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Abstract

Meshless methods are nowadays widely investigated in the framework of numerical methods
due to their characteristic of being free of any predetermined connectivity among nodes, such
as a grid or a mesh. This characteristic makes such methods particularly flexible in problems
where large deformations are involved, such as high-velocity impact, metal foaming, and fluid-
dynamics.

In the present thesis we report the development of a new numerical method, called Mod-
ified Finite Particle Method, from its introduction in Asprone et al. (2010) until its most
recent developments. The Modified Finite Particle Method (MFPM) is a numerical approx-
imation technique of functions and derivatives inspired by the Modified Smoothed Particle
Hydrodynamics (MSPH), a numerical algorithm belonging to the class of the SPH-derived
methods.

The first development of the Modified Finite Particle Method from its original formulation
has given the method higher computational efficiency by removing the need of numerical
integration, and hence, tessellation of the domain; such a novel formulation is then applied to
1D and 2D elasticity and has been checked in terms of computational efficiency and numerical
error (Asprone et al., 2014). Then the method is extended to incompressible materials, in
particular we explore the numerical difficulties connected to a quasi-incompressible material
when using a displacement-based formulation.

At a later stage we approach the solution of the Stokes equations, that model full incom-
pressible materials: such equations are the topic of many scientific works due to the existence
of a numerical limitation known as the inf-sup or LBB condition, which imposes restrictions
in the discretization of displacement and pressure fields. In the field of collocation methods
such as the Finite Difference Method, as an example, staggered grids are used; unfortunately
such strategy is not extensible to meshless methods, which in general deal with non-structured
distributions of collocation points. Hence alternative formulations of the Stokes problem have
been discussed and investigated using the Modified Finite Particle Method, obtaining the
expected accuracy in terms of error convergence.

In the last part of the thesis we develop an extended formulation of the Modified Finite
Particle Method, consisting in a combination of the MFPM with a Least Square Residual
Method, and apply it to Stokes and Navier-Stokes equations. Such an algorithm permits to
solve the original formulation of Stokes and Navier-Stokes problems using the same discretiza-
tion for velocity and displacement, overcoming the limitations given by the LBB condition,
and without the need of alternative continuous formulations. Moreover the algorithm looks
more robust with respect to extremely unstructured collocation point distributions.
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Chapter 1

Introduction to the thesis

In recent years meshless methods have acquired significant importance in the framework of
numerical methods due to their characteristic of being free of any kind of grid or mesh, and
therefore, to exhibit an higher flexibility with respect to traditional mesh-based or grid-based
methods, above all the Finite Element Method (FEM) and the Finite Difference Method
(FDM). The most attractive characteristic of meshless methods is the capability of easily mod-
elling problems where large deformations occur, following a Lagrangian point of view. Among
these problems, in the literature are widely investigated problems of solid large deformations,
metal foaming, and fluid dynamics.

A meshless method is characterized by the fact that nodes are not given any kind of a
priori connectivity. Relation among nodes are then given, at each time step, on the basis
of the current position among nodes. This fact one hand gives the method high flexibility
in problems where particles are repeatedly muddled up, on the other hand requires that at
each time step the connectivity is set up, requiring a computational cost that sometimes is
comparable with the remeshing time required by mesh-based numerical methods.

In the field of meshless methods an important distinction is made between meshless parti-
cle methods and meshless “non-particle” method. In the first case, each node is characterized
by a mass, a velocity and an energy, and the interaction among nodes occurs through mutual
forces, according to the principle of action and reaction. In meshless “non-particle” meth-
ods, differently, nodes are simply considered as collocation points, and used as base for the
discretization of function and derivatives.

Table 1.1: Classification of some numerical approximation methods

Particle Non particle

Smoothed Particle
Meshless Hydrodynamics (SPH),
Discrete Element Method (DEM)

Radial basis collocation,
Discrete Least Square Residual Method

Mesh-based | Particle FEM Finite Element Method (FEM)




2 1. INTRODUCTION

1.1 The Smoothed Particle Hydrodynamics

The first meshless particle method introduced in the literature is the Smoothed Particle Hydro-
dynamics (SPH), proposed by Lucy (1977) and Gingold and Monaghan (1977) for the study of
astrophysical problems. The numerical approximation technique is based on the Dirac Delta
equivalence

+o0
flxy) = / f(@)d(z — x;) dx (1.1)

—0o0

where 0(z) is the Dirac Delta distribution, which has two main properties:
0r—x;) =0 if x#ux (1.2a)
+oo
/ 0z —x;)de =1 (1.2b)
—00

Equation (1.1) can be seen as the projection of the function f(x) on the basis 6(z — ;).
This particular way of considering Equation (1.1) is the starting point of many numerical
methods, derived from SPH formulation. Since the Dirac Delta is difficult to manage from
a numerical point of view, SPH introduces an approximation of Equation (1.1), substituting
the Dirac Delta distribution with a smooth function W (z — x;, h), called kernel function,
where h is the smoothing length, which defines the region Q; = [z; — h,z; + h] in which the
smoothing function is non-zero. Consequently, Equation (1.1) is approximated through the
kernel evaluation of f(x;), that is

+oo
fa) = [ H@W - wih)da (1.3
The kernel function W (z — x;, h) is required to have the following properties:
Unity / W(x —zi,h)de =1 (1.4a)
19 0 — 43 h
Compact support Wiw —ai,h) # v =] < (1.4b)
W(x —xz;,h) =0 |z —x;| > h
Dirac Delta property }llm%) W(x —zi,h) = 6(x — x;) (1.4c)
—
Positivity W(x —xi,h) >0 (1.4d)

From here after, we refer to W(z — x;,h) with W;(z), and the dependency on h will be
omitted.

The property (1.4d) is not necessary for a correct approximation, but it is introduced to
avoid unphysical results such as negative density or energy.

The derivative evaluation is obtained through kernel evaluation of f’(z) and following
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integration by parts:

+o0
flag) = / f (@) Wi(z) de

“+o00
— Wi@rz- [ oW d (15)
Here, the “ 7 7 represents the derivative with respect to the independent variable x. Far

from the boundary, that is, when Q N ; = ;, we assume that the smoothing function is
completely developed in the domain, and thus the derivative approximation is

+oo
== [ fWi) ds (16)
— 0o
The higher order derivatives approximation is obtained by iterating the procedure shown
in (1.6). The general formula is

—+00

ﬂm@»=«4w/' @)W (@) da (L.7)

—0o0

Equation (1.6) and its generalization (1.7) for higher order derivatives is exact far from
the boundary, that is, where the first term of the right-hand side of (1.5) vanishes because
of (1.4b). On the other hand, when the intersection between the general domain and the
smoothing length of a particle is non empty, the first term of the right-hand side of (1.5) does
not vanish and the formula (1.6) does not converge. This is the most important limit of SPH
approximation, that is corrected through some expedients in numerical simulations.

Figure 1.1: 1D domain: particle discretization and subdivision of the domain

Equations (1.3), (1.5) and (1.7) are still integral expression, that need a further discretiza-
tion step: therefore, integrals are replaced by summations: the domain is partitioned into
some little subdomains, so that there is a univocal correspondence between each particle and
its subdomain (see figure 1.1). Therefore, the discrete form of (1.3) is

—00

+oo
/ flz)W;(x) do ~ Z flx;)Wi(z;) Az, (1.8)
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and, for higher-order derivatives
SO @) = ()" f )W () Az (L9)
J
where Az; is the reference subdomain of the particle at x;.

We can substitute Az; with 7;—;, where m; is the reference mass of the particle j and p; is
its density. Equation (1.9) can be rewritten in the form

FO ) = (1" 3 S W ) (1.10)

where it is more evident the peculiarity of this method of dealing with particles.

1.2 Alternative approaches to SPH

In consideration of the deficiencies of the original SPH technique, especially at the boundary,
many authors have introduced corrections in the most recent years. In the following paragraph
we review some of the most significant numerical approximation techniques introduced starting
from the initial SPH idea.

1.2.1 Reproducing Kernel Particle Method

One of the most common methods developed from the SPH is the Reproducing Kernel Particle
Method, introduced by Liu et al. (1995a,b). In these works the authors introduce the possibility
of different smoothing functions (that in these works are called window functions) for each
particle in the domain, to restore the consistency of the method also close to the domain

(property (1.4a)).
The method is obtained through the projection of the Taylor series expansion until the
second order

Fla) = Flae) + /(@) @ — w1) + 5 () — ) + ol — a:f’) (1.11)
onto a generic window function Kj;(x), that is
| K@) @in = 5(@) [ Ko+ £a) | KiGo)a - wida+
@ @ Q1 (1.12)
I () /Q K@) (@ — ;)%dx

Then the exact reproduction of a generic function f(x) can be imposed, that is

/ Ki(x)dz =1 (1.13)
Q

In this way the zero-th convergence of the method is estabilished (that is, the method
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exactly reproduces constant functions). In particular, if we choose an even function, that is
possible far from the boundary, also the term involving the first derivative vanishes and the
method becomes second order accurate; close to the boundary, on the contrary, the method is
first order accurate.

The novelty introduced by the authors is that the window function K;(x) can be seen
as the product of two functions, C;(z) and W (z), the second being the typical SPH kernel
function, and the first being a corrective function, typically a polynomial, that is different
particle by particle, which is asked to restore the required consistency conditions at particles
close to the boundary. Typical condition that can be imposed to the correction function are
that the high-order momenta vanish.

/QKZ({E)({E—{EZ)d{E =0 (1.14)
[ Ak —apar = o (115)
02

The possibility of enforcing these conditions depends on the order of the polynomial C;(x).
After performing this kernel estimates, the evaluation of derivatives is performed according
to Equations (1.6) and (1.7).

1.2.2 Corrective Smoothed Particle Method

The Corrective Smoothed Particle Method (Chen et al., 1999a,b) is another method developed
to correct the SPH approximation techniques at the boundary. The authors do not use any
correction function, but use a different kernel evaluation. Starting from the Taylor series
expansion of a function f(z) up to the zero-th order

f(@) = f(zi) (1.16)
and projecting it onto a kernel function W;(x), we obtain the following kernel estimation
Jo f@)Wi(z)dz
i) = 1.17

Equation (1.17) is equivalent to (1.3) when (1.4a) is respected; moreover, if (1.4a) is not
respected, Equation (1.17) still holds. From this we conclude that for this formulation is not
necessary to normalize the kernel function. Hence it is evident that this approach do not
require anymore the property (1.4a), required in SPH.

Expanding up to the first order, projecting onto W/(z) and rearranging the obtained terms,

we obtain that I
() =~ Jo lf (@) = f(ai)] W (x)dx

Z Jo (@ — z)] W (x)dx
We notice that also in the approximation of the derivative, Equation (1.18) and Equation

(1.6) differ in the denominator. Also it has to be pointed out that we project on the derivative
of the kernel function and not on the kernel function itself because otherwise we would obtain

(1.18)
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a vanishing denominator. The authors also remark that, for an higher accuracy of the function
approximation, is preferable that W/(z) is an odd function, but it is not a binding property.

The approximation of the higher order derivatives can be obtained just iterating the proce-
dure adopted in (1.17) and (1.18). It is only necessary to retain, in the Taylor series expansion,
all the terms until the one of interest.

1.2.3 Modified Smoothed Particle Hydrodynamics

A further development of the SPH technique is the Modified Smoothed Particle Hydrodynamics
(MSPH) introduced by Zhang and Batra (2004). In this case function and derivatives are not
approximated in different steps, but simultaneously, through the inversion of a linear system
at each particle.

( ALy Al > < /(i) ) _ < Jo f(@)Wi() de ) (1.19)

Alﬁl Alﬁz [ (i) fQ f(x)WZ’(m) dx

where
b= [ Wie) ds b= [ do (1.20)
i = /Q Wi(z) da iy = /Q (& — )W (x) da (1.21)

The authors remark that the minimum number of particles to be included in the smoothing
length is, in a 1D representation, is 3, in order to prevent the matrix A to be singular.

A comparison can be made between the CSPM and MSPH in terms of computational
cost and accuracy. The Corrective Smoothed Particle Method is evidently more efficient in
terms of computational costs, since in the MSPH there is a matrix to invert at each particle;
on the contrary in the CSPM the error on higher order derivatives can be affected, through
error prpagation, from the error generated in the approximation of functions and lower-order
derivatives.

1.3 Meshless methods based on shape functions

Different meshless methods are based on shape functions: among these the most common
shape functions are the Meshless Local Petrov-Galerkin shape functions, the Radial Basis
Function and the Local maximum entropy shape functions. All these kinds of shape functions
can be used for the development of collocation methods or for the development of methods
based on Galerkin formulation.

1.3.1 Meshless Local Petrov-Galerkin

The Meshless Local Petrov-Galerkin (MLPG) (Atluri and Zhu, 1998) is a numerical approx-
imation method for function and derivatives based on the use of the Moving Least Square
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(MLS) shape functions. Such shape functions are written in the general form

7(x) = p” (x)a(x) (1.22)

where p(x) is the vector of monomial basis in 1-d, 2-d or 3-d, and a(x) is the vector of the
coefficients, which could be different point by point.

The length of the vectors p(x) and a(z) depends on the desired order of consistency
(for a first order consistence, in 1d case, p(x) = [I ]”, for a second order consistency
p(x)=[1 =z xQ]T and so on).

The vector p(x) is computed through the minimization of a weighted error function between
the approximation f"(x) and the fictitious nodal values fn

N .72

J(x) = Y wix)|p” (x)a(x) - (1.23)

i=1

where the w;(x) are weight functions, chosen to be non-zero in a neighborhood of the point
X;, and zero elsewhere. This allows to define this method as local, in the sense that the
approximation of a function and of its derivatives depends on few points close to the x;.
Hence, by minimizing this amount with respect to the coefficient vector a(x), it is possible
to find the unknown coefficients a(x), then it is possible to write f*(z) in the form of the
product of some shape functions (collected in the array ®(x)) and the vector of the fictitious
nodal values f. We remark that f are not the nodal values, that means that they are not the
precise values of the function in the point z;, since the shape functions are not interpolatory.

N
M) =i i fi # fw) (1.24)
i=1
where .
¢i(x) = ij (%) [Ail(X)B(X)]ji (1.25)
j=1
and

A(x) = ilwi(x)p(xi)pT(Xi) (1.26)

i
B(x) = [wi(x)p(x1), w2(X)P(x2), -, wn (X)P(Xn)]
The approximation of derivatives is simply performed by derivation of the shape functions.
The Meshless Local Petrov-Galerkin is used for the solution of elasticity problems (Atluri

and Zhu, 2000), convection-diffusion problems (Lin and Atluri, 2000), Navier-Stokes equations
(Lin and Atluri, 2001), thin plates (Long and Atluri, 2002).

1.3.2 Meshless methods based on radial basis functions

A widely used category of shape functions are the Radial Basis Functions (Buhmann, 2000),
introduced by Kansa (1990b,a) and studied from a theoretical point of view by Franke and
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Schaback (1998) for their use in collocation methods. Such shape functions are bell shaped
functions and can be distinguished in

e Gaussian shape functions

o(r) = exp(—r.2/c?) (1.27)
e Multiquadratic shape functions
o) = (7 +2)' " (129
e Logarithmic shape functions
o(r) = rlog(r) (1.29)

In all previous examples, r = /22 + 3?2 is the distance from a generic collocation point.

Radial Point Interpolation Method. In order to restore consistency in the approxi-
mation of polynomial functions, Radial Basis function have been integrated with polynomial
(Wang and Liu, 2002). In the following, we report the main steps followed to construct such
a kind of shape functions, based on a general distribution of points.

It is assumed that the generic function u(z) is written as a linear combination of shape
functions and some unknowns parameters. A generic function u(x) is therefore approximated
as

N M
i(x) =Y a;BY(x)+> biP(x), M<N (1.30)
i=1 j=1

where the functions Pj(x) are monomials, a; and b; are respectively the coefficients of the
radial basis functions B;(x) and of the polynomial term Pjo(x). In particular the radial basis

functions depend on the Euclidean distance r; = \/(z — ;)2 + (y — v;)?, and for this reason
is preferable to write B;(r) instead of B;(x).
Equation (1.30) can be rewritten in matrix form

u(x) = B’(x)a + PT(x)b (1.31)

Once written this approximation, it remains to find the unknown parameters a; and b; by
imposing the interpolation conditions for the N nodes of the domain, that are

N M
ST B xn)an + Y Pi(xi)br = ulx) (1.32)
h=1 k=1
The other M necessary conditions are
M
> Pi(xk)ar =0 (1.33)
k=1

The choice of this particular set of constraints is motivated by the fact that in this way
the system through which the unknown coefficients are retrieved is symmetric, due to the
symmetry of the matrix By.
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The matrix form of this problem is

B PT a u
(v o) (0)-(5) - 139
where the equations are particularised at each point belonging to the nodal set X.

Once written this problem, the coefficient vectors a and b can be found by inverting the
algebraic system (1.34), that for simplicity we rewrite in the form

a a
o(2)-(1) w35
According to (1.30), the shape functions can be written as

6(x) = By P|G! (1.36)

This method has some useful properties:

1. The shape functions are linearly independent for each nodal set

2. The shape functions, and above all, their derivatives, are of easy calculation;

3. The shape functions have a Dirac Delta property, that is ¢;(X;) = d;;.

4. It is always verified the zero-th and first order consistency of the approximations.

5. The shape functions have a compact support.

Delta Basis Function. A particular kind of Radial Basis Function, called Delta Basis
Functions, have been introduced in Hon and Yang (2009). These functions are particularly
appropriate when dealing with singularities. Here we only show an example of shape function,

and present the meaning of the parameters.
’ 1 1
sin (mrx i > sin (nﬂ'g_; > , (1.37)

M n 2

n=1
where x is the independent variable, ¢ is the coordinate of the node, M is an integer parameter
that makes the shape function approach the Dirac Delta function, and k is the so-called
reqularizing parameter. As it is shown in the paper under consideration, the absence of this
parameter makes the function dramatically oscillate.

It should be noted that such shape functions vanish close to the boundary in the interval
[-1 1]. For this reason neither the collocation point nor the centers of the shape functions
can be collocated in proximity of the extremes of this interval. The consequence is that all the
problem involving these shape functions have to be studied in a different interval: the optimal
choice, proposed in Reutskiy (2005), is to perform a linear transformation of the domain from
its original coordinates to the interval [-0.5 0.5].

These shape functions work very fine in approximating almost singular functions, and also
functions with high gradients, and this represents its greatest advantage, together with the
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absolute simplicity of coding. The drawback of these approximant functions is that there are
no properties of partition of unity or polynomial consistency.

1.3.3 The local max-ent approach

A different kind of shape functions proposed in recent years is the set of Local Maximum
Entropy (LME) shape functions, introduced by Arroyo and Ortiz (2006, 2007), and developed
in Cyron et al. (2009); Rosolen et al. (2012). The basic idea is to propose shape functions that
satisfy both the principles of locality of the shape functions and of maximum entropy of the
numerical scheme, meaning that the shape functions have to be the most unbiased possible,
in the sense that their only have to be based on the positions of nodes, without any other
external choice.
Let us consider a function u(x). We can consider an approximation u”(x) in the form

N
uh(x) = ¢a(X)ua (1.38)
a=1

where the ¢,(x) are the shape functions.
The LME shape functions are asked to respect zero-th and first order consistency condi-
tions, that is constants and linear functions on a given nodset X have to be exactly reproduced:

N N
ddax)=1 . ) Ga(x)xa =x (1.39)
a=1 a=1

In particular, the first condition of (1.39), in addition to the requirement that the shape
functions have to be positive, allows to consider these approximations as a probability distri-
bution at each point x;.

A natural concept strictly connected to the probability is the entropy of a distribution,
that is a canonical measure of the uncertainty of a distribution. To give a quick example of
what the entropy represents, let us consider two distributions of probability of occurrence of
two events A; and As. The first distribution is [0.010.99], the second is [0.50.5]. It is obvious
that in the first case are quite sure about the occurrence of the event Ay, while in the second
case we are in a situation of uncertainty. The quantity that measures this difference in the
level of information in this cases is the entropy, that is higher for the distribution As.

In the case of unbiased approximations, we require that the shape functions are free of
any a priori information, that is, the entropy associated to shape functions has to be the
maximum, according to the Shannon theorem (Shannon, 2001). The eventual a priori choice
of a polynomial shape functions of any order, or a Gaussian shape function or whatever other
shape function represents a specific choice of the approximation that in this method the authors
want to avoid.

The entropy of a shape function distribution, from a mathematical point of view, is defined
as

N
H(p(x)) == ¢a(x)log ¢a(x) (1.40)
a=1
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The shape functions come from the minimization of the functional H(¢(x)) with respect
to the functions ¢(x). Such problem is subject to the constraints (1.39). In their work, the
authors show that a unique solution exists if and only if the data set X belongs to a convex
hull.

Unfortunately this set of functions gives a non satisfactory result. In fact, due to the
theoretical meaning of entropy, such function are as constant as possible, considering the
constraints. This property returns bad approximation of non smooth functions, making this
set of shape functions uninteresting.

A further step toward a best approximation is the introduction also of the attribute of
locality of the shape function; the width of the approximation is defined as

al 2
wlda(x)] = /Q > a0l ol (1.41)

In order to satisfy the requisite of locality of the shape functions, we also require the
functional (1.41) to be minimum. We exploit the fact that in the functional itself there are no
derivatives, so we minimize it pointwise. The problem so is to minimize the functional

N
U(x, ¢(x) = > da(x)[x — Xa/’ (1.42)
a=1

with respect to the same constraints (1.39). Such a problem gives back pointwise defined shape
functions.

The best solution for this problem is then the search for a set of shape functions that have
both the requisites of locality and impartiality. The idea is to combine the two functionals
H(¢(x)) and U(x, ¢p(x)) through the functional

f3(x,0(x)) = BU(x, ¢(x)) — H(¢(x)) (1.43)

subject to the usual constraints (1.39). The parameter /3 belongs to the interval [0,00) and
defines how much the functional is more similar to a max-ent functional (8 — 0) or to a
locality functional (8 — o0).

The final shape functions are then, for internal points

¢5a(x) = mexp [_B|X - Xa|2 + A" (x— Xa)} ) (1.44)
where
N
Z(x,\x) =Y exp [—mx—xaﬁ +)\-(X—xa)] (1.45)
a=1
and
N (x) = arg m}n log Z(x,\(x)) . (1.46)

For the points on the boundary, the shape function are found in a similar way of (1.44),



12 1. INTRODUCTION

but the summation are performed only on the particles that belong to the same face of the
boundary, and not on the interior points. This is a non negligible property, because in this
way it is possible to satisfy in a simple way the essential boundary conditions, that in most of
the methods described earlier represent an open problem. This property is the so called weak
Kronecker Delta property.

The minimization over A of the functional log Z(x, A\(x)), is non difficult to perform, since
there are no derivatives involved. For this reason the calculation can be done pointwise, and
the problem reduces to a minimization over a variable A of a vectorial function log Z(\).

Second-order max-ent. The Second-order Maximum Entropy functions have been in-
troduced with the aim of improving the consistency order of the Max-Ent shape function,
and also to remove the still existing parameter that has to be imposed by the external of the
method, the parameter 3, that states the grade of locality of the approximants. In this case,
the generic shape functions has to obey also the condition

> arl =1 | (1.47)

a=1

that can be also rewritten, recalling (1.39), in the form

N
> Ga(za—x)* =0 . (1.48)
a=1

In these equations, and in the following, the dependence of ¢, on x will be omitted for
simplicity. Recalling the interpretation of the ¢, as a probability distribution, the first term
of Equation (1.48) can be seen as the variance of the distribution. It is obvious that it cannot
be zero, otherwise it would mean that all the ¢, are zero except for the case x = x,.

The solution has been proposed in (Cyron et al., 2009). Instead of condition (1.48), the
authors propose

> talra —2)” =g(x) | (1.49)

where g(x), called gap function, has to be chosen in a suitable way. Obviously such a correction
relaxes the request of second order reproducibility of the method, but it will be clear that this
relaxation only works on the boundary, leaving the second-order consistency in the interior of
the domain.

In the following we describe how to choose the gap function in 1d. The procedure is easily
generalizable in higher-dimensions.

The first remark is that the gap functions have to respect the boundary conditions (invoking
the weak Kronecker Delta property), and so they have to vanish at the boundaries. The form
of the gap function could be

N
9(x) =Y Garwa | (1.50)
a=1

where the ¢, 1 are the first order Local Max-Ent shape functions and the w, are weights. This
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choice does not hurt with the request of smoothness of the approximants, since the firs order
Local Max-Ent shape function are C'*°.

An heuristic choice of the gap function, that gives excellent results (according to the
authors) is a constant function g(x), smoothly ramping to zero in proximity of the boundary.
This function has the form

h2an
9(6) = {T $2 <& <EN-1 , (1.51)

-t L <E<H
& being a local coordinate originating on the boundary, A, being the maximum distance

between two particles in the domain, and hq 2 being the distance between the boundary particle
and its nearest one.

In the two and three-dimension case many other possibility are proposed for the determi-
nation of the most effective gap functions, and we do not go into details for brevity. We refer
to the original works for further details.

Once defined the gap function g(x), it finally remains to determine the shape functions.
The request is to maximize the functional

N
_Z¢al09¢a (1'52)
a=1

under the constraints (1.39) and (1.49). The solution is given by

b= oy [N @ = )+ (e = ) —g@)]] (1.53)
where, as earlier,
N
Z(w ) = 3 exp [N — z0) + pl(e — 2a)? = g(a)]] (1.54)
a=1

is the partition function, and

[\, 1] = arg mln logZ (A, i) (1.55)
Ap
Once again, the minimization can be performed pointwise, and so the functional Z reduces
to a function of the only unknowns A\ and p. We remark that, as stated earlier, these shape
functions, differently from the first order Local Max-Ent, are naturally local, because they
vanish far from z,, and there is no need of a parameter such as /3 introduced in (1.43).
A great difficulty for this method is the computation of the spatial derivatives of the shape
functions: in fact, recalling (1.53), they involve the functions Z*(z), A*(z) and p*(z), that we
only know pointwise.

Let’s consider the gradient of the partition function (1.54).

r(z,\ )" =[0n 9. Z(x,\ p) (1.56)



14 1. INTRODUCTION

Recalling (1.55), we know that for A = A* and pu = p*, the functional Z has a minimum
Z* for every x, and so its gradient r* is zero for each .

Now we calculate the derivative of the gradient with respect to x. It also has to vanish for
each z.

dr*  Or* d [ N\
dr Oz dx [ pw ] 0 (1.57)
where
Zx\ 4 }
H= H 1.58
[ Zzn Lyup ( )

is the Hessian matrix of the function Z particularized at A* and p*. Now the derivatives
can easily be calculated by inverting (1.57), where all the other terms are easy to calculate.
Moreover, if the minimization (1.55) is performed through the method of Newton-Raphson
(which is possible since the KKT conditions are respected). The Hessian is already available
from the minimization procedure of (1.54).

SME - Isogeometric analysus. One of the most recent development of the Second
order maximum entropy approach is the fusion with a recent successfully method based on
Isogeometric Analysis (IGA). In Rosolen and Arroyo (2013) the authors start from the con-
sideration that the so called weak Kronecker Delta property (that is the characteristic of the
SME shape functions in the interior of the domain of vanishing on the boundary) holds only
in a convex-hull. Conversely, the representation of the domain using the IGA, which uses the
same procedure of the CAD systems for the definition of the geometry, is highly more precise
than with the Second Order approach, and moreover the shape function preserve the weak
Kronecker Delta property also when the collocation points do not belong to a convex hull.

Moreover, the distribution of collocation points in the IGA is by far more rigid than in the
case of the maximum entropy approach. The method developed in Rosolen and Arroyo (2013)
considers the best characteristics of this two approaches. On the boundary, the isogeometric
shape functions are considered. In the interior, the shape function are the max-ent ones.
In a strip near the boundary, where the shape functions of the boundary have not vanished
at yet, the shape function are a mixture of the IGA shape functions and the max-ent ones.
These are calculated always imposing the maximum entropy criterion, but also considering
the contribution of the IGA shape functions.

Maximum Entropy shape functions - final considerations. The method proposed
in the present sections presents many interesting characteristics, above all the one of being
totally independent of external choices, and of being sufficiently robust with unstructured
point distribution. Nevertheless here we remark that the robustness of the method with
respect ot unstructured distributions is valid only for the first-order LME, while in second-order
distributions a method for determining the gap function, and thus, a correct approximation
of shape functions, has not been found. Moreover the methods looks not to be suitable for
Lagrangian dynamics, since the shape function determination is a computationally expensive
algorithm (due to the non-linear maximization of the entropy), that should be repeated at
each particle redistribution, making the method particularly ineffective for fast dynamics.
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1.4 Meshless methods based on the Taylor series

A different typology of meshless method is based on the Taylor series expansion: among these
here we briefly review the Generalized Finite Difference Method. Another method based on
the Taylor series expansion is the Least Square based Finite Difference Method (Ding et al.,
2004a,b), for which we do not go into details, but we refer the reader the original works.

1.4.1 Generalized Finite Difference Method

The Generalized Finite Difference Method (GFDM), introduced by Benito et al. (2001), moves
from a different starting point with respect to the methods discussed until now. The approx-
imation schemes of f/(z;) and f”(x;) are achieved by the minimization of a weighted error
between the Taylor series expansion of the function f(x) about a point x; and the value of
f(z;) itself; the authors consider the influence region of a particle as the set of a certain num-
ber of surrounding points, selected with the so-called star criterion. The authors apply their
method to hyperbolic and parabolic partial differential equations (Benito et al., 2007), to the
advection-diffusion equation (Urena et al., 2011), as well as to third- and fourth-order partial
differential equations (Urena et al., 2012; Gavete et al., 2012).

Here we report the basic idea of the Generalized Finite Difference Method (GFDM) in
the multidimensional case. The starting point is the Taylor series expansion of a function
u(x) about a point z;, and its evaluation at a point ;. The truncation error is computed as
eij = u(x;)—u;, where u(z;) is the exact value of the function in z; and u; is its approximation.
Then, a set of points x; surrounding x; is considered, and the total squared weighted error

E, =3 [el-]-Tij]2 is computed, being T% = T'(z; — x;) a weight function, that is:

E; = Z {[u(z;) — u(z;) + Dyu(®i)(zj — ;) + Dyu(@:)(y; — yi) +

1 1
. D N2 ) N2 2 . )2
+  Dyu(zi)(zj — z) + 2Dmu(xl)(x] x)" + 2Dyyu(w,)(y] vi) + (1.59)

SD2u@i) (5 — =)° + D3yu(eaa; — w0y )+
+ Dizum)(yj —yi)(zj — zi) + D2 u(®;) (xj — x:)(2 — z)] Tij}2

Finally the approximation schemes for the spatial derivatives are simply achieved by min-
imizing (1.59) with respect to the values of the derivatives in z;. After minimization, the
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following linear system is obtained

(1.60)

For brevity we omit the expression of the components of the matrix A? in the GFDM, that

can be found in Benito et al. (2001, 2007).



Chapter 2

A Modified Finite Particle Method:
1D formulation

The Modified Finite Particle Method (MFPM) is a numerical technique for derivative approx-
imations first introduced in Asprone et al. (2010) following the idea proposed in the SPH
and successively developed in the Corrective Smoothed Particle Hydrodynamics (CSPM). In
the present chapter we report the procedure adopted in the MFPM and underline the main
differences with the previous formulations proposed in the literature for the monodimensional
case.

In particular we start from the original formulation, proposed in Asprone et al. (2010)
and then show a novel formulation, proposed for the monodimensional case in Asprone et al.
(2014).

2.1 Modified Finite Particle Method - Derivative approxima-
tion

The approximation technique starts from the Taylor series expansion of a function u(x) up to
the second-order and centerd in a point x;

1 1 " 2 3
u(x) = u(z;) +u'(z;)(x — ;) + U (z;) (x — ;)" + o(|Jz — x4]°) (2.1)

Then we project it on two projection functions Wi (z — x;) and Wy (z — x;), such that

. ) 1 )
/ (u—u;) Widx = u;/ (x — z;) Widx + u;'/ —(x — x;)*Widx + ¢,
Q 0 Q2
. (2.2)
/ (u — u;) Wide = u;/ (x — x;) Wadx + u;'/ —(x — x;)* Widx + €,
Q Q0 Q2
Hereafter, for simplicity of notation, we denote Wi = Wy (x — ;) and u(z;) = u;. €} and
el are the projections of the truncation error. We note that the method is similar to the
Modified Smoothed Particle Hydrodynamics (see Chapter 1), with the novelty that in this

17
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case the function value u; is not considered an unknown for the approximation of derivatives.

We divide the whole domain in a finite number of subdomains, whose measure is Az, each
one referring to the particle in ;. Then we discretize the integrals of (2.2), and we obtain a
set of two equations that we may write in matrix form as

[ Ay Al ] < y > (Sl W Ay < ¢ > (2.3)
91 A i > luj —wi] Wy Az €
Equation (2.3) holds at each particle ;. We refer to the left-hand side matrix in Equation
(2.3) as A, and its components are:

‘ ij i _ 1 ij
1= Z(% — x) Wy Az 12 = 52 (z; — )W} Az

! ) ’ (2.4)
51 = Z(% - xz)ng Ax; 52 = 52 (37]' — xi)2W2” Ax;

J j

where W stands for W, (2; — ;).

We finally obtain the approximation schemes for the first and second derivatives by invert-
ing (2.3). An accurate analysis of the error in MFPM is available in Asprone et al. (2011).

2.1.1 Consideration about the smoothing function

The choice of the projection functions (replacing the classical smoothing functions used in
previous works) is a fundamental issue in any particle method. In classical SPH-based methods,
the traditional choice of a bell-shaped function and its derivative is preferred, and many authors
investigated the properties of different kernel choices, e.g., in Lucy (1977) a polynomial function
was used, while in Gingold and Monaghan (1977) a Gaussian function and its derivative were
adopted. The Gaussian has been since then regarded by many authors as the golden function
thanks to its smoothness even for high order derivatives; on the other hand, some authors used
high order B-splines (Monaghan and Lattanzio, 1985; Morris, 1996a,b), while Johnson et al.
(1996) used a quadratic function. All these kernel functions have to respect the properties of
unity (1.4a), compact support (1.4c), positivity, and Dirac Delta property (1.4c).

In MFPM formulation these properties are not required. In fact, the projection functions
are only bases for the projection of the unknown functions and no relation with the Dirac
Delta is indeed required. For this reason they may be chosen in any way such that the matrix
A' is non singular; the traditional choice of a even and a odd function guarantees this property,
but this is not the only possibility.

In Equations (2.3) and (2.4) summations are computed over a certain number of particles,
forming the stencil of the derivative approximation schemes. As an example, in order to
approximate the first derivative in x;, we may consider the particles in x;_1, in z;, and in z; 1.
At the boundary, we instead consider the i-th particle and the two closest ones.
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2.2 Novel formulation

In this section a novel formulation is derived, by modifying the original MFPM formulation.
We consider the Taylor series expansion (2.1) about the point x; and collect in the vector g
its evaluations in a certain number of points x;:

wj —up = ub(z; — i) + =l (x; — )% + o(|xj — x4]?) (2.5)

“Then we collect in another vector, namely w’, the evaluations of a set of projection functions
W in the same points z;. We perform the scalar product w’-¢’, neglecting the truncation
error; the following equation holds:

> (uj —u) WY = Z =z W 4 u"z VWi (2.6)

J

and thus, for @ = 1,2, we obtain:

( Ay Al ) < u; ) (2w WY 2.7)
7 7 " - 7 :
Ay A u; Zj [uj — us] Wy

where
Zﬁ = Z(% - ac,)Wf] Ziz = %Z (zj — xz‘)zwfj
! ! (2.8)
Ay =Y WY Ay = 53 (- )WY
J J

We observe that the novel formulation can be easily derived from the original one by setting
Azx; =1 for any j.

2.2.1 Discrete form of a 1D boundary value problem using the Modified
Finite Particle Method

Let us consider a generic 1D boundary value problem in the form

2u U
P = 1w re0D)

ul,_, = (2.9)

We want to reduce it in the algebraic form
Ku=f (2.10)

where u is the vector of the values of the unknown function u at x;. The “stiffness” matrix K,
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for linear problems, is the linear composition of the discrete differential operators D!, D',
and I, that are the discrete counterparts of the operators d2/dz?, d/dx and 1. In particular,
the discrete form of (2.9) reads

Zj OéDZI]I + BDZI] + '761']'] uj = fi Vie{2,..,.N —1}
UL = Uy (2.11)

I )
Zj Diyjuj = up,

and
K=aoD" +8D!'+1I Vie{2,.,N-1}
K11 == 1, Klj =0 for ] 7£ 1 (212)
Ky; :D{Vj

The expressions of D! and D' can be derived, for the original MFPM formulation, as

DI — 4 | Wi Aay — 6y S WitAzy | + By w;mxj—@jZW;mh] (2.13)
h h
and
DL = Eiy |WiAxy — 6 S WAy | + Bly Wy Ay — 65> WitAzy, (2.14)
h h

where E! = (A’A)_1 and §;; is the Kronecker Delta operator, that is 1 when ¢ = j and 0
otherwise.

In the novel formulation, the discrete operators D! and D! are equal to

D{j = Ej + B

Wy =6y Wit
h

Wy =6 ) Wgh] (2.15)
h

and

I _ i i
D;; = Eyy + Eqs

SR [ o0 I
h h
where, again, E' = (Ai)fl. We remark that the components of the matrix A’ are different

in the two formulations, but here we denote them with the same name since they play an
identical role in both cases.

Once the matrix K is assembled according to (2.12), the array w is obtained through the
solution of the linear system (2.10).
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2.3 Applications to 1D boundary value problems

In the following we present some numerical tests, which are a good occasion to investigate
some peculiarties shown by the method in the 1D case.

The test-case is a baudary value problem in the form:

o (z) = —f(x) (2.17)

with a Dirichlet condition on the left side of the domain (at z = 0) and a Neumann condition
on the right side, at x = 1, both equal to zero. The function f is chosen to be f(x) = e®. The
corresponding exact solution is

u(x) =—€e"+ex+1

The problem is solved using a second-order MFPM, first using a uniform distribution of
particles on x, and then using a non uniform distribution. The non-uniform distribution has
been obtained by the following equation

" = (2})” (2.18)

7

where x?—u stands for the particles position in the non uniform distribution; x} is the particle
position in the uniform distribution, « is the parameter that densifies the distribution on the
right side of the domain, if it is less than one; it makes collocation nodes more concentrated
on the left side of the domain, if it is higher than one. It is worth noting that this formula
works only if 0 < & < 1, otherwise such a formula has to be preceded by a “normalization”
procedure, that is the position of the particles has to undergo a geometric transformation that
takes them back to the reference interval [0, 1]. The process of transformation from a uniform
distribution to a non uniform one is explained in Figures 2.1(a) and 2.1(b).

Since we have a truncation up the second order of Taylor series, we expect a second order
slope of the error curve in a logarithmic diagram. The error has been computed as the 2-norm
of the difference between the exact solution and the approximated one.

In figure 2.2 we show the exact and a numerical solution for the problem (2.17), with a
non uniform distribution of particles.

As we can see in Figures 2.3 and 2.4, we have a second order slope both in the case of a
uniform distribution and in the case a non uniform distribution. We solved the problem using
an odd and a even smoothing function, to ensure the matrix A to be non-singular.

We also remark about the case of three particles spanned by the smoothing length. In fact,
when we perform the MFPM procedure at the boundary, it happens that the related matrix
A becomes singular, and this does not happen when we consider more than three particles.
In fact, if we consider a smoothing function which spans five particles: close to the boundary
the integrals in the matrix A become, in the discrete
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Figure 2.1: Creating a controlled non uniform distribution of particles
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Figure 2.2: Analytical and numerical solution for the problem (2.17)
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Figure 2.3: Error diagram of a uniform distribution of particles, with a Dirichlet and a Neumann condition
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Figure 2.4: Error diagram of a non uniform distribution of particles, with a Dirichlet and a Neumann condition

Ay = Ax2WE(x1 — x0) + 2823W3 (29 — 20) (2.19)
App = % (AW (22 — z0) + 4AT3WS (22 — 20)] (2.20)
Aoy = Ax2WE(z1 — x0) + 2823W2 (29 — 20) (2.21)
Agy = % [AZIWE (29 — 20) + 4A25 W3 (22 — 30)] (2.22)

By dividing the terms of the first row by the ones of the second row of hte matrix A we
obtain

A Wi(z) + 2Wg (x2) 0.23)
Az W) + 2W5 (a2) '
Agy W (1) + AWE (22) '

In this way (2.23) is different from (2.24). But if we consider a kernel function which does
not span the external particles, (that is the same of considering W (z2) = 0 and W§(x2) = 0)
we notice that (2.23) becomes equal to (2.24), and therefore the matrix A becomes singular.
This is not a problem when we solve a Boundary Value Problem with only Dirichlet conditions,
but in the case of a problem that involves derivatives in the boundary conditions, we have to
invert the matrix A related to the boundary particle (in order to calculate the derivatives)
and this is not possible.
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2.3.1 Comparison with the Finite Difference Method

It can be observed that, when only three particles in the stencil are used, the second-order
approximation schemes of derivatives are independent of the choice of the projection functions.
In order to prove this, we recall the classical procedure to get the derivative approximation
schemes used in the Finite Difference Method (LeVeque, 1955).

The approximation of a function u at a point z; can be achieved by the Taylor expansion
about z; up to the desired order.

A generic approximation scheme of the second derivative reads

ul = Z ajuj (2.25)
J

where o are coefficients to be determined. By combining (2.5) and (2.25), we obtain (LeVeque,
1955, see)

uf =y Z aj + uj Z aj(zj — ;) +uf Z %aj(x]- —z;)? (2.26)
J J J
The points x; are called collocation points of the approximation schemes, while the points
x; are the points of the stencil of the approximation. In most of the schemes, they do coincide,
but this is not mandatory in general.
Equation (2.26) holds only if

Zja]':()

2 % (@) — i) =0 (2.27)
259 (25— i) =1

When the particles are three, the number of equations is equal to the number of the
unknowns c;. If there are no coincident particles at the same point z;, the system (2.27) has
only one solution. Hence, the second order approximation scheme for the second derivative is
unique. We remark that the same argument holds also for a second order approximation of
the first derivative.

In both the original and the novel formulation of the MFPM, the final form of the derivative
approximation schemes is identical to (2.25). In order to achieve a second order scheme for the
first and second derivatives, any procedure has to return the same «; of the FDM, otherwise
the method would not be second-order accurate. Both original and novel MFPM satisfy this
requirement.
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Chapter 3

Multidimensional Modified Finite
Particle Method

In the present chapter we extend the Modified Finite Particle Method to the multi-dimensional
case. In a first moment, we will show the three-dimensional original formulation of the MFPM,
as presented in Asprone et al. (2014), then we present a novel formulation, as presented in
Asprone et al. (2014), and show the obtained advantages in terms of computational cost and
error.

3.1 Original formulation

We consider the Taylor series expansion of an unknown function u(z) up to the second order

w®) = w(@i)+Dyu(@i) (2 — zi) + Dyu(@i)(y — yi) + Dzu(@i)(z - 2i)+

1 1 1
+§Df«xU($z‘)($ — ) + gDzy“(mi)(y — i)’ + §D§ZU(%)(2 — )+

+D2 u(@) (@ — i) (y — yi) + D u(@s) (y — vi) (2 — 20)+
+D2 u(@)(x — 2:) (2 — 2) + o |& — z4|)

(3.1)

wherez = [z y 2]”.

27
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Dyu(z;) / (x — 2;))WZ dV + Dyu(;) / (y — y))WidV 4 D u(x;) / (z — z)Wiadv+
) Q Q
L 2u17i 1o PR
+ §Dmu(a:l) / (x — ) W dV + §Dyyu(a}i)/ (y —y:) W2 dV+
Q Q
1 . )
+ §Dgzu(a}2) / (2 — z)°W2idV + Diyu(mi) / (x —zi)(y — yi)) WL dV+
Q Q
+ Db [ (w0 - WiV + Daule) [ (o= )z - =) WidV =
Q Q

~ [ ()~ utzwiav
Q

(3.2)
which can be rewritten in matrix form as:
Dyu(z;) Joy (u(@) = u(@:)) Wi dv
Dyu(z;) o (u(@) — u(z;) W3 dV
D u(z;) o (u(@) — u(@;)) W3 dV
| Digu(z:) Jo (u(@) — u(z:)) Wi dV
A" Dyu(zi) | = | Jo(u(@) —ul@:) WidV (3.3)
D2 u(;) o (u(@) — u(@;) W dv
D3, u(z;) o (u(@) —u(@;)) Wy dV
Dgzu(xl) o (u(x) —u(z;)) Wé dv
D; u(z;) o (u(@) — u(z;)) WgdV

The choice of the projection functions is performed with the only requirement that, for
each particle, the matrix A’ is non singular. For instance, in our tests we choose

Wll =r—x Wi = (z— xz)j W7Z = (x — ;) (y — yi)
W =y—ui W5 = (y—w) Ws = (y —ui)(z — )
Wi=2z—2z Wi = (z—z)* Wi = (v —x;)(z — 2i)

The domain Qis then divided into finite subdomains AV, one for each particle x;, e.g.,
according to the Voronoi tessellation procedure (see Aurenhammer (1991) for details); for each
particle an influence region §2; is also defined, depending, as in SPH-based methods, on the
smoothing length. In MFPM we do not define a fixed value of the smoothing length, but we
prefer to set the number of particles to be included in the domain €; for the approximation of
derivatives. For all particles such that z; ¢ €; we pose that W' (z = z;) =0 for a = 1,...,9.
Then, the integrals are approximated with summations, and Equation (3.3) can be rewritten
as

AZD(U,Z) = C’Zu — Buz (3.4)
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where
ci=w' | w2 | .. | W (3.5)
B =Y W (3.6)
J
and .. .. .. .. T
Wi = [WIAV; | WPAV, | .. | WAV (3.7)
Then, by inverting (3.4), we obtain
D(u;) = EY(C'u — B'u;) = E'(C* — B')u (3.8)
where ' A
B'=[0 | 0| .. | B | .. |] 0] 0] (3.9)
and finally '
D(u;) = D'u (3.10)

The operator that, applied to u, gives back the discrete form of the generic derivative of
u(x) can be built by collecting the corresponding rows of D' = E*(C* — BY), Vi.

In order to find the correct row of D?, it is sufficient to refer to Equation (3.3). For instance,
in order to build the operator D, (that, applied to u, gives back the discrete counterpart of
0?u(x)/0x?), we select, for each i, the 4-th row of D?, such that

Dj

D3

D, = (3.11)

DY
where Di is the a-th row of D'

A 2D formulation of the method is simply achieved by considering only the derivatives
in the x and y directions, that is, o can only be equal to 1,2,4,5,7. The three-dimensional
subdomains AV} are obviously replaced by planar subdomains AA;.

3.2 Novel formulation

In the present section we introduce the novel formulation of the Modified Finite Particle
Method (MFPM) as presented in Asprone et al. (2014), and use this method for the derivative
approximation of a scalar function u(x) defined in a three-dimensional domain €2, hence x =
[ y 2T € QcR3 We discretize the domain € into a set of points x; collected in the node
set X.

For each point x; € X, the approximation procedure considers the Taylor series expansion
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of u(x) up to the second order, centered in x;:
u(x) —u(x;) = Dyu(xi)(z — x;) + Dyu(xi)(y — yi) + Dzu(xi)(z — zi)+

1 2 2 1 2 2 1 2 2
+ §D:m:u(xl)(x - xl) + §Dyyu(xi)(y - yl) + §Dzzu(xi)(z - Zi) +
+  D2u(xi)(x —xi)(y — vi) + D u(xi)(y — vi) (2 — zi)+

+  DIu(xi)(x—z)(z — 2)

(3.12)

Then, for each x; we select a node subset X; C X, which serves as support for the derivative
approximation in x;. Conceptually X; could coincide with the whole set of nodes X, but
the choice of a limited number N; of “supporting nodes” has a beneficial effect on the final
computational cost of the method.

Equation (3.12) is then evaluated in the points x; € X, yielding
u(xj) —u(xi) = Dpu(xi)(zj — x3) + Dyu(xi)(y; — yi) + Dau(xi)(zj — 2i)+
Lo 2, 1 o 2 1.9 2
+ §D:m:u(xl)(x] - xl) + §Dyyu(xi)(yj - yl) + §Dzzu(xi)(’2j - Zi) +
+ D2u(x)(x; — i) (y; — vi) + Dpu(xi)(y; — vi) (25 — 2i)+
+ Diu(x)(z; —z:) (2 — z)
(3.13)
It is important to highlight that at this stage we consider to know the nodal values of u
(i-e., u(x;) and u(x;)), and, therefore, in Equation (3.13) the unknown terms are the derivative
evaluations at the point x;. In order to compute such derivative values, we introduce nine
arbitrary functions (referred as projection functions) Wi (x) = W, (x — x;), with a = 1,...,9,
and evaluate them at the points x; € Xj.
We then multiply both sides of Equation (3.13) by the evaluations WY =w, (xj — x;) of

the projection functions at the same points x;. Finally we sum all products, obtaining nine
expressions of the following type

Dau(x;) Y (2 — z) W + Dyu(xi) > (y; — y) W + Dau(xi) Y (25 — 2) Wi+

J J J
1 1 3
+ §D§ZU(X1') Z () — )" W + §D§yU(Xz) Z (yj — v) W+
J J
1 3 3
+ §D§zu(xz') Z (25 — 2:)* W7 + D2 u(x;) Z(fﬂj —xi)(y; — y) Wl +
J J
+ Dpu(xi) > (v — i)z — 2)WF + Diu() Y (w5 — i) (25 — 2) W =
i i

- Z[u(xj)—u(xi)]wg a=1,..,9
’ (3.14)
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Remark. [t is important, at this stage, to highlight the formal difference between the novel
formulation just described, and the original formulation described in the previous section. In
fact, in this case we first evaluate the Taylor Series (3.12) and the projection function, and
then we project vectors, obtaining an already discretized projection. In the case of the origi-
nal MFPM formulation, conversely, we perform a continous projection, obtaining an integral
expression that has to be furthermore discretized, introducing an additional source of error.

Equations (3.14), repeated for a = 1,...,9, can be rearranged in matrix form as

Do) 5 lu(xy) — u(x,)] Wi
Do) 55 lulxs) — u(x)] W
D.u(x;) 2 [ulxj) — u(xi)] Wy
| 2y || ) i) w
A’ Déyu(xi) = Zj [u(x;) — u(x;)] W%] (3.15)
g;zu(xi) > lu(xy) — ulxq)] W’
Dgyzg;ﬁ; 57, [ulx) = ulx))] Wy
et || ) ] W
S 25 [u(xg) — u(xi)] Wy’
Equation (3.15) can be rearranged in a more compact form as
A'D(u;) = Wiy — Blu(x;) (3.16)
where W' is a 9xN; matrix defined as
Wi=[wt | w2 || WY (3.17)
B' is a 9x1 vector defined as
B =) W% (3.18)
j=1
In Equations (3.17) and (3.18), W% is a 9x1 vector defined as
W= [wi | wE | L Wi 3.19
1 2 9

that collects the evaluations of the projection functions W at the nodes x; and x;, for
a=1,...,9; finally u; is the N;x1 vector collecting the values of u(x) at all nodes of the subset
X;.

Equation (3.16) can be furthermore rearranged in the form
A'D(u;) = (W' — B') u (3.20)

where
IBi

I
=)
=)
=,
=)
=)

(3.21)
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is a 9x/V; matrix, composed of zero entries, with exception of the i-th column.

Derivative values at the point x; can be retrieved inverting Equation (3.20), yielding
D(u;) = E{(W* — B')u, (3.22)

where A A
E — (A} (3.23)

Finally, Equation (3.22) can be rewritten in the form
D(u;) = D'u, (3.24)

where the matrix D! = E{(W* — B?) is a 9xN; operator acting on the vector u; and returning
the evaluations of the function derivatives at x;.

However, keeping in mind that our final goal is to solve boundary value problems governed
by partial differential equations, we need nine discrete differential operators that approximate
derivative operations on continous functions. In particular, recalling that N is the total number
of nodes used for the domain discretization, we wish to build operators that act on the Nx1
vector u (collecting the function evaluations at all nodes of the domain) and reconstruct
the function derivative evaluations in all nodes. Such operators are constructed collecting the
proper row from the operators D?, Vi, identified with reference to Equation (3.15). For instance,
in order to construct an operator D, acting on u and returning the discrete counterpart of
0?u(x)/0x?, we extract, for each i, the 4-th row of D?, that is

D;

]D2
Dzz = 4

(3.25)
Dy
where Di is the a-th row of DI

A 2D formulation of the method is simply achieved by considering only the derivatives in
the x and y directions, that is, a can only be equal to 1,2,4,5,7.

Given the analytical form of derivative approximation schemes, it is easy to approximate
any linear differential operator; the most common are reported in Table 3.1

| Continuum operator | Discrete operator |
0] D.(s), + D, ()2 + D-(o)5
V(e) [D. D, D.]'(e)
V() Dq:(e) + Dyy(e) + D::(e)

Table 3.1: Correspondence between some continuum differential operators and their discrete form using
MFPM.
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3.2.1 Projection functions and supporting nodes

In the following we give some selection criteria for the projection functions and for the “sup-
porting nodes”.

The projection functions W2 have to be chosen such that matrix A’ is non singular. In all
the examples of the present paper, we use linear, quadratic and bilinear functions in the three
independent variables, i.e.:

Wi=z—a  Wi=(@-2)  Wi=(@-a)y-w
Wy=y—yi  Wi=(y—w) Ws = (y —vi)(z — )
Wi=z2—2z Wi=(z—z)* Wy = (z —z;)(z — %)

The dimensions of the subsets X;, that contain the supporting nodes for each x;, is not
specified a priori. The number of supporting nodes, as well as their criterion of selection, is
the topic of several works in the literature regarding meshless methods. In the original version
of the Smoothing Particle Hydrodynamics a smoothing length is selected, and all particles
whose distance is less than the fixed smoothing length are used for the approximation. On the
other hand, in the Generalized Finite Difference Method, the selection criterion includes the
particles x; and the two closest ones for each quadrant of a local reference frame, centered on
the particle itself and with the axes parallel to the global axes (star criterion). In the Least-
Square Finite Difference Method, proposed by Ding et al. (2004a,b) the selection algorithm of
supporting nodes considers the IN; nodes closest to x;, and then a check is performed on the
condition number of the local system to be solved (with a structure similar to (3.15)). The
authors observe that when one or more supporting nodes are very close to x;, the matrix A’
may result ill-conditioned. Therefore a scaling matrix S, based only on the reciprocal distance
among particles, is introduced in order to improve the quality of A?, and thus, of the derivative
approximations.

We use a selection algorithm very similar to the one proposed in the LSFDM, and composed
of two steps. First, a predetermined number NV; of particles is included in the set of supporting
nodes X, selected only on the base of their distance from the particle x;. Then, a diagonal
scaling matrix S is introduced, whose expression is

S = diag [1/R, 1/R, 1/R, 1/R? 1/R* 1/R* 1/R*® 1/R* 1/R’] (3.26)

where R = max ||x; — x;||,x; € X;. Equation (3.15) is then rewritten introducing the matrix
S both in the left and right term. The condition number of the resulting matrix A’ = SA? is
computed; if such condition number is greater than a fixed threshold value C),4,., the number
of supporting nodes is increased and the procedure is repeated, until a satisfactory condition
number is reached.

Accordingly, Equation (3.4) can be rewritten in the form
A'D(u;) = SA'D(u;) = SA’ (W'y; — Blu(x;)) (3.27)

and all equations from (3.15) to (3.23) are properly rearranged.
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3.3 Comparison with existing methods

By comparing Equations (3.3), (3.15), and (1.60), we notice the similarity between the GFDM
and both the original and novel formulations of the MFPM. In particular, it is easy to see
that, with a proper choice of the projection functions in the MFPM, the GFDM is recovered.
In particular, the GFDM and the novel MFPM exactly match, if the following functions are
chosen for the novel MFPM:

Wy =2(xj — ;) Tii?
Wy =2(y; — i) T
Wi = 9(z; — 2) T9?
WZ] = (z; — x)2 T i?
= (y; —y)° TV (3.28)
(z] z,)QT”2
W” = < i) (y; — y) T
Wi = 2(yj — vi)(z; — zi) Ti5?
Wy = 2(x; — ) (2 — 2) T

We remark that in the GFDM all the derivative approximation schemes depend on the
choice of one weight function 7j;, while in the MFPM formulations 9 projection functions
have to be defined.

3.3.1 Considerations about the stencil of the derivatives

The stencil of a derivative approximation is the set of particles which contributes to the
approximation in a point x;. Such a point is called collocation point. In the first works
regarding the SPH, a point was included in the stencil of derivative approximations if its
distance from the collocation point was less than the smoothing length h. This approach
has been followed in many other works about SPH-derived methods, such as the RKPM, the
CSPm and the MSPH.

In the local max-ent approach, the selection of the stencil was determined by the choice of
a parameter 3, that was chosen in order to enforce a condition of locality of the method. In
its development, the so called second-order max-ent approach, the shape functions were local
automatically, and also the particles included in the stencil were chosen consequently.

Is the Generalized Finite Difference Method, as shown in (Benito et al., 2007), the authors
state that an optimal choice of the stencil in a 2d case is the so called “star criterion”, that
is, the stencil of a collocation point is selected by choosing the two closest particles for each
quadrant, independently of the their distance from the collocation point itself, as shown in
figure 3.1

When there is not a sufficient number of particles in each quadrant, the missing particles
can be supplemented from the other quadrants. This criterion has a general application, but
is not precise in the case of structured distribution. Moreover, it can occur the case when all
the particles selected by the star criterion are aligned on a cross. In this case it can be shown
that the matrix A of equation (1.60) cannot be inverted.
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Figure 3.1: The star criterion

3.4 Searching algorithm of neighbour particles

In each meshless method developed in the literature a deep attention has to be given to the
algorithm of neighbour particle selection, since it is often the most time consuming part of the
whole algorithm, especially when explicit time integration is performed.

In the present section we discuss the algorithm used in the MFPM for the construction of
the linear differential operator presented in Sections 3.1 and 3.2 with special attention to the
computational cost required in the different phases of the procedure.

In particular, the algorithm takes in input a node distribution and returns the discrete
differential operators proposed in the previous section. For both the original and the novel
formulation the searching algorithm procedure is exactly the same. The steps composing the
particles searching algorithm is then, for each collocation point x;:

1.
2.
3.

all other nodes are reordered on the base of their distance from x;;
the 9 particles closest to x; are chosen;
the matrix A; is built;

the matrix A; is preconditioned on the base of the particle distance from x;, following
the idea shown in Ding et al. (2004a,b);

the condition number of A; is computed and compared to a predefined threshold value;

. if the condition number is higher then the threshold value, the number of neighbour

nodes is increased, and phases 3, 4, and 5 are repeated;

the matrix A; is inverted;
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Table 3.2: Computational cost for algorithm 1 used on a distribution of 6561 collocation points

Phase | Computational cost [s] | Percentage [%]

1 4.75 31

2 0.125 0.83
3 0.703 4.67
4 0.0892 0.59
5 7.65 50.85
6 0.409 2.71
7 0.344 2.28
8 0.975 6.48

Table 3.3: Computational cost for algorithm 1 used on a distribution of 16461 collocation points

Phase | Computational cost [s] | Percentage [%]
1 21.8 42.57
2 0.356 0.69
3 2.21 4.32
4 0.245 0.48
) 20.21 39.47
6 0.98 1.91
7 0.92 1.80
8 4.48 8.75

8. the i-th row the discrete differential operator is built.

The computational cost connected to the different phases depends strongly on the strategies
adopted especially during the phases 1 and 2, and the specific in-built MATLAB functions
used for phase 5. In particular, this primitive, rough algorithm, for each collocation points
reorders all nodes of the domain in terms of distance, and uses the MATLAB in-built function
condest. For the algorithm just described the computational costs are reported in Table 3.2

The same algorithm tested on a distribution of 16461 nodes gives the results shown in
Table 3.3

It is evident from a first glance to Tables 3.2 and 3.3 that the most costly phases are the
phases 1 and 5. The research algorithm is then significantly improved properly modifying
these two phases.

The improvement of phase 1 is made through a different searching algorithm, used in many
SPH codes and applications: it consists in dividing the domain in a predefined number of square
subodomains (depending on the amount of collocation points, in such a way that each square
subdomain contains limited number of nodes). Therefore the research of neighbour particles
is made on only the square in which the collocation node is located, and in the 8 adjacent
squares. This process obviously reduces the time required for pre-ordering and selecting the
neighbour particles.

For what concerns the computational cost of the computation of the condition number of
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Table 3.4: Computational cost for algorithm 2 used on a distribution of 6561 collocation points

Phase | Computational cost [s] | Percentage [%]
1 0.435 26.12
2 0.0362 2.17
3 0.271 16.27
4 0.0643 3.86
5 0.270 16.21
6 0.266 15.97
7 0.201 12.06
8 0.122 7.33

Table 3.5: Computational cost for algorithm 2 used on a distribution of 16461 collocation points

Phase | Computational cost [s] | Percentage [%]
1 1.08 27.17
2 0.084 2.11
3 0.63 15.85
4 0.146 3.67
) 0.641 16.13
6 0.708 17.81
7 0.401 10.09
8 0.285 7.17

the matrix A;, it is sufficient to our scope to approximate the condition number, since we only
ask to this phase to understand if the matrix A; is invertible or not, and this information is
given also with a non extremely precise condition number. Therefore we replace the MAT-
LAB function condest with the more efficient MATLAB in-built function cond. For technical
differences between the two functions we refer to the MATLAB guide.

After the modification of the algorithm, the total computational cost involved is reported
in Table 3.4 for 6561 nodes, and in Table for 3.5 for a distribution of 16461 nodes.

From the comparison of Tables 3.2 and 3.4 it is evident the saving of time in the second
case.
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Chapter 4

Applications of the Modified Finite
Particle Method to linear elasticity

In the present chapter we apply the Modified Finite Particle Method to linear elasticity. In a
first part of the chapter we present the continuous equations that model the behaviour of an
elastic body, then we show how such equations are discretized using a Modified Finite Particle
Method, in particular we show how do we handle the dynamic term, and finally we show some
applications in 2D and 3d statics, 1d and 2d dynamics.

4.1 Linear elasticity

In the following we introduce the linear elastic problem in the three-dimensional space and
show how it can be formulated with the Modified Finite Particle Method.

We consider an elastic body on a domain €, subjected to internal forces b = b(z,t),
prescribed displacements 8 = 8(z,t) on the Dirichlet boundary I'p, and prescribed tractions
t =t(z,t) on the Neumann boundary I'y. T'p and 'y are such that

I'pul'y="T
I'pNIy=10

where I' is the whole boundary of €.
The equations governing the problem are

0%s
PoE = V.o+b xz €
on = t(t) z cl'y
s = s(t) r €I'p (4.1)
s|t:0 = so(z) €N
0s
gn i = So(x) x €0
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where p is the mass density of the material; n is the outward normal vector at the boundary,
s = s(z,t) is the vectorial displacement field, whose components are u = u(z,t), v = v(z, 1),
and w = w(z,t); ¢ = C(Vs)® is the symmetric Cauchy stress tensor. C is the fourth order
linear elastic isotropic tensor, whose components are

Cijrr = Nijop + (00 + didjn) (4.2)
where A and p are the Lamé constants, which can be expressed in terms of the Young modulus
E and the Poisson ratio v as follows:

FEv E

A R T L TR

(4.3)

1
(¢)° denotes the symmetric part of a tensor (i.e., AS = §(A + ATY)).
Making explicit (4.1) with respect to the components of the displacement u, v and w, we
obtain
P = (A + 200Uz Hi(Upyy 2z ) + (A + 1) (Viay +Wiaz ) + bo
POt = (N 20)0,y H(Vzz +0,22 ) + (A + 1) (Uyzy +w,yz ) + by (4.4)

Ppwit = (A 2p)W, 20 (W0 +W,yy ) + (A + 1) (Usgz +0,y2 ) + b

The subscripts preceded by a comma indicate partial derivative.

The semi-discrete form of system (4.4), after the spatial discretization shown in Chapters
3, is then L
p§ =Ks+b (4.5)

being § the vector of the particle values of s(z,t). In a more explicit form, equation (4.5) reads

p’u I:{n I:{12 I:('13 U b,
po | = | Ko Ky Ky v |+ by (4.6)
pw K3 K3 K33 w b-

being u, v and w the vectors containing the particle values of the scalar fields u, v, and w.
K ;; are the blocks of K, reading

Ky = (A+2u)Dyy + (Dyy + D)
Ky = (A +2p)Dyy + p(Dyy + D)
K33 = (\+2)D.. + j(Dyy + Dyy)
K, =K = (A + p)Dyy
Ki3=K3 = (A +u)D,.
Koy = K3 = (A+ 1)D,y.

In the spirit of collocation methods, in equation (4.5), the rows of K corresponding to the
boundary particles, and the corresponding terms of b and ps have to be replaced with the
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discrete form of the boundary conditions. In this way we obtain the final form of the discrete
elasto-dynamic problem

Ks=f (4.7)

where the components of f are p§ — b for the rows associated to internal particles, and 3 or
for the boundary particles, in case of Dirichlet or Neumann boundary conditions, respectively.
For elasto-static applications, time derivatives in Equation (4.7) are zero, and the system
can be immediately solved; therefore both internal and external particle values are found
simultaneously.
In case of elasto-dynamics, we have first to discretize time derivatives, with a numerical

scheme, i.e.
- §n+1 o 2§n + én_l (4 8)
§" = .
At?
where At is the time step and superscripts refer to time increments (e.g., 8" = §
equations of system (4.7), collocated at internal particles, read

). The

t=tn

) gl —ogn 4 gt
> Kis) = pt—— b (4.9)
i

while the equations collocated at boundary particles, where no time derivatives are involved,
are in the form

Z KZ']@;-LJrl = ﬁ;-”rl (4.10)
J

Equations (4.10) cannot be solved by explicit time integration, since the values of §;-L+1

may depend, in case of Neumann boundary conditions, on the values of the internal particles
at the same time step t,+1. To overcome this difficulty, we perform a static condensation of
K, and separate the equations collocated on internal particles from those collocated on the
boundary. The degrees of freedom are also separated, and so the final form of (4.5) is

K;r Kip 87 pS; — by >
. = 4.11
< KB[ KBB > < SB > < u ( )

where u is the vector of the prescribed displacements or of the tractions at the boundary, and
K1, Kip, K, Kpp are the blocks of the matrix K obtained with reference to the internal
and boundary particles.

From the second set of equations of (4.11) we compute

sp = Kpp(a— Kprdr) (4.12)
and we substitute it into the first set of equations of (4.11), obtaining
p.é[—(K[[—K[BKEIBKB[)éjz _KIBKE;}Bﬂ_bI (4.13)

where the amount K;; — KK EEK pr is the condensed stiffness matrix, namely K.
Equations (4.13) form an unconstrained ordinary differential equation system which can
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be solved by a suitable time integration scheme, like the explicit one of Equation (4.8). Once
the values of the unknown functions are computed from Equation (4.13) at time step tp41,
Equation (4.12) can be used to retrieve the values of the functions at the boundary particles.

4.2 Numerical tests

In the following we propose a number of applications of the investigated models. First we
introduce three challenging elasto-static problems: the classical test of an infinitely extended
plate with a circular hole under a uniform remote traction, the problem of the Cook’s mem-
brane in 2D plain strain, and a 3D block with a spherical bore stretched on a face. Regarding
dynamic problems, we investigate the wave propagation in a two-dimensional bar under a
quasi-impulsive load, and a quarter of an annulus under a sinusoidal body load. We solve
all these problems with the original MFPM, the novel MFPM, and the GFDM, in order to
compare the performances of these methods.

4.2.1 Plate with a circular hole

The geometry of this problem is depicted in Figure 4.1, along with its symmetry boundary
conditions and applied loads. The radius of the internal hole is a = 0.2.

T—U%
F4/\/

I's

<

I's

SV

I
a

TR AR

Figure 4.1: Plate with a circular hole: model problem including symmetry boundary conditions and applied
loads.

The equations that govern the problem are the 2D elasto-staic version of (4.4). Plain strain
condition are assumed. The boundary conditions are

on-n =0 and on-t=0 onlqandIy
s-n =0 and on-t=0 onlyandI; (4.14)
on-n =og and on-t=0 onlj

where n is the outward normal, ¢ is the unit vector tangent to the boundary, and g is the
uniform remote traction.
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We solve the problem considering a reduced domain, such that on I's and I'y we impose
boundary conditions according to the exact solution, that is, in terms of stresses,

a’ (3 3at
Ogz =00 |1 — 3| 5cos 20 + cos40 | + 2,4 €08 40 (4.15a)
a’ (1 ) 3at
Tay =00 | =5 | 380 20 +sin40 | + o sin 40 (4.15Db)
a’ (1 3a*
Tyy =00 | =5 | 508 20 — cos40 | — 2,4 €08 40 (4.15¢)

where (r, ) are the polar coordinates, 6 being measured from the positive z-axis counterclock-
wise.

We now introduce the Stress Intensity Factor (SIF) for this problem, that is the ratio
between the maximum value of 0., and the value of the remote traction og. In this case, the
analytical solution provides SIF = 3. We then numerically solve the problem, assuming

E =100000 Pa, v =0.33, o¢=100Pa. (4.16)

and compare the analytical value of the SIF with the obtained numerical results. The distri-
bution of the o, stress obtained with the original MFPM and 251001 particles is shown in
Figure 4.2. The relative error on the SIF is computed as

ST Fan — STFum| 13 — STFpyum|
|STF | 3

(4.17)

err, =

and convergence plots referred to the three considered methods are reported in Figure 4.3,
where IV is the total number of particles used for the numerical solution.

We observe that for this problem all three methods show the same second-order conver-
gence, but the error computed with the original MFPM shows a lower constant. With the
other two methods quite similar values of the error are achieved, but the computational cost
is significantly reduced, since no Voronoi tessellation of the domain is needed.

In Table 4.1 the make a comparison among the computational costs of the original and
novel MFPM for this problem. We notice the significant time reduction in the case of novel
MFPM.

We observe that for this problem all three methods show the same second-order conver-
gence, but the original formulation has an higher constant. With the other two methods quite
similar values of the error are achieved, and the computational cost is significantly reduced,
since no Voronoi tessellation of the domain is needed.

4.2.2 The Cook’s membrane

The Cook’s membrane is a classical benchmark introduced by Cook and Al-Abdulla (1969)
to show the performance of plane finite elements in dealing with volumetric locking. The
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Figure 4.2: 0, in a square with a central hole obtained with the original MFPM and 251001 particles.

geometry is shown in Figure 4.4.

The data of the problem are L = 48 m, Hy = 44m, Ho = 16 m.
The equations that govern the problem are the 2D elasto-static version of (4.4). Plain
strain conditions are assumed. The boundary conditions are

s n =0
on-n =0
on-n =0

and st=0
and on-t=0
and

O'n-tZTo

on I'y
on I'y and I'y

on F3

where 79 = 1/16 Pa is a constant shear stress distribution.

(4.18)

VN Computational cost of Total time of the Total time of the time saving [%]
the Voronoi tessellation code - original code - novel
and cutting algorithm][s] formulation [s] formulation [s]
11 5.8107 1 2.16 10° 1.5310° 20.17
21 2.0410° 4.85 107 2.78 10V 42.68
41 7.5710° 1.4710! 7.1910° 51.02
81 2.9210" 5.85 10" 2.7310" 53.31
161 1.16 107 2.76 10% 1.59 107 42.27
321 4.6210% 1.7210° 1.4010° 18.87

Table 4.1: Comparison of the computational costs between the original and novel MFPM for the

problem of Figure 4.1.
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Figure 4.3: Logaritmic convergence diagram of the error of the SIF in a square plate with a central hole with
respect to the square root of the total number of particles included for the discretization.

We solve the problem both in the case of ¥ = 0.33 and in the case of quasi-incompressible
material (v = 0.49).

In Figure 4.5 we show the shear stress distribution in the case of £ = 1Pa and v =
0.33 with the original MFPM and 103041 particles. The convergence of the value of the
displacement of reference point C' (Figure 4.4) is reported in Figure 4.6.

We observe from Figure 4.6 that the solution seems to converge to similar values with all
the methods. Again, the novel MFPM and the GFDM perform in a similar way.

For the case of v = 0.49, the shear stress distribution and the convergence diagram are
depicted in Figures 4.7 and 4.8, respectively. The number of particles included in the stencil
(that is, the group of particles that contribute to the approximation of derivatives) of the
original MFPM is 9, and it looks sufficient for a good performance of the method. The
numerical test performed with the GFDM is carried out with 9 particles in the stencil, selected
with the star criterion, as described in Benito et al. (2007), but we observe that for this
problem the numerical solution does not converge. The same behaviour is obtained with the
novel MFPM, and 9 particles in the stencil. For this reason, in Figures 4.8, the convergence
diagram of the novel MFPM is computed including 25 particles in the stencil, leading to a
convergent approximation.

In Table 4.2 the computational costs of this problem for the original and novel MFPM are
reported. Again, we notice the significant time reduction in the case of novel MFPM. From
the last columns of Tables 4.1 and 4.2, we also notice that the percentage reduction of time is
higher at lower number of particles. This is due to the fact that the computation cost of the
Voronoi tessellation algorithm grows less than the one of other routines present in our code,
when the number of particles increases.
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S

Figure 4.4: The Cook’s problem: geometry, boundary conditions and applied loads.
VN | Computational cost of Total time of the Total time of the time saving [%)]
the Voronoi tessellation code - original code - novel
and cutting algorithm]s] formulation [s] formulation [s]
11 5.7107 1 2.46 10° 1.56 10° 36.33
21 1.6110° 3.5410° 1.86 10° 47.03
41 6.1210° 1.28 10! 6.4110° 49.92
81 2.3910" 5.21 10" 2.7010" 48.21
161 9.4710" 2.5110% 1.96 10? 21.93
321 3.83102 1.9410° 1.4110° 27.22

Table 4.2: Comparison of the computational costs between the original and novel MFPM for the
problem of Figure 4.4.

4.2.3 Multi-material problems

The Modified Finite Particle Method can be applied also to problem implying different ma-
terials. There are two strategies that can be used. One strategy consists in considering the
variation of the material parameters in the stiffness matrix of the problem.

In fact, given the equilibrium equation for a static problem

V-o+b=0 (4.19)

and the constitutive relation of the material, in the form

o = \x)(tre)I 4+ 2u(x)e (4.20)

the equilibrium equation becomes, expressing all the variables in terms of the displacement
field u

VAV -u)I+2Vue+ A+ p)V(V-u) + pAu+b =0 (4.21)
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Figure 4.5: Shear stress distribution in the Cook’s membrane obtained with original MFPM and 103041
particles
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Figure 4.6: Convergence of the displacement of the point C in the Cook’s membrane in the cases of orginal
MFPM, novel MFPM and GFDM.
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Figure 4.7: Shear stress distribution in a quasi-incompressible Cook’s membrane obtained with the original
MFPM and 103041.

This approach is particularly useful when material properties vary continously in the do-
main. It could be used also when a sudden variation of the material occurs, i.e., when the
domain is composed of two parts with different material properties. In this case, however, the
algorithm will experience the typical problems of finite difference approaches in dealing with
non differentiability points, that are oscillation of the solution.

The second possibility is the multi-patch formulation. Each materia subdomain is consid-
ered independently in a first moment, and a stiffness matrix for each patch is built, depending
on the material parameters. Then, an assembly procedure is performed, imposing the interface
boundary condition, that are the continuity of the outward stresses and the continuity of the
displacements. This procedure is more computationally expensive from a coding point of view,
but avoids oscillation deriving from the need of computing derivative on discontinous fields.

In Figures 4.10 and 4.11 we show the deformation and the displacement of a multi-material
domain (see Figure 4.9) under traction. The material parameters are such that the transversal
deformation of both the parts of the domain is the same.

4.2.4 Three-dimensional elasticity problem

We study the elasticity of a 3D block under a uniform traction. The geometry of this problem
is depicted in Figure 4.12. A uniform normal traction og = 100 Pa is applied on the face
x = L. The data of the problem are: L =5m, H =3m, B=2.5m, R=2m.

The equations governing the problem are the static version of (4.1); the boundary condi-
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Figure 4.8: Convergence of the displacement of the point C in the quasi-incompressible Cook’s membrane in
the cases of orginal MFPM, novel MFPM, and GFDM.
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Figure 4.10: Multi-patch test: deformed configuration
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Figure 4.11: Multi-patch test: disiglacement in the z-direction
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tions are
s n=>0 and on-t=0 on the faces t =0, y =0, and z =0
on-n=>0 and on-t=20 on the faces y = B, z = H, (4.22)
and on the surface of the bore '
on-n = oy and on-t=0 at v =L

Figure 4.12: Geometry of the parallelepiped with a spherical bore.

In Figure 4.13 we show the stress distributions on the symmetry plane y = 0 obtained
using the novel MFPM with 83730 particles and the corresponding Finite Element overkilled
solution (250476 nodes) obtained with the software Abaqus. We observe a good agreement
of the stress distributions 0., 0,,, and 7,, between our numerical results and the overkilled
solution provided by Abaqus.

4.3 Applications of the MFPM in dynamics

In the following we show the application of the Modified Finite Particle Method to elastody-
namic problems. In particular, we explore the case of a 1d barr under quasi impulsive load at

the right side, and study the wave propagation. For this problem we also study the properties
of the MFPM
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Figure 4.13: Stress distributions of the problem of Figure 4.12 obtained by novel MFPM (83730 paricles) and
overkilled Abaqus solution (250476 nodes) at y = 0.
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4.4 1d dynamics: a bar under quasi-impulsive axial load

In this section we perform an application of the Modified Finite Particle Method for the
solution of the problem of a 1D clamped rod with an impulse on its right boundary.
The equation which governs the problem is

0%u 282u
a2~ @ a2
u(z =0,t) =0 (4.23)

EA%Y(z =1,t) = F(t)

where F is the Young modulus of the material, A is the normal area of the cross section of
the bar, a is the velocity of the sound, and its value is \/% , where p is the mass density of the

material.
F(t) is the forcing function of this problem, that in this case is quasi-impulsive, with
expression
F(t) = Fye ¥t10)°

. The temporal amplitude of this expression depends on the magnitude of the term b.

The spatial discretization of the present problem is performed in accordance with the 1D
version of the MFPM. In particular, before solving the problem, we discuss the Fourier analysis
of this kind of equations, in order to see how the MFPM approximates the eigenfrequencies
and the eigenfunctions of the continuum problem, which, from a numerical point of view,
depend on the eigenvalues and eigenvectors of the numerical stiffness matrix; then we study
the dispersion relation and the stability of the numerical system of equations, depending on
the choice of the spatial and temporal discretization. Finally, we solve the equation and draw
a convergence diagram of the error.

4.4.1 Fourier analysis of the wave propagation problem

A useful instrument for the numerical analysis of dynamic problems is the Fourier analysis,
that is the decomposition of the solution in its harmonic components. To find the different
components, we write a problem which is said the eigenvalues and eigenfunctions problem, the
last being the non trivial function that solve the equation of wave propagation

The equation that models the dynamics of a 1d extensional bar is

i =" (4.24)

where we consider that the propagation velocity is unitary. We reduce to the case of harmonic
solutions, and therefore we write the solution in terms of sinusoidal components.

u(z,t) = u(z)g(t) = usin(wt) (4.25)

Remark. Note that when we do the hypothesis of a temporal function g(t) = sin(wt), we
are reducing to the particular case in which the function g(t) = sin(wt) respects the initial
conditions. Anyway, such procedure is general, so that we can include all possible initial con-
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ditions if only we change the form of the function g(t). Moreover, we can consider also the
case in which the solution is not harmonic. In fact, because of the linearity of the problem,
any function g(t) can be seen as the sum of harmonics.

Introducing (4.25) in the Equation (4.24), we obtain

(@ + w?a)sin(wt) = 0 (4.26)

that has not only the trivial solution @ = 0, but also infinite solutions that respect th equation
"+ Wi =0 (4.27)

Equation (4.27) is known as the Helmotz equation, and is the “spectral equation” for an
extensional bar. Its general solution is

Uy = Asin(wpt + @) (4.28)

where the parameters w,, depend on the boundary conditions.
Let’s consider the same problem from a discrete point of view. After the MFPM discretiza-
tion procedure, the equation (4.24) becomes

i =Ku (4.29)
As earlier, according with a particular set of initial conditions, we write
u = Gsin(wt) (4.30)
so that we obtain

(W?T + K)iisin(wt) = 0 (4.31)

2

This equation has the structure of a classical eigenvalue problem, where the amounts —w;,

are the eigenvalues of the matrix K.

4.4.2 Solution of the eigenvalue problem for the clamped bar

Here we specialize what we have just explained to the case of a clamped bar. We consider
the problem (4.23) and perform the eigenvalue problem, first in the continuum, then in the
discrete form.

From the imposition of the homogeneous boundary conditions (bar clamped on a edge,
stress-free on the other edge), the particular expression for the solution of the Helmotz equation
(see (4.27)) is

u = Asin(wpt) (4.32)

where
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Figure 4.14: Ratio between the eigenvalues of the discrete problem and the ones of the continuum problem

wn = g(Qn —1) (4.33)

The values of —w? are the analytical eigenvalues of the elastic problem, and the functions
Uy, are the eigenvectors (or the eigenmodes).

Now we perform the discrete procedure mentioned before. A good test for the numerical
method is to understand how it reproduces the frequencies and the eigenmodes.

The search for eigenvalues in the discrete problem is performed considering an approxima-
tion of the derivatives involving both three and five particles. In the second case, we consider
all the combination of constant, linear, quadratic and cubic projection functions.

4.4.3 Approximation of the dispersion relation

The solution of every linear partial differential equation can be decomposed in the sum of
exponential function with complex exponential of the type

lwt=¢x) (4.34)

where £ is the wave vector, which components are the spatial frequency of the solution in
the direction of the axes.

In 1D case, the vector & reduces to a scalar, namely &.

If we introduce this solution in the partial differential equation, we will obtain a relation
between the temporal frequency w and the wavenumber £. If we assume real values for the
wavenumbers, from the dispersion relation we obtain a value for the temporal frequency. In
particular:

e if this value is real, we have that the solution is conservative, that is that the eigenmode
with spatial frequency £ oscillates in time;

o if w=w({) has a positive imaginary part, the solution dampens;

o if w=w({) has a negative imaginary part, the solution increases its amplitude in time
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Another important aspect that we can understand from the dispersion relation is the
velocity of propagation of the waves. In a non dispersive problem, all the waves propagate at
the same velocity, and we say that this is a non dispersive problem; otherwise we have that
each eigenmode propagates at a different velocity, so that the profile of the solution changes
in time. The velocity of propagation is called group welocity, and we calculate it

Ow

In the case of extensional bar, by introducing Equation (4.34) in (4.24), we obtain
w? =¢2 (4.36)

The group velocity, using (4.35), is then ¢ = 1. The dynamics of an extensional bar is a
non dispersive problem.

The same thing does not happen in the discrete form of the problem; in fact, after the
MFPM discretization and the choice of a finite difference scheme for the temporal advance,
we set, for a generic particle

Ul = uge!@n—Eon) (4.37)

and consider that ¢, = t+ At, and x; = x+ Ax;, after some manipulation we can finally write

1 2 h+np
w= Ktcos 1+— Z mye wATI) (4.38)
j=h—np
That, for small values of wAt and £Ax;, collapses into the continuum wave dispersion
relation.

The coefficients m; are the superdiagonal terms, the diagonal term and the subdiagonal
terms of a generic row of the matrix K. Real roots, or real part of complex roots of the wave
dispersion relation imply wave propagation; imaginary roots, or imaginary part of complex
roots, imply amplification or reduction of the wave.

We see from Equation (4.38) that in general a discrete system is dispersive and also diffu-
sive, that means that the discrete solution have both a reduction of amplitude, connected to
the imaginary part of the exponential; and that waves do not propagate at the same velocity,
and it depends on the fact that the group velocity is a function of the wavenumber. For
this reason we sometimes observe some harmonics that should not be seen in the solution of
impulsive problems; it depends on the fact that in the solution some harmonics propagate at
a different velocity.

The particular case is when we have a uniform distribution of particles in the domain. In
this case the imaginary part of the roots of the equation (4.38) is null, and we have only the
phenomenon of dispersion.

In figure 4.15 we can see the discrete dispersion relation in the case of approximation of
the derivatives with three particles and five particles (with the different projection functions),
for one hundred and one particles and a time step of 107°
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Application

In this section, we solve the problem (4.23) for the cases in which F(t) = —100et(t=05)"  We
solve this partial differential equation with b = 100 and b = 1000, because the integral! of the
two functions have a different harmonic content.

The numerical solution of this problem has been compared with an analytical solution at
T = 3. At that time, the normal force is

N(t = 3s) = 100e 005" (4.39)

The error has been computed as

[Uex — ulf2

4.40
Tueal (4.40)

erry =
The calculation has been performed for a temporal step At = 1075, for a different number
of particles. The diagram of convergence of the error is shown in Figure 4.16
As we can see, the case b = 100 is better reproduced than the case of b = 1000, where
we can see the wave dispersion. As a confirm of that, we show in Figures 4.17 the numerical
solution of the problem for 101 particles in the two cases, for the same time step.

4.5 2D dynamics

In the present section we the Modified Finite Particle Method to the dynamics of 2D bodies:
in particular we first study a 2D bar clamped on the left edge under an impulsive traction
on its right side, and study the stress wave propagation; then we study the dynamics of a
quarter of annulus under sinusoidal body load. FOr both cases we compare the original and

We compute the spectral decomposition of the integral because F(t) is a condition on the derivative of the
solution, and not on the solution itself
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Figure 4.16: Error diagram of the problem (4.23)

novel MFPM formulation, and make also a comparison with the Generalized Finite Difference
Method.

4.5.1 Dynamics of a 2D bar under quasi-impulsive load

We now consider a two-dimensional bar under a quasi-impulsive load. The geometry and the
boundary conditions are depicted in Figure 4.18, where L = 1m and H = 0.2m.

The equations that govern the problem are the 2D plane strain version of (4.4); the bound-
ary conditions are

u=>0 and v=0 only
Oyy =0 and Tey =0 on Iy and I'y (4.41)
Oz = 0(1) and Toy =0 onTI

where o(t) = ogexp (—b(t - t0)2) is the quasi-impulsive load on the right end of the bar;

the test has been performed considering a Poisson ratio equal to zero, so to reproduce a one-
dimensional test. We also set £ = 100 Pa and p = 100 Kg/m3. For this test an analytical
solution is available for 0., (x,y), since the analytical propagation velocity ¢ = \/E/p is known.

The other data for this problem are:

o9 =—100Pa,  b=1001/s,  to=0.3s (4.42)

The numerical results of o, obtained using a time step At = 10~*s are compared with
the analytical solution after 2.5s from the impulse, so that the analytical reference solution is

Opa (T, y)‘t=2.8 = —operp (—b(az - 0.5)2) (4.43)
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The relative error is computed as

||amm,an - O'mm,numH
err, =

||0'm,an||

99

(4.44)

We show in Figure 4.20 the convergence of the error for this test. We observe that both the
novel MFPM and the GFDM behave in the same way until the computation carried out with
201x201 particles, where the GFDM exhibits numerical instability, while the novel MFPM does
not. The original MFPM remains stable until 201x201 particles, but with a higher constant

of the error.
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Figure 4.18: Geometry, boundary conditions and loads of the bar under quasi-impulsive load,
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Figure 4.19: The stress component 0, in the bar during some time instants, obtained with the novel MFPM
and 2121 particles.
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4.5.2 Quarter of annulus under a sinusoidal body load

In this section we solve the elasto-dynamic problem studied in Auricchio et al. (2012). The
geometry of this problem is depicted in Figure 4.21. The structure is clamped on all its
boundary, and undergoes a sinusoidal body load. For the internal particles Equations (4.4)
hold. The internal radius is r = 1 m, while the external one is R = 4 m.

The internal body loads and the initial conditions have been manufactured so that the
analytical solution for the displacements u and v is

1
u(z,y,t) =v(x,y,t) = ﬁxy(x2 + y2 — 16)(3:2 + y2 — 1) sin(27t) (4.45)

The relative error

p— ”uan - unumH
' [|tan|

(4.46)

has been computed at time ¢t = 1.75s. The time step used for the analysis is At = 10™*s. In
Figure 4.22 we show the rate of convergence of the error and we observe that the second-order
accuracy of the method is confirmed. We remark that in this example the GFDM and the
novel MFPM perfectly coincide.
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Figure 4.22: Convergence diagram of the error for the quarter of annulus under sinusoidal body load.



Chapter 5

Modified Finite Particle Method
applied to quasi-incompressible
materials

In this chapter we apply the Modified Finite Particle Method on incompressible and quasi-
incompressible elasticity problems. In particular, the displacement-based formulation is in-
vestigated in the limit of incompressibility (v — 0.5), and then the Stokes equations for full
incompressible solids are investigated. In the field of Finite Difference Method it is well known
(Strikwerda, 1984) that the classical discretization of the Stokes Equation on non-staggered
grids leads to spurious numerical errors, known as checkerboard instability of pressure. These
oscillations are due to the non satisfaction of the inf-sup condition, first studied by Brezzi
(1974) in the field of Finite Element Method. For this reason, in order to discretize the Stokes
problem on non-staggered grids (and then on meshless methods, where staggered grids are not
permitted), some different formulations have to be introduced. In particular, the incompress-
ibility constraint equation is replaced by a derived equation, called Pressure Poisson Equation,
in which the respect of the inf-sup condition is not requested. However, on this formulation
it is not evident which set of boundary condition is needed. A significant contribution to this
discussion has been given in (Gresho and Sani, 1987; Sani et al., 2006), where the problem is
faced using a weak formulation.

The chapter is organized as follows: in Section 1 we recall the equations that describe the
statics of solids, first in the compressible form, and then in the limit of incompressibility and,
finally, we introduce the Stokes Equations for full incompressibility. In Section 2 we introduce
the Poisson Pressure Equation formulation, and the problem of the correct choice of boundary
conditions, and in Section 3 we apply the Modified Finite Particle Method on a benchmark
problem, using the formulations discussed in Section 2.

5.1 Governing equations

In the following we introduce the equations that discribe the equilibrium an elastic, incompress-
ible body. We first introduce the equations in the classical displacement-based formulation,

63



64 5. QUASI-INCOMPRESSIBLE MATERIALS

then we switch to a mixed, displacement-pressure based formulation, in order to fully enforce
the incompressibility constraint. In the applications, we will show that the limit to incom-
pressibility of the displacement-based formulation leads to numerical problems, that is the
main cause for which the displacement-pressure formulation is introduced.

We consider an elastic body within a domain €2, subjected to internal forces b = b(x,t),
prescribed displacements u = u(x, ¢) on the Dirichlet boundary I'p, and prescribed tractions
t = t(x,t) on the Neumann boundary I'y. Boundaries I'p and T'y are such that

I'pul'y="T
I'pNIy=10

where I' is the whole boundary of €.

The equations governing the problem are

Vio+b=0 forx € Q
on = t(t) forx € T'y (5.1)
u=u(t) forx € TI'p

where p is the mass density of the material, a is the material acceleration, n is the outward
normal vector at the boundary, u = u(x,t) is the vectorial displacement field; & = C(Vu)®
is the symmetric Cauchy stress tensor. We use the notation (o)S to denote the symmetric

1
part of a tensor (i.e., AS = §(A + AT)). The fourth order linear elastic isotropic tensor C is
expressed in index notation as follows

Cijri = Mijort + p(0indji + 050k (5.2)

where A\ and p are the Lamé constants, which can be expressed in terms of the Young modulus
E and the Poisson ratio v:

FEv E

A AT A=) M

(5.3)

The condition of incompressibility is imposed when the Poisson ratio v is set to 0.5. Unfor-
tunately, when v approaches 0.5, the parameter A tends to infinity, leading to an ill conditioned
discrete system of equations, with consequent degradation of the solution (Chi et al., 2014).
Therefore, a different formulation is needed where the incompressibility constraint is enforced
in a different way.

For an incompressible body, the constitutive relation is modified in the form

o=—pl+2ue (5.4)

where p is the pressure, considered, as usual in the fluid-dynamic literature, positive in case
of compression. I is the identity tensor, u is the second Lamé constant and € is the symmetric
part of the gradient of the vector u = u(x).
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By replacing (5.4) into the first equation of system (5.1), we obtain
—Vp+ pAu = —b (5.5)
where the incompressibility constraint
V.-u=0 (5.6)

is introduced.

Egns. (5.5) and (5.6) are known as the Stokes equations in primitive variables (u,p),
and describe the dynamics of fully incompressible bodies. They have to be completed with
suitable boundary conditions, that can be Dirichlet boundary conditions (when the boundary
displacement is known), or Neumann boundary conditions (when the boundary traction is
known).

5.2 Classical approaches for incompressibility

The discretization of Eqns. (5.5) and (5.6), performed using the same spatial discretization for
u and p, leads to a well known instability of the pressure field, due to the non satisfaction of the
so-called inf-sup condition (Brezzi and Fortin, 1991). This means that alternative formulations
have to be introduced in order to overcome this numerical difficulty.

In the Finite Element Method, the classical way to overcome pressure instability is the
use of different interpolations for the velocity and pressure fields, the first being discretized
using quadratic elements (i.e. six-nodes triangles), while the pressure is discretized using
linear interpolation. In this way, the respect of the LBB condition is ensured, and spurious
oscillations of the pressure are avoided.

In the field of collocation methods, in particular in the Finite Difference Method, the
standard method to satisfy the LBB condition is the use of staggered grids, called also MAC
grids (Harlow et al., 1965) (see Figure 6.1). This kind of grids, however, require rectangular
domains and regular node distribuutions, and therefore they are not suitable for meshless
methods, where, in general, non regular distributions of points are permitted.

In order to solve the Stokes problem on non-staggered grids, many different formulations
have been introduced in the literature (Gresho and Sani, 1987; Sani et al., 2006; Wang and
Liu, 2000; E and Liu, 2003). In particular, the previous works are concentrated on whether
boundary conditions are required or not, at a discrete level, for the incompressibility equations.
In fact the constraint equation holds both on the interior and on the boundary of the domain,
and then, no additional boundary condition is required.

A reference work regarding this discussion is the one by Sani et al. (2006), in which a
deep mathematical analysis is done, in the context of the weak formulation. In particular, the
analysis is done on the so called Stokes problem with the Poisson Pressure Equation, where the
constraint equation of incompressibility is replaced by an equation on the pressure obtained
applying the divergence operator on the equations of equilibrium (5.5).

V- (=Vp+ pAu)=-V-b (5.7)
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Figure 5.1: A staggered grid

that is, separating the different components at the left-hand side
—Ap+ uV-(Au)=-V-b (5.8)

Eqn. (6.9) is referred, in (Sani et al., 2006), as the Consistent Poisson Pressure Equation
(CPPE). Changing the order between the Laplacian and divergence operators (that are com-
mutative differential operators) in the term V- (Au) we obtain pA(V -u) that is evidently
zero due to the incompressibility equation. This permits to simplify Eqn. (6.9), obtaining the
so called Simplified Pressure Poisson Equation.

Ap=V-b (5.9)

In (Sani et al., 2006) the discussion is performed in particular on which boundary conditions
are required for the solution of the incompressibility problem using the Consistent Pressure
Poisson Equation and the Simplified Pressure Poisson Equation. In particular, using the
CPPE, no boundary conditions are required for the constrain equation; on the constrary, using
the SPPE, a Neumann boundary condition for the pressure is required, obtained projecting
the equilibrium equation on the outward normal at the boundary, that is

)
a_i: (uAu+b)-n (5.10)

In this paper we solve the Stokes problem using both the Consistent and the Simplified
Pressure Poisson Equation, and using the Modified Finite Particle Method to discretize spatial
derivatives.

We also solve the incompressibility problem using, instead of boundary condition (5.10),
the discretization of the divergence constrain at the boundary. We refer to this possibility as
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the SPPE-div formulation.

5.3 Applications

In this section we apply the Modified Finite Particle Method to discretize the spatial deriva-
tives of the formulations presented in the previous section: the Consistent Pressure Poisson
Equation, the Simplified Pressure Poisson Equation (with the boundary condition for the con-
straint equation proposed by Sani et al. (2006)), and the SPPE-div. In particular, we test
the effectiveness of these formulation on an incompressible square under a vertical body load,
clamped on two edges. We test the MFPM on a displacement-based formulation in the limit
of incompressibility (v — 0.5) and then on the mentioned incompressible formulations, and re-
mark that on the incompressible formulations, the incompressibility constraint is not enforced
strongly, but through a derived equation. For this reason we investigate, on both problems,
how the incompressibility is respected.

5.3.1 Square clamped on two edges under a vertical body load

The problem under investigation is a square in the domain [0, 1]x[0, 1], under a vertical body
load b = —80e3, with boundary conditions (see Figure 6.13)

u= 0 r=0 or =0
{ Y (5.11)

on= 0 r=1 or y=1
This problem has been solved in Auricchio et al. (2007) using the stream-function formu-

lation and an isogeometric approach for the spatial discretization. The second Lamé constant
is p = 40.

-— < -
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Figure 5.2: Square clamped on two edges under a vertical body load: geometry and boundary conditions

Here we solve this problem using a displacement-based formulation in the limit of incom-
pressibility (v = 0.49, v = 0.499, v = 0.4999, v = 0.49999) and using the CPPE, SPPE and
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Figure 5.3: Square clamped on two edges under a vertical body load: values of the divergence of the displace-
ments in the domain

Using CPPE formulation, similarly to the previous case, the incompressibility is not veri-
fied, as it can be seen from Figure 5.3, where the values assum by the divergence of displace-
ments is shown, using 10201 particles. For what concerns other formulations, the corresponding
convergence diagram of the error is shown in Figure 5.4 for the vertical displacement of the
point B. We notice that the displacement based formulations have results compatible with
the numerical problems of the locking; SPPE formulation also shows no convergence, while
the SPPE-div formulation shows convergence even faster than the expected second-order. We
remark also that in this case is not possible to compute a 2nd norm of the error, since we
do not have an analytical solution. We only can compute the relative error in some sampling
points, as reported in Auricchio et al. (2007).

In Figure 5.5 we show the deformed configuration obtained with MFPM and a displacement-
based formulation (58081 nodes) and v = 0.4999. A comparison with Figure 5.6, in which an
overkilled deformed structure is shown, highlights that the displacement-based methods, in
the limit of incompressibility, suffer from volumetric locking.

5.4 Conclusions

In the present chapter we applied the Modified Finite Particle Method to the problem of in-
compressible elasticity. In particular, some different formulations have been investigated: a
displacement-based formulation, in the limit of incompressibility, with v — 0.5, and three
different formulations of the Stokes problem. For these formulations, in particular, the in-
compressibility constrain (V -u) is not imposed strongly, but it is replaced by a derived one,
in which the Lapacian operator is applied to pressure. This choice is done to overcome the
difficulties related to the non-respect of the inf-sup condition, which results in unphysical
oscillations of the pressure field.

Unfortunately, these derived formulation may need some boundary conditions for the con-
strain equation, that are not needed by the original Stokes problem in the divergence form.
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Figure 5.4: Square clamped on two edges under a vertical body load: 2nd norm error using MFPM on a
displacement-based formulations, SPPE, and SPPE-div
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Figure 5.5: Square clamped on two edges under a vertical body load: deformed configuration obtained with
displacement-based formulation and 58081 nodes. The structure exibiths volumetric locking
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12

Figure 5.6: Square clamped on two edges under a vertical body load: deformed configuration obtained with
the Gauge method and 58081 nodes.

In this paper we investigate three different fully-incompressible formulations: the so Consis-
tent Pressure Poisson Equation, the Simplified Pressure Poisson Equation and the Simplified
Pressure Poisson Equation with the divergence constrain at the boundary. These formulations
differ among each other for the boundary conditions imposed on the constrain equation: in
the first ccase, according to Sani et al. (2006), no boundary conditions are required; in the
second case, where the normal component of the displacement is know, a boundary condition
for the pressure is obtained projecting the equilibrium equation on the outward normal; in
the SPPE-div, instead, the divergence-free constrain is applied as boundary condition for the
Pressure Poisson equation on the whole boundary.

Here we see that for the CPPE formulation, the incompressibility constraint is not respected
for both problems under investigation; the SPPE exhibits lower convergence of the error with
respect to the expected second order; and finally the SPPE-div formulation exhibits correct
second-order accuracy, even if with a high constant of the error. The displacement-based
formulations, even if correctly discretized with MFPM, exhibit the numerical pathology of
locking.

Pubblication

An extended version of the present chapter has been published in Asprone et al. (2015).



Chapter 6

Full incompressible solids and fluids

6.1 Stokes problem: classical formulation

In the present section we introduce the Stokes equations for the solution of problems involving
incompressible solids and fluids. In the first part we focus on the mathematical expression of
the Stokes equations and give a different interpretation of variables depending on whether the
body under consideration is a solid or a fluid. In the second part we describe the commonly
used methodologies for the numerical solution of the Stokes problem in the context of the
Finite Element Method and of the Finite Difference Method.
The equations that describe the dynamics of an incompressible body are
{pa— —-Vp+pAu+b 6.1)
V-u=0

where the first equation is the linear equilibrium equation, and the second is the incompress-
ibility constraint. Equations (6.1) have to be completed with suitable boundary and initial
conditions.

In Equations (6.1) the variable p is the material density, p is the shear modulus (that in
fluid dynamics assumes the denomination of dynamic viscosity), p is the pressure, assumed
positive in compression, and b is the vector of the internal body loads. The variable u assumes
different physical meanings depending on whether the body under consideration is a solid or
a fluid.

In the case of an incompressible solid, u is the displacement field, and therefore the inertial
term pa is expressed as

0%u 5
pA=pos (6.2)

For an incompressible fluid, conversely, the variable u represents the velocity field, and

therefore the inertial term is written as

ou
pa=por + pc-Vu (6.3)

The term c is the relative velocity between the fluid and the reference frame. When we
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assume a total Eulerian formulation, ¢ = u, and therefore the equilibrium equation is modified
in the form

0
p(a—ltl—i-u-Vu) =—-Vp+ pAu+b (6.4)

that is evidently a non-linear equation.

In the present paper, however, we neglect the non-linear term, since the computational
difficulties involved in the solution of the incompressibility problem are still evident also in the
linear case.

In the theoretical discussion of next sections, we refer to the interpretation of variables as
in the fluid case. Therefore, the set of equations under our attention is:

u
= Au+b
V-u=0

Equations (6.5) are known as Stokes equations in the primitive variables u and p, and
correspond to the assumption of highly viscous flows.

6.1.1 Classical numerical schemes for the solution of the Stokes problem

The discretization of Equations (6.5), performed using the same spatial discretization for u
and p, leads to a well known instability of the pressure, known in the literature as checkerboard
instability. Such pressure unphysical oscillation can be avoided when a numerical condition,
known as LBB condition, or inf-sup condition, is respected.

In the Finite Element Method, the classical way to overcome pressure instability is the
use of different interpolations for velocity and pressure fields: as an example, the velocity can
be discretized using quadratic interpolation, while the pressure can be discretized using linear
interpolation. This choice of interpolations ensures the respect of the inf-sup condition and
therefore the spurious pressure oscillations are avoided.

® pressure point

A\ vertical velocity point

) horizontal velocity point

U
U
U

Figure 6.1: A staggered grid
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The problem of checkerboard instability arises also in the context of collocation methods,
as shown in Strikwerda (1984). In particular, in the Finite Difference Method this numer-
ical difficulty is solved using staggered grids, called also MAC grids (Harlow et al., 1965),
where horizontal and vertical velocity components and the pressure are computed on different
grids. Also the different sets of equations are collocated in different points (see Figure 6.1):
in particular, the horizontal equilibrium equations are collocated on the horizontal velocity
points; the vertical equilibrium equations are collocated on the vertical velocity points, and
the incompressibility constraints are collocated on the pressure points. One of the advantages
of staggered grids is the fact that for Dirichlet boundary conditions (that is, where the fluid
velocity is known) no boundary conditions for the pressure are required. Moreover, staggered
grids preserve the properties of continous differential operators: as an example, the superim-
position of the discrete divergence operator on the discrete gradient operator leads to a correct
discretization of the Laplace operator. The main drawback for MAC grids is that they cannot
be used for non-regular distributions of nodes, and thus they cannot be extended, in general,
to meshless methods.

6.2 Stokes problem: alternative formulations

In the present section we introduce alternative formulations presented in the literature for
the solution of the Stokes problem. Thanks to some modifications of the original Stokes
equations (6.5), for such formulations the respect of an inf-sup condition is not required, and
therefore neither special tricks for the discretization, nor special grids, are necessary, making
such formulations well suited to be approximated through meshless methods.

6.2.1 Stokes equations in the Pressure Poisson form

In the first three formulations presented in this section the incompressibility constraint is
replaced by a different equation, obtained applying the divergence operator to the equilibrium
equation of System (6.5). Accordingly, we have

V- (p%—?) =V (=Vp+ uAu+Db) (6.6)

that can be rewritten in the form
Ap—pV-(Au)=V-b (6.7)
and then further simplified exploiting the incompressibility constraint V -u = 0, obtaining
Ap=V-b (6.8)

The constraint conditions (6.7) and (6.8) are both Poisson equation for the pressure, and
therefore they are known as Pressure Poisson Equations. In the literature there has been a
great discussion on whether boundary conditions are needed for equations (6.7) and (6.8).
Sani et al. (2006) propose three different formulations:
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1. In the first formulation (referred to, in the following, as formulation S1) the equilib-
rium equation is coupled to the constraint equation (6.7), obtaining the following set of
equations

ou
pE—FVp:MAu—i-b (6.9)
Ap—puV-(Au)=V-b

on which Dirichlet or Neumann boundary conditions are imposed on the equilibrium
equations, and no boundary conditions are imposed on the constraint equation.

2. In the second formulation (referred to as S2) the equilibrium equation is coupled to the
constraint equation (6.8)
Ju
pa +Vp=puAu+b

Ap=V-b

(6.10)

The boundary conditions for the constraint equation, in this case, are the projections of
the equilibrium equation on the boundary outward normal vector.

(pOu/ot +Vp — pAu—b)-n=0 (6.11)

3. In the third formulation (referred to as S3) the equilibrium and the constraint equations
are the same as Equations (6.10), but the boundary conditions for the constraint equation
is the original incompressibility condition V-u = 0.

6.2.2 A pseudo-compressibility formulation of the Stokes problem

A commonly used formulation for the Stokes problem in primitive variables is

ou _ LA b
V-u—cAp=0

where a relaxation term €Ap is introduced in the incompressibility condition. Such a for-
mulation, discussed by Brezzi and Douglas Jr (1988) in the framework of Galerkin methods,
belongs to the class of the pseudo-compressibility methods, since a perturbation is introduced
in the continuity constraint. The addition of such a perturbation results in a smoothing of
the pressure field, alleviating the effects of checkerboard instability. However, the parameter
has to be properly set: it has to be not excessively small, in order to have a regularizing effect
on the pressure field; and it has to be not too high, since it introduces an error in the original
incompressibility condition (Quarteroni et al., 2000).

The boundary conditions for the equilibrium equations are the usual conditions on veloc-
ity or stress. The boundary condition adopted for the constraint equation is the continuity
equation V-u = 0. This formulation will be referred in the following as S4.
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6.2.3 The gauge method

The gauge method (Wang and Liu, 2000; E and Liu, 2003) is a continous formulation of the
Stokes problem based on the following change of variables

u=a—V¢ (6.13)

in Equations (6.5). Accordingly the modified set of equations is

%a_ NG Gpipha— pAVH+ b
Pop P = " Vptplha—pu ¢ (6.14)
V-a=-A¢
that can be rewritten as
(9a_ A b
Pa; = HRat (6.15)
V.a=-A¢
if the pressure p is written as
¢
= p— — uA 6.16
p=pg, — HAY (6.16)

From Equation (6.15) we observe that the variables a and ¢ are decoupled in the linear
equilibrium equation. However, in this formulation the equilibrium equation cannot be solved
separately from the constraint equation, since a and ¢ are coupled in the boundary conditions,
as described in the following

Dirichlet boundary conditions. The expressions of Dirichlet boundary conditions are

u-n—u
{ tn (6.17)
u-t=1u,
that can be rewritten, using Equation (6.13), in the form

(6.18)

E and Liu (2003) consider the case of homogeneous Dirichlet boundary conditions and
propose two different possible choices:

99 d¢
Case 1: %—0 a-n=0 a-t—a (6.19)
0
Case 2: $»=0 a-n:—¢ a-t=0 (6.20)
on

For future discussion, we remark that conditions (6.19) and (6.20) are obtained, after some
algebra, from Equation (6.18):

1. The first two boundary conditions of (6.19) are obtained splitting the first equation of
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(6.18) in two parts, the first containing the variable a and the second containing the
variable ¢, while the last boundary condition of (6.19) is simply the second equation of
(6.18);

2. The set of boundary conditions (6.20), on the contrary, are obtained using a similar
procedure, but splitting the tangential boundary condition of (6.18) instead of the normal
boundary condition.

Neumann boundary conditions. The case of Neumann boundary conditions has not
been tackled so far within the context of the gauge method, and therefore we extend to
incorporate also the Neumann boundary conditions. The stress tensor o is expressed by the
relation

o = —pl + pu(Vu+ vu?) (6.21)

which,using Equation (6.13), can be rewritten as
9o T
o=—|rg pA¢ | I+ p(Va+ Va' —2VVe) (6.22)

In Equation (6.22) the term VV¢ is the second gradient of the scalar field ¢, i.e., , in index
notation

82
(VV®)i; = (%i(;ij (6.23)

Introducing the change of variables (6.13) in the expressions of the components of the
outward stress at the boundary
on-n=ao
on (6.24)
on-t =0y
where n and t are again the outward normal and tangential unit vectors at the boundary of
the domain, we obtain

{M [A¢+2(VV¢n) n]+u(Va+Va')n.n =5, (6.25)

2u(VVén)-t+pu(Va+Val)n-t =,

Restricting to the stationary case (i.e., d¢/0t = 0) and following a procedure similar to the
case of Dirichlet boundary conditions, from Equation (6.25) we can obtain two different sets
of Neumann boundary conditions. The first one is obtained splitting the normal component
of the boundary conditions (6.25) and reads

w(Va+Val)n-n=a,
2u(VVén)-t+ pu(Va+Val)n-t = o, (6.26)
pAp+2(VVeén)-n] =0

while the second one is obtained splitting the tangential component of System (6.25) and it
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reads
w[Ap +2(VVén) n]+ pu(Va+ Val)n-n =5,
w(Va+vVal)n -t =0, (6.27)
2u(VVeon)-t =0

For both cases of boundary conditions (6.26) and (6.27), the last equation plays the role
of boundary condition for the incompressibility equation.

In the numerical tests, we refer to the gauge method in stationary form with Dirichlet
boundary conditions (6.19) with the abbreviation S5-D; to the gauge method with Neumann
boundary conditions (6.26) with the abbreviation S5-N-a; the gauge method with Neumann
boundary conditions (6.27) with the abbreviation S5-N-b.

6.2.4 Summary of the formulations applied in the numerical tests

In Table 6.1 we summarize the formulations introduced in the previous paragraphs and in-
dicate, for each one, the equation used as incompressiblity constraint and the corresponding
boundary condition. These formulations are then tested in the next section on some bench-
mark problems.

| Formulation | Reference paper | constraint equation | BC for the constraint equation |
S1 Sani et al. (2006) Ap —puV-(Au)=V-b none
S2 Sani et al. (2006) Ap=V:b (pou/ot+Vp— uAu—b)-n=0
53 Sani et al. (2006) Ap=V.b Vou=0
S4 Brezzi and Douglas Jr (1988) V-u—eAp=0 V-u=0
S5-D Wang and Liu (2000) Ab= V-a 96/0n — 0
S5-Na Ap= —V-a 1/Re[Ag + 2(VVen) -n] =0
S5-N-b Ap= V. a 1/Re[Ad + 2(VVen) -t =0

Table 6.1: Formulations of the steady Stokes problem analyzed in the present paper

6.3 Application of the MFPM to steady Stokes problems

In the following we use the Modified Finite Particle Method to approximate the spatial deriva-
tives appearing in the different formulations introduced in the previous section. In the present
section we restrict our attention to the stationary case (that is, du/0t = 0). We first solve
the well-known benchmark of the lid-driven cavity flow and we focus on how formulations
S1, S2, and S3 (where the incompressibility constraint is not enforced strongly) satisfy the
incompressibility condition V -u = 0. We then apply formulations S3, S4, and S5 on a square
with a polynomial exact solution, on a quarter of annulus with a polynomial solution, and on
a square under a uniform body load.

6.3.1 The lid-driven cavity

The geometry of the lid-driven cavity is a square of side L, as depicted in Figure 6.2; we set
L =1m, u=1kg/m s as dynamic viscosity. The left, lower and right side of the square have
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velocity u = 0 m/s; the top side has a tangential velocity U = 1 m/s and a normal velocity
u-n=0m/s

S]]

I L |
( \

Figure 6.2: The lid-driven cavity: geometry and boundary conditions

We start exploring the solution of the problem using formulations S1, S2, and S3 and paying
particular attention to the method capability of enforcing the incompressibility constraint. In
Figures 6.3, 6.4, and 6.5 we show the computed values of V - u using formulations S1, S2, and
S3. We notice that in Figures 6.3 and 6.4 the divergence is significantly greater than zero,
whereas in Figure 6.5 the divergence is close to zero everywhere except than in the top corners,
where there is a discontinuity in the boundary conditions. These results suggest us to abandon
formulations S1 and S2 and to proceed only with formulation S3.

6.3.2 Square with polynomial exact solution

We now consider a problem defined on a square domain [—1, 1]x[—1, 1] and constructed starting
from the following manufactured exact solution:

u(z,y) = 20zy®
v(z,y) =5(z* —y*) (6.28)
p(z,y) = (60z2y — 20y° + C)

The problem is formulated imposing no body loads in the interior of the domain, and
Dirichlet boundary conditions on the whole boundary, in accordance to the analytical solution
(7.30). The viscosity is set as p = 1kg/m s.

The problem is solved using formulations S3, S4, and S5. The relaxation parameter of
formulation S4 is set as ¢ = 107*. The convergence diagrams of the error related to the
velocity field is reported in Figure 6.6. In particular the gauge method (formulation S5-D)
shows higher order convergence with respect to the expected second order, and formulation
S4 shows an even higher accuracy in the left part, and a second-order accuracy at the right
side of the diagram.
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Figure 6.3: Lid-driven cavity: divergence of the velocity using formulation S1
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Figure 6.4: Lid-driven cavity: divergence of the velocity using formulation S2
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Figure 6.5: Lid-driven cavity: divergence of the velocity using formulation S3

In Figure 6.7 the error related to pressure field is shown. In this case, formulation S5-D is
the only one which shows a constant slope (1.78) of the error curve, even if slightly below the
expected second-order accuracy. Formulation S3 shows correct accuracy at the left side of the
diagram, and a little flattening in the right side of the diagram, while formulation S4 shows
high convergence in the left side of the diagram (higher than second-order) and a complete
flattening of the curve in the right side. We remark that such a flattening can be ascribed
to the relaxation term €Ap in the continuity equation of formulation S4, that, at the level of
discretization reached on the right zone of Figure 6.7, introduces an error on the pressure field
higher than the relaxation effects.

The same problem has been studied also imposing Neumann boundary conditions on the
left and right sides of the domain and Dirichlet boundary conditions on the top and lower
sides, and using gauge formulations S5-N-a and S5-N-b for the numerical solution. In the
case of formulation S5-N-a, we discretized unknown fields in space using both second-order
and third-order accurate MFPM discrete differential operators. From the convergence plots
shown in Figure 6.8 we notice that in both cases the slope of the error curve is one order below
the expected one. We argue that this is due to the fact that second derivatives are used in
the boundary conditions. This is also confirmed using formulation S5-N-b and second order
accurate MFPM differential operators. In fact, from Figure 6.8, the corresponding error curve
shows first-order accuracy.
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Figure 6.6: Square with exact solution (7.30): convergence diagram of the velocity error with formulations
S3, S4 and S5-D
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Figure 6.7: Square with exact solution (7.30): convergence diagram of the pressure error with formulations
S3, S4 and S5-D
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Figure 6.8: Problem with exact solution (7.30): convergence diagram of the error using formulations S5-N-a
with second and third order acurate differential operators, and formulation S5-N-b using second order accurate
differential operators. In all case the method experiences a loss of convergence.

6.3.3 Quarter of annulus under body load

We now consider a quarter of annulus, clamped on its entire boundary, under a polynomial
body load. The geometry of the problem is depicted in Figure 7.7, with R =4 and r = 1.
The analytical solution of the problem is set equal to

u = 10"%22y*(2? + y? — 16)(2? + y* — 1)(bz* + 1822y* — 852% + 13y* + 80 — 153y?)
v=—2-10"52° (2 + 3% — 16) (2 + y* — 1)(52* — 5122 + 62%y* — 17y? + 16 + y*)
(6.29)

The internal body loads are obtained using the manufactured solution (7.33). The problem
has been studied in Auricchio et al. (2007) using a stream function formulation and isogeo-
metric analysis for the spatial discretization, exploiting the high regularity of isogeometric
shape-functions, and also the possibility of reproducing exactly the geometry of the domain.

In the following we investigate how the selection algorithm of supporting particles for the
derivative approximation influences the quality of the solution on each formulation. The test
is relevant since, due to the particular geometry of this problem, a particle placed on the
inner radius of the annulus has, as closest particles, other particles placed on only two quasi-
parallel lines, leading to an ill-conditioned matrix A’. In particular, on a regular distribution
of particles (see Figure 6.9(b)), we test three different algorithms:

1. searching algorithm 1: the minimum number of supporting nodes for derivative ap-
proximation is N; = 9. The adopted threshold condition number for matrix A? is
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Figure 6.9: Quarter of annulus clamped on all its edges
Conaz = 4 - 105;

2. searching algorithm 2: the minimum number of supporting nodes for derivative approx-
imation is N; = 15. The threshold condition number for matrix A’ is Cyee = 4 - 108;

3. searching algorithm 8: nodes are selected exploiting the particular topology of the prob-
lem and the regularity of the particle distribution. In this case each particle can be
marked using indices ¢ and j on a cylindrical reference frame, and then, for a particle
denoted with (7, j), the supporting particles are the ones between i — 1 and i + 1, and
those between j—1 and j+ 1. Afterwards, derivative approximations are obtained using
the usual MFPM procedure. It is clear that this searching algorithm is not general, and
can be used only for regular distributions: however we present it since it is the most
accurate solution that the MFPM can achieve.

In Figures 6.10(a) and 6.11(a) we show the supporting nodes of a particle placed at = =
y = v/2/2 selected using searching algorithms 1 and 2. In the first case, the particles included
in the set of supporting nodes are 10, obtaining a condition number C' = 8.15110% of the
matrix A’. In the second case the supporting particles are not placed on only two parallel
lines, and consequently the condition number is strongly reduced (C = 2.1810%).

In Figure 6.12(a) we show supporting nodes obtained using searching algorithm 3. Particles
are placed on three different lines, leading to better results in terms of accuracy and error
convergence, as shown comparing Figures 6.10(b), 6.11(b), and 6.12(b).

For all three searching algorithms, we notice that the formulation S5-D exhibits always
better performances with respect to the other formulations. Formulations S3 shows always
the worst performances in terms of magnitude of the error, even if a second-order accuracy is
typically attained by all the investigated searching algorithms. Finally, it has to be noted that
formulation S4 shows some convergence oscillations, even if an average second-order accuracy
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Figure 6.10: Problem of a quarter of annulus with exact solution (7.33) solved using searching algorithm
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Figure 6.12: Problem of a quarter of annulus with exact solution (7.33) solved using searching algorithm
3

is obtained. Moreover, the error magnitude of formulation S4 is often comparable with the
one shown by formulation S5-D.

6.3.4 Square clamped on two edges under a vertical body load

The geometry of the following problem is a square in the domain of side L under a vertical body
load, as depicted in Figure 6.13. The problem is an incompressible solid mechanics application,
and here we highlight that the governing equations do not change, but only the interpretation
of variables is different with respect to the fluid case. We set L = 1, u = 40kg/m s, and
b=1[0 —80]"N/m?. The imposed boundary conditions are

. . (6.30)
on= 0 right and top sides

{ u= 0 left and lower sides

The present problem has been solved in Auricchio et al. (2007) using the stream-function
formulation and an isogeometric approach for the spatial discretization.

The reference solutions are the vertical displacement in the point A, the horizontal and ver-
tical displacements in the point B, and the horizontal displacement in the point C', computed
with the commercial Finite Element code “ABAQUS” using an overkilled discretization, and
we compute the relative error in some sampling points, as reported in Auricchio et al. (2007).
The numerical solutions are computed using formulations S3, S4 and S5-N-a.The relaxation
parameter of formulation S4 has been set as ¢ = 10~%. The convergence plots of the error are
reported in Figures 6.14, 6.15, and 6.16.

We notice that formulations S3 and S4 exhibit the expected second-order convergence of
the error, whereas formulation S5-N-a experiences a loss of convergence order, similar to the
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Figure 6.13: Square clamped on two edges under a vertical body load: geometry and boundary conditions
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Figure 6.14: Square clamped on two edges: convergence diagram of the error using formulation S3
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case of the previous problem with Neumann boundary conditions.

6.4 Non-stationary Stokes problem: continous formulations

Following what is usually done for the equations of linear elasticity, the most natural idea for
the solution of a non-stationary Stokes problem is to solve jointly the equation of motion and
the incompressibility constraint. This procedure is extremely costly, since at each time step
an inversion of a 3Nx3N sparse matrix is required, and time integration has to be necessarily
done implicitly, since the constraint equation is not depending on time. Moreover, the joint
solution of motion and incompressibility equations requires the spatial discretization to satisfy
the inf-sup condition.

Therefore the procedure commonly adopted in the literature for the solution of non-
stationary Stokes problems consists in enforcing equilibrium and incompressibility in two dif-
ferent substeps of each time integration step, reducing the total dimensions of the matrices
to invert, and hence reducing the computational cost of the method. In the following we de-
scribe the Chorin algorithm, that was the first algorithm introducing this decoupling between
substeps, and its developments.

6.4.1 The original Chorin algorithm

The Chorin algorithm (Chorin, 1967, 1968) consists in dividing each time-integration step in
three substeps:

1. In the first substep, a guess velocity u* is computed through the solution of a modified
equilibrium equation, in which the pressure term is omitted; accordingly Equation (6.5)
reduces to the following

u* —u”

PA
+ suitable boundary condition onu*

= pAu" +b (6.31)

The guess velocity u* does not respect, in general, the incompressibility constraint;

2. In the second step the pressure p"*! is computed solving the system

un—|—1 o u*
p———— = —Vp"t!
at 6.32
V-u"tl =0 (6.32)

+ suitable boundary conditions on p™*!

where the incompressibility constraint at the time step n + 1 is enforced. Equations
(6.32) can be rewritten in the Poisson form as follows

AtAp™! = V . u*
{ b " (6.33)

+ suitable boundary conditions on p™*!
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3. Finally, the velocity u™*! is corrected using the guess solution u* and p"+!

1
u"tt =u* — ;vp”“ (6.34)

We remark that the sum of Equations (6.31) and (6.32) gives a correct time discretization
of the Stokes problem, with an explicit time approximation for the velocity and an implicit
approximation for the pressure.

6.4.2 Developments of the Chorin algorithm

Following the pioneering work by Chorin, many other algorithms have been introduced, espe-
cially with the purpose of improving the accuracy near the boundary. In order to reach this
goal, one may act on the boundary conditions to be imposed on Equation (6.31), the boundary
conditions to be imposed on Equation (6.32), on the pressure update (6.34).

A deep analysis of the Chorin algorithm is proposed in E and Liu (1995), where the choice
of the proper boundary conditions to be imposed at the different steps of the algorithm is
discussed, in order to reduce the error introduced in the interior of the domain when inaccurate
(or wrong) boundary conditions are imposed.

Furthermore Brown et al. (2001) accurately review a wide number of algorithms, discussing
the convergence order in time, that is a consequence of the choice of boundary conditions at
the different algorithm substeps. All the discussed algorithms are presented in the form

* n

u u = _V /’LA * n
P—ap = Vet A +u) (6.350)
B(u*) =0 x € 0f)

u"tl = u* — AtVertt
V.urtl =0 (6.35b)
BCO(¢g"™hH) =0 z€09

p”H/2 =q+ L(¢"+1) (6.35¢)

where ¢, ¢ are auxiliary variables related to the pressure, L is a linear operator, and B and
BC are suitable boundary conditions to be imposed on u* and ¢ respectively. We remark the
fact that in (6.35) a second-order implicit scheme has been chosen for the time advance.

In the following we focus on three algorithms described in Brown et al. (2001), which follow
the substeps (6.35a), (6.35b), and (6.35c), characterized by different choices of ¢ and L:

1. The first algorithm was introduced by Bell et al. (1989) and is characterized by the
following choice: ¢ = p"t1/2 and L = I. In the present paper we refer to this algorithm
with the abbreviation D1.

2. The second algorithm was introduced by Kim and Moin (1985) and is characterized by
the following choice: ¢ = 0 and L = I — vAt/2 A. In the present paper we refer to this
algorithm with the abbreviation D2.
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3. The third algorithm was introduced by Brown et al. (2001) and is characterized by the
following choice: ¢ = 0 and L = I — pAt/2A. In the present paper we refer to this
algorithm with the abbreviation D3.

For all the above formulations the selected boundary conditions are B(u*) = u* — u™*!
and BC(¢"*!) = 0¢/0On.
We summarize the described algorithm in Table 6.2.

| Reference abbreviation | Reference paper | Linear operators |
D1 Bell et al. (1989) g=p" V3 L=1I
D2 Kim and Moin (1985) | ¢ =p" /2, L = I — uAt/2 A
D3 Brown et al. (2001) q=0,L=1—-pAt/2A

Table 6.2: Algorithms analyzed in the present paper for the non-stationary Stokes equations

6.4.3 Gauge method in dynamics

The non-stationary form of the gauge method proposed in E and Liu (2003) allows to solve
the non-stationary Stokes problems in an efficient way using, at each time step, two different
substeps instead of three:

1. In the first substep the equilibrium equation is advanced in time using any time integra-
tion scheme

Oa
a"tl.n=0 (6.36)
o™
'I’LJrl . = — F
a t % X €

Differently from the Chorin algorithm, in this case the field a has not to be corrected.

2. In the second time step the gauge variable ¢"*! is computed through the solution of the
following Poisson problem

At = —v.artl x €
D1 (6.37)
o 0 xel

We finally remark that the tangential boundary condition of substep 1 takes into account
the value of the gauge variable ¢ at the time step n rather than at the time step n+1, allowing
to decouple the solution of substep 1 from the solution of substep 2.

In the following section we refer to the non-stationary gauge method as formulation D4.
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6.5 Application of the MFPM to a non-stationary Stokes prob-
lems

In the present section we apply the MFPM spatial discretization to formulations from D1 to
D4. The test case is a square in the domain [—1, 1]x[—1, 1] with exact solution

u(w,y,t) = 202y> sin(27t)
v(z,y,t) = 5(zt — y*) sin(2nt) (6.38)
p(z,y,t) = (6022y — 20y3) sin(2nt)

The problem is governed by the non-stationary Stokes equations (with material properties
p = lkg/m? and p = 1lkg/ms) subjected to homogeneous initial conditions and Dirichlet
boundary conditions in accordance with Equation (6.38) on the whole boundary.

6.5.1 Solution using algorithms D1, D2 and D3

In Figures 6.17, 6.18, and 6.19 we show the convergence diagrams of the error obtained applying
MFPM spatial discretization on formulations D1, D2, and D3. For each formulation, the
analyses have been run using different time steps. The 2-norm error is computed at ¢ = 0.25
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Figure 6.17: Problem with exact solution (6.38): convergence diagram of the error in space with formulation
D1

Using formulation D1 (Figure 6.17) we notice the expected second-order rate of convergence
of the error for At = 1072 and At = 10, while for At = 10~2 the error in time is dominant,
worsening the convergence order of the error in space. Using formulation D2 (Figure 6.18)
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Figure 6.18: Problem with exact solution (6.38): convergence diagram of the error in space with formulation
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we notice that the convergence rate is still optimal for At = 1072 and At = 1074, and we
notice also an appreciable improvement of the solution with At = 1072, Using formulation
D3 (Figure 6.19) we notice that the convergence rate in space is lost for all At.

6.5.2 Solution using algorithm D4

The problem with exact solution (6.38) is also solved using formulation D4 (transient gauge
method) with three different time integration schemes for the equilibrium equation of System
(6.36):

1. an implicit Euler scheme (first order accurate in time). The equilibrium equation is

discretized as follows:

n+1 n

a —a

— - Aa™tl 4 prtt (6.39)

2. a Cranck-Nicholson scheme (implicit scheme, second order accurate in time). The equi-
librium equation is discretized as follows:

an+1 —am

1 1
N §(Aa"+1 + Aa™) + §(b"+1 +b") (6.40)

3. an explicit fourth order accurate Runge-Kutta time integration scheme

In the case of explicit Euler time discretization (6.39) the convergence diagram of the error
in space is shown in Figure 6.20. We notice that only using At = 10~* there is a correct
second-order accuracy of the solution, while using the other time steps the expected accuracy
is lost due to the predominance of the error in time.

In the case of Cranck-Nicholson time discretization (6.40) we obtain the convergence dia-
gram of the error in space reported in Figure 6.21, from which we notice that the error in time
is small enough not to affect the second-order accuracy of the solution in space.

The convergence diagram of the error obtained using the fourth-order accurate Runge-
Kutta scheme is presented in Figure 6.22. We notice that for time steps At = 1072 and At =
1073, the scheme experiences numerical instability for more accurate space discretizations, due
to the stability limits of the Runge-Kutta scheme.
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Figure 6.20: Problem with exact solution (6.38): convergence diagram of the error in space with formulation
D4 and scheme (6.39) for the advance in time
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Figure 6.21: Problem with exact solution (6.38): convergence diagram of the error in space with formulation
D4 and scheme (6.40) for the advance in time
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Figure 6.22: Problem with exact solution (6.38): convergence diagram of the error in space with formulation
D4, using a fourth-order explicit Runge-Kutta scheme for the advance in time



96

6. INCOMPRESSIBILITY



Chapter 7

Modified Finite Particle Method in
the framework of the Least Square
Residual Method

The application of the Modified Finite Particle Method in its novel formulation (see chapter
3 for details) to full incompressible bodies implies, as shown in Chapter 6, that the equations
governing the behaviour of full incompressible bodies have to be reformulated, in order to
overcome the need of respecting the inf-sup condition.

In our research we would like to solve the original equations of incompressibility, without
recurring to any trick or modification of the governing equations. This is why here we in-
troduce an extended formulation of the MFPM, that can be used for the discretization of an
incompressibility problem, using a Least Square Residual Method for the solution of the final
problem. In this chapter therefore we show the extended MFPM formulation and then we dis-
cretize the Stokes equations using the MFPM in conjunction with the Least Square Residual
Method, following the idea of Chi et al. (2014) for the case of Radial Basis collocation, and
show the solution of some benchmarks. Finally we extend the formulation also to non-linear
problems, and solve the famous benchmark of the lid-driven cavity.

7.1 Modified Finite Particle Method: the extended formulation

The extended formulation of the Modified Finite Particle Method is slightly different from the
version published in Asprone et al. (2014). The present version considers two different sets of
points for the approximation:

1. the collocation points, indicated in the following as x = [z y 2|7, are the points
where functions and derivatives are computed. This node distribution is placed within
the physical domain of the problem under consideration, and is the node set on which
equations are collocated. The total number of collocation points is indicated with N¢;

2. the control nodes, indicated in the following as & = [¢ 7 (|7, are the nodes where
we place the degrees of freedom in terms of which we express functions and derivatives.

97
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Control nodes do not have immediate physical evidence and hence they can be placed in
any convenient way in the domain, i.e., on a Cartesian, equispaced grid. We remark that
this choice does not affect the characteristic of the MFPM of being a meshless method,
since collocation nodes can assume any position, even extremely unstructured, within
the physical domain. The total number of control nodes used for the approximation is
indicated with Ng.

The first step of the approximation procedure of a scalar function u(x) and its spatial
derivatives is the computation of the Taylor series expansion of u(x), centered in a collocation
point x; and expanded up to the second order

u(€) = u(x;)+Dru(x)(§ — i) + Dyu(xi)(n — vi) + Dou(x:)(C — zi)+
4 D2u6) (€ — )P + 5DRuxi) (1 — i) + gD2ulx)(C — )%+

+D2,u(xi) (€ — ) (n — i) + Dy u(x) (n — yi) (€ — 20)+
+D2 u(xi) (€ — ) (¢ — 2)

(7.1)

In a first stage we assume to know the nodal values of u in the control nodes &: therefore
Equation (7.1) contains 10 unknown terms (function and derivative values in the collocation
point x;) and hence 10 equations are needed to compute their value. Therefore, for each
collocation point x; we select a subset X; of control nodes §; which serve as auxiliary nodes
for function and derivatives in x;. Then we evaluate Equation (7.1) in each node &; € X;
obtaining

w(€5) = u(xi)+Dau(x) (& — x3) + Dyu(xi)(nj — yi) + Daulxi) (G — 20)+
+3D2,u(x)(€ — 00 + D3 ulx) (o — ) + 5DRu6G — 2 (1)

+D2,u(xi) (&5 — i) (nj — yi) + Dy u(x) (n; — yi) (G — 20)+
+D2 u(xi)(&5 — ) (¢ — 2)

We also introduce 10 known functions W = W, (€ — x;), evaluate them in the points
§; € X;, and multiply the evaluations of the left- and right-hand sides of Equation (7.2) by
the evaluations Wo/ = W, (§; — x;). Finally we sum all products and obtain 10 equations of
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the type

u(x;) Z Wi +Dpu(xi) Y (& — 2) W + Dyu(xi) > (nj — i)W + Dau(xi) Y (¢ — z) W7+

J J J

1 1 -
+§D925a:u(xi) > (g —m)' WY + §D§yu(xz‘) > —y) Wi+

J J
1 y )
5 DRulx) D (G = 2) Wil + Diyulxi) 3 (& — i) (n — y) Wil +
J J
+Dju(xi) Y (5 = yi) (G = )WL + Diulxi) Y (& = wi) (G = 2)Wa! =

j j
=D uEHWi  a=1,..10
j

(7.3)
that can be rearranged in matrix form as follows:
u(x;) 2 u(gj)WIZ
Dyu(x;) Zj u(fJ)WQZ]
Dyu(x;) 2 u<§j)W3. ,
D u(x;) > u(@)Wf
) 2 . ) . v
Al D:S:vu(xl) — Z] u(gJ)Wi] (74)
Dyyulxi) > ul&)Ws
gugxg > ull) Wy
D?Z(?) 2 u(§])W§j
5 ulx > €)Wy’
szu(xl) i
Zj u(§;) Wiy
The projection functions used in the applications in the present paper are
szl WéZ(n—yz)z
Wy =¢§—u ‘Wéz(C—zi)
W3 =n—y W = (£ —xi)(n— i)
Wi:C—Ziz Wy = (n—4i)(C —2)
W5 = (€ — ) Wip = (€ = 2)(§ — xi)
Equation (7.4) is then rewritten in the form
A'D(u;) = Wi (7.5)
where ' ' ‘ '
Wi=[Wil | w2 | | Wi (7.6)
and . .. .. ...
W9 =y oWy | ] W) (7.7)
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The vector u collects the known nodal values in the node set £ € X. Then, by inverting
(7.5), we obtain

D(u;) = E'W'u (7.8)
where E! = (Ai)fl, and finally
D(u;) = Diu (7.9)
with ' o
D' =E'W* (7.10)

The 10xN; operator D?, applied to u, returns a 10x1 vector collecting all the approximations
of functions and derivatives of u(x) in the collocation point x;.

However, here we are interested in building 10 linear operators (I, D, Dy, D,, Dys, Dy,
D.., D,y, Dy., D;,) that, applied to the vector u, return the evaluations of function and
derivatives in all collocation points x. These operators are simply built collecting, for each 4,
the correct row of ID?, identified through Equation (7.4). For example, in order to build the
linear operator D, (the discrete counterpart of 0/0x), we simply consider, for each i, the 2nd
row of D?. The final form of D, is then

(7.11)

where Di is the a-th row of DI

Similarly, in order to retrieve the evaluations of u(x) in the collocation points, we build
the operator I such that

[u(xi)li=1,...ne = Tu(€;)]j=1,..,Ng (7.12)

whose rows are found selecting, for each 4, the first row of D%:

(7.13)

The columns of I can be interpreted as the evaluations of the Ng shape functions in the
collocation points.

7.2 Governing equations for incompressible flows

The governing equations of incompressible fluid flows are the well known Navier-Stokes equa-

tions
ou A
pE—Fpu-Vu:—Vp—i-,u u+b (7.14)

V-u=0
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where the first equation expresses the conservation of the linear momentum, and the second
equation expresses the incompressibility constraint. The variable p is the fluid density, u is
the velocity field, p is the pressure field, p is the dynamic viscosity, b is the vector of internal
loads.

The Navier-Stokes equations are non-linear, due to the presence of the convective term
pu-Vu. Nevertheless, when viscous forces dominate inertial forces, such equations can be
rewritten neglecting the convective term, obtaining

u
V-u=0

known as Stokes equations. Both Systems (7.14) and (7.15) have to be completed with suitable
boundary conditions, concerning the boundary velocity or the boundary outward stress.

In the present work we restrict to stationary flows, that is, du/0t = 0; moreover, the
work is divided in two parts: in the first part we concentrate on Stokes equations, in order
to study how the Modified Finite Particle Method, in combination with the Least Square
Residual Method, deals with the numerical limitation of the inf-sup condition; in the second
part we focus on the solution of the complete Navier-Stokes equations, and show a numerical
procedure to handle the non linearity.

7.2.1 Solution of the Stokes equations using the Modified Finite Particle
Method and the Least Square Residual Method

In the spirit of collocation methods we discretize the steady Stokes equations using the Modified
Finite Particle Method. The discrete linear system of equations is written in the form

Keq a f
Kine v ]=1° (7.16)
Kir IA) 1_1
Kneum t
where
| pL 0 -D,
ko= [0 D -
K= |[D, D, 0] (7.18)
| nIl n O
Kair = [ 6,1 t,I 0 (7.19)
2 2
K, — 2pu(n;D, +nn, D) 2u(nznyDy) + 0Dy, —I (7.20)

2pn,t, Dy + p(ngt, +nyt,)Dy  p(ngt, +nyt,)Dy + 2un,t, D, 0

In Equations (7.17), (7.18), (7.19), and (7.20) the matrix L = D, + Dy, is the discrete
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Laplace operator, @1, v, and p are the nodal unknowns associated to the velocity components
u and v and to the pressure p, f is the vector of the internal loads at collocation points, u is
the vector of the known boundary displacements, and t is the vector of the known boundary
outward stress at Neumann collocation points. Finally n, and n, are square diagonal matrices
collecting the values of the components of the boundary outward normal vector along the z-
and y-direction; at the same way t, and t, are square diagonal matrices collecting the values
of the boundary outward tangential vector along the x- and y-direction.

When collocation and control points coincide, the values of the control unknowns can be
retrieved by inverting system (7.16). Unfortunately the pressure field obtained through direct
inversion of Equation (7.16) shows unphysical oscillations, known in the literature as pressure
checkerboard instability.

In order to overcome such a numerical difficulty, here we use the Least Square Residual
Method, following what has been successfully applied by Chi et al. (2014) using Radial Ba-
sis Functions for spatial discretization. The procedure consists in discretizing system (7.15)
considering a number N¢ of collocation points higher than the number Ng of control nodes;
system (7.16) is therefore a rectangular, overdetermined system of algebraic equations, whose
solution can be approximated through minimization of a squared error. Such an error is defined

" E=e|? = (Kd - f)T(Kd - f) (7.21)

where K is the stiffness matrix of Equation (7.16) and d = [@ v p|’. Error (7.21) can be
furthermore expanded as

E =(Ked — )T (Keyd — £) + (Kined)” (Kined)+

- ] e ) (7.22)
+(Kdird - u) (Kdird - u) + (Kneumd - t) (Kneumd - t)

In Chi et al. (2014) it is noted that error (7.22) is unbalanced among its components.
Therefore such error components are properly weighted, leading to the definition of a weighted
error

By =(Kegd — )T (Kegd — ) + (Kined)” Ay (Kiped) +

. i . (7.23)
+(Kdi7"d - 11) Adir (Kdird - u) + (Kneumd - t) Aneum(Kneumd - t)

where A, = ajncl is a square diagonal matrix collecting the weights associated to the discrete
incompressibility equations, Ag;, = ag;-1 collects the weights associated to Dirichlet bound-
ary conditions, and A eym = Qpeuml collects the weights associated to Neumann boundary
conditions. The total weighted error can be finally rewritten as

E, = (Kd - f)TA(Kd - f) (7.24)

where A is a diagonal matrix with expression

0 0 0
OémcI 0 0

0 Oédz‘rI 0

0 0 aneumI

(7.25)

©C O O M-
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The weighted error (7.24) is then minimized with respect to the control nodal variables d,

therefore
o0F,

— .2
=0 (7.26)

which implies that
KTAKd - KTAf =0 (7.27)

The matrix K = KTAK is a square symmetric matrix, and can be inverted using suitable
algorithms, alleviating the computational cost of the method.
7.2.2 Choice of the weights

The choice of the weights to be imposed on Equation (7.24) is an important topic for the
application of LSRM, since a wrong definition of weights may prevent the convergence of the
numerical method.

The rigorous analysis conducted by Chi et al. (2014), which takes in account the particular
choice of the shape functions (in that case Radial Basis Functions are used), leads to the
selection of the following weights

Qine = (MNS)Z Adir = (,U/]VS)2 Qpeym = 1 (728)

In the present work we prefer a different approach: in fact we base our analysis on the
consideration that different equations have different scales, and therefore they contribute dif-
ferently to the global error. In particular:

1. The equation of equilibrium has the dimensions of ud?u/0x?
2. The equation of incompressibility has the dimensions of du/dz
3. The Dirichlet boundary conditions have the dimensions of u

4. The Neumann boundary conditions have the dimensions of pdu/0x

The terms collected in the matrix D,, are proportional to 1/h?, where h is the distance
between control nodes on a regular distribution; the terms collected in the discrete operator
D, are proportional to 1/h; furthermore we consider that the distance h between two near
control nodes is related to the total number Ng of control nodes, in particular we can assume
h ~1/y/Ns. Hence we can write the correct scale of each equation in the form:

1. Equilibrium: o(u/h?) = o(uNg)
2. Incompressibility constraint: o(1/h) = o(v/Ng)
3. Dirichlet boundary conditions: o(1)

4. Neumann boundary conditions: o(u/h) = o(u/Ng)
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In order to balance the weighted squared error in Equation (7.24), all components are
requested to have at least the same dimensions, that are the ones of the squared equation of
equilibrium, (uNg)2. The other weights, following this principle, are:

Qijne = ClNS
Uiy = CQNgf (729)
peum = C3Ng

where C'1, Cs, and C3 are constants that, in a first approximation, we can consider unitary.

7.3 Solution of the Stokes problem

In the present section we apply the procedure introduced in Section 3 on some benchmarks
governed by the Stokes equations. In particular we first solve the Stokes problem on a square
domain with known analytical solution, and then on a quarter of annulus under body loads.
For both problems we discuss the choice of the weights, as well as the most correct way of
distributing the control nodes with respect to the collocation points.

7.3.1 Square with known analytical solution

In the following we solve the Stokes flow in a square in the domain [—1,1]x[—1, 1] with the
following exact solution
u(z,y) = 20xy3
v(z,y) = 5" —y?) (7.30)
p(z,y) = 6022y — 20y3 + C

The problem is subjected to Dirichlet boundary conditions in accordance to Equation
(7.30) on the whole domain boundary. The viscosity is set as g = 1. The numerical solution
is obtained using the Modified Finite Particle Method for spatial discretization and the Least
Square Residual Method for the approximation of the resulting linear system. The selected
weights for the error balance are ag; = IV g, ine = Ng. The weights aueum are not defined in
this case, since no Neumann boundary conditions are imposed on the present test.

The first numerical test is performed using a regular distribution both of collocation nodes
and control nodes. In Figure 7.1 we show the convergence diagram of the 2nd norm relative
error, which is defined as

\/Ziici (unum,i - uan,i)2

S (Uan,i)”

Such a convergence diagram is given in terms of the number of control nodes, that is directly
proportional to the dimensions of the matrix to invert, and thus, to the computational effort.
In particular we notice the expected second-order slope of the error curve.

In Figure 7.2 we show the pressure distribution obtained combining MFPM and LSRM
and remark the smoothness of the solution.

relative error =

(7.31)
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Figure 7.1: Square with exact solution (7.30): convergence diagram of the error using MFPM and LSRM
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Figure 7.2: Square with exact solution (7.30): pressure distribution obtained with the MFPM combined with
LSRM, using 58081 field nodes and 231361 collocation points.



106 7. EXTENDED MODIFIED PARTICLE METHOD

Effects of random distributions of collocation points. Now we explore the effects
of random distributions of collocation points: the problem with exact solution (7.30) is solved
on the same geometry and with the same boundary conditions, using three different extremely
random distributions of collocation points within the problem domain, and using a regular
distribution of control nodes. For each test we use a constant ratio between the number of
collocation points and the number of control nodes, that is No/Ng = 4. From Figure 7.3
we notice that the errors computed with the different distributions of collocation points is
extremely stable, and that the average of the errors follows a slope superior to the expected
second order.

® analysis 1
= analysis 2
= * analysis 3
21072 ——average error|]
2 —slope 2.3
2
=
<
IS
—
10°
107

20 40 160 240
Ng

Figure 7.3: Square with exact solution (7.30): convergence diagram of the error in space using the MFPM
combined with the LSRM, with different set of randomly distributed collocation points

Effects of the ratio between the number of control nodes and collocation points.
In order to assess the optimal ratio between the number of control and collocation points we
solve again the problem with exact solution (7.30) using, for each distribution of control nodes,
different number of collocation points. The results in term of relative error are reported in
Figure 7.4 (velocity field) and in Figure 7.5 (pressure field), where different lines correspond
to different amounts of control nodes. In particular we notice from Figure 7.5 that the error
of the pressure field is high when the ratio Ng/N¢o — 1, due to the violation of the inf-sup
condition, whereas an optimal error is got when y/Ng/N¢ ~ 0.5.

Effects of weights. The suitability of the weights imposed for the error balance is tested
on a problem with the same geometry and exact solution (7.30), but different boundary con-
ditions: in the following test, in fact, Dirichlet boundary conditions are imposed on the top
and lower sides of the square, and conditions over the stress are imposed on the left and right
sides.
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Figure 7.4: Square with exact solution (7.30): relative error versus the ratio between collocation points and
field nodes
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Figure 7.5: Error of the pressure for the problem with exact solution (7.30) and different ratio between field
nodes and collocation points
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We investigate different values of the weights, with the following general expression

Qine = MNg
ap = uN{ (7.32)
ay = Ng

where p, ¢, and r are positive parameters, then we compute the 2nd norm of the error using
the following combinations of parameters:

relative error

—-(a)
—=(b)

L ©
10 |- (d)
—2nd order slope
20 40 80 160 240

Figure 7.6: Square clamped an all its edges: convergence diagram of the error with Neumann boundary
conditions, using a Weighted Least Square Residual Method and MFPM discretization, for different sets of
weights

In Figure 7.6 we show the convergence diagrams of the error for the investigated sets of
parameters p, ¢, and 7, and observe that the best results in terms of global error are achieved
when a;p. = uNg, agir = pN é, and apeum = Ng, that is what we expected from the theoretical
analysis of Section 3.
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7.3.2 Quarter of annulus under body load

In the following we apply the combination of MFPM and LSRM on the problem of a flow in
a quarter of annulus (see Figure 7.7) with geometrical parameters r = 1 and R = 4. The
fluid viscosity is set as 4 = 1. The problem has been studied in Auricchio et al. (2007) using
isogeometric shape functions. The analytical solution of this problem is

u=10"%%y*(2? + y* — 16)(z* + y* — 1)(5z* + 18z?y* — 852? + 13y* + 80 — 153y?)
v=—2-10"52y5 (22 + 3% — 16) (2 + y* — 1)(5z* — 5122 + 62%y? — 17y? + 16 + y*)
(7.33)
The internal body loads are computed from the analytical solution (7.33). Dirichlet bound-
ary conditions are imposed on the whole domain boundary.

ylk

xT

(@)

Figure 7.7: Quarter of annulus under body loads: geometry and boundary conditions

For the solution of the present problem we use regular distributions of collocation points
on a cylindrical reference frame, and regular distributions of control nodes on a Cartesian
equispaced grid (an example of such distributions is reported in Figure 7.8). In Figure 7.9 we
show the convergence diagram of the 2nd norm relative error obtained for different numbers
of control nodes and collocation nodes: we notice the expected second-order accuracy of the
method.

Effects of the ratio between the number of control nodes and collocation points.
We also investigate the effects of the ratio between the number of control nodes and the number
collocation points. In Figure 7.10 we show the relative error versus the ratio \/Ng/N¢.
Different lines correspond to different amounts of control nodes. We notice that in all cases
we obtain high errors for Ng/N¢o — 1, due to the violation of the inf-sup condition, whereas
an optimal relative error is obtained when /Ng/N¢ ~ 0.5.

Effects of random distributions of collocation points. Further analyses are per-
formed to investigate the effects of random distributions of collocation points, and keeping
uniform distributions of control nodes (an example of collocation and control points distribu-
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Figure 7.8: Quarter of annulus under body loads: regular distribution of 441 collocation and 83 control nodes
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Figure 7.9: Quarter of annulus under body loads: convergence diagram of the error using MFPM and LSRM
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Figure 7.10: Quarter of annulus under body loads: relative error versus the ratio between the number of field
nodes and collocation points

tions are reported in Figure 7.11). In particular, for each distribution of control nodes, three
different random distributions of collocation nodes are tested, and the errors are reported in
Figure 7.12, where the dotted line correspond to the average error obtained in the tests. We
notice that the error is extremely stable for the different distributions and its average follows
the expected second-order convergence.

7.4 Navier-Stokes Equations

In the present section we solve the Navier-Stokes equations (7.14), which present a further
difficulty with respect to the Stokes equations, since they are non-linear equations and therefore
a proper procedure for handling the non-linearity is needed.

In the following we restrict to the stationary case, therefore equations (7.14) are modified
in the form

-V Vp = puA b
pu-Vu—+ Vp = pAdu + (7.34)
V-u=0
System (7.34) can be rewritten highlighting the convective velocity u.:
'V Vp = pA b
pu, u+ Vp = ulAu+ (7.35)
V-u=0

Systems (7.34) and (7.35) coincide when the convective velocity is chosen as u. = u.
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Figure 7.11: Quarter of annulus under body loads: random distribution of 441 collocation points and regular
distribution of 83 control nodes
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Figure 7.12: Quarter of annulus under body loads: convergence diagram of the error for different random
distributions of collocation points
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The solution procedure for the Navier-Stokes equation consists in an iterative lineariza-
tion procedure, as usual for non-linear equations. In general for Navier-Stokes equations two
different linearization procedures are used:

e Picard linearization: the convective velocity at the iteration k is chosen as u. = u¥;

therefore the MEPM spatial discretization of System (7.35) is

pla" - D0 + pIvk - D, aF ! 4+ D, pF ! = p(Dyy + Dy )0 + b,
pla® - D, vE+1 4 pIvk - D, vF 1 + D, pF*+! = u(D,, + Dy, )VF L + b, (7.36)
D, + D, v =0

that reads, after linearization:

pA — L 0 D, AaFt!
0 pA — L D, AvFHL | = RF (7.37)
D, D, 0 Apht!

where

(7.38)

A =d(Ia) D, + d(I¥) D,
L=D,,+D,,

and RF is the residual of the equation. In Equation (7.38) we denote with d(q) a square
diagonal matrix whose elements are the elements of the generic vector q.

e Newton-Raphson linearization: in the second case the convective velocity at the
iteration k is chosen as u, = u**?; therefore the MFPM spatial discretization of System
(7.35) reads

plaf+1. Dyt 4 pIvk . DM + D, pFt! = (i(Dyy + Dy )0 + b,
plaF 1. D, vF ! 4 pIvF . D, v+ 4 D pF ! = 4(Dyy + Dy, )VEH! + by, (7.39)
Dmﬁk-i-l + Dy{,k-{-l =0

and therefore the linearized system reads

_ML + pNLuu pNLuU Dx Aﬁk+1
pNL,, —uL + pNL,, D, AvFtL | = RF (7.40)
D, D, 0 Apktl

where

I
. (7.41)
y V) I

It is evident that the Newton-Raphson algorithm represents the most accurate linearization
of Navier-Stokes equations (7.34), and therefore it shows faster rate of convergence: neverthe-
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less it is shown in Elman et al. (2014) that such a linearization strategy needs an initial guess
solution closer and closer to the converged solution as much as the Reynolds number Re is
high, where Re = pLV/p is the ratio among the fluid inertial and viscous forces. L and V are
characteristic length and velocity of the problem.

In the case of Picard linearization, conversely, the initial guess velocity can be chosen in a
larger bubble, and therefore convergence is more easily reached, even if the rate of convergence
is not optimal.

In both cases, at each iteration k, a linear system has to be solved. In both cases the
general form is

KFAdFH = RY (7.42)

where the superscript k£ reminds that we are implementing an iterative process, and AdF! =
[AaFHT AVFHL ApFHT is the increment of the nodal variables at iteration k + 1.

7.4.1 Navier-Stokes equations and Least Square Residual Method

When collocation and control nodes coincide, the solution of system (7.42) with suitable bound-
ary conditions is found by inversion of the matrix K¥. Howewever this procedure, as in the
linear case, can lead to problems of pressure instability, and therefore also in the non-linear
case we use a LSRM approach for the solution of the problem.

The procedure consists in considering a number of collocation points higher than the num-
ber of control nodes, therefore at each iteration system (7.42) is overdetermined: therefore its
solution can be approximated through an error minimization, following a procedure completely
similar to the linear case; the weighted error at each iteration is computed as

Er = (KA&’““ . Rk>TAk (KA&’““ . Rk> (7.43)

where A* is the diagonal matrix of the squared weights, with components

2
3N,
M- () 41
Zj:l Kij

computed in order to restore the same order of magnitude of the terms in all equations. Ny,
is the number of supporting nodes of the collocation points to which the i-th row of K* is
associated.

Finally, at each iteration the approximated solution Ad**! is the minimizer of the error
EF. The procedure is repeated until convergence of the weighted error under a predetermined
tolerance. In order to address the different iteration solutions to convergence, it is possible to
divide the problem in a predetermined number of substeps, in which the external data (i.e.,
boundary conditions or the internal body loads) are gradually increased. For each substep,
the converged solution of the previous substep is used as initial guess solution.
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7.5 Solution of the Navier Stokes problem using MFPM com-
bined with LSRM

In the following, we apply what has been discussed in the previous section to a square under
polynomial body loads, with known analytical solution, and on the well-known benchmark of
the lid-driven cavity, at different values of the Reynold number.

7.5.1 Flow in a square domain

In the following we study the flow on a square in the domain [—1,1]x[—1, 1] with analytical
solution
u(zw,y) = 20zy3
v(z,y) = 5(z* — y*) (7.45)
p(z,y) = 6022y — 20y3 + C

Dirichlet boundary conditions (on the whole boundary) and internal body loads are im-
posed according to Equation (7.45). The problem is solved using second order MFPM in
combination with the Least Square Residual Method, using the iterative procedure proposed
in the previous section. The material parameters are set as p = 1kg/m? and y = 1kg/ms. In
Figure 7.13 we show the convergence diagram of the error for this problem, and highlight the
expected second-order convergence.

2 - MFPM-LSRM
10 ¢ ~ —2nd order slopel|i
b -3
S 10} :
g
[¢D)
2
+~
=
£ 107 .
-5
10 L L L L
20 40 80 160 280

Figure 7.13: Square with analytical solution (7.45) in the non-linear case: convergence diagram of the error.
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7.5.2 The lid-driven cavity

The domain of the lid-driven cavity is a square of side . = 1m. On all boundary, Dirichlet
boundary condition are assigned, in particular

_ ) (7.46)
u-n=0and u-t=U on the top side

{ u=20 on the left, lower and right sides
where n and t are the normal and tangential unit vectors at the boundary, and U is the
tangential velcoity at the top side of the domain, which has been set as U = 1m/s. We solve
the problem with p = 1kg/m? and two different values for the viscosity (i.e., u = 0.0025kg/m s
and p = 0.0001kg/m s) corresponding to the Reynolds numbers Re = 400 and Re = 1000. In
Figures 7.14 and 7.15 we show our results obtained in terms of streamlines.

Figure 7.14: Lid-driven cavity problem (Re = 400): streamlines solution using MFPM and LSRM.

In absence of analytical solution, we compare our results with those obtained by Ghia et al.
(1982) in terms of horizontal velocity profile at the middle vertical axis (z = 0 in our reference
frame) for Re = 400 (Figure 7.16) and Re = 1000 (Figure 7.17). For both cases we notice a
substantial agreement between our results and the reference solution.
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Figure 7.15: Lid-driven cavity problem (Re = 1000): streamlines solution using MFPM and LSRM.

0
-0.2¢
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Figure 7.16: Lid-driven cavity problem (Re = 400): velocity profile in the z-direction along the axis z = 0
and comparison with the reference solution by Ghia et al. (1982).
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Figure 7.17: Lid-driven cavity problem (Re = 1000): velocity profile in the z-direction along the axis x = 0
and comparison with the reference solution by Ghia et al. (1982).



Chapter 8

Conclusions

The topic of the present thesis is the study and the development of the Modified Finite Particle
Method (MFPM) from its first introduction in the scientific literature (Asprone et al., 2010)
until its last developments already unpublished.

In the present work we deeply analyze and review the original MFPM formulation and
study its characteristics. In particular we underline the computational costs connected with
the original formulation, where integrals had to be computed as necessary step for deriva-
tive approximation. Such a need has been removed introducing a MFPM novel formulation,
where the projection is performed among vectors and not of functions. In Chapter 3 it is
evidenced the consistent time saving connected with these procedure, and also a reduction of
the approximation error.

Both original and novel formulations are then compared with existing meshless colloca-
tion methods available in the literature, in particular with the Generalized Finite Difference
Method, and applied to linear elasticity, both in statics and in dynamics. The results in terms
of error slope are shown in the thesis and the expected second order consistency of the method
is confirmed.

At a later stage MFPM has been tested on the incompressible elasticity equations. In this
case we notice that a simple discretization of the variables involved (displacements and pres-
sure) do not respect the restriction imposed by the inf-sup (or LBB) condition, and therefore
the pressure field exhibits unphysical obscillations. The way of overcoming this difficulty are
essentially two: the first one consists in introducing a different set of equations, and this is
what has been done by many authors; the second strategy is to slightly modify the numerical
approximation method, and use the original incompressibility equations.

Concerning the first strategy, we apply the Modified Finite Particle Method to five different
formulations presented in the literature, and verify that only some of them actually respect
the incompressibility constraint. When the constraint is respect, however, a correct second
order accuracy is achieved in the numerical tests.

The second strategy for dealing with the problem of incompressible solids and fluids is to use
the Modified Finite Particle Method in conjunction with a Least Squares Residual Method,
following the idea introduced by Hu et al. (2007) and (Chi et al., 2014) and implemented
using the Radial Basis Functions collocation method. Such a conjunction however requires
a modification of the Modified Finite Particle Method, that here we call extended MFPM,

119
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that shows higher robustness with respect to last versions when dealing with unstructured
distributions of collocation points. The method also avoids spurious oscillations of the pressure
field, and then in this case the original incompressibility equations have been used. The last
version of MFPM has been finally used for the solution of flows in an Eulerian point of view,
that is, the Navier-Stokes problem has been solved. Such problem is modelled by non-linear
equations, and then the MFPM has been extended to the non-linear case. The obtained results
show again the robustness of the method and the expected accuracy.

The current version of the Modified Finite Particle Method permits satisfactory approx-
imations of compressible and incompressible elasticity problems, in particular it does not
suffer from numerical pathologies typical of incompressibility, and it is particularly robust
with respect to random distribution of particles; nevertheless the method still needs further
investigations in order to properly set some parameters for the improvement of the method
efficiency. The methods need to be properly developed in order to be efficiently applied to
Lagrangian fluid-dynamics, that is the most natural application of every meshless method.
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