Università degli studi di Napoli Federico II

Facoltà di Ingegneria

Dipartimento di Ingegneria Strutturale

Università degli studi di Pavia

Facoltà di Ingegneria

Dipartimento di Meccanica Strutturale

In collaborazione con Centro di Simulazione Numerica Avanzata – CeSNA Istituto Universitario di Studi Superiori

SEMINARIO:

SIMULAZIONE NUMERICA DI PROVE DI IMPATTO SU LAMINATI IN VETRORESINA

Ing. Costantino Menna

PhD student, Dipartimento di Ingegneria Strutturale

Università degli studi di Napoli Federico II

Ing. Domenico Asprone

PhD, Dipartimento di Ingegneria Strutturale

Università degli studi di Napoli Federico II

Giovedì 6 Maggio 2010

COMPOSITI ED IMPATTO

MATERIALI COMPOSITI: materiali ad alte prestazioni

Proprietà meccaniche specifiche elevate → riduzione di peso

Applicazioni avanzate: aviazione civile, settore automobilistico, settore militare e aerospaziale

> VULNERABILITA' all'IMPATTO legata alla natura del materiale

Danni consistenti a bassi livelli di energia di impatto

Vita di esercizio: carichi accidentali in opera, crash di frammenti e particelle di giaccio, fenomeno del birdstrike ecc.

IMPORTANZA DELLO STUDIO in ambito progettuale

CLASSIFICAZIONE DELLE TIPOLOGIE DI IMPATTO

IMPATTO → PROPAGAZIONE DI ONDE DI SOLLECITAZONE→DURATA DEL FENOMENO RISPOSTA DINAMICA DELLA STRUTTURA

Regime **BASSA VELOCITA**'

Durata >>T dell'onda

Danno esteso

DANNI DA IMPATTO A BASSA VELOCITA'

Danno nei METALLI \rightarrow dissipazione di energia mediante deformazione plastica Danno nei COMPOSITI \rightarrow natura eterogenea \rightarrow meccanismi di danneggiamento

Il danno da impatto nel composito sottoposto a impatti a bassa velocità si concentra in un certo volume, detto ZONA DI INFLUENZA:

DANNI DA IMPATTO A BASSA VELOCITA'

1) Danneggiamento INTRALAMINARE

E limite

Fratture NORMALI/TAGLIANTI nella matrice

Energia di impatto

2) Danneggiamento INTERLAMINARE

DELAMINAZIONI

Crescita: σ_{13} , σ_{22} , σ_{23}

3) Rottura delle FIBRE e PENETRAZIONE del percussore

CURVA DI IMPATTO

→ la storia dell'urto è ricostruita attraverso la curva FORZA-SPOSTAMENTO
 → i modi di rottura si riflettono nell'andamento della curva F vs S

Curva a completa penetrazione

a: Inizio delaminazione
b-c: Inizio cedimento fibre
c: Forza massima
d: Rotture di fibre negli strati – Energia di perforazione
d-e: Perforazione totale

Displacement

RESISTENZA RESIDUA POST - IMPATTO IMPORTANZA DELLO STUDIO DI IMPATTO

Danno "nascosto" \rightarrow Quantificare il danno \rightarrow dipendenza dall'energia

Valutazione modellazione delle proprietà meccaniche residue AI (after impact) allo scopo di comprendere l'effettiva capacità portante di una struttura che ha subito fenomeni di tal genere \rightarrow **BVID**

MATERIALI E PROVE DI RIFERIMENTO

> MATERIALI

GFRP rinforzato con *tessuto* di fibre di vetro (295 g/m²) a base di resina epossidica (CYCOM 7701 Epoxy Resin)

rinforzo fibroso di tipo *tessuto* (0;90) costituito da fibre di vetro E stile (7781)

sequenza di LAMINAZIONE

[(0;90)n/(-45;+45)n/(-45;+45)n/(0;90)n]

spessore singola lamina: 0,24 mm

n=1, 2 → spessori provini 1,2 mm

Provini quadrati: 70 x 70 mm

MATERIALI E PROVE DI RIFERIMENTO

> MACCHINA DI PROVA

Prove di impatto con carico dinamico
Macchina: Ceast Fractovis
Massa e diametro del penetratore variabili
d = 16 mm
Diametro del supporto circolare: 50 mm

Energie di prova: U = *mgh* Range di energia considerato *0,41J-8,3J* Regime di bassa velocità, no pentrazione

MODELLI PER LO STUDIO DELL'IMPATTO

Metodologia completa e validata per lo studio dell'impatto: il processo di modellazione dell'intero evento di impatto su materiali compositi presenta numerosi ASPETTI CRITICI

NATURA ETEROGENEA → FIBRA /MATRICE → POSSIBILI INTERAZIONI
 → SCALA DI GRANDEZZA

 • EVENTO DINAMICO → CONOSCENZA DELLA RISPOSTA DEL MATERIALE E EFFETTI DELLA VELOCITA' DI APPLICAZIONE DEL CARICO

 DIFFERENTI MECCANISMI DI DANNO → COSTITUENTI → POSSIBILI INTERAZIONI → ENERGIA DISSIPATA

 COMPORTAMENT POST-ELASTICO → POSSIBILI NON LINEARITA' → EVOLUZIONE DEI VARI TIPI DI DANNO → DEGRADAZIONE PROPRIETA' DI RIGIDEZZA DEL MATERIALE

 DISTRIBUZIONE COMPLESSA DEL PATTERN DI DANNEGGIAMENTO → DIFFICILE PREVISIONE DELLO STATO DI DEGRADAZIONE

MODELLI PER LO STUDIO DELL'IMPATTO

> Approcci ANALITICI -> soluzioni limitate a casi semplici

IL CODICE LS DYNA

LS-DYNA, un codice di calcolo FEM di applicazione multidisciplinare (esplicito,implicito),
 → simulazione di fenomeni fisici altamente non lineari, grandi deformazioni ecc,
 → studio di fenomeni che si evolvono molto velocemente nel tempo: crash automobilistici,
 → vasta gamma di modelli di materiale e di contatto.

Complessità intrinseca del problema \rightarrow di ridurre il più possibile il grado di dettaglio geometrico del modello \rightarrow le caratteristiche principali dei test di laboratorio sono state pienamente conservate \rightarrow tempi di calcolo ragionevoli.

MODELLAZIONE DEL PERCUSSORE

prova sperimentale: un unico corpo cilindrico solido, in acciaio, estremità emisferica, diametro di 16mm

Prova simulata:

estremità emisferica a contatto con la superficie superiore del laminato.

DensitàVariabile a
seconda della
provaKg/m³Modulo elastico210GPaModulo di
poisson0.3-

Proprietà MAT RIGID - Percussore -

MODELLAZIONE DELLE LAMINE: ambito FEM

modellazione mediante elementi di tipo shell → i modi di rottura dovuti a sollecitazioni fuori dal piano della lamina e a sollecitazioni normali in direzione dello spessore vengono trascurati.

modellazione attraverso elementi di tipo **SOLIDO**.

Nei danni interlaminari, quali le delaminazioni, svolgono un ruolo rilevante proprio le sollecitazioni (sia di taglio che normali) nella direzione dello spessore

Modellazione più accurata e possibilità di prevedere l'intero pattern di danneggiamento

MODELLAZIONE DELLE LAMINE

Proprietà geometriche

disco solido di diametro pari a 50mm, avente lo spessore di 0,24mm

1 elemento in direzione dello spessore dello spessore

Mesh 160 elementi lungo la circonferenza

elementi approssimativamente di forma quadrata ≈ 0,657mm x 0,657mm

> MODELLAZIONE DELLE LAMINE

Proprietà del materiale: modelli a disposizione in LS Dyna

- Modelli shell, solidi;
- Capacità di modellare il comportamento ortotropo dei compositi→danneggiamento;
- Mat022 \rightarrow criteri di rottura \rightarrow lamine unidirezionali;
- Mat161 \rightarrow meccanica del danno \rightarrow licenza MSC \rightarrow incremento tempo di calcolo;

MAT_59 SOLID COMPOSITE FAILURE

MODELLO SOLIDO

CRITERIO MASSIMA TENSIONE 3D

SCORRIMENTO PLASTICO

RAGIONEVOLE TEMPO DI CALCOLO

Prove singolo elemento

> MODELLAZIONE DELLE LAMINE

Proprietà del materiale richieste

PROPRIETA' ELASTICHE: MODULI ELASTICI

RESISTENZE: Trazione, Compressione, Taglio - 3D -

Non tutti i dati richiesti sono forniti dal produttore

Effetto velocità di deformazione legato alle fibre di vetro: incremento fino al 70% rispetto a prove in regime quasi statico

Necessità di calibrare il modello Valori in letteratura e prove sperimentali

Moduli	(GPa)	Moduli di	(GPa)	Moduli di	(-)
Elastici		Taglio		Poisson	
E_{1}	26	<i>G</i> ₁₂	3.8	<i>v</i> ₁₂	0.1
E_2	26	<i>G</i> ₂₃	2.8	<i>v</i> ₃₁	0.1
E_3	8	<i>G</i> ₃₁	2.8	<i>v</i> ₃₂	0.25

Trazione	(MPa)	Compression	(MPa)	Taglio	(MPa)
		e			
X _T	850	X _C	720	<i>S</i> ₁₂	105
Y _T	850	Y _C	720	S ₃₁	65
Z_T	120	Z_{c}	500	S ₃₂	65

Incremento rispetto ai valori presunti

Resistenze trazione: natura viscoelastica del rinforzo

Resistenze a compressione: stabilità contatto concentrato

MODELLAZIONE INTERFACCE

No elementi coesivi ma relazione di contatto puntuale:

AUTOMATIC_SURFACE_TO_ SURFACE_TIEBREAK

connessione basata su sollecitazioni di tipo normale e tagliante in relazione ai nodi delle lamine che vengono "legati" → proprietà di resistenza interlaminare del laminato

criterio di rottura

$$\left(\frac{|\sigma_n|}{NFLS}\right)^2 + \left(\frac{|\sigma_s|}{SFLS}\right)^2 \ge 1$$

sollecitazione scalata linearmente fino a valore critico CCRIT

valori noti di resistenza interlaminare (Fase di calibrazione)

NFLS = 35 Mpa *SFLS* = 65 MPa

Damage Profile

> CONDIZIONI DI SIMMETRIA

Il problema in esame presenta delle proprietà di simmetria

POSSIBILITA' DI ANALIZZARE UN QUARTO DELL'INTERO SISTEMA

CONDIZIONI A CONTORNO

Vincoli di afferraggio

Vincoli di simmetria

Velocità iniziale→non elevata → vibrazioni evidenti → instabilità e oscillazioni output dei dati.

Energia iniziale \rightarrow associata alla densità del percussore ρ_{perc} =

 $erc = \frac{3E_i}{\pi R_{sf}^3 v_0^2}$

Analisi \rightarrow tempo di calcolo ragionevole: 2h – 8h, processore 8 core

Analisi diagrammi Forza vs Spostamento

SPESSORE 1mm

curva di carico ben approssimata; buona riproduzione della forma della curva;

differenze legate al modello di materiale.

Analisi diagrammi Forza vs Spostamento

SPESSORE 2mm

Stessi parametri dello spessore 1mm; No ulteriore calibrazione; curva ben approssimata;

Analisi diagrammi Energia assorbita e Fmax vs Energia fornita

Buona corrispondenza Aumento di E \rightarrow ERRORE MAX di circa 13%

Buona corrispondenza

Aumento di E \rightarrow ERRORE MAX di circa 10%

 \rightarrow modello materiale

Analisi del danno

Raffronto visivo area delaminata Superficie T=1mm $E_3=6J$ inferiore provino impattato E=6J T=1mm dí

Area delaminata, Dimensione media area delaminata, d

Analisi diagrammi Area delaminata

Analisi diagrammi dimensione Area delaminata

Buona corrispondenza Scostamento max 15% Buona corrispondenza Scostamento max 20% → energia legata al modello di materiale

Analisi del danno

Rottura fibre

T=1mm E₃=6J

Distribuzioni delaminazioni

T=1mm E₃=4J

ATTIVITA' DI RICERCA IMPATTO SANDWICH

Simulazione di prove di impatto condotte attraverso drop weigth machine

MATERIALE: tipo sandwich

Core: struttura a nido d'ape honeycomb costituita da fogli di fibra aramidica impregnati in resina fenolica:Nomex;

Skins:laminato in tessuto di fibra di vetro impregnato in resina fenolica

COMPORTAMENTO MECCANICO: compressione uniassiale

Plateau plastico: elevate deformazioni → applicazioni nelle quali è richiesto un grande assorbimento di energia, come nel caso di impatti o di esplosioni.

Hardening: Compattazione celle

Modello Numerico

deck by LS-PRE

Modello Omogeneo

Core: la struttura a nido d'ape honeycomb è omogeneizzata in base alle proprietà MACRO ottenute dalle prove meccaniche sperimentali → Formulazione solida MAT_HONEYCOMB

Skins: proprietà ottenute da caratterizzazione meccanica --> Formulazione Shell MAT_LAMINATE_COMPOSITE_FABRIC → →Teoria Continuum Damage Mechanics

L'influenza dello strain rate valutata attraverso precedenti prove sperimentali è stata introdotta nella formulazione dei due materiali.

Confronto Numerico Sperimentale

Outcomes: Curve vs Forza Spostamento e Energia Assorbita vs Tempo

Confronto Numerico Sperimentale

Outcomes: Danneggiamento nella direzione dello spessore ed impronta top skin

Modello Cellulare

Scopo: Comprensione dipendenza dello Strain Rate sul Nomex e previsione di danneggiamento locale (ad esempio in caso di indentazione)

•Sezione struttura a celle esagonali

•Doppio spessore pareti celle

•Modello Shell, proprietà Paper Nomex

Caratterizzazione a SR

•Struttura Cellulare deformata assialmente

CONCLUSIONI

Il modelli numerici FE creati sono in grado di riprodurre in modo efficiente il comportamento a impatto dei compositi analizzati in relazione al tempo di calcolo e sulla base di una opportuna operazione di calibrazione sperimentale

>Il confronto quantitativo dei parametri caratteristici delle prove è soddisfacente

Viene riprodotto in modo soddisfacente il pattern di danno che hanno subito i provini

Necessaria la validazione a livelli energetici e spessori differenti e uno studio accurato sulla riproduzione degli effetti SR

 \succ Modelli più complessi \rightarrow evoluzione danno \rightarrow tempo di calcolo

Contesto generale VIRTUAL TESTING, APPROCCIO MICRO-MACRO → ridurre il numero di prove sperimentali, implementazione casi reali