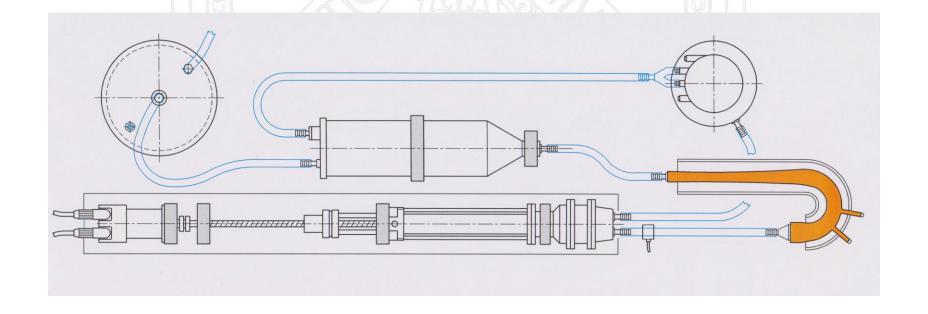
Biomedical Engineering

Analisi in-vitro della biomeccanica aortica: uso dell'ecografo per misure non-invasive

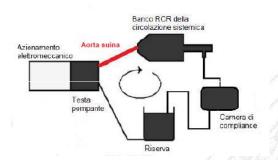
Candidato: Marco Meccariello

Relatore: Dr. Michele Conti

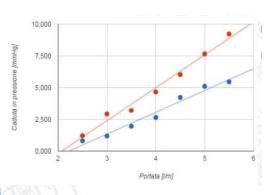
Endograft


Patologie aortiche trattate con l'uso dell'endograft:

- ➤ Dissezione aortica → Scissione della tonaca media in vero e falso lume
- Aneurisma aortico -> Dilatazione abnorme di un tratto dell'aorta


Che cos'è il β-lab?

Obiettivo delle attività BetaLab: studiare biomeccanica endografting aortico


- Modelli in vitro/ ex-vitro
- Pulse duplicator

Obiettivo generale

Studio dell'emodinamica

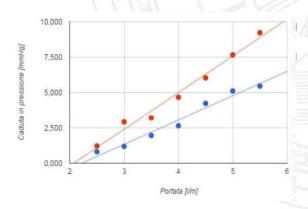
Pulse duplicator + Endograft Assenting Auria Descending Thoracic Acris

CIAPRIMAGM

Abdominal Acris

Proprietà biomeccaniche aorta

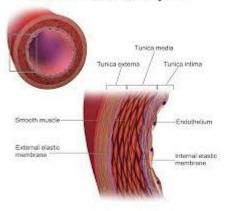
Studio della morfometria



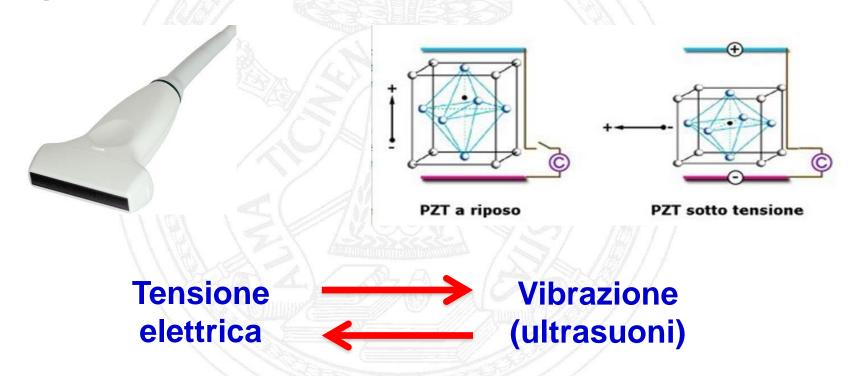
Integrare pulse duplicator con sistema di imaging

Attività svolta: primo set-up con ecografo

1) Misure di diametro con e senza endograft



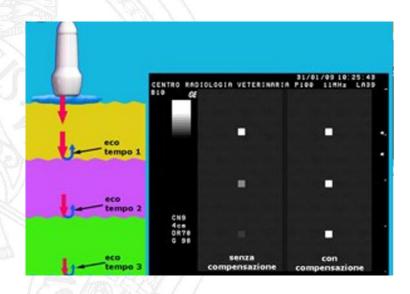
2) Proprietà biomeccaniche aorta


The Structure of an Artery Wall

L'ecografia: principi fisici

E' una metodica di diagnostica per immagini che si basa sull'impiego di onde meccaniche di elevata frequenza (f>20 kHz)

Principio fisico: piezoelettricità

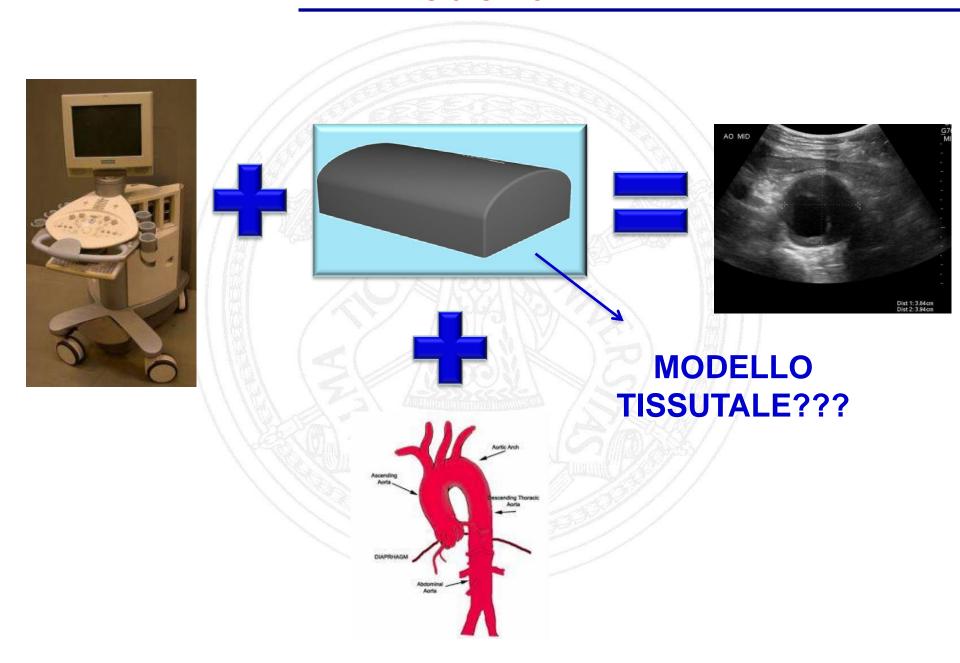

Questa proprietà dei materiali piezoelettrici fa sì che la sonda funzioni sia da emettitore che da antenna

L'ecografia: acquisizione immagine

La sonda trasmette piccoli "pacchetti" di ultrasuoni per 1% del tempo, per il restante 99% la sonda resta in ascolto degli echi di ritorno

Gli echi sono caratterizzati da:

- ➤ Velocità di propagazione (impedenza)
- ➤ L'attenuazione si verifica principalmente per:
 - riflessione
 - trasmissione
 - rifrazione



Ricostruzione dell'immagine

A seconda del ritardo e dell'intensità con cui arrivano alla sonda, gli echi vengono disposti nella matrice dell'immagine

echi precoci = zone superficiali echi tardivi = zone profonde

Problema...

Modello Tissutale

Obiettivo: Ricerca di una materiale che abbia le stesse caratteristiche ecografiche del tessuto animale

- Composto 1₁
- 4 bustine metamucil (20 gr di bucce di psillio)
- 20 gr di gelatina alimentare
- 250 ml di acqua
 - **Caratteristiche:**
 - -Resistente
 - -Riutilizzabile
 - -Migliore ecogenicità

- Composto 2
- 30 gr di gelatina alimentare
- 280 ml di acqua
- 20 ml succo di limone
 - **Caratteristiche:**
 - -Trasparenza
 - Riutilizzabile
 - Tempo di conservazione maggior rispetto al composto 1

1 Riferimenti : McNamara MP, McNamara ME: "Preparation of a homemade ultrasound biopsy phantom". 1989

Sistema di acquisizione

Ecografo
(Acuson Antares Premium Edition)

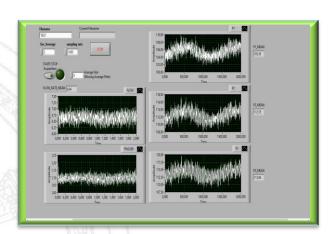


Pompa in continua

Immagine

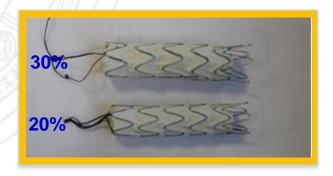
Aorta discendente

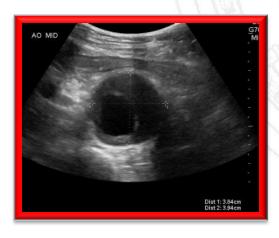
Misurazioni diametro aorta


Protocollo

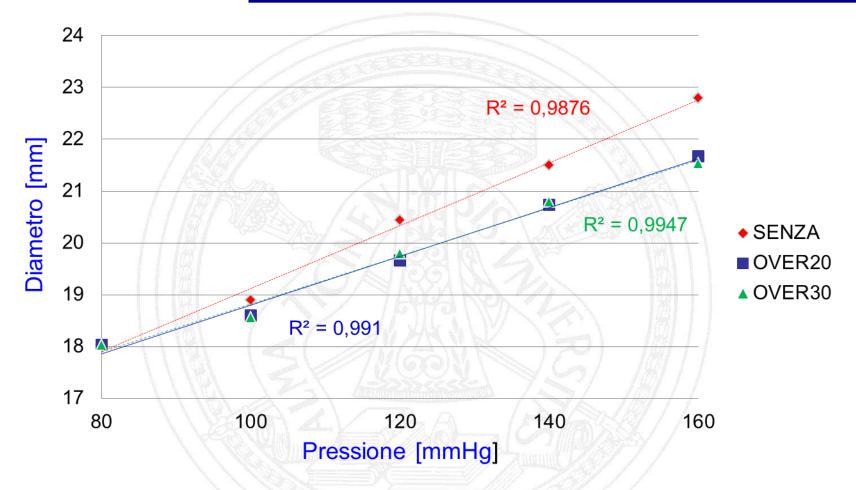
Collego l'aorta al circuito

Porto la pressione a 100 mmHg: Misuro il diametro

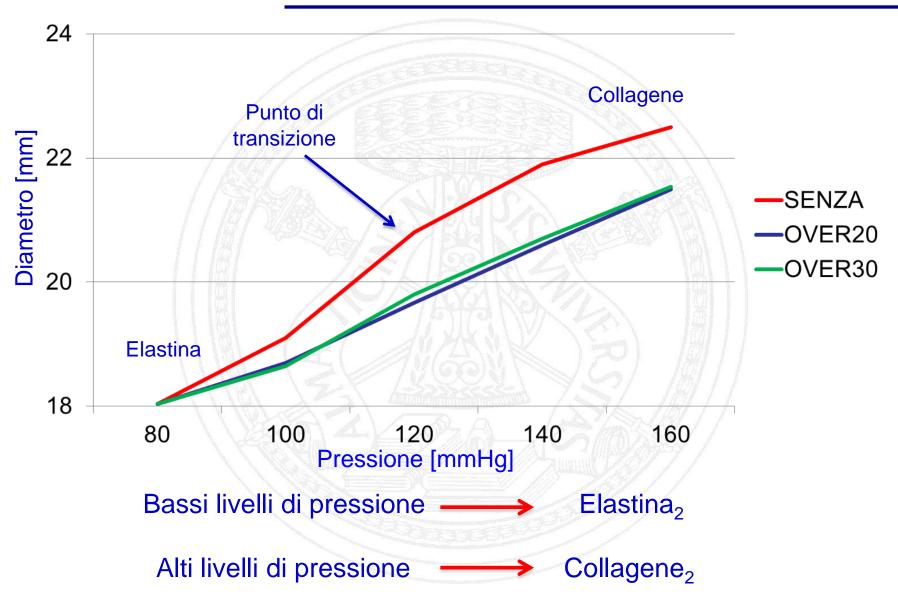




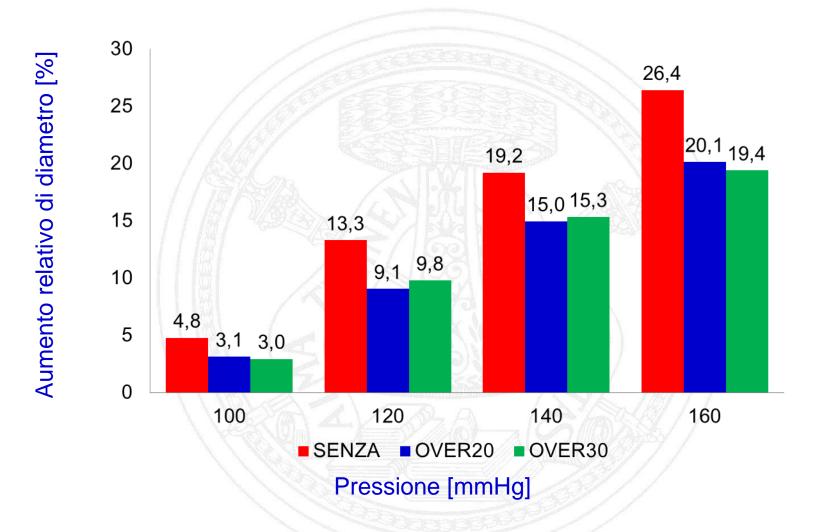
Scelta oversize endograft 20% 30%



Misure di diametro con e senza endograft a diverse pressioni


Risultati (1): rapporto diametro/pressione

Risultato: andamento lineare!!!


SENZA → SENZA ENDOGRAFT
 OVER20 → CON ENDOGRAFT (Medtronic Captivia diametro 22 mm lunghezza 100 mm)
 OVER30 → CON ENDOGRAFT (Medtronic Captivia diametro 24mm lunghezza 100 mm)

Risultati (2): una possibile interpretazione

2 Riferimenti: Lanne, T., Stale, H., Bengtsson, H. et al. 1992a: "Non invasive measurement of diameter changes in the distal abdominal aorta in man". Ultrasound in Medicine and Biology

Risultati (3): focus sull'impatto dell'oversizing

Risultato: cambiamento significativo della capacità di espansione radiale su tutti i livelli di pressione tra aorta con e senza endograft

Uso Ecografo: limitazioni e considerazioni

Ecografo

- Modello datato; scarsa flessibilità; di difficile uso senza la guida di un utente esperto che sappia usarlo
- Non riusciamo ad esportare immagine
- Sonda rovinata (bande verticali) → immagini poco ripetibili e non molto affidabili

Modello porcino

- Necessità di un medico per preparare il campione
- Presenza di Leakage che rende l'esperimento di non facilissima realizzazione
- Test limitato a poche aorte; la stessa aorta è stata usata per i vari endograft comportando un deterioramento del modello
- ➤ Gelatina perde le sue caratteristiche ecografiche; necessità di avere un phantom commerciale (200 Euro) che garantisca una maggiore stabilità
- Non facile controllare temperatura
- Poca letteratura di riferimento sull'uso dell'ecografia con gli endograft

Proprietà biomeccaniche

Table 4.1 Definitions and units of various indices of arterial stiffness

Index	Equation	Units (cgs)
Arterial distensibility	$(D_{\rm s} - D_{\rm d})/(P_{\rm s} - P_{\rm d})D_{\rm d}$	cm ² /dyne
Arterial compliance	$(D_s - D_d)/(P_s - P_d)$	cm ³ /dyne
Volume elastic modulus	$[(P_s - P_d)/(V_s - V_d)]/V_d$	dyne/cm ²
Peterson's elastic modulus	$[(P_s - P_d)D_d]/(D_s - D_d)$	dyne/cm ²
Young's elastic modulus	$[(P_s - P_d)D_d]/(D_s - D_d)h$	dyne/cm
Pulse wave velocity	$(z_1-z_2)/(t_1-t_2)$	cm/s
Pressure augmentation	$(P_s - P_l)$	dyne/cm ²
Augmentation index	$[(P_s - P_l)/(P_s - P_d)] \times 100$	Percent
Characteristic impedance	$(P_{\rm i} - P_{\rm d})$ /Peak flow (or velocity)	dyne-s/cm ⁵ or dyne-s/cm ³
Stiffness index (β)	$[D_{\rm d} \ln(P_{\rm s}/P_{\rm d})]/(D_{\rm s}-D_{\rm d})$	Non- dimensional
Large artery elasticity index (or capacitative compliance, C_1)	Relation between arterial volume fall and pressure decline during exponential diastolic pressure decay	cm ⁵ /dyne
Small artery elasticity index (or oscillatory compliance, C ₂)	Relation between oscillating arterial volume change and oscillating pressure change around exponential diastolic pressure decay	cm ⁵ /dyne

 P_{i} , pressure; D_{i} , diameter; V_{i} , volume; h_{i} , wall thickness; $(z_{1}-z_{2})$, distance between measuring sites; $(t_{1}-t_{2})$, travel time of pulse; d_{i} , diastole; d_{i} , inflection point; d_{i} , natural logarithm; d_{i} , systole.

Riferimenti:

3 Wilmer Nichols, Michael O'Rourke, Charalambos Vlachopoulo "McDonald's Blood Flow in Arteries", Sixth Edition Theoretical and Clinical Principles

Modulo di Peterson: confronto in letteratura

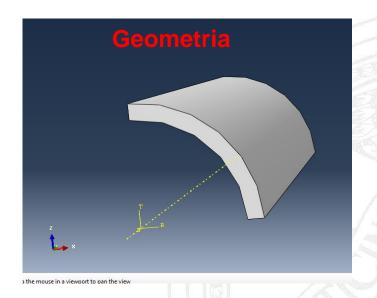
Modulo elastico di Peterson 4

Livello di pressione richiesto per l'incremento (teorico) del 100% del diametro a partire dal diametro a riposo di un vaso a lunghezza fissa

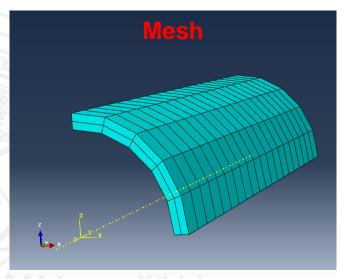
$$E_p = \frac{(P_s - P_d) * D_d}{(D_s - D_d)}$$

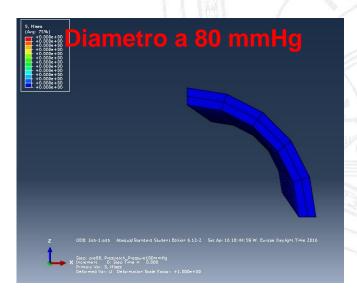
L'inverso E_p è stato indicato come la compliace arteriosa da Gosling₅ (1976) e più recentemente come la distensibilità arteriosa da O'Rourke $_6$ (2002)

$\boldsymbol{E_p}$ [N/mm ²]	Aorta discendente
Suino in vivo ₇	0,042
Suino in vitro ₈	0,04
Suino	0,039

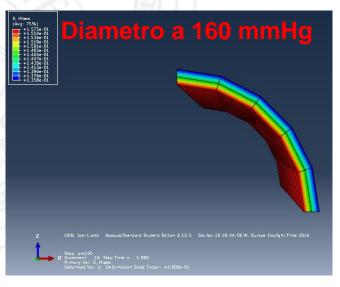

Riferimenti

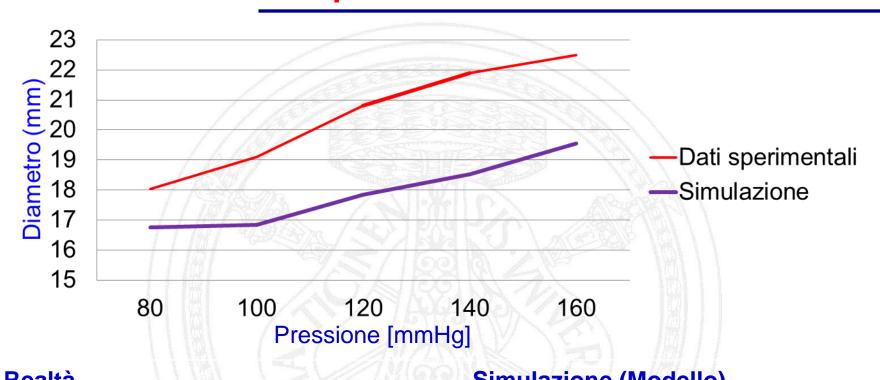
- 4 Peterson, L.H., Jensen, R.E. and Parnell, J. 1960: "Mechanical properties of arteries in vivo". Circulation Research
- 5 Newman, D.L., Gosling, R.G. and Bowden, N.L.R. 1971: "Changes in aortic distensibility and area ratio with he development of atherosclerosis". Atherosclerosis
- 6 Hirata, K., Vlachopoulos, C., Adji, A. and O'Rourke, M.F. 2002: "Reproducibility of pulse wave analysis in a double-blind study". Journal of Hypertension
- 7 Jungsil Kim, Seungik Baek "Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test" Department of Mechanical Engineering, Michigan State University, USA 2011
- 8 Slørdahl SA1, Piene H, Linker DT, Vik A. 1991": Segmental aortic wall stiffness from intravascular ultrasound at normal and subnormal aortic pressure in pigs ".


Modulo di Peterson: con e senza endograft


$\boldsymbol{E_p}$ [N/mm ²]	Aorta discendente
SENZA	0,039
OVER20	0,058
OVER30	0,054
50 45 40 35 30 25 20 15 10 5	37
OVER20	OVER30

Simulazioni aorta porcina senza endograft





Confronto dati sperimentali con la simulazione

Realta	Simulazione (Modello)
Materiale con comportamento non lineare	Modello lineare elastico
Materiale non omogeneo (3 strati)	Materiale omogeneo
Comportamento anisotropo	Modello isotropo
Vincolo esterno della gelatina	Assenza di vincoli esterni
Errore e variabilità di misura	

Conclusioni

- Set up di un sistema sperimentale per la misura non invasiva del diametro dell'aorta per gli esperimenti effetuati in betalab
 - Provata la fattibilità di combinare ecografo e modello porcino ex-vivo
 - Esperimenti da standardizzare ulteriormente
 - Migliorare attrezzatura da concordare con i medici

Analisi della letteratura

- Ci sono pochi articoli sull'ecografo/endograft/aorta
- Vari indicatori biomeccanici non sempre congruenti fra loro

Simulazioni strutturali

- Uso software abaqus per modello semplificato vaso
- Differenza con dati sperimentali che necessità approfondimento

Grazie per l'attenzione

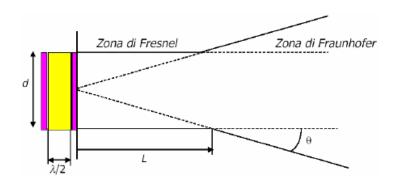
- Michele Conti per avermi seguito durante tutto il percorso
- Chiara Grassi per avermi guidato nell'apprendimento dell'uso dell'ecografo
- Hector de Beaufort per la preparazione delle aorte
- Margherita Coda per l'assistenza nella realizazzione degli esperimenti

Attrezzatura consigliata dai medici

Esaote Mylab 30 Gold Costo 25 000 €

Sonda Lineare LA532

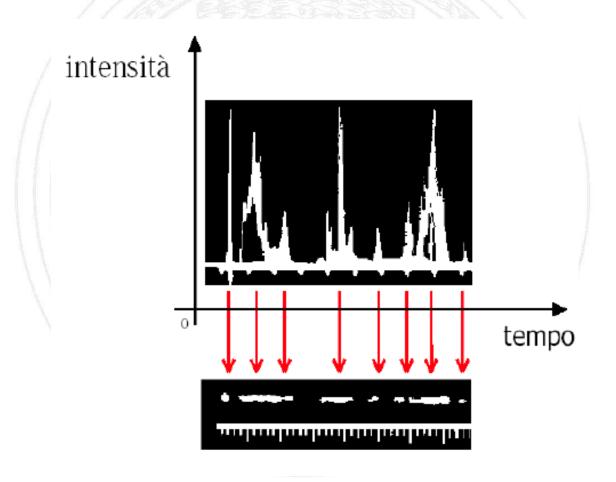
Risoluzione


 Risoluzione Assiale: capacità di differenziare lungo l'asse di propagazione del fascio

$$R.A. = \frac{Spl}{2}$$

Migliora con l'aumentare delle frequenza e quindi con il diminuire della lunghezza d'onda Spl

 Risoluzione Laterale: capacità di discriminazione tra due oggetti vicini, posti l'uno di fianco all'altro alla stessa profondità


Dipende dalle dimensioni dei cristalli piezoelettrici

$$L = \frac{d^2}{4\lambda} = \frac{fd^2}{4c}$$

B Mode

L'ampiezza(intensità) dell'eco modula la luminosità del punto sullo schermo mentre il ritardo modula l'asse verticale

