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Abstra
tMeshless methods are nowadays widely investigated in the framework of numeri
al methodsdue to their 
hara
teristi
 of being free of any predetermined 
onne
tivity among nodes, su
has a grid or a mesh. This 
hara
teristi
 makes su
h methods parti
ularly �exible in problemswhere large deformations are involved, su
h as high-velo
ity impa
t, metal foaming, and �uid-dynami
s.In the present thesis we report the development of a new numeri
al method, 
alled Mod-i�ed Finite Parti
le Method, from its introdu
tion in Asprone et al. (2010) until its mostre
ent developments. The Modi�ed Finite Parti
le Method (MFPM) is a numeri
al approx-imation te
hnique of fun
tions and derivatives inspired by the Modi�ed Smoothed Parti
leHydrodynami
s (MSPH), a numeri
al algorithm belonging to the 
lass of the SPH-derivedmethods.The �rst development of the Modi�ed Finite Parti
le Method from its original formulationhas given the method higher 
omputational e�
ien
y by removing the need of numeri
alintegration, and hen
e, tessellation of the domain; su
h a novel formulation is then applied to1D and 2D elasti
ity and has been 
he
ked in terms of 
omputational e�
ien
y and numeri
alerror (Asprone et al., 2014). Then the method is extended to in
ompressible materials, inparti
ular we explore the numeri
al di�
ulties 
onne
ted to a quasi-in
ompressible materialwhen using a displa
ement-based formulation.At a later stage we approa
h the solution of the Stokes equations, that model full in
om-pressible materials: su
h equations are the topi
 of many s
ienti�
 works due to the existen
eof a numeri
al limitation known as the inf-sup or LBB 
ondition, whi
h imposes restri
tionsin the dis
retization of displa
ement and pressure �elds. In the �eld of 
ollo
ation methodssu
h as the Finite Di�eren
e Method, as an example, staggered grids are used; unfortunatelysu
h strategy is not extensible to meshless methods, whi
h in general deal with non-stru
tureddistributions of 
ollo
ation points. Hen
e alternative formulations of the Stokes problem havebeen dis
ussed and investigated using the Modi�ed Finite Parti
le Method, obtaining theexpe
ted a

ura
y in terms of error 
onvergen
e.In the last part of the thesis we develop an extended formulation of the Modi�ed FiniteParti
le Method, 
onsisting in a 
ombination of the MFPM with a Least Square ResidualMethod, and apply it to Stokes and Navier-Stokes equations. Su
h an algorithm permits tosolve the original formulation of Stokes and Navier-Stokes problems using the same dis
retiza-tion for velo
ity and displa
ement, over
oming the limitations given by the LBB 
ondition,and without the need of alternative 
ontinuous formulations. Moreover the algorithm looksmore robust with respe
t to extremely unstru
tured 
ollo
ation point distributions.V
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Chapter 1Introdu
tion to the thesisIn re
ent years meshless methods have a
quired signi�
ant importan
e in the framework ofnumeri
al methods due to their 
hara
teristi
 of being free of any kind of grid or mesh, andtherefore, to exhibit an higher �exibility with respe
t to traditional mesh-based or grid-basedmethods, above all the Finite Element Method (FEM) and the Finite Di�eren
e Method(FDM). The most attra
tive 
hara
teristi
 of meshless methods is the 
apability of easily mod-elling problems where large deformations o

ur, following a Lagrangian point of view. Amongthese problems, in the literature are widely investigated problems of solid large deformations,metal foaming, and �uid dynami
s.A meshless method is 
hara
terized by the fa
t that nodes are not given any kind of apriori 
onne
tivity. Relation among nodes are then given, at ea
h time step, on the basisof the 
urrent position among nodes. This fa
t one hand gives the method high �exibilityin problems where parti
les are repeatedly muddled up, on the other hand requires that atea
h time step the 
onne
tivity is set up, requiring a 
omputational 
ost that sometimes is
omparable with the remeshing time required by mesh-based numeri
al methods.In the �eld of meshless methods an important distin
tion is made between meshless parti-
le methods and meshless �non-parti
le� method. In the �rst 
ase, ea
h node is 
hara
terizedby a mass, a velo
ity and an energy, and the intera
tion among nodes o

urs through mutualfor
es, a

ording to the prin
iple of a
tion and rea
tion. In meshless �non-parti
le� meth-ods, di�erently, nodes are simply 
onsidered as 
ollo
ation points, and used as base for thedis
retization of fun
tion and derivatives.Table 1.1: Classi�
ation of some numeri
al approximation methodsParti
le Non parti
leMeshless Smoothed Parti
leHydrodynami
s (SPH),Dis
rete Element Method (DEM) Radial basis 
ollo
ation,Dis
rete Least Square Residual MethodMesh-based Parti
le FEM Finite Element Method (FEM)1



2 1. Introdu
tion1.1 The Smoothed Parti
le Hydrodynami
sThe �rst meshless parti
le method introdu
ed in the literature is the Smoothed Parti
le Hydro-dynami
s (SPH), proposed by Lu
y (1977) and Gingold and Monaghan (1977) for the study ofastrophysi
al problems. The numeri
al approximation te
hnique is based on the Dira
 Deltaequivalen
e
f(xi) =

∫ +∞

−∞

f(x)δ(x− xi) dx (1.1)where δ(x) is the Dira
 Delta distribution, whi
h has two main properties:
δ(x− xi) = 0 if x 6= xi (1.2a)
∫ +∞

−∞

δ(x− xi) dx = 1 (1.2b)Equation (1.1) 
an be seen as the proje
tion of the fun
tion f(x) on the basis δ(x − xi).This parti
ular way of 
onsidering Equation (1.1) is the starting point of many numeri
almethods, derived from SPH formulation. Sin
e the Dira
 Delta is di�
ult to manage froma numeri
al point of view, SPH introdu
es an approximation of Equation (1.1), substitutingthe Dira
 Delta distribution with a smooth fun
tion W (x − xi, h), 
alled kernel fun
tion,where h is the smoothing length, whi
h de�nes the region Ωi = [xi − h, xi + h] in whi
h thesmoothing fun
tion is non-zero. Consequently, Equation (1.1) is approximated through thekernel evaluation of f(xi), that is
f(xi) =

∫ +∞

−∞

f(x)W (x− xi, h) dx (1.3)The kernel fun
tion W (x− xi, h) is required to have the following properties:Unity ∫

Ω
W (x− xi, h) dx = 1 (1.4a)Compa
t support {

W (x− xi, h) 6= 0 |x− xi| < h

W (x− xi, h) = 0 |x− xi| ≥ h
(1.4b)Dira
 Delta property lim

h→0
W (x− xi, h) = δ(x− xi) (1.4
)Positivity W (x− xi, h) > 0 (1.4d)From here after, we refer to W (x − xi, h) with Wi(x), and the dependen
y on h will beomitted.The property (1.4d) is not ne
essary for a 
orre
t approximation, but it is introdu
ed toavoid unphysi
al results su
h as negative density or energy.The derivative evaluation is obtained through kernel evaluation of f ′(x) and following



1.1. The Smoothed Parti
le Hydrodynami
s 3integration by parts:
f ′(xi) =

∫ +∞

−∞

f ′(x)Wi(x) dx

= [f(x)Wi(x)]
+∞

−∞
−
∫ +∞

−∞

f(x)W ′

i (x) dx (1.5)Here, the � ' � represents the derivative with respe
t to the independent variable x. Farfrom the boundary, that is, when Ω ∩ Ωi = Ωi, we assume that the smoothing fun
tion is
ompletely developed in the domain, and thus the derivative approximation is
f ′(xi) = −

∫ +∞

−∞

f(x)W ′

i (x) dx (1.6)The higher order derivatives approximation is obtained by iterating the pro
edure shownin (1.6). The general formula is
f (n)(xi) = (−1)n

∫ +∞

−∞

f(x)W
(n)
i (x) dx (1.7)Equation (1.6) and its generalization (1.7) for higher order derivatives is exa
t far fromthe boundary, that is, where the �rst term of the right-hand side of (1.5) vanishes be
auseof (1.4b). On the other hand, when the interse
tion between the general domain and thesmoothing length of a parti
le is non empty, the �rst term of the right-hand side of (1.5) doesnot vanish and the formula (1.6) does not 
onverge. This is the most important limit of SPHapproximation, that is 
orre
ted through some expedients in numeri
al simulations.

PSfrag repla
ements
xi

∆xi

ΩFigure 1.1: 1D domain: parti
le dis
retization and subdivision of the domainEquations (1.3), (1.5) and (1.7) are still integral expression, that need a further dis
retiza-tion step: therefore, integrals are repla
ed by summations: the domain is partitioned intosome little subdomains, so that there is a univo
al 
orresponden
e between ea
h parti
le andits subdomain (see �gure 1.1). Therefore, the dis
rete form of (1.3) is
∫ +∞

−∞

f(x)Wi(x) dx ≃
∑

j

f(xj)Wi(xj)∆xj (1.8)
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tionand, for higher-order derivatives
f (n)(xi) ≃ (−1)n

∑

j

f(xj)W
(n)
i (xj)∆xj (1.9)where ∆xj is the referen
e subdomain of the parti
le at xj .We 
an substitute ∆xj with mj

ρj
, where mj is the referen
e mass of the parti
le j and ρj isits density. Equation (1.9) 
an be rewritten in the form

f (n)(xi) ≃ (−1)n
∑

j

f(xj)W
(n)
i (xj)

mj

ρj
(1.10)where it is more evident the pe
uliarity of this method of dealing with parti
les.1.2 Alternative approa
hes to SPHIn 
onsideration of the de�
ien
ies of the original SPH te
hnique, espe
ially at the boundary,many authors have introdu
ed 
orre
tions in the most re
ent years. In the following paragraphwe review some of the most signi�
ant numeri
al approximation te
hniques introdu
ed startingfrom the initial SPH idea.1.2.1 Reprodu
ing Kernel Parti
le MethodOne of the most 
ommon methods developed from the SPH is the Reprodu
ing Kernel Parti
leMethod, introdu
ed by Liu et al. (1995a,b). In these works the authors introdu
e the possibilityof di�erent smoothing fun
tions (that in these works are 
alled window fun
tions) for ea
hparti
le in the domain, to restore the 
onsisten
y of the method also 
lose to the domain(property (1.4a)).The method is obtained through the proje
tion of the Taylor series expansion until these
ond order

f(x) = f(xi) + f ′(xi)(x− xi) +
1

2
f ′′(xi)(x− xi)

2 + o(|x− xi|3) (1.11)onto a generi
 window fun
tion Ki(x), that is
∫

Ω
Ki(x)f(x)dx = f(xi)

∫

Ω
Ki(x)dx+ f ′(xi)

∫

Ω
Ki(x)(x− xi)dx+

f ′′(xi)

∫

Ω

1

2
Ki(x)(x− xi)

2dx

(1.12)Then the exa
t reprodu
tion of a generi
 fun
tion f(x) 
an be imposed, that is
∫

Ω
Ki(x)dx = 1 (1.13)In this way the zero-th 
onvergen
e of the method is estabilished (that is, the method
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hes to SPH 5exa
tly reprodu
es 
onstant fun
tions). In parti
ular, if we 
hoose an even fun
tion, that ispossible far from the boundary, also the term involving the �rst derivative vanishes and themethod be
omes se
ond order a

urate; 
lose to the boundary, on the 
ontrary, the method is�rst order a

urate.The novelty introdu
ed by the authors is that the window fun
tion Ki(x) 
an be seenas the produ
t of two fun
tions, Ci(x) and W (x), the se
ond being the typi
al SPH kernelfun
tion, and the �rst being a 
orre
tive fun
tion, typi
ally a polynomial, that is di�erentparti
le by parti
le, whi
h is asked to restore the required 
onsisten
y 
onditions at parti
les
lose to the boundary. Typi
al 
ondition that 
an be imposed to the 
orre
tion fun
tion arethat the high-order momenta vanish.
∫

Ω
Ki(x)(x− xi)dx = 0 (1.14)

∫

Ω

1

2
Ki(x)(x − xi)

2dx = 0 (1.15)The possibility of enfor
ing these 
onditions depends on the order of the polynomial Ci(x).After performing this kernel estimates, the evaluation of derivatives is performed a

ordingto Equations (1.6) and (1.7).1.2.2 Corre
tive Smoothed Parti
le MethodThe Corre
tive Smoothed Parti
le Method (Chen et al., 1999a,b) is another method developedto 
orre
t the SPH approximation te
hniques at the boundary. The authors do not use any
orre
tion fun
tion, but use a di�erent kernel evaluation. Starting from the Taylor seriesexpansion of a fun
tion f(x) up to the zero-th order
f(x) = f(xi) (1.16)and proje
ting it onto a kernel fun
tion Wi(x), we obtain the following kernel estimation

f(xi) =

∫

Ω f(x)Wi(x)dx
∫

ΩWi(x)dx
(1.17)Equation (1.17) is equivalent to (1.3) when (1.4a) is respe
ted; moreover, if (1.4a) is notrespe
ted, Equation (1.17) still holds. From this we 
on
lude that for this formulation is notne
essary to normalize the kernel fun
tion. Hen
e it is evident that this approa
h do notrequire anymore the property (1.4a), required in SPH.Expanding up to the �rst order, proje
ting onto W ′

i (x) and rearranging the obtained terms,we obtain that
f ′(xi) ≃

∫

Ω [f(x)− f(xi)]W
′

i (x)dx
∫

Ω [(x− xi)]W ′(x)dx
(1.18)We noti
e that also in the approximation of the derivative, Equation (1.18) and Equation(1.6) di�er in the denominator. Also it has to be pointed out that we proje
t on the derivativeof the kernel fun
tion and not on the kernel fun
tion itself be
ause otherwise we would obtain
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tiona vanishing denominator. The authors also remark that, for an higher a

ura
y of the fun
tionapproximation, is preferable that W ′

i (x) is an odd fun
tion, but it is not a binding property.The approximation of the higher order derivatives 
an be obtained just iterating the pro
e-dure adopted in (1.17) and (1.18). It is only ne
essary to retain, in the Taylor series expansion,all the terms until the one of interest.1.2.3 Modi�ed Smoothed Parti
le Hydrodynami
sA further development of the SPH te
hnique is the Modi�ed Smoothed Parti
le Hydrodynami
s(MSPH) introdu
ed by Zhang and Batra (2004). In this 
ase fun
tion and derivatives are notapproximated in di�erent steps, but simultaneously, through the inversion of a linear systemat ea
h parti
le.
(

Ai
11 Ai

12

Ai
21 Ai

22

)(

f(xi)
f ′(xi)

)

=

( ∫

Ω f(x)Wi(x) dx
∫

Ω f(x)W ′

i (x) dx

) (1.19)where
Ai

11 =

∫

Ω
Wi(x) dx Ai

12 =

∫

Ω
(x− xi)Wi(x) dx (1.20)

Ai
21 =

∫

Ω
W ′

i (x) dx Ai
22 =

∫

Ω
(x− xi)W

′

i (x) dx (1.21)The authors remark that the minimum number of parti
les to be in
luded in the smoothinglength is, in a 1D representation, is 3, in order to prevent the matrix A to be singular.A 
omparison 
an be made between the CSPM and MSPH in terms of 
omputational
ost and a

ura
y. The Corre
tive Smoothed Parti
le Method is evidently more e�
ient interms of 
omputational 
osts, sin
e in the MSPH there is a matrix to invert at ea
h parti
le;on the 
ontrary in the CSPM the error on higher order derivatives 
an be a�e
ted, througherror prpagation, from the error generated in the approximation of fun
tions and lower-orderderivatives.1.3 Meshless methods based on shape fun
tionsDi�erent meshless methods are based on shape fun
tions: among these the most 
ommonshape fun
tions are the Meshless Lo
al Petrov-Galerkin shape fun
tions, the Radial BasisFun
tion and the Lo
al maximum entropy shape fun
tions. All these kinds of shape fun
tions
an be used for the development of 
ollo
ation methods or for the development of methodsbased on Galerkin formulation.1.3.1 Meshless Lo
al Petrov-GalerkinThe Meshless Lo
al Petrov-Galerkin (MLPG) (Atluri and Zhu, 1998) is a numeri
al approx-imation method for fun
tion and derivatives based on the use of the Moving Least Square



1.3. Meshless methods based on shape fun
tions 7(MLS) shape fun
tions. Su
h shape fun
tions are written in the general form
fh(x) = pT (x)a(x) (1.22)where p(x) is the ve
tor of monomial basis in 1-d, 2-d or 3-d, and a(x) is the ve
tor of the
oe�
ients, whi
h 
ould be di�erent point by point.The length of the ve
tors p(x) and a(x) depends on the desired order of 
onsisten
y(for a �rst order 
onsisten
e, in 1d 
ase, p(x) = [1 x]T , for a se
ond order 
onsisten
y

p(x) =
[

1 x x2
]T and so on).The ve
tor p(x) is 
omputed through the minimization of a weighted error fun
tion betweenthe approximation fh(x) and the �
titious nodal values f̂h

J(x) =
N
∑

i=1

wi(x)
[

pT (xi)a(x)− f̂i

]2 (1.23)where the wi(x) are weight fun
tions, 
hosen to be non-zero in a neighborhood of the point
xi, and zero elsewhere. This allows to de�ne this method as lo
al, in the sense that theapproximation of a fun
tion and of its derivatives depends on few points 
lose to the xi.Hen
e, by minimizing this amount with respe
t to the 
oe�
ient ve
tor a(x), it is possibleto �nd the unknown 
oe�
ients a(x), then it is possible to write fh(x) in the form of theprodu
t of some shape fun
tions (
olle
ted in the array Φ(x)) and the ve
tor of the �
titiousnodal values f̂ . We remark that f̂ are not the nodal values, that means that they are not thepre
ise values of the fun
tion in the point xi, sin
e the shape fun
tions are not interpolatory.

fh(x) =
N
∑

i=1

φi(x
h)f̂i f̂i 6= f(xi) (1.24)where

φi(x) =
m
∑

j=1

pj(x)
[

A−1(x)B(x)
]

ji
(1.25)and







A(x) =
n
∑

i=1
wi(x)p(xi)p

T (xi)

B(x) = [w1(x)p(x1), w2(x)p(x2), ..., wn(x)p(xn)]
(1.26)The approximation of derivatives is simply performed by derivation of the shape fun
tions.The Meshless Lo
al Petrov-Galerkin is used for the solution of elasti
ity problems (Atluriand Zhu, 2000), 
onve
tion-di�usion problems (Lin and Atluri, 2000), Navier-Stokes equations(Lin and Atluri, 2001), thin plates (Long and Atluri, 2002).1.3.2 Meshless methods based on radial basis fun
tionsA widely used 
ategory of shape fun
tions are the Radial Basis Fun
tions (Buhmann, 2000),introdu
ed by Kansa (1990b,a) and studied from a theoreti
al point of view by Franke and
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tionS
haba
k (1998) for their use in 
ollo
ation methods. Su
h shape fun
tions are bell shapedfun
tions and 
an be distinguished in� Gaussian shape fun
tions
φ(r) = exp(−r.2/c2) (1.27)� Multiquadrati
 shape fun
tions
φ(r) =

(

r2 + c2
)n−3/2 (1.28)� Logarithmi
 shape fun
tions

φ(r) = r log(r) (1.29)In all previous examples, r =
√

x2 + y2 is the distan
e from a generi
 
ollo
ation point.Radial Point Interpolation Method. In order to restore 
onsisten
y in the approxi-mation of polynomial fun
tions, Radial Basis fun
tion have been integrated with polynomial(Wang and Liu, 2002). In the following, we report the main steps followed to 
onstru
t su
ha kind of shape fun
tions, based on a general distribution of points.It is assumed that the generi
 fun
tion u(xxx) is written as a linear 
ombination of shapefun
tions and some unknowns parameters. A generi
 fun
tion u(x) is therefore approximatedas
û(x) =

N
∑

i=1

aiB
0
i (x) +

M
∑

j=1

bjPj(x) , M < N (1.30)where the fun
tions Pj(x) are monomials, ai and bj are respe
tively the 
oe�
ients of theradial basis fun
tions Bi(x) and of the polynomial term P 0
j (x). In parti
ular the radial basisfun
tions depend on the Eu
lidean distan
e ri =

√

(x− xi)2 + (y − yi)2, and for this reasonis preferable to write Bi(r) instead of Bi(x).Equation (1.30) 
an be rewritten in matrix form
u(x) = B0(x)a+PT (x)b (1.31)On
e written this approximation, it remains to �nd the unknown parameters ai and bj byimposing the interpolation 
onditions for the N nodes of the domain, that are

N
∑

h=1

B0
i (xh)ah +

M
∑

k=1

Pi(xk)bk = u(xi) (1.32)The other M ne
essary 
onditions are
M
∑

k=1

Pj(xk)ak = 0 (1.33)The 
hoi
e of this parti
ular set of 
onstraints is motivated by the fa
t that in this waythe system through whi
h the unknown 
oe�
ients are retrieved is symmetri
, due to thesymmetry of the matrix B0.
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tions 9The matrix form of this problem is
(

B0 PT

P 0

)(

a

b

)

=

(

û

0

)

, (1.34)where the equations are parti
ularised at ea
h point belonging to the nodal set X.On
e written this problem, the 
oe�
ient ve
tors a and b 
an be found by inverting thealgebrai
 system (1.34), that for simpli
ity we rewrite in the form
G

(

a

b

)

=

(

û

0

)

. (1.35)A

ording to (1.30), the shape fun
tions 
an be written as
φ(x) = [B0 P]G−1 (1.36)This method has some useful properties:1. The shape fun
tions are linearly independent for ea
h nodal set2. The shape fun
tions, and above all, their derivatives, are of easy 
al
ulation;3. The shape fun
tions have a Dira
 Delta property, that is φi(Xj) = δij .4. It is always veri�ed the zero-th and �rst order 
onsisten
y of the approximations.5. The shape fun
tions have a 
ompa
t support.Delta Basis Fun
tion. A parti
ular kind of Radial Basis Fun
tion, 
alled Delta BasisFun
tions, have been introdu
ed in Hon and Yang (2009). These fun
tions are parti
ularlyappropriate when dealing with singularities. Here we only show an example of shape fun
tion,and present the meaning of the parameters.

φ(x, ξ) =

M
∑

n=1

[

1−
(

n

M + 1

)2
]k

sin

(

nπ
x+ 1

2

)

sin

(

nπ
ξ + 1

2

)

, (1.37)where x is the independent variable, ξ is the 
oordinate of the node, M is an integer parameterthat makes the shape fun
tion approa
h the Dira
 Delta fun
tion, and k is the so-
alledregularizing parameter. As it is shown in the paper under 
onsideration, the absen
e of thisparameter makes the fun
tion dramati
ally os
illate.It should be noted that su
h shape fun
tions vanish 
lose to the boundary in the interval
[−1 1]. For this reason neither the 
ollo
ation point nor the 
enters of the shape fun
tions
an be 
ollo
ated in proximity of the extremes of this interval. The 
onsequen
e is that all theproblem involving these shape fun
tions have to be studied in a di�erent interval: the optimal
hoi
e, proposed in Reutskiy (2005), is to perform a linear transformation of the domain fromits original 
oordinates to the interval [−0.5 0.5].These shape fun
tions work very �ne in approximating almost singular fun
tions, and alsofun
tions with high gradients, and this represents its greatest advantage, together with the
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tionabsolute simpli
ity of 
oding. The drawba
k of these approximant fun
tions is that there areno properties of partition of unity or polynomial 
onsisten
y.1.3.3 The lo
al max-ent approa
hA di�erent kind of shape fun
tions proposed in re
ent years is the set of Lo
al MaximumEntropy (LME) shape fun
tions, introdu
ed by Arroyo and Ortiz (2006, 2007), and developedin Cyron et al. (2009); Rosolen et al. (2012). The basi
 idea is to propose shape fun
tions thatsatisfy both the prin
iples of lo
ality of the shape fun
tions and of maximum entropy of thenumeri
al s
heme, meaning that the shape fun
tions have to be the most unbiased possible,in the sense that their only have to be based on the positions of nodes, without any otherexternal 
hoi
e.Let us 
onsider a fun
tion u(x). We 
an 
onsider an approximation uh(x) in the form
uh(x) =

N
∑

a=1

φa(x)ua , (1.38)where the φa(x) are the shape fun
tions.The LME shape fun
tions are asked to respe
t zero-th and �rst order 
onsisten
y 
ondi-tions, that is 
onstants and linear fun
tions on a given nodsetX have to be exa
tly reprodu
ed:
N
∑

a=1

φa(x) = 1 ,
N
∑

a=1

φa(x)xa = x (1.39)In parti
ular, the �rst 
ondition of (1.39), in addition to the requirement that the shapefun
tions have to be positive, allows to 
onsider these approximations as a probability distri-bution at ea
h point xi.A natural 
on
ept stri
tly 
onne
ted to the probability is the entropy of a distribution,that is a 
anoni
al measure of the un
ertainty of a distribution. To give a qui
k example ofwhat the entropy represents, let us 
onsider two distributions of probability of o

urren
e oftwo events A1 and A2. The �rst distribution is [0.01 0.99], the se
ond is [0.5 0.5]. It is obviousthat in the �rst 
ase are quite sure about the o

urren
e of the event A2, while in the se
ond
ase we are in a situation of un
ertainty. The quantity that measures this di�eren
e in thelevel of information in this 
ases is the entropy, that is higher for the distribution A2.In the 
ase of unbiased approximations, we require that the shape fun
tions are free ofany a priori information, that is, the entropy asso
iated to shape fun
tions has to be themaximum, a

ording to the Shannon theorem (Shannon, 2001). The eventual a priori 
hoi
eof a polynomial shape fun
tions of any order, or a Gaussian shape fun
tion or whatever othershape fun
tion represents a spe
i�
 
hoi
e of the approximation that in this method the authorswant to avoid.The entropy of a shape fun
tion distribution, from a mathemati
al point of view, is de�nedas
H(φ(x)) = −

N
∑

a=1

φa(x)log φa(x) (1.40)



1.3. Meshless methods based on shape fun
tions 11The shape fun
tions 
ome from the minimization of the fun
tional H(φ(x)) with respe
tto the fun
tions φ(x). Su
h problem is subje
t to the 
onstraints (1.39). In their work, theauthors show that a unique solution exists if and only if the data set X belongs to a 
onvexhull.Unfortunately this set of fun
tions gives a non satisfa
tory result. In fa
t, due to thetheoreti
al meaning of entropy, su
h fun
tion are as 
onstant as possible, 
onsidering the
onstraints. This property returns bad approximation of non smooth fun
tions, making thisset of shape fun
tions uninteresting.A further step toward a best approximation is the introdu
tion also of the attribute oflo
ality of the shape fun
tion; the width of the approximation is de�ned as
w[φa(x)] =

∫

Ω

N
∑

a=1

φa(x)|x− xa|2dx (1.41)In order to satisfy the requisite of lo
ality of the shape fun
tions, we also require thefun
tional (1.41) to be minimum. We exploit the fa
t that in the fun
tional itself there are noderivatives, so we minimize it pointwise. The problem so is to minimize the fun
tional
U(x,φ(x)) =

N
∑

a=1

φa(x)|x− xa|2 (1.42)with respe
t to the same 
onstraints (1.39). Su
h a problem gives ba
k pointwise de�ned shapefun
tions.The best solution for this problem is then the sear
h for a set of shape fun
tions that haveboth the requisites of lo
ality and impartiality. The idea is to 
ombine the two fun
tionals
H(φ(x)) and U(x,φ(x)) through the fun
tional

fβ(x,φ(x)) = βU(x,φ(x))−H(φ(x)) (1.43)subje
t to the usual 
onstraints (1.39). The parameter β belongs to the interval [0,∞) andde�nes how mu
h the fun
tional is more similar to a max-ent fun
tional (β → 0) or to alo
ality fun
tional (β → ∞).The �nal shape fun
tions are then, for internal points
φβa(x) =

1

Z(x, λ∗(x))
exp

[

−β|x− xa|2 + λ∗ · (x− xa)
]

, (1.44)where
Z(x, λ(x)) =

N
∑

a=1

exp
[

−β|x− xa|2 + λ · (x− xa)
] (1.45)and

λ∗(x) = argmin
λ

log Z(x, λ(x)) . (1.46)For the points on the boundary, the shape fun
tion are found in a similar way of (1.44),
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tionbut the summation are performed only on the parti
les that belong to the same fa
e of theboundary, and not on the interior points. This is a non negligible property, be
ause in thisway it is possible to satisfy in a simple way the essential boundary 
onditions, that in most ofthe methods des
ribed earlier represent an open problem. This property is the so 
alled weakKrone
ker Delta property.The minimization over λ of the fun
tional log Z(x, λ(x)), is non di�
ult to perform, sin
ethere are no derivatives involved. For this reason the 
al
ulation 
an be done pointwise, andthe problem redu
es to a minimization over a variable λ of a ve
torial fun
tion log Z(λ).Se
ond-order max-ent. The Se
ond-order Maximum Entropy fun
tions have been in-trodu
ed with the aim of improving the 
onsisten
y order of the Max-Ent shape fun
tion,and also to remove the still existing parameter that has to be imposed by the external of themethod, the parameter β, that states the grade of lo
ality of the approximants. In this 
ase,the generi
 shape fun
tions has to obey also the 
ondition
N
∑

a=1

φax
2
a = x2 , (1.47)that 
an be also rewritten, re
alling (1.39), in the form

N
∑

a=1

φa(xa − x)2 = 0 . (1.48)In these equations, and in the following, the dependen
e of φa on x will be omitted forsimpli
ity. Re
alling the interpretation of the φa as a probability distribution, the �rst termof Equation (1.48) 
an be seen as the varian
e of the distribution. It is obvious that it 
annotbe zero, otherwise it would mean that all the φa are zero ex
ept for the 
ase x = xa.The solution has been proposed in (Cyron et al., 2009). Instead of 
ondition (1.48), theauthors propose
N
∑

a=1

φa(xa − x)2 = g(x) , (1.49)where g(x), 
alled gap fun
tion, has to be 
hosen in a suitable way. Obviously su
h a 
orre
tionrelaxes the request of se
ond order reprodu
ibility of the method, but it will be 
lear that thisrelaxation only works on the boundary, leaving the se
ond-order 
onsisten
y in the interior ofthe domain.In the following we des
ribe how to 
hoose the gap fun
tion in 1d. The pro
edure is easilygeneralizable in higher-dimensions.The �rst remark is that the gap fun
tions have to respe
t the boundary 
onditions (invokingthe weak Krone
ker Delta property), and so they have to vanish at the boundaries. The formof the gap fun
tion 
ould be
g(x) =

N
∑

a=1

φa,1wa , (1.50)where the φa,1 are the �rst order Lo
al Max-Ent shape fun
tions and the wa are weights. This
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hoi
e does not hurt with the request of smoothness of the approximants, sin
e the �rs orderLo
al Max-Ent shape fun
tion are C∞.An heuristi
 
hoi
e of the gap fun
tion, that gives ex
ellent results (a

ording to theauthors) is a 
onstant fun
tion g(x), smoothly ramping to zero in proximity of the boundary.This fun
tion has the form
g(ξ) =

{

h2
max
4 ξ2 < ξ < ξN−1

−ξ(ξ − h1,2) ξ1 < ξ < ξ2
, (1.51)

ξ being a lo
al 
oordinate originating on the boundary, hmax being the maximum distan
ebetween two parti
les in the domain, and h1,2 being the distan
e between the boundary parti
leand its nearest one.In the two and three-dimension 
ase many other possibility are proposed for the determi-nation of the most e�e
tive gap fun
tions, and we do not go into details for brevity. We referto the original works for further details.On
e de�ned the gap fun
tion g(x), it �nally remains to determine the shape fun
tions.The request is to maximize the fun
tional
H(φ,x) = −

N
∑

a=1

φalogφa (1.52)under the 
onstraints (1.39) and (1.49). The solution is given by
φa =

1

Z(x, λ∗, µ∗)
exp

[

λ∗(x− xa) + µ∗[(x− xa)
2 − g(x)]

]

, (1.53)where, as earlier,
Z(x, λ, µ) =

N
∑

a=1

exp
[

λ(x− xa) + µ[(x− xa)
2 − g(x)]

] (1.54)is the partition fun
tion, and
[λ∗, µ∗] = argmin

λ,µ
logZ(λ, µ) (1.55)On
e again, the minimization 
an be performed pointwise, and so the fun
tional Z redu
esto a fun
tion of the only unknowns λ and µ. We remark that, as stated earlier, these shapefun
tions, di�erently from the �rst order Lo
al Max-Ent, are naturally lo
al, be
ause theyvanish far from xa, and there is no need of a parameter su
h as β introdu
ed in (1.43).A great di�
ulty for this method is the 
omputation of the spatial derivatives of the shapefun
tions: in fa
t, re
alling (1.53), they involve the fun
tions Z∗(x), λ∗(x) and µ∗(x), that weonly know pointwise.Let's 
onsider the gradient of the partition fun
tion (1.54).

r(x, λ, µ)T = [∂λ ∂µ]Z(x, λ, µ) (1.56)



14 1. Introdu
tionRe
alling (1.55), we know that for λ = λ∗ and µ = µ∗, the fun
tional Z has a minimum
Z∗ for every x, and so its gradient r∗ is zero for ea
h x.Now we 
al
ulate the derivative of the gradient with respe
t to x. It also has to vanish forea
h x.

dr∗

dx
=

∂r∗

∂x
+H∗

d

dx

[

λ∗

µ∗

]

= 0 , (1.57)where
H =

[

Zλλ Zλµ

Zλµ Zµµ

] (1.58)is the Hessian matrix of the fun
tion Z parti
ularized at λ∗ and µ∗. Now the derivatives
an easily be 
al
ulated by inverting (1.57), where all the other terms are easy to 
al
ulate.Moreover, if the minimization (1.55) is performed through the method of Newton-Raphson(whi
h is possible sin
e the KKT 
onditions are respe
ted). The Hessian is already availablefrom the minimization pro
edure of (1.54).SME - Isogeometri
 analysus. One of the most re
ent development of the Se
ondorder maximum entropy approa
h is the fusion with a re
ent su

essfully method based onIsogeometri
 Analysis (IGA). In Rosolen and Arroyo (2013) the authors start from the 
on-sideration that the so 
alled weak Krone
ker Delta property (that is the 
hara
teristi
 of theSME shape fun
tions in the interior of the domain of vanishing on the boundary) holds onlyin a 
onvex-hull. Conversely, the representation of the domain using the IGA, whi
h uses thesame pro
edure of the CAD systems for the de�nition of the geometry, is highly more pre
isethan with the Se
ond Order approa
h, and moreover the shape fun
tion preserve the weakKrone
ker Delta property also when the 
ollo
ation points do not belong to a 
onvex hull.Moreover, the distribution of 
ollo
ation points in the IGA is by far more rigid than in the
ase of the maximum entropy approa
h. The method developed in Rosolen and Arroyo (2013)
onsiders the best 
hara
teristi
s of this two approa
hes. On the boundary, the isogeometri
shape fun
tions are 
onsidered. In the interior, the shape fun
tion are the max-ent ones.In a strip near the boundary, where the shape fun
tions of the boundary have not vanishedat yet, the shape fun
tion are a mixture of the IGA shape fun
tions and the max-ent ones.These are 
al
ulated always imposing the maximum entropy 
riterion, but also 
onsideringthe 
ontribution of the IGA shape fun
tions.Maximum Entropy shape fun
tions - �nal 
onsiderations. The method proposedin the present se
tions presents many interesting 
hara
teristi
s, above all the one of beingtotally independent of external 
hoi
es, and of being su�
iently robust with unstru
turedpoint distribution. Nevertheless here we remark that the robustness of the method withrespe
t ot unstru
tured distributions is valid only for the �rst-order LME, while in se
ond-orderdistributions a method for determining the gap fun
tion, and thus, a 
orre
t approximationof shape fun
tions, has not been found. Moreover the methods looks not to be suitable forLagrangian dynami
s, sin
e the shape fun
tion determination is a 
omputationally expensivealgorithm (due to the non-linear maximization of the entropy), that should be repeated atea
h parti
le redistribution, making the method parti
ularly ine�e
tive for fast dynami
s.



1.4. Meshless methods based on the Taylor series 151.4 Meshless methods based on the Taylor seriesA di�erent typology of meshless method is based on the Taylor series expansion: among thesehere we brie�y review the Generalized Finite Di�eren
e Method. Another method based onthe Taylor series expansion is the Least Square based Finite Di�eren
e Method (Ding et al.,2004a,b), for whi
h we do not go into details, but we refer the reader the original works.
1.4.1 Generalized Finite Di�eren
e MethodThe Generalized Finite Di�eren
e Method (GFDM), introdu
ed by Benito et al. (2001), movesfrom a di�erent starting point with respe
t to the methods dis
ussed until now. The approx-imation s
hemes of f ′(xi) and f ′′(xi) are a
hieved by the minimization of a weighted errorbetween the Taylor series expansion of the fun
tion f(x) about a point xi and the value of
f(xi) itself; the authors 
onsider the in�uen
e region of a parti
le as the set of a 
ertain num-ber of surrounding points, sele
ted with the so-
alled star 
riterion. The authors apply theirmethod to hyperboli
 and paraboli
 partial di�erential equations (Benito et al., 2007), to theadve
tion-di�usion equation (Ureña et al., 2011), as well as to third- and fourth-order partialdi�erential equations (Ureña et al., 2012; Gavete et al., 2012).Here we report the basi
 idea of the Generalized Finite Di�eren
e Method (GFDM) inthe multidimensional 
ase. The starting point is the Taylor series expansion of a fun
tion
u(xxx) about a point xxxi, and its evaluation at a point xxxj . The trun
ation error is 
omputed as
eij = u(xxxj)−uj , where u(xxxj) is the exa
t value of the fun
tion in xxxj and uj is its approximation.Then, a set of points xxxj surrounding xxxi is 
onsidered, and the total squared weighted error
Ei =

∑

j

[

eijT
ij
]2 is 
omputed, being T ij = T (xxxj − xxxi) a weight fun
tion, that is:

Ei =
∑

j

{[u(xxxj)− u(xxxi) +Dxu(xxxi)(xj − xi) +Dyu(xxxi)(yj − yi) +

+ Dzu(xxxi)(zj − zi) +
1

2
D2

xxu(xxxi)(xj − xi)
2 +

1

2
D2

yyu(xxxi)(yj − yi)
2+

+
1

2
D2

zzu(xxxi)(zj − zi)
2 +D2

xyu(xxxi)(xj − xi)(yj − yi)+

+ D2
yzu(xxxi)(yj − yi)(zj − zi) +D2

xzu(xxxi)(xj − xi)(zj − zi)
]

T ij
}2

(1.59)
Finally the approximation s
hemes for the spatial derivatives are simply a
hieved by min-imizing (1.59) with respe
t to the values of the derivatives in xxxi. After minimization, the
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tionfollowing linear system is obtained
AAAi





























Dxu(xxxi)
Dyu(xxxi)
Dzu(xxxi)
D2

xxu(xxxi)
D2

yyu(xxxi)

D2
zzu(xxxi)

D2
xyu(xxxi)

D2
yzu(xxxi)

D2
xzu(xxxi)





























=





































∑

j 2 (u(xxxj)− u(xxxi)) (xj − xi)T
ij2

∑

j 2 (u(xxxj)− u(xxxi)) (yj − yi)T
ij2

∑

j 2 (u(xxxj)− u(xxxi)) (zj − zi)T
ij2

∑

j (u(xxxj)− u(xxxi)) (xj − xi)
2 T ij2

∑

j (u(xxxj)− u(xxxi)) (yj − yi)
2 T ij2

∑

j (u(xxxj)− u(xxxi)) (zj − zi)
2 T ij2

∑

j 2 (u(xxxj)− u(xxxi)) (xj − xi)(yj − yi)T
ij2

∑

j 2 (u(xxxj)− u(xxxi)) (yj − yi)(zj − zi)T
ij2

∑

j 2 (u(xxxj)− u(xxxi)) (xj − xi)(zj − zi)T
ij2





































(1.60)
For brevity we omit the expression of the 
omponents of the matrix AAAi in the GFDM, that
an be found in Benito et al. (2001, 2007).



Chapter 2A Modi�ed Finite Parti
le Method:1D formulationThe Modi�ed Finite Parti
le Method (MFPM) is a numeri
al te
hnique for derivative approx-imations �rst introdu
ed in Asprone et al. (2010) following the idea proposed in the SPHand su

essively developed in the Corre
tive Smoothed Parti
le Hydrodynami
s (CSPM). Inthe present 
hapter we report the pro
edure adopted in the MFPM and underline the maindi�eren
es with the previous formulations proposed in the literature for the monodimensional
ase.In parti
ular we start from the original formulation, proposed in Asprone et al. (2010)and then show a novel formulation, proposed for the monodimensional 
ase in Asprone et al.(2014).2.1 Modi�ed Finite Parti
le Method - Derivative approxima-tionThe approximation te
hnique starts from the Taylor series expansion of a fun
tion u(x) up tothe se
ond-order and 
enterd in a point xi

u(x) = u(xi) + u′(xi)(x− xi) +
1

2
u′′ (xi) (x− xi)

2 + o(|x− xi|3) (2.1)Then we proje
t it on two proje
tion fun
tions W1(x− xi) and W2(x− xi), su
h that
∫

Ω
(u− ui)W

i
1dx = u′i

∫

Ω
(x− xi)W

i
1dx+ u′′i

∫

Ω

1

2
(x− xi)

2W i
1dx+ e′1

∫

Ω
(u− ui)W

i
2dx = u′i

∫

Ω
(x− xi)W

i
2dx+ u′′i

∫

Ω

1

2
(x− xi)

2W i
2dx+ e′2

(2.2)Hereafter, for simpli
ity of notation, we denote W i
α = Wα(x − xi) and u(xi) = ui. e′1 and

e′2 are the proje
tions of the trun
ation error. We note that the method is similar to theModi�ed Smoothed Parti
le Hydrodynami
s (see Chapter 1), with the novelty that in this17
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ase the fun
tion value ui is not 
onsidered an unknown for the approximation of derivatives.We divide the whole domain in a �nite number of subdomains, whose measure is ∆xj , ea
hone referring to the parti
le in xj . Then we dis
retize the integrals of (2.2), and we obtain aset of two equations that we may write in matrix form as
[

Ai
11 Ai

12

Ai
21 Ai

22

](

u′i
u′′i

)

=

(

∑

j [uj − ui]W
ij
1 ∆xj

∑

j [uj − ui]W
ij
2 ∆xj

)

+

(

e
′′

1

e
′′

2

) (2.3)Equation (2.3) holds at ea
h parti
le xi. We refer to the left-hand side matrix in Equation(2.3) as AAAi, and its 
omponents are:
Ai

11 =
∑

j

(xj − xi)W
ij
1 ∆xj Ai

12 =
1

2

∑

j

(xj − xi)
2W ij

1 ∆xj

Ai
21 =

∑

j

(xj − xi)W
ij
2 ∆xj Ai

22 =
1

2

∑

j

(xj − xi)
2W ij

2 ∆xj

(2.4)where W ij
α stands for Wα(xj − xi).We �nally obtain the approximation s
hemes for the �rst and se
ond derivatives by invert-ing (2.3). An a

urate analysis of the error in MFPM is available in Asprone et al. (2011).2.1.1 Consideration about the smoothing fun
tionThe 
hoi
e of the proje
tion fun
tions (repla
ing the 
lassi
al smoothing fun
tions used inprevious works) is a fundamental issue in any parti
le method. In 
lassi
al SPH-based methods,the traditional 
hoi
e of a bell-shaped fun
tion and its derivative is preferred, and many authorsinvestigated the properties of di�erent kernel 
hoi
es, e.g., in Lu
y (1977) a polynomial fun
tionwas used, while in Gingold and Monaghan (1977) a Gaussian fun
tion and its derivative wereadopted. The Gaussian has been sin
e then regarded by many authors as the golden fun
tionthanks to its smoothness even for high order derivatives; on the other hand, some authors usedhigh order B-splines (Monaghan and Lattanzio, 1985; Morris, 1996a,b), while Johnson et al.(1996) used a quadrati
 fun
tion. All these kernel fun
tions have to respe
t the properties ofunity (1.4a), 
ompa
t support (1.4
), positivity, and Dira
 Delta property (1.4
).In MFPM formulation these properties are not required. In fa
t, the proje
tion fun
tionsare only bases for the proje
tion of the unknown fun
tions and no relation with the Dira
Delta is indeed required. For this reason they may be 
hosen in any way su
h that the matrix

AAAi is non singular; the traditional 
hoi
e of a even and a odd fun
tion guarantees this property,but this is not the only possibility.In Equations (2.3) and (2.4) summations are 
omputed over a 
ertain number of parti
les,forming the sten
il of the derivative approximation s
hemes. As an example, in order toapproximate the �rst derivative in xi, we may 
onsider the parti
les in xi−1, in xi, and in xi+1.At the boundary, we instead 
onsider the i-th parti
le and the two 
losest ones.



2.2. Novel formulation 192.2 Novel formulationIn this se
tion a novel formulation is derived, by modifying the original MFPM formulation.We 
onsider the Taylor series expansion (2.1) about the point xi and 
olle
t in the ve
tor qqqiits evaluations in a 
ertain number of points xj :
uj − ui = u′i(xj − xi) +

1

2
u′′i (xj − xi)

2 + o(|xj − xi|3) (2.5)Then we 
olle
t in another ve
tor, namelywwwi, the evaluations of a set of proje
tion fun
tions
W ij

α in the same points xj . We perform the s
alar produ
t wwwi ·qqqi, negle
ting the trun
ationerror; the following equation holds:
∑

j

(uj − ui)W
ij
α = u′i

∑

j

(xj − xi)W
ij
α +

1

2
u′′i
∑

j

(xj − xi)
2W ij

α (2.6)and thus, for α = 1, 2, we obtain:
(

Ai
11 Ai

12

Ai
21 Ai

22

)(

u′i
u′′i

)

=

(

∑

j [uj − ui]W
ij
1

∑

j [uj − ui]W
ij
2

) (2.7)where
Ai

11 =
∑

j

(xj − xi)W
ij
1 Ai

12 =
1

2

∑

j

(xj − xi)
2W ij

1

Ai
21 =

∑

j

(xj − xi)W
ij
2 Ai

22 =
1

2

∑

j

(xj − xi)
2W ij

2

(2.8)We observe that the novel formulation 
an be easily derived from the original one by setting
∆xj = 1 for any j.2.2.1 Dis
rete form of a 1D boundary value problem using the Modi�edFinite Parti
le MethodLet us 
onsider a generi
 1D boundary value problem in the form























α
d2u

dx2
+ β

du

dx
+ γu(x) = f(x) x ∈ (0, L)

u
∣

∣

x=0
= ū1

du

dx

∣

∣

∣

∣

x=L

= ū′L

(2.9)We want to redu
e it in the algebrai
 form
KKKuuu = fff (2.10)where uuu is the ve
tor of the values of the unknown fun
tion u at xi. The �sti�ness� matrix KKK,



20 2. Modified Finite parti
le Method: 1d formulationfor linear problems, is the linear 
omposition of the dis
rete di�erential operators DDDII , DDDI ,and III, that are the dis
rete 
ounterparts of the operators d2/dx2, d/dx and 1. In parti
ular,the dis
rete form of (2.9) reads














∑

j

[

αDII
ij + βDI

ij + γδij

]

uj = fi ∀i ∈ {2, .., N − 1}
u1 = ū1
∑

j D
I
Njuj = ū′L

(2.11)and










KKK = αDDDII + βDDDI + III ∀i ∈ {2, .., N − 1}
K11 = 1, K1j = 0 for j 6= 1

KKKNj =DDDI
Nj

(2.12)
The expressions of DDDII and DDDI 
an be derived, for the original MFPM formulation, as

DII
ij = Ei

21

[

W ij
1 ∆xj − δij

∑

h

W ih
1 ∆xh

]

+ Ei
22

[

W ij
2 ∆xj − δij

∑

h

W ih
2 ∆xh

] (2.13)and
DI

ij = Ei
11

[

W ij
1 ∆xj − δij

∑

h

W ih
1 ∆xh

]

+ Ei
12

[

W ij
2 ∆xj − δij

∑

h

W ih
2 ∆xh

] (2.14)where EEEi = (AAAi)
−1 and δij is the Krone
ker Delta operator, that is 1 when i = j and 0otherwise.In the novel formulation, the dis
rete operators DDDII and DDDI are equal to
DII

ij = Ei
21

[

W ij
1 − δij

∑

h

W ih
1

]

+ Ei
22

[

W ij
2 − δij

∑

h

W ih
2

] (2.15)and
DI

ij = Ei
11

[

W ij
1 − δij

∑

h

W ih
1

]

+ Ei
12

[

W ij
2 − δij

∑

h

W ih
2

] (2.16)where, again, EEEi = (AAAi)
−1. We remark that the 
omponents of the matrix AAAi are di�erentin the two formulations, but here we denote them with the same name sin
e they play anidenti
al role in both 
ases.On
e the matrix KKK is assembled a

ording to (2.12), the array uuu is obtained through thesolution of the linear system (2.10).



2.3. Appli
ations to 1D boundary value problems 212.3 Appli
ations to 1D boundary value problemsIn the following we present some numeri
al tests, whi
h are a good o

asion to investigatesome pe
uliarties shown by the method in the 1D 
ase.The test-
ase is a baudary value problem in the form:
u′′(x) = −f(x) (2.17)with a Diri
hlet 
ondition on the left side of the domain (at x = 0) and a Neumann 
onditionon the right side, at x = 1, both equal to zero. The fun
tion f is 
hosen to be f(x) = ex. The
orresponding exa
t solution is

u(x) = −ex + ex+ 1. The problem is solved using a se
ond-order MFPM, �rst using a uniform distribution ofparti
les on x, and then using a non uniform distribution. The non-uniform distribution hasbeen obtained by the following equation
x
n_u
i = (xui )

α (2.18)where xn_u
i stands for the parti
les position in the non uniform distribution; xui is the parti
leposition in the uniform distribution, α is the parameter that densi�es the distribution on theright side of the domain, if it is less than one; it makes 
ollo
ation nodes more 
on
entratedon the left side of the domain, if it is higher than one. It is worth noting that this formulaworks only if 0 < x < 1, otherwise su
h a formula has to be pre
eded by a �normalization�pro
edure, that is the position of the parti
les has to undergo a geometri
 transformation thattakes them ba
k to the referen
e interval [0, 1]. The pro
ess of transformation from a uniformdistribution to a non uniform one is explained in Figures 2.1(a) and 2.1(b).Sin
e we have a trun
ation up the se
ond order of Taylor series, we expe
t a se
ond orderslope of the error 
urve in a logarithmi
 diagram. The error has been 
omputed as the 2-normof the di�eren
e between the exa
t solution and the approximated one.In �gure 2.2 we show the exa
t and a numeri
al solution for the problem (2.17), with anon uniform distribution of parti
les.As we 
an see in Figures 2.3 and 2.4, we have a se
ond order slope both in the 
ase of auniform distribution and in the 
ase a non uniform distribution. We solved the problem usingan odd and a even smoothing fun
tion, to ensure the matrix A to be non-singular.We also remark about the 
ase of three parti
les spanned by the smoothing length. In fa
t,when we perform the MFPM pro
edure at the boundary, it happens that the related matrix

A be
omes singular, and this does not happen when we 
onsider more than three parti
les.In fa
t, if we 
onsider a smoothing fun
tion whi
h spans �ve parti
les: 
lose to the boundarythe integrals in the matrix A be
ome, in the dis
rete
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A11 = ∆x21W

1
1 (x1 − x0) + 2∆x22W

1
2 (x2 − x0) (2.19)

A12 =
1

2

[

∆x31W
1
1 (x2 − x0) + 4∆x32W

1
2 (x2 − x0)

] (2.20)
A21 = ∆x21W

2
1 (x1 − x0) + 2∆x22W

2
2 (x2 − x0) (2.21)

A22 =
1

2

[

∆x31W
2
1 (x2 − x0) + 4∆x32W

2
2 (x2 − x0)

] (2.22)By dividing the terms of the �rst row by the ones of the se
ond row of hte matrix A weobtain
A11

A21
=

W 1
0 (x1) + 2W 1

0 (x2)

W 2
0 (x1) + 2W 2

0 (x2)
(2.23)

A12

A22
=

W 1
0 (x1) + 4W 1

0 (x2)

W 2
0 (x1) + 4W 2

0 (x2)
(2.24)In this way (2.23) is di�erent from (2.24). But if we 
onsider a kernel fun
tion whi
h doesnot span the external parti
les, (that is the same of 
onsidering W 1

0 (x2) = 0 and W 2
0 (x2) = 0)we noti
e that (2.23) be
omes equal to (2.24), and therefore the matrix A be
omes singular.This is not a problem when we solve a Boundary Value Problem with only Diri
hlet 
onditions,but in the 
ase of a problem that involves derivatives in the boundary 
onditions, we have toinvert the matrix A related to the boundary parti
le (in order to 
al
ulate the derivatives)and this is not possible.



2.3. Appli
ations to 1D boundary value problems 252.3.1 Comparison with the Finite Di�eren
e MethodIt 
an be observed that, when only three parti
les in the sten
il are used, the se
ond-orderapproximation s
hemes of derivatives are independent of the 
hoi
e of the proje
tion fun
tions.In order to prove this, we re
all the 
lassi
al pro
edure to get the derivative approximations
hemes used in the Finite Di�eren
e Method (LeVeque, 1955).The approximation of a fun
tion u at a point xj 
an be a
hieved by the Taylor expansionabout xi up to the desired order.A generi
 approximation s
heme of the se
ond derivative reads
u′′i =

∑

j

αjuj (2.25)where αj are 
oe�
ients to be determined. By 
ombining (2.5) and (2.25), we obtain (LeVeque,1955, see)
u′′i = ui

∑

j

αj + u′i
∑

j

αj(xj − xi) + u′′i
∑

j

1

2
αj(xj − xi)

2 (2.26)The points xi are 
alled 
ollo
ation points of the approximation s
hemes, while the points
xj are the points of the sten
il of the approximation. In most of the s
hemes, they do 
oin
ide,but this is not mandatory in general.Equation (2.26) holds only if



















∑

j αj = 0
∑

j αj (xj − xi) = 0

∑

j

1

2
αj (xj − xi)

2 = 1

(2.27)When the parti
les are three, the number of equations is equal to the number of theunknowns αj . If there are no 
oin
ident parti
les at the same point xj , the system (2.27) hasonly one solution. Hen
e, the se
ond order approximation s
heme for the se
ond derivative isunique. We remark that the same argument holds also for a se
ond order approximation ofthe �rst derivative.In both the original and the novel formulation of the MFPM, the �nal form of the derivativeapproximation s
hemes is identi
al to (2.25). In order to a
hieve a se
ond order s
heme for the�rst and se
ond derivatives, any pro
edure has to return the same αj of the FDM, otherwisethe method would not be se
ond-order a

urate. Both original and novel MFPM satisfy thisrequirement.



26 2. Modified Finite parti
le Method: 1d formulation



Chapter 3
Multidimensional Modi�ed FiniteParti
le Method
In the present 
hapter we extend the Modi�ed Finite Parti
le Method to the multi-dimensional
ase. In a �rst moment, we will show the three-dimensional original formulation of the MFPM,as presented in Asprone et al. (2014), then we present a novel formulation, as presented inAsprone et al. (2014), and show the obtained advantages in terms of 
omputational 
ost anderror.
3.1 Original formulationWe 
onsider the Taylor series expansion of an unknown fun
tion u(xxx) up to the se
ond order

u(xxx) = u(xxxi)+Dxu(xxxi)(x− xi) +Dyu(xxxi)(y − yi) +Dzu(xxxi)(z − zi)+

+
1

2
D2

xxu(xxxi)(x− xi)
2 +

1

2
D2

yyu(xxxi)(y − yi)
2 +

1

2
D2

zzu(xxxi)(z − zi)
2+

+D2
xyu(xxxi)(x− xi)(y − yi) +D2

yzu(xxxi)(y − yi)(z − zi)+

+D2
xzu(xxxi)(x− xi)(z − zi) + o(‖xxx−xxxi‖3)

(3.1)where xxx = [x y z]T . 27



28 3. Modified Finite Parti
le Method: multidimensional formulation
Dxu(xxxi)

∫

Ω
(x− xi)W

i
α dV +Dyu(xxxi)

∫

Ω
(y − yi)W

i
α dV +Dzu(xxxi)

∫

Ω
(z − zi)W

i
α dV+

+
1

2
D2

xxu(xxxi)

∫

Ω
(x− xi)

2W i
α dV +

1

2
D2

yyu(xxxi)

∫

Ω
(y − yi)

2W i
α dV+

+
1

2
D2

zzu(xxxi)

∫

Ω
(z − zi)

2W i
α dV +D2

xyu(xxxi)

∫

Ω
(x− xi)(y − yi)W

i
α dV+

+ D2
yzu(xxxi)

∫

Ω
(y − yi)(z − zi)W

i
α dV +D2

xzu(xxxi)

∫

Ω
(x− xi)(z − zi)W

i
α dV =

=

∫

Ω
(u(xxx)− u(xxxi))W

i
α dV (3.2)whi
h 
an be rewritten in matrix form as:

AAAi





























Dxu(xxxi)
Dyu(xxxi)
Dzu(xxxi)
D2

xxu(xxxi)
D2

yyu(xxxi)

D2
zzu(xxxi)

D2
xyu(xxxi)

D2
yzu(xxxi)

D2
xzu(xxxi)





























=





























∫

Ω (u(xxx)− u(xxxi))W
i
1 dV

∫

Ω (u(xxx)− u(xxxi))W
i
2 dV

∫

Ω (u(xxx)− u(xxxi))W
i
3 dV

∫

Ω (u(xxx)− u(xxxi))W
i
4 dV

∫

Ω (u(xxx)− u(xxxi))W
i
5 dV

∫

Ω (u(xxx)− u(xxxi))W
i
6 dV

∫

Ω (u(xxx)− u(xxxi))W
i
7 dV

∫

Ω (u(xxx)− u(xxxi))W
i
8 dV

∫

Ω (u(xxx)− u(xxxi))W
i
9 dV





























(3.3)
The 
hoi
e of the proje
tion fun
tions is performed with the only requirement that, forea
h parti
le, the matrix AAAi is non singular. For instan
e, in our tests we 
hoose

W i
1 = x− xi W i

4 = (x− xi)
2 W i

7 = (x− xi)(y − yi)

W i
2 = y − yi W i

5 = (y − yi)
2 W i

8 = (y − yi)(z − zi)

W i
3 = z − zi W i

6 = (z − zi)
2 W i

9 = (x− xi)(z − zi)The domain Ωis then divided into �nite subdomains ∆Vj , one for ea
h parti
le xxxj , e.g.,a

ording to the Voronoi tessellation pro
edure (see Aurenhammer (1991) for details); for ea
hparti
le an in�uen
e region Ωi is also de�ned, depending, as in SPH-based methods, on thesmoothing length. In MFPM we do not de�ne a �xed value of the smoothing length, but weprefer to set the number of parti
les to be in
luded in the domain Ωi for the approximation ofderivatives. For all parti
les su
h that xj /∈ Ωi we pose that W i
α(xxx = xxxj) = 0 for α = 1, ..., 9.Then, the integrals are approximated with summations, and Equation (3.3) 
an be rewrittenas

AAAiDDD(ui) = CCCiuuu−BBBui (3.4)



3.2. Novel formulation 29where
CCCi = [WWW i1 | WWW i2 | ... | WWW iN ] (3.5)
BBBi =

∑

j

WWW ij (3.6)and
WWW ij = [W ij

1 ∆Vj | W ij
2 ∆Vj | ... | W ij

9 ∆Vj]
T (3.7)Then, by inverting (3.4), we obtain

DDD(ui) = EEEi(CCCiuuu−BiBiBiui) = EEEi(CCCi −B
i)uuu (3.8)where

B
i = [ 000 | 000 | ... | BBBi | ... | 000 | 000 ] (3.9)and �nally

DDD(ui) = D
iuuu (3.10)The operator that, applied to uuu, gives ba
k the dis
rete form of the generi
 derivative of

u(x) 
an be built by 
olle
ting the 
orresponding rows of Di = EEEi(CCCi −Bi), ∀i.In order to �nd the 
orre
t row of Di, it is su�
ient to refer to Equation (3.3). For instan
e,in order to build the operator DDDxx (that, applied to uuu, gives ba
k the dis
rete 
ounterpart of
∂2u(x)/∂x2), we sele
t, for ea
h i, the 4-th row of Di, su
h that

DDDxx =









D1
4

D2
4

...
DN

4









(3.11)where Di
α is the α-th row of Di.A 2D formulation of the method is simply a
hieved by 
onsidering only the derivativesin the x and y dire
tions, that is, α 
an only be equal to 1, 2, 4, 5, 7. The three-dimensionalsubdomains ∆Vj are obviously repla
ed by planar subdomains ∆Aj .3.2 Novel formulationIn the present se
tion we introdu
e the novel formulation of the Modi�ed Finite Parti
leMethod (MFPM) as presented in Asprone et al. (2014), and use this method for the derivativeapproximation of a s
alar fun
tion u(x) de�ned in a three-dimensional domain Ω, hen
e x =

[x y z]T ∈ Ω ⊂ R
3. We dis
retize the domain Ω into a set of points xi 
olle
ted in the nodeset X.For ea
h point xi ∈ X, the approximation pro
edure 
onsiders the Taylor series expansion



30 3. Modified Finite Parti
le Method: multidimensional formulationof u(x) up to the se
ond order, 
entered in xi:
u(x)− u(xi) = Dxu(xi)(x− xi) +Dyu(xi)(y − yi) +Dzu(xi)(z − zi)+

+
1

2
D2

xxu(xi)(x− xi)
2 +

1

2
D2

yyu(xi)(y − yi)
2 +

1

2
D2

zzu(xi)(z − zi)
2+

+ D2
xyu(xi)(x− xi)(y − yi) +D2

yzu(xi)(y − yi)(z − zi)+

+ D2
xzu(xi)(x− xi)(z − zi)

(3.12)Then, for ea
h xi we sele
t a node subsetXi ⊂ X, whi
h serves as support for the derivativeapproximation in xi. Con
eptually Xi 
ould 
oin
ide with the whole set of nodes X, butthe 
hoi
e of a limited number Ni of �supporting nodes� has a bene�
ial e�e
t on the �nal
omputational 
ost of the method.Equation (3.12) is then evaluated in the points xj ∈ Xi, yielding
u(xj)− u(xi) = Dxu(xi)(xj − xi) +Dyu(xi)(yj − yi) +Dzu(xi)(zj − zi)+

+
1

2
D2

xxu(xi)(xj − xi)
2 +

1

2
D2

yyu(xi)(yj − yi)
2 +

1

2
D2

zzu(xi)(zj − zi)
2+

+ D2
xyu(xi)(xj − xi)(yj − yi) +D2

yzu(xi)(yj − yi)(zj − zi)+

+ D2
xzu(xi)(xj − xi)(zj − zi) (3.13)It is important to highlight that at this stage we 
onsider to know the nodal values of u(i.e., u(xi) and u(xj)), and, therefore, in Equation (3.13) the unknown terms are the derivativeevaluations at the point xi. In order to 
ompute su
h derivative values, we introdu
e ninearbitrary fun
tions (referred as proje
tion fun
tions) W i

α(x) = Wα(x − xi), with α = 1, ..., 9,and evaluate them at the points xj ∈ Xi.We then multiply both sides of Equation (3.13) by the evaluations W ij
α = Wα(xj − xi) ofthe proje
tion fun
tions at the same points xj . Finally we sum all produ
ts, obtaining nineexpressions of the following type

Dxu(xi)
∑

j

(xj − xi)W
ij
α +Dyu(xi)

∑

j

(yj − yi)W
ij
α +Dzu(xi)

∑

j

(zj − zi)W
ij
α +

+
1

2
D2

xxu(xi)
∑

j

(xj − xi)
2W ij

α +
1

2
D2

yyu(xi)
∑

j

(yj − yi)
2W ij

α +

+
1

2
D2

zzu(xi)
∑

j

(zj − zi)
2W ij

α +D2
xyu(xi)

∑

j

(xj − xi)(yj − yi)W
ij
α +

+ D2
yzu(xi)

∑

j

(yj − yi)(zj − zi)W
ij
α +D2

xzu(xi)
∑

j

(xj − xi)(zj − zi)W
ij
α =

=
∑

j

[u(xj)− u(xi)]W
ij
α α = 1, ..., 9 (3.14)



3.2. Novel formulation 31Remark. It is important, at this stage, to highlight the formal di�eren
e between the novelformulation just des
ribed, and the original formulation des
ribed in the previous se
tion. Infa
t, in this 
ase we �rst evaluate the Taylor Series (3.12) and the proje
tion fun
tion, andthen we proje
t ve
tors, obtaining an already dis
retized proje
tion. In the 
ase of the origi-nal MFPM formulation, 
onversely, we perform a 
ontinous proje
tion, obtaining an integralexpression that has to be furthermore dis
retized, introdu
ing an additional sour
e of error.Equations (3.14), repeated for α = 1, ..., 9, 
an be rearranged in matrix form as
Ai





























Dxu(xi)
Dyu(xi)
Dzu(xi)
D2

xxu(xi)
D2

yyu(xi)

D2
zzu(xi)

D2
xyu(xi)

D2
yzu(xi)

D2
xzu(xi)





























=



































∑

j [u(xj)− u(xi)] W
ij
1

∑

j [u(xj)− u(xi)] W
ij
2

∑

j [u(xj)− u(xi)] W
ij
3

∑

j [u(xj)− u(xi)] W
ij
4

∑

j [u(xj)− u(xi)] W
ij
5

∑

j [u(xj)− u(xi)] W
ij
6

∑

j [u(xj)− u(xi)] W
ij
7

∑

j [u(xj)− u(xi)] W
ij
8

∑

j [u(xj)− u(xi)] W
ij
9



































(3.15)
Equation (3.15) 
an be rearranged in a more 
ompa
t form as

AiD(ui) = W
iui −Biu(xi) (3.16)where Wi is a 9xNi matrix de�ned as

W
i = [Wi1 | Wi2 | ... | WiNi ] (3.17)

Bi is a 9x1 ve
tor de�ned as
Bi =

Ni
∑

j=1

Wij (3.18)In Equations (3.17) and (3.18), Wij is a 9x1 ve
tor de�ned as
Wij = [W ij

1 | W ij
2 | ... | W ij

9 ]
T (3.19)that 
olle
ts the evaluations of the proje
tion fun
tions W ij

α at the nodes xj and xi, for
α = 1, ..., 9; �nally ui is the Nix1 ve
tor 
olle
ting the values of u(x) at all nodes of the subset
Xi. Equation (3.16) 
an be furthermore rearranged in the form

AiD(ui) =
(

W
i −B

i
)

ui (3.20)where
B

i = [ 0 | 0 | ... | Bi | ... | 0 | 0 ] (3.21)



32 3. Modified Finite Parti
le Method: multidimensional formulationis a 9xNi matrix, 
omposed of zero entries, with ex
eption of the i-th 
olumn.Derivative values at the point xi 
an be retrieved inverting Equation (3.20), yielding
D(ui) = Ei(Wi −B

i)ui (3.22)where
Ei =

(

Ai
)−1 (3.23)Finally, Equation (3.22) 
an be rewritten in the form

D(ui) = D
iui (3.24)where the matrix Di = Ei(Wi −Bi) is a 9xNi operator a
ting on the ve
tor ui and returningthe evaluations of the fun
tion derivatives at xi.However, keeping in mind that our �nal goal is to solve boundary value problems governedby partial di�erential equations, we need nine dis
rete di�erential operators that approximatederivative operations on 
ontinous fun
tions. In parti
ular, re
alling that N is the total numberof nodes used for the domain dis
retization, we wish to build operators that a
t on the Nx1ve
tor u (
olle
ting the fun
tion evaluations at all nodes of the domain) and re
onstru
tthe fun
tion derivative evaluations in all nodes. Su
h operators are 
onstru
ted 
olle
ting theproper row from the operatorsDi, ∀i, identi�ed with referen
e to Equation (3.15). For instan
e,in order to 
onstru
t an operator Dxx a
ting on u and returning the dis
rete 
ounterpart of

∂2u(x)/∂x2, we extra
t, for ea
h i, the 4-th row of Di, that is
Dxx =









D1
4

D2
4

...
DN

4









(3.25)where Di
α is the α-th row of Di.A 2D formulation of the method is simply a
hieved by 
onsidering only the derivatives inthe x and y dire
tions, that is, α 
an only be equal to 1, 2, 4, 5, 7.Given the analyti
al form of derivative approximation s
hemes, it is easy to approximateany linear di�erential operator; the most 
ommon are reported in Table 3.1Continuum operator Dis
rete operator

∇∇∇ · (•) Dx(•)1 +Dy(•)2 +Dz(•)3
∇∇∇(•) [Dx Dy Dz]

T (•)
∇∇∇2(•) Dxx(•) +Dyy(•) +Dzz(•)Table 3.1: Corresponden
e between some 
ontinuum di�erential operators and their dis
rete form usingMFPM.



3.2. Novel formulation 333.2.1 Proje
tion fun
tions and supporting nodesIn the following we give some sele
tion 
riteria for the proje
tion fun
tions and for the �sup-porting nodes�.The proje
tion fun
tions W i
α have to be 
hosen su
h that matrix Ai is non singular. In allthe examples of the present paper, we use linear, quadrati
 and bilinear fun
tions in the threeindependent variables, i.e.:

W i
1 = x− xi W i

4 = (x− xi)
2 W i

7 = (x− xi)(y − yi)

W i
2 = y − yi W i

5 = (y − yi)
2 W i

8 = (y − yi)(z − zi)

W i
3 = z − zi W i

6 = (z − zi)
2 W i

9 = (x− xi)(z − zi)The dimensions of the subsets Xi, that 
ontain the supporting nodes for ea
h xi, is notspe
i�ed a priori. The number of supporting nodes, as well as their 
riterion of sele
tion, isthe topi
 of several works in the literature regarding meshless methods. In the original versionof the Smoothing Parti
le Hydrodynami
s a smoothing length is sele
ted, and all parti
leswhose distan
e is less than the �xed smoothing length are used for the approximation. On theother hand, in the Generalized Finite Di�eren
e Method, the sele
tion 
riterion in
ludes theparti
les xi and the two 
losest ones for ea
h quadrant of a lo
al referen
e frame, 
entered onthe parti
le itself and with the axes parallel to the global axes (star 
riterion). In the Least-Square Finite Di�eren
e Method, proposed by Ding et al. (2004a,b) the sele
tion algorithm ofsupporting nodes 
onsiders the Ni nodes 
losest to xi, and then a 
he
k is performed on the
ondition number of the lo
al system to be solved (with a stru
ture similar to (3.15)). Theauthors observe that when one or more supporting nodes are very 
lose to xi, the matrix Aimay result ill-
onditioned. Therefore a s
aling matrix S, based only on the re
ipro
al distan
eamong parti
les, is introdu
ed in order to improve the quality of Ai, and thus, of the derivativeapproximations.We use a sele
tion algorithm very similar to the one proposed in the LSFDM, and 
omposedof two steps. First, a predetermined number Ni of parti
les is in
luded in the set of supportingnodes Xi, sele
ted only on the base of their distan
e from the parti
le xi. Then, a diagonals
aling matrix S is introdu
ed, whose expression is
S = diag

[

1/R, 1/R, 1/R, 1/R2, 1/R2, 1/R2, 1/R2, 1/R2, 1/R2
] (3.26)where R = max ‖xj − xi‖,xj ∈ Xi. Equation (3.15) is then rewritten introdu
ing the matrix

S both in the left and right term. The 
ondition number of the resulting matrix Āi = SAi is
omputed; if su
h 
ondition number is greater than a �xed threshold value Cmax, the numberof supporting nodes is in
reased and the pro
edure is repeated, until a satisfa
tory 
onditionnumber is rea
hed.A

ordingly, Equation (3.4) 
an be rewritten in the form
ĀiD(ui) = SAiD(ui) = SAi

(

W
iui −Biu(xi)

) (3.27)and all equations from (3.15) to (3.23) are properly rearranged.



34 3. Modified Finite Parti
le Method: multidimensional formulation3.3 Comparison with existing methodsBy 
omparing Equations (3.3), (3.15), and (1.60), we noti
e the similarity between the GFDMand both the original and novel formulations of the MFPM. In parti
ular, it is easy to seethat, with a proper 
hoi
e of the proje
tion fun
tions in the MFPM, the GFDM is re
overed.In parti
ular, the GFDM and the novel MFPM exa
tly mat
h, if the following fun
tions are
hosen for the novel MFPM:
W ij

1 = 2(xj − xi)T
ij2

W ij
2 = 2(yj − yi)T

ij2

W ij
3 = 2(zj − zi)T

ij2

W ij
4 = (xj − xi)

2 T ij2

W ij
5 = (yj − yi)

2 T ij2

W ij
6 = (zj − zi)

2 T ij2

W ij
7 = 2(xj − xi)(yj − yi)T

ij2

W ij
8 = 2(yj − yi)(zj − zi)T

ij2

W ij
9 = 2(xj − xi)(zj − zi)T

ij2

(3.28)
We remark that in the GFDM all the derivative approximation s
hemes depend on the
hoi
e of one weight fun
tion Tij , while in the MFPM formulations 9 proje
tion fun
tionshave to be de�ned.3.3.1 Considerations about the sten
il of the derivativesThe sten
il of a derivative approximation is the set of parti
les whi
h 
ontributes to theapproximation in a point xi. Su
h a point is 
alled 
ollo
ation point. In the �rst worksregarding the SPH, a point was in
luded in the sten
il of derivative approximations if itsdistan
e from the 
ollo
ation point was less than the smoothing length h. This approa
hhas been followed in many other works about SPH-derived methods, su
h as the RKPM, theCSPm and the MSPH.In the lo
al max-ent approa
h, the sele
tion of the sten
il was determined by the 
hoi
e ofa parameter β, that was 
hosen in order to enfor
e a 
ondition of lo
ality of the method. Inits development, the so 
alled se
ond-order max-ent approa
h, the shape fun
tions were lo
alautomati
ally, and also the parti
les in
luded in the sten
il were 
hosen 
onsequently.Is the Generalized Finite Di�eren
e Method, as shown in (Benito et al., 2007), the authorsstate that an optimal 
hoi
e of the sten
il in a 2d 
ase is the so 
alled �star 
riterion�, thatis, the sten
il of a 
ollo
ation point is sele
ted by 
hoosing the two 
losest parti
les for ea
hquadrant, independently of the their distan
e from the 
ollo
ation point itself, as shown in�gure 3.1When there is not a su�
ient number of parti
les in ea
h quadrant, the missing parti
les
an be supplemented from the other quadrants. This 
riterion has a general appli
ation, butis not pre
ise in the 
ase of stru
tured distribution. Moreover, it 
an o

ur the 
ase when allthe parti
les sele
ted by the star 
riterion are aligned on a 
ross. In this 
ase it 
an be shownthat the matrix A of equation (1.60) 
annot be inverted.
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Figure 3.1: The star 
riterion3.4 Sear
hing algorithm of neighbour parti
lesIn ea
h meshless method developed in the literature a deep attention has to be given to thealgorithm of neighbour parti
le sele
tion, sin
e it is often the most time 
onsuming part of thewhole algorithm, espe
ially when expli
it time integration is performed.In the present se
tion we dis
uss the algorithm used in the MFPM for the 
onstru
tion ofthe linear di�erential operator presented in Se
tions 3.1 and 3.2 with spe
ial attention to the
omputational 
ost required in the di�erent phases of the pro
edure.In parti
ular, the algorithm takes in input a node distribution and returns the dis
retedi�erential operators proposed in the previous se
tion. For both the original and the novelformulation the sear
hing algorithm pro
edure is exa
tly the same. The steps 
omposing theparti
les sear
hing algorithm is then, for ea
h 
ollo
ation point xi:1. all other nodes are reordered on the base of their distan
e from xi;2. the 9 parti
les 
losest to xi are 
hosen;3. the matrix Ai is built;4. the matrix Ai is pre
onditioned on the base of the parti
le distan
e from xi, followingthe idea shown in Ding et al. (2004a,b);5. the 
ondition number of Ai is 
omputed and 
ompared to a prede�ned threshold value;6. if the 
ondition number is higher then the threshold value, the number of neighbournodes is in
reased, and phases 3, 4, and 5 are repeated;7. the matrix Ai is inverted;
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le Method: multidimensional formulationTable 3.2: Computational 
ost for algorithm 1 used on a distribution of 6561 
ollo
ation pointsPhase Computational 
ost [s℄ Per
entage [%℄1 4.75 312 0.125 0.833 0.703 4.674 0.0892 0.595 7.65 50.856 0.409 2.717 0.344 2.288 0.975 6.48Table 3.3: Computational 
ost for algorithm 1 used on a distribution of 16461 
ollo
ation pointsPhase Computational 
ost [s℄ Per
entage [%℄1 21.8 42.572 0.356 0.693 2.21 4.324 0.245 0.485 20.21 39.476 0.98 1.917 0.92 1.808 4.48 8.758. the i-th row the dis
rete di�erential operator is built.The 
omputational 
ost 
onne
ted to the di�erent phases depends strongly on the strategiesadopted espe
ially during the phases 1 and 2, and the spe
i�
 in-built MATLAB fun
tionsused for phase 5. In parti
ular, this primitive, rough algorithm, for ea
h 
ollo
ation pointsreorders all nodes of the domain in terms of distan
e, and uses the MATLAB in-built fun
tion
ondest. For the algorithm just des
ribed the 
omputational 
osts are reported in Table 3.2The same algorithm tested on a distribution of 16461 nodes gives the results shown inTable 3.3It is evident from a �rst glan
e to Tables 3.2 and 3.3 that the most 
ostly phases are thephases 1 and 5. The resear
h algorithm is then signi�
antly improved properly modifyingthese two phases.The improvement of phase 1 is made through a di�erent sear
hing algorithm, used in manySPH 
odes and appli
ations: it 
onsists in dividing the domain in a prede�ned number of squaresubodomains (depending on the amount of 
ollo
ation points, in su
h a way that ea
h squaresubdomain 
ontains limited number of nodes). Therefore the resear
h of neighbour parti
lesis made on only the square in whi
h the 
ollo
ation node is lo
ated, and in the 8 adja
entsquares. This pro
ess obviously redu
es the time required for pre-ordering and sele
ting theneighbour parti
les.For what 
on
erns the 
omputational 
ost of the 
omputation of the 
ondition number of
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les 37Table 3.4: Computational 
ost for algorithm 2 used on a distribution of 6561 
ollo
ation pointsPhase Computational 
ost [s℄ Per
entage [%℄1 0.435 26.122 0.0362 2.173 0.271 16.274 0.0643 3.865 0.270 16.216 0.266 15.977 0.201 12.068 0.122 7.33Table 3.5: Computational 
ost for algorithm 2 used on a distribution of 16461 
ollo
ation pointsPhase Computational 
ost [s℄ Per
entage [%℄1 1.08 27.172 0.084 2.113 0.63 15.854 0.146 3.675 0.641 16.136 0.708 17.817 0.401 10.098 0.285 7.17the matrix Ai, it is su�
ient to our s
ope to approximate the 
ondition number, sin
e we onlyask to this phase to understand if the matrix Ai is invertible or not, and this information isgiven also with a non extremely pre
ise 
ondition number. Therefore we repla
e the MAT-LAB fun
tion 
ondest with the more e�
ient MATLAB in-built fun
tion 
ond. For te
hni
aldi�eren
es between the two fun
tions we refer to the MATLAB guide.After the modi�
ation of the algorithm, the total 
omputational 
ost involved is reportedin Table 3.4 for 6561 nodes, and in Table for 3.5 for a distribution of 16461 nodes.From the 
omparison of Tables 3.2 and 3.4 it is evident the saving of time in the se
ond
ase.
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Chapter 4Appli
ations of the Modi�ed FiniteParti
le Method to linear elasti
ityIn the present 
hapter we apply the Modi�ed Finite Parti
le Method to linear elasti
ity. In a�rst part of the 
hapter we present the 
ontinuous equations that model the behaviour of anelasti
 body, then we show how su
h equations are dis
retized using a Modi�ed Finite Parti
leMethod, in parti
ular we show how do we handle the dynami
 term, and �nally we show someappli
ations in 2D and 3d stati
s, 1d and 2d dynami
s.4.1 Linear elasti
ityIn the following we introdu
e the linear elasti
 problem in the three-dimensional spa
e andshow how it 
an be formulated with the Modi�ed Finite Parti
le Method.We 
onsider an elasti
 body on a domain Ω, subje
ted to internal for
es bbb = bbb(xxx, t),pres
ribed displa
ements s̄ss = s̄ss(xxx, t) on the Diri
hlet boundary ΓD, and pres
ribed tra
tions
t̄tt = t̄tt(xxx, t) on the Neumann boundary ΓN . ΓD and ΓN are su
h that

{

ΓD ∪ ΓN = Γ

ΓD ∩ ΓN = ∅where Γ is the whole boundary of Ω.The equations governing the problem are














































ρ
∂2sss

∂t2
= ∇∇∇ ·σσσ + bbb xxx ∈Ω

σσσnnn = t̄tt(t) xxx ∈ΓN

sss = s̄ss(t) xxx ∈ΓD

sss
∣

∣

t=0
= sss0(xxx) xxx ∈Ω

∂sss

∂t

∣

∣

∣

∣

t=0

= ṡss0(xxx) xxx ∈Ω

(4.1)
39



40 4. Appli
ations to elasti
itywhere ρ is the mass density of the material; nnn is the outward normal ve
tor at the boundary,
sss = sss(xxx, t) is the ve
torial displa
ement �eld, whose 
omponents are u = u(xxx, t), v = v(xxx, t),and w = w(xxx, t); σσσ = C(∇∇∇sss)S is the symmetri
 Cau
hy stress tensor. C is the fourth orderlinear elasti
 isotropi
 tensor, whose 
omponents are

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (4.2)where λ and µ are the Lamé 
onstants, whi
h 
an be expressed in terms of the Young modulus
E and the Poisson ratio ν as follows:

λ =
Eν

(1 + ν)(1− 2ν)
; µ =

E

2(1 + ν)
(4.3)

(•)S denotes the symmetri
 part of a tensor (i.e., AAAS =
1

2
(AAA+AAAT )).Making expli
it (4.1) with respe
t to the 
omponents of the displa
ement u, v and w, weobtain











ρu,tt = (λ+ 2µ)u,xx +µ(u,yy +u,zz ) + (λ+ µ)(v,xy +w,xz ) + bx

ρv,tt = (λ+ 2µ)v,yy +µ(v,xx+v,zz ) + (λ+ µ)(u,xy +w,yz ) + by

ρw,tt = (λ+ 2µ)w,zz +µ(w,xx +w,yy ) + (λ+ µ)(u,xz +v,yz ) + bz

(4.4)The subs
ripts pre
eded by a 
omma indi
ate partial derivative.The semi-dis
rete form of system (4.4), after the spatial dis
retization shown in Chapters3, is then
ρ¨̂sss = K̂KKŝss+ bbb (4.5)being ŝss the ve
tor of the parti
le values of sss(xxx, t). In a more expli
it form, equation (4.5) reads





ρ¨̂uuu

ρ¨̂vvv

ρ ¨̂www



 =







K̂KK11 K̂KK12 K̂KK13

K̂KK21 K̂KK22 K̂KK23

K̂KK31 K̂KK32 K̂KK33











ûuu
v̂vv
ŵww



+





bbbx
bbby
bbbz



 (4.6)being ûuu, v̂vv and ŵww the ve
tors 
ontaining the parti
le values of the s
alar �elds u, v, and w.
K̂KKij are the blo
ks of K̂KK, reading

K̂KK11 = (λ+ 2µ)DDDxx + µ(DDDyy +DDDzz)

K̂KK22 = (λ+ 2µ)DDDyy + µ(DDDxx +DDDzz)

K̂KK33 = (λ+ 2µ)DDDzz + µ(DDDxx +DDDyy)

K̂KK12 = K̂KK21 = (λ+ µ)DDDxy

K̂KK13 = K̂KK31 = (λ+ µ)DDDxz

K̂KK23 = K̂KK32 = (λ+ µ)DDDyzIn the spirit of 
ollo
ation methods, in equation (4.5), the rows of K̂KK 
orresponding to theboundary parti
les, and the 
orresponding terms of bbb and ρ¨̂sss have to be repla
ed with the
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ity 41dis
rete form of the boundary 
onditions. In this way we obtain the �nal form of the dis
reteelasto-dynami
 problem
KKKŝss = fff (4.7)where the 
omponents of fff are ρ¨̂sss− bbb for the rows asso
iated to internal parti
les, and s̄ss or t̄ttfor the boundary parti
les, in 
ase of Diri
hlet or Neumann boundary 
onditions, respe
tively.For elasto-stati
 appli
ations, time derivatives in Equation (4.7) are zero, and the system
an be immediately solved; therefore both internal and external parti
le values are foundsimultaneously.In 
ase of elasto-dynami
s, we have �rst to dis
retize time derivatives, with a numeri
als
heme, i.e.

¨̂sssn =
ŝssn+1 − 2ŝssn + ŝssn−1

∆t2
(4.8)where ∆t is the time step and supers
ripts refer to time in
rements (e.g., ŝssn = ŝss

∣

∣

t=tn
). Theequations of system (4.7), 
ollo
ated at internal parti
les, read

∑

j

Kij ŝ
n
j = ρ

ŝn+1
i − 2ŝni + ŝn−1

i

∆t2
− bni (4.9)while the equations 
ollo
ated at boundary parti
les, where no time derivatives are involved,are in the form

∑

j

Kij ŝ
n+1
j = ūn+1

i (4.10)Equations (4.10) 
annot be solved by expli
it time integration, sin
e the values of ŝn+1
jmay depend, in 
ase of Neumann boundary 
onditions, on the values of the internal parti
lesat the same time step tn+1. To over
ome this di�
ulty, we perform a stati
 
ondensation of

KKK, and separate the equations 
ollo
ated on internal parti
les from those 
ollo
ated on theboundary. The degrees of freedom are also separated, and so the �nal form of (4.5) is
(

KKKII KKKIB

KKKBI KKKBB

)(

ŝssI
ŝssB

)

=

(

ρ¨̂sssI − bbbI
ūuu

) (4.11)where ūuu is the ve
tor of the pres
ribed displa
ements or of the tra
tions at the boundary, and
KKKII , KKKIB, KKKBI , KKKBB are the blo
ks of the matrix KKK obtained with referen
e to the internaland boundary parti
les.From the se
ond set of equations of (4.11) we 
ompute

sssB =KKK−1
BB(ūuu−KKKBIŝssI) (4.12)and we substitute it into the �rst set of equations of (4.11), obtaining

ρ¨̂sssI − (KKKII −KKKIBKKK
−1
BBKKKBI)ŝssI = −KKKIBKKK

−1
BBūuu− bbbI (4.13)where the amount KKKII −KKKIBKKK

−1
BBKKKBI is the 
ondensed sti�ness matrix, namely K̃KK.Equations (4.13) form an un
onstrained ordinary di�erential equation system whi
h 
an
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ations to elasti
itybe solved by a suitable time integration s
heme, like the expli
it one of Equation (4.8). On
ethe values of the unknown fun
tions are 
omputed from Equation (4.13) at time step tn+1,Equation (4.12) 
an be used to retrieve the values of the fun
tions at the boundary parti
les.4.2 Numeri
al testsIn the following we propose a number of appli
ations of the investigated models. First weintrodu
e three 
hallenging elasto-stati
 problems: the 
lassi
al test of an in�nitely extendedplate with a 
ir
ular hole under a uniform remote tra
tion, the problem of the Cook's mem-brane in 2D plain strain, and a 3D blo
k with a spheri
al bore stret
hed on a fa
e. Regardingdynami
 problems, we investigate the wave propagation in a two-dimensional bar under aquasi-impulsive load, and a quarter of an annulus under a sinusoidal body load. We solveall these problems with the original MFPM, the novel MFPM, and the GFDM, in order to
ompare the performan
es of these methods.4.2.1 Plate with a 
ir
ular holeThe geometry of this problem is depi
ted in Figure 4.1, along with its symmetry boundary
onditions and applied loads. The radius of the internal hole is a = 0.2.PSfrag repla
ements
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y aa
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Γ5

Figure 4.1: Plate with a 
ir
ular hole: model problem in
luding symmetry boundary 
onditions and appliedloads.The equations that govern the problem are the 2D elasto-stai
 version of (4.4). Plain strain
ondition are assumed. The boundary 
onditions are










σσσnnn ·nnn =0 and σσσnnn · ttt = 0 on Γ1 and Γ4

sss ·nnn =0 and σσσnnn · ttt = 0 on Γ2 and Γ5

σσσnnn ·nnn =σ0 and σσσnnn · ttt = 0 on Γ3

(4.14)where nnn is the outward normal, ttt is the unit ve
tor tangent to the boundary, and σ0 is theuniform remote tra
tion.
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al tests 43We solve the problem 
onsidering a redu
ed domain, su
h that on Γ3 and Γ4 we imposeboundary 
onditions a

ording to the exa
t solution, that is, in terms of stresses,
σxx = σ0

[

1− a2

r2

(

3

2
cos 2θ + cos 4θ

)

+
3a4

2r4
cos 4θ

] (4.15a)
τxy = σ0

[

−a2

r2

(

1

2
sin 2θ + sin 4θ

)

+
3a4

2r4
sin 4θ

] (4.15b)
σyy = σ0

[

−a2

r2

(

1

2
cos 2θ − cos 4θ

)

− 3a4

2r4
cos 4θ

] (4.15
)where (r, θ) are the polar 
oordinates, θ being measured from the positive x-axis 
ounter
lo
k-wise.We now introdu
e the Stress Intensity Fa
tor (SIF) for this problem, that is the ratiobetween the maximum value of σxx and the value of the remote tra
tion σ0. In this 
ase, theanalyti
al solution provides SIF = 3. We then numeri
ally solve the problem, assuming
E = 100000Pa, ν = 0.33 , σ0 = 100Pa. (4.16)and 
ompare the analyti
al value of the SIF with the obtained numeri
al results. The distri-bution of the σxx stress obtained with the original MFPM and 251001 parti
les is shown inFigure 4.2. The relative error on the SIF is 
omputed as
errr =

|SIFan − SIFnum|
|SIFan|

=
|3− SIFnum|

3
(4.17)and 
onvergen
e plots referred to the three 
onsidered methods are reported in Figure 4.3,where N is the total number of parti
les used for the numeri
al solution.We observe that for this problem all three methods show the same se
ond-order 
onver-gen
e, but the error 
omputed with the original MFPM shows a lower 
onstant. With theother two methods quite similar values of the error are a
hieved, but the 
omputational 
ostis signi�
antly redu
ed, sin
e no Voronoi tessellation of the domain is needed.In Table 4.1 the make a 
omparison among the 
omputational 
osts of the original andnovel MFPM for this problem. We noti
e the signi�
ant time redu
tion in the 
ase of novelMFPM.We observe that for this problem all three methods show the same se
ond-order 
onver-gen
e, but the original formulation has an higher 
onstant. With the other two methods quitesimilar values of the error are a
hieved, and the 
omputational 
ost is signi�
antly redu
ed,sin
e no Voronoi tessellation of the domain is needed.4.2.2 The Cook's membraneThe Cook's membrane is a 
lassi
al ben
hmark introdu
ed by Cook and Al-Abdulla (1969)to show the performan
e of plane �nite elements in dealing with volumetri
 lo
king. The
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Figure 4.2: σxx in a square with a 
entral hole obtained with the original MFPM and 251001 parti
les.geometry is shown in Figure 4.4.The data of the problem are L = 48m, H1 = 44m, H2 = 16m.The equations that govern the problem are the 2D elasto-stati
 version of (4.4). Plainstrain 
onditions are assumed. The boundary 
onditions are










sss ·nnn =0 and sss · ttt = 0 on Γ1

σσσnnn ·nnn =0 and σσσnnn · ttt = 0 on Γ2 and Γ4

σσσnnn ·nnn =0 and σσσnnn · ttt = τ0 on Γ3

(4.18)where τ0 = 1/16Pa is a 
onstant shear stress distribution.
√
N Computational 
ost ofthe Voronoi tessellationand 
utting algorithm[s℄ Total time of the
ode - originalformulation [s℄ Total time of the
ode - novelformulation [s℄ time saving [%℄
11 5.8 10−1 2.16 100 1.53 100 29.17

21 2.04 100 4.85 100 2.78 100 42.68

41 7.57 100 1.47 101 7.19 100 51.02

81 2.92 101 5.85 101 2.73 101 53.31

161 1.16 102 2.76 102 1.59 102 42.27

321 4.62 102 1.72 103 1.40 103 18.87Table 4.1: Comparison of the 
omputational 
osts between the original and novel MFPM for theproblem of Figure 4.1.
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onvergen
e diagram of the error of the SIF in a square plate with a 
entral hole withrespe
t to the square root of the total number of parti
les in
luded for the dis
retization.We solve the problem both in the 
ase of ν = 0.33 and in the 
ase of quasi-in
ompressiblematerial (ν = 0.49).In Figure 4.5 we show the shear stress distribution in the 
ase of E = 1Pa and ν =
0.33 with the original MFPM and 103041 parti
les. The 
onvergen
e of the value of thedispla
ement of referen
e point C (Figure 4.4) is reported in Figure 4.6.We observe from Figure 4.6 that the solution seems to 
onverge to similar values with allthe methods. Again, the novel MFPM and the GFDM perform in a similar way.For the 
ase of ν = 0.49, the shear stress distribution and the 
onvergen
e diagram aredepi
ted in Figures 4.7 and 4.8, respe
tively. The number of parti
les in
luded in the sten
il(that is, the group of parti
les that 
ontribute to the approximation of derivatives) of theoriginal MFPM is 9, and it looks su�
ient for a good performan
e of the method. Thenumeri
al test performed with the GFDM is 
arried out with 9 parti
les in the sten
il, sele
tedwith the star 
riterion, as des
ribed in Benito et al. (2007), but we observe that for thisproblem the numeri
al solution does not 
onverge. The same behaviour is obtained with thenovel MFPM, and 9 parti
les in the sten
il. For this reason, in Figures 4.8, the 
onvergen
ediagram of the novel MFPM is 
omputed in
luding 25 parti
les in the sten
il, leading to a
onvergent approximation.In Table 4.2 the 
omputational 
osts of this problem for the original and novel MFPM arereported. Again, we noti
e the signi�
ant time redu
tion in the 
ase of novel MFPM. Fromthe last 
olumns of Tables 4.1 and 4.2, we also noti
e that the per
entage redu
tion of time ishigher at lower number of parti
les. This is due to the fa
t that the 
omputation 
ost of theVoronoi tessellation algorithm grows less than the one of other routines present in our 
ode,when the number of parti
les in
reases.
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Figure 4.4: The Cook's problem: geometry, boundary 
onditions and applied loads.
√
N Computational 
ost ofthe Voronoi tessellationand 
utting algorithm[s℄ Total time of the
ode - originalformulation [s℄ Total time of the
ode - novelformulation [s℄ time saving [%℄
11 5.7 10−1 2.46 100 1.56 100 36.33

21 1.61 100 3.54 100 1.86 100 47.03

41 6.12 100 1.28 101 6.41 100 49.92

81 2.39 101 5.21 101 2.70 101 48.21

161 9.47 101 2.51 102 1.96 102 21.93

321 3.83 102 1.94 103 1.41 103 27.22Table 4.2: Comparison of the 
omputational 
osts between the original and novel MFPM for theproblem of Figure 4.4.4.2.3 Multi-material problemsThe Modi�ed Finite Parti
le Method 
an be applied also to problem implying di�erent ma-terials. There are two strategies that 
an be used. One strategy 
onsists in 
onsidering thevariation of the material parameters in the sti�ness matrix of the problem.In fa
t, given the equilibrium equation for a stati
 problem
∇ ·σσσ + b = 0 (4.19)and the 
onstitutive relation of the material, in the form

σσσ = λ(x)(tr εεε)I + 2µ(x)εεε (4.20)the equilibrium equation be
omes, expressing all the variables in terms of the displa
ement�eld u

∇λ(∇ ·u)I+ 2∇µεεε+ (λ+ µ)∇(∇ ·u) + µ∆u+ b = 0 (4.21)
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ementsFigure 4.7: Shear stress distribution in a quasi-in
ompressible Cook's membrane obtained with the originalMFPM and 103041.This approa
h is parti
ularly useful when material properties vary 
ontinously in the do-main. It 
ould be used also when a sudden variation of the material o

urs, i.e., when thedomain is 
omposed of two parts with di�erent material properties. In this 
ase, however, thealgorithm will experien
e the typi
al problems of �nite di�eren
e approa
hes in dealing withnon di�erentiability points, that are os
illation of the solution.The se
ond possibility is the multi-pat
h formulation. Ea
h materia subdomain is 
onsid-ered independently in a �rst moment, and a sti�ness matrix for ea
h pat
h is built, dependingon the material parameters. Then, an assembly pro
edure is performed, imposing the interfa
eboundary 
ondition, that are the 
ontinuity of the outward stresses and the 
ontinuity of thedispla
ements. This pro
edure is more 
omputationally expensive from a 
oding point of view,but avoids os
illation deriving from the need of 
omputing derivative on dis
ontinous �elds.In Figures 4.10 and 4.11 we show the deformation and the displa
ement of a multi-materialdomain (see Figure 4.9) under tra
tion. The material parameters are su
h that the transversaldeformation of both the parts of the domain is the same.4.2.4 Three-dimensional elasti
ity problemWe study the elasti
ity of a 3D blo
k under a uniform tra
tion. The geometry of this problemis depi
ted in Figure 4.12. A uniform normal tra
tion σ0 = 100Pa is applied on the fa
e
x = L. The data of the problem are: L = 5m, H = 3m, B = 2.5m, R = 2m.The equations governing the problem are the stati
 version of (4.1); the boundary 
ondi-
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

















sss ·nnn = 0 and σσσnnn · ttt = 0 on the fa
es x = 0, y = 0, and z = 0

σσσnnn ·nnn = 0 and σσσnnn · ttt = 0 on the fa
es y = B, z = H,and on the surfa
e of the bore
σσσnnn ·nnn = σ0 and σσσnnn · ttt = 0 at x = L

(4.22)
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Figure 4.12: Geometry of the parallelepiped with a spheri
al bore.In Figure 4.13 we show the stress distributions on the symmetry plane y = 0 obtainedusing the novel MFPM with 83730 parti
les and the 
orresponding Finite Element overkilledsolution (250476 nodes) obtained with the software Abaqus. We observe a good agreementof the stress distributions σxx, σzz, and τxz between our numeri
al results and the overkilledsolution provided by Abaqus.4.3 Appli
ations of the MFPM in dynami
sIn the following we show the appli
ation of the Modi�ed Finite Parti
le Method to elastody-nami
 problems. In parti
ular, we explore the 
ase of a 1d barr under quasi impulsive load atthe right side, and study the wave propagation. For this problem we also study the propertiesof the MFPM
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s: a bar under quasi-impulsive axial loadIn this se
tion we perform an appli
ation of the Modi�ed Finite Parti
le Method for thesolution of the problem of a 1D 
lamped rod with an impulse on its right boundary.The equation whi
h governs the problem is


















∂2u

∂t2
= a2

∂2u

∂x2

u(x = 0, t) = 0

EA∂u
∂x (x = 1, t) = F (t)

(4.23)where E is the Young modulus of the material, A is the normal area of the 
ross se
tion ofthe bar, a is the velo
ity of the sound, and its value is√E
ρ , where ρ is the mass density of thematerial.

F (t) is the for
ing fun
tion of this problem, that in this 
ase is quasi-impulsive, withexpression
F (t) = F0e

−b(t−t0)
2. The temporal amplitude of this expression depends on the magnitude of the term b.The spatial dis
retization of the present problem is performed in a

ordan
e with the 1Dversion of the MFPM. In parti
ular, before solving the problem, we dis
uss the Fourier analysisof this kind of equations, in order to see how the MFPM approximates the eigenfrequen
iesand the eigenfun
tions of the 
ontinuum problem, whi
h, from a numeri
al point of view,depend on the eigenvalues and eigenve
tors of the numeri
al sti�ness matrix; then we studythe dispersion relation and the stability of the numeri
al system of equations, depending onthe 
hoi
e of the spatial and temporal dis
retization. Finally, we solve the equation and drawa 
onvergen
e diagram of the error.4.4.1 Fourier analysis of the wave propagation problemA useful instrument for the numeri
al analysis of dynami
 problems is the Fourier analysis,that is the de
omposition of the solution in its harmoni
 
omponents. To �nd the di�erent
omponents, we write a problem whi
h is said the eigenvalues and eigenfun
tions problem, thelast being the non trivial fun
tion that solve the equation of wave propagationThe equation that models the dynami
s of a 1d extensional bar is

ü = u′′ (4.24)where we 
onsider that the propagation velo
ity is unitary. We redu
e to the 
ase of harmoni
solutions, and therefore we write the solution in terms of sinusoidal 
omponents.
u(x, t) = ū(x)g(t) = ūsin(ωt) (4.25)Remark. Note that when we do the hypothesis of a temporal fun
tion g(t) = sin(ωt), weare redu
ing to the parti
ular 
ase in whi
h the fun
tion g(t) = sin(ωt) respe
ts the initial
onditions. Anyway, su
h pro
edure is general, so that we 
an in
lude all possible initial 
on-



54 4. Appli
ations to elasti
ityditions if only we 
hange the form of the fun
tion g(t). Moreover, we 
an 
onsider also the
ase in whi
h the solution is not harmoni
. In fa
t, be
ause of the linearity of the problem,any fun
tion g(t) 
an be seen as the sum of harmoni
s.Introdu
ing (4.25) in the Equation (4.24), we obtain
(ū′′ + ω2ū)sin(ωt) = 0 (4.26)that has not only the trivial solution ū = 0, but also in�nite solutions that respe
t th equation

ū′′ + ω2ū = 0 (4.27)Equation (4.27) is known as the Helmotz equation, and is the �spe
tral equation� for anextensional bar. Its general solution is̄
un = Asin(ωnt+ φ) (4.28)where the parameters ωn depend on the boundary 
onditions.Let's 
onsider the same problem from a dis
rete point of view. After the MFPM dis
retiza-tion pro
edure, the equation (4.24) be
omes̈

u = Ku (4.29)As earlier, a

ording with a parti
ular set of initial 
onditions, we write
u = û sin(ωt) (4.30)so that we obtain

(ω2I+K)ûsin(ωt) = 0 (4.31)This equation has the stru
ture of a 
lassi
al eigenvalue problem, where the amounts −ω2
nare the eigenvalues of the matrix K.4.4.2 Solution of the eigenvalue problem for the 
lamped barHere we spe
ialize what we have just explained to the 
ase of a 
lamped bar. We 
onsiderthe problem (4.23) and perform the eigenvalue problem, �rst in the 
ontinuum, then in thedis
rete form.From the imposition of the homogeneous boundary 
onditions (bar 
lamped on a edge,stress-free on the other edge), the parti
ular expression for the solution of the Helmotz equation(see (4.27)) is

ū = Asin(ωnt) (4.32)where
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(b) 5 parti
les approximationFigure 4.14: Ratio between the eigenvalues of the dis
rete problem and the ones of the 
ontinuum problem
ωn =

π

2
(2n− 1) (4.33)The values of −ω2

n are the analyti
al eigenvalues of the elasti
 problem, and the fun
tions
ūn are the eigenve
tors (or the eigenmodes).Now we perform the dis
rete pro
edure mentioned before. A good test for the numeri
almethod is to understand how it reprodu
es the frequen
ies and the eigenmodes.The sear
h for eigenvalues in the dis
rete problem is performed 
onsidering an approxima-tion of the derivatives involving both three and �ve parti
les. In the se
ond 
ase, we 
onsiderall the 
ombination of 
onstant, linear, quadrati
 and 
ubi
 proje
tion fun
tions.4.4.3 Approximation of the dispersion relationThe solution of every linear partial di�erential equation 
an be de
omposed in the sum ofexponential fun
tion with 
omplex exponential of the type

ei(ωt−ξ ·x) (4.34)where ξ is the wave ve
tor, whi
h 
omponents are the spatial frequen
y of the solution inthe dire
tion of the axes.In 1D 
ase, the ve
tor ξ redu
es to a s
alar, namely ξ.If we introdu
e this solution in the partial di�erential equation, we will obtain a relationbetween the temporal frequen
y ω and the wavenumber ξ. If we assume real values for thewavenumbers, from the dispersion relation we obtain a value for the temporal frequen
y. Inparti
ular:� if this value is real, we have that the solution is 
onservative, that is that the eigenmodewith spatial frequen
y ξ os
illates in time;� if ω = ω(ξ) has a positive imaginary part, the solution dampens;� if ω = ω(ξ) has a negative imaginary part, the solution in
reases its amplitude in time
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ations to elasti
ityAnother important aspe
t that we 
an understand from the dispersion relation is thevelo
ity of propagation of the waves. In a non dispersive problem, all the waves propagate atthe same velo
ity, and we say that this is a non dispersive problem; otherwise we have thatea
h eigenmode propagates at a di�erent velo
ity, so that the pro�le of the solution 
hangesin time. The velo
ity of propagation is 
alled group velo
ity, and we 
al
ulate it
c =

∂ω

∂ξ
(4.35)In the 
ase of extensional bar, by introdu
ing Equation (4.34) in (4.24), we obtain

ω2 = ξ2 (4.36)The group velo
ity, using (4.35), is then c = 1. The dynami
s of an extensional bar is anon dispersive problem.The same thing does not happen in the dis
rete form of the problem; in fa
t, after theMFPM dis
retization and the 
hoi
e of a �nite di�eren
e s
heme for the temporal advan
e,we set, for a generi
 parti
le
unh = u0e

i(ωtn−ξxh) (4.37)and 
onsider that tn = t+∆tn and xi = x+∆xi, after some manipulation we 
an �nally write
ω =

1

∆t
cos−1(1 +

∆t2

2

h+np
∑

j=h−np

mje
−iξ∆xj) (4.38)That, for small values of ω∆t and ξ∆xi, 
ollapses into the 
ontinuum wave dispersionrelation.The 
oe�
ients mj are the superdiagonal terms, the diagonal term and the subdiagonalterms of a generi
 row of the matrix K̃. Real roots, or real part of 
omplex roots of the wavedispersion relation imply wave propagation; imaginary roots, or imaginary part of 
omplexroots, imply ampli�
ation or redu
tion of the wave.We see from Equation (4.38) that in general a dis
rete system is dispersive and also di�u-sive, that means that the dis
rete solution have both a redu
tion of amplitude, 
onne
ted tothe imaginary part of the exponential; and that waves do not propagate at the same velo
ity,and it depends on the fa
t that the group velo
ity is a fun
tion of the wavenumber. Forthis reason we sometimes observe some harmoni
s that should not be seen in the solution ofimpulsive problems; it depends on the fa
t that in the solution some harmoni
s propagate ata di�erent velo
ity.The parti
ular 
ase is when we have a uniform distribution of parti
les in the domain. Inthis 
ase the imaginary part of the roots of the equation (4.38) is null, and we have only thephenomenon of dispersion.In �gure 4.15 we 
an see the dis
rete dispersion relation in the 
ase of approximation ofthe derivatives with three parti
les and �ve parti
les (with the di�erent proje
tion fun
tions),for one hundred and one parti
les and a time step of 10−5
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ontinuum and with the spatial a temporal dis
retizationAppli
ationIn this se
tion, we solve the problem (4.23) for the 
ases in whi
h F (t) = −100e−b(t−0.5)2 . Wesolve this partial di�erential equation with b = 100 and b = 1000, be
ause the integral1 of thetwo fun
tions have a di�erent harmoni
 
ontent.The numeri
al solution of this problem has been 
ompared with an analyti
al solution at

T = 3. At that time, the normal for
e is
N(t = 3s) = 100e−b(0.5−x)2 (4.39)The error has been 
omputed as

err2 =
‖uex − u‖2
‖uex‖2

(4.40)The 
al
ulation has been performed for a temporal step ∆t = 10−5, for a di�erent numberof parti
les. The diagram of 
onvergen
e of the error is shown in Figure 4.16As we 
an see, the 
ase b = 100 is better reprodu
ed than the 
ase of b = 1000, wherewe 
an see the wave dispersion. As a 
on�rm of that, we show in Figures 4.17 the numeri
alsolution of the problem for 101 parti
les in the two 
ases, for the same time step.4.5 2D dynami
sIn the present se
tion we the Modi�ed Finite Parti
le Method to the dynami
s of 2D bodies:in parti
ular we �rst study a 2D bar 
lamped on the left edge under an impulsive tra
tionon its right side, and study the stress wave propagation; then we study the dynami
s of aquarter of annulus under sinusoidal body load. FOr both 
ases we 
ompare the original and1We 
ompute the spe
tral de
omposition of the integral be
ause F (t) is a 
ondition on the derivative of thesolution, and not on the solution itself
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2nd order slopeFigure 4.16: Error diagram of the problem (4.23)novel MFPM formulation, and make also a 
omparison with the Generalized Finite Di�eren
eMethod.4.5.1 Dynami
s of a 2D bar under quasi-impulsive loadWe now 
onsider a two-dimensional bar under a quasi-impulsive load. The geometry and theboundary 
onditions are depi
ted in Figure 4.18, where L = 1m and H = 0.2m.The equations that govern the problem are the 2D plane strain version of (4.4); the bound-ary 
onditions are











u = 0 and v = 0 on Γ1

σyy = 0 and τxy = 0 on Γ2 and Γ4

σxx = σ(t) and τxy = 0 on Γ3

(4.41)where σ(t) = σ0 exp
(

−b(t− t0)
2
) is the quasi-impulsive load on the right end of the bar;the test has been performed 
onsidering a Poisson ratio equal to zero, so to reprodu
e a one-dimensional test. We also set E = 100Pa and ρ = 100Kg/m3. For this test an analyti
alsolution is available for σxx(x, y), sin
e the analyti
al propagation velo
ity c =

√

E/ρ is known.The other data for this problem are:
σ0 = −100Pa, b = 100 1/s, t0 = 0.3s (4.42)The numeri
al results of σxx obtained using a time step ∆t = 10−4s are 
ompared withthe analyti
al solution after 2.5s from the impulse, so that the analyti
al referen
e solution is

σxx(x, y)
∣

∣

t=2.8
= −σ0exp

(

−b(x− 0.5)2
) (4.43)
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(b) b = 1000Figure 4.17: Numeri
al solutions
The relative error is 
omputed as

errr =
‖σσσxx,an − σσσxx,num‖

‖σσσxx,an‖
(4.44)We show in Figure 4.20 the 
onvergen
e of the error for this test. We observe that both thenovel MFPM and the GFDM behave in the same way until the 
omputation 
arried out with201x201 parti
les, where the GFDM exhibits numeri
al instability, while the novel MFPM doesnot. The original MFPM remains stable until 201x201 parti
les, but with a higher 
onstantof the error.
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Figure 4.20: Convergen
e diagram for the bar under quasi-impulsive load.4.5.2 Quarter of annulus under a sinusoidal body loadIn this se
tion we solve the elasto-dynami
 problem studied in Auri

hio et al. (2012). Thegeometry of this problem is depi
ted in Figure 4.21. The stru
ture is 
lamped on all itsboundary, and undergoes a sinusoidal body load. For the internal parti
les Equations (4.4)hold. The internal radius is r = 1m, while the external one is R = 4m.The internal body loads and the initial 
onditions have been manufa
tured so that theanalyti
al solution for the displa
ements u and v is
u(x, y, t) = v(x, y, t) =

1

100
xy(x2 + y2 − 16)(x2 + y2 − 1) sin(2πt) (4.45)The relative error

errr =
‖uan − unum‖

‖uan‖
(4.46)has been 
omputed at time t = 1.75 s. The time step used for the analysis is ∆t = 10−4 s. InFigure 4.22 we show the rate of 
onvergen
e of the error and we observe that the se
ond-ordera

ura
y of the method is 
on�rmed. We remark that in this example the GFDM and thenovel MFPM perfe
tly 
oin
ide.
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e diagram of the error for the quarter of annulus under sinusoidal body load.



Chapter 5Modi�ed Finite Parti
le Methodapplied to quasi-in
ompressiblematerialsIn this 
hapter we apply the Modi�ed Finite Parti
le Method on in
ompressible and quasi-in
ompressible elasti
ity problems. In parti
ular, the displa
ement-based formulation is in-vestigated in the limit of in
ompressibility (ν → 0.5), and then the Stokes equations for fullin
ompressible solids are investigated. In the �eld of Finite Di�eren
e Method it is well known(Strikwerda, 1984) that the 
lassi
al dis
retization of the Stokes Equation on non-staggeredgrids leads to spurious numeri
al errors, known as 
he
kerboard instability of pressure. Theseos
illations are due to the non satisfa
tion of the inf-sup 
ondition, �rst studied by Brezzi(1974) in the �eld of Finite Element Method. For this reason, in order to dis
retize the Stokesproblem on non-staggered grids (and then on meshless methods, where staggered grids are notpermitted), some di�erent formulations have to be introdu
ed. In parti
ular, the in
ompress-ibility 
onstraint equation is repla
ed by a derived equation, 
alled Pressure Poisson Equation,in whi
h the respe
t of the inf-sup 
ondition is not requested. However, on this formulationit is not evident whi
h set of boundary 
ondition is needed. A signi�
ant 
ontribution to thisdis
ussion has been given in (Gresho and Sani, 1987; Sani et al., 2006), where the problem isfa
ed using a weak formulation.The 
hapter is organized as follows: in Se
tion 1 we re
all the equations that des
ribe thestati
s of solids, �rst in the 
ompressible form, and then in the limit of in
ompressibility and,�nally, we introdu
e the Stokes Equations for full in
ompressibility. In Se
tion 2 we introdu
ethe Poisson Pressure Equation formulation, and the problem of the 
orre
t 
hoi
e of boundary
onditions, and in Se
tion 3 we apply the Modi�ed Finite Parti
le Method on a ben
hmarkproblem, using the formulations dis
ussed in Se
tion 2.5.1 Governing equationsIn the following we introdu
e the equations that dis
ribe the equilibrium an elasti
, in
ompress-ible body. We �rst introdu
e the equations in the 
lassi
al displa
ement-based formulation,63



64 5. Quasi-in
ompressible materialsthen we swit
h to a mixed, displa
ement-pressure based formulation, in order to fully enfor
ethe in
ompressibility 
onstraint. In the appli
ations, we will show that the limit to in
om-pressibility of the displa
ement-based formulation leads to numeri
al problems, that is themain 
ause for whi
h the displa
ement-pressure formulation is introdu
ed.We 
onsider an elasti
 body within a domain Ω, subje
ted to internal for
es b = b(x, t),pres
ribed displa
ements ū = ū(x, t) on the Diri
hlet boundary ΓD, and pres
ribed tra
tions
t̄ = t̄(x, t) on the Neumann boundary ΓN . Boundaries ΓD and ΓN are su
h that

{

ΓD ∪ ΓN = Γ

ΓD ∩ ΓN = ∅where Γ is the whole boundary of Ω.The equations governing the problem are










∇∇∇ ·σσσ + b = 0 for x ∈ Ω

σσσn = t̄(t) for x ∈ ΓN

u = ū(t) for x ∈ ΓD

(5.1)where ρ is the mass density of the material, a is the material a

eleration, n is the outwardnormal ve
tor at the boundary, u = u(x, t) is the ve
torial displa
ement �eld; σσσ = C(∇∇∇u)Sis the symmetri
 Cau
hy stress tensor. We use the notation (•)S to denote the symmetri
part of a tensor (i.e., AS =
1

2
(A+AT )). The fourth order linear elasti
 isotropi
 tensor C isexpressed in index notation as follows
Cijkl = λδijδkl + µ(δikδjl + δilδjk) (5.2)where λ and µ are the Lamé 
onstants, whi
h 
an be expressed in terms of the Young modulus

E and the Poisson ratio ν:
λ =

Eν

(1 + ν)(1− 2ν)
; µ =

E

2(1 + ν)
(5.3)The 
ondition of in
ompressibility is imposed when the Poisson ratio ν is set to 0.5. Unfor-tunately, when ν approa
hes 0.5, the parameter λ tends to in�nity, leading to an ill 
onditioneddis
rete system of equations, with 
onsequent degradation of the solution (Chi et al., 2014).Therefore, a di�erent formulation is needed where the in
ompressibility 
onstraint is enfor
edin a di�erent way.For an in
ompressible body, the 
onstitutive relation is modi�ed in the form

σσσ = −pI+ 2µεεε (5.4)where p is the pressure, 
onsidered, as usual in the �uid-dynami
 literature, positive in 
aseof 
ompression. I is the identity tensor, µ is the se
ond Lamé 
onstant and εεε is the symmetri
part of the gradient of the ve
tor u = u(x).



5.2. Classi
al approa
hes for in
ompressibility 65By repla
ing (5.4) into the �rst equation of system (5.1), we obtain
−∇p+ µ∆u = −b (5.5)where the in
ompressibility 
onstraint

∇ ·u = 0 (5.6)is introdu
ed.Eqns. (5.5) and (5.6) are known as the Stokes equations in primitive variables (u, p),and des
ribe the dynami
s of fully in
ompressible bodies. They have to be 
ompleted withsuitable boundary 
onditions, that 
an be Diri
hlet boundary 
onditions (when the boundarydispla
ement is known), or Neumann boundary 
onditions (when the boundary tra
tion isknown).5.2 Classi
al approa
hes for in
ompressibilityThe dis
retization of Eqns. (5.5) and (5.6), performed using the same spatial dis
retization for
u and p, leads to a well known instability of the pressure �eld, due to the non satisfa
tion of theso-
alled inf-sup 
ondition (Brezzi and Fortin, 1991). This means that alternative formulationshave to be introdu
ed in order to over
ome this numeri
al di�
ulty.In the Finite Element Method, the 
lassi
al way to over
ome pressure instability is theuse of di�erent interpolations for the velo
ity and pressure �elds, the �rst being dis
retizedusing quadrati
 elements (i.e. six-nodes triangles), while the pressure is dis
retized usinglinear interpolation. In this way, the respe
t of the LBB 
ondition is ensured, and spuriousos
illations of the pressure are avoided.In the �eld of 
ollo
ation methods, in parti
ular in the Finite Di�eren
e Method, thestandard method to satisfy the LBB 
ondition is the use of staggered grids, 
alled also MACgrids (Harlow et al., 1965) (see Figure 6.1). This kind of grids, however, require re
tangulardomains and regular node distribuutions, and therefore they are not suitable for meshlessmethods, where, in general, non regular distributions of points are permitted.In order to solve the Stokes problem on non-staggered grids, many di�erent formulationshave been introdu
ed in the literature (Gresho and Sani, 1987; Sani et al., 2006; Wang andLiu, 2000; E and Liu, 2003). In parti
ular, the previous works are 
on
entrated on whetherboundary 
onditions are required or not, at a dis
rete level, for the in
ompressibility equations.In fa
t the 
onstraint equation holds both on the interior and on the boundary of the domain,and then, no additional boundary 
ondition is required.A referen
e work regarding this dis
ussion is the one by Sani et al. (2006), in whi
h adeep mathemati
al analysis is done, in the 
ontext of the weak formulation. In parti
ular, theanalysis is done on the so 
alled Stokes problem with the Poisson Pressure Equation, where the
onstraint equation of in
ompressibility is repla
ed by an equation on the pressure obtainedapplying the divergen
e operator on the equations of equilibrium (5.5).

∇ · (−∇p+ µ∆u) = −∇ ·b (5.7)
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Figure 5.1: A staggered gridthat is, separating the di�erent 
omponents at the left-hand side
−∆p+ µ∇ · (∆u) = −∇ ·b (5.8)Eqn. (6.9) is referred, in (Sani et al., 2006), as the Consistent Poisson Pressure Equation(CPPE). Changing the order between the Lapla
ian and divergen
e operators (that are 
om-mutative di�erential operators) in the term µ∇ · (∆u) we obtain µ∆(∇ ·u) that is evidentlyzero due to the in
ompressibility equation. This permits to simplify Eqn. (6.9), obtaining theso 
alled Simpli�ed Pressure Poisson Equation.

∆p = ∇ ·b (5.9)In (Sani et al., 2006) the dis
ussion is performed in parti
ular on whi
h boundary 
onditionsare required for the solution of the in
ompressibility problem using the Consistent PressurePoisson Equation and the Simpli�ed Pressure Poisson Equation. In parti
ular, using theCPPE, no boundary 
onditions are required for the 
onstrain equation; on the 
onstrary, usingthe SPPE, a Neumann boundary 
ondition for the pressure is required, obtained proje
tingthe equilibrium equation on the outward normal at the boundary, that is
∂p

∂n
= (µ∆u+ b) ·n (5.10)In this paper we solve the Stokes problem using both the Consistent and the Simpli�edPressure Poisson Equation, and using the Modi�ed Finite Parti
le Method to dis
retize spatialderivatives.We also solve the in
ompressibility problem using, instead of boundary 
ondition (5.10),the dis
retization of the divergen
e 
onstrain at the boundary. We refer to this possibility as



5.3. Appli
ations 67the SPPE-div formulation.5.3 Appli
ationsIn this se
tion we apply the Modi�ed Finite Parti
le Method to dis
retize the spatial deriva-tives of the formulations presented in the previous se
tion: the Consistent Pressure PoissonEquation, the Simpli�ed Pressure Poisson Equation (with the boundary 
ondition for the 
on-straint equation proposed by Sani et al. (2006)), and the SPPE-div. In parti
ular, we testthe e�e
tiveness of these formulation on an in
ompressible square under a verti
al body load,
lamped on two edges. We test the MFPM on a displa
ement-based formulation in the limitof in
ompressibility (ν → 0.5) and then on the mentioned in
ompressible formulations, and re-mark that on the in
ompressible formulations, the in
ompressibility 
onstraint is not enfor
edstrongly, but through a derived equation. For this reason we investigate, on both problems,how the in
ompressibility is respe
ted.5.3.1 Square 
lamped on two edges under a verti
al body loadThe problem under investigation is a square in the domain [0, 1]x[0, 1], under a verti
al bodyload b = −80e2, with boundary 
onditions (see Figure 6.13)
{

u = 0 x = 0 or y = 0

σσσn = 0 x = 1 or y = 1
(5.11)This problem has been solved in Auri

hio et al. (2007) using the stream-fun
tion formu-lation and an isogeometri
 approa
h for the spatial dis
retization. The se
ond Lamé 
onstantis µ = 40.

A B

C

L

L

Figure 5.2: Square 
lamped on two edges under a verti
al body load: geometry and boundary 
onditionsHere we solve this problem using a displa
ement-based formulation in the limit of in
om-pressibility (ν = 0.49, ν = 0.499, ν = 0.4999, ν = 0.49999) and using the CPPE, SPPE and
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Figure 5.3: Square 
lamped on two edges under a verti
al body load: values of the divergen
e of the displa
e-ments in the domainUsing CPPE formulation, similarly to the previous 
ase, the in
ompressibility is not veri-�ed, as it 
an be seen from Figure 5.3, where the values assum by the divergen
e of displa
e-ments is shown, using 10201 parti
les. For what 
on
erns other formulations, the 
orresponding
onvergen
e diagram of the error is shown in Figure 5.4 for the verti
al displa
ement of thepoint B. We noti
e that the displa
ement based formulations have results 
ompatible withthe numeri
al problems of the lo
king; SPPE formulation also shows no 
onvergen
e, whilethe SPPE-div formulation shows 
onvergen
e even faster than the expe
ted se
ond-order. Weremark also that in this 
ase is not possible to 
ompute a 2nd norm of the error, sin
e wedo not have an analyti
al solution. We only 
an 
ompute the relative error in some samplingpoints, as reported in Auri

hio et al. (2007).In Figure 5.5 we show the deformed 
on�guration obtained with MFPM and a displa
ement-based formulation (58081 nodes) and ν = 0.4999. A 
omparison with Figure 5.6, in whi
h anoverkilled deformed stru
ture is shown, highlights that the displa
ement-based methods, inthe limit of in
ompressibility, su�er from volumetri
 lo
king.5.4 Con
lusionsIn the present 
hapter we applied the Modi�ed Finite Parti
le Method to the problem of in-
ompressible elasti
ity. In parti
ular, some di�erent formulations have been investigated: adispla
ement-based formulation, in the limit of in
ompressibility, with ν → 0.5, and threedi�erent formulations of the Stokes problem. For these formulations, in parti
ular, the in-
ompressibility 
onstrain (∇ ·u) is not imposed strongly, but it is repla
ed by a derived one,in whi
h the Lapa
ian operator is applied to pressure. This 
hoi
e is done to over
ome thedi�
ulties related to the non-respe
t of the inf-sup 
ondition, whi
h results in unphysi
alos
illations of the pressure �eld.Unfortunately, these derived formulation may need some boundary 
onditions for the 
on-strain equation, that are not needed by the original Stokes problem in the divergen
e form.
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Figure 5.4: Square 
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Figure 5.5: Square 
lamped on two edges under a verti
al body load: deformed 
on�guration obtained withdispla
ement-based formulation and 58081 nodes. The stru
ture exibiths volumetri
 lo
king
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Figure 5.6: Square 
lamped on two edges under a verti
al body load: deformed 
on�guration obtained withthe Gauge method and 58081 nodes.In this paper we investigate three di�erent fully-in
ompressible formulations: the so Consis-tent Pressure Poisson Equation, the Simpli�ed Pressure Poisson Equation and the Simpli�edPressure Poisson Equation with the divergen
e 
onstrain at the boundary. These formulationsdi�er among ea
h other for the boundary 
onditions imposed on the 
onstrain equation: inthe �rst 

ase, a

ording to Sani et al. (2006), no boundary 
onditions are required; in these
ond 
ase, where the normal 
omponent of the displa
ement is know, a boundary 
onditionfor the pressure is obtained proje
ting the equilibrium equation on the outward normal; inthe SPPE-div, instead, the divergen
e-free 
onstrain is applied as boundary 
ondition for thePressure Poisson equation on the whole boundary.Here we see that for the CPPE formulation, the in
ompressibility 
onstraint is not respe
tedfor both problems under investigation; the SPPE exhibits lower 
onvergen
e of the error withrespe
t to the expe
ted se
ond order; and �nally the SPPE-div formulation exhibits 
orre
tse
ond-order a

ura
y, even if with a high 
onstant of the error. The displa
ement-basedformulations, even if 
orre
tly dis
retized with MFPM, exhibit the numeri
al pathology oflo
king.Pubbli
ationAn extended version of the present 
hapter has been published in Asprone et al. (2015).



Chapter 6Full in
ompressible solids and �uids6.1 Stokes problem: 
lassi
al formulationIn the present se
tion we introdu
e the Stokes equations for the solution of problems involvingin
ompressible solids and �uids. In the �rst part we fo
us on the mathemati
al expression ofthe Stokes equations and give a di�erent interpretation of variables depending on whether thebody under 
onsideration is a solid or a �uid. In the se
ond part we des
ribe the 
ommonlyused methodologies for the numeri
al solution of the Stokes problem in the 
ontext of theFinite Element Method and of the Finite Di�eren
e Method.The equations that des
ribe the dynami
s of an in
ompressible body are
{

ρa = −∇p+ µ∆u+ b

∇ ·u = 0
(6.1)where the �rst equation is the linear equilibrium equation, and the se
ond is the in
ompress-ibility 
onstraint. Equations (6.1) have to be 
ompleted with suitable boundary and initial
onditions.In Equations (6.1) the variable ρ is the material density, µ is the shear modulus (that in�uid dynami
s assumes the denomination of dynami
 vis
osity), p is the pressure, assumedpositive in 
ompression, and b is the ve
tor of the internal body loads. The variable u assumesdi�erent physi
al meanings depending on whether the body under 
onsideration is a solid ora �uid.In the 
ase of an in
ompressible solid, u is the displa
ement �eld, and therefore the inertialterm ρa is expressed as

ρa = ρ
∂2u

∂t2
(6.2)For an in
ompressible �uid, 
onversely, the variable u represents the velo
ity �eld, andtherefore the inertial term is written as

ρa = ρ
∂u

∂t
+ ρc ·∇u (6.3)The term c is the relative velo
ity between the �uid and the referen
e frame. When we71



72 6. In
ompressibilityassume a total Eulerian formulation, c = u, and therefore the equilibrium equation is modi�edin the form
ρ

(

∂u

∂t
+ u ·∇u

)

= −∇p+ µ∆u+ b (6.4)that is evidently a non-linear equation.In the present paper, however, we negle
t the non-linear term, sin
e the 
omputationaldi�
ulties involved in the solution of the in
ompressibility problem are still evident also in thelinear 
ase.In the theoreti
al dis
ussion of next se
tions, we refer to the interpretation of variables asin the �uid 
ase. Therefore, the set of equations under our attention is:






ρ
∂u

∂t
= −∇p+ µ∆u+ b

∇ ·u = 0
(6.5)Equations (6.5) are known as Stokes equations in the primitive variables u and p, and
orrespond to the assumption of highly vis
ous �ows.6.1.1 Classi
al numeri
al s
hemes for the solution of the Stokes problemThe dis
retization of Equations (6.5), performed using the same spatial dis
retization for uand p, leads to a well known instability of the pressure, known in the literature as 
he
kerboardinstability. Su
h pressure unphysi
al os
illation 
an be avoided when a numeri
al 
ondition,known as LBB 
ondition, or inf-sup 
ondition, is respe
ted.In the Finite Element Method, the 
lassi
al way to over
ome pressure instability is theuse of di�erent interpolations for velo
ity and pressure �elds: as an example, the velo
ity 
anbe dis
retized using quadrati
 interpolation, while the pressure 
an be dis
retized using linearinterpolation. This 
hoi
e of interpolations ensures the respe
t of the inf-sup 
ondition andtherefore the spurious pressure os
illations are avoided.

PSfrag repla
ements
pressure point
horizontal velo
ity pointverti
al velo
ity point

Figure 6.1: A staggered grid



6.2. Stokes problem: alternative formulations 73The problem of 
he
kerboard instability arises also in the 
ontext of 
ollo
ation methods,as shown in Strikwerda (1984). In parti
ular, in the Finite Di�eren
e Method this numer-i
al di�
ulty is solved using staggered grids, 
alled also MAC grids (Harlow et al., 1965),where horizontal and verti
al velo
ity 
omponents and the pressure are 
omputed on di�erentgrids. Also the di�erent sets of equations are 
ollo
ated in di�erent points (see Figure 6.1):in parti
ular, the horizontal equilibrium equations are 
ollo
ated on the horizontal velo
itypoints; the verti
al equilibrium equations are 
ollo
ated on the verti
al velo
ity points, andthe in
ompressibility 
onstraints are 
ollo
ated on the pressure points. One of the advantagesof staggered grids is the fa
t that for Diri
hlet boundary 
onditions (that is, where the �uidvelo
ity is known) no boundary 
onditions for the pressure are required. Moreover, staggeredgrids preserve the properties of 
ontinous di�erential operators: as an example, the superim-position of the dis
rete divergen
e operator on the dis
rete gradient operator leads to a 
orre
tdis
retization of the Lapla
e operator. The main drawba
k for MAC grids is that they 
annotbe used for non-regular distributions of nodes, and thus they 
annot be extended, in general,to meshless methods.6.2 Stokes problem: alternative formulationsIn the present se
tion we introdu
e alternative formulations presented in the literature forthe solution of the Stokes problem. Thanks to some modi�
ations of the original Stokesequations (6.5), for su
h formulations the respe
t of an inf-sup 
ondition is not required, andtherefore neither spe
ial tri
ks for the dis
retization, nor spe
ial grids, are ne
essary, makingsu
h formulations well suited to be approximated through meshless methods.6.2.1 Stokes equations in the Pressure Poisson formIn the �rst three formulations presented in this se
tion the in
ompressibility 
onstraint isrepla
ed by a di�erent equation, obtained applying the divergen
e operator to the equilibriumequation of System (6.5). A

ordingly, we have
∇ · (ρ∂u

∂t

)

= ∇ · (−∇p+ µ∆u+ b) (6.6)that 
an be rewritten in the form
∆p− µ∇ · (∆u) = ∇ ·b (6.7)and then further simpli�ed exploiting the in
ompressibility 
onstraint ∇ ·u = 0, obtaining

∆p = ∇ ·b (6.8)The 
onstraint 
onditions (6.7) and (6.8) are both Poisson equation for the pressure, andtherefore they are known as Pressure Poisson Equations. In the literature there has been agreat dis
ussion on whether boundary 
onditions are needed for equations (6.7) and (6.8).Sani et al. (2006) propose three di�erent formulations:
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ompressibility1. In the �rst formulation (referred to, in the following, as formulation S1) the equilib-rium equation is 
oupled to the 
onstraint equation (6.7), obtaining the following set ofequations






ρ
∂u

∂t
+∇p = µ∆u+ b

∆p− µ∇ · (∆u) = ∇ ·b (6.9)on whi
h Diri
hlet or Neumann boundary 
onditions are imposed on the equilibriumequations, and no boundary 
onditions are imposed on the 
onstraint equation.2. In the se
ond formulation (referred to as S2) the equilibrium equation is 
oupled to the
onstraint equation (6.8)






ρ
∂u

∂t
+∇p = µ∆u+ b

∆p = ∇ ·b (6.10)The boundary 
onditions for the 
onstraint equation, in this 
ase, are the proje
tions ofthe equilibrium equation on the boundary outward normal ve
tor.
(ρ∂u/∂t+∇p− µ∆u− b) ·n = 0 (6.11)3. In the third formulation (referred to as S3) the equilibrium and the 
onstraint equationsare the same as Equations (6.10), but the boundary 
onditions for the 
onstraint equationis the original in
ompressibility 
ondition ∇ ·u = 0.6.2.2 A pseudo-
ompressibility formulation of the Stokes problemA 
ommonly used formulation for the Stokes problem in primitive variables is






ρ
∂u

∂t
+∇p = µ∆u+ b

∇ ·u− ε∆p = 0
(6.12)where a relaxation term ε∆p is introdu
ed in the in
ompressibility 
ondition. Su
h a for-mulation, dis
ussed by Brezzi and Douglas Jr (1988) in the framework of Galerkin methods,belongs to the 
lass of the pseudo-
ompressibility methods, sin
e a perturbation is introdu
edin the 
ontinuity 
onstraint. The addition of su
h a perturbation results in a smoothing ofthe pressure �eld, alleviating the e�e
ts of 
he
kerboard instability. However, the parameter εhas to be properly set: it has to be not ex
essively small, in order to have a regularizing e�e
ton the pressure �eld; and it has to be not too high, sin
e it introdu
es an error in the originalin
ompressibility 
ondition (Quarteroni et al., 2000).The boundary 
onditions for the equilibrium equations are the usual 
onditions on velo
-ity or stress. The boundary 
ondition adopted for the 
onstraint equation is the 
ontinuityequation ∇ ·u = 0. This formulation will be referred in the following as S4.



6.2. Stokes problem: alternative formulations 756.2.3 The gauge methodThe gauge method (Wang and Liu, 2000; E and Liu, 2003) is a 
ontinous formulation of theStokes problem based on the following 
hange of variables
u = a−∇φ (6.13)in Equations (6.5). A

ordingly the modi�ed set of equations is







ρ
∂a

∂t
− ρ

∂∇φ

∂t
= −∇p+ µ∆a− µ∆∇φ+ b

∇ ·a = −∆φ
(6.14)that 
an be rewritten as







ρ
∂a

∂t
= µ∆a+ b

∇ ·a = −∆φ
(6.15)if the pressure p is written as

p = ρ
∂φ

∂t
− µ∆φ (6.16)From Equation (6.15) we observe that the variables a and φ are de
oupled in the linearequilibrium equation. However, in this formulation the equilibrium equation 
annot be solvedseparately from the 
onstraint equation, sin
e a and φ are 
oupled in the boundary 
onditions,as des
ribed in the followingDiri
hlet boundary 
onditions. The expressions of Diri
hlet boundary 
onditions are

{

u ·n = ūn

u · t = ūτ
(6.17)that 
an be rewritten, using Equation (6.13), in the form

{

(a+∇φ) ·n = ūn

(a+∇φ) · t = ūτ
(6.18)E and Liu (2003) 
onsider the 
ase of homogeneous Diri
hlet boundary 
onditions andpropose two di�erent possible 
hoi
es:Case 1: ∂φ

∂n
= 0 a ·n = 0 a · t = ∂φ

∂t
(6.19)Case 2: φ = 0 a ·n =

∂φ

∂n
a · t = 0 (6.20)For future dis
ussion, we remark that 
onditions (6.19) and (6.20) are obtained, after somealgebra, from Equation (6.18):1. The �rst two boundary 
onditions of (6.19) are obtained splitting the �rst equation of
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ompressibility(6.18) in two parts, the �rst 
ontaining the variable a and the se
ond 
ontaining thevariable φ, while the last boundary 
ondition of (6.19) is simply the se
ond equation of(6.18);2. The set of boundary 
onditions (6.20), on the 
ontrary, are obtained using a similarpro
edure, but splitting the tangential boundary 
ondition of (6.18) instead of the normalboundary 
ondition.Neumann boundary 
onditions. The 
ase of Neumann boundary 
onditions has notbeen ta
kled so far within the 
ontext of the gauge method, and therefore we extend toin
orporate also the Neumann boundary 
onditions. The stress tensor σσσ is expressed by therelation
σσσ = −pI+ µ(∇u+∇uT ) (6.21)whi
h,using Equation (6.13), 
an be rewritten as

σσσ = −
(

ρ
∂φ

∂t
− µ∆φ

)

I+ µ
(

∇a+∇aT − 2∇∇φ
) (6.22)In Equation (6.22) the term ∇∇φ is the se
ond gradient of the s
alar �eld φ, i.e., , in indexnotation

(∇∇φ)ij =
∂2φ

∂xi∂xj
(6.23)Introdu
ing the 
hange of variables (6.13) in the expressions of the 
omponents of theoutward stress at the boundary

{

σσσn ·n = σ̄n

σσσn · t = σ̄t
(6.24)where n and t are again the outward normal and tangential unit ve
tors at the boundary ofthe domain, we obtain

{

µ [∆φ+ 2(∇∇φn) ·n] + µ(∇a+∇aT )n ·n = σ̄n

2µ(∇∇φn) · t+ µ(∇a+∇aT )n · t = σ̄t
(6.25)Restri
ting to the stationary 
ase (i.e., ∂φ/∂t = 0) and following a pro
edure similar to the
ase of Diri
hlet boundary 
onditions, from Equation (6.25) we 
an obtain two di�erent setsof Neumann boundary 
onditions. The �rst one is obtained splitting the normal 
omponentof the boundary 
onditions (6.25) and reads











µ(∇a+∇aT )n ·n = σ̄n

2µ(∇∇φn) · t+ µ(∇a+∇aT )n · t = σ̄t

µ [∆φ+ 2(∇∇φn) ·n] = 0

(6.26)while the se
ond one is obtained splitting the tangential 
omponent of System (6.25) and it
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









µ [∆φ+ 2(∇∇φn) ·n] + µ(∇a+∇aT )n ·n = σ̄n

µ(∇a+∇aT )n · t = σ̄t

2µ(∇∇φn) · t = 0

(6.27)For both 
ases of boundary 
onditions (6.26) and (6.27), the last equation plays the roleof boundary 
ondition for the in
ompressibility equation.In the numeri
al tests, we refer to the gauge method in stationary form with Diri
hletboundary 
onditions (6.19) with the abbreviation S5-D; to the gauge method with Neumannboundary 
onditions (6.26) with the abbreviation S5-N-a; the gauge method with Neumannboundary 
onditions (6.27) with the abbreviation S5-N-b.6.2.4 Summary of the formulations applied in the numeri
al testsIn Table 6.1 we summarize the formulations introdu
ed in the previous paragraphs and in-di
ate, for ea
h one, the equation used as in
ompressiblity 
onstraint and the 
orrespondingboundary 
ondition. These formulations are then tested in the next se
tion on some ben
h-mark problems.Formulation Referen
e paper 
onstraint equation BC for the 
onstraint equationS1 Sani et al. (2006) ∆p− µ∇ · (∆u) = ∇ ·b noneS2 Sani et al. (2006) ∆p = ∇ ·b (ρ∂u/∂t+∇p− µ∆u− b) ·n = 0S3 Sani et al. (2006) ∆p = ∇ ·b ∇ ·u = 0S4 Brezzi and Douglas Jr (1988) ∇ ·u− ε∆p = 0 ∇ ·u = 0S5-D Wang and Liu (2000) ∆φ = −∇ · a ∂φ/∂n = 0S5-N-a ∆φ = −∇ · a 1/Re [∆φ+ 2(∇∇φn) ·n] = 0S5-N-b ∆φ = −∇ · a 1/Re [∆φ+ 2(∇∇φn) · t] = 0Table 6.1: Formulations of the steady Stokes problem analyzed in the present paper6.3 Appli
ation of the MFPM to steady Stokes problemsIn the following we use the Modi�ed Finite Parti
le Method to approximate the spatial deriva-tives appearing in the di�erent formulations introdu
ed in the previous se
tion. In the presentse
tion we restri
t our attention to the stationary 
ase (that is, ∂u/∂t = 0). We �rst solvethe well-known ben
hmark of the lid-driven 
avity �ow and we fo
us on how formulationsS1, S2, and S3 (where the in
ompressibility 
onstraint is not enfor
ed strongly) satisfy thein
ompressibility 
ondition ∇ ·u = 0. We then apply formulations S3, S4, and S5 on a squarewith a polynomial exa
t solution, on a quarter of annulus with a polynomial solution, and ona square under a uniform body load.6.3.1 The lid-driven 
avityThe geometry of the lid-driven 
avity is a square of side L, as depi
ted in Figure 6.2; we set
L = 1m, µ = 1kg/ms as dynami
 vis
osity. The left, lower and right side of the square have
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ity u = 0 m/s; the top side has a tangential velo
ity Ū = 1 m/s and a normal velo
ity
u ·n = 0 m/s

PSfrag repla
ements
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Figure 6.2: The lid-driven 
avity: geometry and boundary 
onditionsWe start exploring the solution of the problem using formulations S1, S2, and S3 and payingparti
ular attention to the method 
apability of enfor
ing the in
ompressibility 
onstraint. InFigures 6.3, 6.4, and 6.5 we show the 
omputed values of ∇ ·u using formulations S1, S2, andS3. We noti
e that in Figures 6.3 and 6.4 the divergen
e is signi�
antly greater than zero,whereas in Figure 6.5 the divergen
e is 
lose to zero everywhere ex
ept than in the top 
orners,where there is a dis
ontinuity in the boundary 
onditions. These results suggest us to abandonformulations S1 and S2 and to pro
eed only with formulation S3.6.3.2 Square with polynomial exa
t solutionWe now 
onsider a problem de�ned on a square domain [−1, 1]x[−1, 1] and 
onstru
ted startingfrom the following manufa
tured exa
t solution:










u(x, y) = 20xy3

v(x, y) = 5(x4 − y4)

p(x, y) = (60x2y − 20y3 + C)

(6.28)The problem is formulated imposing no body loads in the interior of the domain, andDiri
hlet boundary 
onditions on the whole boundary, in a

ordan
e to the analyti
al solution(7.30). The vis
osity is set as µ = 1kg/ms.The problem is solved using formulations S3, S4, and S5. The relaxation parameter offormulation S4 is set as ε = 10−4. The 
onvergen
e diagrams of the error related to thevelo
ity �eld is reported in Figure 6.6. In parti
ular the gauge method (formulation S5-D)shows higher order 
onvergen
e with respe
t to the expe
ted se
ond order, and formulationS4 shows an even higher a

ura
y in the left part, and a se
ond-order a

ura
y at the rightside of the diagram.
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Figure 6.3: Lid-driven 
avity: divergen
e of the velo
ity using formulation S1
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Figure 6.4: Lid-driven 
avity: divergen
e of the velo
ity using formulation S2
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Figure 6.5: Lid-driven 
avity: divergen
e of the velo
ity using formulation S3
In Figure 6.7 the error related to pressure �eld is shown. In this 
ase, formulation S5-D isthe only one whi
h shows a 
onstant slope (1.78) of the error 
urve, even if slightly below theexpe
ted se
ond-order a

ura
y. Formulation S3 shows 
orre
t a

ura
y at the left side of thediagram, and a little �attening in the right side of the diagram, while formulation S4 showshigh 
onvergen
e in the left side of the diagram (higher than se
ond-order) and a 
omplete�attening of the 
urve in the right side. We remark that su
h a �attening 
an be as
ribedto the relaxation term ε∆p in the 
ontinuity equation of formulation S4, that, at the level ofdis
retization rea
hed on the right zone of Figure 6.7, introdu
es an error on the pressure �eldhigher than the relaxation e�e
ts.The same problem has been studied also imposing Neumann boundary 
onditions on theleft and right sides of the domain and Diri
hlet boundary 
onditions on the top and lowersides, and using gauge formulations S5-N-a and S5-N-b for the numeri
al solution. In the
ase of formulation S5-N-a, we dis
retized unknown �elds in spa
e using both se
ond-orderand third-order a

urate MFPM dis
rete di�erential operators. From the 
onvergen
e plotsshown in Figure 6.8 we noti
e that in both 
ases the slope of the error 
urve is one order belowthe expe
ted one. We argue that this is due to the fa
t that se
ond derivatives are used inthe boundary 
onditions. This is also 
on�rmed using formulation S5-N-b and se
ond ordera

urate MFPM di�erential operators. In fa
t, from Figure 6.8, the 
orresponding error 
urveshows �rst-order a

ura
y.



6.3. Appli
ation of the MFPM to steady Stokes problems 81

20 40 80 160 320
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

formulation S3
formulation S4
formulation S5−D
2nd order slope

PSfrag repla
ements
√
N

relativeerror
[-℄

Figure 6.6: Square with exa
t solution (7.30): 
onvergen
e diagram of the velo
ity error with formulationsS3, S4 and S5-D
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Figure 6.7: Square with exa
t solution (7.30): 
onvergen
e diagram of the pressure error with formulationsS3, S4 and S5-D
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ements
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t solution (7.30): 
onvergen
e diagram of the error using formulations S5-N-awith se
ond and third order a
urate di�erential operators, and formulation S5-N-b using se
ond order a

uratedi�erential operators. In all 
ase the method experien
es a loss of 
onvergen
e.6.3.3 Quarter of annulus under body loadWe now 
onsider a quarter of annulus, 
lamped on its entire boundary, under a polynomialbody load. The geometry of the problem is depi
ted in Figure 7.7, with R = 4 and r = 1.The analyti
al solution of the problem is set equal to

{

u = 10−6x2y4(x2 + y2 − 16)(x2 + y2 − 1)(5x4 + 18x2y2 − 85x2 + 13y4 + 80− 153y2)

v = −2 · 10−6xy5(x2 + y2 − 16)(x2 + y2 − 1)(5x4 − 51x2 + 6x2y2 − 17y2 + 16 + y4) (6.29)The internal body loads are obtained using the manufa
tured solution (7.33). The problemhas been studied in Auri

hio et al. (2007) using a stream fun
tion formulation and isogeo-metri
 analysis for the spatial dis
retization, exploiting the high regularity of isogeometri
shape-fun
tions, and also the possibility of reprodu
ing exa
tly the geometry of the domain.In the following we investigate how the sele
tion algorithm of supporting parti
les for thederivative approximation in�uen
es the quality of the solution on ea
h formulation. The testis relevant sin
e, due to the parti
ular geometry of this problem, a parti
le pla
ed on theinner radius of the annulus has, as 
losest parti
les, other parti
les pla
ed on only two quasi-parallel lines, leading to an ill-
onditioned matrix Ai. In parti
ular, on a regular distributionof parti
les (see Figure 6.9(b)), we test three di�erent algorithms:1. sear
hing algorithm 1 : the minimum number of supporting nodes for derivative ap-proximation is Ni = 9. The adopted threshold 
ondition number for matrix Ai is
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(b) Parti
le distributionFigure 6.9: Quarter of annulus 
lamped on all its edges

Cmax = 4 · 108;2. sear
hing algorithm 2 : the minimum number of supporting nodes for derivative approx-imation is Ni = 15. The threshold 
ondition number for matrix Ai is Cmax = 4 · 108;3. sear
hing algorithm 3 : nodes are sele
ted exploiting the parti
ular topology of the prob-lem and the regularity of the parti
le distribution. In this 
ase ea
h parti
le 
an bemarked using indi
es i and j on a 
ylindri
al referen
e frame, and then, for a parti
ledenoted with (i, j), the supporting parti
les are the ones between i − 1 and i + 1, andthose between j−1 and j+1. Afterwards, derivative approximations are obtained usingthe usual MFPM pro
edure. It is 
lear that this sear
hing algorithm is not general, and
an be used only for regular distributions: however we present it sin
e it is the mosta

urate solution that the MFPM 
an a
hieve.In Figures 6.10(a) and 6.11(a) we show the supporting nodes of a parti
le pla
ed at x =
y =

√
2/2 sele
ted using sear
hing algorithms 1 and 2. In the �rst 
ase, the parti
les in
ludedin the set of supporting nodes are 10, obtaining a 
ondition number C = 8.151 103 of thematrix Ai. In the se
ond 
ase the supporting parti
les are not pla
ed on only two parallellines, and 
onsequently the 
ondition number is strongly redu
ed (C = 2.18 102).In Figure 6.12(a) we show supporting nodes obtained using sear
hing algorithm 3. Parti
lesare pla
ed on three di�erent lines, leading to better results in terms of a

ura
y and error
onvergen
e, as shown 
omparing Figures 6.10(b), 6.11(b), and 6.12(b).For all three sear
hing algorithms, we noti
e that the formulation S5-D exhibits alwaysbetter performan
es with respe
t to the other formulations. Formulations S3 shows alwaysthe worst performan
es in terms of magnitude of the error, even if a se
ond-order a

ura
y istypi
ally attained by all the investigated sear
hing algorithms. Finally, it has to be noted thatformulation S4 shows some 
onvergen
e os
illations, even if an average se
ond-order a

ura
y
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(b) Convergen
e diagram of the error usingformulations S3, S4 and S5-D, with se
ond-ordera

urate MFPMFigure 6.10: Problem of a quarter of annulus with exa
t solution (7.33) solved using sear
hing algorithm1
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(b) Convergen
e diagram of the error usingformulations S3, S4 and S5-D, with se
ond-ordera

urate MFPMFigure 6.11: Problem of a quarter of annulus with exa
t solution (7.33) solved using sear
hing algorithm2
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(b) Convergen
e diagram of the error usingformulations S3, S4 and S5-D, with se
ond-ordera

urate MFPMFigure 6.12: Problem of a quarter of annulus with exa
t solution (7.33) solved using sear
hing algorithm3is obtained. Moreover, the error magnitude of formulation S4 is often 
omparable with theone shown by formulation S5-D.6.3.4 Square 
lamped on two edges under a verti
al body loadThe geometry of the following problem is a square in the domain of side L under a verti
al bodyload, as depi
ted in Figure 6.13. The problem is an in
ompressible solid me
hani
s appli
ation,and here we highlight that the governing equations do not 
hange, but only the interpretationof variables is di�erent with respe
t to the �uid 
ase. We set L = 1, µ = 40kg/ms, and
b = [0 − 80]TN/m2. The imposed boundary 
onditions are

{

u = 0 left and lower sides
σσσn = 0 right and top sides (6.30)The present problem has been solved in Auri

hio et al. (2007) using the stream-fun
tionformulation and an isogeometri
 approa
h for the spatial dis
retization.The referen
e solutions are the verti
al displa
ement in the point A, the horizontal and ver-ti
al displa
ements in the point B, and the horizontal displa
ement in the point C, 
omputedwith the 
ommer
ial Finite Element 
ode �ABAQUS� using an overkilled dis
retization, andwe 
ompute the relative error in some sampling points, as reported in Auri

hio et al. (2007).The numeri
al solutions are 
omputed using formulations S3, S4 and S5-N-a.The relaxationparameter of formulation S4 has been set as ε = 10−4. The 
onvergen
e plots of the error arereported in Figures 6.14, 6.15, and 6.16.We noti
e that formulations S3 and S4 exhibit the expe
ted se
ond-order 
onvergen
e ofthe error, whereas formulation S5-N-a experien
es a loss of 
onvergen
e order, similar to the
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Figure 6.13: Square 
lamped on two edges under a verti
al body load: geometry and boundary 
onditions
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lamped on two edges: 
onvergen
e diagram of the error using formulation S3
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Figure 6.15: Square 
lamped on two edges: 
onvergen
e diagram of the error using formulation S4
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lamped on two edges: 
onvergen
e diagram of the error using formulation S5-N-a
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ase of the previous problem with Neumann boundary 
onditions.6.4 Non-stationary Stokes problem: 
ontinous formulationsFollowing what is usually done for the equations of linear elasti
ity, the most natural idea forthe solution of a non-stationary Stokes problem is to solve jointly the equation of motion andthe in
ompressibility 
onstraint. This pro
edure is extremely 
ostly, sin
e at ea
h time stepan inversion of a 3Nx3N sparse matrix is required, and time integration has to be ne
essarilydone impli
itly, sin
e the 
onstraint equation is not depending on time. Moreover, the jointsolution of motion and in
ompressibility equations requires the spatial dis
retization to satisfythe inf-sup 
ondition.Therefore the pro
edure 
ommonly adopted in the literature for the solution of non-stationary Stokes problems 
onsists in enfor
ing equilibrium and in
ompressibility in two dif-ferent substeps of ea
h time integration step, redu
ing the total dimensions of the matri
esto invert, and hen
e redu
ing the 
omputational 
ost of the method. In the following we de-s
ribe the Chorin algorithm, that was the �rst algorithm introdu
ing this de
oupling betweensubsteps, and its developments.6.4.1 The original Chorin algorithmThe Chorin algorithm (Chorin, 1967, 1968) 
onsists in dividing ea
h time-integration step inthree substeps:1. In the �rst substep, a guess velo
ity u∗ is 
omputed through the solution of a modi�edequilibrium equation, in whi
h the pressure term is omitted; a

ordingly Equation (6.5)redu
es to the following






ρ
u∗ − un

∆t
= µ∆un + b+ suitable boundary 
ondition onu∗

(6.31)The guess velo
ity u∗ does not respe
t, in general, the in
ompressibility 
onstraint;2. In the se
ond step the pressure pn+1 is 
omputed solving the system


















ρ
un+1 − u∗

∆t
= −∇pn+1

∇ ·un+1 = 0+ suitable boundary 
onditions on pn+1

(6.32)where the in
ompressibility 
onstraint at the time step n + 1 is enfor
ed. Equations(6.32) 
an be rewritten in the Poisson form as follows
{

∆t∆pn+1 = ∇ ·u∗+ suitable boundary 
onditions on pn+1
(6.33)
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ontinous formulations 893. Finally, the velo
ity un+1 is 
orre
ted using the guess solution u∗ and pn+1

un+1 = u∗ − 1

ρ
∇pn+1 (6.34)We remark that the sum of Equations (6.31) and (6.32) gives a 
orre
t time dis
retizationof the Stokes problem, with an expli
it time approximation for the velo
ity and an impli
itapproximation for the pressure.6.4.2 Developments of the Chorin algorithmFollowing the pioneering work by Chorin, many other algorithms have been introdu
ed, espe-
ially with the purpose of improving the a

ura
y near the boundary. In order to rea
h thisgoal, one may a
t on the boundary 
onditions to be imposed on Equation (6.31), the boundary
onditions to be imposed on Equation (6.32), on the pressure update (6.34).A deep analysis of the Chorin algorithm is proposed in E and Liu (1995), where the 
hoi
eof the proper boundary 
onditions to be imposed at the di�erent steps of the algorithm isdis
ussed, in order to redu
e the error introdu
ed in the interior of the domain when ina

urate(or wrong) boundary 
onditions are imposed.Furthermore Brown et al. (2001) a

urately review a wide number of algorithms, dis
ussingthe 
onvergen
e order in time, that is a 
onsequen
e of the 
hoi
e of boundary 
onditions atthe di�erent algorithm substeps. All the dis
ussed algorithms are presented in the form







ρ
u∗ − un

∆t
= −∇q +

µ

2
∆(u∗ + un)

B(u∗) = 0 x ∈ ∂Ω
(6.35a)











un+1 = u∗ −∆t∇φn+1

∇ ·un+1 = 0

BC(φn+1) = 0 x ∈ ∂Ω

(6.35b)
pn+1/2 = q + L(φn+1) (6.35
)where q, φ are auxiliary variables related to the pressure, L is a linear operator, and B and

BC are suitable boundary 
onditions to be imposed on u∗ and φ respe
tively. We remark thefa
t that in (6.35) a se
ond-order impli
it s
heme has been 
hosen for the time advan
e.In the following we fo
us on three algorithms des
ribed in Brown et al. (2001), whi
h followthe substeps (6.35a), (6.35b), and (6.35
), 
hara
terized by di�erent 
hoi
es of q and L:1. The �rst algorithm was introdu
ed by Bell et al. (1989) and is 
hara
terized by thefollowing 
hoi
e: q = pn+1/2 and L = I. In the present paper we refer to this algorithmwith the abbreviation D1.2. The se
ond algorithm was introdu
ed by Kim and Moin (1985) and is 
hara
terized bythe following 
hoi
e: q = 0 and L = I − ν∆t/2∆. In the present paper we refer to thisalgorithm with the abbreviation D2.
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ompressibility3. The third algorithm was introdu
ed by Brown et al. (2001) and is 
hara
terized by thefollowing 
hoi
e: q = 0 and L = I − µ∆t/2∆. In the present paper we refer to thisalgorithm with the abbreviation D3.For all the above formulations the sele
ted boundary 
onditions are B(u∗) = u∗ − un+1and BC(φn+1) = ∂φ/∂n.We summarize the des
ribed algorithm in Table 6.2.Referen
e abbreviation Referen
e paper Linear operatorsD1 Bell et al. (1989) q = pn−1/2, L = ID2 Kim and Moin (1985) q = pn−1/2, L = I − µ∆t/2∆D3 Brown et al. (2001) q = 0, L = I − µ∆t/2∆Table 6.2: Algorithms analyzed in the present paper for the non-stationary Stokes equations6.4.3 Gauge method in dynami
sThe non-stationary form of the gauge method proposed in E and Liu (2003) allows to solvethe non-stationary Stokes problems in an e�
ient way using, at ea
h time step, two di�erentsubsteps instead of three:1. In the �rst substep the equilibrium equation is advan
ed in time using any time integra-tion s
heme






















ρ
∂a

∂t
= µ∆a+ b x ∈ Ω

an+1 ·n = 0

an+1 · t = −∂φn

∂t
x ∈ Γ

(6.36)Di�erently from the Chorin algorithm, in this 
ase the �eld a has not to be 
orre
ted.2. In the se
ond time step the gauge variable φn+1 is 
omputed through the solution of thefollowing Poisson problem






∆φn+1 = −∇ ·an+1 x ∈ Ω

∂φn+1

∂n
= 0 x ∈ Γ

(6.37)We �nally remark that the tangential boundary 
ondition of substep 1 takes into a

ountthe value of the gauge variable φ at the time step n rather than at the time step n+1, allowingto de
ouple the solution of substep 1 from the solution of substep 2.In the following se
tion we refer to the non-stationary gauge method as formulation D4.
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ation of the MFPM to a non-stationary Stokes problems 916.5 Appli
ation of the MFPM to a non-stationary Stokes prob-lemsIn the present se
tion we apply the MFPM spatial dis
retization to formulations from D1 toD4. The test 
ase is a square in the domain [−1, 1]x[−1, 1] with exa
t solution










u(x, y, t) = 20xy3 sin(2πt)

v(x, y, t) = 5(x4 − y4) sin(2πt)

p(x, y, t) = (60x2y − 20y3) sin(2πt)

(6.38)The problem is governed by the non-stationary Stokes equations (with material properties
ρ = 1kg/m3 and µ = 1kg/ms) subje
ted to homogeneous initial 
onditions and Diri
hletboundary 
onditions in a

ordan
e with Equation (6.38) on the whole boundary.6.5.1 Solution using algorithms D1, D2 and D3In Figures 6.17, 6.18, and 6.19 we show the 
onvergen
e diagrams of the error obtained applyingMFPM spatial dis
retization on formulations D1, D2, and D3. For ea
h formulation, theanalyses have been run using di�erent time steps. The 2-norm error is 
omputed at t = 0.25
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Figure 6.17: Problem with exa
t solution (6.38): 
onvergen
e diagram of the error in spa
e with formulationD1 Using formulation D1 (Figure 6.17) we noti
e the expe
ted se
ond-order rate of 
onvergen
eof the error for ∆t = 10−3 and ∆t = 10−4, while for ∆t = 10−2 the error in time is dominant,worsening the 
onvergen
e order of the error in spa
e. Using formulation D2 (Figure 6.18)
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Figure 6.18: Problem with exa
t solution (6.38): 
onvergen
e diagram of the error in spa
e with formulationD2
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Figure 6.19: Problem with exa
t solution (6.38): 
onvergen
e diagram of the error in spa
e with formulationD3



6.5. Appli
ation of the MFPM to a non-stationary Stokes problems 93we noti
e that the 
onvergen
e rate is still optimal for ∆t = 10−3 and ∆t = 10−4, and wenoti
e also an appre
iable improvement of the solution with ∆t = 10−2. Using formulationD3 (Figure 6.19) we noti
e that the 
onvergen
e rate in spa
e is lost for all ∆t.6.5.2 Solution using algorithm D4The problem with exa
t solution (6.38) is also solved using formulation D4 (transient gaugemethod) with three di�erent time integration s
hemes for the equilibrium equation of System(6.36):1. an impli
it Euler s
heme (�rst order a

urate in time). The equilibrium equation isdis
retized as follows:
an+1 − an

∆t
= ∆an+1 + bn+1 (6.39)2. a Cran
k-Ni
holson s
heme (impli
it s
heme, se
ond order a

urate in time). The equi-librium equation is dis
retized as follows:

an+1 − an

∆t
=

1

2
(∆an+1 +∆an) +

1

2
(bn+1 + bn) (6.40)3. an expli
it fourth order a

urate Runge-Kutta time integration s
hemeIn the 
ase of expli
it Euler time dis
retization (6.39) the 
onvergen
e diagram of the errorin spa
e is shown in Figure 6.20. We noti
e that only using ∆t = 10−4 there is a 
orre
tse
ond-order a

ura
y of the solution, while using the other time steps the expe
ted a

ura
yis lost due to the predominan
e of the error in time.In the 
ase of Cran
k-Ni
holson time dis
retization (6.40) we obtain the 
onvergen
e dia-gram of the error in spa
e reported in Figure 6.21, from whi
h we noti
e that the error in timeis small enough not to a�e
t the se
ond-order a

ura
y of the solution in spa
e.The 
onvergen
e diagram of the error obtained using the fourth-order a

urate Runge-Kutta s
heme is presented in Figure 6.22. We noti
e that for time steps ∆t = 10−2 and ∆t =

10−3, the s
heme experien
es numeri
al instability for more a

urate spa
e dis
retizations, dueto the stability limits of the Runge-Kutta s
heme.
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Figure 6.20: Problem with exa
t solution (6.38): 
onvergen
e diagram of the error in spa
e with formulationD4 and s
heme (6.39) for the advan
e in time
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Figure 6.21: Problem with exa
t solution (6.38): 
onvergen
e diagram of the error in spa
e with formulationD4 and s
heme (6.40) for the advan
e in time
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Figure 6.22: Problem with exa
t solution (6.38): 
onvergen
e diagram of the error in spa
e with formulationD4, using a fourth-order expli
it Runge-Kutta s
heme for the advan
e in time
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Chapter 7Modi�ed Finite Parti
le Method inthe framework of the Least SquareResidual MethodThe appli
ation of the Modi�ed Finite Parti
le Method in its novel formulation (see 
hapter3 for details) to full in
ompressible bodies implies, as shown in Chapter 6, that the equationsgoverning the behaviour of full in
ompressible bodies have to be reformulated, in order toover
ome the need of respe
ting the inf-sup 
ondition.In our resear
h we would like to solve the original equations of in
ompressibility, withoutre
urring to any tri
k or modi�
ation of the governing equations. This is why here we in-trodu
e an extended formulation of the MFPM, that 
an be used for the dis
retization of anin
ompressibility problem, using a Least Square Residual Method for the solution of the �nalproblem. In this 
hapter therefore we show the extended MFPM formulation and then we dis-
retize the Stokes equations using the MFPM in 
onjun
tion with the Least Square ResidualMethod, following the idea of Chi et al. (2014) for the 
ase of Radial Basis 
ollo
ation, andshow the solution of some ben
hmarks. Finally we extend the formulation also to non-linearproblems, and solve the famous ben
hmark of the lid-driven 
avity.7.1 Modi�ed Finite Parti
le Method: the extended formulationThe extended formulation of the Modi�ed Finite Parti
le Method is slightly di�erent from theversion published in Asprone et al. (2014). The present version 
onsiders two di�erent sets ofpoints for the approximation:1. the 
ollo
ation points, indi
ated in the following as x = [x y z]T , are the pointswhere fun
tions and derivatives are 
omputed. This node distribution is pla
ed withinthe physi
al domain of the problem under 
onsideration, and is the node set on whi
hequations are 
ollo
ated. The total number of 
ollo
ation points is indi
ated with NC ;2. the 
ontrol nodes, indi
ated in the following as ξξξ = [ξ η ζ]T , are the nodes wherewe pla
e the degrees of freedom in terms of whi
h we express fun
tions and derivatives.97



98 7. Extended Modified Parti
le MethodControl nodes do not have immediate physi
al eviden
e and hen
e they 
an be pla
ed inany 
onvenient way in the domain, i.e., on a Cartesian, equispa
ed grid. We remark thatthis 
hoi
e does not a�e
t the 
hara
teristi
 of the MFPM of being a meshless method,sin
e 
ollo
ation nodes 
an assume any position, even extremely unstru
tured, withinthe physi
al domain. The total number of 
ontrol nodes used for the approximation isindi
ated with NS .
The �rst step of the approximation pro
edure of a s
alar fun
tion u(x) and its spatialderivatives is the 
omputation of the Taylor series expansion of u(x), 
entered in a 
ollo
ationpoint xi and expanded up to the se
ond order
u(ξξξ) = u(xi)+Dxu(xi)(ξ − xi) +Dyu(xi)(η − yi) +Dzu(xi)(ζ − zi)+

+
1

2
D2

xxu(xi)(ξ − xi)
2 +

1

2
D2

yyu(xi)(η − yi)
2 +

1

2
D2

zzu(xi)(ζ − zi)
2+

+D2
xyu(xi)(ξ − xi)(η − yi) +D2

yzu(xi)(η − yi)(ζ − zi)+

+D2
xzu(xi)(ξ − xi)(ζ − zi)

(7.1)
In a �rst stage we assume to know the nodal values of u in the 
ontrol nodes ξξξ: thereforeEquation (7.1) 
ontains 10 unknown terms (fun
tion and derivative values in the 
ollo
ationpoint xi) and hen
e 10 equations are needed to 
ompute their value. Therefore, for ea
h
ollo
ation point xi we sele
t a subset Xi of 
ontrol nodes ξξξj whi
h serve as auxiliary nodesfor fun
tion and derivatives in xi. Then we evaluate Equation (7.1) in ea
h node ξξξj ∈ Xiobtaining
u(ξξξj) = u(xi)+Dxu(xi)(ξj − xi) +Dyu(xi)(ηj − yi) +Dzu(xi)(ζj − zi)+

+
1

2
D2

xxu(xi)(ξj − xi)
2 +

1

2
D2

yyu(xi)(ηj − yi)
2 +

1

2
D2

zzu(xi)(ζj − zi)
2+

+D2
xyu(xi)(ξj − xi)(ηj − yi) +D2

yzu(xi)(ηj − yi)(ζj − zi)+

+D2
xzu(xi)(ξj − xi)(ζj − zi)

(7.2)
We also introdu
e 10 known fun
tions W i

α = Wα(ξξξ − xi), evaluate them in the points
ξξξj ∈ Xi, and multiply the evaluations of the left- and right-hand sides of Equation (7.2) bythe evaluations W ij

α = Wα(ξξξj − xi). Finally we sum all produ
ts and obtain 10 equations of
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le Method: the extended formulation 99the type
u(xi)

∑

j

W ij
α +Dxu(xi)

∑

j

(ξj − xi)W
ij
α +Dyu(xi)

∑

j

(ηj − yi)W
ij
α +Dzu(xi)

∑

j

(ζj − zi)W
ij
α +

+
1

2
D2

xxu(xi)
∑

j

(ξj − xi)
2W ij

α +
1

2
D2

yyu(xi)
∑

j

(ηj − yi)
2W ij

α +

+
1

2
D2

zzu(xi)
∑

j

(ζj − zi)
2W ij

α +D2
xyu(xi)

∑

j

(ξj − xi)(ηj − yi)W
ij
α +

+D2
yzu(xi)

∑

j

(ηj − yi)(ζj − zi)W
ij
α +D2

xzu(xi)
∑

j

(ξj − xi)(ζj − zi)W
ij
α =

=
∑

j

u(ξξξj)W
ij
α α = 1, ..., 10 (7.3)that 
an be rearranged in matrix form as follows:

Ai



































u(xi)
Dxu(xi)
Dyu(xi)
Dzu(xi)
D2

xxu(xi)
D2

yyu(xi)

D2
zzu(xi)

D2
xyu(xi)

D2
yzu(xi)

D2
xzu(xi)



































=







































∑

j u(ξξξj)W
ij
1

∑

j u(ξξξj)W
ij
2

∑

j u(ξξξj)W
ij
3

∑

j u(ξξξj)W
ij
4

∑

j u(ξξξj)W
ij
5

∑

j u(ξξξj)W
ij
6

∑

j u(ξξξj)W
ij
7

∑

j u(ξξξj)W
ij
8

∑

j u(ξξξj)W
ij
9

∑

j u(ξξξj)W
ij
10







































(7.4)
The proje
tion fun
tions used in the appli
ations in the present paper are

W i
1 = 1 W i

6 = (η − yi)
2

W i
2 = ξ − xi W i

7 = (ζ − zi)
2

W i
3 = η − yi W i

8 = (ξ − xi)(η − yi)
W i

4 = ζ − zi W i
9 = (η − yi)(ζ − zi)

W i
5 = (ξ − xi)

2 W i
10 = (ζ − zi)(ξ − xi)Equation (7.4) is then rewritten in the form

AiD(ui) = W
iu (7.5)where

W
i = [Wi1 | Wi2 | ... | WiNi ] (7.6)and

Wij = [W ij
1 | W ij

2 | ... | W ij
10]

T (7.7)
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le MethodThe ve
tor u 
olle
ts the known nodal values in the node set ξξξ ∈ X. Then, by inverting(7.5), we obtain
D(ui) = Ei

W
iu (7.8)where Ei =

(

Ai
)

−1, and �nally
D(ui) = D

iu (7.9)with
D

i = Ei
W

i (7.10)The 10xNi operator Di, applied to u, returns a 10x1 ve
tor 
olle
ting all the approximationsof fun
tions and derivatives of u(x) in the 
ollo
ation point xi.However, here we are interested in building 10 linear operators (I, Dx, Dy, Dz, Dxx, Dyy,
Dzz, Dxy, Dyz, Dzx) that, applied to the ve
tor u, return the evaluations of fun
tion andderivatives in all 
ollo
ation points x. These operators are simply built 
olle
ting, for ea
h i,the 
orre
t row of Di, identi�ed through Equation (7.4). For example, in order to build thelinear operator Dx (the dis
rete 
ounterpart of ∂/∂x), we simply 
onsider, for ea
h i, the 2ndrow of Di. The �nal form of Dx is then

Dx =









D1
2

D2
2

...

D
NC
2









(7.11)where Di
α is the α-th row of Di.Similarly, in order to retrieve the evaluations of u(x) in the 
ollo
ation points, we buildthe operator I su
h that

[u(xi)]i=1,...,NC
= I[u(ξξξj)]j=1,...,NS

(7.12)whose rows are found sele
ting, for ea
h i, the �rst row of Di:
I =









D1
1

D2
1

...

D
NC
1









(7.13)The 
olumns of I 
an be interpreted as the evaluations of the NS shape fun
tions in the
ollo
ation points.7.2 Governing equations for in
ompressible �owsThe governing equations of in
ompressible �uid �ows are the well known Navier-Stokes equa-tions






ρ
∂u

∂t
+ ρu ·∇u = −∇p+ µ∆u+ b

∇ ·u = 0
(7.14)



7.2. Governing equations for in
ompressible �ows 101where the �rst equation expresses the 
onservation of the linear momentum, and the se
ondequation expresses the in
ompressibility 
onstraint. The variable ρ is the �uid density, u isthe velo
ity �eld, p is the pressure �eld, µ is the dynami
 vis
osity, b is the ve
tor of internalloads.The Navier-Stokes equations are non-linear, due to the presen
e of the 
onve
tive term
ρu ·∇u. Nevertheless, when vis
ous for
es dominate inertial for
es, su
h equations 
an berewritten negle
ting the 
onve
tive term, obtaining







ρ
∂u

∂t
= −∇p+ µ∆u+ b

∇ ·u = 0
(7.15)known as Stokes equations. Both Systems (7.14) and (7.15) have to be 
ompleted with suitableboundary 
onditions, 
on
erning the boundary velo
ity or the boundary outward stress.In the present work we restri
t to stationary �ows, that is, ∂u/∂t = 0; moreover, thework is divided in two parts: in the �rst part we 
on
entrate on Stokes equations, in orderto study how the Modi�ed Finite Parti
le Method, in 
ombination with the Least SquareResidual Method, deals with the numeri
al limitation of the inf-sup 
ondition; in the se
ondpart we fo
us on the solution of the 
omplete Navier-Stokes equations, and show a numeri
alpro
edure to handle the non linearity.7.2.1 Solution of the Stokes equations using the Modi�ed Finite Parti
leMethod and the Least Square Residual MethodIn the spirit of 
ollo
ation methods we dis
retize the steady Stokes equations using the Modi�edFinite Parti
le Method. The dis
rete linear system of equations is written in the form









Keq

Kinc

Kdir

Kneum













û

v̂

p̂



 =









f̂

0

ū

t̄









(7.16)where
Keq =

[

µL 0 −Dx

0 µL −Dy

] (7.17)
Kinc =

[

Dx Dy 0
] (7.18)

Kdir =

[

nxI nyI 0

txI tyI 0

] (7.19)
Kneum =

[

2µ(n2
xDx + nxnyDy) 2µ(nxnyDx) + n2

yDy −I

2µnxtxDx + µ(nxty + nytx)Dy µ(nxty + nytx)Dx + 2µnytyDy 0

] (7.20)In Equations (7.17), (7.18), (7.19), and (7.20) the matrix L = Dxx + Dyy is the dis
rete



102 7. Extended Modified Parti
le MethodLapla
e operator, û, v̂, and p̂ are the nodal unknowns asso
iated to the velo
ity 
omponents
u and v and to the pressure p, f̂ is the ve
tor of the internal loads at 
ollo
ation points, ū isthe ve
tor of the known boundary displa
ements, and t̄ is the ve
tor of the known boundaryoutward stress at Neumann 
ollo
ation points. Finally nx and ny are square diagonal matri
es
olle
ting the values of the 
omponents of the boundary outward normal ve
tor along the x-and y-dire
tion; at the same way tx and ty are square diagonal matri
es 
olle
ting the valuesof the boundary outward tangential ve
tor along the x- and y-dire
tion.When 
ollo
ation and 
ontrol points 
oin
ide, the values of the 
ontrol unknowns 
an beretrieved by inverting system (7.16). Unfortunately the pressure �eld obtained through dire
tinversion of Equation (7.16) shows unphysi
al os
illations, known in the literature as pressure
he
kerboard instability.In order to over
ome su
h a numeri
al di�
ulty, here we use the Least Square ResidualMethod, following what has been su

essfully applied by Chi et al. (2014) using Radial Ba-sis Fun
tions for spatial dis
retization. The pro
edure 
onsists in dis
retizing system (7.15)
onsidering a number NC of 
ollo
ation points higher than the number NS of 
ontrol nodes;system (7.16) is therefore a re
tangular, overdetermined system of algebrai
 equations, whosesolution 
an be approximated through minimization of a squared error. Su
h an error is de�nedas

E = ‖e‖2 = (Kd− f)T (Kd− f) (7.21)where K is the sti�ness matrix of Equation (7.16) and d = [û v̂ p̂]T . Error (7.21) 
an befurthermore expanded as
E =(Keqd− f)T (Keqd− f) + (Kincd)

T (Kincd)+

+(Kdird− ū)T (Kdird− ū) + (Kneumd− t̄)T (Kneumd− t̄)
(7.22)In Chi et al. (2014) it is noted that error (7.22) is unbalan
ed among its 
omponents.Therefore su
h error 
omponents are properly weighted, leading to the de�nition of a weightederror

Ew =(Keqd− f)T (Keqd− f) + (Kincd)
T
Ainc(Kincd)+

+(Kdird− ū)TAdir(Kdird− ū) + (Kneumd− t̄)TAneum(Kneumd− t̄)
(7.23)where Ainc = αincI is a square diagonal matrix 
olle
ting the weights asso
iated to the dis
retein
ompressibility equations, Adir = αdirI 
olle
ts the weights asso
iated to Diri
hlet bound-ary 
onditions, and Aneum = αneumI 
olle
ts the weights asso
iated to Neumann boundary
onditions. The total weighted error 
an be �nally rewritten as

Ew = (Kd− f)TA(Kd− f) (7.24)where A is a diagonal matrix with expression
A =









I 0 0 0

0 αincI 0 0

0 0 αdirI 0

0 0 0 αneumI









(7.25)



7.2. Governing equations for in
ompressible �ows 103The weighted error (7.24) is then minimized with respe
t to the 
ontrol nodal variables d,therefore
∂Ew

∂d
= 0 (7.26)whi
h implies that

KT
AKd−KT

Af = 0 (7.27)The matrix K̃ = KTAK is a square symmetri
 matrix, and 
an be inverted using suitablealgorithms, alleviating the 
omputational 
ost of the method.7.2.2 Choi
e of the weightsThe 
hoi
e of the weights to be imposed on Equation (7.24) is an important topi
 for theappli
ation of LSRM, sin
e a wrong de�nition of weights may prevent the 
onvergen
e of thenumeri
al method.The rigorous analysis 
ondu
ted by Chi et al. (2014), whi
h takes in a

ount the parti
ular
hoi
e of the shape fun
tions (in that 
ase Radial Basis Fun
tions are used), leads to thesele
tion of the following weights
αinc = (µNS)

2 αdir = (µNS)
2 αneum = 1 (7.28)In the present work we prefer a di�erent approa
h: in fa
t we base our analysis on the
onsideration that di�erent equations have di�erent s
ales, and therefore they 
ontribute dif-ferently to the global error. In parti
ular:1. The equation of equilibrium has the dimensions of µ∂2u/∂x22. The equation of in
ompressibility has the dimensions of ∂u/∂x3. The Diri
hlet boundary 
onditions have the dimensions of u4. The Neumann boundary 
onditions have the dimensions of µ∂u/∂xThe terms 
olle
ted in the matrix Dxx are proportional to 1/h2, where h is the distan
ebetween 
ontrol nodes on a regular distribution; the terms 
olle
ted in the dis
rete operator

Dx are proportional to 1/h; furthermore we 
onsider that the distan
e h between two near
ontrol nodes is related to the total number NS of 
ontrol nodes, in parti
ular we 
an assume
h ≃ 1/

√
NS . Hen
e we 
an write the 
orre
t s
ale of ea
h equation in the form:1. Equilibrium: o(µ/h2) = o(µNS)2. In
ompressibility 
onstraint: o(1/h) = o(

√
NS)3. Diri
hlet boundary 
onditions: o(1)4. Neumann boundary 
onditions: o(µ/h) = o(µ

√
NS)



104 7. Extended Modified Parti
le MethodIn order to balan
e the weighted squared error in Equation (7.24), all 
omponents arerequested to have at least the same dimensions, that are the ones of the squared equation ofequilibrium, (µNS)
2. The other weights, following this prin
iple, are:











αinc = C1NS

αdir = C2N
2
S

αneum = C3NS

(7.29)where C1, C2, and C3 are 
onstants that, in a �rst approximation, we 
an 
onsider unitary.7.3 Solution of the Stokes problemIn the present se
tion we apply the pro
edure introdu
ed in Se
tion 3 on some ben
hmarksgoverned by the Stokes equations. In parti
ular we �rst solve the Stokes problem on a squaredomain with known analyti
al solution, and then on a quarter of annulus under body loads.For both problems we dis
uss the 
hoi
e of the weights, as well as the most 
orre
t way ofdistributing the 
ontrol nodes with respe
t to the 
ollo
ation points.7.3.1 Square with known analyti
al solutionIn the following we solve the Stokes �ow in a square in the domain [−1, 1]x[−1, 1] with thefollowing exa
t solution










u(x, y) = 20xy3

v(x, y) = 5(x4 − y4)

p(x, y) = 60x2y − 20y3 + C

(7.30)The problem is subje
ted to Diri
hlet boundary 
onditions in a

ordan
e to Equation(7.30) on the whole domain boundary. The vis
osity is set as µ = 1. The numeri
al solutionis obtained using the Modi�ed Finite Parti
le Method for spatial dis
retization and the LeastSquare Residual Method for the approximation of the resulting linear system. The sele
tedweights for the error balan
e are αdir = N2
S , αinc = NS . The weights αneum are not de�ned inthis 
ase, sin
e no Neumann boundary 
onditions are imposed on the present test.The �rst numeri
al test is performed using a regular distribution both of 
ollo
ation nodesand 
ontrol nodes. In Figure 7.1 we show the 
onvergen
e diagram of the 2nd norm relativeerror, whi
h is de�ned as relative error = √

∑NC
i=1 (unum,i − uan,i)

2

√

∑NC
i=1 (uan,i)

2
(7.31)Su
h a 
onvergen
e diagram is given in terms of the number of 
ontrol nodes, that is dire
tlyproportional to the dimensions of the matrix to invert, and thus, to the 
omputational e�ort.In parti
ular we noti
e the expe
ted se
ond-order slope of the error 
urve.In Figure 7.2 we show the pressure distribution obtained 
ombining MFPM and LSRMand remark the smoothness of the solution.
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Figure 7.1: Square with exa
t solution (7.30): 
onvergen
e diagram of the error using MFPM and LSRM
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Figure 7.2: Square with exa
t solution (7.30): pressure distribution obtained with the MFPM 
ombined withLSRM, using 58081 �eld nodes and 231361 
ollo
ation points.



106 7. Extended Modified Parti
le MethodE�e
ts of random distributions of 
ollo
ation points. Now we explore the e�e
tsof random distributions of 
ollo
ation points: the problem with exa
t solution (7.30) is solvedon the same geometry and with the same boundary 
onditions, using three di�erent extremelyrandom distributions of 
ollo
ation points within the problem domain, and using a regulardistribution of 
ontrol nodes. For ea
h test we use a 
onstant ratio between the number of
ollo
ation points and the number of 
ontrol nodes, that is NC/NS = 4. From Figure 7.3we noti
e that the errors 
omputed with the di�erent distributions of 
ollo
ation points isextremely stable, and that the average of the errors follows a slope superior to the expe
tedse
ond order.
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Figure 7.3: Square with exa
t solution (7.30): 
onvergen
e diagram of the error in spa
e using the MFPM
ombined with the LSRM, with di�erent set of randomly distributed 
ollo
ation pointsE�e
ts of the ratio between the number of 
ontrol nodes and 
ollo
ation points.In order to assess the optimal ratio between the number of 
ontrol and 
ollo
ation points wesolve again the problem with exa
t solution (7.30) using, for ea
h distribution of 
ontrol nodes,di�erent number of 
ollo
ation points. The results in term of relative error are reported inFigure 7.4 (velo
ity �eld) and in Figure 7.5 (pressure �eld), where di�erent lines 
orrespondto di�erent amounts of 
ontrol nodes. In parti
ular we noti
e from Figure 7.5 that the errorof the pressure �eld is high when the ratio NS/NC → 1, due to the violation of the inf-sup
ondition, whereas an optimal error is got when √NS/NC ≃ 0.5.E�e
ts of weights. The suitability of the weights imposed for the error balan
e is testedon a problem with the same geometry and exa
t solution (7.30), but di�erent boundary 
on-ditions: in the following test, in fa
t, Diri
hlet boundary 
onditions are imposed on the topand lower sides of the square, and 
onditions over the stress are imposed on the left and rightsides.



7.3. Solution of the Stokes problem 107

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

 

 

21x21
41x41
81x81
121x121
161x161PSfrag repla
ements

√

NS

NC

relativeerror

Figure 7.4: Square with exa
t solution (7.30): relative error versus the ratio between 
ollo
ation points and�eld nodes
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Figure 7.5: Error of the pressure for the problem with exa
t solution (7.30) and di�erent ratio between �eldnodes and 
ollo
ation points
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le MethodWe investigate di�erent values of the weights, with the following general expression










αinc = µNp
S

αD = µN q
S

αN = N r
S

(7.32)where p, q, and r are positive parameters, then we 
ompute the 2nd norm of the error usingthe following 
ombinations of parameters:(a) p = 1, q = 1, r = 0(b) p = 1, q = 1, r = 1(
) p = 1, q = 2, r = 1(d) p = 1, q = 2.5, r = 1
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Figure 7.6: Square 
lamped an all its edges: 
onvergen
e diagram of the error with Neumann boundary
onditions, using a Weighted Least Square Residual Method and MFPM dis
retization, for di�erent sets ofweightsIn Figure 7.6 we show the 
onvergen
e diagrams of the error for the investigated sets ofparameters p, q, and r, and observe that the best results in terms of global error are a
hievedwhen αinc = µNS, αdir = µN2
S , and αneum = NS , that is what we expe
ted from the theoreti
alanalysis of Se
tion 3.



7.3. Solution of the Stokes problem 1097.3.2 Quarter of annulus under body loadIn the following we apply the 
ombination of MFPM and LSRM on the problem of a �ow ina quarter of annulus (see Figure 7.7) with geometri
al parameters r = 1 and R = 4. The�uid vis
osity is set as µ = 1. The problem has been studied in Auri

hio et al. (2007) usingisogeometri
 shape fun
tions. The analyti
al solution of this problem is
{

u = 10−6x2y4(x2 + y2 − 16)(x2 + y2 − 1)(5x4 + 18x2y2 − 85x2 + 13y4 + 80− 153y2)

v = −2 · 10−6xy5(x2 + y2 − 16)(x2 + y2 − 1)(5x4 − 51x2 + 6x2y2 − 17y2 + 16 + y4) (7.33)The internal body loads are 
omputed from the analyti
al solution (7.33). Diri
hlet bound-ary 
onditions are imposed on the whole domain boundary.
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Figure 7.7: Quarter of annulus under body loads: geometry and boundary 
onditionsFor the solution of the present problem we use regular distributions of 
ollo
ation pointson a 
ylindri
al referen
e frame, and regular distributions of 
ontrol nodes on a Cartesianequispa
ed grid (an example of su
h distributions is reported in Figure 7.8). In Figure 7.9 weshow the 
onvergen
e diagram of the 2nd norm relative error obtained for di�erent numbersof 
ontrol nodes and 
ollo
ation nodes: we noti
e the expe
ted se
ond-order a

ura
y of themethod.E�e
ts of the ratio between the number of 
ontrol nodes and 
ollo
ation points.We also investigate the e�e
ts of the ratio between the number of 
ontrol nodes and the number
ollo
ation points. In Figure 7.10 we show the relative error versus the ratio √NS/NC .Di�erent lines 
orrespond to di�erent amounts of 
ontrol nodes. We noti
e that in all 
aseswe obtain high errors for NS/NC → 1, due to the violation of the inf-sup 
ondition, whereasan optimal relative error is obtained when √NS/NC ≃ 0.5.E�e
ts of random distributions of 
ollo
ation points. Further analyses are per-formed to investigate the e�e
ts of random distributions of 
ollo
ation points, and keepinguniform distributions of 
ontrol nodes (an example of 
ollo
ation and 
ontrol points distribu-
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Figure 7.8: Quarter of annulus under body loads: regular distribution of 441 
ollo
ation and 83 
ontrol nodes

20 40 80 160 240
10

−3

10
−2

10
−1

 

 

MFPM−LSRM
2nd order slope

PSfrag repla
ements √
NS

relativeerror

Figure 7.9: Quarter of annulus under body loads: 
onvergen
e diagram of the error using MFPM and LSRM
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Figure 7.10: Quarter of annulus under body loads: relative error versus the ratio between the number of �eldnodes and 
ollo
ation pointstions are reported in Figure 7.11). In parti
ular, for ea
h distribution of 
ontrol nodes, threedi�erent random distributions of 
ollo
ation nodes are tested, and the errors are reported inFigure 7.12, where the dotted line 
orrespond to the average error obtained in the tests. Wenoti
e that the error is extremely stable for the di�erent distributions and its average followsthe expe
ted se
ond-order 
onvergen
e.7.4 Navier-Stokes EquationsIn the present se
tion we solve the Navier-Stokes equations (7.14), whi
h present a furtherdi�
ulty with respe
t to the Stokes equations, sin
e they are non-linear equations and thereforea proper pro
edure for handling the non-linearity is needed.In the following we restri
t to the stationary 
ase, therefore equations (7.14) are modi�edin the form
{

ρu ·∇u+∇p = µ∆u+ b

∇ ·u = 0
(7.34)System (7.34) 
an be rewritten highlighting the 
onve
tive velo
ity uc:

{

ρuc ·∇u+∇p = µ∆u+ b

∇ ·u = 0
(7.35)Systems (7.34) and (7.35) 
oin
ide when the 
onve
tive velo
ity is 
hosen as uc = u.
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Figure 7.11: Quarter of annulus under body loads: random distribution of 441 
ollo
ation points and regulardistribution of 83 
ontrol nodes
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Figure 7.12: Quarter of annulus under body loads: 
onvergen
e diagram of the error for di�erent randomdistributions of 
ollo
ation points



7.4. Navier-Stokes Equations 113The solution pro
edure for the Navier-Stokes equation 
onsists in an iterative lineariza-tion pro
edure, as usual for non-linear equations. In general for Navier-Stokes equations twodi�erent linearization pro
edures are used:� Pi
ard linearization: the 
onve
tive velo
ity at the iteration k is 
hosen as uc = uk;therefore the MFPM spatial dis
retization of System (7.35) is










ρIûk ·Dxû
k+1 + ρIv̂k ·Dyû

k+1 +Dxp̂
k+1 = µ(Dxx +Dyy)û

k+1 + bx

ρIûk ·Dxv̂
k+1 + ρIv̂k ·Dyv̂

k+1 +Dyp̂
k+1 = µ(Dxx +Dyy)v̂

k+1 + by

Dxû
k+1 +Dyv̂

k+1 = 0

(7.36)that reads, after linearization:




ρA− µL 0 Dx

0 ρA− µL Dy

Dx Dy 0









∆ûk+1

∆v̂k+1

∆p̂k+1



 = Rk (7.37)where
{

A = d (Iû)Dx + d (Iv̂)Dy

L = Dxx +Dyy

(7.38)and Rk is the residual of the equation. In Equation (7.38) we denote with d(q) a squarediagonal matrix whose elements are the elements of the generi
 ve
tor q.� Newton-Raphson linearization: in the se
ond 
ase the 
onve
tive velo
ity at theiteration k is 
hosen as uc = uk+1; therefore the MFPM spatial dis
retization of System(7.35) reads










ρIûk+1 ·Dxû
k+1 + ρIv̂k ·Dyû

k+1 +Dxp̂
k+1 = µ(Dxx +Dyy)û

k+1 + bx

ρIûk+1 ·Dxv̂
k+1 + ρIv̂k ·Dyv̂

k+1 +Dyp̂
k+1 = µ(Dxx +Dyy)v̂

k+1 + by

Dxû
k+1 +Dyv̂

k+1 = 0

(7.39)and therefore the linearized system reads




−µL+ ρNLuu ρNLuv Dx

ρNLvu −µL+ ρNLvv Dy

Dx Dy 0









∆ûk+1

∆v̂k+1

∆p̂k+1



 = Rk (7.40)where






















NLuu = A+ d
(

Dxû
k
)

I

NLuv = d
(

Dyû
k
)

I

NLvu = d
(

Dxv̂
k
)

I

NLvv = A+ d
(

Dyv̂
k
)

I

(7.41)It is evident that the Newton-Raphson algorithm represents the most a

urate linearizationof Navier-Stokes equations (7.34), and therefore it shows faster rate of 
onvergen
e: neverthe-
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le Methodless it is shown in Elman et al. (2014) that su
h a linearization strategy needs an initial guesssolution 
loser and 
loser to the 
onverged solution as mu
h as the Reynolds number Re ishigh, where Re = ρLV/µ is the ratio among the �uid inertial and vis
ous for
es. L and V are
hara
teristi
 length and velo
ity of the problem.In the 
ase of Pi
ard linearization, 
onversely, the initial guess velo
ity 
an be 
hosen in alarger bubble, and therefore 
onvergen
e is more easily rea
hed, even if the rate of 
onvergen
eis not optimal.In both 
ases, at ea
h iteration k, a linear system has to be solved. In both 
ases thegeneral form is
Kk∆d̂k+1 = Rk (7.42)where the supers
ript k reminds that we are implementing an iterative pro
ess, and ∆d̂k+1 =

[∆ûk+1 ∆v̂k+1 ∆p̂k+1]T is the in
rement of the nodal variables at iteration k + 1.7.4.1 Navier-Stokes equations and Least Square Residual MethodWhen 
ollo
ation and 
ontrol nodes 
oin
ide, the solution of system (7.42) with suitable bound-ary 
onditions is found by inversion of the matrix Kk. Howewever this pro
edure, as in thelinear 
ase, 
an lead to problems of pressure instability, and therefore also in the non-linear
ase we use a LSRM approa
h for the solution of the problem.The pro
edure 
onsists in 
onsidering a number of 
ollo
ation points higher than the num-ber of 
ontrol nodes, therefore at ea
h iteration system (7.42) is overdetermined: therefore itssolution 
an be approximated through an error minimization, following a pro
edure 
ompletelysimilar to the linear 
ase; the weighted error at ea
h iteration is 
omputed as
Ek

w =
(

K∆d̂k+1 −Rk
)T

A
k
(

K∆d̂k+1 −Rk
) (7.43)where Ak is the diagonal matrix of the squared weights, with 
omponents

A
k
ii =

(

3Nsupp
∑3Nsupp

j=1 Kij

)2 (7.44)
omputed in order to restore the same order of magnitude of the terms in all equations. Nsuppis the number of supporting nodes of the 
ollo
ation points to whi
h the i-th row of Kk isasso
iated.Finally, at ea
h iteration the approximated solution ∆d̂k+1 is the minimizer of the error
Ek

w. The pro
edure is repeated until 
onvergen
e of the weighted error under a predeterminedtoleran
e. In order to address the di�erent iteration solutions to 
onvergen
e, it is possible todivide the problem in a predetermined number of substeps, in whi
h the external data (i.e.,boundary 
onditions or the internal body loads) are gradually in
reased. For ea
h substep,the 
onverged solution of the previous substep is used as initial guess solution.



7.5. Solution of the Navier Stokes problem using MFPM 
ombined with LSRM 1157.5 Solution of the Navier Stokes problem using MFPM 
om-bined with LSRMIn the following, we apply what has been dis
ussed in the previous se
tion to a square underpolynomial body loads, with known analyti
al solution, and on the well-known ben
hmark ofthe lid-driven 
avity, at di�erent values of the Reynold number.7.5.1 Flow in a square domainIn the following we study the �ow on a square in the domain [−1, 1]x[−1, 1] with analyti
alsolution










u(x, y) = 20xy3

v(x, y) = 5(x4 − y4)

p(x, y) = 60x2y − 20y3 + C

(7.45)Diri
hlet boundary 
onditions (on the whole boundary) and internal body loads are im-posed a

ording to Equation (7.45). The problem is solved using se
ond order MFPM in
ombination with the Least Square Residual Method, using the iterative pro
edure proposedin the previous se
tion. The material parameters are set as ρ = 1kg/m3 and µ = 1kg/ms. InFigure 7.13 we show the 
onvergen
e diagram of the error for this problem, and highlight theexpe
ted se
ond-order 
onvergen
e.
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Figure 7.13: Square with analyti
al solution (7.45) in the non-linear 
ase: 
onvergen
e diagram of the error.



116 7. Extended Modified Parti
le Method7.5.2 The lid-driven 
avityThe domain of the lid-driven 
avity is a square of side L = 1m. On all boundary, Diri
hletboundary 
ondition are assigned, in parti
ular
{

u = 0 on the left, lower and right sides
u ·n = 0 and u · t = Ū on the top side (7.46)where n and t are the normal and tangential unit ve
tors at the boundary, and Ū is thetangential vel
oity at the top side of the domain, whi
h has been set as Ū = 1m/s. We solvethe problem with ρ = 1kg/m3 and two di�erent values for the vis
osity (i.e., µ = 0.0025kg/msand µ = 0.0001kg/ms) 
orresponding to the Reynolds numbers Re = 400 and Re = 1000. InFigures 7.14 and 7.15 we show our results obtained in terms of streamlines.
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Figure 7.14: Lid-driven 
avity problem (Re = 400): streamlines solution using MFPM and LSRM.In absen
e of analyti
al solution, we 
ompare our results with those obtained by Ghia et al.(1982) in terms of horizontal velo
ity pro�le at the middle verti
al axis (x = 0 in our referen
eframe) for Re = 400 (Figure 7.16) and Re = 1000 (Figure 7.17). For both 
ases we noti
e asubstantial agreement between our results and the referen
e solution.
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Figure 7.15: Lid-driven 
avity problem (Re = 1000): streamlines solution using MFPM and LSRM.
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Figure 7.16: Lid-driven 
avity problem (Re = 400): velo
ity pro�le in the x-dire
tion along the axis x = 0and 
omparison with the referen
e solution by Ghia et al. (1982).
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Figure 7.17: Lid-driven 
avity problem (Re = 1000): velo
ity pro�le in the x-dire
tion along the axis x = 0and 
omparison with the referen
e solution by Ghia et al. (1982).



Chapter 8Con
lusionsThe topi
 of the present thesis is the study and the development of the Modi�ed Finite Parti
leMethod (MFPM) from its �rst introdu
tion in the s
ienti�
 literature (Asprone et al., 2010)until its last developments already unpublished.In the present work we deeply analyze and review the original MFPM formulation andstudy its 
hara
teristi
s. In parti
ular we underline the 
omputational 
osts 
onne
ted withthe original formulation, where integrals had to be 
omputed as ne
essary step for deriva-tive approximation. Su
h a need has been removed introdu
ing a MFPM novel formulation,where the proje
tion is performed among ve
tors and not of fun
tions. In Chapter 3 it iseviden
ed the 
onsistent time saving 
onne
ted with these pro
edure, and also a redu
tion ofthe approximation error.Both original and novel formulations are then 
ompared with existing meshless 
ollo
a-tion methods available in the literature, in parti
ular with the Generalized Finite Di�eren
eMethod, and applied to linear elasti
ity, both in stati
s and in dynami
s. The results in termsof error slope are shown in the thesis and the expe
ted se
ond order 
onsisten
y of the methodis 
on�rmed.At a later stage MFPM has been tested on the in
ompressible elasti
ity equations. In this
ase we noti
e that a simple dis
retization of the variables involved (displa
ements and pres-sure) do not respe
t the restri
tion imposed by the inf-sup (or LBB) 
ondition, and thereforethe pressure �eld exhibits unphysi
al obs
illations. The way of over
oming this di�
ulty areessentially two: the �rst one 
onsists in introdu
ing a di�erent set of equations, and this iswhat has been done by many authors; the se
ond strategy is to slightly modify the numeri
alapproximation method, and use the original in
ompressibility equations.Con
erning the �rst strategy, we apply the Modi�ed Finite Parti
le Method to �ve di�erentformulations presented in the literature, and verify that only some of them a
tually respe
tthe in
ompressibility 
onstraint. When the 
onstraint is respe
t, however, a 
orre
t se
ondorder a

ura
y is a
hieved in the numeri
al tests.The se
ond strategy for dealing with the problem of in
ompressible solids and �uids is to usethe Modi�ed Finite Parti
le Method in 
onjun
tion with a Least Squares Residual Method,following the idea introdu
ed by Hu et al. (2007) and (Chi et al., 2014) and implementedusing the Radial Basis Fun
tions 
ollo
ation method. Su
h a 
onjun
tion however requiresa modi�
ation of the Modi�ed Finite Parti
le Method, that here we 
all extended MFPM,119



120 8. Con
lusionsthat shows higher robustness with respe
t to last versions when dealing with unstru
tureddistributions of 
ollo
ation points. The method also avoids spurious os
illations of the pressure�eld, and then in this 
ase the original in
ompressibility equations have been used. The lastversion of MFPM has been �nally used for the solution of �ows in an Eulerian point of view,that is, the Navier-Stokes problem has been solved. Su
h problem is modelled by non-linearequations, and then the MFPM has been extended to the non-linear 
ase. The obtained resultsshow again the robustness of the method and the expe
ted a

ura
y.The 
urrent version of the Modi�ed Finite Parti
le Method permits satisfa
tory approx-imations of 
ompressible and in
ompressible elasti
ity problems, in parti
ular it does notsu�er from numeri
al pathologies typi
al of in
ompressibility, and it is parti
ularly robustwith respe
t to random distribution of parti
les; nevertheless the method still needs furtherinvestigations in order to properly set some parameters for the improvement of the methode�
ien
y. The methods need to be properly developed in order to be e�
iently applied toLagrangian �uid-dynami
s, that is the most natural appli
ation of every meshless method.
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