Università degli Studi di Pavia

Facoltà di Ingegneria Dipartimento di Ingegneria Civile e Architettura (DICAr)

Numerical simulation of bone remodeling based on patient specific 3D models derived from CT images

Relatore: Prof. Ferdinando Auricchio Correlatori: Ing. Stefania Marconi Ing. Gianluca Alaimo

Laurea specialistica in **Bioingegneria** 26 Aprile 2017 Presentazione di **Stefano Merli** Anno Accademico 2015/2016

Human femur anatomy

- Femur: longest bone in the human body
- Connects with:
 - Acetabulum of pelvic bone → Hip joint
 - Shinbone \rightarrow Knee joint
- Composed by two distinct types of tissues:
 - Cancellous (spongy) bone
 - Cortical (compact) bone

Total hip arthroplasty (THA)

- Total Hip Arthroplasty (THA):
 - Hip joint replaced by a prosthetic implant
- Performed when:

➢ Bone or soft tissues erosion →
severe arthritis pain
➢ Hip fractures

- One of the most common surgical procedure in hospitals
- Performed in few hours
- Recovery time of few days
- Patient can return to his daily routine, no limitations for everyday activities.

Hip implant failure

- Some data:
 - Declared lifetime of an implant: up to 25 years
 - Actual lifetime of an implant: up to 12-15 years
 - > 300000+ THA are performed each year in the United States
 - Around 52000 revision surgeries in 2006 in the United States
 - The 13% of THA will require a revision surgery as result of bone remodeling and aseptic loosening

Bone remodelling evolution in THA must be investigated

Wolff's law & mechanotransduction

Healty femur loaded with typical loading conditions:

- Load applied at femur's head
- Stress is transmitted through trabeculae of cancellous bone

To cortical bone

When an implant is placed we have:

When an implant is placed we have:

- Load applied at implant's head
- Transmitted through implant's stem
- Stress shielding → less stress is carried by the bone

Courtesy of: Prof. Benazzo's medical equipe (Ortopedia Traumatologia, IRCCS San Matteo)

 As result, after few months, this situation...

Courtesy of: Prof. Benazzo's medical equipe (Ortopedia Traumatologia, IRCCS San Matteo)

Aim of this work

- This work aims to:
 - Develop a computational mechanical simulation methodology to predict bone remodeling in THA using patient specific models
 - Understanding the mechanisms and the variables involved in this phenomenon
 - Evaluate the quality of prediction by confrontations with physicians' support

Innovations brougth by this work

- This work differentiates from literature for the following reasons:
 - 1. Use of **3D**, **high detailed**, **patient specific** models derived **from** in vivo **medical images**
 - 2. Use of realistic and patient specific material maps, with graded material properties
 - 3. Development of an **accurate bone remodeling prediction**, tested and confirmed by physicians experience
 - 4. Development of a **quick predictive tool**, requiring less than one day to produce ready-to-use results
 - 5. Implementation of all possible density variations focusing the attention **not only on bone resorption**, but **also** on **apposition**

Main steps of this work

Two CT exams of patients with THA were available:

73 years old male:

- Poor image quality \rightarrow an incomplete model
- The first medical images available
- Used for the first trials

> 78 years old female:

- Good image quality
- X-ray exposure of fractured bone after THA failure included
- Available when the methodology was almost completely developed
- Used as the final trial

Courtesy of: Prof. Benazzo's medical equipe (Ortopedia Traumatologia, IRCCS San Matteo)

- Image segmentation was performed via ITK-SNAP
- An **.STL** file was **extracted**:
 - This file is a surface mesh
 - Composed only by external triangles of the model
- Volume mesh is required for our purpose

- Patient specific densities *ρ* and elastic moduli *E* must be added to the model
- A correlation between HU values, ρ and E must be found
- QCT calibration phantoms were NOT available
- These information were retrieved in literature:
 - 1. HU/ρ relation is always linear
 - 2. ρ/E relation can be linear or exponential
 - 3. Typical ρ values for femur tissues and prosthesis
 - Typical *E* values for femur tissues and prosthesis

- Mean, mode, maximum and minimun evaluated for each material
- Outliers removed

- For each HU value of a material:
 - *1.* %*HU* is evaluated as:

 $\% HU = \frac{HU - HU_{min}}{HU_{max} - HU_{min}}$

$$2. \quad \% HU = \% \rho$$

$$\beta. \quad \rho = \% \rho \cdot (\rho_{max} - \rho_{min}) - \rho_{min}$$

 Now density vectors are created for each material

• For each ρ value of a material:

$$1. \quad \%\rho = \% E$$

2. $E = \% E \cdot (E_{max} - E_{min}) - E_{min}$

 Now Young modules vectors for each material are created

Bonemat

Material assignment

Bonemat

Material assignment

Bonemat

Material assignment

Loads and BC's defintion

Loads and BC's defintion

- Three loading conditions and BCs were applied
- Defined as:

 «Typical Loading condition of daily activities»
(D.R. Carter, "Relationships between loading hystory and femoral cancellous

bone architecture")

- Two main forces are considered:
 - Joint Reaction Force (JRF)
 - Hip Abductor Force (HAF)
- All lower nodes are fully clamped

Loading condition 1	JRF	HAF
Module	2317[N]	702[N]
Direction(from Z-axis)	27°	28°

Loads and BC's defintion

- Three loading conditions and BCs were applied
- Defined as:

 «Typical Loading condition of daily activities»
(D.R. Carter, "Relationships between loading hystory and femoral cancellous

bone architecture")

- Two main forces are considered:
 - Joint Reaction Force (JRF)
 - Hip Abductor Force (HAF)
- All lower nodes are fully clamped

Loading condition 2	JRF	HAF
Module	1158[N]	351[N]
Direction(from Z-axis)	-15°	-8°
Loads and BC's defintion

- Three loading conditions and BCs were applied
- Defined as:

 «Typical Loading condition of daily activities»
 (D.R. Carter, "Relationships between loading hystory and femoral cancellous bone architecture")

- Two main forces are considered:
 - Joint Reaction Force (JRF)
 - Hip Abductor Force (HAF)
- All lower nodes are fully clamped

Loading condition 3	JRF	HAF
Module	1548[N]	468.5[N]
Direction(from Z-axis)	56°	35°

According to Wolff's law, density variation in time unit is:

 $\frac{\Delta \rho}{\Delta t} = B \cdot \Delta S \qquad \text{where} \quad \Delta S = S - (1 \pm C_S) S_{ref}$

- S function is used for measuring solicitations in bone tissues
- This function will be evaluated for each element of the model
- S function is defined as $S = \frac{U}{c}$, where:
 - \succ U is the strain energy density of an element
 - $\succ \rho$ is the density of an element
- S_{ref} will be referred to the pre-operative condition
- S will be referred to the post-operative condition

The comparison of S and S_{ref} for each element of the two models can lead to three possible scenarios:

S < S_{ref} → the element is underloaded in the post operative configuration → bone resorption will occur

- > $S = S_{ref}$ → the element is stable → no modifications will be considered
- S > S_{ref} → the element is overloaded in the post operative configuration
 → bone apposition will occur

- The difference between S and S_{ref} must be significative to trigger a remodeling stimulus
- Lazy zone parameter C_s is introduced to mimic this biological behavior

• *B*, bone remodeling rate, retrieved from literature

Nodes & elements importation:

- 1. Nodes are imported
- 2. Elements are created
- 3. Material sections are created

Material property change:

- Pre-operative situation is not available
- Prosthesis replaced by cancellous bone tissue
- Assumption justified by:
 - 1. Implants are placed in cancellous bone regions
 - 2. Bone remodeling is caused only by mechanical properties alteration and not by geometrical alterations

Pre-operative simulation is performed:

S_{ref} function evaluated for each element for the 3 loading conditions:

$$(S_{ref1}, S_{ref2}, S_{ref3})$$

A mean value is obtained for each element:

$$S_{ref} = \frac{S_{ref1} + S_{ref2} + S_{ref3}}{3}$$

- Two simulations performed:
 - 30 days simulation:
 - 1 step=1 day
 - 6 months simulation:
 - 1 step=1 week

Model updating:

If an element is subjected to bone remodeling, its density and E will change as:

$$\blacktriangleright \Delta \rho = B \cdot \Delta S \cdot \Delta t$$

 $\triangleright \rho_{new} = \rho + \Delta \rho$

$$\succ E_{new} = a_1 + b_1 \cdot \rho_{new}^{C_1}$$

Results elaboration:

A list of the elements subjected to remodeling is extracted

Density changes between each step are saved

A 3D map of density changes between of the i-th step regarding the initial condition is saved

Results elaboration and commentary

Results elaboration and commentary

The model predicted correctly the risk zones»

Prof. Benazzo's medical equipe (Ortopedia Traumatologia, IRCCS San Matteo)

Future improvements

Ready to use:

- Experimental protocol, performing CT scans before and after THA:
 - Use of calibration phantoms
- More available studies could help out finding the correct parameter's calibration

 Introduction of a failure criterion to predict bone failure

Long term:

- Pre operative surgery planning
- A deep study about patient's lifestyle in the first days after THA
- The use of patient specific loading conditions:
 - Motion capture techniques
- Implementation of additional loading conditions to simulate a physiotherapy maneuver applied with regularity

The two models

The two models

Histograms

Histograms

