Laurea in Bioingegneria

Microelettrovalvola per Bioprinting: prove e misure preliminari

Candidato: Veronica Marafioti Docente tutore: Dott. Michele Conti

Anno Accademico: 2014/2015

Università degli studi di Pavia

Bioprinting can be defined as the use of computer-aided transfer processes for patterning and assembling living and non-living materials with a prescribed 2D or 3D organization in order to produce bio-engineered structures serving in regenerative medicine, pharmacokinetic and basic cell biology studies. *(International Conference about Bioprinting and Bio Manufacturing - Bordeaux 2009)*

Bioprinting workflow

Bioprinters

\$180000 £12000/18000 \$10000

\$ 5000/9000

Refs: https://replicatore.wordpress.com/2015/09/06/top-10-biostampanti-commerciali-2/

BioPrinting project – Lee's bioplotter

BioPrinting project's Goal:

Lee's **Bioplotter**: modular tissue printing platform

- 1. 4 syrynges as "cartridges" to load cell suspensions and hydrogel precursors
- 2. An array of 4-channel dispensers
- 3. Target substrate
- 4. Horizontal stage
- 5. Vertical stage
- 6. Range finder
- 7. Vertical stage heater/cooler
- 8. Optional indipendent heating/cooling for the dispenser

Fig. Lee 2008, Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication

BioPrinting project – Our approach

□ Inspiring by Lee's bioplotter, this is our purpose:

- Global setup: the following material was necessary for the development of the project
 - 1. Acquisition of pressure signal whit 0Psi to 15Psi Gauge Honey-Well sensor, DAQ National Instrument, computer
 - 2. Acquisition of the piston position signal, to control the valve opening / closing
 - 3. Air pressurization system
 - 4. Control Box's valve
 - 5. Power supply
 - 6. Microelectrovalve

Dolphin Fluidics' DFD-Smart

The DFD-Smart is a modular system with 2-way valves, total isolation, ideal for controlling fluid flows at high hygienic nature and not be contaminated. Each valve can be single, double or coupled in a fluidic block. Each channel can be controlled on-off or proportional independently.

	10. R. 1	
Technical Data	1917	
Nozzle Diameter	Ø 0.8 mm	
Pressure Range	0 – 4.0 bar	
Operating Temperature	-10° C - +65° C	
Current Range	150 mA – 240 mA	
Response Time @ 0.6 W	180 ms	
Holding Power	0.1 W	
Implementation Power	0.4 – 0.6 W	
Life-time	Million of cycles	
Control	On/Off and Analogic	

Microelectrovalve - Measurements

□ The purpose of the setup is to measure the performance of the first prototype of the **microelectrovalve DFD-Smart** (Dolphin Fluidics) by drawing a graph of the flow rate Q [ml/min] as a function of working pressure P [mmHg].

□ Steps of measurement process:

First setup - Results

□ Testing conditions:

- Range pressure from 60 to 150 mmHg
- Constant voltage of 3.3V (100% of the valve opening)

- 1. Low accuracy and precision of the measurements
- 2. Leakage phenomenon for pressure under 150 mmHg
- 3. Channel 2 was clogged

□ @ P = 120 mmHg: plot of the Flow rate as a function of the valve opening percentage

Dolphin Fluidics

UniPV

- 1. The measures do not reproduce the sigmoid curve
- 2. Low repeatability
- 3. Both channels dispensed less than what we expected, because they were **clogged**

□ The flow rate was measured by pressurizing a 10 ml syringe, containing H2O

- 1. Channel 1 presents more accuracy and repeatability than channel 2
- 2. Channel 2 dispensed less than channel 1
- 3. It's often necessary to clean the channels

□ Testing conditions for the characteristic of the channels:

- Average working pressure: 120 mmHg
- Valve opening time: 30 s
- Variation of the voltage and of the valve opening percentage

- 1. Both channels present a sigmoid curve
- 2. CH1 dispensed from 0.3V, while CH2 from 0.9V
- 3. CH1 dispensed more than CH2

Third setup – Results (III)

□ <u>A step forward</u>: the valve was tested with

- glycerol solution to simulate silk hydrogel
- Constant pressure of 120 mmHg
- > 100% of the valve opening

	Dynamic viscosity		Density
Water/glycerol Mix	cP or mPa.s	Pa.s or N·s·m-2	kg.m-3
Glycerol 35%	3,1076	0,0031076	1098.6
Glycerol 50%	6,622	0,006622	1143.7
Glycerol 60%	12,255	0,012255	1169.1
Glycerol 70%	25,604	0,025604	1193.3

Conclusion:

- 1. Flow rate decreases with increasing viscosity
- 2. Channel 2 dispenses less than channel 1
- 3. Both channels tend to become clogged, so a frequently clean was necessary
- The valve is able to dispense up to
 25 cP

There is a real possibility of making printing tests with **silk-based solution**

Limitations and future developments

Limitations:

- The accuracy decreases under 100 mmHg of pressure
- Low precision beacuse of the manual control of the dispensing
- Channels tend to clog easily

Improvements:

- Digital control of the pressure signal (constant pressure of 1 - 3 Psi)
- Syringes washing system
 - New support for the syringes, to minimize the distance between syringes and the valve
- Automated control of the dispensing

Ackn.: Mr. Pierangelo Bergamaschi

GRAZIE PER L'ATTENZIONE