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Chapter 1
Introduction

The correct blood circulation is a necessary condition for the adequate supply
of oxygen and other substances to all tissues, which, in return, is synonymous with
cardiovascular health, survival of surgical patients, longevity and quality of life. It
is also well known that some very frequent cardiovascular diseases, like hypertension
or congestive heart failure, are related to the behavior of blood flow. Diseases of
the arterial wall, such as arteriosclerosis, are the leading cause of death in western
society. Many studies have shown that there is a correlation between ’disturbed’
blood flow patterns in large arteries and the development of arterial disease; however,
the specific causative link between blood flow and arterial disease remain partially
unknown. This is in part due to the significant complexity of arterial blood flow
patterns.

It is therefore extremely important to obtain as many informations as possible
about blood circulation and interactions that blood flow develops interacting with
vessel walls. A powerful device is represented by the employment of mathematical
models which may reproduce the characteristics of such a physical system at different
levels of accuracy. On one hand we can obtain high levels of precision, e.g. through of
three-dimensional blood flow models, but on the other hand it is useful to implement
simplified models in order to study the pressure and flow rate propagation of blood
through the circulatory system. Such models may be convenient because they allows
both to reduce the computational costs and to consider a greater number of vessels
into the models with respect to the 3D models.

The purpose of this project is to create a numerical solver in order to simulate
the general patterns of pressure and blood flow waves that propagate into the car-

diovascular system. To obtain such a result we used a simplified one-dimensional



formulation for the physical system governing the blood circulation into the main

arterial vessels.

This project is organized as follows:

e In this chapter we will present general informations about the cardiovascular
system physiology, describing heart and blood vessel main structures. Then
we will focus on hemodynamics, explaining the functions of circulatory system
and introducing the role played by computational models applied to blood
dynamics; to this purpose we will briefly present the state of art concerning

the one-dimansional formulation of blood flow in arteries;

e In Chapter 2 we will discuss the mathematical formulation of the 1D model for
blood flow in arteries; first the equations related to the conservation of mass
and momentum for a single one-dimensional vessel will be derived, together
with an algebraic pressure-area relation and suitable boundary conditions.
Then we will present the numerical space-time schemes for the discretization
of such equations. Once the mathematical model for one single vessel has been

obtained, we will apply it to the case of a vessel bifurcation.

e In Chapter 3 we will show how we implemented the one-dimensional model
through a pre-post process FEM software, GiD': the numerical solver will be
programmed in FORTRANO90 and then imported into a GiD problem type.
Such a software will be used also for input data management and for the

analysis of results;

e In Chapter 4 we will show the results obtained by numerical simulation of the
1D model using GiD and we will discuss what we have obtained comparing it

with physiological data and other studies present in literature;

e In the appendices, we will give some notes about GiD, the software developed
at CIMNE and used in this project to program the numerical solver for the
one-dimensional blood flow model. Moreover we will present the FORTRAN90

source codes used to implement the FEM solver for the blood flow model.

!GiD is an interactive graphical interface for definition, preparation and visualization of all the

data related to a numerical solution. See Appendix A for details



1.1 Cardiovascular System

The cardiovascular system is the transport system of the body wihc, by means of
blood, carries oxygen and nutrients to the body and carries away waste substances
(e.g. carbon dioxide) to the kidneys for exertion; it is composed by a pulsatile pump,
the heart, and a branched network of vessels, the vascular system, which drive blood

through tissues and organs.

e | ot lung

i,'.
e

artery
Fulmonary veins
RIGHT HEART 3 LEFT HEART
Inferiar vena cava -
Hepatic wein
Liver Kidneys

Fartal wvein

Digestive argans
(intestines, stomach)

Extremities, abdmonial and pelvic
organs, skeletal muscles, bones

Figure 1.1: Schematic representation of cardiovascular system, including arterial and venous

circulations

1.1.1 Vascular system

Vascular system can be divided in two kinds of vessel: arteries and veins. The
former pumps blood away from the heart, while the latter carries blood toward the

heart. Arteries (fig.1.2) are often classified relating to their tasks and main tissue
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components. The biggest arteries in the circulatory system are called conduction
or elastic arteries; average size arteries are called muscular or distribution arteries,
whilst the smallest ones are defined as arterioles. Veins classification is generally
based only on the vessel dimension and includes small veins, average dimension
veins and large veins.

A complete but very thin squamous epithelial cell layer, called endothelium, cov-
ers both heart internal surface (so called cardiac endothelium) and vessels internal
coating (vascular endothelium). The subdivisions of veins and arteries present dif-
ferent quantities of smooth muscular and connective tissue, organized in specific
layers that can vary depending on the class of vessels considered.

The most internal layer of arteries and veins the tunica intima. It is composed by
a continuous lining of endothelium (simple squamous epithelium), which contains a
thin connective tissue layer (sub-endothelial connective tissue) adjoint with endothe-
lium. Sometimes in this case we can find a certain thickness layer composed by an
elastic fibre provided with little gaps (internal elastic lamina). The intermediate
layer, called tunica media, is usually the thickest of the three layers and is typically
composed by smooth muscular (especially in arteries), elastic fibres, collagen fibres,
amorphous intracellular substances and cells that produce such materials. The ex-
ternal layer, called tunica adventitia, is an outer connective tissue sheath, but also
can contain smooth musculature in bigger veins. In this case the connective tissue
is composed by collagen fibres, elastic fibres, intracellular substances and cells that

produce such materials.

Intirma

Elastin

frermbrane
Media

Adventitia

Figure 1.2: Schematic representation of artery layers. From http://hemodynamics.ucdavis.edu/



1.1.2 Classification of arterial vessels
Conducting or elastic arteries

They are large vessels, with very strong and relatively elastic walls, whose func-
tion is to drive the bulk of blood outgoing from the heart to the regions of the body
where it has to be distributed.

Such vessels must withstand a great head of pressure to pump blood against
the peripheral system resistance caused by the distal arterial network. Then the
elastic fibers composing the wall allow some stretching and narrowing of the ves-
sel in response to the incoming pressure, and the collagen fibers limit the stretch
permitted.

Elastic arteries include aorta, pulmonary arteries, common carotid, succlavia
artery and common iliac arteries. The lumen of such arteries is very large but their

walls appear to be very thin compared to the vessel diameter (ratio about 1:10).

Distribution or muscular arteries

Once the blood has reached the region of distribution (e.g. the limbs) it will be
handled by smaller, but still fairly large, distribution or muscular arteries, which
send it to the next sub-regions composed by smaller arteries.

Such vessels, like femoral, renal and ulnar arteries, are mainly composed by
smooth musculature with smaller quantities of elastic tissue; the smooth muscle of
the wall makes them very extensible, and also provides for a counter force to be
exerted. In fact as the vessel expands, smooth muscle cells are stretched; reacting
to this they begin to contract.

The contraction mechanism of the conduction arteries dampens out the pulsa-
tions of the flow to provide a steady supply of blood at normal pressure into the

following arterial bed composed by arterioles and capillaries.

Arterioles

Arterioles represent the smallest branches in the arterial network. Given that
the transition between different artery types is gradual and not the same for all the
situations, researchers have come to set several definition of an arteriole. Some of
them define it as an artery with a diameter equal or less than 300 um having one,

three or four smooth muscular cell layers, which are disposed in a circular way into



the tunica media. Other researchers sustain that arterioles have a diameter included
from 40 to 200 pum and they use also the ratio between wall thickness and lumen
diameter as a tool to define an arteriole: in normal conditions this ratio is about
1:2.

The arterioles offer a considerable resistance to blood flow because of the decreas-
ing of section with respect to the upstream vessels. This area of high resistance to
the blood flow serves several functions: first, together with the conduction arteries,
it converts the pulsatile ejection of blood form the heart into a steady flow through
the capillaries; second, if no resistance were present and a high pressure persisted
into the capillary bed, there would be a considerable loss of blood volume into the

tissues because of the exchange of fluid across the capillary walls.

Capillaries

Capillaries are blood vessels without any kind of covering and are simply shaped
as endothelial pipes. The surface area of capillaries, in human beings, is about
6000 m?2. They usually have a diameter between 7 and 10 pm, barely sufficient as
leukocytes and erythrocytes could flow through the vessel lumen. The total area of
a capillary transversal section is about 800 times greater than the aorta transversal
section. The flow through capillaries is about 0.4 mm/sec compared with the 320
mm /sec flow evaluated into the aorta. Pressure in capillaries can reach values up to

35 mm Hg in arterial tips but can decrease up to 10 mm Hg in venous tips.

1.1.3 Function of arteries

As already written, the different types of artery in the vascular system have a
different amount of elastic tissue; for this reason the vessel stiffness, expressed by
the elastic modulus is not the same in every vessel.

Applied to the wall of an artery, this infers a structural property. The functional
consequence of having elastic tissue in the wall is that these arteries can expand to
accommodate added volume. This behaviour of the vessel walls reflects itself on the
pressure and flow waves of blood during circulation into the vascular system.

The pressure in a vessel, for example the aorta, significantly changes with in-
creasing distance from the heart. The peak of the pressure pulse delays downstream

indicating wave propagation along the aorta with a certain wave speed. Moreover,
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the shape of the pressure pulse changes and shows an increase in amplitude, a steep-
ing of the front and only a moderate fall of the mean pressure.

This wave phenomenon is a direct consequence of the distensibility of the arterial
wall, allowing a partial storage of the blood injected from the heart due to an increase
of pressure and the elastic response of the vessel. The cross-sectional area of the
vessels depends on the pressure difference over the wall. This pressure difference is
called the transmural pressure and can be denoted by py.. This transmural pressure
consists of several parts. First, there exists a hydrostatic component proportional
to the blood density p, the gravity acceleration g and the height hA. Next, a time
dependent part py and a periodic time dependent part, p ~. So, the transmural

pressure takes the following form

P = pgh + po + D~ (1.1)

The relationship between transmural pressure and cross-sectional area A of the vessel
is in most cases non-linear and may be rather complicated. Moreover it varies from
one vessel to the other. For negative transmural pressure values the vessel can even
collapse. Important quantities with respect to this relationship are the compliance
or alternatively the distensibility of the vessel. Compliance may be defined as the
partial derivative between the cross-sectional area A and pressure p:

C= % (1.2)

dp

The distensibility D is defined as the ratio of the compliance and the cross-sectional

area and hereby is given by:

104 C
CAop A
For thin walled tubes, with radius a and wall thickness A, without considering

(1.3)

longitudinal strain, distensibility can be derived as follows:

2041 — o2
D=—
h FE

where o denotes the Poisson ratio and E the Young modulus. From 1.4 we can see

(1.4)

that besides the properties of the vessel material (E,o) also its geometrical properties
(a,h) play an important role.

The flow is driven by the pressure gradient and hereby determined by the prop-
agation of the pressure wave. Normally the pressure wave may have a pulsating
progress. In order to describe such flow phenomena it can be possible to make a dis-

tinction between steady and unsteady part of the considered pulse. Assuming that



the unsteady part can be described by means of linear theory, we can introduce the

concept of pressure and flow waves which are superpositions of several harmonics:

N ' N '
b= ne Q=Y Qe (15
n=1 n=1

Here p, and @,, are the complex Fourier coefficients and hereby p. and Q). are
the complex pressure and the complex flow, o denotes the angular frequency of the
basic harmonic. Actual pressure and flow can be obtained by taking the real part of
these complex functions. Normally spoke 6 to 10 harmonics are sufficient to describe
the most important features of the pressure wave.

As mentioned before the blood flow is driven by the force acting on the blood
induced by the pressure gradient. The relation of these forces to the resulting motion

of blood is expressed through the longitudinal impedance:

_op
7 = % (1.6)

The longitudinal impedance is a complex number defined by complex pressures and
complex flows. It can be calculated by frequency analysis of the pressure gradient
and the flow that have been recorded simultaneously. As it expresses the flow in-
duced by a local pressure gradient, it is a property of a small (infinitesimal) segment
of the vascular system and depends on local properties of the vessel. The longitudi-
nal impedance plays an important role in the characterisation of vascular segments.
It can be measured by a simultaneous determination of the pulsatile pressure at two
points in the vessel with a known small longitudinal distance apart from each other
together with the pulsatile flow.

A second important quantity is the input tmpedance defined as the ratio of

the pressure and the flow at a specific cross-section of the vessel:

zi =2 (1.7)

q
The input impedance is not a local property of the vessel but a property of a specific
site in the vascular system. If some input condition is imposed on a certain site in
the system, then the input impedance only depends on the properties of the entire
vascular tree distal to the cross-section where it is measured and is often referred
to as a characteristic impedance. In general the input impedance at a certain site

depends on both the proximal and distal vascular net.



The compliance of an arterial segment is characterized by the transverse impedance
defined by:

p p
4=%q = o4 (1.8)
ox ot

This quantity expresses the flow drop due to the storage of the vessel caused by

the radial motion of its wall (being A the cross-sectional area) at a given pressure.

1.1.4 Heart

The heart is the muscular organ of the circulatory system; approximately the
size of a clenched fist, it acts as a double pump driving blood, feeding and wasting
products along the two distinct circulations, the pulmonary circuit and the systemic
circuit (see figure 1.1). In order to maintain these two circuits separate, heart is

divided in two distinct parts, each one having two chambers (fig. 1.3).

Pulmonary

artery X y 0 Aorta
Anterior Q“'\,w;.- : ; Pulmonary
vena cava j | artery
RIGHT \l_#g‘ g LEFT

ATRIUM i == ATRIUM

Pulmonary
veins

\ e,
e .\-;Z‘:—Pulmonary

veins

Semilunar
valve

Semilunar
valve

Atrioventricular |}
valve

Atrioventricular
valve

Posterior
vena cava RIGHT LEFT

VENTRICLE VENTRICLE

Figure 1.3: Heart anatomy. Image taken from http://sci2135d1-pm68.morris.umn.edu/ pzmy-
ers/MyersLab/

The right side of the heart has to pump blood, through the vessels belonging to
the pulmonary circuit, to oxygenate blood in lungs. Left side of the heart provide
the blood pumping to the vessels which compose the systemic circuit.

Blood pumping is provided through the alternation of a contraction phase, called

systole, with a relaxation phase, the diastole; the repetition of these two phases rep-
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resents a beat or cardiac cycle (fig.1.4), which is the simplest parameter to evaluate
the heart activity. The average pumping rate of the left ventricle is about 70 bpm
(beats per minute), which corresponds to a period of about 0.85 seconds for each

cardiac cycle.

Since each side of the heart has an atrium and a ventricle, we have two valves
for each side, an inlet one and an outlet one. Venous blood comes to the right
atrium from the two cava veins, the superior vein and the inferior vein. Then
blood flows through tricuspid valve into the right ventricle, where is pumped during
systole phase trough another valve, the semi-lunar valve, and goes along pulmonary
arteries finally reaching lungs. Oxygenated blood then returns from lungs to the left
atrium passing trough the pulmonary veins; once the atrium is filled, the mitral or
the bicuspid valve opens and blood can reach the left ventricle. From this location
blood passes through the aortic semilunar valve and enters the aorta where it will

be distributed to the whole body going along the systemic circulation.

\(\ 9 ATRIAL 4
O = SYSTOLE,
e %' = '

|
|
|

i
[ b ',\%\ VENI'I'R]CULM}
| T N DIASTOLE
RRET VAN i
I
I

~
v
AV valves <4
open ;
P Semilunar
" valves
open
@ ArriaL anp | VENTRICULAR
VENTRICULAR \ SYSTOLE,
DIASTOLE | ATRIAL
| “)DIASTDLE

AV valves \\“---——-"
closed

Figure 1.4: Cardiac cycle notes. AV stands for atria-to-ventricles valves. Image taken from
http://sci2135d1-pm68.morris.umn.edu/ pzmyers/MyersLab /teaching/Bil04/
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1.2 Rheology of blood

Blood volume is composed by formed elements (about 45%) and plasma (about
55%). The plasma is a diluted electrolyte solution containing about 8 percent by
weight of three major types of proteins: fibrinogen, globulin and albumin in water.
Fibrinogen is involved in blood coagulation through a process of polymerization that
transform fibronogen into fibrin. Globulin is a carrier of lipids and other water sol-
uble substances and also contains antibodies that resist from the attacks of bacteria
and virus. Albumin is the main contributor to the total colloid osmotic pressure of
plasma and play an important role in the balance of water metabolism.

The formed elements in blood consists of 95% red blood cells, 0.13% white blood
cells and about 4.9% platelets. The white blood cells, also known as leucocytes
consist of monocytes, lymphocites, and basophils. Monocytes that leave the cir-
culation and enter the tissues develop into macrophages. Neutrophils, monocytes,
and macrophages are collectively known as phagocytes since they can engulf and
ingest bacteria and other foreign particles. Platelets are cells without a nucleus;
they can repair the damaged vessel walls and also can help blood through thrombus
formation. The majority of the formed elements are red blood cells that consist
of hemoglobin surrounded by flexible red cell membrane. The primary function of
hemoglobin in the red blood cell is to transport oxygen from the lungs to the living
tissue of the body.

Because of its heterogeneous composition, blood rheology, that is the relation-
ship between the strain and stress tensors, is hard to define. In fact rheologic
behaviour of blood depends on several factors like pressure, temperature, and vessel
geometry which values can vary in time; moreover the effects caused by trauma or
inflammatory processes can change even more the normal behaviour of blood flow.
Several studies have been made in order to give a mathematical description of blood
behaviour; we may now consider its main characteristic.

Indicate with T the stress tensor and with D the strain tensor: D = [D;;] =
[3(ui; + uj;)], where u is the fluid velocity field. We can define the constitutive

relationship between T and D as follows:
T = —pl +S(D) (1.9)

where I is the identity Kronecker tensor,p is the pressure, plI is the isotropic stress

tensor component and S(D) is the deviatoric component. If the relationship between
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S and D is linear, and S takes zero values when the fluid is at rest, then we have
a newtonian fluid. However in generic conditions this relationship is not linear and
the deviatoric component does not vanish if the fluid has zero velocity. In this case
we assume the fluid as non newtonian and it has the following characteristic:

For what concerns the blood we can expose its main rheological characteristics
as follows:

Pseudo-elastic behaviour. Like non-newtonian fluids, blood shows a non
linear relationship between shear stress and shear rate. For this kind of fluids we
may define the apparent viscosity as the ratio between shear stress and shear rate.
If apparent viscosity decreases when shear rate increases, we have a pseudo-plastic

fluid; otherwise we have a dilatant fluid (fig. 1.5).

Pseudoplastic Fluid

Diilatant Fluid

Shear stress,

Shear Rate, k

Figure 1.5: Relationship between shear rate and shear stress in a non-newtonian fluid

Micro-circulation effects. Blood rheologic properties may change when vessel
diameter reduces to a dimension comparable with the one of a red blood cell. In
fact, when the diameter is less than 12 pm, blood cannot be considered as a con-
tinuous anymore. When the vessel diameter assumes values less than 500 pm, it is
experimentally possible to observe a reduction in apparent viscosity. This behaviour
is called Fahraeus-Lindquist effect and is essentially due to two causes: first, when
blood is carried away into a vessel smaller than the coming one, the plasma will
easily flow away, while the blood formed components will be slowed down because
of collisions between them and the vessel wall near the entrance. This phenomenon
will decrease the red blood cell concentration (hematocrit) and, consequently, the
apparent viscosity. Second, we can experimentally observe that hematocrit assumes

higher values in the central lumen region than near the walls. For this reason, owing
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to a vessel branching which causes a diameter reduction, the region close to the
walls becomes more relevant than the central zone and there will be a decreasing
of hematocrit and apparent viscosity. However this characteristic doesn’t concern
with big and middle size arteries, and it will not be considered during the model
implementation.

All these rheologic characteristics are essentially due to the presence of red blood
cells. In fact the plasma can be considered as a newtonian fluid, and white blood
cells and platelets represent a small percentage of the blood volume and their micro-
scopical effect on rheology may be neglected. When the red blood cells concentration
is less them 12% of the total weight, blood has a newtonian behaviour.

For middle and big arteries, in physiologic conditions, the rheological newtonian
model for blood is considered acceptable for a first level approximation. In fact we
can experimentally discover that for values of D in the proximity of artery walls,
viscosity is independent from any value of D. Since for our 1D model we consider
only big and middle arteries, by default we will treat blood as a newtonian fluid
with density 1.021x10% kg m~3 and viscosity equals to 0.004 kg m~! s~ (at 37 #C),

characterized by the following constitutive law:
T =—pI+2uD (1.10)

where p is the viscosity of the fluid.

1.3 Hemodynamics

Hemodynamics is an important field of cardiovascular physiology dealing with
blood pumping and circulation through the cardiovascular system. Classical hemo-
dynamics deals with in vivo and in vitro measurements of pressure, flow and re-
sistance. The direct extrapolation of such quantities is difficult since the blood
circulation is within the living body of human beings and so there must be a com-
promise between the accuracy of measurements and their invasive level. Also the
employ of straightforward calculations can hardly handle the complicated dynamic
phenomena of blood flow. Hence, computational simulation had become necessary
and has been proved to be valid.

Computational Hemodynamics applies numerical techniques to support the in-
vestigators of physiological and pathological phenomena concerning blood flow in the

cardiovascular system. In recent years, the development of computational methods
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together with the increasing computing hardware performances have enabled com-
putational Hemodynamics to become an important tool for analyzing the behavior
of blood flow in vessels.

The mathematical modeling of hemodynamics problems, like the study of blood
flow and its mechanical and biochemical interactions with the vessel walls is very
complex. Together with the equations describing the motion of an incompressible
fluid, we have to consider advection diffusion equations for the dynamics of soluted
lipids, oxygen and drugs; moreover, specific interaction models for the osmosis of
these substances with the wall may be taken into account. Finally, we have to
define a structural model that describes the mechanical behaviour of the vessel wall
coupled with the blood flow.

The development of a numerical solution for such hemodynamics problems must
take into account some compromises related to several aspects; at one hand we
have to provide all those informations about the problem that will be essential for
the comprehension of the involved phenomena. On the other hand it is necessary
to allow a numerical treatment of the model at reasonable computational costs.
For this purpose the choice of the model may be oriented either to an accurate
modelization of a localized system or a heavily simplified representation of a more
global physical system; the former case implies the application of 2D /3D models
with the coupling fluid-structure [29][3], while the latter refers to consider the whole
system as a network of compartments whose features are treated as mean or lumped
parameters [14]

A possible compromise between these approaches is represented by the one-
dimensional wave propagation model, which involves solving the governing equations
of blood flow in a one-dimensional domain and assumes that dominant component

of the blood flow velocity is oriented along the vessel axis.

1.3.1 The one-dimensional model

The one-dimensional modelling, and its application to the human arterial system,
was introduced for the first time by Euler in 1775[2] who derived the partial differ-
ential equations expressing the conservation of momentum and mass for an inviscid
fluid. T order to close the problem, he suggested two possible, but experimentally
not realistic, constitutive equations which describe the behaviour of an elastic wall

with changes in the lumenal pressure. Euler did not recognise the wave-like nature
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of the flow and was not able to find a solution for his system of equation.

The wave nature of the arterial flow was first described by Young[36] who derived
the wave speed in analogy to Newton theory of the speed of sound in air. In 1877
Moens[13| and Kortweg|8] independently published analyses of flow in thin-walled
elastic vessels, deriving what is now known as the Moens-Kortweg equation for the
wave speed. Riemann[20], in the 1860, provided the analytical solution for the
general equations for 1D model when he introduced the method of characteristics;
such tool was first applied to arterial low more than 50 years ago by Anliker and
co-workers|26](27] and Skalak|[23].

The system of equations derived by Euler is composed by non-linear partial dif-
ferential equations analogous to the shallow-water equations of hydrodynamics or
the one-dimensional inviscid equations of gas dynamics. However, under physiologi-
cal conditions of the arterial system, such equations are only weakly non-linear and
therefore many characteristics of the flow may be captured using a linearised system.
This is the approach of Womersley[35] (1957) who linearised the two dimensional
equations for the flow in straight, circular elastic pipes and obtained the wave solu-
tion by Fourier techniques. This linear analysis has become the "standard" model
of waves in arteries and is found in most hemodynamics books. The success of the
linearised model and the apparently periodic nature of the arterial system has con-
vinced most researchers since Womersley to analyse arterial flow in the frequency
domain rather than the time domain, using the "electrical analogy" pressure-voltage
and flow-current.

Although the body of work using the frequency domain is considerable, many
aspects of the physiological waveforms have yet to be understood; moreover there
are some limiting aspects concerning the solution of such a problem in the frequency
domain. Firstly the frequency domain may lead to the implicit assumption that the
arterial system is in a state of permanent "steady oscillation" that may continue
even when the forcing from the heart is stopped. However, the characteristic speed
of wave propagation is sufficiently fast that the time scale to propagate information
through the whole arterial system is much smaller than the duration of the cardiac
cycle. It is generally observed, in resting conditions, that flow in large arteries
appears at rest during late diastole. Secondly, the aortic valve is an essentially
non-linear element dividing the cardiac cycle into systole and diastole. Since the
frequency domain cannot distinguish between these two phases of ht cardiac cycle,

an identical systolic behaviour of the ventricle during systole (and the arterial system
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during diastole) could be masked simply by changes in the fundamental frequency.
An alternative approach to simulate the one-dimensional arterial system is to

work in a space-time domain instead of a frequency analysis;...
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Chapter 2
Problem formulation

In chapter T we gave a preliminary base of knowledge about the cardiovascu-
lar system, introducing both the physiological background and possible models to
be used for the numerical characterization of its functioning. In this chapter we
focus on the mathematical formulation related to the one-dimensional model of
the vascular network, accounting for several aspects: firstly, the derivation of the
governing equations for this kind of model is detailed accounting for geometrical
and physical assumptions, definition of the computation domain and attribution of
suitable boundary conditions. Secondly, the governing system we obtained is numer-
ically solved by means of time-space integration schemes adopting the finite element
theory. Such schemes will be further implemented into a numerical solver which,
coupled with GiD! pre-post process interface permits to calculate the numerical

solution of the problem and to display the obtained results.

2.1 Governing equations

The governing equations for 1D blood flow model in arteries can be derived
considering a single vessel (fig. 2.1). Since we are adopting a one-dimensional
formulation, several simplifying hypothesis must be taken into account; starting
from the geometry, we can assume the arterial vessel as a long, straight cylinder
of length L (fig. 2.1). Doing this, we decided not to consider local curvatures so
that the axial coordinate z represents also the preferential direction of the blood

motion. The new cylindrical domain €2., described using a cylindrical coordinate

1See appendix A.
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Figure 2.1: Sketch of a single compliant vessel
system (r, 0, z), is defined as follows:
Q.={(r,0,2): 0<r <R(z1t), 0 0,2m), z€ (0,L)}

for Vt > 0, indicating with e,, ey and e, the radial, circumferential and axial unit

vectors.

Figure 2.2: One-dimensional cylindric domain for a single arterial vessel and detail of the circular
section S(t, z)

The assumption of a cylindrical geometry for the vessel is not the only simpli-
fying hypothesis adopted for the one-dimensional model; since we wish to study
how pressure and flow waves propagate into the arterial system without considering
hemodynamic details, we analyze the blood flow in terms of transversally averaged
area and flow rate calculated on the vessel section; mean sectional values anyway
give a good description of the wave propagation in arteries [15][28] and allow to
avoid considering the radial and angular components of velocity.

Following this approach we assume axial symmetry for all the components in-
volved (area, velocity and pressure), which are functions of z and t only, and radial
displacements along the radial direction solely. The latter hypothesis means that
each axial section S remains circular at all times, i.e., for z € [0, L] and ¢ > 0 we

have:

S§=S8(zt) ={(r0,2) : 0 <r <R(zt), 0<0<2n}
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At each point of the section surface we may write n = ne,, where n = R — Ry is

the displacement with respect to a reference radius R,

2.1.1 Mass conservation equation

Considering the vessel defined in fig. 2.2, the principle of mass conservation
requires that the rate of change of mass within the domain 2. plus the net mass
flux out of the domain is zero. Since we consider transversally averaged values for

area and axial velocity, they may be defined as:

At z) = do = TR*(t, 2 2.1
€ = [ (2 2.1)
u,(t,z) = ult, z)s (%) .ot z) = /S(t )uzda (2.2)
Qt,z) = A(t,z)u (2.3)

where u is the mean velocity on each section and s : R — R is a welocity profile
function. We assumed this profile does not vary in time, thinking s as representative
of an average flow configuration.

Denoting the vessel volume as V (t) = fOL Adz, and assuming there are no infil-
trations through the side walls, the mass conservation can be written as

dv(t)

Tdt +pQ(L,t) — pQ(0,t) =0 (2.4)

where p is the blood density. If infiltration does occur we must add a source
term to this equation [32|[31].
To determine the one-dimensional equation of mass conservation, we insert V (t) =

fOL Adz into (2.4) and, since we can write

L
99,
0 aZ

d L L 8@
pa/o A(z,t)dz +p/0 %dz = 0.

As we assume L independent of time, we can include the time derivative inside the

158 2y

2As reference state we indicate a generic steady state of the 1D system, where we have the

Q(Lvt) - Q(07 t) =

2

we obtain

integral to have

section A = Ay = 7RZ and the blood mean velocity @ ~ 0
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Since we have not specified the vessel length L, the domain is arbitrary and so the
above equation must be true for any value of L. We therefore obtain the differential

equation for the mass conservation related to the one-dimensional model:

04 0Q
EJra—O (2.5)

2.1.2 Momentum equation

The momentum equation states that the rate of change of momentum within the
integration domain €. plus the net flux of the momentum out of the domain itself
is equal to the applied forces on the domain and can be expressed over an arbitrary
length L as

d L
o | PRdz A+ (apQu)r — (apQu)o = F (2.6)
0
where F'is defined as the applied forces in the z-direction acting on the domain;
again we have not considered flux losses through the side walls of €2.. The equation
(2.6) includes a momentum-flux correction coefficient «, also called Coriolis coeffi-
cient, which accounts for the fact that the momentum flux calculated with averaged
quantities (z) does not consider the non-linearity of sectional integration of flux
momentum. So we may assume
fs w’do _ fs 52do
Au? A

/pz‘ﬁda = api’A=apQu = afzt)=
S

In general @ may vary in time and space, yet in our model is taken constant as
a consequence of (2.2). There are several choices for the profile law s; one is the
classical parabolic function s(y) = 2(1 —y?), corresponding to the Poiseuille solution
for steady flows in circular tubes. Another profile law often used for blood flow in

arteries [24] is a power law of the type

s(y) =~ (v +2)(1—y") (2.7)

Figure 2.3 shows the profile trend adopting several values for ~.
To complete the equation (2.6) we need to define the applied forces F' which

typically involve a pressure and a viscous force contribution, i.e.

L L
F =(PA),— (PA)L +/0 /as Pn.dsdz +/0 fdz (2.8)
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Figure 2.3: Velocity profiles for blood flow in arteries considering several values of

where OS represents the boundary of the section S, n. is the z-component of the
surface normal and f stands for the friction force per unit of length. The pressure
force acting on the side walls, given by the double integral, can be simplified since

we assumed both constant sectional pressure and axial symmetry of the vessel; so

L L
/ / Pn.dsdz = / P%dz (2.9)
o Jos o 0z

If we finally combine equations (2.6),(2.8) and (2.9) we obtain the momentum

we have

conservation for the computation domain expressed as

L

L 0Qdz + (apQu)s — (apQuy = (PAY — (PA), +

L L
+ / P%dz—i-/ fdz  (2.10)
0 0z 0

To obtain the one-dimensional differential equation for the momentum we note
that




which, inserted into (2.10), taking L independent of time and p constant, gives

,O/OL{% + a@écju)}dz _ /OL{_a(ng) + P% + f}dz

Once again this relationship is satisfied for an arbitrary length L and therefore can
only be true when the integrands are equal. So the one-dimensional equation for

the momentum conservation becomes

Q.2 <Q2) _ 408 ] (2.11)

o Yo \Aa) T 59" P

The viscous term in the equation (2.8) may be also expressed as a function of

the velocity profile s(y). Considering an infinitesimal portion 7 of the domain €.

.

e N

T

dz

Figure 2.4: Infinitesimal portion 7 of Q.

(fig. 2.4), we can write:

L
/ fdz = u/AuZ:u/ Vuz-n:u[ 8uz+ 8uz+ Vuz-n]
0 T oT s- 0z s+ 0z It

The term Ou,/0z is assumed to be much smaller than the others, and moreover

we may split n into its radial and axial components, n, = n,e, and n, = n.e,.

Consequently we have
/ Au, = / (Vu, -n, + Vu, - e,n,)do
T Iy
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Again the term Vu, - n, may not be considered, being proportional to du,/0z.

Recalling the relation (2.2) we obtain

/ Au, = Vu, - en,.do = / Es’(l)n -e.do =~ 2mus'(1)
T R

FT FT

because n,do can be expressed as 2w Rdz. Passing this term to the limit as dz — 0
and substituting it with f/p into the equation (2.11) we finally obtain
oQ 0 (QQ) AOP

T il - 7 LK.
ot +a82 p 0z A

A

where
K, = —2mvs'(1)

is the friction parameter for our one-dimensional system, which depends on the

kinematic viscosity v = R of the fluid and the velocity profile s.

2.2  Vessel wall mechanical modelling

Once we obtained the two governing equations (2.5) and (2.11), it is possible to

write the one-dimensional system as

A 0Q
B0 2e0.), >0 1%
0Q 0 ( Q*\  AopP Q

where the unknowns are A, ) and P. As we can notice the number of variables

is greater than the number of equations (three unknowns for the two equations (2.5)

and (2.11); therefore one equation more is needed in order to solve this system.

For this reason we introduce an algebraic relationship between area and pressure,

deriving it from a mechanical model for the vessel wall displacement. In this project
we considered the generalised string model [18|, which can be expressed as

#Pn  _on  _0%n _ Pn

Pulogm = Tor ~ 9 T i

where 7 is the radial displacement defined previously and P.,; is the pressure

by = (P = Puuy) (2.13)

external to the vessel, here taken constant.
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Each term of the equation (2.13) has its own physical significance: the first one is
the inertia term, proportional to the wall acceleration. The second term is a Voigt-
type, viscoelastic term, proportional to the radial displacement velocity. The third
term is related to the longitudinal pre-stress state of the vessel wall, and accounts for
the longitudinal tensions acting on arteries. The fourth term is another viscoelastic
term while the last term is the elastic response function. Besides p,, is the vessel
density, hg is the wall thickness, a, b and ¢ are three positive coefficients. We can
develop the last term of (2.13) being
VA - VA,

ﬁ y with A(] = WR%

and
E— E—ho . 7TEh0
kR KAy

where E is the Young modulus of elasticity and & represents the Poisson ratio,

with k=1— &2

typically taken to be £ = 0.5 (then & = 0.75) since biological tissue is practically
incompressible.

It is known that, under physiological conditions, the elastic response of the main
arteries is the dominating effect, while the other inertial and viscoelastic terms give
a negligible contribution. Consequently, a first model which relates pressure and
area may be

VA= VA
0

P—P,=by= b (2.14)

where

is a function of z through the Young modulus, E(z). In general, the algebraic

relationship may be expressed as
P:Pext+f(A;A0aﬁ) (215)

where we outlined that the pressure will depend not only on A, but also on Ag
and on a set of coefficients 8 = {31, B2, ... 3, } which accounts for the physical and
mechanical characteristics of the arterial vessel. Both Ag and 3 are given functions
of z, but they do not vary in time. It is required that F be at least a C' function
of its arguments and be defined for each positive value of A and Ay. In addition we
must have, for all the allowable values of A, Ay and [ that

oF

8—A>O’ and F(A07A0,/8):0
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There are several examples of algebraic pressure-area relationship for one-dimensional
models of arterial flow [9][24]; here we assumed the relationship (2.14), where 3 =
{f1} and, for the sake of simplicity, P.,; = 0. Then function F can be written as

Bﬁ—\/A_o

f(A7A0aﬁ1) = A
0

(2.16)

2.3 The final model

The derivation of the above pressure-area dependence allows to close our one-
dimensional system (2.12), replacing the pressure term with the algebraic relation-

ship (2.14). To this purpose we also introduce the following quantity

AOF
= c1(A; A0 B) = | =5 2.1

which represents the propagation speed of waves along the cylindrical vessel.
The two-equation system we finally obtained may be written in a quasi-linear

form, using the matrix notation. So we have

a—U+H(U)8—U—1-B(U):0, z€(0,L), t>0 (2.18)
ot 0z
where
A
U —
Q
0 1 0 1
HU)=| AdF | = o\?: _ Q (2.19)
;8—A_QU2 200t c%—a(z> 2042
0
B(U) = AOF dAy AOJOF d
(U) _KRQ+ OF dA, | AOF d

A poA, dz ' p 9B adz

In our modelling, Ay and (3; are taken constant along the axial direction z because
we assume that both the initial area Ay and the Young modulus £ do not vary in
space; so the expression of B accounts only for the friction term depending on Kg.

The non-linear form (2.18) for the governing system may be transformed into a

conservation form as
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oU OF(U)
_'_

a0 P S{U)=0, ze€(0,L), t>0 (2.20)
where
F(U) ¢ (2.21)
= 2 .
a% + 01
is the flux vector, and
0
SU)=-BU)~- | 9C,d4, 0CidB (2.22)

04y dz = 98 dz
accounts for the source term of the system. C] is a primitive of the wave speed

1, given by
A

Ch(A; Ao, B) = / (7 Ay, Bdr

Ao
Applying the relationships (2.16) and (2.17), we obtain

[ B 1 B 3
= A1 = A2 2.2
C1 204, = O 304, (2.23)

2.4 Characteristic analysis

One of the methods for solving nonlinear systems of partial differential equations,
like our one-dimensional model, is the characteristic analysis [22]|[17]; considering
(2.18), we can calculate the eigenvalues for the matrix H(U)

Q
Ay = a + ¢, 2.24
12 =« A c ( )

where

Co = \/c%+oz(oz— l)A—z

Since the Coriolis coefficient o > 1, ¢, is a real number; besides, under the assump-
tion that A > 0, indeed a necessary condition to have physical relevant solution,
c1 > 0; therefore we have ¢, > 0 which means H has two real distinct eigenvalues
and so, by definition, the system (2.18) is strictly hyperbolic. For typical values of
velocity, vessel section and mechanical parameter (3; encountered in main arteries

under physiological conditions, we find that A\; > 0 and Ay < 0.
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Indicating with (1;,15) and (r;ry) the two couples of left and right eigenvectors

of H, we may define the matrices R, L and A as

0 Ao

A0 ] (2.25)

Here we considered, for simplicity, a = 1%; since left and right eigenvectors are
mutually orthogonal, we choose them so that LR = I, being I the identity matrix,

without loss of generality. The matrix H becomes
H =RAL

and the system (2.18) takes the equivalent form

U U
Laa—t + AL%—Z +LBU)=0, z€(0,L),t>0 (2.26)

We introduce a change of variables such that

oW, OWs
=1 =1 2.2
ou " oUu 7 (2:27)
Wi and W5 are called characteristic variables of the hyperbolic system. By
setting W = [W; Wa]" the system (2.26) may be elaborated into

oW IOW
W+AW+G_O’ z2€(0,L),t>0 (2.28)
with
c_Lp. OWdd oW dg

0Ay dz 98 dz
Under the assumption that Aq and [3; are constant in space and taking B neg-
ligible?, the equation (2.28) becomes
OW IOW
—+A— = L), t
8t+ ER 0, 2€(0,L),t>0

which is a system of decoupled scalar equations written as
oW, ow;

+Ni——

ot 0z

3The value of « usally varies between 1 and 4/3
4 Assuming B ~ 0 is consistent with the fact that, in the case of 1D models, the viscous source

=0, z€(0,L), t>0,i=1,2. (2.29)

term in the momentum equation is negligible under the physiological conditions concerning main

arteries.
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From (2.29) we have that W, and W, are constant along the two characteristic

curves in the (z,t) plane (fig. 2.5) described by

dz dz
E = )\1 and E = )\2

}\1 Ao

0 L z

Figure 2.5: Diagram of characteristics in the (z,¢) plane. The solution on the point R is obtained

by the superimposition of the two characteristics W7 and Wy

The expression for the left eigenvectors 1; and 1, is given by

Coq — QU —Co — QU
llzg 5 12:§ )
1 1

where ¢ = ¢(A, w) is any arbitrary smooth function of its arguments with ¢ > 0.
Here we have expressed 1; and 15 as functions of (A, @) instead of (A, @) in order to
simplify the next developments.

For an hyperbolic system of two equations is always possible to find the charac-
teristic variables locally, that is in a small neighbourhood of any point U [5], yet
the existence of global characteristics is not in general guaranteed. Assuming oo =1
the relationships (2.27) take the form

oW, oW,

oA~ an GA (2.30a)
oW, oWy
oA = v T = GA (2.30b)
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We now show that a set of global characteristic variables exist for the problem

at hand. Since we note, from 2.30, that W, , are exact differentials being

W, W,
0Adu — DudA

for any value of A and u; we also have that ¢; does not depend on @ and then, from

the above relationships we obtain

Js s
D cr A
“ou oA
. . . s
In order to satisfy this relation we have to choose ¢ = ¢(A) such that ¢ = —Aa—A.
To do this we can take ¢ = A~1.
As a consequence we can write
C1 _ &1 _
oW, = Z@A +O0u, OW, = —ZﬁA + ou (2.31)

Taking (Ao, 0) as a reference state for our variables (A, ), we can integrate the

above relationships obtaining

A A
W1:u+/ Cl(g)de, szu—/ Cl(e)de

Ay € Ay €

Introducing the expression (2.23) for ¢; we have

Wm:QiéL( b A%—%) (2.32)

’ A 2pA0

with ¢y is the wave speed related to the reference state.

We finally can write the variables (A, @) in terms of the characteristic ones,

2 4
b1 8 2

2.5 Boundary conditions

By the characteristic analysis of the one-dimensional model we pointed out the
hyperbolic nature of one-dimensional system for blood flow in arteries; consequently
the solution is given by the superimposition of two waves whose eigenvalues \; o
represent the propagation speeds of such waves. As we have seen previously, they

always have opposite sign and so blood flow is sub-critical; under this condition, we
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W,

-2

z=0 z=L

Figure 2.6: Sketch of the two characteristics entering the domain.

need two boundary conditions to close the governing system: one at the inlet section
z = 0 and the other at the outlet z = L (fig. 2.6).

An important class of boundary conditions is represented by the so-called non-
reflecting or absorbing conditions [30][6], which allow the simple wave associated

with the characteristics to enter or leave the domain without spurious reflections.

Absorbing boundary conditions can be imposed by defining values for the wave
entering the domain; in our case A\; > 0 and Ay < 0 so W is the entering character-

istic in z = 0 and W5 the inlet characteristic in z = L. We have

Wi(t) = q:1(t), for z=0 and t>0,
(2.34)
Wi(t) = ¢go(t), for z=L and t>0,

being ¢1(t) and g»(t) two given functions.

This kind of boundary conditions is suitable when we consider the outlet, or
distal, section of the vessel, where the values of area or flow rate are not known
before the computation. On the contrary for inlet section we often impose conditions
on the physical variables of the system, as pressure or flow rate. Such values can be

taken, for example, from experimental measurements.

2.6 Numerical discretization

The system (2.20) has been discretized using both a straightforward Galerkin
and a Taylor-Galerkin scheme [1]. The latter is the finite element counterpart of the
Lax-Wendroff [10] finite difference scheme.
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Considering the equation (2.20) and having H = —— we may write

oUu
oUu OF
PU _ 9SOU_ 0 (oUy
or U ot 0z ot )
oS OF OHB 0 oOF
= a—u(s—a)— B +0_<H0_) (2.36)

For simplicity, the dependence of S and F from U is dropped. Starting from
the above equations, we now consider the time intervals (¢,,t,+1), for n = 0,1,...
with ¢, = nAt, being At the time step; then we discretize the equation in time
using a Taylor series which includes first and second order derivatives of U; for
the straightforward Galerkin scheme only first order terms will be considered, while
for the Taylor-Galerkin scheme we will account for both terms. Therefore we ob-
tain the following semi-discrete schemes for the approximation U™ of U (t,1),

respectively:

e Straightforward Galerkin scheme:

F'I’L
Uttt = Un_At(% —S"), n=0,1,... (2.37)
z

e Taylor-Galerkin scheme:

2 n n
v = Al {F" + %H”S”] _ar {SUaF . (H"aF )}

0z 2 0z 0z 0z
At
+AL | S+ 7SUS" , n=0,1,... (2.38)
8Sn n n : n n n
where Sy = U and F", stands for F(U"), just as H", 8" and S{;; the value

U" is given by the initial conditions.

For each time interval (t,,t,.1) we apply a spatial discretization carried out
using the Galerkin finite element method [12|[11]. To this purpose we subdivide the
domain Q = {z: z € (0, L)}, which is the 1D counterpart of the 3D domain €.,
into a finite number N,; of linear elements having length [ (fig. 2.7).

Moreover we introduce a trial function space, 7, and a weighting function space,
W. These spaces are both defined to consist of all suitably smooth functions and
to be such that

T = {U(z,0)|U(2,0) =U%=) on Q. at t =}, W = {W(2)}
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Figure 2.7: One-dimensional linear mesh

Considering the case of a straightforward Galerkin scheme, we multiply the equation
(2.37) for the weight function W and we integrate it over the domain ). obtaining,
for Vt > 0

/ W (Un+1 . Un) A0 = At [ a_WF”dQ + / S"WdQ} +
Q Q aZ 9]
—At [WF,"|._p — WF,"|._] (2.39)

The flux term F™ has been integrated by parts so we must account for boundary
terms at the inlet (z = 0) and at the outlet (z = L) of the domain. Equation (2.39)
must be verified for every W in W.

Starting from the weak form of the problem (2.39) we build the subspaces 7"
and W" for the trial and weighting function spaces 7 and W defining them as

T = (U 0)[U, 1) = Y U 0N, () U =T(z) = UY)
(2.40)

where N, is the standard linear finite element shape function (fig. 2.8) associated
with the j-th node, located at z = z;, and U the value of U at the node j. Since
we are using the Galerkin method, the base shape functions defined above are used
as weighting.
Adopting the following notation
(W, U)q, = | W-UdQ,
Qe

and considering the sum of each element contribution
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Figure 2.8: Sketch of a 1D shape function

the equation (2.39) becomes

> (N Njo, (U =UY) = AtY [(Niz,Nj)o F7 + (Ni, Ny, S7] -
el

el
_At [NiFrnlz:L - NiFlnlz:O}
1,7 =1,2 (2.41)
Now we focus on a simple mesh composed by two element, 7 and 7+ 1, and three

nodes; then we highlight the contribution made by each single node defining, in a

matrix form

{121
M., = (N;,N; = - 2.42
( ])Qe 6[1 2] ( )
1] -1 -1
M; = (N;,,Nj)q, = = 2.4
f ( 1,25 ])Qe 2[ 1 1 ] ( 3)

M. is the so-called consistent mass matriz. Afterwards we assembly the 2-

element mesh:
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2 1 U - U -1 - Fr,
z At
Gl 14t ugrtt-ur | o= 5|10 <1 || B
1 2 urtt —ur, L1 ] Fy
E=
IAt
+— 1141 sro| +
6
i+
+ (b.c.) (2.44)

where (b.c.) means boundary conditions and represents the two boundary terms
in equation (2.41). It is possible to adopt a simplified or lumped form for the matrix

M, [11], summing up the rows into the diagonal, obtaining

I13 0 l
M, = - =1 (2.45)
6|0 3 2
For a generic internal node ¢ we finally have
At At
Ut = Ur (Pl - FL) + S (ST +ASPS) (246)

For what concerns the border nodes, we have to consider also the contribution
given by boundary conditions; starting from the equation (2.44), we have the term

(b.c.), represented by
At [Niﬁrn|Z:L—NiFln|Z:0] , 1= 172

which implies the knowledge of the flux terms depending from the values of A and
() at inlet and outlet sections. To extract them we need the two characteristic
variables W, and W, at each border to recover U(A, Q) using the equation (2.33).
To this purpose we adopted a technique based on the extrapolation of the outgoing
characteristics [21]. Having the friction parameter Kp small with respect to the
other equation terms in (2.20), we assume that in the vicinity of the boundaries the
flow is governed by the characteristic system (2.29). At the generic time step n we
have U™ known and we linearise the eigenvalues \; o of (2.20) by taking their values
respectively at section z = L and z = 0 for ¢t = ¢,,. Then we derive a first order

approximation of the outgoing characteristics at time ¢,,,1,which is
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W3 (0) = W3 (=23 (0)At)
Wi (L) = WY (= (L)AY)

By using these information together with the values of W;(0)"™! and Wy(L)"!
already given by (2.34), we are able to compute U (0)""! and U(L)"*!, through
(2.33), and in this way we derive the flux terms at boundaries.

Analogously to what we have done for the straightforward Galerkin scheme, it is
possible to derive the discretized form of the one-dimensional system in the case we
employ a Taylor-Galerkin scheme. Starting from the equation (2.38) and proceeding

in the same way as before, we obtain the following expression:

S (N Njo, (U =UT) = AtY [(Nie, Nj)o Frw (U;) + (Ni, Nja. Sty (U;)] —

el el

o OF5
—— (Ni, Nj)o. Su(UY) 5 )~

el

At? LOF

el

—At [NiFrn‘Z:L - NiFln‘z=0:|

i,j=1,2 (2.47)
where we have assumed
At
Fy(U;) = F" + S H' R
and A
t
We choose to use, for time integration, both a second and a fourth order explicit
Runge-Kutta scheme; such methods are diffused in computational fluid dynamics [7],
and show good properties, e.g. ease of programming, simple treatment of boundary
conditions and good stability [11]. About this last concept, Galerkin and Taylor-
Galerkin require a time step limitation in order to keep the solution stable. Referring
to a linear stability analysis, as in reference [16]|, we indicate that the following

condition should be satisfied
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At < CFL min {l—] : (2.48)

0<i<N | max (A4, Aay)
where ), ; indicates the eigenvalue A\; at the mesh node ¢ and CFL is the so-called
Courant-Friedrichs-Levy number; for the case of a second-order Taylor Galerkin

scheme we assume CFL = % [16]

2.7 Bifurcation treatment

The one-dimensional model of a single artery can be extended to handle the
vascular network by imposing suitable conditions at the bifurcations between vessels.
In order to manage a branching zone, when using a 1D formulation, we adopt the
technique called domain bifurcation[19]. As showed in figure 2.9, we divide the
domain 2 into three partitions €2y, 5 and €23; doing this we have 3 sub-problems
which must be coupled imposing adequate boundary conditions. Then we have
to evaluate six variable, (A;,@Q;) with ¢ = 1 : 3, corresponding to the problem

unknowns, area and flow rate, for each one of the vessels composing the branching.

==

£l

_ o
" A aili ,;,-_Il
AT q-ll""*"".. imll [

i1, i,

T T

Figure 2.9: Domain decomposition for a generic bifurcation containing one inlet vessel and two

outgoing vessels.

The simplest condition we can impose is to require the mass conservation through

the bifurcation and and therefore the flow rate balance can be written
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Q1= Q2+ Q3

remembering that the flow moves from the subdomain €2; to the subdomains €2y
and 3. Other two assumptions can be obtained from the requirement of continuity

of the momentum flux at the bifurcation. This lead to consider the total pressure

term continuous at the boundary. So we may write
L ([ 1 [(Q
P =P+ —p|-—==
1Tyl (A1> T3 (A2>

2
P (2) = r o (%)

The remaining three relationships can be derived using the characteristic vari-
ables. Since we have a hyperbolic system, each bifurcation vessel has one charac-
teristic associated with that section belonging to the branching. So we will consider
W, for the inlet artery while we will take W3 and W3 for the two outgoing vessels.

The final system we obtain for as single bifurcation is the following:

(

1 B 1
T 4 A1
Wl Al + 2pA01 1

wi_Q_y [ 5

Ay 20A02
wzo @y [ Pyl

A 2pAos (2.49)
Q1= Q2+ Q3

2
1 2

P1+1p(§1> Pz+1 (32)

\

We can solve it through the Newton-Raphson technique for differential systems
of non-linear equations.
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Chapter 3

Implementation of the numerical

solver

In the previous chapter we introduced the mathematical formulation concerning
the one-dimensional model of blood flow in arteries; we have defined the set of
governing equations and boundary conditions whose numerical integration provides
an approximated solution for our hemodynamic problem.

In this chapter we deal with the creation of a computation tool necessary to solve
such a one-dimensional system and display the obtained results which, as already
described, are related to the propagation of blood pressure and flow rate waves into
the cardiovascular system.

We can divide the creation process of this solver module, or problem type, into

two phases:

e Implementation of the numerical solver;

e Coupling of the solver with a graphical interface for data management and

visualization of results;

The computational core of the problem type is represented by a finite element
code programmed in FORTRAN90!; then the graphical user interface is provided by
GiD?, which is a pre-post process finite element software developed at CIMNE?. GiD

allows to define, prepare and visualize all the data related to a numerical solution;

1See appendix B for a more detailed treatment
2See appendix A for details
3Ciéntro Internéational de Metodos Numeéricos en Ingénieria, Barcelona, Spain
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these data include the definition of the geometry, materials, conditions, solution
informations and other parameters. The software can also generate a mesh for finite
element, finite volume or finite difference analysis and write the informations for a

numerical simulation program in its desired format.

GID

Preprocess Postprocess

j SOLVER

INPUT FILE QUTPUT FILE

Figure 3.1: Flowchart describing the execution of a GiD problem type

Figure (3.1) shows the general scheme adopted by GiD for the preparation and
the execution of a standard problem type; we note that the pre and post process
phases, respectively for what concerns the creation of the INPUT FILE and the
visualization of results, are both supported by the graphical interface. Instead the
computation section (represented by the box SOLVER), where the numerical solu-
tion is calculated, can be seen as a component external to GiD; so it is possible,
on the one hand, to customize the pre-post process interface, modifying the files
composing GiD problem type (see Appendix A) and, on the other hand, to program
any solver and couple it with the rest of the computation tool, just controlling that
the QUTPUT FILE does respect the GiD format for reading results.

We now briefly present the various parts composing the problem type we created
for the one-dimensional model of blood flow in arteries, following a certain number

of steps organized as follows

1. Starting the problem, with the creation of the model geometry;
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2. Creation of the material definition file;

3. Creation of the condition definition file;

4. Creation of the general configuration file;

5. Creation of the calculation program file and the execution files;

6. Execution of the calculation module and visualizing the results through GiD;

The point 1-4 can be referred to the pre-process phase, which provides the INPUT
FILE (fig. 3.1) entering the SOLVER (point 5). The last point, which deals with the
visualization of results, is referable to the post-process phase and will be considered

in next chapter.

3.1 Geometry of the model

First of all the geometry of the objects composing the problem at hand must
be defined; afterwards this operation has been completed, we can proceed imposing
necessary conditions and other properties over the model and finally calculate the
solution of our hemodynamic problem.

In GiD a generic geometry can be realized, in a way similar to a CAD (Computer
Aided Design) system, through the definition of the points and lines composing the
object we want draw.

Since we are considering a one-dimensional model, the problem variables are
functions only of the longitudinal coordinate z in space, while the sectional com-
ponents can be neglected; for this reason we can make two assumption about the
vessel representation adopted into GiD interface. For a simplification purpose we
first replace the three-dimensional vessel geometry with a single line, having the
same length as the 3D tube and representing its longitudinal axis. Furthermore, it
is useful to define a local reference system for each vessel of the model, in order to
consider only the axial z component when we work with the finite element code. The
origin of each local axis system is positioned on the inlet node of the corresponding
vessel (the inlet section in a 3D representation), and the z-coordinate has the same
direction as the blood flow one.

A single vessel is considered in figure 3.2 where we note the two mentioned
assumptions; if we work with models containing more than one arterial vessel, a

local axis must be created for each artery (fig. 3.3).
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4

Figure 3.2: Comparison between a 3D vessel geometry and the 1D representation used in GiD
problem type

3.2 Definition of materials

For the one-dimensional model of the arterial network, the definition of mate-
rials concerns the mechanical and geometrical characterization of the arterial wall
surrounding each vessel.

It is possible to assign such properties selecting between those arteries whose
parameters are included in tables 3.2 and 3.2. These data are referred to a simplified
arterial network containing the 55 largest arteries in the human body (fig. 3.5); it
was proposed and modelled using electrical circuits for the first time by Westerhof
[34]. This reference provides data for diameters, wall thickness, length and elastic
moduli for each of the 55 arteries. As we can see from the figure 3.4, the left window
contains the mechanical and geometrical values defined into tables. The user has
the possibility to modify such quantities, either changing only some of the listed
properties or creating a new vessel with a completely different characterization (fig.
3.4, the right window).

3.3 Boundary and bifurcation conditions

The boundary conditions for a one-dimensional model, as written in the pre-

vious chapter, have to be defined both at inlet and outlet sections of the arterial
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No. | Name of the vessel |1 (cm) | r (cm) | h (cm) | E (10°Pa) | c (%)
1 Ascending Aorta 4.0 1.470 | 0.163 0.4 4.67
2 Aortic Arch I 2.0 1.263 | 0.126 0.4 4.43
3 Brachiocephalic 3.4 0.699 | 0.080 0.4 4.47
4 R. Subclavian T 3.4 0.541 | 0.067 0.4 4.93
5 R. Carotid 17.7 | 0.473 | 0.063 0.4 5.11
6 R. vertebral 14.8 | 0.240 | 0.045 0.8 8.58
7 R. Subclavian II 42.2 0.515 | 0.067 0.4 5.05
8 R. radius 23.5 0.367 | 0.043 0.8 6.78
9 R. ulnar I 6.7 0.454 | 0.046 0.8 6.31
10 R. interosseus 7.9 0.194 | 0.028 1.6 10.64
11 R. ulnar II 17.1 0.433 | 0.046 0.8 6.45
12 R. int. carotid 17.6 | 0.382 | 0.045 0.8 6.80
13 R. ext. carotid 17.7 | 0.382 | 0.043 0.8 6.57
14 Aortic arch II 3.9 1.195 | 0.115 0.4 4.35
15 L. carotid 20.8 | 0.413 | 0.063 0.4 5.47
16 L. int. carotid 17.6 | 0.334 | 0.045 0.8 7.27
17 L. ext. carotid 17.7 | 0.334 | 0.042 0.8 7.02
18 Thoracic aorta I 0.2 1.120 | 0.110 0.4 4.39
19 L. Subclavian I 3.4 0.474 | 0.066 0.4 5.23
20 L. vertebral 14.8 | 0.203 | 0.045 0.8 9.23
21 L. Subclavian 1T 42.2 0.455 | 0.067 0.4 5.38
22 L. radius I 23.5 0.324 | 0.043 0.8 7.21
23 L. ulnar I 6.7 0.401 | 0.046 0.8 6.71
24 L. interosseous 7.9 0.172 0.028 1.6 11.23
25 L. ulnar TI 17.1 0.383 | 0.046 0.8 6.87
26 Intercostals 8.0 0.317 | 0.049 0.4 5.51
27 Thoracic aorta II 10.4 1.071 0.100 0.4 4.28
28 Abdominal aorta I 5.3 0.920 | 0.090 0.4 4.38
29 Celiac I 2.0 0.588 | 0.064 0.4 4.62

Table 3.1: Physiological data of the 55 main arteries used in the one-dimensional
model. From [34][25] and [33]. Part 1 of 2, vessels from 1 to 29
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No. | Name of the vessel |1 (cm) | r (cm) | h (cm) | E (10°Pa) | c (%)
30 Celiac II 1.0 0.200 | 0.064 0.4 7.93
31 Hepatic 6.6 0.458 | 0.049 0.4 4.58
32 Gastric 7.1 0.375 | 0.045 0.4 4.85
33 Splenic 6.3 0.386 | 0.054 0.4 5.24
34 Sup. mesenteric 5.9 0.499 0.069 0.4 5.21
35 Abdominal aorta II 1.0 0.843 | 0.080 0.4 4.32
36 L. renal 3.2 0.350 | 0.053 0.4 5.45
37 Abdom. aorta ITI 1.0 0.794 | 0.080 0.4 4.45
38 R. renal 3.2 0.350 | 0.053 0.4 5.45
39 Abdominal aorta IV 10.6 | 0.665 | 0.075 0.4 4.70
40 Inf. mesenteric 5.0 0.194 0.043 0.4 6.60
41 Abdominal aorta V 1.0 0.631 | 0.065 0.4 4.50
42 R. com. iliac 5.9 0.470 | 0.060 0.4 5.00
43 L. com. iliac 5.8 0.470 | 0.060 0.4 5.00
44 L. ext. iliac 14.4 | 0.482 | 0.053 0.8 6.57
45 L. int. iliac 5.0 0.301 | 0.040 1.6 10.21
46 L. femoral 44.3 | 0.361 | 0.050 0.8 7.37
47 L. deep femoral 12.6 0.356 | 0.047 0.8 7.20
48 L. post tibial 32.1 0.376 | 0.045 1.6 9.69
49 L. ant. tibial 34.3 | 0.198 | 0.039 1.6 12.44
50 R. ext. iliac 14.5 | 0.482 | 0.053 0.8 6.57
51 R. int. iliac 5.0 0.301 | 0.040 1.6 10.21
52 R. femoral 44.4 | 0.361 | 0.050 0.8 7.37
53 R. deep femoral 12.7 0.356 | 0.047 0.8 7.20
54 R. post tibial 32.2 | 0.375 | 0.045 1.6 9.71
55 R. ant. tibial 34.3 | 0.197 | 0.039 1.6 12.46

Table 3.2: Physiological data of the 55 main arteries used in the one-dimensional
model. From [34][25] and [33]. Part 2 of 2, vessels from 30 to 55
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Figure 3.3: Scheme of a bifurcation containing three vessels. As we note each vessel has its own

local reference axis (pink color), rotated with respect to the global reference system (red color).

network; moreover, since we also consider the presence of bifurcations between ves-
sels, it is necessary to identify those arteries composing the branching and apply the
compatibility conditions over them (see section 2.7 of chapter 2).

For what concerns boundary conditions, at the inlet we can choose the type of
known variable, pressure or flow rate, and modify a certain number of parameters
related to the entering waveform (fig. 3.6): if we select a half sine wave profile (fig.
3.8 right), we can modify the initial and the maximum amplitude value of the curve,
while if we use a physiological-type known function (fig. 3.8 left), no parameters
needs to be modified.

The boundary conditions at the outlet section depend upon the applied value of
terminal resistance Rp. If we assume the case of absorbing condition, then Ry = 0
and there should not be any wave reflection at the outlet section. In the other situ-
ation, that is consider a certain contribution of terminal resistance which simulates

the distal part of the arterial network, then Ry # 0. The value of Ry can be settled
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Figure 3.4: GiD windows containing material properties. Left window: vessel types belonging
to arterial network defined [25],[34] and [33]. Right window: customizable vessel with user-defined

properties

by the user through the GiD window shown in fig. 3.6.

The presence of a bifurcation in the arterial network must be defined indicating
those vessels composing the selected branching; we have to follow the 55 artery
model in order to select the correct vessels. Figure 3.7 shows the list of bifurcation

and the arteries belonging to each of them.

3.4 General configuration of the problem

The configuration of a problem type in GiD, besides the attribution of boundary
conditions and material properties, also needs the definition of several parameters

related to:

e The general data (e.g. blood rheologic parameters, graphical visualization

parameters);

e Data concerning the numerical solution (tolerance parameters for iterative

schemes, integration period);

3.4.1 General data

As shown in figure 3.9, such informations include the problem title, the unit
system, the density and viscosity of blood, the initial pressure in the aortic root?,
the Coriolis coefficient and the type of velocity profile (fig. 2.3) adopted for the 1D
formulation. For the last parameter we can choose between a flat velocity profile

(v = 0), a parabolic profile (v = 2) and power-law profile [24] (7 = 9).

4With the term aortic root we refer to the section of aorta closest to the semilunar valve out of

the left ventricle
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Figure 3.5: Connectivities between the 55 main arteries of the human body. From [22]
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Figure 3.6: GiD window for boundary conditions assignment.

Beyond such informations, the GiD problem type allows the user to choose which
results show during the post-process and how many temporal step write, and sub-
sequently display, into the output file.

The visualization of results into GiD post-process is done transforming the 1D
representation of the model geometry, adopted during the pre-process phase, into a
three-dimensional mesh, used only for graphical purposes, which gives a representa-
tion of results clearer than the one we may have by means of the one-dimensional
sketch. For this reason the user must set, through the parameter Section contour
nodes (fig. 3.9), the number of nodes lying on the border of each section in order to

build the 3D mesh composed by triangular elements (fig. 3.10).

3.4.2 Numerical integration data

The process of numerical integration involves the configuration of several param-
eters, some of them concerning the tolerances for approximation errors and others
related to the integration period. Figure 3.11 shows the list of parameter whose

values can be inserted by the user. We have:

e The number of cardiac cycles considered for the simulation. The user can
choose between three classes of cardiac frequency: Standard, with a generic
value of 72 bpm, Tachycardia, with 110 bpm and Brachycardia with 55 beats

per minute. It is also possible to change the time duration of the cardiac cycle,
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Figure 3.7: Bifurcation assignment window

paying attention not to insert too low values; if we decrease under a period of
0.3 seconds, which represents the duration of heart systole phase, the complete

simulation of a heart beat would not be accomplished.

The space-time integration scheme to use; the choice is between straightfor-
ward Galerkin - Taylor Galerkin and 2nd - 4th Runge Kutta (R-K) schemes.

The maximum number of steps to calculate using R-K schemes;
The CFL parameter, defined by (2.48), for the maximum time step definition;
The «ay stabilization parameter (for straightforward Galerkin only);

In the case we use the adaptive step size control for Runge-Kutta schemes, it

is possible to define the minimum time step and the error tolerance;

The error tolerance of Newton-Raphson iterative scheme for the solution of

non-linear equations related to the compatibility relationships at bifurcations
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Figure 3.8: Inlet known pressure profiles. Left graph: polynomial-interpolated function based

on physiological data. Right graph: half-sine wave profile. Data referred to a single cardiac cycle.
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Figure 3.9: GiD general data window

and the pseudo-characteristic evaluation at the outlet boundaries;

3.5 The numerical solver

All the informations related to finite element mesh, material and geometrical
properties, and problem general parameters are assembled together by GiD in a
calculation file, which is indicated by the INPUT FILE in fig. 3.1; these data
represent the starting point of the numerical solver.

The finite element code we programmed (see Appendix B) first reads the infor-
mation coming from this calculation file, then starts solving the numerical problem

following this general scheme:
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Figure 3.10: Correspondence between 1D and 3D representation of a single vessel into GiD
problem type.

START

(1) Input data reading;

t=t0; = Initial time
U=U0; = Initial values

(2)WHILE (t < T)

Evaluate At < CFL ;
max(A2)

(3)FOR (i=1:Number of elements)
calculate rhs-element;

rhs-global = rhs-global + rhs-element;

ol



TIME PERIOD  SOLVER |

FEM solver Galerkin — ‘

VILAE FERIED | SabyER ] Time-integration method 4th arder Funge-Kutta =l ‘

Mumber of cardiac cycles |1 b ax steps number | 40000
Cardiac frequency Standard — ‘ CFL [step limitation parameter] [0.5774
fraquency value[beatfmin]l??i Sigma [Corection parameter] |1

v Use Adaptive Stepzize Contral

Min Step|1e-07 b
U tolerance |1e-03
Mewton-R aphzon tolerance [1e-06

[~ Madify cardiac cycle duration

Figure 3.11: Windows for the assignment of numerical analysis parameters.

END

(4) Apply boundary and bifurcation conditions

U(t + At) = U(t) + At(rhs-global);
t=1t+ At
END

(5) write output results

STOP

In order to briefly explain the scheme above, we focus on five points, enumerated
from 1 to 5:

1. Input data reading: from GiD pre-process, the problem data are loaded and
read by the program;

2. WHILE loop: main temporal loop which provides the solution array U, as
defined in (2.19), for each temporal step; the number of step is not a priori
defined, because at each iteration we have to calculate the maximum step
following the relationship (2.48). For this reason we employed a WHILE loop
instead of a FOR one;

3. FOR loop: secondary loop which calculates, for each linear mesh element, the

02



contribution given by the right-hand side (rhs-element in the scheme above)
of equation (2.41) or (2.47), depending if we use straightforward Galerkin or

Taylor-Galerkin scheme respectively.

4. Apply boundary and bifurcation conditions: all the element contribu-
tions are assembled into a global right-hand side (rhs-global in the scheme) to

which boundary and bifurcation conditions are applied;

5. (5) write output results: The results are written in an OUTPUT FILE
(fig. 3.1) following the indications, given during pre-process (fig. 3.9), about
the type of variables (pressure, vessel section, flow rate or blood velocity) and

the number of temporal steps to be saved for post-process visualization.

During the execution of the program, the user can control the development of
the calculus through a window (fig. 3.12) displaying some general informations, e.g.
the number of nodes and elements related to the liner 1D mesh, and the number of
iterations already computed. In the case of interruptions, e.g. due to not convergence

or exceeded limit of maximum iterations, a message to screen will appear.

Gi[l output info for ‘current’ Sun Feb 26 13.43.0

Program started at: 13:43:03
Project name Carotid walidation
1I' arterial network modelling
Mesh composed by:

401 Nodes and 400 Elements

Time integration interwal 0.833333000000000 saconds
1000 dterations calcoculated. t£= 0. 147290z52418953
Z000 iterations calcoculated. t£= 0. zZ30137386586736
2000 iditerations calculated. = 0.4410772142366871
4000 dterations caloulated. t£= 0. 5230814439981 62
L5000 diterations calcoculated. t£= 0. 7451z0887817474

Total number of iterations = LLEl

Computation time 0 minutes 1l seconds

Figure 3.12: GiD window for monitoring numerical calculation
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Chapter 4
Numerical results

The computational tool we implemented coupling the GiD interface with a finite
element code allows to numerically simulate the blood flow in the arterial network
through a one-dimensional formulation. In this chapter we will show the results
obtained by the approximated solution of such a hemodynamic problem; first we
consider a simple geometry composed by one single vessel in order to validate the
model and also compare the various space-time schemes that we programmed. Af-
terwards we will deal with the vascular network composed by the 55 main human
arteries, whose structure and properties have been presented respectively in fig. 3.5
and in tables 3.2 and 3.2.

4.1 Inlet profiles

The correct imposition of a suitable perturbation which enters the problem do-
main is fundamental for the correct development of pressure or flow rate waves
through the arteries. At the inlet section of our model we have to impose, in or-
der to satisfy the mathematical requirements for hyperbolic models, exactly one
boundary condition related to the entering characteristic W1 (see eq. 2.34). In
the majority of cases we use to express such a condition in terms of physical vari-
ables, like area or flow rate; doing this we have the possibility, using such quantities,
to configure a certain type of profiles similar to a physiological ones, obtained for
example by experimental data.

When we presented the configuration of the GiD problem type, we introduced in
figure 3.8 two inlet profiles of pressure in time. Through the pressure-area relation-

ship, derived by the elastic model (see eq. 2.13) of the arterial wall, it is possible
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to obtain the corresponding value of area. The other possibility is to introduce a
function expressing the flow rate variation at the inlet of the arterial network. This
relationship, taken as an approximation of a real physiological profile, can be written

as

(0 =0Q, if 0<t<0.05s

t—0.
Q = Qo + AQsin (w%) if 0.05s <t < 0.26s
' (4.1)

A t—0.26
Q=Qy— 1—32 sin (WW) if 0.26s <t<0.29s

Q = Qo if t>0.29s

where () is the initial flow rate and AQ represents the peak of flow rate reached by
the half sine wave. The above function follows the trend given by of the physiological
@ profile, in proximity of the semilunar valve out of the left ventricle, as showed
in figure 4.1. Here we assumed the duration of 0.83 seconds, for this single cycle,
considering a standard cardiac frequency of 72 bpm, typical of a normal healthy
person. For different values of frequency, e.g. in the case of pathologic situations
(brachycardia, tachycardia) it is possible to modify the duration of the diastolic
phase, which comes after the half sine wave propagation and is the only heart-rate
dependent part of the cardiac cycle, as explained in figure 4.1.

The imposition of this kind of profile, or equally a pressure known function, allows
to evaluate the wave propagation through arteries, first imposing a no-reflecting
output condition for the case of a single vessel, then comparing such an ’absorbing
behaviour’ of the outlet section with the imposition of a terminal resistance for the
case of an artery network. Beyond this aspect it is also possible to observe the
distribution of the flux into the vascular system, comparing numerical values with

experimental data.

4.2 Case I: model of a single artery

We consider the modelling of a single artery having mechanical and geometrical
properties referred to the Thoracic aorta I in table 3.2. Here we resume such

properties:

)



500 |

|
|| |
.

mL/s | | |
0k =
L — —
_— 50| 210 l 650 |C0nsuderab|y heart rate-_d.cipendentl
(ca. 500 ms at 70 min~")
Inlet Volume Flow time profile
500 T T T T - -
_ : ' : ‘—Volume Flow‘
(5] ; T T
@ : i i i i s : i
250 e deeeeeees o N oo oo e i
= H H H H H H H
o :
L H
0 ! ! : ! =

1
0 0.1 0.2 0.3 04 05 0.6 0.7 08
Time [sec]

Figure 4.1: Lower image: input flow rate profile for the 1D model. Upper image: flow rate profile
out of the left ventricle. From http://www.zoo.ufl.edu/courses/pcb4723/.

Name Thoracic aorta I
Radius 1.120 cm
Length 80 cm

Wall thickness 0.110 cm
Elastic modulus 400000 Pa

In this case we assume a length of 80 cm in order to better evaluate the wave
propagation through the artery. We simulated our one-dimensional problem impos-
ing both pressure and flow rate at the inlet section, and adopting a no-reflecting
condition at the outlet. The time period considered is 1.66 seconds, corresponding
to the duration of two complete cardiac cycles in standard frequency conditions (72
bpm).

Through the evaluation of the results we can outline some considerations about
the numerical schemes we implemented into our finite element code. Figure 4.3
shows the flow rate in time related to a single vessel, the thoracic aorta, calculated
using both a straightforward Galerkin and a Taylor-Galerkin scheme. Analyzing
the wave profiles we note that the Galerkin obtained solution has a positive flow
rate increasing, after the main pulse has passed. This behaviour does not conform

with the physiological flow trend (fig. 4.1), which presents a small decrease of flow
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e Flow rate [m~3fsec]

I 00018787

0.001e722

0.0014656
- 0.0012591
: 0.0010525
| 0.00084599
| 0.00053944

0.00043289
0.00022634
1.9796e-05

step 665 .
Contour Fill of Section Flow rate.

Figure 4.2: Result visualization through GiD post-process interface. In this case we consider

mean sectional values of flow rate in a certain time instant.

rate due to the pressure drop at the end of the systolic phase. On the contrary the
profile resulting from the simulation with a Taylor-Galerkin scheme seem to better

reproduce the physiological trend for () in time.

Another aspect that we can evaluate is the variation of the solution when con-
sidering different velocity profiles. We can change the slope of the function (2.7)
through the modification of the coefficient v, so we compare the two most common

profiles which are the parabolic one (7 = 2) and the power-law one (y = 9).

As we can see in figure 4.4, the flow rate trend does not significantly change with
respect to the applied profile. This behaviour of the numerical solution accords
with the assumption that, for one-dimensional modellings of blood flow in main
arteries, the viscous term gives an inferior contribution with respect to the other
terms. Therefore we do not properly consider it, especially when we work with
characteristic variables, because we can decouple the characteristic system (2.29),

as already discussed in section 2.4.
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Figure 4.3: Comparison between the solutions, related to blood flow propagation into a 80 cm
length Thoracic aorta, obtained using straightforward Galerkin and Taylor-Galerkin schemes. We

imposed a known pressure profile at the inlet and no terminal resistance has been applied.

4.3 Case II: 55 artery network

The simplified vascular network (scheme in fig. 3.5) has been represented, trough
the GiD interface, as we can see from figure 4.6. The orientation of vessels in the
model does not influence the computation of the numerical solution, first because we
defined a local reference system for each artery, in order to work always with only
an axial component, and second because we do not consider, at bifurcations, that
blood flow changes depending on the value of the angles formed by the branching
vessels. This assumption is coherent since the solution of our problem, does not
significantly change if we consider or not a certain dependence from the branching

degree of a bifurcation; for details see [4].

4.3.1 Terminal resistance

In the previous model of a single vessel we applied only an absorbing condition
at the outlet section. For a more realistic simulation of blood flow, the contribution
given by the distal components of the cardiovascular system, which are not part of

the 55 artery network, must be considered.
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Figure 4.4: Comparison between flow rate waveforms obtained using different velocity profiles;
~ = 2 the parabolic one and v = 9 for the power law profile. Taylor-Galerkin scheme applied. Again

we imposed a known pressure profile at the inlet and no terminal resistance has been applied.

For this reason we assumed that the downstream micro-circulation acts as an
‘obstacle’ to the blood flow coming from the main arteries; this resistive effect can be

expressed, using an analogy with electric circuits (4.5), with a relationship between

pressure and flow rate of the type

P=Q- Ry,

where Ry is represents terminal resistance. The magnitude of this term is different
depending on the position we consider over the vascular network; table 4.3.1 shows

the different values of Ry corresponding to the terminal vessels of our model. Such

"

@

T T

Figure 4.5: Scheme of the resistive model adopted to simulate reflecting outlet conditions
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Figure 4.6: GiD representation of the 55 artery network



quantities have been calculated by Stergiopulos and Parker [25]; here we
values modified by Wang and Parker [33].

adopt the

No. Artery Ry (109 P:;?; 8) No. Artery Ry (109 P?jli;’ S)

Right vertebral 6.01 32 Gastric 5.41
8 Right radius 5.28 33 Splenic 2.32
10 Right interosseous 84.3 34 Sup. mesenteric 0.93
11 Right ulnar IT 5.28 36 Left renal 1.13
12 Right int. carotid 13.9 40 Inf. mesenteric 6.88
13 Right ext. carotid 13.9 45 Left ext. Iliac 7.94
16 Left int. carotid 13.9 47 Left deep femoral 4.77
17 Left ext. carotid 13.9 48 Left post. tibial 4.77
19 Left vertebral 6.01 49 Left ant. tibial 5.59
22 Left radius 5.28 o1 Right int. iliac 7.94
24 Left interosseous 84.3 52 Right deep. femoral 4.77
25 Left ulnar TI 5.28 54 Right post. tibial 4.77
26 Intercostals 1.39 95 Right ant. tibial 5.59
31 Hepatic 3.63

Table 4.1: Values of terminal resistance for the 55 artery model. Data taken from

[33].

4.3.2 Ascending-descending aorta

The numerical solution of the arterial network model provides values of section

area and flow rate at each node of the 1D linear mesh generated by GiD. In order to

validate the finite element code which calculates such results, we have compared the

mean profiles of flow rate derived from our model with the ones obtained through

magnetic resonance imaging (MRI).

Thanks to the collaboration with the Santa Creu I Sant Pau Hospital of Barcelona,

we have available a set of high-resolution MR images corresponding to several sec-

tions of the ascending-descending aorta segments; by means of a software for image
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elaboration, the FLOW MEDIS 4.1, we are able to extract a time profile for the
mean flow rate over the considered sections. Figure 4.7 shows, taking as reference our
GiD model of the artery network, the disposition of the four section corresponding

to the ones whose experimental MRI data are available.

Figure 4.7: Flow rate values at four locations (A,B,C,D sections) in the aorta. Comparison
between 1D-model profiles, obtained applying/not applying terminal resistance, and MRI imaging
data.

The following graphics contain the trend of different flow rate profiles, related
both to the numerical results and the magnetic resonance values, at sections A,B,C
and D of the figure 4.7.

As we can note, the flow rate in the ascending aorta, which is the artery segment
directly linked to the left ventricle, is not modified by the presence of terminal
resistances in distal vessel with respect to the totally absorbing configuration of the
network; when the distance from the heart increases, the influence of such terms
begins revealing through a decrease of the flow rate, due to the ’obstacle’ created

by the peripheral tissues and acting on the flowing blood.

'FLOW MEDIS - MRI Volume Analysis. Manufacturer: Philips Medical Systems. For more

informations: www.medical.philips.com
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Figure 4.8: Flow rate profiles at the root of the ascending aorta (section A).
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Figure 4.9: Flow rate profiles at the top of the ascending aorta (section B).

The profiles extracted by numerical simulations accords with the flow rate trend
characteristic of MRI data, both for what concerns the peak values and the time
progress, above all in the phase of initial systole, when blood comes out from the
heart and begin propagating into the systemic circulation; for what concerns the late
systole, we note small differences between numerical and experimental profiles. This
may be due to the fact that the inlet flow rate we imposed at the inlet decreased
faster if compared with the smoother profile related to the physiological data (see
fig. 4.1).
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Section C: aortic arch
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Figure 4.10: Flow rate profiles in the aortic arch (section C).
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Figure 4.11: Flow rate profiles in the beginning of the descending aorta (section D).

4.3.3 Flow distribution

In order to validate the numerical solution of the one-dimensional problem con-
cerning the blood flow into cerebral and limb circulation, we can demonstrate that
the cardiac output is distributed in a correct way following typical physiological
values?. At rest conditions, approximately 1/3 of the volume flow coming out from
the heart is directed into the upper-aortic circulation, which includes the cerebral
and upper limbs vessels; the remaining 2/3 pass through the aorta and reaches the
central and lower circulation, including e.g. renal and mesenteric arteries, and the

lower limb vessels.

2The physiological considerations which follow are taken from the website

http://users.ren.com/ /jkimball.ma.ultranet /BiologyPages/C/Circulation2.htm

64



Vessel name Q (=) | % of total flow
Brachiocephalic 105
Left carotid 26
Left subclavian I 40

171 34%
Thoracic aorta I 350 66%
total flow 521

Table 4.2: Table containing flow rate values for those arteries involved in the eval-

uation of blood distribution.

We evaluated the flow rate values measured in those arteries which bifurcate from
the aortic segment to go into the upper circulation together with the profile related
to the thoracic aorta, which on the contrary drives blood to the central and lower
arteries. We have taken values respectively from the brachiocephalic (fig. 4.12), left
carotid (fig. 4.13), left subclavian (fig. 4.14) and thoracic (fig. 4.15) arteries; the
global blood flow passing into the first three vessels, during a standard cardiac cycle,
really represents the 2/3 of the total volume flow pumped out by the heart, while
the remaining 1/3 is driven through the aorta. Table 4.3.3 shows such results.

Another situation that can be considered is the flow into the lower limbs. Figure
4.16 shows the profile related to the terminal segment of abdominal aorta which
bifurcates into the left (fig. 4.18) and right (fig. 4.17) common iliac arteries. As we
can note the flow divides exactly in two parts, according with the fact that, in each

lower limbs the blood flow rate must be the same.
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Figure 4.12: Flow rate profiles in Brachiocephalic artery (No. 3 in table 3.2).

Left Carotid
120 T T T T T
—— No terminal resistance
- = Applied terminal resistance
100 : : : : : a
80 - N . . . . —
)
)
n
- 60 n
E
iC]
o
s 4
o
o
_20 | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time [sec]

Figure 4.13: Flow rate profiles in left carotid artery (No. 15).
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Figure 4.14: Flow rate profiles in left subclavian artery I (No. 9).
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Figure 4.15: Flow rate profiles in Thoracic Aorta (No. 18).
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Figure 4.17: Flow rate profiles in right common iliac artery (No. 43).
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Figure 4.16: Flow rate profiles in abdominal aorta V (No. 41).
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Figure 4.18: Flow rate profiles in left common iliac artery (No. 42).
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Chapter 5
Conclusion and future prospects

In this project we developed a computational tool, already called problem type,
for solving the one-dimensional problem for blood flow in arteries. We coupled a
finite element code programmed in FORTRAN together with a graphical interface,
suitably modified for our hemodynamic model, which has been provided by GiD,
a pre-post process software for finite elements problems. Finally we applied our
computational tool to a simplified vascular network containing the main human
arteries.

As we already explained in the introduction chapter, one-dimensional models give
useful informations about the evolution of averaged quantities along the arterial tree;
as we demonstrated in the previous chapter, they allow a good description of flow
rate waves in arteries at a reasonable computational cost. In fact, for what concerns
our numerical solver, the calculation times and the memory used for data allocation
are widely supported by a common personal computer; for example, a complete
simulation of the whole 55 artery network lasts about 20 minutes, a time which is
several order of magnitude lower than three-dimensional fluid dynamic models.

Regarding to 3D models, the employ of a one-dimensional formulation can be
useful when we consider a multi-scale approach for the blood flow problem in ar-
teries [3]; the simplified 1D model allows the imposition of more realistic boundary
conditions for three dimensional calculations.

The problem type we developed, as well as the correct mean flow simulation,
gives the opportunity to configure several parameters directly from the graphical
user interface (as explained in chapter 3) without the necessity to modify the finite
element code; to this purpose one of the further applications for this 1D model is

the simulation of the arterial network in pathologic conditions, e.g. the presence
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of stenosis, or considering the introduction of mechanical devices, e.g a stent. In
these cases we can modify the geometrical and mechanical properties of the involved
arteries in order to account for the contribution of such external components inserted
in the vascular system.

The natural evolution of this model, starting from the 55 artery network, is on
the one hand the employment of more complex formulations for what concerns both
the arterial wall modelling and the type of inlet profiles, which could be as much
realistic as possible with respect to the simplified waveforms used in this project.
On the other hand there is the possibility to couple our network with other models
of vascular sub-systems; for example we could consider the Willis circle! in order
to expand the 1D model including also the cerebral micro-circulation. Doing so we
can improve the quality of obtained results mainly for two reasons: first, the simple
resistance models used to replace the distal components of the cardiovascular system
cannot reproduce their hemodynamic behaviour as properly as a direct numerical
simulation. Second the effects of flow redistribution, as observed from numerical
tests, outline that blood flow, in a certain zone of the network, is not independent

from the whole circulation in the remaining part.

!The circle of anastomosed arteries (roughly pentagonal in outline) at the base of the brain,
with the posterior communicating artery on either side joining posterior cerebral (branches of the
basilar artery) to the anterior cerebral (branches of the internal carotid artery) arteries. By this
full circulation to all parts of the brain can be maintained even when the carotid or vertebral

arteries are blocked.
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Appendix A

The Gi1D software

GiD is an interactive graphical user interface used for the definition, preparation
and visualization of all the data related to a numerical simulation. This data includes
the definition of the geometry, materials, conditions, solution information and other
parameters. The program can also generate a mesh for finite element, finite volume
or finite difference analysis and write the information for a numerical simulation
program in its desired format. It is also possible to run the numerical simulation
from within GiD and to visualize the results of the analysis.

GiD can be customized and configured by users so that the data required for their
own solver modules may be generated.These solver modules may then be included
within the GiD software system.

The program works, when defining the geometry, similar to a CAD (Computer
Aided Design) system but with some differences. The most important one is that the
geometry is constructed in a hierarchical mode. This means that an entity of higher
level (dimension) is constructed over entities of lower level; two adjacent entities will
then share the same lower level entity.

All materials, conditions and solution parameters can also be defined on the
geometry without the user having any knowledge of the mesh: the meshing is done
once the problem has been fully defined. The advantages of doing this are that,
using associative data structures, modifications can be made to the geometry and
all other information will automatically be updated and ready for the analysis run.

Full graphic visualization of the geometry, mesh and conditions is available for
comprehensive checking of the model before the analysis run is started. More com-
prehensive graphic visualization features are provided to evaluate the solution re-

sults after the analysis run. This post-processing user interface is also customizable
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depending on the analysis type and the results provided.

A.1 GiD basics

GiD is a geometrical system in the sense that, having defined the geometry, all the
attributes and conditions (i.e., material assignments, loading, conditions, etc.) are
applied to the geometry without any reference or knowledge of a mesh. Only when
everything is defined, the meshing of the geometrical domain is carried out. This
methodology facilitates alterations to the geometry while maintaining the attributes
and conditions definitions. Alterations to the attributes or conditions can simulta-
neously be made without the need of reassigning to the geometry. New meshes can
also be generated if necessary and all the information will be automatically assigned
correctly.

GiD also provides the option of defining attributes and conditions directly on
the mesh once this has been generated. However, if the mesh is regenerated, it is
not possible to maintain these definitions and therefore all attributes and conditions
must be then redefined.

In general, the complete solution process can be defined as:

1. Define geometry - points, lines, surfaces, volumes;

e Use other facilities;

e Import geometry from CAD;
2. Define attributes and conditions;
3. Generate mesh;
4. Carry out simulation;

5. View results;

Depending upon the results in step (5) it may be necessary to return to one of
the steps (1), (2) or (3) to make alterations and rerun the simulations.

Building a geometrical domain in GiD is based on the following four geomet-
rical levels of entities: points, lines, surfaces and volumes. Entities of higher level
are constructed over entities of lower level; two adjacent entities can therefore share

the same level entity. A few examples are given:
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1. example 1: One line has two lower level entities (points), each of them at
an extreme of the line. If two lines are sharing one extreme, they are really

sharing the same point, which is a unique entity;

2. example 2: When creating a new line, what is being really created is a line

plus two points or a line with existing points created previously;

3. example 3: When creating a volume, this is created over a set of existing
surfaces which are joined to each other by common lines. The lines are, in

turn, joined to each other by common points;

All domains are considered in 3-dimensional space but if there is no variation in
the third coordinate (into the screen) the geometry is assumed to be 2-dimensional
for analysis and results visualization purposes. Thus, to build a geometry with GiD,
the users must first define points, join these together to form lines, create closed
surfaces from the lines and define closed volumes for the surfaces. Many other
facilities are provided for creating the geometrical domain; these include: copying,
moving points, automatic surface creation, etc.

The geometrical domain can be created in a series of layers where each one is
a separate part of the geometry. Any geometrical entity (points, lines, surfaces or
volumes) can belong to a particular layer. It is then possible to view and manipulate
some layers and not others. The main purpose of the use of layers is to offer a
visualization and selection tool, but they are not used in the analysis. An example
of the use of layers might be a chair where the four legs, seat, backrest and side
arms are the different layers.

GiD has the option of importing a geometry or a mesh that has been created by
a external CAD program. At present, this can be done via a DXF, IGES, Parasolid,
ACIS, VDA, STL or NASTRAN interfaces available inside GiD.

Attributes and conditions are applied to the geometrical entities (points,
lines, surfaces and volumes) using the data input dialog box. These menus are
specific to the particular solver that will be utilized for the simulation and, therefore,
the solver needs to be defined before attributes are defined.

Once the geometry and attributes have been defined, the mesh can be generated
using the mesh generation tools supplied within the system. Structured and unstruc-
tured meshes containing triangular and quadrilateral surface meshes or tetrahedral

and hexahedral volume meshes may be generated. The automatic mesh generation
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facility utilizes a background mesh concept for which the users are required to supply
a minimum number of parameters.

Simulations are carried out from within GiD by using the calculate menu.
Indeed, specific solvers require specific data that must have been prepared previously.
A number of solvers may be incorporated together with the correct pre-processing
interfaces.

The final stage of graphic visualization is flexible in order to allow the users
to critically evaluate the results quickly and easily. The menu items are generally
determined by the results supplied by the solver module. This not only reduces the
amount of information stored but also allows a certain degree of user customization.
One of the major strengths of GiD is the ability for the users to define and con-
figure their own graphic user interface within GiD. This is done by creating some
configuration files which define new windows, where the final user will enter data,
such as materials or conditions. The format that GiD uses to write a file containing
the necessary data in order to run the numerical simulation program must also be
defined in a similar way. This pre-processor or data input interface will thus be
tailored specifically for the users simulation program, but using the facilities and
functionality of the GiD system.

The user’s simulation program can then be included within GiD so that it may
be run utilizing the calculate menu option.

The third step consists of writing an interface program that provides the results
information in the format required by the GiD graphic visualizer, thereby configuring
the post-processing menus. This post analysis interface may be included fully into

the GiD system so that it runs automatically once the simulation run has terminated.

A.2 Problem type customization

When GiD is to be used for a particular type of analysis, it is necessary to
predefine all the information required from the user and to define the way the final
information is given to the solver module. To do so, some files are used to describe
conditions, materials, general data, units systems, symbols and the format of the
input file for the solver. We call problem type to this collection of files used to
configure GiD for a particular type of analysis.

Due to the vocation of GiD as general purpose pre and post processor, the

configuration for the different analysis must be performed according to the particular
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specifications of every solver. This implies the necessity of creating specific data
input files for every solver. However, GiD allows to perform this configuration
process inside itself without any change in the solver and without having to program

any independent utility.

GID

Preprocess Postprocess

j SOLVER j

INPUT FILE QOUTPUT FILE

Figure A.1: Flowchart describing the execution of a GiD problem type

To configure these files means to define the data that must be input by the user, as
well as the materials to be implemented and other geometrical and time-dependent
conditions. It is also possible to add some symbols or drawings to represent the
defined conditions. GiD gives the opportunity of working with units when defining
the properties of the mentioned data, but there must be a configuration file where
it could be found the definition of the units systems. It must be also defined the
way that all this data must be written inside a file that will be the input file to be
read by the corresponding solver.

The definition of a problem type implies the creation of a directory with the
problem type name and the extension .gid. The series of files must be inside
the problem type directory. The name for most of them will be composed by the
same problem type’s name and an extension referring to their function. Considering
problem_type_name to be the name of the problem type and project_name the

name of the project, the diagram of the file configuration is the following:

76



arb

Preprocess GiD

e

has

A

Bbal

Results file

praject_narme favia fes

Postprocess
mesh file
{new format)

praject_narme favia msh

Paostprocess mesh files {old format)

30 [N

project rame flaia bon

[ I,

project_name (laea rmsh

2D

praject_name favia da

Postprocess GiD

Figure A.2: Problem type flowchart including file configuration.
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A.2.1 Configuration files

These files, whose location into the problem type structure is showed in figure
A.2, generate the conditions and material properties, as well as the proper general
problem and intervals data to be transferred to the mesh, giving at the same time
the chance to define geometrical drawings or symbols to represent some conditions
on the screen. Now a brief description is given related to those files which play an

important role into the problem type structure.

Condition file (.cnd)

The file with extension’s name .cnd contains all the information about the con-
ditions that can be applied to different entities. The condition can adopt different
field values for every entity. This type of information includes, for instance, all
the displacement constraints and applied loads in a structural problem or all the

prescribed and initial temperatures in a thermal analysis.

A condition can be considered as a group of fields containing the name of the
referred condition, the geometric entity over which it is applied, the mesh entity

over which it will be transferred, its corresponding properties and their values.

Material file (.mat)

This file projectname.mat include originally the definition of different materials
through their properties. These are base materials as they can be used as templates

during the pre-processing step for the creation of newer ones.

The user can define as many materials as desired and with a variable number
of fields. All the unused materials will not be taken in consideration when writing
the data input files for the solver. Alternatively, they can be useful to generate a

materials library.

Conversely to the case of conditions, the same material can be assigned to differ-
ent geometrical entities levels (lines, surfaces or volumes) and even can be assigned
directly to the mesh elements. In a similar way as a condition was defined, a ma-
terial can be considered as a group of fields containing its name, its corresponding

properties and their values.
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Problem and interval data (.prb)

The file projectname. prb contains all the information about the general problem
and intervals data. The general problem data is all the information required for
performing the analysis and it does not concern any particular geometrical entity.
This differs from the previous definitions of conditions and materials properties,
which are assigned to different entities. Example of general problem data can be the
type of solution algorithm used by the solver, the value of the various time steps,
convergence conditions and so on.

Within this data, the user may consider the definition of specific problem data
(for the whole process) and intervals data (variable values along the different solution
intervals). An interval would be the subdivision of a general problem that contains
its own particular data. Typically, one can define a different load case for every
interval or, in dynamic problems, not only variable loads, but also changing the

various time steps, convergence conditions and so on.

Template file (.bas)

Once the user has generated the mesh, assigned the conditions and the materials
properties, as well as the general problem and intervals data for the solver, it is
necessary to produce the data input files to be processed by that program.

To manage this reading, GiD employs a file called problem_type_name.bas,
where problem type name is the name of the working directory of the problem
type without the .bas extension.

This template file describes the format and structure of the required data input

file for the solver that is used in a particular case.

Prepmosss Gl D SOLVER

Propac_pam. el

Figure A.3: Interaction between pre process and solver by means of the template .bas file

These files work as interface from GiD standard results to the specific data input

for any individual solver module. This allows to complete the process of running
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the analysis as one step more within the system, and to visualize results during

post-process.

A.3 Post-process data files

In the GiD postprocess you can study the results obtained from a solver program.
The communication between the solver and the GiD Postprocess is made using files.
The solver program has to write the results in a file that must have the extension
.flavia.res and its name must be the project name.

The solver program can also (it is not mandatory) give to GiD the postprocess
mesh, and should have the extension .flavia.msh. If this mesh is not provided by

the solver program, GiD uses in the post-process, the preprocess mesh.

]

progect_nama fava makh
(raw foamat]

SOLWVER Posipracass GiD

N

PRt _ram favia nes

Figure A.4: Post-process file creation

So, post-processing files are ASCII files and can be separated into two categories:

e Mesh Data File: projectname.flavia.msh for volume and surface (3D or 2D)
mesh informations; it should contain nodal coordinates of the 3D mesh, and

its nodal connectivities and the material of each element;

e Result Data File: projectname.flavia.res for nodal variables. GiD allows
the user to define as many nodal variables as desired, as well as several steps

and analysis cases (limited only by the memory of the machine).
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Appendix B

Finite element code Arteries-1D.exe

Here we present a general scheme concerning the finite element code which rep-
resents the computational core of our GiD problem type. This program, developed
in Fortran 90, links together pre and post process phases, as it receives input data
configured through the graphical interface and creates an output result file that will

be used during postprocess.

B.1 Input-output data files

Considering a generic problem related to 1D blood flow model, the input infor-
mations, required by the solver, are provided by two different files whose structure

is the following

1. "projectname".dat, is the computation file created by GiD after the pre-

process phase is terminated; it contains, in order:
e Finite mesh parameters: the number and coordinates of mesh nodes to-
gether with the number and connectivities of mesh elements;

e Geometrical and mechanical properties of each vessel: length, wall thick-

ness, Young Modulus, Poisson Ratio and initial wave speed;

e General properties, e.g. project name, type of velocity profile, blood

density and viscosity;

e Numerical parameters, e.g. error tolerances, selection of space-time scheme

and maximum number of iterations;

e List of boundary nodes, each one with its applied conditions;
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For more informations, chapter 3 contains all the interface windows in which

such parameters can be configured and modified.

bifurcations.dat: this file contains the list of all bifurcations belonging to the
arterial network, and for each one of them are indicated, in order, the entering

and the outgoing vessels;

The program creates two output files, one accounting for 3D mesh properties and

the other containing the results. Briefly they are structured as follows:

1.

"projectname".flavia.msh: contains both the node coordinates and the
element connections of the three-dimensional mesh used for the postprocess

visualization of results;

"projectname" .flavia.res: It is the result file which GiD reads during post-
process and can contain values of Area, Flow rate, pressure and velocity on
each node belonging to the 3D output mesh. The user, during pre-process,
can select how many time steps write in such a file and also establish which

quantities share during post-process (also see figure 3.9 in chapter 3);

B.2 Finite element code flowchart

The finite element code is composed by a main routine whose structure is schema-

tized in table B.2. We start with the data acquisition from the input files previously

described, first reading the bifurcation list and then the pre-process informations

provided by GiD; once that all these data are allocated in memory, we are ready to

compute the numerical solution. To do this, we need, on the one hand, to transform

3D coordinates of the pre-process geometry into a 1D reference system for each vessel

in the model, in order to work only with the axial quantity z and neglect the other

cylindrical components (r, ). One the other hand we must impose initial data which

allow to start calculating the approximated solution of our hemodynamic problem.

Two routines, external to the main structure, are used to carry out such operations:

1.

OMOG_TRANSF:

e Input variables: trans_ type.

e Qutput variables:omog.
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This routine applies a homogeneous transformation to each node coordinate
from 3D pre-process to 1D format. Both the rotation matrix and the center
coordinates for each vessel reference system are read from GiD input file and
assembled into a 4x4 homogeneous transformation matriz. For the generic i-th
artery we have:

R! d
0 1

)

Al =

being R’ the i-th rotation matrix and d’ the (z,y, 2) center components. The
output variable omog represents the matrix A! and, depending on the value of

trans_type, we may have:

e trans type — 1: pass from 3D to 1D notation. Then
Pip= A;FP?,D = omog = A;r
e trans_type = 2: pass from 1D to 3D notation. Then
P3sp = AiPip = omog = Ay

with Pip and P3p defined as 4x1 arrays containing node coordinates in 1D

_ dsp
0

and 3D notation respectively:
d
Pip = [ o ] Pyp

. INITIAL VALUES(2):

e Output variables: A;y, Q4

Through this routine we evaluate initial values of area A,y and flow rate Qy
into each vessel of our network; by default we have values of Ay related to the
reference configuration of the arterial tree in rest conditions (see also chapter
2). For what concerns the flow rate we know that, at rest, blood velocity is

the same in every network location so it is true the relationship

B Qi Qo A
U; = Uy = Ai_AO = Qz—QoAO

between the vessel 0, where we apply an initial condition on blood flow, and

the generic vessel ¢ belonging to the network.
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Now we have 1D coordinates and initial solution values, it is possible to apply
the numerical space-time scheme for solving the problem. Before doing this, we
generate the 3D mesh for post-process visualization of results; to this purpose we

use the meshing routine indicated into the scheme B.2 with the number 3:

3. MESHING: this routine allows the creation of a 3D mesh simply considering
1D nodes lying on vessel axial directions; each one of these nods becomes
the center of a new circular section, with reference radius Ry, which has a
certain number of points projected, along radial direction, from the center to

the border circumference (fig. B.1).

e “N
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Figure B.1: Left figure: sketch of a 3D-mesh section. The number of radial nodes can be settled
into GiD preprocess (see fig. 3.9 in chapter 3). Right figure: side wall meshing for a generic vessel.

The element are triangular and link nodes belonging to different radial sections.

Moreover these nodes are connected to form a cylindrical surface of triangular

elements over the side walls of each artery (fig. B.1);

The computation core of our finite element code is represented in the scheme B.2
by the block SOLVER (L1). When the program execution arrives at this point, it
enters a WHILE loop which iterates in time from ty to t.,q = to + 1, where T is
the integration period of our problem. As shown in table B.2, we move step by step
evaluating the solution matrix U! for each time instant i.

The block RK L(2) represent the point in the WHILE loop where U is com-
puted. As explained in chapter 2, we employ an explicit Runge-Kutta (RK) scheme

for time integration; the program allows to choose between a 2nd and a 4th order

'For every time step, the solution is composed by values of A and @ at each 1D mesh node. So

the dimension of U, and also the rhs term used further, is 2 x number of nodes.
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RK, while for our schematization we consider only the 4th order one, whose structure

is

At
Urtt —pyn 4 F(K1 +2K5 4 2K5 + K4)
Kl - fn’
Ky = f(t"+ 5L U" + §LK), (B.1)

Ky = f(t" + %, Un + %KQ),
Ky = f(t", U + AtK3).

The 2nd order Runge-Kutta scheme has a structure similar the 4th order one,

which consider only two intermediate evaluation for each step At:

At
Un+1 — Un 4 7[(2

Kl:fna

Ky = f(t"+ &L, U" + &L Ky),

The scheme RK L(2) in table B.2 shows the numerical scheme: first we set the
time step At in order to satisfy the CFL convergence condition (see the relationship
(2.48) in chapter 2), then we proceed with the RK routine. The discrete equation to

evaluate can be expressed, simplifying the (2.46) we derived in chapter 2, as follows

Un+1 o Un
At
For each intermediate rhs evaluation K;, i« = 1 : 4, we use the finite element

=rhs(t",U") (B.2)

routine RHS L(3); by means of a loop over the linear elements of the 1D mesh,
we first evaluate the single contribution provided by each element and little by little
we assembly it into the global right hand side matrix? for the whole mesh. Once
this operation is terminated, we have to complete the rhs term with the boundary
conditions not introduced during the element loop. The flowchart RHS L(3) from

table B.2 schematize all these operations, and includes the following block:

4. UPDATE BOUNDARY VALUES: 1t is an updating routine for boundary
nodes including inlet, outlet and branching points. For each one of these

conditions we act in the following ways

2 Analogously to U, also the term rhs has dimension 2 x number of 1D mesh nodes.
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e Inlet nodes: here we impose the known value of area or flow rate de-

pending on the inlet profile considered (see chapter 2);

e Bifurcation nodes: in this case we have to solve the six equation sys-
tem (see (2.49) in chapter 2) in order to obtain (A, Q) values at vessel
interfaces belonging to each bifurcation. Such quantities must respect the
compatibility relationships defined in the non-linear equations contained
into (2.49);

e Outlet nodes: we have two possible outlet conditions: the first is the
absorbing one, and we use the pseudo-characteristic evaluation (see sec-
tion 2.6) to extract values of area and flow rate. The other condition
accounts for the resistive term Ry and in this case we apply the relation-

ship between flow and pressure:
P=QRr.

Now the rhs term is complete, we can use it to evaluate the corresponding
intermediate step into the RK scheme; proceeding in this way we finally obtain the
solution of equation (B.2) for the current i-th step. Then the program exits from
the RK L(2) routine and returns into the SOLVER L(1) block. Here we have the

writing phase of the obtained result:

5. OUTPUT: creates the postprocess file, whose format is recognized by GiD,
and writes the results which can be showed through the software graphical
interface. This routine is not executed at each time step, but with a cer-
tain frequency in order to finally write the approximated number of iteration

defined during pre-process (see figure 3.9 in chapter 3);
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MAIN

PROGRAM START

BIFURC READ

Y

Branching connections reading

INPUT

Y

1D preprocess data reading

OMOG_ TRANSF(1)

Y

Change of coordinates

Y

INITIAL _VALUES(2)

Computation of initial
solution values Uy

at time t = ¢,

Y

3D mesh generation

MESHING (3)

Y

SOLVER (L1)

Y

Solution calculated

Y

STOP

Table B.1: Main program flowchart: input data are read and allocated in memory,

while the definition of initial conditions allow to start calculating the approximated

solution.
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SOLVER L(1)

MAIN

= | topa =to+ T

¥
i=1
4

Loop: WHILE ¢; < t.,4

4

RK (L2)

4

Solution U (t;41, 2)
at step ¢ + 1 calculated

4
Write U (¢, 2) — OUTPUT (5)
in post-process file
4
tiy1 = t; + At
4
t=1+1
Y

Return to Main

Table B.2: Solver routine flowchart.
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RK L(2)

RHS L(3)

RK L(2)

UK,tK

SOLVER L(1) | = | At; < CFL(h/))
Y
RK 4 (At;)
Ky = rhs(t;, U") = RHS L(3)
Y
Ko =rhs(t;+ 28, U' + 8L K;) = RHS L(3)
J
K3 =rhs(t; + 52, U' + 82 K,) = RHS L(3)
Y
Ky =rhs(ti, U + At; K3) = RHS L(3)
4
Ut =U" + 84(K, + 2K, + 2K;3 + Ky)
Y
U calculated = | Return to SOLVER (L1)

DO j =1,Num_elements

Extract element nodes

71 and 52

4

Evaluate rhsj(UjKl,

Ujf;)

4

RHS = RHS + rhs;(

US,UL)

END

Y

UPDATE BOUNDARY VALUES (4)

Return to RK (L2)

Table B.3: Runge-Kutta and FEM routines
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