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AbstratMeshless methods are nowadays widely investigated in the framework of numerial methodsdue to their harateristi of being free of any predetermined onnetivity among nodes, suhas a grid or a mesh. This harateristi makes suh methods partiularly �exible in problemswhere large deformations are involved, suh as high-veloity impat, metal foaming, and �uid-dynamis.In the present thesis we report the development of a new numerial method, alled Mod-i�ed Finite Partile Method, from its introdution in Asprone et al. (2010) until its mostreent developments. The Modi�ed Finite Partile Method (MFPM) is a numerial approx-imation tehnique of funtions and derivatives inspired by the Modi�ed Smoothed PartileHydrodynamis (MSPH), a numerial algorithm belonging to the lass of the SPH-derivedmethods.The �rst development of the Modi�ed Finite Partile Method from its original formulationhas given the method higher omputational e�ieny by removing the need of numerialintegration, and hene, tessellation of the domain; suh a novel formulation is then applied to1D and 2D elastiity and has been heked in terms of omputational e�ieny and numerialerror (Asprone et al., 2014). Then the method is extended to inompressible materials, inpartiular we explore the numerial di�ulties onneted to a quasi-inompressible materialwhen using a displaement-based formulation.At a later stage we approah the solution of the Stokes equations, that model full inom-pressible materials: suh equations are the topi of many sienti� works due to the existeneof a numerial limitation known as the inf-sup or LBB ondition, whih imposes restritionsin the disretization of displaement and pressure �elds. In the �eld of olloation methodssuh as the Finite Di�erene Method, as an example, staggered grids are used; unfortunatelysuh strategy is not extensible to meshless methods, whih in general deal with non-strutureddistributions of olloation points. Hene alternative formulations of the Stokes problem havebeen disussed and investigated using the Modi�ed Finite Partile Method, obtaining theexpeted auray in terms of error onvergene.In the last part of the thesis we develop an extended formulation of the Modi�ed FinitePartile Method, onsisting in a ombination of the MFPM with a Least Square ResidualMethod, and apply it to Stokes and Navier-Stokes equations. Suh an algorithm permits tosolve the original formulation of Stokes and Navier-Stokes problems using the same disretiza-tion for veloity and displaement, overoming the limitations given by the LBB ondition,and without the need of alternative ontinuous formulations. Moreover the algorithm looksmore robust with respet to extremely unstrutured olloation point distributions.V
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Chapter 1Introdution to the thesisIn reent years meshless methods have aquired signi�ant importane in the framework ofnumerial methods due to their harateristi of being free of any kind of grid or mesh, andtherefore, to exhibit an higher �exibility with respet to traditional mesh-based or grid-basedmethods, above all the Finite Element Method (FEM) and the Finite Di�erene Method(FDM). The most attrative harateristi of meshless methods is the apability of easily mod-elling problems where large deformations our, following a Lagrangian point of view. Amongthese problems, in the literature are widely investigated problems of solid large deformations,metal foaming, and �uid dynamis.A meshless method is haraterized by the fat that nodes are not given any kind of apriori onnetivity. Relation among nodes are then given, at eah time step, on the basisof the urrent position among nodes. This fat one hand gives the method high �exibilityin problems where partiles are repeatedly muddled up, on the other hand requires that ateah time step the onnetivity is set up, requiring a omputational ost that sometimes isomparable with the remeshing time required by mesh-based numerial methods.In the �eld of meshless methods an important distintion is made between meshless parti-le methods and meshless �non-partile� method. In the �rst ase, eah node is haraterizedby a mass, a veloity and an energy, and the interation among nodes ours through mutualfores, aording to the priniple of ation and reation. In meshless �non-partile� meth-ods, di�erently, nodes are simply onsidered as olloation points, and used as base for thedisretization of funtion and derivatives.Table 1.1: Classi�ation of some numerial approximation methodsPartile Non partileMeshless Smoothed PartileHydrodynamis (SPH),Disrete Element Method (DEM) Radial basis olloation,Disrete Least Square Residual MethodMesh-based Partile FEM Finite Element Method (FEM)1



2 1. Introdution1.1 The Smoothed Partile HydrodynamisThe �rst meshless partile method introdued in the literature is the Smoothed Partile Hydro-dynamis (SPH), proposed by Luy (1977) and Gingold and Monaghan (1977) for the study ofastrophysial problems. The numerial approximation tehnique is based on the Dira Deltaequivalene
f(xi) =

∫ +∞

−∞

f(x)δ(x− xi) dx (1.1)where δ(x) is the Dira Delta distribution, whih has two main properties:
δ(x− xi) = 0 if x 6= xi (1.2a)
∫ +∞

−∞

δ(x− xi) dx = 1 (1.2b)Equation (1.1) an be seen as the projetion of the funtion f(x) on the basis δ(x − xi).This partiular way of onsidering Equation (1.1) is the starting point of many numerialmethods, derived from SPH formulation. Sine the Dira Delta is di�ult to manage froma numerial point of view, SPH introdues an approximation of Equation (1.1), substitutingthe Dira Delta distribution with a smooth funtion W (x − xi, h), alled kernel funtion,where h is the smoothing length, whih de�nes the region Ωi = [xi − h, xi + h] in whih thesmoothing funtion is non-zero. Consequently, Equation (1.1) is approximated through thekernel evaluation of f(xi), that is
f(xi) =

∫ +∞

−∞

f(x)W (x− xi, h) dx (1.3)The kernel funtion W (x− xi, h) is required to have the following properties:Unity ∫

Ω
W (x− xi, h) dx = 1 (1.4a)Compat support {

W (x− xi, h) 6= 0 |x− xi| < h

W (x− xi, h) = 0 |x− xi| ≥ h
(1.4b)Dira Delta property lim

h→0
W (x− xi, h) = δ(x− xi) (1.4)Positivity W (x− xi, h) > 0 (1.4d)From here after, we refer to W (x − xi, h) with Wi(x), and the dependeny on h will beomitted.The property (1.4d) is not neessary for a orret approximation, but it is introdued toavoid unphysial results suh as negative density or energy.The derivative evaluation is obtained through kernel evaluation of f ′(x) and following



1.1. The Smoothed Partile Hydrodynamis 3integration by parts:
f ′(xi) =

∫ +∞

−∞

f ′(x)Wi(x) dx

= [f(x)Wi(x)]
+∞

−∞
−
∫ +∞

−∞

f(x)W ′

i (x) dx (1.5)Here, the � ' � represents the derivative with respet to the independent variable x. Farfrom the boundary, that is, when Ω ∩ Ωi = Ωi, we assume that the smoothing funtion isompletely developed in the domain, and thus the derivative approximation is
f ′(xi) = −

∫ +∞

−∞

f(x)W ′

i (x) dx (1.6)The higher order derivatives approximation is obtained by iterating the proedure shownin (1.6). The general formula is
f (n)(xi) = (−1)n

∫ +∞

−∞

f(x)W
(n)
i (x) dx (1.7)Equation (1.6) and its generalization (1.7) for higher order derivatives is exat far fromthe boundary, that is, where the �rst term of the right-hand side of (1.5) vanishes beauseof (1.4b). On the other hand, when the intersetion between the general domain and thesmoothing length of a partile is non empty, the �rst term of the right-hand side of (1.5) doesnot vanish and the formula (1.6) does not onverge. This is the most important limit of SPHapproximation, that is orreted through some expedients in numerial simulations.

PSfrag replaements
xi

∆xi

ΩFigure 1.1: 1D domain: partile disretization and subdivision of the domainEquations (1.3), (1.5) and (1.7) are still integral expression, that need a further disretiza-tion step: therefore, integrals are replaed by summations: the domain is partitioned intosome little subdomains, so that there is a univoal orrespondene between eah partile andits subdomain (see �gure 1.1). Therefore, the disrete form of (1.3) is
∫ +∞

−∞

f(x)Wi(x) dx ≃
∑

j

f(xj)Wi(xj)∆xj (1.8)



4 1. Introdutionand, for higher-order derivatives
f (n)(xi) ≃ (−1)n

∑

j

f(xj)W
(n)
i (xj)∆xj (1.9)where ∆xj is the referene subdomain of the partile at xj .We an substitute ∆xj with mj

ρj
, where mj is the referene mass of the partile j and ρj isits density. Equation (1.9) an be rewritten in the form

f (n)(xi) ≃ (−1)n
∑

j

f(xj)W
(n)
i (xj)

mj

ρj
(1.10)where it is more evident the peuliarity of this method of dealing with partiles.1.2 Alternative approahes to SPHIn onsideration of the de�ienies of the original SPH tehnique, espeially at the boundary,many authors have introdued orretions in the most reent years. In the following paragraphwe review some of the most signi�ant numerial approximation tehniques introdued startingfrom the initial SPH idea.1.2.1 Reproduing Kernel Partile MethodOne of the most ommon methods developed from the SPH is the Reproduing Kernel PartileMethod, introdued by Liu et al. (1995a,b). In these works the authors introdue the possibilityof di�erent smoothing funtions (that in these works are alled window funtions) for eahpartile in the domain, to restore the onsisteny of the method also lose to the domain(property (1.4a)).The method is obtained through the projetion of the Taylor series expansion until theseond order

f(x) = f(xi) + f ′(xi)(x− xi) +
1

2
f ′′(xi)(x− xi)

2 + o(|x− xi|3) (1.11)onto a generi window funtion Ki(x), that is
∫

Ω
Ki(x)f(x)dx = f(xi)

∫

Ω
Ki(x)dx+ f ′(xi)

∫

Ω
Ki(x)(x− xi)dx+

f ′′(xi)

∫

Ω

1

2
Ki(x)(x− xi)

2dx

(1.12)Then the exat reprodution of a generi funtion f(x) an be imposed, that is
∫

Ω
Ki(x)dx = 1 (1.13)In this way the zero-th onvergene of the method is estabilished (that is, the method



1.2. Alternative approahes to SPH 5exatly reprodues onstant funtions). In partiular, if we hoose an even funtion, that ispossible far from the boundary, also the term involving the �rst derivative vanishes and themethod beomes seond order aurate; lose to the boundary, on the ontrary, the method is�rst order aurate.The novelty introdued by the authors is that the window funtion Ki(x) an be seenas the produt of two funtions, Ci(x) and W (x), the seond being the typial SPH kernelfuntion, and the �rst being a orretive funtion, typially a polynomial, that is di�erentpartile by partile, whih is asked to restore the required onsisteny onditions at partileslose to the boundary. Typial ondition that an be imposed to the orretion funtion arethat the high-order momenta vanish.
∫

Ω
Ki(x)(x− xi)dx = 0 (1.14)

∫

Ω

1

2
Ki(x)(x − xi)

2dx = 0 (1.15)The possibility of enforing these onditions depends on the order of the polynomial Ci(x).After performing this kernel estimates, the evaluation of derivatives is performed aordingto Equations (1.6) and (1.7).1.2.2 Corretive Smoothed Partile MethodThe Corretive Smoothed Partile Method (Chen et al., 1999a,b) is another method developedto orret the SPH approximation tehniques at the boundary. The authors do not use anyorretion funtion, but use a di�erent kernel evaluation. Starting from the Taylor seriesexpansion of a funtion f(x) up to the zero-th order
f(x) = f(xi) (1.16)and projeting it onto a kernel funtion Wi(x), we obtain the following kernel estimation

f(xi) =

∫

Ω f(x)Wi(x)dx
∫

ΩWi(x)dx
(1.17)Equation (1.17) is equivalent to (1.3) when (1.4a) is respeted; moreover, if (1.4a) is notrespeted, Equation (1.17) still holds. From this we onlude that for this formulation is notneessary to normalize the kernel funtion. Hene it is evident that this approah do notrequire anymore the property (1.4a), required in SPH.Expanding up to the �rst order, projeting onto W ′

i (x) and rearranging the obtained terms,we obtain that
f ′(xi) ≃

∫

Ω [f(x)− f(xi)]W
′

i (x)dx
∫

Ω [(x− xi)]W ′(x)dx
(1.18)We notie that also in the approximation of the derivative, Equation (1.18) and Equation(1.6) di�er in the denominator. Also it has to be pointed out that we projet on the derivativeof the kernel funtion and not on the kernel funtion itself beause otherwise we would obtain



6 1. Introdutiona vanishing denominator. The authors also remark that, for an higher auray of the funtionapproximation, is preferable that W ′

i (x) is an odd funtion, but it is not a binding property.The approximation of the higher order derivatives an be obtained just iterating the proe-dure adopted in (1.17) and (1.18). It is only neessary to retain, in the Taylor series expansion,all the terms until the one of interest.1.2.3 Modi�ed Smoothed Partile HydrodynamisA further development of the SPH tehnique is the Modi�ed Smoothed Partile Hydrodynamis(MSPH) introdued by Zhang and Batra (2004). In this ase funtion and derivatives are notapproximated in di�erent steps, but simultaneously, through the inversion of a linear systemat eah partile.
(

Ai
11 Ai

12

Ai
21 Ai

22

)(

f(xi)
f ′(xi)

)

=

( ∫

Ω f(x)Wi(x) dx
∫

Ω f(x)W ′

i (x) dx

) (1.19)where
Ai

11 =

∫

Ω
Wi(x) dx Ai

12 =

∫

Ω
(x− xi)Wi(x) dx (1.20)

Ai
21 =

∫

Ω
W ′

i (x) dx Ai
22 =

∫

Ω
(x− xi)W

′

i (x) dx (1.21)The authors remark that the minimum number of partiles to be inluded in the smoothinglength is, in a 1D representation, is 3, in order to prevent the matrix A to be singular.A omparison an be made between the CSPM and MSPH in terms of omputationalost and auray. The Corretive Smoothed Partile Method is evidently more e�ient interms of omputational osts, sine in the MSPH there is a matrix to invert at eah partile;on the ontrary in the CSPM the error on higher order derivatives an be a�eted, througherror prpagation, from the error generated in the approximation of funtions and lower-orderderivatives.1.3 Meshless methods based on shape funtionsDi�erent meshless methods are based on shape funtions: among these the most ommonshape funtions are the Meshless Loal Petrov-Galerkin shape funtions, the Radial BasisFuntion and the Loal maximum entropy shape funtions. All these kinds of shape funtionsan be used for the development of olloation methods or for the development of methodsbased on Galerkin formulation.1.3.1 Meshless Loal Petrov-GalerkinThe Meshless Loal Petrov-Galerkin (MLPG) (Atluri and Zhu, 1998) is a numerial approx-imation method for funtion and derivatives based on the use of the Moving Least Square



1.3. Meshless methods based on shape funtions 7(MLS) shape funtions. Suh shape funtions are written in the general form
fh(x) = pT (x)a(x) (1.22)where p(x) is the vetor of monomial basis in 1-d, 2-d or 3-d, and a(x) is the vetor of theoe�ients, whih ould be di�erent point by point.The length of the vetors p(x) and a(x) depends on the desired order of onsisteny(for a �rst order onsistene, in 1d ase, p(x) = [1 x]T , for a seond order onsisteny

p(x) =
[

1 x x2
]T and so on).The vetor p(x) is omputed through the minimization of a weighted error funtion betweenthe approximation fh(x) and the �titious nodal values f̂h

J(x) =
N
∑

i=1

wi(x)
[

pT (xi)a(x)− f̂i

]2 (1.23)where the wi(x) are weight funtions, hosen to be non-zero in a neighborhood of the point
xi, and zero elsewhere. This allows to de�ne this method as loal, in the sense that theapproximation of a funtion and of its derivatives depends on few points lose to the xi.Hene, by minimizing this amount with respet to the oe�ient vetor a(x), it is possibleto �nd the unknown oe�ients a(x), then it is possible to write fh(x) in the form of theprodut of some shape funtions (olleted in the array Φ(x)) and the vetor of the �titiousnodal values f̂ . We remark that f̂ are not the nodal values, that means that they are not thepreise values of the funtion in the point xi, sine the shape funtions are not interpolatory.

fh(x) =
N
∑

i=1

φi(x
h)f̂i f̂i 6= f(xi) (1.24)where

φi(x) =
m
∑

j=1

pj(x)
[

A−1(x)B(x)
]

ji
(1.25)and







A(x) =
n
∑

i=1
wi(x)p(xi)p

T (xi)

B(x) = [w1(x)p(x1), w2(x)p(x2), ..., wn(x)p(xn)]
(1.26)The approximation of derivatives is simply performed by derivation of the shape funtions.The Meshless Loal Petrov-Galerkin is used for the solution of elastiity problems (Atluriand Zhu, 2000), onvetion-di�usion problems (Lin and Atluri, 2000), Navier-Stokes equations(Lin and Atluri, 2001), thin plates (Long and Atluri, 2002).1.3.2 Meshless methods based on radial basis funtionsA widely used ategory of shape funtions are the Radial Basis Funtions (Buhmann, 2000),introdued by Kansa (1990b,a) and studied from a theoretial point of view by Franke and



8 1. IntrodutionShabak (1998) for their use in olloation methods. Suh shape funtions are bell shapedfuntions and an be distinguished in� Gaussian shape funtions
φ(r) = exp(−r.2/c2) (1.27)� Multiquadrati shape funtions
φ(r) =

(

r2 + c2
)n−3/2 (1.28)� Logarithmi shape funtions

φ(r) = r log(r) (1.29)In all previous examples, r =
√

x2 + y2 is the distane from a generi olloation point.Radial Point Interpolation Method. In order to restore onsisteny in the approxi-mation of polynomial funtions, Radial Basis funtion have been integrated with polynomial(Wang and Liu, 2002). In the following, we report the main steps followed to onstrut suha kind of shape funtions, based on a general distribution of points.It is assumed that the generi funtion u(xxx) is written as a linear ombination of shapefuntions and some unknowns parameters. A generi funtion u(x) is therefore approximatedas
û(x) =

N
∑

i=1

aiB
0
i (x) +

M
∑

j=1

bjPj(x) , M < N (1.30)where the funtions Pj(x) are monomials, ai and bj are respetively the oe�ients of theradial basis funtions Bi(x) and of the polynomial term P 0
j (x). In partiular the radial basisfuntions depend on the Eulidean distane ri =

√

(x− xi)2 + (y − yi)2, and for this reasonis preferable to write Bi(r) instead of Bi(x).Equation (1.30) an be rewritten in matrix form
u(x) = B0(x)a+PT (x)b (1.31)One written this approximation, it remains to �nd the unknown parameters ai and bj byimposing the interpolation onditions for the N nodes of the domain, that are

N
∑

h=1

B0
i (xh)ah +

M
∑

k=1

Pi(xk)bk = u(xi) (1.32)The other M neessary onditions are
M
∑

k=1

Pj(xk)ak = 0 (1.33)The hoie of this partiular set of onstraints is motivated by the fat that in this waythe system through whih the unknown oe�ients are retrieved is symmetri, due to thesymmetry of the matrix B0.



1.3. Meshless methods based on shape funtions 9The matrix form of this problem is
(

B0 PT

P 0

)(

a

b

)

=

(

û

0

)

, (1.34)where the equations are partiularised at eah point belonging to the nodal set X.One written this problem, the oe�ient vetors a and b an be found by inverting thealgebrai system (1.34), that for simpliity we rewrite in the form
G

(

a

b

)

=

(

û

0

)

. (1.35)Aording to (1.30), the shape funtions an be written as
φ(x) = [B0 P]G−1 (1.36)This method has some useful properties:1. The shape funtions are linearly independent for eah nodal set2. The shape funtions, and above all, their derivatives, are of easy alulation;3. The shape funtions have a Dira Delta property, that is φi(Xj) = δij .4. It is always veri�ed the zero-th and �rst order onsisteny of the approximations.5. The shape funtions have a ompat support.Delta Basis Funtion. A partiular kind of Radial Basis Funtion, alled Delta BasisFuntions, have been introdued in Hon and Yang (2009). These funtions are partiularlyappropriate when dealing with singularities. Here we only show an example of shape funtion,and present the meaning of the parameters.

φ(x, ξ) =

M
∑

n=1

[

1−
(

n

M + 1

)2
]k

sin

(

nπ
x+ 1

2

)

sin

(

nπ
ξ + 1

2

)

, (1.37)where x is the independent variable, ξ is the oordinate of the node, M is an integer parameterthat makes the shape funtion approah the Dira Delta funtion, and k is the so-alledregularizing parameter. As it is shown in the paper under onsideration, the absene of thisparameter makes the funtion dramatially osillate.It should be noted that suh shape funtions vanish lose to the boundary in the interval
[−1 1]. For this reason neither the olloation point nor the enters of the shape funtionsan be olloated in proximity of the extremes of this interval. The onsequene is that all theproblem involving these shape funtions have to be studied in a di�erent interval: the optimalhoie, proposed in Reutskiy (2005), is to perform a linear transformation of the domain fromits original oordinates to the interval [−0.5 0.5].These shape funtions work very �ne in approximating almost singular funtions, and alsofuntions with high gradients, and this represents its greatest advantage, together with the



10 1. Introdutionabsolute simpliity of oding. The drawbak of these approximant funtions is that there areno properties of partition of unity or polynomial onsisteny.1.3.3 The loal max-ent approahA di�erent kind of shape funtions proposed in reent years is the set of Loal MaximumEntropy (LME) shape funtions, introdued by Arroyo and Ortiz (2006, 2007), and developedin Cyron et al. (2009); Rosolen et al. (2012). The basi idea is to propose shape funtions thatsatisfy both the priniples of loality of the shape funtions and of maximum entropy of thenumerial sheme, meaning that the shape funtions have to be the most unbiased possible,in the sense that their only have to be based on the positions of nodes, without any otherexternal hoie.Let us onsider a funtion u(x). We an onsider an approximation uh(x) in the form
uh(x) =

N
∑

a=1

φa(x)ua , (1.38)where the φa(x) are the shape funtions.The LME shape funtions are asked to respet zero-th and �rst order onsisteny ondi-tions, that is onstants and linear funtions on a given nodsetX have to be exatly reprodued:
N
∑

a=1

φa(x) = 1 ,
N
∑

a=1

φa(x)xa = x (1.39)In partiular, the �rst ondition of (1.39), in addition to the requirement that the shapefuntions have to be positive, allows to onsider these approximations as a probability distri-bution at eah point xi.A natural onept stritly onneted to the probability is the entropy of a distribution,that is a anonial measure of the unertainty of a distribution. To give a quik example ofwhat the entropy represents, let us onsider two distributions of probability of ourrene oftwo events A1 and A2. The �rst distribution is [0.01 0.99], the seond is [0.5 0.5]. It is obviousthat in the �rst ase are quite sure about the ourrene of the event A2, while in the seondase we are in a situation of unertainty. The quantity that measures this di�erene in thelevel of information in this ases is the entropy, that is higher for the distribution A2.In the ase of unbiased approximations, we require that the shape funtions are free ofany a priori information, that is, the entropy assoiated to shape funtions has to be themaximum, aording to the Shannon theorem (Shannon, 2001). The eventual a priori hoieof a polynomial shape funtions of any order, or a Gaussian shape funtion or whatever othershape funtion represents a spei� hoie of the approximation that in this method the authorswant to avoid.The entropy of a shape funtion distribution, from a mathematial point of view, is de�nedas
H(φ(x)) = −

N
∑

a=1

φa(x)log φa(x) (1.40)



1.3. Meshless methods based on shape funtions 11The shape funtions ome from the minimization of the funtional H(φ(x)) with respetto the funtions φ(x). Suh problem is subjet to the onstraints (1.39). In their work, theauthors show that a unique solution exists if and only if the data set X belongs to a onvexhull.Unfortunately this set of funtions gives a non satisfatory result. In fat, due to thetheoretial meaning of entropy, suh funtion are as onstant as possible, onsidering theonstraints. This property returns bad approximation of non smooth funtions, making thisset of shape funtions uninteresting.A further step toward a best approximation is the introdution also of the attribute ofloality of the shape funtion; the width of the approximation is de�ned as
w[φa(x)] =

∫

Ω

N
∑

a=1

φa(x)|x− xa|2dx (1.41)In order to satisfy the requisite of loality of the shape funtions, we also require thefuntional (1.41) to be minimum. We exploit the fat that in the funtional itself there are noderivatives, so we minimize it pointwise. The problem so is to minimize the funtional
U(x,φ(x)) =

N
∑

a=1

φa(x)|x− xa|2 (1.42)with respet to the same onstraints (1.39). Suh a problem gives bak pointwise de�ned shapefuntions.The best solution for this problem is then the searh for a set of shape funtions that haveboth the requisites of loality and impartiality. The idea is to ombine the two funtionals
H(φ(x)) and U(x,φ(x)) through the funtional

fβ(x,φ(x)) = βU(x,φ(x))−H(φ(x)) (1.43)subjet to the usual onstraints (1.39). The parameter β belongs to the interval [0,∞) andde�nes how muh the funtional is more similar to a max-ent funtional (β → 0) or to aloality funtional (β → ∞).The �nal shape funtions are then, for internal points
φβa(x) =

1

Z(x, λ∗(x))
exp

[

−β|x− xa|2 + λ∗ · (x− xa)
]

, (1.44)where
Z(x, λ(x)) =

N
∑

a=1

exp
[

−β|x− xa|2 + λ · (x− xa)
] (1.45)and

λ∗(x) = argmin
λ

log Z(x, λ(x)) . (1.46)For the points on the boundary, the shape funtion are found in a similar way of (1.44),



12 1. Introdutionbut the summation are performed only on the partiles that belong to the same fae of theboundary, and not on the interior points. This is a non negligible property, beause in thisway it is possible to satisfy in a simple way the essential boundary onditions, that in most ofthe methods desribed earlier represent an open problem. This property is the so alled weakKroneker Delta property.The minimization over λ of the funtional log Z(x, λ(x)), is non di�ult to perform, sinethere are no derivatives involved. For this reason the alulation an be done pointwise, andthe problem redues to a minimization over a variable λ of a vetorial funtion log Z(λ).Seond-order max-ent. The Seond-order Maximum Entropy funtions have been in-trodued with the aim of improving the onsisteny order of the Max-Ent shape funtion,and also to remove the still existing parameter that has to be imposed by the external of themethod, the parameter β, that states the grade of loality of the approximants. In this ase,the generi shape funtions has to obey also the ondition
N
∑

a=1

φax
2
a = x2 , (1.47)that an be also rewritten, realling (1.39), in the form

N
∑

a=1

φa(xa − x)2 = 0 . (1.48)In these equations, and in the following, the dependene of φa on x will be omitted forsimpliity. Realling the interpretation of the φa as a probability distribution, the �rst termof Equation (1.48) an be seen as the variane of the distribution. It is obvious that it annotbe zero, otherwise it would mean that all the φa are zero exept for the ase x = xa.The solution has been proposed in (Cyron et al., 2009). Instead of ondition (1.48), theauthors propose
N
∑

a=1

φa(xa − x)2 = g(x) , (1.49)where g(x), alled gap funtion, has to be hosen in a suitable way. Obviously suh a orretionrelaxes the request of seond order reproduibility of the method, but it will be lear that thisrelaxation only works on the boundary, leaving the seond-order onsisteny in the interior ofthe domain.In the following we desribe how to hoose the gap funtion in 1d. The proedure is easilygeneralizable in higher-dimensions.The �rst remark is that the gap funtions have to respet the boundary onditions (invokingthe weak Kroneker Delta property), and so they have to vanish at the boundaries. The formof the gap funtion ould be
g(x) =

N
∑

a=1

φa,1wa , (1.50)where the φa,1 are the �rst order Loal Max-Ent shape funtions and the wa are weights. This



1.3. Meshless methods based on shape funtions 13hoie does not hurt with the request of smoothness of the approximants, sine the �rs orderLoal Max-Ent shape funtion are C∞.An heuristi hoie of the gap funtion, that gives exellent results (aording to theauthors) is a onstant funtion g(x), smoothly ramping to zero in proximity of the boundary.This funtion has the form
g(ξ) =

{

h2
max
4 ξ2 < ξ < ξN−1

−ξ(ξ − h1,2) ξ1 < ξ < ξ2
, (1.51)

ξ being a loal oordinate originating on the boundary, hmax being the maximum distanebetween two partiles in the domain, and h1,2 being the distane between the boundary partileand its nearest one.In the two and three-dimension ase many other possibility are proposed for the determi-nation of the most e�etive gap funtions, and we do not go into details for brevity. We referto the original works for further details.One de�ned the gap funtion g(x), it �nally remains to determine the shape funtions.The request is to maximize the funtional
H(φ,x) = −

N
∑

a=1

φalogφa (1.52)under the onstraints (1.39) and (1.49). The solution is given by
φa =

1

Z(x, λ∗, µ∗)
exp

[

λ∗(x− xa) + µ∗[(x− xa)
2 − g(x)]

]

, (1.53)where, as earlier,
Z(x, λ, µ) =

N
∑

a=1

exp
[

λ(x− xa) + µ[(x− xa)
2 − g(x)]

] (1.54)is the partition funtion, and
[λ∗, µ∗] = argmin

λ,µ
logZ(λ, µ) (1.55)One again, the minimization an be performed pointwise, and so the funtional Z reduesto a funtion of the only unknowns λ and µ. We remark that, as stated earlier, these shapefuntions, di�erently from the �rst order Loal Max-Ent, are naturally loal, beause theyvanish far from xa, and there is no need of a parameter suh as β introdued in (1.43).A great di�ulty for this method is the omputation of the spatial derivatives of the shapefuntions: in fat, realling (1.53), they involve the funtions Z∗(x), λ∗(x) and µ∗(x), that weonly know pointwise.Let's onsider the gradient of the partition funtion (1.54).

r(x, λ, µ)T = [∂λ ∂µ]Z(x, λ, µ) (1.56)



14 1. IntrodutionRealling (1.55), we know that for λ = λ∗ and µ = µ∗, the funtional Z has a minimum
Z∗ for every x, and so its gradient r∗ is zero for eah x.Now we alulate the derivative of the gradient with respet to x. It also has to vanish foreah x.

dr∗

dx
=

∂r∗

∂x
+H∗

d

dx

[

λ∗

µ∗

]

= 0 , (1.57)where
H =

[

Zλλ Zλµ

Zλµ Zµµ

] (1.58)is the Hessian matrix of the funtion Z partiularized at λ∗ and µ∗. Now the derivativesan easily be alulated by inverting (1.57), where all the other terms are easy to alulate.Moreover, if the minimization (1.55) is performed through the method of Newton-Raphson(whih is possible sine the KKT onditions are respeted). The Hessian is already availablefrom the minimization proedure of (1.54).SME - Isogeometri analysus. One of the most reent development of the Seondorder maximum entropy approah is the fusion with a reent suessfully method based onIsogeometri Analysis (IGA). In Rosolen and Arroyo (2013) the authors start from the on-sideration that the so alled weak Kroneker Delta property (that is the harateristi of theSME shape funtions in the interior of the domain of vanishing on the boundary) holds onlyin a onvex-hull. Conversely, the representation of the domain using the IGA, whih uses thesame proedure of the CAD systems for the de�nition of the geometry, is highly more preisethan with the Seond Order approah, and moreover the shape funtion preserve the weakKroneker Delta property also when the olloation points do not belong to a onvex hull.Moreover, the distribution of olloation points in the IGA is by far more rigid than in thease of the maximum entropy approah. The method developed in Rosolen and Arroyo (2013)onsiders the best harateristis of this two approahes. On the boundary, the isogeometrishape funtions are onsidered. In the interior, the shape funtion are the max-ent ones.In a strip near the boundary, where the shape funtions of the boundary have not vanishedat yet, the shape funtion are a mixture of the IGA shape funtions and the max-ent ones.These are alulated always imposing the maximum entropy riterion, but also onsideringthe ontribution of the IGA shape funtions.Maximum Entropy shape funtions - �nal onsiderations. The method proposedin the present setions presents many interesting harateristis, above all the one of beingtotally independent of external hoies, and of being su�iently robust with unstruturedpoint distribution. Nevertheless here we remark that the robustness of the method withrespet ot unstrutured distributions is valid only for the �rst-order LME, while in seond-orderdistributions a method for determining the gap funtion, and thus, a orret approximationof shape funtions, has not been found. Moreover the methods looks not to be suitable forLagrangian dynamis, sine the shape funtion determination is a omputationally expensivealgorithm (due to the non-linear maximization of the entropy), that should be repeated ateah partile redistribution, making the method partiularly ine�etive for fast dynamis.



1.4. Meshless methods based on the Taylor series 151.4 Meshless methods based on the Taylor seriesA di�erent typology of meshless method is based on the Taylor series expansion: among thesehere we brie�y review the Generalized Finite Di�erene Method. Another method based onthe Taylor series expansion is the Least Square based Finite Di�erene Method (Ding et al.,2004a,b), for whih we do not go into details, but we refer the reader the original works.
1.4.1 Generalized Finite Di�erene MethodThe Generalized Finite Di�erene Method (GFDM), introdued by Benito et al. (2001), movesfrom a di�erent starting point with respet to the methods disussed until now. The approx-imation shemes of f ′(xi) and f ′′(xi) are ahieved by the minimization of a weighted errorbetween the Taylor series expansion of the funtion f(x) about a point xi and the value of
f(xi) itself; the authors onsider the in�uene region of a partile as the set of a ertain num-ber of surrounding points, seleted with the so-alled star riterion. The authors apply theirmethod to hyperboli and paraboli partial di�erential equations (Benito et al., 2007), to theadvetion-di�usion equation (Ureña et al., 2011), as well as to third- and fourth-order partialdi�erential equations (Ureña et al., 2012; Gavete et al., 2012).Here we report the basi idea of the Generalized Finite Di�erene Method (GFDM) inthe multidimensional ase. The starting point is the Taylor series expansion of a funtion
u(xxx) about a point xxxi, and its evaluation at a point xxxj . The trunation error is omputed as
eij = u(xxxj)−uj , where u(xxxj) is the exat value of the funtion in xxxj and uj is its approximation.Then, a set of points xxxj surrounding xxxi is onsidered, and the total squared weighted error
Ei =

∑

j

[

eijT
ij
]2 is omputed, being T ij = T (xxxj − xxxi) a weight funtion, that is:

Ei =
∑

j

{[u(xxxj)− u(xxxi) +Dxu(xxxi)(xj − xi) +Dyu(xxxi)(yj − yi) +

+ Dzu(xxxi)(zj − zi) +
1

2
D2

xxu(xxxi)(xj − xi)
2 +

1

2
D2

yyu(xxxi)(yj − yi)
2+

+
1

2
D2

zzu(xxxi)(zj − zi)
2 +D2

xyu(xxxi)(xj − xi)(yj − yi)+

+ D2
yzu(xxxi)(yj − yi)(zj − zi) +D2

xzu(xxxi)(xj − xi)(zj − zi)
]

T ij
}2

(1.59)
Finally the approximation shemes for the spatial derivatives are simply ahieved by min-imizing (1.59) with respet to the values of the derivatives in xxxi. After minimization, the



16 1. Introdutionfollowing linear system is obtained
AAAi





























Dxu(xxxi)
Dyu(xxxi)
Dzu(xxxi)
D2

xxu(xxxi)
D2

yyu(xxxi)

D2
zzu(xxxi)

D2
xyu(xxxi)

D2
yzu(xxxi)

D2
xzu(xxxi)





























=





































∑

j 2 (u(xxxj)− u(xxxi)) (xj − xi)T
ij2

∑

j 2 (u(xxxj)− u(xxxi)) (yj − yi)T
ij2

∑

j 2 (u(xxxj)− u(xxxi)) (zj − zi)T
ij2

∑

j (u(xxxj)− u(xxxi)) (xj − xi)
2 T ij2

∑

j (u(xxxj)− u(xxxi)) (yj − yi)
2 T ij2

∑

j (u(xxxj)− u(xxxi)) (zj − zi)
2 T ij2

∑

j 2 (u(xxxj)− u(xxxi)) (xj − xi)(yj − yi)T
ij2

∑

j 2 (u(xxxj)− u(xxxi)) (yj − yi)(zj − zi)T
ij2

∑

j 2 (u(xxxj)− u(xxxi)) (xj − xi)(zj − zi)T
ij2





































(1.60)
For brevity we omit the expression of the omponents of the matrix AAAi in the GFDM, thatan be found in Benito et al. (2001, 2007).



Chapter 2A Modi�ed Finite Partile Method:1D formulationThe Modi�ed Finite Partile Method (MFPM) is a numerial tehnique for derivative approx-imations �rst introdued in Asprone et al. (2010) following the idea proposed in the SPHand suessively developed in the Corretive Smoothed Partile Hydrodynamis (CSPM). Inthe present hapter we report the proedure adopted in the MFPM and underline the maindi�erenes with the previous formulations proposed in the literature for the monodimensionalase.In partiular we start from the original formulation, proposed in Asprone et al. (2010)and then show a novel formulation, proposed for the monodimensional ase in Asprone et al.(2014).2.1 Modi�ed Finite Partile Method - Derivative approxima-tionThe approximation tehnique starts from the Taylor series expansion of a funtion u(x) up tothe seond-order and enterd in a point xi

u(x) = u(xi) + u′(xi)(x− xi) +
1

2
u′′ (xi) (x− xi)

2 + o(|x− xi|3) (2.1)Then we projet it on two projetion funtions W1(x− xi) and W2(x− xi), suh that
∫

Ω
(u− ui)W

i
1dx = u′i

∫

Ω
(x− xi)W

i
1dx+ u′′i

∫

Ω

1

2
(x− xi)

2W i
1dx+ e′1

∫

Ω
(u− ui)W

i
2dx = u′i

∫

Ω
(x− xi)W

i
2dx+ u′′i

∫

Ω

1

2
(x− xi)

2W i
2dx+ e′2

(2.2)Hereafter, for simpliity of notation, we denote W i
α = Wα(x − xi) and u(xi) = ui. e′1 and

e′2 are the projetions of the trunation error. We note that the method is similar to theModi�ed Smoothed Partile Hydrodynamis (see Chapter 1), with the novelty that in this17



18 2. Modified Finite partile Method: 1d formulationase the funtion value ui is not onsidered an unknown for the approximation of derivatives.We divide the whole domain in a �nite number of subdomains, whose measure is ∆xj , eahone referring to the partile in xj . Then we disretize the integrals of (2.2), and we obtain aset of two equations that we may write in matrix form as
[

Ai
11 Ai

12

Ai
21 Ai

22

](

u′i
u′′i

)

=

(

∑

j [uj − ui]W
ij
1 ∆xj

∑

j [uj − ui]W
ij
2 ∆xj

)

+

(

e
′′

1

e
′′

2

) (2.3)Equation (2.3) holds at eah partile xi. We refer to the left-hand side matrix in Equation(2.3) as AAAi, and its omponents are:
Ai

11 =
∑

j

(xj − xi)W
ij
1 ∆xj Ai

12 =
1

2

∑

j

(xj − xi)
2W ij

1 ∆xj

Ai
21 =

∑

j

(xj − xi)W
ij
2 ∆xj Ai

22 =
1

2

∑

j

(xj − xi)
2W ij

2 ∆xj

(2.4)where W ij
α stands for Wα(xj − xi).We �nally obtain the approximation shemes for the �rst and seond derivatives by invert-ing (2.3). An aurate analysis of the error in MFPM is available in Asprone et al. (2011).2.1.1 Consideration about the smoothing funtionThe hoie of the projetion funtions (replaing the lassial smoothing funtions used inprevious works) is a fundamental issue in any partile method. In lassial SPH-based methods,the traditional hoie of a bell-shaped funtion and its derivative is preferred, and many authorsinvestigated the properties of di�erent kernel hoies, e.g., in Luy (1977) a polynomial funtionwas used, while in Gingold and Monaghan (1977) a Gaussian funtion and its derivative wereadopted. The Gaussian has been sine then regarded by many authors as the golden funtionthanks to its smoothness even for high order derivatives; on the other hand, some authors usedhigh order B-splines (Monaghan and Lattanzio, 1985; Morris, 1996a,b), while Johnson et al.(1996) used a quadrati funtion. All these kernel funtions have to respet the properties ofunity (1.4a), ompat support (1.4), positivity, and Dira Delta property (1.4).In MFPM formulation these properties are not required. In fat, the projetion funtionsare only bases for the projetion of the unknown funtions and no relation with the DiraDelta is indeed required. For this reason they may be hosen in any way suh that the matrix

AAAi is non singular; the traditional hoie of a even and a odd funtion guarantees this property,but this is not the only possibility.In Equations (2.3) and (2.4) summations are omputed over a ertain number of partiles,forming the stenil of the derivative approximation shemes. As an example, in order toapproximate the �rst derivative in xi, we may onsider the partiles in xi−1, in xi, and in xi+1.At the boundary, we instead onsider the i-th partile and the two losest ones.



2.2. Novel formulation 192.2 Novel formulationIn this setion a novel formulation is derived, by modifying the original MFPM formulation.We onsider the Taylor series expansion (2.1) about the point xi and ollet in the vetor qqqiits evaluations in a ertain number of points xj :
uj − ui = u′i(xj − xi) +

1

2
u′′i (xj − xi)

2 + o(|xj − xi|3) (2.5)Then we ollet in another vetor, namelywwwi, the evaluations of a set of projetion funtions
W ij

α in the same points xj . We perform the salar produt wwwi ·qqqi, negleting the trunationerror; the following equation holds:
∑

j

(uj − ui)W
ij
α = u′i

∑

j

(xj − xi)W
ij
α +

1

2
u′′i
∑

j

(xj − xi)
2W ij

α (2.6)and thus, for α = 1, 2, we obtain:
(

Ai
11 Ai

12

Ai
21 Ai

22

)(

u′i
u′′i

)

=

(

∑

j [uj − ui]W
ij
1

∑

j [uj − ui]W
ij
2

) (2.7)where
Ai

11 =
∑

j

(xj − xi)W
ij
1 Ai

12 =
1

2

∑

j

(xj − xi)
2W ij

1

Ai
21 =

∑

j

(xj − xi)W
ij
2 Ai

22 =
1

2

∑

j

(xj − xi)
2W ij

2

(2.8)We observe that the novel formulation an be easily derived from the original one by setting
∆xj = 1 for any j.2.2.1 Disrete form of a 1D boundary value problem using the Modi�edFinite Partile MethodLet us onsider a generi 1D boundary value problem in the form























α
d2u

dx2
+ β

du

dx
+ γu(x) = f(x) x ∈ (0, L)

u
∣

∣

x=0
= ū1

du

dx

∣

∣

∣

∣

x=L

= ū′L

(2.9)We want to redue it in the algebrai form
KKKuuu = fff (2.10)where uuu is the vetor of the values of the unknown funtion u at xi. The �sti�ness� matrix KKK,



20 2. Modified Finite partile Method: 1d formulationfor linear problems, is the linear omposition of the disrete di�erential operators DDDII , DDDI ,and III, that are the disrete ounterparts of the operators d2/dx2, d/dx and 1. In partiular,the disrete form of (2.9) reads














∑

j

[

αDII
ij + βDI

ij + γδij

]

uj = fi ∀i ∈ {2, .., N − 1}
u1 = ū1
∑

j D
I
Njuj = ū′L

(2.11)and










KKK = αDDDII + βDDDI + III ∀i ∈ {2, .., N − 1}
K11 = 1, K1j = 0 for j 6= 1

KKKNj =DDDI
Nj

(2.12)
The expressions of DDDII and DDDI an be derived, for the original MFPM formulation, as

DII
ij = Ei

21

[

W ij
1 ∆xj − δij

∑

h

W ih
1 ∆xh

]

+ Ei
22

[

W ij
2 ∆xj − δij

∑

h

W ih
2 ∆xh

] (2.13)and
DI

ij = Ei
11

[

W ij
1 ∆xj − δij

∑

h

W ih
1 ∆xh

]

+ Ei
12

[

W ij
2 ∆xj − δij

∑

h

W ih
2 ∆xh

] (2.14)where EEEi = (AAAi)
−1 and δij is the Kroneker Delta operator, that is 1 when i = j and 0otherwise.In the novel formulation, the disrete operators DDDII and DDDI are equal to
DII

ij = Ei
21

[

W ij
1 − δij

∑

h

W ih
1

]

+ Ei
22

[

W ij
2 − δij

∑

h

W ih
2

] (2.15)and
DI

ij = Ei
11

[

W ij
1 − δij

∑

h

W ih
1

]

+ Ei
12

[

W ij
2 − δij

∑

h

W ih
2

] (2.16)where, again, EEEi = (AAAi)
−1. We remark that the omponents of the matrix AAAi are di�erentin the two formulations, but here we denote them with the same name sine they play anidential role in both ases.One the matrix KKK is assembled aording to (2.12), the array uuu is obtained through thesolution of the linear system (2.10).



2.3. Appliations to 1D boundary value problems 212.3 Appliations to 1D boundary value problemsIn the following we present some numerial tests, whih are a good oasion to investigatesome peuliarties shown by the method in the 1D ase.The test-ase is a baudary value problem in the form:
u′′(x) = −f(x) (2.17)with a Dirihlet ondition on the left side of the domain (at x = 0) and a Neumann onditionon the right side, at x = 1, both equal to zero. The funtion f is hosen to be f(x) = ex. Theorresponding exat solution is

u(x) = −ex + ex+ 1. The problem is solved using a seond-order MFPM, �rst using a uniform distribution ofpartiles on x, and then using a non uniform distribution. The non-uniform distribution hasbeen obtained by the following equation
x
n_u
i = (xui )

α (2.18)where xn_u
i stands for the partiles position in the non uniform distribution; xui is the partileposition in the uniform distribution, α is the parameter that densi�es the distribution on theright side of the domain, if it is less than one; it makes olloation nodes more onentratedon the left side of the domain, if it is higher than one. It is worth noting that this formulaworks only if 0 < x < 1, otherwise suh a formula has to be preeded by a �normalization�proedure, that is the position of the partiles has to undergo a geometri transformation thattakes them bak to the referene interval [0, 1]. The proess of transformation from a uniformdistribution to a non uniform one is explained in Figures 2.1(a) and 2.1(b).Sine we have a trunation up the seond order of Taylor series, we expet a seond orderslope of the error urve in a logarithmi diagram. The error has been omputed as the 2-normof the di�erene between the exat solution and the approximated one.In �gure 2.2 we show the exat and a numerial solution for the problem (2.17), with anon uniform distribution of partiles.As we an see in Figures 2.3 and 2.4, we have a seond order slope both in the ase of auniform distribution and in the ase a non uniform distribution. We solved the problem usingan odd and a even smoothing funtion, to ensure the matrix A to be non-singular.We also remark about the ase of three partiles spanned by the smoothing length. In fat,when we perform the MFPM proedure at the boundary, it happens that the related matrix

A beomes singular, and this does not happen when we onsider more than three partiles.In fat, if we onsider a smoothing funtion whih spans �ve partiles: lose to the boundarythe integrals in the matrix A beome, in the disrete
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Figure 2.2: Analytial and numerial solution for the problem (2.17)

10
1

10
2

10
3

10
−6

10
−4

10
−2

 

 

cost+lin
cost+cub
quad+lin
quad+cub
3 particles
2nd order slope

PSfrag replaements total number of partiles
relativeerror

Figure 2.3: Error diagram of a uniform distribution of partiles, with a Dirihlet and a Neumann ondition



24 2. Modified Finite partile Method: 1d formulation

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

 

 

cost+lin
cost+cub
quad+lin
quad+cub
3 particles
2nd order slope

PSfrag replaements total number of partiles
relativeerror

Figure 2.4: Error diagram of a non uniform distribution of partiles, with a Dirihlet and a Neumann ondition
A11 = ∆x21W

1
1 (x1 − x0) + 2∆x22W

1
2 (x2 − x0) (2.19)

A12 =
1

2

[

∆x31W
1
1 (x2 − x0) + 4∆x32W

1
2 (x2 − x0)

] (2.20)
A21 = ∆x21W

2
1 (x1 − x0) + 2∆x22W

2
2 (x2 − x0) (2.21)

A22 =
1

2

[

∆x31W
2
1 (x2 − x0) + 4∆x32W

2
2 (x2 − x0)

] (2.22)By dividing the terms of the �rst row by the ones of the seond row of hte matrix A weobtain
A11

A21
=

W 1
0 (x1) + 2W 1

0 (x2)

W 2
0 (x1) + 2W 2

0 (x2)
(2.23)

A12

A22
=

W 1
0 (x1) + 4W 1

0 (x2)

W 2
0 (x1) + 4W 2

0 (x2)
(2.24)In this way (2.23) is di�erent from (2.24). But if we onsider a kernel funtion whih doesnot span the external partiles, (that is the same of onsidering W 1

0 (x2) = 0 and W 2
0 (x2) = 0)we notie that (2.23) beomes equal to (2.24), and therefore the matrix A beomes singular.This is not a problem when we solve a Boundary Value Problem with only Dirihlet onditions,but in the ase of a problem that involves derivatives in the boundary onditions, we have toinvert the matrix A related to the boundary partile (in order to alulate the derivatives)and this is not possible.



2.3. Appliations to 1D boundary value problems 252.3.1 Comparison with the Finite Di�erene MethodIt an be observed that, when only three partiles in the stenil are used, the seond-orderapproximation shemes of derivatives are independent of the hoie of the projetion funtions.In order to prove this, we reall the lassial proedure to get the derivative approximationshemes used in the Finite Di�erene Method (LeVeque, 1955).The approximation of a funtion u at a point xj an be ahieved by the Taylor expansionabout xi up to the desired order.A generi approximation sheme of the seond derivative reads
u′′i =

∑

j

αjuj (2.25)where αj are oe�ients to be determined. By ombining (2.5) and (2.25), we obtain (LeVeque,1955, see)
u′′i = ui

∑

j

αj + u′i
∑

j

αj(xj − xi) + u′′i
∑

j

1

2
αj(xj − xi)

2 (2.26)The points xi are alled olloation points of the approximation shemes, while the points
xj are the points of the stenil of the approximation. In most of the shemes, they do oinide,but this is not mandatory in general.Equation (2.26) holds only if



















∑

j αj = 0
∑

j αj (xj − xi) = 0

∑

j

1

2
αj (xj − xi)

2 = 1

(2.27)When the partiles are three, the number of equations is equal to the number of theunknowns αj . If there are no oinident partiles at the same point xj , the system (2.27) hasonly one solution. Hene, the seond order approximation sheme for the seond derivative isunique. We remark that the same argument holds also for a seond order approximation ofthe �rst derivative.In both the original and the novel formulation of the MFPM, the �nal form of the derivativeapproximation shemes is idential to (2.25). In order to ahieve a seond order sheme for the�rst and seond derivatives, any proedure has to return the same αj of the FDM, otherwisethe method would not be seond-order aurate. Both original and novel MFPM satisfy thisrequirement.
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Chapter 3
Multidimensional Modi�ed FinitePartile Method
In the present hapter we extend the Modi�ed Finite Partile Method to the multi-dimensionalase. In a �rst moment, we will show the three-dimensional original formulation of the MFPM,as presented in Asprone et al. (2014), then we present a novel formulation, as presented inAsprone et al. (2014), and show the obtained advantages in terms of omputational ost anderror.
3.1 Original formulationWe onsider the Taylor series expansion of an unknown funtion u(xxx) up to the seond order

u(xxx) = u(xxxi)+Dxu(xxxi)(x− xi) +Dyu(xxxi)(y − yi) +Dzu(xxxi)(z − zi)+

+
1

2
D2

xxu(xxxi)(x− xi)
2 +

1

2
D2

yyu(xxxi)(y − yi)
2 +

1

2
D2

zzu(xxxi)(z − zi)
2+

+D2
xyu(xxxi)(x− xi)(y − yi) +D2

yzu(xxxi)(y − yi)(z − zi)+

+D2
xzu(xxxi)(x− xi)(z − zi) + o(‖xxx−xxxi‖3)

(3.1)where xxx = [x y z]T . 27



28 3. Modified Finite Partile Method: multidimensional formulation
Dxu(xxxi)

∫

Ω
(x− xi)W

i
α dV +Dyu(xxxi)

∫

Ω
(y − yi)W

i
α dV +Dzu(xxxi)

∫

Ω
(z − zi)W

i
α dV+

+
1

2
D2

xxu(xxxi)

∫

Ω
(x− xi)

2W i
α dV +

1

2
D2

yyu(xxxi)

∫

Ω
(y − yi)

2W i
α dV+

+
1

2
D2

zzu(xxxi)

∫

Ω
(z − zi)

2W i
α dV +D2

xyu(xxxi)

∫

Ω
(x− xi)(y − yi)W

i
α dV+

+ D2
yzu(xxxi)

∫

Ω
(y − yi)(z − zi)W

i
α dV +D2

xzu(xxxi)

∫

Ω
(x− xi)(z − zi)W

i
α dV =

=

∫

Ω
(u(xxx)− u(xxxi))W

i
α dV (3.2)whih an be rewritten in matrix form as:

AAAi





























Dxu(xxxi)
Dyu(xxxi)
Dzu(xxxi)
D2

xxu(xxxi)
D2

yyu(xxxi)

D2
zzu(xxxi)

D2
xyu(xxxi)

D2
yzu(xxxi)

D2
xzu(xxxi)





























=





























∫

Ω (u(xxx)− u(xxxi))W
i
1 dV

∫

Ω (u(xxx)− u(xxxi))W
i
2 dV

∫

Ω (u(xxx)− u(xxxi))W
i
3 dV

∫

Ω (u(xxx)− u(xxxi))W
i
4 dV

∫

Ω (u(xxx)− u(xxxi))W
i
5 dV

∫

Ω (u(xxx)− u(xxxi))W
i
6 dV

∫

Ω (u(xxx)− u(xxxi))W
i
7 dV

∫

Ω (u(xxx)− u(xxxi))W
i
8 dV

∫

Ω (u(xxx)− u(xxxi))W
i
9 dV





























(3.3)
The hoie of the projetion funtions is performed with the only requirement that, foreah partile, the matrix AAAi is non singular. For instane, in our tests we hoose

W i
1 = x− xi W i

4 = (x− xi)
2 W i

7 = (x− xi)(y − yi)

W i
2 = y − yi W i

5 = (y − yi)
2 W i

8 = (y − yi)(z − zi)

W i
3 = z − zi W i

6 = (z − zi)
2 W i

9 = (x− xi)(z − zi)The domain Ωis then divided into �nite subdomains ∆Vj , one for eah partile xxxj , e.g.,aording to the Voronoi tessellation proedure (see Aurenhammer (1991) for details); for eahpartile an in�uene region Ωi is also de�ned, depending, as in SPH-based methods, on thesmoothing length. In MFPM we do not de�ne a �xed value of the smoothing length, but weprefer to set the number of partiles to be inluded in the domain Ωi for the approximation ofderivatives. For all partiles suh that xj /∈ Ωi we pose that W i
α(xxx = xxxj) = 0 for α = 1, ..., 9.Then, the integrals are approximated with summations, and Equation (3.3) an be rewrittenas

AAAiDDD(ui) = CCCiuuu−BBBui (3.4)



3.2. Novel formulation 29where
CCCi = [WWW i1 | WWW i2 | ... | WWW iN ] (3.5)
BBBi =

∑

j

WWW ij (3.6)and
WWW ij = [W ij

1 ∆Vj | W ij
2 ∆Vj | ... | W ij

9 ∆Vj]
T (3.7)Then, by inverting (3.4), we obtain

DDD(ui) = EEEi(CCCiuuu−BiBiBiui) = EEEi(CCCi −B
i)uuu (3.8)where

B
i = [ 000 | 000 | ... | BBBi | ... | 000 | 000 ] (3.9)and �nally

DDD(ui) = D
iuuu (3.10)The operator that, applied to uuu, gives bak the disrete form of the generi derivative of

u(x) an be built by olleting the orresponding rows of Di = EEEi(CCCi −Bi), ∀i.In order to �nd the orret row of Di, it is su�ient to refer to Equation (3.3). For instane,in order to build the operator DDDxx (that, applied to uuu, gives bak the disrete ounterpart of
∂2u(x)/∂x2), we selet, for eah i, the 4-th row of Di, suh that

DDDxx =









D1
4

D2
4

...
DN

4









(3.11)where Di
α is the α-th row of Di.A 2D formulation of the method is simply ahieved by onsidering only the derivativesin the x and y diretions, that is, α an only be equal to 1, 2, 4, 5, 7. The three-dimensionalsubdomains ∆Vj are obviously replaed by planar subdomains ∆Aj .3.2 Novel formulationIn the present setion we introdue the novel formulation of the Modi�ed Finite PartileMethod (MFPM) as presented in Asprone et al. (2014), and use this method for the derivativeapproximation of a salar funtion u(x) de�ned in a three-dimensional domain Ω, hene x =

[x y z]T ∈ Ω ⊂ R
3. We disretize the domain Ω into a set of points xi olleted in the nodeset X.For eah point xi ∈ X, the approximation proedure onsiders the Taylor series expansion



30 3. Modified Finite Partile Method: multidimensional formulationof u(x) up to the seond order, entered in xi:
u(x)− u(xi) = Dxu(xi)(x− xi) +Dyu(xi)(y − yi) +Dzu(xi)(z − zi)+

+
1

2
D2

xxu(xi)(x− xi)
2 +

1

2
D2

yyu(xi)(y − yi)
2 +

1

2
D2

zzu(xi)(z − zi)
2+

+ D2
xyu(xi)(x− xi)(y − yi) +D2

yzu(xi)(y − yi)(z − zi)+

+ D2
xzu(xi)(x− xi)(z − zi)

(3.12)Then, for eah xi we selet a node subsetXi ⊂ X, whih serves as support for the derivativeapproximation in xi. Coneptually Xi ould oinide with the whole set of nodes X, butthe hoie of a limited number Ni of �supporting nodes� has a bene�ial e�et on the �nalomputational ost of the method.Equation (3.12) is then evaluated in the points xj ∈ Xi, yielding
u(xj)− u(xi) = Dxu(xi)(xj − xi) +Dyu(xi)(yj − yi) +Dzu(xi)(zj − zi)+

+
1

2
D2

xxu(xi)(xj − xi)
2 +

1

2
D2

yyu(xi)(yj − yi)
2 +

1

2
D2

zzu(xi)(zj − zi)
2+

+ D2
xyu(xi)(xj − xi)(yj − yi) +D2

yzu(xi)(yj − yi)(zj − zi)+

+ D2
xzu(xi)(xj − xi)(zj − zi) (3.13)It is important to highlight that at this stage we onsider to know the nodal values of u(i.e., u(xi) and u(xj)), and, therefore, in Equation (3.13) the unknown terms are the derivativeevaluations at the point xi. In order to ompute suh derivative values, we introdue ninearbitrary funtions (referred as projetion funtions) W i

α(x) = Wα(x − xi), with α = 1, ..., 9,and evaluate them at the points xj ∈ Xi.We then multiply both sides of Equation (3.13) by the evaluations W ij
α = Wα(xj − xi) ofthe projetion funtions at the same points xj . Finally we sum all produts, obtaining nineexpressions of the following type

Dxu(xi)
∑

j

(xj − xi)W
ij
α +Dyu(xi)

∑

j

(yj − yi)W
ij
α +Dzu(xi)

∑

j

(zj − zi)W
ij
α +

+
1

2
D2

xxu(xi)
∑

j

(xj − xi)
2W ij

α +
1

2
D2

yyu(xi)
∑

j

(yj − yi)
2W ij

α +

+
1

2
D2

zzu(xi)
∑

j

(zj − zi)
2W ij

α +D2
xyu(xi)

∑

j

(xj − xi)(yj − yi)W
ij
α +

+ D2
yzu(xi)

∑

j

(yj − yi)(zj − zi)W
ij
α +D2

xzu(xi)
∑

j

(xj − xi)(zj − zi)W
ij
α =

=
∑

j

[u(xj)− u(xi)]W
ij
α α = 1, ..., 9 (3.14)



3.2. Novel formulation 31Remark. It is important, at this stage, to highlight the formal di�erene between the novelformulation just desribed, and the original formulation desribed in the previous setion. Infat, in this ase we �rst evaluate the Taylor Series (3.12) and the projetion funtion, andthen we projet vetors, obtaining an already disretized projetion. In the ase of the origi-nal MFPM formulation, onversely, we perform a ontinous projetion, obtaining an integralexpression that has to be furthermore disretized, introduing an additional soure of error.Equations (3.14), repeated for α = 1, ..., 9, an be rearranged in matrix form as
Ai
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∑

j [u(xj)− u(xi)] W
ij
1

∑

j [u(xj)− u(xi)] W
ij
2

∑

j [u(xj)− u(xi)] W
ij
3

∑

j [u(xj)− u(xi)] W
ij
4

∑

j [u(xj)− u(xi)] W
ij
5

∑

j [u(xj)− u(xi)] W
ij
6

∑

j [u(xj)− u(xi)] W
ij
7

∑

j [u(xj)− u(xi)] W
ij
8

∑

j [u(xj)− u(xi)] W
ij
9



































(3.15)
Equation (3.15) an be rearranged in a more ompat form as

AiD(ui) = W
iui −Biu(xi) (3.16)where Wi is a 9xNi matrix de�ned as

W
i = [Wi1 | Wi2 | ... | WiNi ] (3.17)

Bi is a 9x1 vetor de�ned as
Bi =

Ni
∑

j=1

Wij (3.18)In Equations (3.17) and (3.18), Wij is a 9x1 vetor de�ned as
Wij = [W ij

1 | W ij
2 | ... | W ij

9 ]
T (3.19)that ollets the evaluations of the projetion funtions W ij

α at the nodes xj and xi, for
α = 1, ..., 9; �nally ui is the Nix1 vetor olleting the values of u(x) at all nodes of the subset
Xi. Equation (3.16) an be furthermore rearranged in the form

AiD(ui) =
(

W
i −B

i
)

ui (3.20)where
B

i = [ 0 | 0 | ... | Bi | ... | 0 | 0 ] (3.21)



32 3. Modified Finite Partile Method: multidimensional formulationis a 9xNi matrix, omposed of zero entries, with exeption of the i-th olumn.Derivative values at the point xi an be retrieved inverting Equation (3.20), yielding
D(ui) = Ei(Wi −B

i)ui (3.22)where
Ei =

(

Ai
)−1 (3.23)Finally, Equation (3.22) an be rewritten in the form

D(ui) = D
iui (3.24)where the matrix Di = Ei(Wi −Bi) is a 9xNi operator ating on the vetor ui and returningthe evaluations of the funtion derivatives at xi.However, keeping in mind that our �nal goal is to solve boundary value problems governedby partial di�erential equations, we need nine disrete di�erential operators that approximatederivative operations on ontinous funtions. In partiular, realling that N is the total numberof nodes used for the domain disretization, we wish to build operators that at on the Nx1vetor u (olleting the funtion evaluations at all nodes of the domain) and reonstrutthe funtion derivative evaluations in all nodes. Suh operators are onstruted olleting theproper row from the operatorsDi, ∀i, identi�ed with referene to Equation (3.15). For instane,in order to onstrut an operator Dxx ating on u and returning the disrete ounterpart of

∂2u(x)/∂x2, we extrat, for eah i, the 4-th row of Di, that is
Dxx =









D1
4

D2
4

...
DN

4









(3.25)where Di
α is the α-th row of Di.A 2D formulation of the method is simply ahieved by onsidering only the derivatives inthe x and y diretions, that is, α an only be equal to 1, 2, 4, 5, 7.Given the analytial form of derivative approximation shemes, it is easy to approximateany linear di�erential operator; the most ommon are reported in Table 3.1Continuum operator Disrete operator

∇∇∇ · (•) Dx(•)1 +Dy(•)2 +Dz(•)3
∇∇∇(•) [Dx Dy Dz]

T (•)
∇∇∇2(•) Dxx(•) +Dyy(•) +Dzz(•)Table 3.1: Correspondene between some ontinuum di�erential operators and their disrete form usingMFPM.



3.2. Novel formulation 333.2.1 Projetion funtions and supporting nodesIn the following we give some seletion riteria for the projetion funtions and for the �sup-porting nodes�.The projetion funtions W i
α have to be hosen suh that matrix Ai is non singular. In allthe examples of the present paper, we use linear, quadrati and bilinear funtions in the threeindependent variables, i.e.:

W i
1 = x− xi W i

4 = (x− xi)
2 W i

7 = (x− xi)(y − yi)

W i
2 = y − yi W i

5 = (y − yi)
2 W i

8 = (y − yi)(z − zi)

W i
3 = z − zi W i

6 = (z − zi)
2 W i

9 = (x− xi)(z − zi)The dimensions of the subsets Xi, that ontain the supporting nodes for eah xi, is notspei�ed a priori. The number of supporting nodes, as well as their riterion of seletion, isthe topi of several works in the literature regarding meshless methods. In the original versionof the Smoothing Partile Hydrodynamis a smoothing length is seleted, and all partileswhose distane is less than the �xed smoothing length are used for the approximation. On theother hand, in the Generalized Finite Di�erene Method, the seletion riterion inludes thepartiles xi and the two losest ones for eah quadrant of a loal referene frame, entered onthe partile itself and with the axes parallel to the global axes (star riterion). In the Least-Square Finite Di�erene Method, proposed by Ding et al. (2004a,b) the seletion algorithm ofsupporting nodes onsiders the Ni nodes losest to xi, and then a hek is performed on theondition number of the loal system to be solved (with a struture similar to (3.15)). Theauthors observe that when one or more supporting nodes are very lose to xi, the matrix Aimay result ill-onditioned. Therefore a saling matrix S, based only on the reiproal distaneamong partiles, is introdued in order to improve the quality of Ai, and thus, of the derivativeapproximations.We use a seletion algorithm very similar to the one proposed in the LSFDM, and omposedof two steps. First, a predetermined number Ni of partiles is inluded in the set of supportingnodes Xi, seleted only on the base of their distane from the partile xi. Then, a diagonalsaling matrix S is introdued, whose expression is
S = diag

[

1/R, 1/R, 1/R, 1/R2, 1/R2, 1/R2, 1/R2, 1/R2, 1/R2
] (3.26)where R = max ‖xj − xi‖,xj ∈ Xi. Equation (3.15) is then rewritten introduing the matrix

S both in the left and right term. The ondition number of the resulting matrix Āi = SAi isomputed; if suh ondition number is greater than a �xed threshold value Cmax, the numberof supporting nodes is inreased and the proedure is repeated, until a satisfatory onditionnumber is reahed.Aordingly, Equation (3.4) an be rewritten in the form
ĀiD(ui) = SAiD(ui) = SAi

(

W
iui −Biu(xi)

) (3.27)and all equations from (3.15) to (3.23) are properly rearranged.



34 3. Modified Finite Partile Method: multidimensional formulation3.3 Comparison with existing methodsBy omparing Equations (3.3), (3.15), and (1.60), we notie the similarity between the GFDMand both the original and novel formulations of the MFPM. In partiular, it is easy to seethat, with a proper hoie of the projetion funtions in the MFPM, the GFDM is reovered.In partiular, the GFDM and the novel MFPM exatly math, if the following funtions arehosen for the novel MFPM:
W ij

1 = 2(xj − xi)T
ij2

W ij
2 = 2(yj − yi)T

ij2

W ij
3 = 2(zj − zi)T

ij2

W ij
4 = (xj − xi)

2 T ij2

W ij
5 = (yj − yi)

2 T ij2

W ij
6 = (zj − zi)

2 T ij2

W ij
7 = 2(xj − xi)(yj − yi)T

ij2

W ij
8 = 2(yj − yi)(zj − zi)T

ij2

W ij
9 = 2(xj − xi)(zj − zi)T

ij2

(3.28)
We remark that in the GFDM all the derivative approximation shemes depend on thehoie of one weight funtion Tij , while in the MFPM formulations 9 projetion funtionshave to be de�ned.3.3.1 Considerations about the stenil of the derivativesThe stenil of a derivative approximation is the set of partiles whih ontributes to theapproximation in a point xi. Suh a point is alled olloation point. In the �rst worksregarding the SPH, a point was inluded in the stenil of derivative approximations if itsdistane from the olloation point was less than the smoothing length h. This approahhas been followed in many other works about SPH-derived methods, suh as the RKPM, theCSPm and the MSPH.In the loal max-ent approah, the seletion of the stenil was determined by the hoie ofa parameter β, that was hosen in order to enfore a ondition of loality of the method. Inits development, the so alled seond-order max-ent approah, the shape funtions were loalautomatially, and also the partiles inluded in the stenil were hosen onsequently.Is the Generalized Finite Di�erene Method, as shown in (Benito et al., 2007), the authorsstate that an optimal hoie of the stenil in a 2d ase is the so alled �star riterion�, thatis, the stenil of a olloation point is seleted by hoosing the two losest partiles for eahquadrant, independently of the their distane from the olloation point itself, as shown in�gure 3.1When there is not a su�ient number of partiles in eah quadrant, the missing partilesan be supplemented from the other quadrants. This riterion has a general appliation, butis not preise in the ase of strutured distribution. Moreover, it an our the ase when allthe partiles seleted by the star riterion are aligned on a ross. In this ase it an be shownthat the matrix A of equation (1.60) annot be inverted.
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Figure 3.1: The star riterion3.4 Searhing algorithm of neighbour partilesIn eah meshless method developed in the literature a deep attention has to be given to thealgorithm of neighbour partile seletion, sine it is often the most time onsuming part of thewhole algorithm, espeially when expliit time integration is performed.In the present setion we disuss the algorithm used in the MFPM for the onstrution ofthe linear di�erential operator presented in Setions 3.1 and 3.2 with speial attention to theomputational ost required in the di�erent phases of the proedure.In partiular, the algorithm takes in input a node distribution and returns the disretedi�erential operators proposed in the previous setion. For both the original and the novelformulation the searhing algorithm proedure is exatly the same. The steps omposing thepartiles searhing algorithm is then, for eah olloation point xi:1. all other nodes are reordered on the base of their distane from xi;2. the 9 partiles losest to xi are hosen;3. the matrix Ai is built;4. the matrix Ai is preonditioned on the base of the partile distane from xi, followingthe idea shown in Ding et al. (2004a,b);5. the ondition number of Ai is omputed and ompared to a prede�ned threshold value;6. if the ondition number is higher then the threshold value, the number of neighbournodes is inreased, and phases 3, 4, and 5 are repeated;7. the matrix Ai is inverted;



36 3. Modified Finite Partile Method: multidimensional formulationTable 3.2: Computational ost for algorithm 1 used on a distribution of 6561 olloation pointsPhase Computational ost [s℄ Perentage [%℄1 4.75 312 0.125 0.833 0.703 4.674 0.0892 0.595 7.65 50.856 0.409 2.717 0.344 2.288 0.975 6.48Table 3.3: Computational ost for algorithm 1 used on a distribution of 16461 olloation pointsPhase Computational ost [s℄ Perentage [%℄1 21.8 42.572 0.356 0.693 2.21 4.324 0.245 0.485 20.21 39.476 0.98 1.917 0.92 1.808 4.48 8.758. the i-th row the disrete di�erential operator is built.The omputational ost onneted to the di�erent phases depends strongly on the strategiesadopted espeially during the phases 1 and 2, and the spei� in-built MATLAB funtionsused for phase 5. In partiular, this primitive, rough algorithm, for eah olloation pointsreorders all nodes of the domain in terms of distane, and uses the MATLAB in-built funtionondest. For the algorithm just desribed the omputational osts are reported in Table 3.2The same algorithm tested on a distribution of 16461 nodes gives the results shown inTable 3.3It is evident from a �rst glane to Tables 3.2 and 3.3 that the most ostly phases are thephases 1 and 5. The researh algorithm is then signi�antly improved properly modifyingthese two phases.The improvement of phase 1 is made through a di�erent searhing algorithm, used in manySPH odes and appliations: it onsists in dividing the domain in a prede�ned number of squaresubodomains (depending on the amount of olloation points, in suh a way that eah squaresubdomain ontains limited number of nodes). Therefore the researh of neighbour partilesis made on only the square in whih the olloation node is loated, and in the 8 adjaentsquares. This proess obviously redues the time required for pre-ordering and seleting theneighbour partiles.For what onerns the omputational ost of the omputation of the ondition number of



3.4. Searhing algorithm of neighbour partiles 37Table 3.4: Computational ost for algorithm 2 used on a distribution of 6561 olloation pointsPhase Computational ost [s℄ Perentage [%℄1 0.435 26.122 0.0362 2.173 0.271 16.274 0.0643 3.865 0.270 16.216 0.266 15.977 0.201 12.068 0.122 7.33Table 3.5: Computational ost for algorithm 2 used on a distribution of 16461 olloation pointsPhase Computational ost [s℄ Perentage [%℄1 1.08 27.172 0.084 2.113 0.63 15.854 0.146 3.675 0.641 16.136 0.708 17.817 0.401 10.098 0.285 7.17the matrix Ai, it is su�ient to our sope to approximate the ondition number, sine we onlyask to this phase to understand if the matrix Ai is invertible or not, and this information isgiven also with a non extremely preise ondition number. Therefore we replae the MAT-LAB funtion ondest with the more e�ient MATLAB in-built funtion ond. For tehnialdi�erenes between the two funtions we refer to the MATLAB guide.After the modi�ation of the algorithm, the total omputational ost involved is reportedin Table 3.4 for 6561 nodes, and in Table for 3.5 for a distribution of 16461 nodes.From the omparison of Tables 3.2 and 3.4 it is evident the saving of time in the seondase.
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Chapter 4Appliations of the Modi�ed FinitePartile Method to linear elastiityIn the present hapter we apply the Modi�ed Finite Partile Method to linear elastiity. In a�rst part of the hapter we present the ontinuous equations that model the behaviour of anelasti body, then we show how suh equations are disretized using a Modi�ed Finite PartileMethod, in partiular we show how do we handle the dynami term, and �nally we show someappliations in 2D and 3d statis, 1d and 2d dynamis.4.1 Linear elastiityIn the following we introdue the linear elasti problem in the three-dimensional spae andshow how it an be formulated with the Modi�ed Finite Partile Method.We onsider an elasti body on a domain Ω, subjeted to internal fores bbb = bbb(xxx, t),presribed displaements s̄ss = s̄ss(xxx, t) on the Dirihlet boundary ΓD, and presribed trations
t̄tt = t̄tt(xxx, t) on the Neumann boundary ΓN . ΓD and ΓN are suh that

{

ΓD ∪ ΓN = Γ

ΓD ∩ ΓN = ∅where Γ is the whole boundary of Ω.The equations governing the problem are














































ρ
∂2sss

∂t2
= ∇∇∇ ·σσσ + bbb xxx ∈Ω

σσσnnn = t̄tt(t) xxx ∈ΓN

sss = s̄ss(t) xxx ∈ΓD

sss
∣

∣

t=0
= sss0(xxx) xxx ∈Ω

∂sss

∂t

∣

∣

∣

∣

t=0

= ṡss0(xxx) xxx ∈Ω

(4.1)
39



40 4. Appliations to elastiitywhere ρ is the mass density of the material; nnn is the outward normal vetor at the boundary,
sss = sss(xxx, t) is the vetorial displaement �eld, whose omponents are u = u(xxx, t), v = v(xxx, t),and w = w(xxx, t); σσσ = C(∇∇∇sss)S is the symmetri Cauhy stress tensor. C is the fourth orderlinear elasti isotropi tensor, whose omponents are

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (4.2)where λ and µ are the Lamé onstants, whih an be expressed in terms of the Young modulus
E and the Poisson ratio ν as follows:

λ =
Eν

(1 + ν)(1− 2ν)
; µ =

E

2(1 + ν)
(4.3)

(•)S denotes the symmetri part of a tensor (i.e., AAAS =
1

2
(AAA+AAAT )).Making expliit (4.1) with respet to the omponents of the displaement u, v and w, weobtain











ρu,tt = (λ+ 2µ)u,xx +µ(u,yy +u,zz ) + (λ+ µ)(v,xy +w,xz ) + bx

ρv,tt = (λ+ 2µ)v,yy +µ(v,xx+v,zz ) + (λ+ µ)(u,xy +w,yz ) + by

ρw,tt = (λ+ 2µ)w,zz +µ(w,xx +w,yy ) + (λ+ µ)(u,xz +v,yz ) + bz

(4.4)The subsripts preeded by a omma indiate partial derivative.The semi-disrete form of system (4.4), after the spatial disretization shown in Chapters3, is then
ρ¨̂sss = K̂KKŝss+ bbb (4.5)being ŝss the vetor of the partile values of sss(xxx, t). In a more expliit form, equation (4.5) reads
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ρ ¨̂www
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K̂KK31 K̂KK32 K̂KK33
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v̂vv
ŵww



+





bbbx
bbby
bbbz



 (4.6)being ûuu, v̂vv and ŵww the vetors ontaining the partile values of the salar �elds u, v, and w.
K̂KKij are the bloks of K̂KK, reading

K̂KK11 = (λ+ 2µ)DDDxx + µ(DDDyy +DDDzz)

K̂KK22 = (λ+ 2µ)DDDyy + µ(DDDxx +DDDzz)

K̂KK33 = (λ+ 2µ)DDDzz + µ(DDDxx +DDDyy)

K̂KK12 = K̂KK21 = (λ+ µ)DDDxy

K̂KK13 = K̂KK31 = (λ+ µ)DDDxz

K̂KK23 = K̂KK32 = (λ+ µ)DDDyzIn the spirit of olloation methods, in equation (4.5), the rows of K̂KK orresponding to theboundary partiles, and the orresponding terms of bbb and ρ¨̂sss have to be replaed with the



4.1. Linear elastiity 41disrete form of the boundary onditions. In this way we obtain the �nal form of the disreteelasto-dynami problem
KKKŝss = fff (4.7)where the omponents of fff are ρ¨̂sss− bbb for the rows assoiated to internal partiles, and s̄ss or t̄ttfor the boundary partiles, in ase of Dirihlet or Neumann boundary onditions, respetively.For elasto-stati appliations, time derivatives in Equation (4.7) are zero, and the systeman be immediately solved; therefore both internal and external partile values are foundsimultaneously.In ase of elasto-dynamis, we have �rst to disretize time derivatives, with a numerialsheme, i.e.

¨̂sssn =
ŝssn+1 − 2ŝssn + ŝssn−1

∆t2
(4.8)where ∆t is the time step and supersripts refer to time inrements (e.g., ŝssn = ŝss

∣

∣

t=tn
). Theequations of system (4.7), olloated at internal partiles, read

∑

j

Kij ŝ
n
j = ρ

ŝn+1
i − 2ŝni + ŝn−1

i

∆t2
− bni (4.9)while the equations olloated at boundary partiles, where no time derivatives are involved,are in the form

∑

j

Kij ŝ
n+1
j = ūn+1

i (4.10)Equations (4.10) annot be solved by expliit time integration, sine the values of ŝn+1
jmay depend, in ase of Neumann boundary onditions, on the values of the internal partilesat the same time step tn+1. To overome this di�ulty, we perform a stati ondensation of

KKK, and separate the equations olloated on internal partiles from those olloated on theboundary. The degrees of freedom are also separated, and so the �nal form of (4.5) is
(

KKKII KKKIB

KKKBI KKKBB

)(

ŝssI
ŝssB

)

=

(

ρ¨̂sssI − bbbI
ūuu

) (4.11)where ūuu is the vetor of the presribed displaements or of the trations at the boundary, and
KKKII , KKKIB, KKKBI , KKKBB are the bloks of the matrix KKK obtained with referene to the internaland boundary partiles.From the seond set of equations of (4.11) we ompute

sssB =KKK−1
BB(ūuu−KKKBIŝssI) (4.12)and we substitute it into the �rst set of equations of (4.11), obtaining

ρ¨̂sssI − (KKKII −KKKIBKKK
−1
BBKKKBI)ŝssI = −KKKIBKKK

−1
BBūuu− bbbI (4.13)where the amount KKKII −KKKIBKKK

−1
BBKKKBI is the ondensed sti�ness matrix, namely K̃KK.Equations (4.13) form an unonstrained ordinary di�erential equation system whih an



42 4. Appliations to elastiitybe solved by a suitable time integration sheme, like the expliit one of Equation (4.8). Onethe values of the unknown funtions are omputed from Equation (4.13) at time step tn+1,Equation (4.12) an be used to retrieve the values of the funtions at the boundary partiles.4.2 Numerial testsIn the following we propose a number of appliations of the investigated models. First weintrodue three hallenging elasto-stati problems: the lassial test of an in�nitely extendedplate with a irular hole under a uniform remote tration, the problem of the Cook's mem-brane in 2D plain strain, and a 3D blok with a spherial bore strethed on a fae. Regardingdynami problems, we investigate the wave propagation in a two-dimensional bar under aquasi-impulsive load, and a quarter of an annulus under a sinusoidal body load. We solveall these problems with the original MFPM, the novel MFPM, and the GFDM, in order toompare the performanes of these methods.4.2.1 Plate with a irular holeThe geometry of this problem is depited in Figure 4.1, along with its symmetry boundaryonditions and applied loads. The radius of the internal hole is a = 0.2.PSfrag replaements
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Figure 4.1: Plate with a irular hole: model problem inluding symmetry boundary onditions and appliedloads.The equations that govern the problem are the 2D elasto-stai version of (4.4). Plain strainondition are assumed. The boundary onditions are










σσσnnn ·nnn =0 and σσσnnn · ttt = 0 on Γ1 and Γ4

sss ·nnn =0 and σσσnnn · ttt = 0 on Γ2 and Γ5

σσσnnn ·nnn =σ0 and σσσnnn · ttt = 0 on Γ3

(4.14)where nnn is the outward normal, ttt is the unit vetor tangent to the boundary, and σ0 is theuniform remote tration.



4.2. Numerial tests 43We solve the problem onsidering a redued domain, suh that on Γ3 and Γ4 we imposeboundary onditions aording to the exat solution, that is, in terms of stresses,
σxx = σ0

[

1− a2

r2

(

3

2
cos 2θ + cos 4θ

)

+
3a4

2r4
cos 4θ

] (4.15a)
τxy = σ0

[

−a2

r2

(

1

2
sin 2θ + sin 4θ

)

+
3a4

2r4
sin 4θ

] (4.15b)
σyy = σ0

[

−a2

r2

(

1

2
cos 2θ − cos 4θ

)

− 3a4

2r4
cos 4θ

] (4.15)where (r, θ) are the polar oordinates, θ being measured from the positive x-axis ounterlok-wise.We now introdue the Stress Intensity Fator (SIF) for this problem, that is the ratiobetween the maximum value of σxx and the value of the remote tration σ0. In this ase, theanalytial solution provides SIF = 3. We then numerially solve the problem, assuming
E = 100000Pa, ν = 0.33 , σ0 = 100Pa. (4.16)and ompare the analytial value of the SIF with the obtained numerial results. The distri-bution of the σxx stress obtained with the original MFPM and 251001 partiles is shown inFigure 4.2. The relative error on the SIF is omputed as
errr =

|SIFan − SIFnum|
|SIFan|

=
|3− SIFnum|

3
(4.17)and onvergene plots referred to the three onsidered methods are reported in Figure 4.3,where N is the total number of partiles used for the numerial solution.We observe that for this problem all three methods show the same seond-order onver-gene, but the error omputed with the original MFPM shows a lower onstant. With theother two methods quite similar values of the error are ahieved, but the omputational ostis signi�antly redued, sine no Voronoi tessellation of the domain is needed.In Table 4.1 the make a omparison among the omputational osts of the original andnovel MFPM for this problem. We notie the signi�ant time redution in the ase of novelMFPM.We observe that for this problem all three methods show the same seond-order onver-gene, but the original formulation has an higher onstant. With the other two methods quitesimilar values of the error are ahieved, and the omputational ost is signi�antly redued,sine no Voronoi tessellation of the domain is needed.4.2.2 The Cook's membraneThe Cook's membrane is a lassial benhmark introdued by Cook and Al-Abdulla (1969)to show the performane of plane �nite elements in dealing with volumetri loking. The
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Figure 4.2: σxx in a square with a entral hole obtained with the original MFPM and 251001 partiles.geometry is shown in Figure 4.4.The data of the problem are L = 48m, H1 = 44m, H2 = 16m.The equations that govern the problem are the 2D elasto-stati version of (4.4). Plainstrain onditions are assumed. The boundary onditions are










sss ·nnn =0 and sss · ttt = 0 on Γ1

σσσnnn ·nnn =0 and σσσnnn · ttt = 0 on Γ2 and Γ4

σσσnnn ·nnn =0 and σσσnnn · ttt = τ0 on Γ3

(4.18)where τ0 = 1/16Pa is a onstant shear stress distribution.
√
N Computational ost ofthe Voronoi tessellationand utting algorithm[s℄ Total time of theode - originalformulation [s℄ Total time of theode - novelformulation [s℄ time saving [%℄
11 5.8 10−1 2.16 100 1.53 100 29.17

21 2.04 100 4.85 100 2.78 100 42.68

41 7.57 100 1.47 101 7.19 100 51.02

81 2.92 101 5.85 101 2.73 101 53.31

161 1.16 102 2.76 102 1.59 102 42.27

321 4.62 102 1.72 103 1.40 103 18.87Table 4.1: Comparison of the omputational osts between the original and novel MFPM for theproblem of Figure 4.1.
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Figure 4.3: Logaritmi onvergene diagram of the error of the SIF in a square plate with a entral hole withrespet to the square root of the total number of partiles inluded for the disretization.We solve the problem both in the ase of ν = 0.33 and in the ase of quasi-inompressiblematerial (ν = 0.49).In Figure 4.5 we show the shear stress distribution in the ase of E = 1Pa and ν =
0.33 with the original MFPM and 103041 partiles. The onvergene of the value of thedisplaement of referene point C (Figure 4.4) is reported in Figure 4.6.We observe from Figure 4.6 that the solution seems to onverge to similar values with allthe methods. Again, the novel MFPM and the GFDM perform in a similar way.For the ase of ν = 0.49, the shear stress distribution and the onvergene diagram aredepited in Figures 4.7 and 4.8, respetively. The number of partiles inluded in the stenil(that is, the group of partiles that ontribute to the approximation of derivatives) of theoriginal MFPM is 9, and it looks su�ient for a good performane of the method. Thenumerial test performed with the GFDM is arried out with 9 partiles in the stenil, seletedwith the star riterion, as desribed in Benito et al. (2007), but we observe that for thisproblem the numerial solution does not onverge. The same behaviour is obtained with thenovel MFPM, and 9 partiles in the stenil. For this reason, in Figures 4.8, the onvergenediagram of the novel MFPM is omputed inluding 25 partiles in the stenil, leading to aonvergent approximation.In Table 4.2 the omputational osts of this problem for the original and novel MFPM arereported. Again, we notie the signi�ant time redution in the ase of novel MFPM. Fromthe last olumns of Tables 4.1 and 4.2, we also notie that the perentage redution of time ishigher at lower number of partiles. This is due to the fat that the omputation ost of theVoronoi tessellation algorithm grows less than the one of other routines present in our ode,when the number of partiles inreases.



46 4. Appliations to elastiityPSfrag replaements
O

x

y

H1

H2

L

A

B
C τ0

Γ1
Γ2

Γ3Γ4

Figure 4.4: The Cook's problem: geometry, boundary onditions and applied loads.
√
N Computational ost ofthe Voronoi tessellationand utting algorithm[s℄ Total time of theode - originalformulation [s℄ Total time of theode - novelformulation [s℄ time saving [%℄
11 5.7 10−1 2.46 100 1.56 100 36.33

21 1.61 100 3.54 100 1.86 100 47.03

41 6.12 100 1.28 101 6.41 100 49.92

81 2.39 101 5.21 101 2.70 101 48.21

161 9.47 101 2.51 102 1.96 102 21.93

321 3.83 102 1.94 103 1.41 103 27.22Table 4.2: Comparison of the omputational osts between the original and novel MFPM for theproblem of Figure 4.4.4.2.3 Multi-material problemsThe Modi�ed Finite Partile Method an be applied also to problem implying di�erent ma-terials. There are two strategies that an be used. One strategy onsists in onsidering thevariation of the material parameters in the sti�ness matrix of the problem.In fat, given the equilibrium equation for a stati problem
∇ ·σσσ + b = 0 (4.19)and the onstitutive relation of the material, in the form

σσσ = λ(x)(tr εεε)I + 2µ(x)εεε (4.20)the equilibrium equation beomes, expressing all the variables in terms of the displaement�eld u

∇λ(∇ ·u)I+ 2∇µεεε+ (λ+ µ)∇(∇ ·u) + µ∆u+ b = 0 (4.21)
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PSfrag replaementsFigure 4.7: Shear stress distribution in a quasi-inompressible Cook's membrane obtained with the originalMFPM and 103041.This approah is partiularly useful when material properties vary ontinously in the do-main. It ould be used also when a sudden variation of the material ours, i.e., when thedomain is omposed of two parts with di�erent material properties. In this ase, however, thealgorithm will experiene the typial problems of �nite di�erene approahes in dealing withnon di�erentiability points, that are osillation of the solution.The seond possibility is the multi-path formulation. Eah materia subdomain is onsid-ered independently in a �rst moment, and a sti�ness matrix for eah path is built, dependingon the material parameters. Then, an assembly proedure is performed, imposing the interfaeboundary ondition, that are the ontinuity of the outward stresses and the ontinuity of thedisplaements. This proedure is more omputationally expensive from a oding point of view,but avoids osillation deriving from the need of omputing derivative on disontinous �elds.In Figures 4.10 and 4.11 we show the deformation and the displaement of a multi-materialdomain (see Figure 4.9) under tration. The material parameters are suh that the transversaldeformation of both the parts of the domain is the same.4.2.4 Three-dimensional elastiity problemWe study the elastiity of a 3D blok under a uniform tration. The geometry of this problemis depited in Figure 4.12. A uniform normal tration σ0 = 100Pa is applied on the fae
x = L. The data of the problem are: L = 5m, H = 3m, B = 2.5m, R = 2m.The equations governing the problem are the stati version of (4.1); the boundary ondi-
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(b) Zoom of the right boundary of the diagramFigure 4.8: Convergene of the displaement of the point C in the quasi-inompressible Cook's membrane inthe ases of orginal MFPM, novel MFPM, and GFDM.
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Figure 4.11: Multi-path test: displaement in the x-diretion



4.3. Appliations of the MFPM in dynamis 51tions are


















sss ·nnn = 0 and σσσnnn · ttt = 0 on the faes x = 0, y = 0, and z = 0

σσσnnn ·nnn = 0 and σσσnnn · ttt = 0 on the faes y = B, z = H,and on the surfae of the bore
σσσnnn ·nnn = σ0 and σσσnnn · ttt = 0 at x = L

(4.22)
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Figure 4.12: Geometry of the parallelepiped with a spherial bore.In Figure 4.13 we show the stress distributions on the symmetry plane y = 0 obtainedusing the novel MFPM with 83730 partiles and the orresponding Finite Element overkilledsolution (250476 nodes) obtained with the software Abaqus. We observe a good agreementof the stress distributions σxx, σzz, and τxz between our numerial results and the overkilledsolution provided by Abaqus.4.3 Appliations of the MFPM in dynamisIn the following we show the appliation of the Modi�ed Finite Partile Method to elastody-nami problems. In partiular, we explore the ase of a 1d barr under quasi impulsive load atthe right side, and study the wave propagation. For this problem we also study the propertiesof the MFPM
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(b) σxx by Abaqus
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(f) σzz by Abaqus
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(h) τxz by AbaqusFigure 4.13: Stress distributions of the problem of Figure 4.12 obtained by novel MFPM (83730 pariles) andoverkilled Abaqus solution (250476 nodes) at y = 0.



4.4. 1d dynamis: a bar under quasi-impulsive axial load 534.4 1d dynamis: a bar under quasi-impulsive axial loadIn this setion we perform an appliation of the Modi�ed Finite Partile Method for thesolution of the problem of a 1D lamped rod with an impulse on its right boundary.The equation whih governs the problem is


















∂2u

∂t2
= a2

∂2u

∂x2

u(x = 0, t) = 0

EA∂u
∂x (x = 1, t) = F (t)

(4.23)where E is the Young modulus of the material, A is the normal area of the ross setion ofthe bar, a is the veloity of the sound, and its value is√E
ρ , where ρ is the mass density of thematerial.

F (t) is the foring funtion of this problem, that in this ase is quasi-impulsive, withexpression
F (t) = F0e

−b(t−t0)
2. The temporal amplitude of this expression depends on the magnitude of the term b.The spatial disretization of the present problem is performed in aordane with the 1Dversion of the MFPM. In partiular, before solving the problem, we disuss the Fourier analysisof this kind of equations, in order to see how the MFPM approximates the eigenfrequeniesand the eigenfuntions of the ontinuum problem, whih, from a numerial point of view,depend on the eigenvalues and eigenvetors of the numerial sti�ness matrix; then we studythe dispersion relation and the stability of the numerial system of equations, depending onthe hoie of the spatial and temporal disretization. Finally, we solve the equation and drawa onvergene diagram of the error.4.4.1 Fourier analysis of the wave propagation problemA useful instrument for the numerial analysis of dynami problems is the Fourier analysis,that is the deomposition of the solution in its harmoni omponents. To �nd the di�erentomponents, we write a problem whih is said the eigenvalues and eigenfuntions problem, thelast being the non trivial funtion that solve the equation of wave propagationThe equation that models the dynamis of a 1d extensional bar is

ü = u′′ (4.24)where we onsider that the propagation veloity is unitary. We redue to the ase of harmonisolutions, and therefore we write the solution in terms of sinusoidal omponents.
u(x, t) = ū(x)g(t) = ūsin(ωt) (4.25)Remark. Note that when we do the hypothesis of a temporal funtion g(t) = sin(ωt), weare reduing to the partiular ase in whih the funtion g(t) = sin(ωt) respets the initialonditions. Anyway, suh proedure is general, so that we an inlude all possible initial on-



54 4. Appliations to elastiityditions if only we hange the form of the funtion g(t). Moreover, we an onsider also thease in whih the solution is not harmoni. In fat, beause of the linearity of the problem,any funtion g(t) an be seen as the sum of harmonis.Introduing (4.25) in the Equation (4.24), we obtain
(ū′′ + ω2ū)sin(ωt) = 0 (4.26)that has not only the trivial solution ū = 0, but also in�nite solutions that respet th equation

ū′′ + ω2ū = 0 (4.27)Equation (4.27) is known as the Helmotz equation, and is the �spetral equation� for anextensional bar. Its general solution is̄
un = Asin(ωnt+ φ) (4.28)where the parameters ωn depend on the boundary onditions.Let's onsider the same problem from a disrete point of view. After the MFPM disretiza-tion proedure, the equation (4.24) beomes̈

u = Ku (4.29)As earlier, aording with a partiular set of initial onditions, we write
u = û sin(ωt) (4.30)so that we obtain

(ω2I+K)ûsin(ωt) = 0 (4.31)This equation has the struture of a lassial eigenvalue problem, where the amounts −ω2
nare the eigenvalues of the matrix K.4.4.2 Solution of the eigenvalue problem for the lamped barHere we speialize what we have just explained to the ase of a lamped bar. We onsiderthe problem (4.23) and perform the eigenvalue problem, �rst in the ontinuum, then in thedisrete form.From the imposition of the homogeneous boundary onditions (bar lamped on a edge,stress-free on the other edge), the partiular expression for the solution of the Helmotz equation(see (4.27)) is

ū = Asin(ωnt) (4.32)where
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(b) 5 partiles approximationFigure 4.14: Ratio between the eigenvalues of the disrete problem and the ones of the ontinuum problem
ωn =

π

2
(2n− 1) (4.33)The values of −ω2

n are the analytial eigenvalues of the elasti problem, and the funtions
ūn are the eigenvetors (or the eigenmodes).Now we perform the disrete proedure mentioned before. A good test for the numerialmethod is to understand how it reprodues the frequenies and the eigenmodes.The searh for eigenvalues in the disrete problem is performed onsidering an approxima-tion of the derivatives involving both three and �ve partiles. In the seond ase, we onsiderall the ombination of onstant, linear, quadrati and ubi projetion funtions.4.4.3 Approximation of the dispersion relationThe solution of every linear partial di�erential equation an be deomposed in the sum ofexponential funtion with omplex exponential of the type

ei(ωt−ξ ·x) (4.34)where ξ is the wave vetor, whih omponents are the spatial frequeny of the solution inthe diretion of the axes.In 1D ase, the vetor ξ redues to a salar, namely ξ.If we introdue this solution in the partial di�erential equation, we will obtain a relationbetween the temporal frequeny ω and the wavenumber ξ. If we assume real values for thewavenumbers, from the dispersion relation we obtain a value for the temporal frequeny. Inpartiular:� if this value is real, we have that the solution is onservative, that is that the eigenmodewith spatial frequeny ξ osillates in time;� if ω = ω(ξ) has a positive imaginary part, the solution dampens;� if ω = ω(ξ) has a negative imaginary part, the solution inreases its amplitude in time



56 4. Appliations to elastiityAnother important aspet that we an understand from the dispersion relation is theveloity of propagation of the waves. In a non dispersive problem, all the waves propagate atthe same veloity, and we say that this is a non dispersive problem; otherwise we have thateah eigenmode propagates at a di�erent veloity, so that the pro�le of the solution hangesin time. The veloity of propagation is alled group veloity, and we alulate it
c =

∂ω

∂ξ
(4.35)In the ase of extensional bar, by introduing Equation (4.34) in (4.24), we obtain

ω2 = ξ2 (4.36)The group veloity, using (4.35), is then c = 1. The dynamis of an extensional bar is anon dispersive problem.The same thing does not happen in the disrete form of the problem; in fat, after theMFPM disretization and the hoie of a �nite di�erene sheme for the temporal advane,we set, for a generi partile
unh = u0e

i(ωtn−ξxh) (4.37)and onsider that tn = t+∆tn and xi = x+∆xi, after some manipulation we an �nally write
ω =

1

∆t
cos−1(1 +

∆t2

2

h+np
∑

j=h−np

mje
−iξ∆xj) (4.38)That, for small values of ω∆t and ξ∆xi, ollapses into the ontinuum wave dispersionrelation.The oe�ients mj are the superdiagonal terms, the diagonal term and the subdiagonalterms of a generi row of the matrix K̃. Real roots, or real part of omplex roots of the wavedispersion relation imply wave propagation; imaginary roots, or imaginary part of omplexroots, imply ampli�ation or redution of the wave.We see from Equation (4.38) that in general a disrete system is dispersive and also di�u-sive, that means that the disrete solution have both a redution of amplitude, onneted tothe imaginary part of the exponential; and that waves do not propagate at the same veloity,and it depends on the fat that the group veloity is a funtion of the wavenumber. Forthis reason we sometimes observe some harmonis that should not be seen in the solution ofimpulsive problems; it depends on the fat that in the solution some harmonis propagate ata di�erent veloity.The partiular ase is when we have a uniform distribution of partiles in the domain. Inthis ase the imaginary part of the roots of the equation (4.38) is null, and we have only thephenomenon of dispersion.In �gure 4.15 we an see the disrete dispersion relation in the ase of approximation ofthe derivatives with three partiles and �ve partiles (with the di�erent projetion funtions),for one hundred and one partiles and a time step of 10−5
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right solutionFigure 4.15: Wave dispersion relation in the ontinuum and with the spatial a temporal disretizationAppliationIn this setion, we solve the problem (4.23) for the ases in whih F (t) = −100e−b(t−0.5)2 . Wesolve this partial di�erential equation with b = 100 and b = 1000, beause the integral1 of thetwo funtions have a di�erent harmoni ontent.The numerial solution of this problem has been ompared with an analytial solution at

T = 3. At that time, the normal fore is
N(t = 3s) = 100e−b(0.5−x)2 (4.39)The error has been omputed as

err2 =
‖uex − u‖2
‖uex‖2

(4.40)The alulation has been performed for a temporal step ∆t = 10−5, for a di�erent numberof partiles. The diagram of onvergene of the error is shown in Figure 4.16As we an see, the ase b = 100 is better reprodued than the ase of b = 1000, wherewe an see the wave dispersion. As a on�rm of that, we show in Figures 4.17 the numerialsolution of the problem for 101 partiles in the two ases, for the same time step.4.5 2D dynamisIn the present setion we the Modi�ed Finite Partile Method to the dynamis of 2D bodies:in partiular we �rst study a 2D bar lamped on the left edge under an impulsive trationon its right side, and study the stress wave propagation; then we study the dynamis of aquarter of annulus under sinusoidal body load. FOr both ases we ompare the original and1We ompute the spetral deomposition of the integral beause F (t) is a ondition on the derivative of thesolution, and not on the solution itself
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2nd order slopeFigure 4.16: Error diagram of the problem (4.23)novel MFPM formulation, and make also a omparison with the Generalized Finite Di�ereneMethod.4.5.1 Dynamis of a 2D bar under quasi-impulsive loadWe now onsider a two-dimensional bar under a quasi-impulsive load. The geometry and theboundary onditions are depited in Figure 4.18, where L = 1m and H = 0.2m.The equations that govern the problem are the 2D plane strain version of (4.4); the bound-ary onditions are











u = 0 and v = 0 on Γ1

σyy = 0 and τxy = 0 on Γ2 and Γ4

σxx = σ(t) and τxy = 0 on Γ3

(4.41)where σ(t) = σ0 exp
(

−b(t− t0)
2
) is the quasi-impulsive load on the right end of the bar;the test has been performed onsidering a Poisson ratio equal to zero, so to reprodue a one-dimensional test. We also set E = 100Pa and ρ = 100Kg/m3. For this test an analytialsolution is available for σxx(x, y), sine the analytial propagation veloity c =

√

E/ρ is known.The other data for this problem are:
σ0 = −100Pa, b = 100 1/s, t0 = 0.3s (4.42)The numerial results of σxx obtained using a time step ∆t = 10−4s are ompared withthe analytial solution after 2.5s from the impulse, so that the analytial referene solution is

σxx(x, y)
∣

∣

t=2.8
= −σ0exp

(

−b(x− 0.5)2
) (4.43)
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(b) b = 1000Figure 4.17: Numerial solutions
The relative error is omputed as

errr =
‖σσσxx,an − σσσxx,num‖

‖σσσxx,an‖
(4.44)We show in Figure 4.20 the onvergene of the error for this test. We observe that both thenovel MFPM and the GFDM behave in the same way until the omputation arried out with201x201 partiles, where the GFDM exhibits numerial instability, while the novel MFPM doesnot. The original MFPM remains stable until 201x201 partiles, but with a higher onstantof the error.
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Figure 4.20: Convergene diagram for the bar under quasi-impulsive load.4.5.2 Quarter of annulus under a sinusoidal body loadIn this setion we solve the elasto-dynami problem studied in Aurihio et al. (2012). Thegeometry of this problem is depited in Figure 4.21. The struture is lamped on all itsboundary, and undergoes a sinusoidal body load. For the internal partiles Equations (4.4)hold. The internal radius is r = 1m, while the external one is R = 4m.The internal body loads and the initial onditions have been manufatured so that theanalytial solution for the displaements u and v is
u(x, y, t) = v(x, y, t) =

1

100
xy(x2 + y2 − 16)(x2 + y2 − 1) sin(2πt) (4.45)The relative error

errr =
‖uan − unum‖

‖uan‖
(4.46)has been omputed at time t = 1.75 s. The time step used for the analysis is ∆t = 10−4 s. InFigure 4.22 we show the rate of onvergene of the error and we observe that the seond-orderauray of the method is on�rmed. We remark that in this example the GFDM and thenovel MFPM perfetly oinide.
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Chapter 5Modi�ed Finite Partile Methodapplied to quasi-inompressiblematerialsIn this hapter we apply the Modi�ed Finite Partile Method on inompressible and quasi-inompressible elastiity problems. In partiular, the displaement-based formulation is in-vestigated in the limit of inompressibility (ν → 0.5), and then the Stokes equations for fullinompressible solids are investigated. In the �eld of Finite Di�erene Method it is well known(Strikwerda, 1984) that the lassial disretization of the Stokes Equation on non-staggeredgrids leads to spurious numerial errors, known as hekerboard instability of pressure. Theseosillations are due to the non satisfation of the inf-sup ondition, �rst studied by Brezzi(1974) in the �eld of Finite Element Method. For this reason, in order to disretize the Stokesproblem on non-staggered grids (and then on meshless methods, where staggered grids are notpermitted), some di�erent formulations have to be introdued. In partiular, the inompress-ibility onstraint equation is replaed by a derived equation, alled Pressure Poisson Equation,in whih the respet of the inf-sup ondition is not requested. However, on this formulationit is not evident whih set of boundary ondition is needed. A signi�ant ontribution to thisdisussion has been given in (Gresho and Sani, 1987; Sani et al., 2006), where the problem isfaed using a weak formulation.The hapter is organized as follows: in Setion 1 we reall the equations that desribe thestatis of solids, �rst in the ompressible form, and then in the limit of inompressibility and,�nally, we introdue the Stokes Equations for full inompressibility. In Setion 2 we introduethe Poisson Pressure Equation formulation, and the problem of the orret hoie of boundaryonditions, and in Setion 3 we apply the Modi�ed Finite Partile Method on a benhmarkproblem, using the formulations disussed in Setion 2.5.1 Governing equationsIn the following we introdue the equations that disribe the equilibrium an elasti, inompress-ible body. We �rst introdue the equations in the lassial displaement-based formulation,63



64 5. Quasi-inompressible materialsthen we swith to a mixed, displaement-pressure based formulation, in order to fully enforethe inompressibility onstraint. In the appliations, we will show that the limit to inom-pressibility of the displaement-based formulation leads to numerial problems, that is themain ause for whih the displaement-pressure formulation is introdued.We onsider an elasti body within a domain Ω, subjeted to internal fores b = b(x, t),presribed displaements ū = ū(x, t) on the Dirihlet boundary ΓD, and presribed trations
t̄ = t̄(x, t) on the Neumann boundary ΓN . Boundaries ΓD and ΓN are suh that

{

ΓD ∪ ΓN = Γ

ΓD ∩ ΓN = ∅where Γ is the whole boundary of Ω.The equations governing the problem are










∇∇∇ ·σσσ + b = 0 for x ∈ Ω

σσσn = t̄(t) for x ∈ ΓN

u = ū(t) for x ∈ ΓD

(5.1)where ρ is the mass density of the material, a is the material aeleration, n is the outwardnormal vetor at the boundary, u = u(x, t) is the vetorial displaement �eld; σσσ = C(∇∇∇u)Sis the symmetri Cauhy stress tensor. We use the notation (•)S to denote the symmetripart of a tensor (i.e., AS =
1

2
(A+AT )). The fourth order linear elasti isotropi tensor C isexpressed in index notation as follows
Cijkl = λδijδkl + µ(δikδjl + δilδjk) (5.2)where λ and µ are the Lamé onstants, whih an be expressed in terms of the Young modulus

E and the Poisson ratio ν:
λ =

Eν

(1 + ν)(1− 2ν)
; µ =

E

2(1 + ν)
(5.3)The ondition of inompressibility is imposed when the Poisson ratio ν is set to 0.5. Unfor-tunately, when ν approahes 0.5, the parameter λ tends to in�nity, leading to an ill onditioneddisrete system of equations, with onsequent degradation of the solution (Chi et al., 2014).Therefore, a di�erent formulation is needed where the inompressibility onstraint is enforedin a di�erent way.For an inompressible body, the onstitutive relation is modi�ed in the form

σσσ = −pI+ 2µεεε (5.4)where p is the pressure, onsidered, as usual in the �uid-dynami literature, positive in aseof ompression. I is the identity tensor, µ is the seond Lamé onstant and εεε is the symmetripart of the gradient of the vetor u = u(x).



5.2. Classial approahes for inompressibility 65By replaing (5.4) into the �rst equation of system (5.1), we obtain
−∇p+ µ∆u = −b (5.5)where the inompressibility onstraint

∇ ·u = 0 (5.6)is introdued.Eqns. (5.5) and (5.6) are known as the Stokes equations in primitive variables (u, p),and desribe the dynamis of fully inompressible bodies. They have to be ompleted withsuitable boundary onditions, that an be Dirihlet boundary onditions (when the boundarydisplaement is known), or Neumann boundary onditions (when the boundary tration isknown).5.2 Classial approahes for inompressibilityThe disretization of Eqns. (5.5) and (5.6), performed using the same spatial disretization for
u and p, leads to a well known instability of the pressure �eld, due to the non satisfation of theso-alled inf-sup ondition (Brezzi and Fortin, 1991). This means that alternative formulationshave to be introdued in order to overome this numerial di�ulty.In the Finite Element Method, the lassial way to overome pressure instability is theuse of di�erent interpolations for the veloity and pressure �elds, the �rst being disretizedusing quadrati elements (i.e. six-nodes triangles), while the pressure is disretized usinglinear interpolation. In this way, the respet of the LBB ondition is ensured, and spuriousosillations of the pressure are avoided.In the �eld of olloation methods, in partiular in the Finite Di�erene Method, thestandard method to satisfy the LBB ondition is the use of staggered grids, alled also MACgrids (Harlow et al., 1965) (see Figure 6.1). This kind of grids, however, require retangulardomains and regular node distribuutions, and therefore they are not suitable for meshlessmethods, where, in general, non regular distributions of points are permitted.In order to solve the Stokes problem on non-staggered grids, many di�erent formulationshave been introdued in the literature (Gresho and Sani, 1987; Sani et al., 2006; Wang andLiu, 2000; E and Liu, 2003). In partiular, the previous works are onentrated on whetherboundary onditions are required or not, at a disrete level, for the inompressibility equations.In fat the onstraint equation holds both on the interior and on the boundary of the domain,and then, no additional boundary ondition is required.A referene work regarding this disussion is the one by Sani et al. (2006), in whih adeep mathematial analysis is done, in the ontext of the weak formulation. In partiular, theanalysis is done on the so alled Stokes problem with the Poisson Pressure Equation, where theonstraint equation of inompressibility is replaed by an equation on the pressure obtainedapplying the divergene operator on the equations of equilibrium (5.5).

∇ · (−∇p+ µ∆u) = −∇ ·b (5.7)
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Figure 5.1: A staggered gridthat is, separating the di�erent omponents at the left-hand side
−∆p+ µ∇ · (∆u) = −∇ ·b (5.8)Eqn. (6.9) is referred, in (Sani et al., 2006), as the Consistent Poisson Pressure Equation(CPPE). Changing the order between the Laplaian and divergene operators (that are om-mutative di�erential operators) in the term µ∇ · (∆u) we obtain µ∆(∇ ·u) that is evidentlyzero due to the inompressibility equation. This permits to simplify Eqn. (6.9), obtaining theso alled Simpli�ed Pressure Poisson Equation.

∆p = ∇ ·b (5.9)In (Sani et al., 2006) the disussion is performed in partiular on whih boundary onditionsare required for the solution of the inompressibility problem using the Consistent PressurePoisson Equation and the Simpli�ed Pressure Poisson Equation. In partiular, using theCPPE, no boundary onditions are required for the onstrain equation; on the onstrary, usingthe SPPE, a Neumann boundary ondition for the pressure is required, obtained projetingthe equilibrium equation on the outward normal at the boundary, that is
∂p

∂n
= (µ∆u+ b) ·n (5.10)In this paper we solve the Stokes problem using both the Consistent and the Simpli�edPressure Poisson Equation, and using the Modi�ed Finite Partile Method to disretize spatialderivatives.We also solve the inompressibility problem using, instead of boundary ondition (5.10),the disretization of the divergene onstrain at the boundary. We refer to this possibility as



5.3. Appliations 67the SPPE-div formulation.5.3 AppliationsIn this setion we apply the Modi�ed Finite Partile Method to disretize the spatial deriva-tives of the formulations presented in the previous setion: the Consistent Pressure PoissonEquation, the Simpli�ed Pressure Poisson Equation (with the boundary ondition for the on-straint equation proposed by Sani et al. (2006)), and the SPPE-div. In partiular, we testthe e�etiveness of these formulation on an inompressible square under a vertial body load,lamped on two edges. We test the MFPM on a displaement-based formulation in the limitof inompressibility (ν → 0.5) and then on the mentioned inompressible formulations, and re-mark that on the inompressible formulations, the inompressibility onstraint is not enforedstrongly, but through a derived equation. For this reason we investigate, on both problems,how the inompressibility is respeted.5.3.1 Square lamped on two edges under a vertial body loadThe problem under investigation is a square in the domain [0, 1]x[0, 1], under a vertial bodyload b = −80e2, with boundary onditions (see Figure 6.13)
{

u = 0 x = 0 or y = 0

σσσn = 0 x = 1 or y = 1
(5.11)This problem has been solved in Aurihio et al. (2007) using the stream-funtion formu-lation and an isogeometri approah for the spatial disretization. The seond Lamé onstantis µ = 40.

A B
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L

Figure 5.2: Square lamped on two edges under a vertial body load: geometry and boundary onditionsHere we solve this problem using a displaement-based formulation in the limit of inom-pressibility (ν = 0.49, ν = 0.499, ν = 0.4999, ν = 0.49999) and using the CPPE, SPPE and
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Figure 5.3: Square lamped on two edges under a vertial body load: values of the divergene of the displae-ments in the domainUsing CPPE formulation, similarly to the previous ase, the inompressibility is not veri-�ed, as it an be seen from Figure 5.3, where the values assum by the divergene of displae-ments is shown, using 10201 partiles. For what onerns other formulations, the orrespondingonvergene diagram of the error is shown in Figure 5.4 for the vertial displaement of thepoint B. We notie that the displaement based formulations have results ompatible withthe numerial problems of the loking; SPPE formulation also shows no onvergene, whilethe SPPE-div formulation shows onvergene even faster than the expeted seond-order. Weremark also that in this ase is not possible to ompute a 2nd norm of the error, sine wedo not have an analytial solution. We only an ompute the relative error in some samplingpoints, as reported in Aurihio et al. (2007).In Figure 5.5 we show the deformed on�guration obtained with MFPM and a displaement-based formulation (58081 nodes) and ν = 0.4999. A omparison with Figure 5.6, in whih anoverkilled deformed struture is shown, highlights that the displaement-based methods, inthe limit of inompressibility, su�er from volumetri loking.5.4 ConlusionsIn the present hapter we applied the Modi�ed Finite Partile Method to the problem of in-ompressible elastiity. In partiular, some di�erent formulations have been investigated: adisplaement-based formulation, in the limit of inompressibility, with ν → 0.5, and threedi�erent formulations of the Stokes problem. For these formulations, in partiular, the in-ompressibility onstrain (∇ ·u) is not imposed strongly, but it is replaed by a derived one,in whih the Lapaian operator is applied to pressure. This hoie is done to overome thedi�ulties related to the non-respet of the inf-sup ondition, whih results in unphysialosillations of the pressure �eld.Unfortunately, these derived formulation may need some boundary onditions for the on-strain equation, that are not needed by the original Stokes problem in the divergene form.
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Figure 5.4: Square lamped on two edges under a vertial body load: 2nd norm error using MFPM on adisplaement-based formulations, SPPE, and SPPE-div
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Figure 5.6: Square lamped on two edges under a vertial body load: deformed on�guration obtained withthe Gauge method and 58081 nodes.In this paper we investigate three di�erent fully-inompressible formulations: the so Consis-tent Pressure Poisson Equation, the Simpli�ed Pressure Poisson Equation and the Simpli�edPressure Poisson Equation with the divergene onstrain at the boundary. These formulationsdi�er among eah other for the boundary onditions imposed on the onstrain equation: inthe �rst ase, aording to Sani et al. (2006), no boundary onditions are required; in theseond ase, where the normal omponent of the displaement is know, a boundary onditionfor the pressure is obtained projeting the equilibrium equation on the outward normal; inthe SPPE-div, instead, the divergene-free onstrain is applied as boundary ondition for thePressure Poisson equation on the whole boundary.Here we see that for the CPPE formulation, the inompressibility onstraint is not respetedfor both problems under investigation; the SPPE exhibits lower onvergene of the error withrespet to the expeted seond order; and �nally the SPPE-div formulation exhibits orretseond-order auray, even if with a high onstant of the error. The displaement-basedformulations, even if orretly disretized with MFPM, exhibit the numerial pathology ofloking.PubbliationAn extended version of the present hapter has been published in Asprone et al. (2015).



Chapter 6Full inompressible solids and �uids6.1 Stokes problem: lassial formulationIn the present setion we introdue the Stokes equations for the solution of problems involvinginompressible solids and �uids. In the �rst part we fous on the mathematial expression ofthe Stokes equations and give a di�erent interpretation of variables depending on whether thebody under onsideration is a solid or a �uid. In the seond part we desribe the ommonlyused methodologies for the numerial solution of the Stokes problem in the ontext of theFinite Element Method and of the Finite Di�erene Method.The equations that desribe the dynamis of an inompressible body are
{

ρa = −∇p+ µ∆u+ b

∇ ·u = 0
(6.1)where the �rst equation is the linear equilibrium equation, and the seond is the inompress-ibility onstraint. Equations (6.1) have to be ompleted with suitable boundary and initialonditions.In Equations (6.1) the variable ρ is the material density, µ is the shear modulus (that in�uid dynamis assumes the denomination of dynami visosity), p is the pressure, assumedpositive in ompression, and b is the vetor of the internal body loads. The variable u assumesdi�erent physial meanings depending on whether the body under onsideration is a solid ora �uid.In the ase of an inompressible solid, u is the displaement �eld, and therefore the inertialterm ρa is expressed as

ρa = ρ
∂2u

∂t2
(6.2)For an inompressible �uid, onversely, the variable u represents the veloity �eld, andtherefore the inertial term is written as

ρa = ρ
∂u

∂t
+ ρc ·∇u (6.3)The term c is the relative veloity between the �uid and the referene frame. When we71



72 6. Inompressibilityassume a total Eulerian formulation, c = u, and therefore the equilibrium equation is modi�edin the form
ρ

(

∂u

∂t
+ u ·∇u

)

= −∇p+ µ∆u+ b (6.4)that is evidently a non-linear equation.In the present paper, however, we neglet the non-linear term, sine the omputationaldi�ulties involved in the solution of the inompressibility problem are still evident also in thelinear ase.In the theoretial disussion of next setions, we refer to the interpretation of variables asin the �uid ase. Therefore, the set of equations under our attention is:






ρ
∂u

∂t
= −∇p+ µ∆u+ b

∇ ·u = 0
(6.5)Equations (6.5) are known as Stokes equations in the primitive variables u and p, andorrespond to the assumption of highly visous �ows.6.1.1 Classial numerial shemes for the solution of the Stokes problemThe disretization of Equations (6.5), performed using the same spatial disretization for uand p, leads to a well known instability of the pressure, known in the literature as hekerboardinstability. Suh pressure unphysial osillation an be avoided when a numerial ondition,known as LBB ondition, or inf-sup ondition, is respeted.In the Finite Element Method, the lassial way to overome pressure instability is theuse of di�erent interpolations for veloity and pressure �elds: as an example, the veloity anbe disretized using quadrati interpolation, while the pressure an be disretized using linearinterpolation. This hoie of interpolations ensures the respet of the inf-sup ondition andtherefore the spurious pressure osillations are avoided.
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Figure 6.1: A staggered grid



6.2. Stokes problem: alternative formulations 73The problem of hekerboard instability arises also in the ontext of olloation methods,as shown in Strikwerda (1984). In partiular, in the Finite Di�erene Method this numer-ial di�ulty is solved using staggered grids, alled also MAC grids (Harlow et al., 1965),where horizontal and vertial veloity omponents and the pressure are omputed on di�erentgrids. Also the di�erent sets of equations are olloated in di�erent points (see Figure 6.1):in partiular, the horizontal equilibrium equations are olloated on the horizontal veloitypoints; the vertial equilibrium equations are olloated on the vertial veloity points, andthe inompressibility onstraints are olloated on the pressure points. One of the advantagesof staggered grids is the fat that for Dirihlet boundary onditions (that is, where the �uidveloity is known) no boundary onditions for the pressure are required. Moreover, staggeredgrids preserve the properties of ontinous di�erential operators: as an example, the superim-position of the disrete divergene operator on the disrete gradient operator leads to a orretdisretization of the Laplae operator. The main drawbak for MAC grids is that they annotbe used for non-regular distributions of nodes, and thus they annot be extended, in general,to meshless methods.6.2 Stokes problem: alternative formulationsIn the present setion we introdue alternative formulations presented in the literature forthe solution of the Stokes problem. Thanks to some modi�ations of the original Stokesequations (6.5), for suh formulations the respet of an inf-sup ondition is not required, andtherefore neither speial triks for the disretization, nor speial grids, are neessary, makingsuh formulations well suited to be approximated through meshless methods.6.2.1 Stokes equations in the Pressure Poisson formIn the �rst three formulations presented in this setion the inompressibility onstraint isreplaed by a di�erent equation, obtained applying the divergene operator to the equilibriumequation of System (6.5). Aordingly, we have
∇ · (ρ∂u

∂t

)

= ∇ · (−∇p+ µ∆u+ b) (6.6)that an be rewritten in the form
∆p− µ∇ · (∆u) = ∇ ·b (6.7)and then further simpli�ed exploiting the inompressibility onstraint ∇ ·u = 0, obtaining

∆p = ∇ ·b (6.8)The onstraint onditions (6.7) and (6.8) are both Poisson equation for the pressure, andtherefore they are known as Pressure Poisson Equations. In the literature there has been agreat disussion on whether boundary onditions are needed for equations (6.7) and (6.8).Sani et al. (2006) propose three di�erent formulations:



74 6. Inompressibility1. In the �rst formulation (referred to, in the following, as formulation S1) the equilib-rium equation is oupled to the onstraint equation (6.7), obtaining the following set ofequations






ρ
∂u

∂t
+∇p = µ∆u+ b

∆p− µ∇ · (∆u) = ∇ ·b (6.9)on whih Dirihlet or Neumann boundary onditions are imposed on the equilibriumequations, and no boundary onditions are imposed on the onstraint equation.2. In the seond formulation (referred to as S2) the equilibrium equation is oupled to theonstraint equation (6.8)






ρ
∂u

∂t
+∇p = µ∆u+ b

∆p = ∇ ·b (6.10)The boundary onditions for the onstraint equation, in this ase, are the projetions ofthe equilibrium equation on the boundary outward normal vetor.
(ρ∂u/∂t+∇p− µ∆u− b) ·n = 0 (6.11)3. In the third formulation (referred to as S3) the equilibrium and the onstraint equationsare the same as Equations (6.10), but the boundary onditions for the onstraint equationis the original inompressibility ondition ∇ ·u = 0.6.2.2 A pseudo-ompressibility formulation of the Stokes problemA ommonly used formulation for the Stokes problem in primitive variables is






ρ
∂u

∂t
+∇p = µ∆u+ b

∇ ·u− ε∆p = 0
(6.12)where a relaxation term ε∆p is introdued in the inompressibility ondition. Suh a for-mulation, disussed by Brezzi and Douglas Jr (1988) in the framework of Galerkin methods,belongs to the lass of the pseudo-ompressibility methods, sine a perturbation is introduedin the ontinuity onstraint. The addition of suh a perturbation results in a smoothing ofthe pressure �eld, alleviating the e�ets of hekerboard instability. However, the parameter εhas to be properly set: it has to be not exessively small, in order to have a regularizing e�eton the pressure �eld; and it has to be not too high, sine it introdues an error in the originalinompressibility ondition (Quarteroni et al., 2000).The boundary onditions for the equilibrium equations are the usual onditions on velo-ity or stress. The boundary ondition adopted for the onstraint equation is the ontinuityequation ∇ ·u = 0. This formulation will be referred in the following as S4.



6.2. Stokes problem: alternative formulations 756.2.3 The gauge methodThe gauge method (Wang and Liu, 2000; E and Liu, 2003) is a ontinous formulation of theStokes problem based on the following hange of variables
u = a−∇φ (6.13)in Equations (6.5). Aordingly the modi�ed set of equations is







ρ
∂a

∂t
− ρ

∂∇φ

∂t
= −∇p+ µ∆a− µ∆∇φ+ b

∇ ·a = −∆φ
(6.14)that an be rewritten as







ρ
∂a

∂t
= µ∆a+ b

∇ ·a = −∆φ
(6.15)if the pressure p is written as

p = ρ
∂φ

∂t
− µ∆φ (6.16)From Equation (6.15) we observe that the variables a and φ are deoupled in the linearequilibrium equation. However, in this formulation the equilibrium equation annot be solvedseparately from the onstraint equation, sine a and φ are oupled in the boundary onditions,as desribed in the followingDirihlet boundary onditions. The expressions of Dirihlet boundary onditions are

{

u ·n = ūn

u · t = ūτ
(6.17)that an be rewritten, using Equation (6.13), in the form

{

(a+∇φ) ·n = ūn

(a+∇φ) · t = ūτ
(6.18)E and Liu (2003) onsider the ase of homogeneous Dirihlet boundary onditions andpropose two di�erent possible hoies:Case 1: ∂φ

∂n
= 0 a ·n = 0 a · t = ∂φ

∂t
(6.19)Case 2: φ = 0 a ·n =

∂φ

∂n
a · t = 0 (6.20)For future disussion, we remark that onditions (6.19) and (6.20) are obtained, after somealgebra, from Equation (6.18):1. The �rst two boundary onditions of (6.19) are obtained splitting the �rst equation of



76 6. Inompressibility(6.18) in two parts, the �rst ontaining the variable a and the seond ontaining thevariable φ, while the last boundary ondition of (6.19) is simply the seond equation of(6.18);2. The set of boundary onditions (6.20), on the ontrary, are obtained using a similarproedure, but splitting the tangential boundary ondition of (6.18) instead of the normalboundary ondition.Neumann boundary onditions. The ase of Neumann boundary onditions has notbeen takled so far within the ontext of the gauge method, and therefore we extend toinorporate also the Neumann boundary onditions. The stress tensor σσσ is expressed by therelation
σσσ = −pI+ µ(∇u+∇uT ) (6.21)whih,using Equation (6.13), an be rewritten as

σσσ = −
(

ρ
∂φ

∂t
− µ∆φ

)

I+ µ
(

∇a+∇aT − 2∇∇φ
) (6.22)In Equation (6.22) the term ∇∇φ is the seond gradient of the salar �eld φ, i.e., , in indexnotation

(∇∇φ)ij =
∂2φ

∂xi∂xj
(6.23)Introduing the hange of variables (6.13) in the expressions of the omponents of theoutward stress at the boundary

{

σσσn ·n = σ̄n

σσσn · t = σ̄t
(6.24)where n and t are again the outward normal and tangential unit vetors at the boundary ofthe domain, we obtain

{

µ [∆φ+ 2(∇∇φn) ·n] + µ(∇a+∇aT )n ·n = σ̄n

2µ(∇∇φn) · t+ µ(∇a+∇aT )n · t = σ̄t
(6.25)Restriting to the stationary ase (i.e., ∂φ/∂t = 0) and following a proedure similar to thease of Dirihlet boundary onditions, from Equation (6.25) we an obtain two di�erent setsof Neumann boundary onditions. The �rst one is obtained splitting the normal omponentof the boundary onditions (6.25) and reads











µ(∇a+∇aT )n ·n = σ̄n

2µ(∇∇φn) · t+ µ(∇a+∇aT )n · t = σ̄t

µ [∆φ+ 2(∇∇φn) ·n] = 0

(6.26)while the seond one is obtained splitting the tangential omponent of System (6.25) and it
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µ [∆φ+ 2(∇∇φn) ·n] + µ(∇a+∇aT )n ·n = σ̄n

µ(∇a+∇aT )n · t = σ̄t

2µ(∇∇φn) · t = 0

(6.27)For both ases of boundary onditions (6.26) and (6.27), the last equation plays the roleof boundary ondition for the inompressibility equation.In the numerial tests, we refer to the gauge method in stationary form with Dirihletboundary onditions (6.19) with the abbreviation S5-D; to the gauge method with Neumannboundary onditions (6.26) with the abbreviation S5-N-a; the gauge method with Neumannboundary onditions (6.27) with the abbreviation S5-N-b.6.2.4 Summary of the formulations applied in the numerial testsIn Table 6.1 we summarize the formulations introdued in the previous paragraphs and in-diate, for eah one, the equation used as inompressiblity onstraint and the orrespondingboundary ondition. These formulations are then tested in the next setion on some benh-mark problems.Formulation Referene paper onstraint equation BC for the onstraint equationS1 Sani et al. (2006) ∆p− µ∇ · (∆u) = ∇ ·b noneS2 Sani et al. (2006) ∆p = ∇ ·b (ρ∂u/∂t+∇p− µ∆u− b) ·n = 0S3 Sani et al. (2006) ∆p = ∇ ·b ∇ ·u = 0S4 Brezzi and Douglas Jr (1988) ∇ ·u− ε∆p = 0 ∇ ·u = 0S5-D Wang and Liu (2000) ∆φ = −∇ · a ∂φ/∂n = 0S5-N-a ∆φ = −∇ · a 1/Re [∆φ+ 2(∇∇φn) ·n] = 0S5-N-b ∆φ = −∇ · a 1/Re [∆φ+ 2(∇∇φn) · t] = 0Table 6.1: Formulations of the steady Stokes problem analyzed in the present paper6.3 Appliation of the MFPM to steady Stokes problemsIn the following we use the Modi�ed Finite Partile Method to approximate the spatial deriva-tives appearing in the di�erent formulations introdued in the previous setion. In the presentsetion we restrit our attention to the stationary ase (that is, ∂u/∂t = 0). We �rst solvethe well-known benhmark of the lid-driven avity �ow and we fous on how formulationsS1, S2, and S3 (where the inompressibility onstraint is not enfored strongly) satisfy theinompressibility ondition ∇ ·u = 0. We then apply formulations S3, S4, and S5 on a squarewith a polynomial exat solution, on a quarter of annulus with a polynomial solution, and ona square under a uniform body load.6.3.1 The lid-driven avityThe geometry of the lid-driven avity is a square of side L, as depited in Figure 6.2; we set
L = 1m, µ = 1kg/ms as dynami visosity. The left, lower and right side of the square have



78 6. Inompressibilityveloity u = 0 m/s; the top side has a tangential veloity Ū = 1 m/s and a normal veloity
u ·n = 0 m/s
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Figure 6.2: The lid-driven avity: geometry and boundary onditionsWe start exploring the solution of the problem using formulations S1, S2, and S3 and payingpartiular attention to the method apability of enforing the inompressibility onstraint. InFigures 6.3, 6.4, and 6.5 we show the omputed values of ∇ ·u using formulations S1, S2, andS3. We notie that in Figures 6.3 and 6.4 the divergene is signi�antly greater than zero,whereas in Figure 6.5 the divergene is lose to zero everywhere exept than in the top orners,where there is a disontinuity in the boundary onditions. These results suggest us to abandonformulations S1 and S2 and to proeed only with formulation S3.6.3.2 Square with polynomial exat solutionWe now onsider a problem de�ned on a square domain [−1, 1]x[−1, 1] and onstruted startingfrom the following manufatured exat solution:










u(x, y) = 20xy3

v(x, y) = 5(x4 − y4)

p(x, y) = (60x2y − 20y3 + C)

(6.28)The problem is formulated imposing no body loads in the interior of the domain, andDirihlet boundary onditions on the whole boundary, in aordane to the analytial solution(7.30). The visosity is set as µ = 1kg/ms.The problem is solved using formulations S3, S4, and S5. The relaxation parameter offormulation S4 is set as ε = 10−4. The onvergene diagrams of the error related to theveloity �eld is reported in Figure 6.6. In partiular the gauge method (formulation S5-D)shows higher order onvergene with respet to the expeted seond order, and formulationS4 shows an even higher auray in the left part, and a seond-order auray at the rightside of the diagram.
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Figure 6.3: Lid-driven avity: divergene of the veloity using formulation S1
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Figure 6.4: Lid-driven avity: divergene of the veloity using formulation S2



80 6. Inompressibility

−0.5 −0.3 −0.1 0.1 0.3 0.5
−1

−0.8

−0.6

−0.4

−0.2

0  

 

−60

−40

−20

0

20

40

60

PSfrag replaements
x

y

Figure 6.5: Lid-driven avity: divergene of the veloity using formulation S3
In Figure 6.7 the error related to pressure �eld is shown. In this ase, formulation S5-D isthe only one whih shows a onstant slope (1.78) of the error urve, even if slightly below theexpeted seond-order auray. Formulation S3 shows orret auray at the left side of thediagram, and a little �attening in the right side of the diagram, while formulation S4 showshigh onvergene in the left side of the diagram (higher than seond-order) and a omplete�attening of the urve in the right side. We remark that suh a �attening an be asribedto the relaxation term ε∆p in the ontinuity equation of formulation S4, that, at the level ofdisretization reahed on the right zone of Figure 6.7, introdues an error on the pressure �eldhigher than the relaxation e�ets.The same problem has been studied also imposing Neumann boundary onditions on theleft and right sides of the domain and Dirihlet boundary onditions on the top and lowersides, and using gauge formulations S5-N-a and S5-N-b for the numerial solution. In thease of formulation S5-N-a, we disretized unknown �elds in spae using both seond-orderand third-order aurate MFPM disrete di�erential operators. From the onvergene plotsshown in Figure 6.8 we notie that in both ases the slope of the error urve is one order belowthe expeted one. We argue that this is due to the fat that seond derivatives are used inthe boundary onditions. This is also on�rmed using formulation S5-N-b and seond orderaurate MFPM di�erential operators. In fat, from Figure 6.8, the orresponding error urveshows �rst-order auray.
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Figure 6.6: Square with exat solution (7.30): onvergene diagram of the veloity error with formulationsS3, S4 and S5-D
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Figure 6.7: Square with exat solution (7.30): onvergene diagram of the pressure error with formulationsS3, S4 and S5-D



82 6. Inompressibility

20 40 80 160 240
10

−4

10
−3

10
−2

10
−1

10
0

e

 

 

S5−N−a: 2nd ord. acc.operat.
S5−N−a: 3rd ord. acc.operat.
S5−N−b: 2ord. acc.operat.
1st order slope
2nd order slope

PSfrag replaements
√
Nrelative error [ - ℄Figure 6.8: Problem with exat solution (7.30): onvergene diagram of the error using formulations S5-N-awith seond and third order aurate di�erential operators, and formulation S5-N-b using seond order auratedi�erential operators. In all ase the method experienes a loss of onvergene.6.3.3 Quarter of annulus under body loadWe now onsider a quarter of annulus, lamped on its entire boundary, under a polynomialbody load. The geometry of the problem is depited in Figure 7.7, with R = 4 and r = 1.The analytial solution of the problem is set equal to

{

u = 10−6x2y4(x2 + y2 − 16)(x2 + y2 − 1)(5x4 + 18x2y2 − 85x2 + 13y4 + 80− 153y2)

v = −2 · 10−6xy5(x2 + y2 − 16)(x2 + y2 − 1)(5x4 − 51x2 + 6x2y2 − 17y2 + 16 + y4) (6.29)The internal body loads are obtained using the manufatured solution (7.33). The problemhas been studied in Aurihio et al. (2007) using a stream funtion formulation and isogeo-metri analysis for the spatial disretization, exploiting the high regularity of isogeometrishape-funtions, and also the possibility of reproduing exatly the geometry of the domain.In the following we investigate how the seletion algorithm of supporting partiles for thederivative approximation in�uenes the quality of the solution on eah formulation. The testis relevant sine, due to the partiular geometry of this problem, a partile plaed on theinner radius of the annulus has, as losest partiles, other partiles plaed on only two quasi-parallel lines, leading to an ill-onditioned matrix Ai. In partiular, on a regular distributionof partiles (see Figure 6.9(b)), we test three di�erent algorithms:1. searhing algorithm 1 : the minimum number of supporting nodes for derivative ap-proximation is Ni = 9. The adopted threshold ondition number for matrix Ai is
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(b) Partile distributionFigure 6.9: Quarter of annulus lamped on all its edges

Cmax = 4 · 108;2. searhing algorithm 2 : the minimum number of supporting nodes for derivative approx-imation is Ni = 15. The threshold ondition number for matrix Ai is Cmax = 4 · 108;3. searhing algorithm 3 : nodes are seleted exploiting the partiular topology of the prob-lem and the regularity of the partile distribution. In this ase eah partile an bemarked using indies i and j on a ylindrial referene frame, and then, for a partiledenoted with (i, j), the supporting partiles are the ones between i − 1 and i + 1, andthose between j−1 and j+1. Afterwards, derivative approximations are obtained usingthe usual MFPM proedure. It is lear that this searhing algorithm is not general, andan be used only for regular distributions: however we present it sine it is the mostaurate solution that the MFPM an ahieve.In Figures 6.10(a) and 6.11(a) we show the supporting nodes of a partile plaed at x =
y =

√
2/2 seleted using searhing algorithms 1 and 2. In the �rst ase, the partiles inludedin the set of supporting nodes are 10, obtaining a ondition number C = 8.151 103 of thematrix Ai. In the seond ase the supporting partiles are not plaed on only two parallellines, and onsequently the ondition number is strongly redued (C = 2.18 102).In Figure 6.12(a) we show supporting nodes obtained using searhing algorithm 3. Partilesare plaed on three di�erent lines, leading to better results in terms of auray and erroronvergene, as shown omparing Figures 6.10(b), 6.11(b), and 6.12(b).For all three searhing algorithms, we notie that the formulation S5-D exhibits alwaysbetter performanes with respet to the other formulations. Formulations S3 shows alwaysthe worst performanes in terms of magnitude of the error, even if a seond-order auray istypially attained by all the investigated searhing algorithms. Finally, it has to be noted thatformulation S4 shows some onvergene osillations, even if an average seond-order auray
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(b) Convergene diagram of the error usingformulations S3, S4 and S5-D, with seond-orderaurate MFPMFigure 6.10: Problem of a quarter of annulus with exat solution (7.33) solved using searhing algorithm1
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(b) Convergene diagram of the error usingformulations S3, S4 and S5-D, with seond-orderaurate MFPMFigure 6.11: Problem of a quarter of annulus with exat solution (7.33) solved using searhing algorithm2
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(b) Convergene diagram of the error usingformulations S3, S4 and S5-D, with seond-orderaurate MFPMFigure 6.12: Problem of a quarter of annulus with exat solution (7.33) solved using searhing algorithm3is obtained. Moreover, the error magnitude of formulation S4 is often omparable with theone shown by formulation S5-D.6.3.4 Square lamped on two edges under a vertial body loadThe geometry of the following problem is a square in the domain of side L under a vertial bodyload, as depited in Figure 6.13. The problem is an inompressible solid mehanis appliation,and here we highlight that the governing equations do not hange, but only the interpretationof variables is di�erent with respet to the �uid ase. We set L = 1, µ = 40kg/ms, and
b = [0 − 80]TN/m2. The imposed boundary onditions are

{

u = 0 left and lower sides
σσσn = 0 right and top sides (6.30)The present problem has been solved in Aurihio et al. (2007) using the stream-funtionformulation and an isogeometri approah for the spatial disretization.The referene solutions are the vertial displaement in the point A, the horizontal and ver-tial displaements in the point B, and the horizontal displaement in the point C, omputedwith the ommerial Finite Element ode �ABAQUS� using an overkilled disretization, andwe ompute the relative error in some sampling points, as reported in Aurihio et al. (2007).The numerial solutions are omputed using formulations S3, S4 and S5-N-a.The relaxationparameter of formulation S4 has been set as ε = 10−4. The onvergene plots of the error arereported in Figures 6.14, 6.15, and 6.16.We notie that formulations S3 and S4 exhibit the expeted seond-order onvergene ofthe error, whereas formulation S5-N-a experienes a loss of onvergene order, similar to the
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Figure 6.13: Square lamped on two edges under a vertial body load: geometry and boundary onditions
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Figure 6.14: Square lamped on two edges: onvergene diagram of the error using formulation S3
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Figure 6.15: Square lamped on two edges: onvergene diagram of the error using formulation S4

20 40 80 160 240
10

−4

10
−3

10
−2

10
−1

10
0

 

 

v
A

u
B

v
B

u
C

1st order slope
2n order slopePSfrag replaements √

N

relativeerror
[-℄

Figure 6.16: Square lamped on two edges: onvergene diagram of the error using formulation S5-N-a



88 6. Inompressibilityase of the previous problem with Neumann boundary onditions.6.4 Non-stationary Stokes problem: ontinous formulationsFollowing what is usually done for the equations of linear elastiity, the most natural idea forthe solution of a non-stationary Stokes problem is to solve jointly the equation of motion andthe inompressibility onstraint. This proedure is extremely ostly, sine at eah time stepan inversion of a 3Nx3N sparse matrix is required, and time integration has to be neessarilydone impliitly, sine the onstraint equation is not depending on time. Moreover, the jointsolution of motion and inompressibility equations requires the spatial disretization to satisfythe inf-sup ondition.Therefore the proedure ommonly adopted in the literature for the solution of non-stationary Stokes problems onsists in enforing equilibrium and inompressibility in two dif-ferent substeps of eah time integration step, reduing the total dimensions of the matriesto invert, and hene reduing the omputational ost of the method. In the following we de-sribe the Chorin algorithm, that was the �rst algorithm introduing this deoupling betweensubsteps, and its developments.6.4.1 The original Chorin algorithmThe Chorin algorithm (Chorin, 1967, 1968) onsists in dividing eah time-integration step inthree substeps:1. In the �rst substep, a guess veloity u∗ is omputed through the solution of a modi�edequilibrium equation, in whih the pressure term is omitted; aordingly Equation (6.5)redues to the following






ρ
u∗ − un

∆t
= µ∆un + b+ suitable boundary ondition onu∗

(6.31)The guess veloity u∗ does not respet, in general, the inompressibility onstraint;2. In the seond step the pressure pn+1 is omputed solving the system


















ρ
un+1 − u∗

∆t
= −∇pn+1

∇ ·un+1 = 0+ suitable boundary onditions on pn+1

(6.32)where the inompressibility onstraint at the time step n + 1 is enfored. Equations(6.32) an be rewritten in the Poisson form as follows
{

∆t∆pn+1 = ∇ ·u∗+ suitable boundary onditions on pn+1
(6.33)



6.4. Non-stationary Stokes problem: ontinous formulations 893. Finally, the veloity un+1 is orreted using the guess solution u∗ and pn+1

un+1 = u∗ − 1

ρ
∇pn+1 (6.34)We remark that the sum of Equations (6.31) and (6.32) gives a orret time disretizationof the Stokes problem, with an expliit time approximation for the veloity and an impliitapproximation for the pressure.6.4.2 Developments of the Chorin algorithmFollowing the pioneering work by Chorin, many other algorithms have been introdued, espe-ially with the purpose of improving the auray near the boundary. In order to reah thisgoal, one may at on the boundary onditions to be imposed on Equation (6.31), the boundaryonditions to be imposed on Equation (6.32), on the pressure update (6.34).A deep analysis of the Chorin algorithm is proposed in E and Liu (1995), where the hoieof the proper boundary onditions to be imposed at the di�erent steps of the algorithm isdisussed, in order to redue the error introdued in the interior of the domain when inaurate(or wrong) boundary onditions are imposed.Furthermore Brown et al. (2001) aurately review a wide number of algorithms, disussingthe onvergene order in time, that is a onsequene of the hoie of boundary onditions atthe di�erent algorithm substeps. All the disussed algorithms are presented in the form







ρ
u∗ − un

∆t
= −∇q +

µ

2
∆(u∗ + un)

B(u∗) = 0 x ∈ ∂Ω
(6.35a)











un+1 = u∗ −∆t∇φn+1

∇ ·un+1 = 0

BC(φn+1) = 0 x ∈ ∂Ω

(6.35b)
pn+1/2 = q + L(φn+1) (6.35)where q, φ are auxiliary variables related to the pressure, L is a linear operator, and B and

BC are suitable boundary onditions to be imposed on u∗ and φ respetively. We remark thefat that in (6.35) a seond-order impliit sheme has been hosen for the time advane.In the following we fous on three algorithms desribed in Brown et al. (2001), whih followthe substeps (6.35a), (6.35b), and (6.35), haraterized by di�erent hoies of q and L:1. The �rst algorithm was introdued by Bell et al. (1989) and is haraterized by thefollowing hoie: q = pn+1/2 and L = I. In the present paper we refer to this algorithmwith the abbreviation D1.2. The seond algorithm was introdued by Kim and Moin (1985) and is haraterized bythe following hoie: q = 0 and L = I − ν∆t/2∆. In the present paper we refer to thisalgorithm with the abbreviation D2.



90 6. Inompressibility3. The third algorithm was introdued by Brown et al. (2001) and is haraterized by thefollowing hoie: q = 0 and L = I − µ∆t/2∆. In the present paper we refer to thisalgorithm with the abbreviation D3.For all the above formulations the seleted boundary onditions are B(u∗) = u∗ − un+1and BC(φn+1) = ∂φ/∂n.We summarize the desribed algorithm in Table 6.2.Referene abbreviation Referene paper Linear operatorsD1 Bell et al. (1989) q = pn−1/2, L = ID2 Kim and Moin (1985) q = pn−1/2, L = I − µ∆t/2∆D3 Brown et al. (2001) q = 0, L = I − µ∆t/2∆Table 6.2: Algorithms analyzed in the present paper for the non-stationary Stokes equations6.4.3 Gauge method in dynamisThe non-stationary form of the gauge method proposed in E and Liu (2003) allows to solvethe non-stationary Stokes problems in an e�ient way using, at eah time step, two di�erentsubsteps instead of three:1. In the �rst substep the equilibrium equation is advaned in time using any time integra-tion sheme






















ρ
∂a

∂t
= µ∆a+ b x ∈ Ω

an+1 ·n = 0

an+1 · t = −∂φn

∂t
x ∈ Γ

(6.36)Di�erently from the Chorin algorithm, in this ase the �eld a has not to be orreted.2. In the seond time step the gauge variable φn+1 is omputed through the solution of thefollowing Poisson problem






∆φn+1 = −∇ ·an+1 x ∈ Ω

∂φn+1

∂n
= 0 x ∈ Γ

(6.37)We �nally remark that the tangential boundary ondition of substep 1 takes into aountthe value of the gauge variable φ at the time step n rather than at the time step n+1, allowingto deouple the solution of substep 1 from the solution of substep 2.In the following setion we refer to the non-stationary gauge method as formulation D4.



6.5. Appliation of the MFPM to a non-stationary Stokes problems 916.5 Appliation of the MFPM to a non-stationary Stokes prob-lemsIn the present setion we apply the MFPM spatial disretization to formulations from D1 toD4. The test ase is a square in the domain [−1, 1]x[−1, 1] with exat solution










u(x, y, t) = 20xy3 sin(2πt)

v(x, y, t) = 5(x4 − y4) sin(2πt)

p(x, y, t) = (60x2y − 20y3) sin(2πt)

(6.38)The problem is governed by the non-stationary Stokes equations (with material properties
ρ = 1kg/m3 and µ = 1kg/ms) subjeted to homogeneous initial onditions and Dirihletboundary onditions in aordane with Equation (6.38) on the whole boundary.6.5.1 Solution using algorithms D1, D2 and D3In Figures 6.17, 6.18, and 6.19 we show the onvergene diagrams of the error obtained applyingMFPM spatial disretization on formulations D1, D2, and D3. For eah formulation, theanalyses have been run using di�erent time steps. The 2-norm error is omputed at t = 0.25
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Figure 6.17: Problem with exat solution (6.38): onvergene diagram of the error in spae with formulationD1 Using formulation D1 (Figure 6.17) we notie the expeted seond-order rate of onvergeneof the error for ∆t = 10−3 and ∆t = 10−4, while for ∆t = 10−2 the error in time is dominant,worsening the onvergene order of the error in spae. Using formulation D2 (Figure 6.18)
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Figure 6.18: Problem with exat solution (6.38): onvergene diagram of the error in spae with formulationD2
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Figure 6.19: Problem with exat solution (6.38): onvergene diagram of the error in spae with formulationD3



6.5. Appliation of the MFPM to a non-stationary Stokes problems 93we notie that the onvergene rate is still optimal for ∆t = 10−3 and ∆t = 10−4, and wenotie also an appreiable improvement of the solution with ∆t = 10−2. Using formulationD3 (Figure 6.19) we notie that the onvergene rate in spae is lost for all ∆t.6.5.2 Solution using algorithm D4The problem with exat solution (6.38) is also solved using formulation D4 (transient gaugemethod) with three di�erent time integration shemes for the equilibrium equation of System(6.36):1. an impliit Euler sheme (�rst order aurate in time). The equilibrium equation isdisretized as follows:
an+1 − an

∆t
= ∆an+1 + bn+1 (6.39)2. a Crank-Niholson sheme (impliit sheme, seond order aurate in time). The equi-librium equation is disretized as follows:

an+1 − an

∆t
=

1

2
(∆an+1 +∆an) +

1

2
(bn+1 + bn) (6.40)3. an expliit fourth order aurate Runge-Kutta time integration shemeIn the ase of expliit Euler time disretization (6.39) the onvergene diagram of the errorin spae is shown in Figure 6.20. We notie that only using ∆t = 10−4 there is a orretseond-order auray of the solution, while using the other time steps the expeted aurayis lost due to the predominane of the error in time.In the ase of Crank-Niholson time disretization (6.40) we obtain the onvergene dia-gram of the error in spae reported in Figure 6.21, from whih we notie that the error in timeis small enough not to a�et the seond-order auray of the solution in spae.The onvergene diagram of the error obtained using the fourth-order aurate Runge-Kutta sheme is presented in Figure 6.22. We notie that for time steps ∆t = 10−2 and ∆t =

10−3, the sheme experienes numerial instability for more aurate spae disretizations, dueto the stability limits of the Runge-Kutta sheme.
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Figure 6.20: Problem with exat solution (6.38): onvergene diagram of the error in spae with formulationD4 and sheme (6.39) for the advane in time
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Figure 6.21: Problem with exat solution (6.38): onvergene diagram of the error in spae with formulationD4 and sheme (6.40) for the advane in time
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Figure 6.22: Problem with exat solution (6.38): onvergene diagram of the error in spae with formulationD4, using a fourth-order expliit Runge-Kutta sheme for the advane in time
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Chapter 7Modi�ed Finite Partile Method inthe framework of the Least SquareResidual MethodThe appliation of the Modi�ed Finite Partile Method in its novel formulation (see hapter3 for details) to full inompressible bodies implies, as shown in Chapter 6, that the equationsgoverning the behaviour of full inompressible bodies have to be reformulated, in order tooverome the need of respeting the inf-sup ondition.In our researh we would like to solve the original equations of inompressibility, withoutreurring to any trik or modi�ation of the governing equations. This is why here we in-trodue an extended formulation of the MFPM, that an be used for the disretization of aninompressibility problem, using a Least Square Residual Method for the solution of the �nalproblem. In this hapter therefore we show the extended MFPM formulation and then we dis-retize the Stokes equations using the MFPM in onjuntion with the Least Square ResidualMethod, following the idea of Chi et al. (2014) for the ase of Radial Basis olloation, andshow the solution of some benhmarks. Finally we extend the formulation also to non-linearproblems, and solve the famous benhmark of the lid-driven avity.7.1 Modi�ed Finite Partile Method: the extended formulationThe extended formulation of the Modi�ed Finite Partile Method is slightly di�erent from theversion published in Asprone et al. (2014). The present version onsiders two di�erent sets ofpoints for the approximation:1. the olloation points, indiated in the following as x = [x y z]T , are the pointswhere funtions and derivatives are omputed. This node distribution is plaed withinthe physial domain of the problem under onsideration, and is the node set on whihequations are olloated. The total number of olloation points is indiated with NC ;2. the ontrol nodes, indiated in the following as ξξξ = [ξ η ζ]T , are the nodes wherewe plae the degrees of freedom in terms of whih we express funtions and derivatives.97



98 7. Extended Modified Partile MethodControl nodes do not have immediate physial evidene and hene they an be plaed inany onvenient way in the domain, i.e., on a Cartesian, equispaed grid. We remark thatthis hoie does not a�et the harateristi of the MFPM of being a meshless method,sine olloation nodes an assume any position, even extremely unstrutured, withinthe physial domain. The total number of ontrol nodes used for the approximation isindiated with NS .
The �rst step of the approximation proedure of a salar funtion u(x) and its spatialderivatives is the omputation of the Taylor series expansion of u(x), entered in a olloationpoint xi and expanded up to the seond order
u(ξξξ) = u(xi)+Dxu(xi)(ξ − xi) +Dyu(xi)(η − yi) +Dzu(xi)(ζ − zi)+

+
1

2
D2

xxu(xi)(ξ − xi)
2 +

1

2
D2

yyu(xi)(η − yi)
2 +

1

2
D2

zzu(xi)(ζ − zi)
2+

+D2
xyu(xi)(ξ − xi)(η − yi) +D2

yzu(xi)(η − yi)(ζ − zi)+

+D2
xzu(xi)(ξ − xi)(ζ − zi)

(7.1)
In a �rst stage we assume to know the nodal values of u in the ontrol nodes ξξξ: thereforeEquation (7.1) ontains 10 unknown terms (funtion and derivative values in the olloationpoint xi) and hene 10 equations are needed to ompute their value. Therefore, for eaholloation point xi we selet a subset Xi of ontrol nodes ξξξj whih serve as auxiliary nodesfor funtion and derivatives in xi. Then we evaluate Equation (7.1) in eah node ξξξj ∈ Xiobtaining
u(ξξξj) = u(xi)+Dxu(xi)(ξj − xi) +Dyu(xi)(ηj − yi) +Dzu(xi)(ζj − zi)+

+
1

2
D2

xxu(xi)(ξj − xi)
2 +

1

2
D2

yyu(xi)(ηj − yi)
2 +

1

2
D2

zzu(xi)(ζj − zi)
2+

+D2
xyu(xi)(ξj − xi)(ηj − yi) +D2

yzu(xi)(ηj − yi)(ζj − zi)+

+D2
xzu(xi)(ξj − xi)(ζj − zi)

(7.2)
We also introdue 10 known funtions W i

α = Wα(ξξξ − xi), evaluate them in the points
ξξξj ∈ Xi, and multiply the evaluations of the left- and right-hand sides of Equation (7.2) bythe evaluations W ij

α = Wα(ξξξj − xi). Finally we sum all produts and obtain 10 equations of
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u(xi)

∑

j

W ij
α +Dxu(xi)

∑

j

(ξj − xi)W
ij
α +Dyu(xi)

∑

j

(ηj − yi)W
ij
α +Dzu(xi)

∑

j

(ζj − zi)W
ij
α +

+
1

2
D2

xxu(xi)
∑

j

(ξj − xi)
2W ij

α +
1

2
D2

yyu(xi)
∑

j

(ηj − yi)
2W ij

α +

+
1

2
D2

zzu(xi)
∑

j

(ζj − zi)
2W ij

α +D2
xyu(xi)

∑

j

(ξj − xi)(ηj − yi)W
ij
α +

+D2
yzu(xi)

∑

j

(ηj − yi)(ζj − zi)W
ij
α +D2

xzu(xi)
∑

j

(ξj − xi)(ζj − zi)W
ij
α =

=
∑

j

u(ξξξj)W
ij
α α = 1, ..., 10 (7.3)that an be rearranged in matrix form as follows:
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∑
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∑
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∑
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∑
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∑
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(7.4)
The projetion funtions used in the appliations in the present paper are

W i
1 = 1 W i

6 = (η − yi)
2

W i
2 = ξ − xi W i

7 = (ζ − zi)
2

W i
3 = η − yi W i

8 = (ξ − xi)(η − yi)
W i

4 = ζ − zi W i
9 = (η − yi)(ζ − zi)

W i
5 = (ξ − xi)

2 W i
10 = (ζ − zi)(ξ − xi)Equation (7.4) is then rewritten in the form

AiD(ui) = W
iu (7.5)where

W
i = [Wi1 | Wi2 | ... | WiNi ] (7.6)and

Wij = [W ij
1 | W ij

2 | ... | W ij
10]

T (7.7)



100 7. Extended Modified Partile MethodThe vetor u ollets the known nodal values in the node set ξξξ ∈ X. Then, by inverting(7.5), we obtain
D(ui) = Ei

W
iu (7.8)where Ei =

(

Ai
)

−1, and �nally
D(ui) = D

iu (7.9)with
D

i = Ei
W

i (7.10)The 10xNi operator Di, applied to u, returns a 10x1 vetor olleting all the approximationsof funtions and derivatives of u(x) in the olloation point xi.However, here we are interested in building 10 linear operators (I, Dx, Dy, Dz, Dxx, Dyy,
Dzz, Dxy, Dyz, Dzx) that, applied to the vetor u, return the evaluations of funtion andderivatives in all olloation points x. These operators are simply built olleting, for eah i,the orret row of Di, identi�ed through Equation (7.4). For example, in order to build thelinear operator Dx (the disrete ounterpart of ∂/∂x), we simply onsider, for eah i, the 2ndrow of Di. The �nal form of Dx is then

Dx =









D1
2

D2
2

...

D
NC
2









(7.11)where Di
α is the α-th row of Di.Similarly, in order to retrieve the evaluations of u(x) in the olloation points, we buildthe operator I suh that

[u(xi)]i=1,...,NC
= I[u(ξξξj)]j=1,...,NS

(7.12)whose rows are found seleting, for eah i, the �rst row of Di:
I =









D1
1

D2
1

...

D
NC
1









(7.13)The olumns of I an be interpreted as the evaluations of the NS shape funtions in theolloation points.7.2 Governing equations for inompressible �owsThe governing equations of inompressible �uid �ows are the well known Navier-Stokes equa-tions






ρ
∂u

∂t
+ ρu ·∇u = −∇p+ µ∆u+ b

∇ ·u = 0
(7.14)



7.2. Governing equations for inompressible �ows 101where the �rst equation expresses the onservation of the linear momentum, and the seondequation expresses the inompressibility onstraint. The variable ρ is the �uid density, u isthe veloity �eld, p is the pressure �eld, µ is the dynami visosity, b is the vetor of internalloads.The Navier-Stokes equations are non-linear, due to the presene of the onvetive term
ρu ·∇u. Nevertheless, when visous fores dominate inertial fores, suh equations an berewritten negleting the onvetive term, obtaining







ρ
∂u

∂t
= −∇p+ µ∆u+ b

∇ ·u = 0
(7.15)known as Stokes equations. Both Systems (7.14) and (7.15) have to be ompleted with suitableboundary onditions, onerning the boundary veloity or the boundary outward stress.In the present work we restrit to stationary �ows, that is, ∂u/∂t = 0; moreover, thework is divided in two parts: in the �rst part we onentrate on Stokes equations, in orderto study how the Modi�ed Finite Partile Method, in ombination with the Least SquareResidual Method, deals with the numerial limitation of the inf-sup ondition; in the seondpart we fous on the solution of the omplete Navier-Stokes equations, and show a numerialproedure to handle the non linearity.7.2.1 Solution of the Stokes equations using the Modi�ed Finite PartileMethod and the Least Square Residual MethodIn the spirit of olloation methods we disretize the steady Stokes equations using the Modi�edFinite Partile Method. The disrete linear system of equations is written in the form









Keq

Kinc

Kdir

Kneum













û

v̂

p̂



 =









f̂

0

ū

t̄









(7.16)where
Keq =

[

µL 0 −Dx

0 µL −Dy

] (7.17)
Kinc =

[

Dx Dy 0
] (7.18)

Kdir =

[

nxI nyI 0

txI tyI 0

] (7.19)
Kneum =

[

2µ(n2
xDx + nxnyDy) 2µ(nxnyDx) + n2

yDy −I

2µnxtxDx + µ(nxty + nytx)Dy µ(nxty + nytx)Dx + 2µnytyDy 0

] (7.20)In Equations (7.17), (7.18), (7.19), and (7.20) the matrix L = Dxx + Dyy is the disrete



102 7. Extended Modified Partile MethodLaplae operator, û, v̂, and p̂ are the nodal unknowns assoiated to the veloity omponents
u and v and to the pressure p, f̂ is the vetor of the internal loads at olloation points, ū isthe vetor of the known boundary displaements, and t̄ is the vetor of the known boundaryoutward stress at Neumann olloation points. Finally nx and ny are square diagonal matriesolleting the values of the omponents of the boundary outward normal vetor along the x-and y-diretion; at the same way tx and ty are square diagonal matries olleting the valuesof the boundary outward tangential vetor along the x- and y-diretion.When olloation and ontrol points oinide, the values of the ontrol unknowns an beretrieved by inverting system (7.16). Unfortunately the pressure �eld obtained through diretinversion of Equation (7.16) shows unphysial osillations, known in the literature as pressurehekerboard instability.In order to overome suh a numerial di�ulty, here we use the Least Square ResidualMethod, following what has been suessfully applied by Chi et al. (2014) using Radial Ba-sis Funtions for spatial disretization. The proedure onsists in disretizing system (7.15)onsidering a number NC of olloation points higher than the number NS of ontrol nodes;system (7.16) is therefore a retangular, overdetermined system of algebrai equations, whosesolution an be approximated through minimization of a squared error. Suh an error is de�nedas

E = ‖e‖2 = (Kd− f)T (Kd− f) (7.21)where K is the sti�ness matrix of Equation (7.16) and d = [û v̂ p̂]T . Error (7.21) an befurthermore expanded as
E =(Keqd− f)T (Keqd− f) + (Kincd)

T (Kincd)+

+(Kdird− ū)T (Kdird− ū) + (Kneumd− t̄)T (Kneumd− t̄)
(7.22)In Chi et al. (2014) it is noted that error (7.22) is unbalaned among its omponents.Therefore suh error omponents are properly weighted, leading to the de�nition of a weightederror

Ew =(Keqd− f)T (Keqd− f) + (Kincd)
T
Ainc(Kincd)+

+(Kdird− ū)TAdir(Kdird− ū) + (Kneumd− t̄)TAneum(Kneumd− t̄)
(7.23)where Ainc = αincI is a square diagonal matrix olleting the weights assoiated to the disreteinompressibility equations, Adir = αdirI ollets the weights assoiated to Dirihlet bound-ary onditions, and Aneum = αneumI ollets the weights assoiated to Neumann boundaryonditions. The total weighted error an be �nally rewritten as

Ew = (Kd− f)TA(Kd− f) (7.24)where A is a diagonal matrix with expression
A =









I 0 0 0

0 αincI 0 0

0 0 αdirI 0

0 0 0 αneumI









(7.25)



7.2. Governing equations for inompressible �ows 103The weighted error (7.24) is then minimized with respet to the ontrol nodal variables d,therefore
∂Ew

∂d
= 0 (7.26)whih implies that

KT
AKd−KT

Af = 0 (7.27)The matrix K̃ = KTAK is a square symmetri matrix, and an be inverted using suitablealgorithms, alleviating the omputational ost of the method.7.2.2 Choie of the weightsThe hoie of the weights to be imposed on Equation (7.24) is an important topi for theappliation of LSRM, sine a wrong de�nition of weights may prevent the onvergene of thenumerial method.The rigorous analysis onduted by Chi et al. (2014), whih takes in aount the partiularhoie of the shape funtions (in that ase Radial Basis Funtions are used), leads to theseletion of the following weights
αinc = (µNS)

2 αdir = (µNS)
2 αneum = 1 (7.28)In the present work we prefer a di�erent approah: in fat we base our analysis on theonsideration that di�erent equations have di�erent sales, and therefore they ontribute dif-ferently to the global error. In partiular:1. The equation of equilibrium has the dimensions of µ∂2u/∂x22. The equation of inompressibility has the dimensions of ∂u/∂x3. The Dirihlet boundary onditions have the dimensions of u4. The Neumann boundary onditions have the dimensions of µ∂u/∂xThe terms olleted in the matrix Dxx are proportional to 1/h2, where h is the distanebetween ontrol nodes on a regular distribution; the terms olleted in the disrete operator

Dx are proportional to 1/h; furthermore we onsider that the distane h between two nearontrol nodes is related to the total number NS of ontrol nodes, in partiular we an assume
h ≃ 1/

√
NS . Hene we an write the orret sale of eah equation in the form:1. Equilibrium: o(µ/h2) = o(µNS)2. Inompressibility onstraint: o(1/h) = o(

√
NS)3. Dirihlet boundary onditions: o(1)4. Neumann boundary onditions: o(µ/h) = o(µ

√
NS)



104 7. Extended Modified Partile MethodIn order to balane the weighted squared error in Equation (7.24), all omponents arerequested to have at least the same dimensions, that are the ones of the squared equation ofequilibrium, (µNS)
2. The other weights, following this priniple, are:











αinc = C1NS

αdir = C2N
2
S

αneum = C3NS

(7.29)where C1, C2, and C3 are onstants that, in a �rst approximation, we an onsider unitary.7.3 Solution of the Stokes problemIn the present setion we apply the proedure introdued in Setion 3 on some benhmarksgoverned by the Stokes equations. In partiular we �rst solve the Stokes problem on a squaredomain with known analytial solution, and then on a quarter of annulus under body loads.For both problems we disuss the hoie of the weights, as well as the most orret way ofdistributing the ontrol nodes with respet to the olloation points.7.3.1 Square with known analytial solutionIn the following we solve the Stokes �ow in a square in the domain [−1, 1]x[−1, 1] with thefollowing exat solution










u(x, y) = 20xy3

v(x, y) = 5(x4 − y4)

p(x, y) = 60x2y − 20y3 + C

(7.30)The problem is subjeted to Dirihlet boundary onditions in aordane to Equation(7.30) on the whole domain boundary. The visosity is set as µ = 1. The numerial solutionis obtained using the Modi�ed Finite Partile Method for spatial disretization and the LeastSquare Residual Method for the approximation of the resulting linear system. The seletedweights for the error balane are αdir = N2
S , αinc = NS . The weights αneum are not de�ned inthis ase, sine no Neumann boundary onditions are imposed on the present test.The �rst numerial test is performed using a regular distribution both of olloation nodesand ontrol nodes. In Figure 7.1 we show the onvergene diagram of the 2nd norm relativeerror, whih is de�ned as relative error = √

∑NC
i=1 (unum,i − uan,i)

2

√

∑NC
i=1 (uan,i)

2
(7.31)Suh a onvergene diagram is given in terms of the number of ontrol nodes, that is diretlyproportional to the dimensions of the matrix to invert, and thus, to the omputational e�ort.In partiular we notie the expeted seond-order slope of the error urve.In Figure 7.2 we show the pressure distribution obtained ombining MFPM and LSRMand remark the smoothness of the solution.
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Figure 7.1: Square with exat solution (7.30): onvergene diagram of the error using MFPM and LSRM
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Figure 7.2: Square with exat solution (7.30): pressure distribution obtained with the MFPM ombined withLSRM, using 58081 �eld nodes and 231361 olloation points.



106 7. Extended Modified Partile MethodE�ets of random distributions of olloation points. Now we explore the e�etsof random distributions of olloation points: the problem with exat solution (7.30) is solvedon the same geometry and with the same boundary onditions, using three di�erent extremelyrandom distributions of olloation points within the problem domain, and using a regulardistribution of ontrol nodes. For eah test we use a onstant ratio between the number ofolloation points and the number of ontrol nodes, that is NC/NS = 4. From Figure 7.3we notie that the errors omputed with the di�erent distributions of olloation points isextremely stable, and that the average of the errors follows a slope superior to the expetedseond order.
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Figure 7.3: Square with exat solution (7.30): onvergene diagram of the error in spae using the MFPMombined with the LSRM, with di�erent set of randomly distributed olloation pointsE�ets of the ratio between the number of ontrol nodes and olloation points.In order to assess the optimal ratio between the number of ontrol and olloation points wesolve again the problem with exat solution (7.30) using, for eah distribution of ontrol nodes,di�erent number of olloation points. The results in term of relative error are reported inFigure 7.4 (veloity �eld) and in Figure 7.5 (pressure �eld), where di�erent lines orrespondto di�erent amounts of ontrol nodes. In partiular we notie from Figure 7.5 that the errorof the pressure �eld is high when the ratio NS/NC → 1, due to the violation of the inf-supondition, whereas an optimal error is got when √NS/NC ≃ 0.5.E�ets of weights. The suitability of the weights imposed for the error balane is testedon a problem with the same geometry and exat solution (7.30), but di�erent boundary on-ditions: in the following test, in fat, Dirihlet boundary onditions are imposed on the topand lower sides of the square, and onditions over the stress are imposed on the left and rightsides.
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Figure 7.4: Square with exat solution (7.30): relative error versus the ratio between olloation points and�eld nodes
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Figure 7.5: Error of the pressure for the problem with exat solution (7.30) and di�erent ratio between �eldnodes and olloation points



108 7. Extended Modified Partile MethodWe investigate di�erent values of the weights, with the following general expression










αinc = µNp
S

αD = µN q
S

αN = N r
S

(7.32)where p, q, and r are positive parameters, then we ompute the 2nd norm of the error usingthe following ombinations of parameters:(a) p = 1, q = 1, r = 0(b) p = 1, q = 1, r = 1() p = 1, q = 2, r = 1(d) p = 1, q = 2.5, r = 1
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Figure 7.6: Square lamped an all its edges: onvergene diagram of the error with Neumann boundaryonditions, using a Weighted Least Square Residual Method and MFPM disretization, for di�erent sets ofweightsIn Figure 7.6 we show the onvergene diagrams of the error for the investigated sets ofparameters p, q, and r, and observe that the best results in terms of global error are ahievedwhen αinc = µNS, αdir = µN2
S , and αneum = NS , that is what we expeted from the theoretialanalysis of Setion 3.



7.3. Solution of the Stokes problem 1097.3.2 Quarter of annulus under body loadIn the following we apply the ombination of MFPM and LSRM on the problem of a �ow ina quarter of annulus (see Figure 7.7) with geometrial parameters r = 1 and R = 4. The�uid visosity is set as µ = 1. The problem has been studied in Aurihio et al. (2007) usingisogeometri shape funtions. The analytial solution of this problem is
{

u = 10−6x2y4(x2 + y2 − 16)(x2 + y2 − 1)(5x4 + 18x2y2 − 85x2 + 13y4 + 80− 153y2)

v = −2 · 10−6xy5(x2 + y2 − 16)(x2 + y2 − 1)(5x4 − 51x2 + 6x2y2 − 17y2 + 16 + y4) (7.33)The internal body loads are omputed from the analytial solution (7.33). Dirihlet bound-ary onditions are imposed on the whole domain boundary.
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Figure 7.7: Quarter of annulus under body loads: geometry and boundary onditionsFor the solution of the present problem we use regular distributions of olloation pointson a ylindrial referene frame, and regular distributions of ontrol nodes on a Cartesianequispaed grid (an example of suh distributions is reported in Figure 7.8). In Figure 7.9 weshow the onvergene diagram of the 2nd norm relative error obtained for di�erent numbersof ontrol nodes and olloation nodes: we notie the expeted seond-order auray of themethod.E�ets of the ratio between the number of ontrol nodes and olloation points.We also investigate the e�ets of the ratio between the number of ontrol nodes and the numberolloation points. In Figure 7.10 we show the relative error versus the ratio √NS/NC .Di�erent lines orrespond to di�erent amounts of ontrol nodes. We notie that in all aseswe obtain high errors for NS/NC → 1, due to the violation of the inf-sup ondition, whereasan optimal relative error is obtained when √NS/NC ≃ 0.5.E�ets of random distributions of olloation points. Further analyses are per-formed to investigate the e�ets of random distributions of olloation points, and keepinguniform distributions of ontrol nodes (an example of olloation and ontrol points distribu-
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Figure 7.8: Quarter of annulus under body loads: regular distribution of 441 olloation and 83 ontrol nodes
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Figure 7.9: Quarter of annulus under body loads: onvergene diagram of the error using MFPM and LSRM
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Figure 7.10: Quarter of annulus under body loads: relative error versus the ratio between the number of �eldnodes and olloation pointstions are reported in Figure 7.11). In partiular, for eah distribution of ontrol nodes, threedi�erent random distributions of olloation nodes are tested, and the errors are reported inFigure 7.12, where the dotted line orrespond to the average error obtained in the tests. Wenotie that the error is extremely stable for the di�erent distributions and its average followsthe expeted seond-order onvergene.7.4 Navier-Stokes EquationsIn the present setion we solve the Navier-Stokes equations (7.14), whih present a furtherdi�ulty with respet to the Stokes equations, sine they are non-linear equations and thereforea proper proedure for handling the non-linearity is needed.In the following we restrit to the stationary ase, therefore equations (7.14) are modi�edin the form
{

ρu ·∇u+∇p = µ∆u+ b

∇ ·u = 0
(7.34)System (7.34) an be rewritten highlighting the onvetive veloity uc:

{

ρuc ·∇u+∇p = µ∆u+ b

∇ ·u = 0
(7.35)Systems (7.34) and (7.35) oinide when the onvetive veloity is hosen as uc = u.
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Figure 7.11: Quarter of annulus under body loads: random distribution of 441 olloation points and regulardistribution of 83 ontrol nodes
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Figure 7.12: Quarter of annulus under body loads: onvergene diagram of the error for di�erent randomdistributions of olloation points



7.4. Navier-Stokes Equations 113The solution proedure for the Navier-Stokes equation onsists in an iterative lineariza-tion proedure, as usual for non-linear equations. In general for Navier-Stokes equations twodi�erent linearization proedures are used:� Piard linearization: the onvetive veloity at the iteration k is hosen as uc = uk;therefore the MFPM spatial disretization of System (7.35) is










ρIûk ·Dxû
k+1 + ρIv̂k ·Dyû

k+1 +Dxp̂
k+1 = µ(Dxx +Dyy)û

k+1 + bx

ρIûk ·Dxv̂
k+1 + ρIv̂k ·Dyv̂

k+1 +Dyp̂
k+1 = µ(Dxx +Dyy)v̂

k+1 + by

Dxû
k+1 +Dyv̂

k+1 = 0

(7.36)that reads, after linearization:




ρA− µL 0 Dx

0 ρA− µL Dy

Dx Dy 0









∆ûk+1

∆v̂k+1

∆p̂k+1



 = Rk (7.37)where
{

A = d (Iû)Dx + d (Iv̂)Dy

L = Dxx +Dyy

(7.38)and Rk is the residual of the equation. In Equation (7.38) we denote with d(q) a squarediagonal matrix whose elements are the elements of the generi vetor q.� Newton-Raphson linearization: in the seond ase the onvetive veloity at theiteration k is hosen as uc = uk+1; therefore the MFPM spatial disretization of System(7.35) reads










ρIûk+1 ·Dxû
k+1 + ρIv̂k ·Dyû

k+1 +Dxp̂
k+1 = µ(Dxx +Dyy)û

k+1 + bx

ρIûk+1 ·Dxv̂
k+1 + ρIv̂k ·Dyv̂

k+1 +Dyp̂
k+1 = µ(Dxx +Dyy)v̂

k+1 + by

Dxû
k+1 +Dyv̂

k+1 = 0

(7.39)and therefore the linearized system reads




−µL+ ρNLuu ρNLuv Dx

ρNLvu −µL+ ρNLvv Dy

Dx Dy 0









∆ûk+1

∆v̂k+1

∆p̂k+1



 = Rk (7.40)where






















NLuu = A+ d
(

Dxû
k
)

I

NLuv = d
(

Dyû
k
)

I

NLvu = d
(

Dxv̂
k
)

I

NLvv = A+ d
(

Dyv̂
k
)

I

(7.41)It is evident that the Newton-Raphson algorithm represents the most aurate linearizationof Navier-Stokes equations (7.34), and therefore it shows faster rate of onvergene: neverthe-



114 7. Extended Modified Partile Methodless it is shown in Elman et al. (2014) that suh a linearization strategy needs an initial guesssolution loser and loser to the onverged solution as muh as the Reynolds number Re ishigh, where Re = ρLV/µ is the ratio among the �uid inertial and visous fores. L and V areharateristi length and veloity of the problem.In the ase of Piard linearization, onversely, the initial guess veloity an be hosen in alarger bubble, and therefore onvergene is more easily reahed, even if the rate of onvergeneis not optimal.In both ases, at eah iteration k, a linear system has to be solved. In both ases thegeneral form is
Kk∆d̂k+1 = Rk (7.42)where the supersript k reminds that we are implementing an iterative proess, and ∆d̂k+1 =

[∆ûk+1 ∆v̂k+1 ∆p̂k+1]T is the inrement of the nodal variables at iteration k + 1.7.4.1 Navier-Stokes equations and Least Square Residual MethodWhen olloation and ontrol nodes oinide, the solution of system (7.42) with suitable bound-ary onditions is found by inversion of the matrix Kk. Howewever this proedure, as in thelinear ase, an lead to problems of pressure instability, and therefore also in the non-linearase we use a LSRM approah for the solution of the problem.The proedure onsists in onsidering a number of olloation points higher than the num-ber of ontrol nodes, therefore at eah iteration system (7.42) is overdetermined: therefore itssolution an be approximated through an error minimization, following a proedure ompletelysimilar to the linear ase; the weighted error at eah iteration is omputed as
Ek

w =
(

K∆d̂k+1 −Rk
)T

A
k
(

K∆d̂k+1 −Rk
) (7.43)where Ak is the diagonal matrix of the squared weights, with omponents

A
k
ii =

(

3Nsupp
∑3Nsupp

j=1 Kij

)2 (7.44)omputed in order to restore the same order of magnitude of the terms in all equations. Nsuppis the number of supporting nodes of the olloation points to whih the i-th row of Kk isassoiated.Finally, at eah iteration the approximated solution ∆d̂k+1 is the minimizer of the error
Ek

w. The proedure is repeated until onvergene of the weighted error under a predeterminedtolerane. In order to address the di�erent iteration solutions to onvergene, it is possible todivide the problem in a predetermined number of substeps, in whih the external data (i.e.,boundary onditions or the internal body loads) are gradually inreased. For eah substep,the onverged solution of the previous substep is used as initial guess solution.



7.5. Solution of the Navier Stokes problem using MFPM ombined with LSRM 1157.5 Solution of the Navier Stokes problem using MFPM om-bined with LSRMIn the following, we apply what has been disussed in the previous setion to a square underpolynomial body loads, with known analytial solution, and on the well-known benhmark ofthe lid-driven avity, at di�erent values of the Reynold number.7.5.1 Flow in a square domainIn the following we study the �ow on a square in the domain [−1, 1]x[−1, 1] with analytialsolution










u(x, y) = 20xy3

v(x, y) = 5(x4 − y4)

p(x, y) = 60x2y − 20y3 + C

(7.45)Dirihlet boundary onditions (on the whole boundary) and internal body loads are im-posed aording to Equation (7.45). The problem is solved using seond order MFPM inombination with the Least Square Residual Method, using the iterative proedure proposedin the previous setion. The material parameters are set as ρ = 1kg/m3 and µ = 1kg/ms. InFigure 7.13 we show the onvergene diagram of the error for this problem, and highlight theexpeted seond-order onvergene.
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Figure 7.13: Square with analytial solution (7.45) in the non-linear ase: onvergene diagram of the error.



116 7. Extended Modified Partile Method7.5.2 The lid-driven avityThe domain of the lid-driven avity is a square of side L = 1m. On all boundary, Dirihletboundary ondition are assigned, in partiular
{

u = 0 on the left, lower and right sides
u ·n = 0 and u · t = Ū on the top side (7.46)where n and t are the normal and tangential unit vetors at the boundary, and Ū is thetangential veloity at the top side of the domain, whih has been set as Ū = 1m/s. We solvethe problem with ρ = 1kg/m3 and two di�erent values for the visosity (i.e., µ = 0.0025kg/msand µ = 0.0001kg/ms) orresponding to the Reynolds numbers Re = 400 and Re = 1000. InFigures 7.14 and 7.15 we show our results obtained in terms of streamlines.
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Figure 7.14: Lid-driven avity problem (Re = 400): streamlines solution using MFPM and LSRM.In absene of analytial solution, we ompare our results with those obtained by Ghia et al.(1982) in terms of horizontal veloity pro�le at the middle vertial axis (x = 0 in our refereneframe) for Re = 400 (Figure 7.16) and Re = 1000 (Figure 7.17). For both ases we notie asubstantial agreement between our results and the referene solution.
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Figure 7.15: Lid-driven avity problem (Re = 1000): streamlines solution using MFPM and LSRM.
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Figure 7.16: Lid-driven avity problem (Re = 400): veloity pro�le in the x-diretion along the axis x = 0and omparison with the referene solution by Ghia et al. (1982).
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Figure 7.17: Lid-driven avity problem (Re = 1000): veloity pro�le in the x-diretion along the axis x = 0and omparison with the referene solution by Ghia et al. (1982).



Chapter 8ConlusionsThe topi of the present thesis is the study and the development of the Modi�ed Finite PartileMethod (MFPM) from its �rst introdution in the sienti� literature (Asprone et al., 2010)until its last developments already unpublished.In the present work we deeply analyze and review the original MFPM formulation andstudy its harateristis. In partiular we underline the omputational osts onneted withthe original formulation, where integrals had to be omputed as neessary step for deriva-tive approximation. Suh a need has been removed introduing a MFPM novel formulation,where the projetion is performed among vetors and not of funtions. In Chapter 3 it isevidened the onsistent time saving onneted with these proedure, and also a redution ofthe approximation error.Both original and novel formulations are then ompared with existing meshless olloa-tion methods available in the literature, in partiular with the Generalized Finite Di�ereneMethod, and applied to linear elastiity, both in statis and in dynamis. The results in termsof error slope are shown in the thesis and the expeted seond order onsisteny of the methodis on�rmed.At a later stage MFPM has been tested on the inompressible elastiity equations. In thisase we notie that a simple disretization of the variables involved (displaements and pres-sure) do not respet the restrition imposed by the inf-sup (or LBB) ondition, and thereforethe pressure �eld exhibits unphysial obsillations. The way of overoming this di�ulty areessentially two: the �rst one onsists in introduing a di�erent set of equations, and this iswhat has been done by many authors; the seond strategy is to slightly modify the numerialapproximation method, and use the original inompressibility equations.Conerning the �rst strategy, we apply the Modi�ed Finite Partile Method to �ve di�erentformulations presented in the literature, and verify that only some of them atually respetthe inompressibility onstraint. When the onstraint is respet, however, a orret seondorder auray is ahieved in the numerial tests.The seond strategy for dealing with the problem of inompressible solids and �uids is to usethe Modi�ed Finite Partile Method in onjuntion with a Least Squares Residual Method,following the idea introdued by Hu et al. (2007) and (Chi et al., 2014) and implementedusing the Radial Basis Funtions olloation method. Suh a onjuntion however requiresa modi�ation of the Modi�ed Finite Partile Method, that here we all extended MFPM,119



120 8. Conlusionsthat shows higher robustness with respet to last versions when dealing with unstrutureddistributions of olloation points. The method also avoids spurious osillations of the pressure�eld, and then in this ase the original inompressibility equations have been used. The lastversion of MFPM has been �nally used for the solution of �ows in an Eulerian point of view,that is, the Navier-Stokes problem has been solved. Suh problem is modelled by non-linearequations, and then the MFPM has been extended to the non-linear ase. The obtained resultsshow again the robustness of the method and the expeted auray.The urrent version of the Modi�ed Finite Partile Method permits satisfatory approx-imations of ompressible and inompressible elastiity problems, in partiular it does notsu�er from numerial pathologies typial of inompressibility, and it is partiularly robustwith respet to random distribution of partiles; nevertheless the method still needs furtherinvestigations in order to properly set some parameters for the improvement of the methode�ieny. The methods need to be properly developed in order to be e�iently applied toLagrangian �uid-dynamis, that is the most natural appliation of every meshless method.
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