo
k:4. UPDATE BOUNDARY VALUES: It is an updating routine for boundarynodes in
luding inlet, outlet and bran
hing points. For ea
h one of these
onditions we a
t in the following ways2Analogously to U , also the term rhs has dimension 2 x number of 1D mesh nodes.85



• Inlet nodes: here we impose the known value of area or �ow rate de-pending on the inlet pro�le 
onsidered (see 
hapter 2);
• Bifur
ation nodes: in this 
ase we have to solve the six equation sys-tem (see (2.49) in 
hapter 2) in order to obtain (A, Q) values at vesselinterfa
es belonging to ea
h bifur
ation. Su
h quantities must respe
t the
ompatibility relationships de�ned in the non-linear equations 
ontainedinto (2.49);
• Outlet nodes: we have two possible outlet 
onditions: the �rst is theabsorbing one, and we use the pseudo-
hara
teristi
 evaluation (see se
-tion 2.6) to extra
t values of area and �ow rate. The other 
onditiona

ounts for the resistive term RT and in this 
ase we apply the relation-ship between �ow and pressure:

P = QRT .Now the rhs term is 
omplete, we 
an use it to evaluate the 
orrespondingintermediate step into the RK s
heme; pro
eeding in this way we �nally obtain thesolution of equation (B.2) for the 
urrent i-th step. Then the program exits fromthe RK L(2) routine and returns into the SOLVER L(1) blo
k. Here we have thewriting phase of the obtained result:5. OUTPUT: 
reates the postpro
ess �le, whose format is re
ognized by GiD,and writes the results whi
h 
an be showed through the software graphi
alinterfa
e. This routine is not exe
uted at ea
h time step, but with a 
er-tain frequen
y in order to �nally write the approximated number of iterationde�ned during pre-pro
ess (see �gure 3.9 in 
hapter 3);
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MAIN
PROGRAM START

⇓BIFURC_READ =⇒ Bran
hing 
onne
tions reading
⇓INPUT =⇒ 1D prepro
ess data reading
⇓OMOG_TRANSF(1) =⇒ Change of 
oordinates
⇓Computation of initialINITIAL_VALUES(2) =⇒ solution values U0at time t = t0

⇓3D mesh generation =⇒ MESHING (3)
⇓SOLVER (L1)
⇓Solution 
al
ulated
⇓STOPTable B.1: Main program �ow
hart: input data are read and allo
ated in memory,while the de�nition of initial 
onditions allow to start 
al
ulating the approximatedsolution.
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SOLVER L(1)MAIN =⇒ tend = t0 + T

⇓
i = 1

⇓Loop: WHILE ti < tend

⇓RK (L2)
⇓Solution U(ti+1, z)at step i + 1 
al
ulated
⇓Write U(ti+1, z) =⇒ OUTPUT (5)in post-pro
ess �le
⇓

ti+1 = ti + ∆ti

⇓
i = i + 1

⇓Return to MainTable B.2: Solver routine �ow
hart.
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RK L(2)SOLVER L(1) =⇒ ∆ti < CFL(h/λ)

⇓RK_4 (∆ti)
K1 = rhs(ti, U

i) ⇐⇒ RHS L(3)
⇓

K2 = rhs(ti + ∆ti
2

, U i + ∆ti
2

K1) ⇐⇒ RHS L(3)
⇓

K3 = rhs(ti + ∆ti
2

, U i + ∆ti
2

K2) ⇐⇒ RHS L(3)
⇓

K4 = rhs(ti+1, U
i + ∆tiK3) ⇐⇒ RHS L(3)

⇓
U i+1 = U i + ∆ti

6
(K1 + 2K2 + 2K3 + K4)

⇓
U i+1 
al
ulated =⇒ Return to SOLVER (L1)RHS L(3) RK L(2) =⇒ UK , tK

⇓DO j = 1,Num_elementsExtra
t element nodes j1 and j2

⇓Evaluate rhsj(U
K
j1, U

K
j2)

⇓
RHS = RHS + rhsj(U

K
j1, U

K
j2)END

⇓UPDATE BOUNDARY VALUES (4) =⇒ Return to RK (L2)Table B.3: Runge-Kutta and FEM routines89
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