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Nicolò Manfredi
Matricola 420806

Relatore:

Prof. Ferdinando Auricchio

Correlatore:

Dott. Gianluca Alaimo

Anno Accademico 2014–2015





iii

“Everything should be made as simple as possible, but not simpler.”
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Abstract

Engineering practice often highlights the necessity to decrease the mass of a structure

preserving an adequate stiffness and resistance. The traditional solution resolves the

problem by adopting a different material with superior properties. However, this option

is often not viable mainly because of the cost of materials with better features. The ques-

tion, then, is whether there is another way to maintain the performance of the structures

(in terms of strength and stiffness) while reducing the mass. The answer lies in the op-

timization processes. What do we mean with optimization? The term “optimization” is

connected to the need to maximize or minimize certain quantities. Structural engineer-

ing is a clear example, since it underlines the need to reduce costs, to reduce weight, to

limit the stress or to increase the stiffness of the structure. The process of minimization

or maximization of certain quantities can be done as long as we do not come across

any constraints. To clarify problem of the optimization, simply imagine you want to

minimize the mass of a beam. A solution could be the reduction of section size, but this

would cause an increase in stresses and displacements, which consequently become the

constraining quantities. Hence, the heart of the optimization is the improvement of the

quantities studied as much as possible within the constraints imposed.

For a long time the concept of optimization was regarded as marginal and associated

mostly to high tech. Today, however, several companies related to construction and

transportation have been active in the implementation of optimized elements.

While we are aware of the number of opportunities offered by our theme, we will focus

on a specific branch of the optimization, the so-called topology optimization in its two

variants: truss-based approach and density-based approach. At the base of topology opti-

mization there is the necessity to distribute the material in the design space in the best

way possible, where the design space and the meaning of “best” are previously individ-

uated.

A relatively new use topology optimization is in the field of materials, and more specifi-

cally in the study of the so-called cellular materials. The latter are an aggregation of cells

that form a homogeneous agglomeration, which is identified as a real material. As we will

see later, you can distinguish between foams and lattice materials. Foams are not suitable

to be optimized as they are characterized by strong stochasticity in distribution, size and

shape of the cells (consider the foam generated by the common soap). By contrast, cells
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that constitute lattice materials are regular and periodic, thereby allowing a convenient

mathematical modeling. Generally, lattice materials, as they are known today, are not

obtained through a rigorous procedure of optimization, but through experimental tri-

als. We will demonstrate that it is possible to obtain lattice materials with the same

or even improved characteristics of lightness and stiffness once topology optimization is

applied.

For an engineer, to realize what was first developed theoretically is a vital concept. This

requirement is embodied in the will to realize physically what so far has remained on

paper. The easiest and fastest way to manufacture optimized objects is through 3D

printing. This technique, although well-known, is still in its early stages, but it is widely

used not only in academic research but also for industry-related purposes.

In writing this thesis, we were strongly inspired by what the sequence of events leading

to the creation of a product should be: theoretical study, design, manufacturing.

The first chapter is devoted to topology optimization with a significant excursus on the

meaning of mathematical optimization process. The second chapter focuses on cellu-

lar materials; we provide a brief classification for the main types and present lattice

materials with respect to their mechanical properties and methods of production, both

traditional and innovative. The third chapter deals with the theme of 3D printing while

focusing on the various printing techniques, the use of this new technology in various

sectors of industry and its impact on the society. In the last chapter we propose two

codes of topology optimization through which objects are modeled:

� The first code is related to topology optimization of a beam through density-based

approach.

� The second is related to the topology optimization of a lattice materials cell through

truss-based approach.

This two codes have been made with the help of Matlab software. Later we will demon-

strate how it is possible to use 3D printing for the creation of previously optimized

objects.



Sommario

Nella pratica ingegneristica, sovente, si evidenzia la necessità di diminuire la massa di

una struttura mantenendo un’adeguata rigidezza e resistenza. La soluzione tradizionale

per risolvere il problema consiste nell’adottare un materiale con proprietà superiori. Tut-

tavia, questa opzione è spesso interdetta a causa dei costi dei materiali con caratteristiche

migliori. La domanda da porsi, allora, è se esista un modo per mantenere le prestazioni

delle strutture (in termini di resistenza e di rigidezza) riducendo la massa. La risposta

si trova nei processi di ottimizzazione. Che cosa si intende per ottimizzazione?

Il termine “ottimizzazione” è legato al bisogno di massimizzare o minimizzare determi-

nate quantità. Una dimostrazione lampante nella progettazione strutturale si evidenzia

con la necessità di ridurre la massa, ma anche di ridurre i costi, di limitare le sollecitazioni

o di incrementare la rigidezza della struttura. Il processo di minimizzazione o massimiz-

zazione delle quantità può essere fatto fintantoché non sopraggiungano dei vincoli. Per

chiarire il problema è sufficiente ipotizzare di voler ridurre al massimo la massa di una

trave sollecitata. Una soluzione potrebbe essere ridurre le dimensioni della sezione, ma

ciò causerebbe l’aumento di sforzi e spostamenti che, pertanto, diventerebbero quantità

vincolanti. Dunque, l’essenza del processo ottimizzativo consiste nel migliorare tanto più

la quantità studiata nel rispetto dei vincoli imposti.

A sostegno delle opportunità che offre il tema dell’ottimizzazione ci concentreremo su

di un ramo specifico della suddetta, la cosiddetta ottimizzazione topologica, nelle due

varianti: truss-based approach e density-based approach. Il fondamento su cui si basa

l’ottimizzazione topologica è la redistribuzione del materiale all’interno dello spazio di

progetto nella maniera più conveniente possibile, dove spazio di progetto e convenienza

sono stati precedentemente individuati.

Un utilizzo recente dell’ottimizzazione topologica è nell’ambito dello studio dei materiali,

ed in particolare nello studio dei cosiddetti cellular materials. Questi ultimi sono costi-

tuiti dall’aggregazione di celle a formare un agglomerato omogeneo che viene identificato

come un vero e proprio materiale. Come si vedrà in seguito è possibile distinguere tra

le foams e i lattice materials. Le foams non sono adatte al processo ottimizzativo, in

quanto sono caratterizzate da forte stocasticità nella distribuzione, nelle dimensione e

nella forma delle celle (si pensi alla schiuma generata dal sapone). Al contrario le celle che

costituiscono i lattice materials sono regolari e periodiche, permettendo una più agevole
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modellazione matematica.

Spesso i lattice materials, oggi noti, non sono stati ottenuti tramite un procedimento

rigoroso di ottimizzazione, ma sono stati progettati in maniera empirica. Applicheremo,

quindi, l’ottimizzazione topologica al fine di ottenere lattice materials leggeri, ma nel

contempo con opportune caratteristiche di rigidezza, confrontandoli poi con quelli già

esistenti. Un concetto fondamentale per un ingegnere è quello di concretizzare quello

che è stato sviluppato in via teorica. Questa necessità si sostanzia nella volontà di pro-

durre materialmente ciò che fino a questo momento è rimasto sulla carta. Vedremo come

il modo più conveniente e veloce di realizzare oggetti ottimizzati sia tramite la stampa

3D. Questa tecnica, benché oggi sia molto conosciuta, è ancora nelle sue fasi iniziali,

infatti è molto utilizzata in ambiti di ricerca non solo accademica, ma anche industriale.

Nell’impostazione della presente tesi ci siamo fortemente ispirati a quella che dovrebbe

essere la successione di eventi che portano alla creazione di un prodotto finito: studio

teorico, progettazione, realizzazione.

Il primo capitolo è dedicato all’ottimizzazione topologica con un excursus sul significato

matematico di processo ottimizzativo. Il secondo capitolo è incentrato sui cellular mate-

rials; viene fatta una breve classificazione delle tipologie principali di cellular material e

vengono presentati i lattice materials con riferimento alle loro caratteristiche meccaniche

e alle modalità di produzione, sia tradizionali che innovative. Nel terzo capitolo viene

trattato il tema della stampa 3D ponendo l’attenzione alle varie tecniche di stampa,

all’utilizzo di questa nuova tecnologia in vari settori dell’industria e al suo impatto sulla

società. Nell’ultimo capitolo sono proposti due codici scritti con l’ausilio del software

Matlab:

� Il primo legato all’ottimizzazione topologica di una trave tramite il density-based

approach.

� Il secondo legato all’ottimizzazione topologica di una cella di lattice materials

tramite il truss-based approach.

In seguito si dimostrerà come sia possibile utilizzare la stampa 3D per la realizzazione

di oggetti in precedenza ottimizzati.
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Chapter 1

Topology Optimization

1.1 Introduction

1.1.1 Structural optimization

“A structure can be defined as any assemblage of materials which is intended to sustain

loads” [1]. Therefore, structural optimization can be defined as the discipline that studies

how to make an assemblage of materials sustain loads in the best way possible. But what

do we mean with the word“best”? The first meaning which comes to mind may be to make

the structure as light as possible. Another idea could be to make the structure as stiff

as possible or insensitive to buckling. Obviously, such maximizations or minimizations

cannot be performed without constraints. For instance, if there is no limitation on the

amount of material that can be employed, the structure can be made limitlessly stiff and

we have an optimization problem without a well-defined solution. Constrained quantities

in structural optimization problems are often displacements, stresses and the geometric

dimensions. Notice that most quantities which can be thought of as constraints could be

also used as objective functions.

1.1.2 Historical view

Galileo Galilei (1564-1642) formulated the first concepts of seeking optimal shapes of

structural elements between the 16th and 17th century. In his book “Discorsi e di-

mostrazioni matematiche intorno a due nuove scienze attinenti alla meccanica e ai moti

locali”, he investigated the fracture process of brittle bodies, where the shape of bodies

was considered with regard to strength as well [Fig. 1.1].

The work of Gottfried Wilhelm Leibniz (1646-1716) in the fields of mathematics and

natural sciences can be seen as the basis of any analytic procedure, whereas the work

of Leonard Euler (1707-1783) on the theory of extremes provided the basis for the de-

velopment of the calculus of variations. In addition, Joseph-Louis Lagrange (1736-1813)

and later William Rowan Hamilton (1805-1865) contributed in completing the variation
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Figure 1.1: Cantilever optimized by Galileo Galilei. Figure taken from [79].

calculus.

Galileo, Leibniz and a few significant others also made initial investigations on finding

the optimal shape of one dimensional load bearing structures under arbitrary load. Us-

ing variation calculus, they derived optimal cross-sections for columns, torsion bars and

cantilever beams.

In the latest decades, with ever increasing computational capabilities, a new area of

Computer Aided Engineering has emerged, often referred to as structural optimization,

that has merged mechanical and mathematical knowledge with the computing capacity

of the computers.

1.1.3 Steps of optimization process

The main questions in the process of product design [2] are:

� What is the use of the product?

� Which quantities are important for the product?

� What is the goal I want to accomplish? And the constraints to be respected?

� How do I optimize?

The traditional way of realizing the fourth step is via iterative-intuitive method:

1. a specific design is suggested,

2. investigation phase (does the chosen design meet the imposed demands?),

3. if demands are not satisfied, a new design must be suggested,
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4. the suggested new design is brought back to the second step.

So an iterative process is formed, where a series of designs are created, which hopefully

converges to an acceptable final design. Nowadays step 2 is performed through computer-

based methods like Finite Element Method (FEM). These methods imply that every

design iteration can be analyzed with greater confidence and probably every step can be

made more effective.

How to avoid relying on an intuitive process? Using the mathematical design optimization

method which is very different from the iterative-intuitive one. When employing this

method, we formulate a mathematical optimization problem where the concept “ as

good as possible ” is given precise mathematical form.

1.1.4 Mathematical definition of structural optimization problem

The mathematical definition of the problem requires:

Design variable(x): A parameter or a vector of parameters that describes the design,

which can change during optimization. It may represent geometry, type of material, dis-

tribution of material etc.

Objective function(f): A function or many functions that return values, which indicate

the goodness of the design. f may represent weight, displacements in a given direction,

stress or even cost of production.

Usually we choose a minimization problem, that is the minimization of f. Therefore,

a general (and simplified) structural optimization problem looks like this:8>>>>>><
>>>>>>:

min
x

f(x)

s:t: g(x) � 0

xmin � x � xmax

K(x)u = F(x)

(1.1)

where

� g(x) � 0 represents the constraint functions,

� K(x)u = F(x) represents the equilibrium equations,

� the matrix K(x) is the stiffness matrix of the structure,

� u is the displacement vector,

� F(x) is the force vector.

In the formulation (1.1), x is the vector of independent variables. This formulation

is called simultaneous formulation, since equilibrium is solved simultaneously with the
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optimization problem. In many situations u depends on x, i.e., if K(x) is invertible for

x, we have u(x) = K(x)�1F(x). By treating u(x) as a given function, the equilibrium

constraint can be left out of (1.1), so we can reformulate the problem as:8>>><
>>>:
min
x

f(x)

s:t: g(x) � 0

xmin � x � xmax:

(1.2)

This formulation is called nested formulation. In this thesis, we consider problems with

only one scalar objective function, i.e. we do not consider the so-called multicriteria

optimization [3].

1.1.5 Types of structural optimization

Optimization of structures can be divided into:

� size optimization

� shape optimization

� topology optimization

Size optimization is commonly employed to find the optimal cross-sectional area of the

beam in a frame or to find the optimal thickness of plate elements while satisfying design

criteria. Shape optimization is characterized by a redefinition of the shape in order to

obtain an optimal solution. This kind of optimization can reshape the material inside

the domain keeping its topological properties. Topology optimization is the most general

form of structural optimization. In discrete cases (see truss-based approach in 1.3.1), it

is achieved by taking cross-sectional areas of bars as design variables, and hence allowing

the resizing and also the removal of bars in the frame. In continuum cases (see density-

based approach in 1.3.2), topology optimization allows the best distribution of material

inside the domain.

1.1.6 Discrete or continuum problem?

We talk of discrete problems if the design variables are finite. Typical examples are opti-

mization problems for frames where the design variables x represent the cross-sectional

areas of bars. Conversely, if the design variables consist in a field we talk of continuum

problem. Significant examples are shape optimization problems or the topology optimiza-

tion problems in the continuum case. Frequently, in order to resolve continuum problems,

it is common to use computer implementations performing discretization, which produce

a discrete problems. To distinguish between derived discrete problems and original dis-

crete problems, we talk of naturally discrete problems in the latter case. The solution
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Figure 1.2: Size, shape and continuum topology optimization. Figure taken from [25]

of continuum discretized converges to the solution of the real continuum when the dis-

cretization is made finer and finer. However, sometimes such results are mathematically

difficult to obtain, and convergence results are not always available. So it is fundamental

the interpretation of the optimization data by the engineer.

1.2 Mathematical background

In this section we take [24] as reference. If not otherwise specified, theorems and defini-

tions are borrowed from the the above-mentioned reference.

1.2.1 Local or global optimum?

Consider a general minimization problem under inequality constraints:8>>><
>>>:
min
x

g0(x)

s:t: gi(x) � 0; i = 1; :::; l

x 2 X

(1.3)

where gi : R
n ! R; i = 0; :::; l are assumed to be continuously differentiable functions

and

X = fx 2 Rn : xmin
j � xj � xmax

j ; j = 1; :::; ng (1.4)

Fortunately every maximization problem may be reformulated as a minimization

problem by observing that max g0(x) = �min�g0(x). A feasible point of (1.3) is any

point which satisfies all the constraints gi(�x) � 0; i = 1; :::; l and �x 2 X. The problem

(1.3) is related to the search of a feasible point x* such that g0(x*) � g0(�x) for all

feasible points �x of (1.3). This point is called global minimum of g0. It is fundamental
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x1 x2 x3 x5x4

g0

Figure 1.3: Example of function with more local minima and maxima.

to note that neither feasible points nor optimal solution need exist.

It is extremely hard to determine a global minimum, so we are satisfied to obtain a local

minimum. A point x* is a local minimum if the objective function only assumes greater or

equal values in the neighborhood of x*. Certainly outside of the neighborhood is possible

a value smaller than x*. For unconstrained optimization problems (only min g0(x)) local

minima are located at stationary points where the gradient of g0 is null.

A problem arises: a stationary point may not be a local minimum, in fact it may be a

local maximum. For constrained problems, local minima are not even necessarily located

at stationary points, they may be located on the boundary of the feasible set [Fig. 1.3].

1.2.2 A positive feature: convexity

We recall briefly the definition of convex set and convex function:

Definition 1 Let S be a vector space over the real numbers. A set C in S is said to be

convex if, for all x and y in C and all t in the interval [0; 1], the point (1� t)x+ ty also

belongs to C.

Definition 2 Let C be a convex set in a real vector space and let f : C ! R be a

function. f is called convex if:
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(a) Convex set. (b) Non-convex set.

Figure 1.4: Convex and non-convex set. Figures taken from Wikipedia.

(a) (Strictly) convex function. (b) (Strictly) concave function.

Figure 1.5: (Strictly) convex function and (strictly) concave function. Figures taken from

Wikipedia.

8x1; x2 2 X;8t 2 [0; 1] : f(tx1 + (1� t)x2) � tf(x1) + (1� t)f(x2).

f is called strictly convex if:

8x1 6= x2 2 X;8t 2 (0; 1) : f(tx1 + (1� t)x2) < tf(x1) + (1� t)f(x2).

A function f is said to be (strictly) concave if -f is (strictly) convex.

These definitions are common in many books of math and algebra, but these just

mentioned derive from Wikipedia. In [Fig. 1.4] and [Fig. 1.5] we show an example of

convex/non-convex set and convex/concave function, respectively.

By applying the definitions of convex sets and convex functions we can say that if the

objective function and the feasible set of (1.3) are convex, the problem (1.3) is convex. It

is trivial that, for convex problems, local minima are also global minima, anyway they

may not have a solution. But if the feasible set is compact, that is bounded and closed,

a solution always exists (this is true for any continuous objective function). If the ob-

jective function is strictly convex and the feasible set is convex, there exists at most

one solution. But how to determine whether a continuously differentiable function is
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(strictly) convex in a convex set? Two main ways exist, and they are expressed through

the following definitions:

Definition 3 Let f : C ! R, where C is convex and f is continuously differen-

tiable. Then f is (strictly) convex if and only if the gradient rf is (strictly) monotone.

Definition 4 Let f : C ! R, where C is convex and f is twice continuously differen-

tiable. Then:

(i) f is convex if and only if the Hessian r2f is positive semidefinite,

(ii) f is strictly convex if r2f is positive definite.

These definitions derives from [31].

1.2.3 Research of local minimum for convex problems

Karush-Kuhn-Tucker conditions

First, we define the Lagrangian function for the general problem (1.3):

L(x; �) = g0(x) +
lX

i=1

�igi(x) (1.5)

where �i are called Lagrangian multipliers. We introduce the Karush-Kuhn-Tucker con-

ditions (KKT) for (1.3):

@L(x; �)

xj
� 0; if xj = xmax

j (1.6)

@L(x; �)

xj
= 0; if xmin

j < xj < xmax
j (1.7)

@Lf(x; �)

xj
� 0; if xj = xmin

j (1.8)

�igi(x) = 0 (1.9)

gi(x) = 0 (1.10)

�i � 0 (1.11)

x 2 X: (1.12)

Each point (x*,�*) satisfying the above equations is called a KKT point.

The KKT conditions for regular non-convex problems are necessary (but not sufficient!)

optimality conditions for (1.3). It is true that local optima are found among the KKT

points, but there may exist KKT points which are not local optima. This is evident

when studying the case of an unconstrained optimization problem, where the KKT
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points are equivalent to stationary points. Numerical algorithms try to find KKT points,

and thus one may conclude with finding a point that is not a local minimum, but a local

maximum. Here’s the convexity lets say that for convex problems a KKT point is always

an optimal point.

Theorem 1 Let the problem (1.3) be convex and satisfy constraint qualification, i.e. there

exists a point ~x 2 X such that gi(~x) < 0; i = 1; :::; l. Let x* be a local (global) minimum

of (1.3). Then there exists a �* such that (x*,�*) is a KKT point of (1.3).

Theorem 2 Let (1.3) be a convex problem and let (x*,�*) be a KKT point of (1.3). Then

x* is a local (global) minimum of (1.3).

Lagrangian duality

We can rewrite (1.3) in an equivalent formulation as min-max problem:

min
x2X

maxL
��0

(x; �) = min
x2X

max
��0

 
g0(x) +

lX
i=1

�igi(x)

!
: (1.13)

More simply: 8<
:max

�
�(�)

s:t: � � 0
(1.14)

where the dual objective function � is defined as�
�(�) = minL(x; �)

x2X
: (1.15)

But what do we gain from this duality?

It is easy to note that the constraints in these optimizations are very simple: x 2 X

and � � 0, respectively. This is the major advantage of duality theory. The following

theorem stated that, under defined conditions, the resolution of (1.13) is equivalent to

resolve (1.3).

Theorem 3 Let (1.3) be a convex problem with the set X compact, satisfying constraints

qualification. Then there exist a �� which solves (1.14), and a x� 2 argmin
x2X

L(x; ��) that

solves (1.3), where g0(x
�) = �(��).

1.2.4 Research of local minimum for non-convex problems

Aspects to be considered in the structural optimization:

� Often, for large-scale problems, it is not possible obtain objective function and

constraints as explicit functions of design variables. How may we resolve this is-

sue? Generating a sequence of explicit sub-problems which are approximations of

the original problem and, hence, solving these sub-problems;
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� Many problems in structural optimization are non-convex. Because of the intrinsic

difficulties with solving non-convex problems, we will choose approximations which

are convex. The main focus will be on approximations that take into account

specific characteristics of certain structural optimization problems.

The main procedures used to solve non-convex and large-scale problems are:

� Sequential Linear Programming (SLP)

� Sequential Quadratic Programming (SQP)

� Convex Linearization (CONLIN)

� Method of Moving Asymptotes (MMA)

General problem

Consider a structural optimization problem of a system with a finite number of degrees

of freedom (discrete problem!). If we assume linear elasticity, we can express the problem

using a simultaneous formulation:8>>>>>><
>>>>>>:

min
x

g0(x)

s:t: gi(x) � 0; i = 1; :::; l

K(x)u = F(x)

x 2 X = fx 2 Rn : xmin
j � xj � xmax

j ; j = 1; :::; ng

(1.16)

where:

� K(x) is the global stiffness matrix of the structure,

� u is the global displacement vector,

� F(x) is the global external force vector.

For small problems, the direct resolution is simple. We can write u(x) as function of

design variables, u(x) = K(x)�1F(x). When the number of design variables is great,

this operation frequently produces a significant increase in the time to resolution. Then,

the equilibrium equations will be employed to implicitly define u(x). Indeed, it is always

possible to solve the equilibrium equations numerically for u(�x) for any given design

�x. Recalling the definition of nested problem in paragraph 1.1.4 we can write:8>>><
>>>:
min
x

ĝ0(x)

s:t: ĝi(x) � 0; i = 1; :::; l

x 2 X:

(1.17)
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Problem (1.17) will be solved through a sequence of explicit sub-problems which are ap-

proximations of (1.17). The optimization algorithms used to solve the sub-problems will

need some information of object and constraints functions and also their derivatives. In

structural optimization, first order methods are common. Zero order methods, which do

not use any derivatives, but only need ĝi; i = 1; :::; l, are employed at least for small-scale

problems. Second or higher order methods are barely used as the calculation of higher

order derivatives is expensive.

Resolution procedure of a nested problem

1. Set counter k = 0 and initialize the design variable x0;

2. Compute u(xk);

3. Compute ĝ0(x
k);

4. Produce a convex approximation of the problem (1.17) in xk;

5. Solve the approximation with an algorithm to have xk+1;

6. Return at the step 2 unless the stopping criterion is satisfied;

Next, for simplicity of notation, ĝi(x) will be written as gi(x).

Sequential Linear Programming (SLP)

In this procedure, objective function and constraints are linearized in xk, so the problem

(1.17) can be written at the generic iteration k as:8>>>>>><
>>>>>>:

min
x

g0(x
k) +rg0(x

k)T (x� xk)

s:t: gi(x
k) +rgi(x

k)T (x� xk) � 0; i = 1; :::; l

x 2 X

�lkj � xj � xkj � �u
k
j ; j = 1; :::; l

(1.18)

where lkj and ukj are so-called move limits. The move limits are chosen by the user; their

values deeply influenced the optimization results. The sub-problem is convex since the

objective function and constraints can be written as aTx + b where b and a are con-

stants. To resolve (1.18), for instance, we can use the Simplex Algorithm.

Sequential Quadratic Programming (SQP)

The problem (1.17) assumes the following form:8>>><
>>>:
min
x

g0(x
k) +rg0(x

k)T (x� xk) + (1=2)(x� xk)H(xk)(x� xk)

s:t: gi(x
k) +rgi(x

k)T (x� xk) � 0; i = 1; :::; l

x 2 X

(1.19)
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where H(xk) is a positive definite Hessian function of g0 defined in xk. It follows that

(1.19) is a convex problem. For more information about SLP and SQP see [31].

Convex Linearization (CONLIN)

In the Convex Linearization algorithm, one assumes that all design variables are strictly

positive. The set X in (1.17) become:

X = fx 2 Rn = fx 2 Rn : 0 < xmin
j � xj � xmax

j ; j = 1; :::; ng: (1.20)

The objective function g0(x) and the constraint functions gi(x); i = 1; :::; l, are linearized

at the design xk in the intervening variables yj = yj(xj); j = 1; :::; n, where yj will be

either xj or 1=xj :

gi(x) � gi(x
k) +

nX
j=1

@gi(x
k)

@yi

�
yj(xj)� yj(x

k
j )

�
: (1.21)

The partial derivative of gi with respect to the intervening variable yj is obtained simply

using the chain rule, that is

@gi(x
k)

@yi
=
@gi(x

k)

@xi

dxj(x
k
j )

dyj
=
@gi(x

k)

@xi

1
dyj(x

k
j
)

dxj

: (1.22)

Next, we determine the contribution to the sum in (1.21) for the case yj = xj and

yj = 1=xj . The contribution of yj = xj is

g
L;k
ij (x) =

@gi(x
k)

@xj
(xj � xkj ) (1.23)

and yj = 1=xj is

g
R;k
ij (x) =

@gi(x
k)

@xj

xkj (xj � xkj )

xj
: (1.24)

Now, it is necessary to define the following approximation of gi at xk:

g
RL;k
i (x) = gi(x

k) +
X
j2
L

g
L;k
ij (x) +

X
j2
R

g
R;k
ij (x) (1.25)

where 
L = fj : yi = xig and 
R = fj : yi = 1=xig. What variables should be linearized

in the direct variables xi and what variables should be linearized in the reciprocal vari-

ables? In CONLIN we apply


L =

�
j :

@gi(x
k)

@xj
> 0

�

R =

�
j :

@gi(x
k)

@xj
� 0

�
: (1.26)

The CONLIN approximation turns out to be the most conservative approximation that

can be obtained for an approximation on the form (1.25). Some significant properties of

the CONLIN approximation are:
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� g
RL;k
i is a first order approximation of gi, indeed the function values and the first

order partial derivatives are exact for x = xk,

� g
RL;k
i is an explicit, convex approximation.

The optimization problem at iteration k can be rewritten as8>>><
>>>:
min
x

g
RL;k
0 (x)

s:t: g
RL;k
i (x) � 0; i = 1; :::; l

x 2 X

; (1.27)

resolvable using KKT or Lagrangian duality already seen in the previous part. For more

information about CONLIN see [23].

The Method of Moving Asymptotes (MMA)

The Method of Moving Asymptotes (MMA) was developed by Svanberg [22] and employs

the intervening variables:

yj(xj) =
1

xj � Lj
yj(xj) =

1

Uj � xj
j = 1; :::n (1.28)

where Lj and Uj are the moving asymptotes which can change during the iterations, but

always satisfy:

Lkj < xkj < Uk
j : (1.29)

The approximation of gi; i = 0; :::; l at the design xk is:

g
M;k
i = rki +

nX
j=1

�
pkij

Uk
j � xj

+
qkij

xj � Lkj

�
(1.30)

where

pkij =

8><
>:
(Uk

j � xkj )
2@gi(x

k)

@xj
if

@gi(x
k)

@xj
> 0

0 otherwise

; (1.31)

qkij =

8>>><
>>>:
�(xkj � Lkj )

2@gi(x
k)

@xj
otherwise

0 if
@gi(x

k)

@xj
> 0

(1.32)
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and

rki = gi(x
k)�

nX
j=1

�
pkij

Uk
j � xkj

+
qkij

xkj � Lkj

�
: (1.33)

Differentiation of g
M;k
i twice gives:

@g
M;k
i (x)

@xj
=

pkij

(Uk
j � xj)2

�
qkij

(xj � Lkj )
2
; (1.34)

@2g
M;k
i (x)

@x2j
=

2pkij

(Uk
j � xj)3

+
2qkij

(xj � Lkj )
3

(1.35)

and
@2g

M;k
i (x)

@xj@xp
= 0 if j 6= p: (1.36)

MMA shares some nice features:

� the MMA approximation is a first order approximation,

� g
M;k
i is an explicit, convex function.

The optimization problem at iteration k can be rewritten as8>>><
>>>:
min
x

g
M;k
0 (x)

s:t: g
M;k
i (x) � 0; i = 1; :::; l

�kj � xj � �kj ; j = 1; :::; n

(1.37)

where �kj and �kj are called move limits to be defined below. As in the case of CONLIN,

this problem may be solved using Lagrangian duality or KKT conditions. But how to

define the values of the moving asymptotes?

For iteration k = 0 and k = 18<
:L

k
j = xkj � sin(x

max
j � xmin

j )

Uk
j = xkj + sin(x

max
j � xmin

j )
(1.38)

where 0 < sin < 1 and xmax
j /xmin

j are the lower and upper bounds of design variable

xj . For k>1 8<
:L

k
j = xkj � sslow(x

k�1
j � Lk�1j )

Uk
j = xkj + sslow(U

k�1
j � xk�1j )

(1.39)
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where 0 < sslow < 1 and xmax
j /xmin

j are the lower and upper bounds of design variable

xj . In order to accelerate the convergence we can take sslow > 1. In each iteration, the

design variables are made to satisfy the constraint:

�kj � xkj � �kj (1.40)

where: 8<
:�

k
j = max (xmin

j ; (Lkj + �(xkj � Lkj ))

�kj = min (xmax
j ; (Uk

j � �(Uk
j � xkj ))

(1.41)

with 0 < � < 1.

1.3 On topology optimization

Through topology optimization we are able to determine the overall configuration of el-

ements in a design problem. Frequently, the results are used as inputs to subsequent size

or shape optimization problems. Two main approaches have been developed: truss-based

approach (part of discrete problems) and density-based approach (derived by continuum

problems).

In the truss-based approach [Fig. 1.6], a mesh of bars connecting nodes is defined in a

predetermined volume, where the mesh can represent a complete graph (ground truss)

or it is based on unit cells (which is typical for the study of lattice structure). As already

mentioned, topology optimization proceeds to identify which bars are most important

for the problem, determines their size (especially area or radius) and removes bars so

small that they have an insignificant contribution. Often result quality is a strong func-

tion of the starting mesh of bars. Results will resemble a lattice structure, with evident

variations in bar radius.

The second approach is based on determining the appropriate material density in a set

of elements called voxels which make up the spatial domain [Fig. 1.7]. This approach

is the most common and famous and is employed in many commercial software pack-

ages; it became explicit through a process known as the SIMP (Solid Isotropic Material

with Penalization) method. The starting geometry for the problem is a rectilinear block,

which is composed of a set of voxels. Each voxel has a density value which is used as its

design variable. A density value of 1 indicates that the material is fully dense, whereas a

value of 0 indicates that no material is present. Intermediate values indicate which the

material needs not be fully solid to support the local stress state in that voxel. Preferred

solutions have voxels that are either fully dense or near 0 density, since typically partially

dense materials are difficult to manufacture. Density values are employed to scale voxel

stiffness values in the FEM models used during the optimization process.

Here are some examples where topology optimization has been used:
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Figure 1.6: Discrete topology optimization for a cantilever. Figure taken from [24].

� in the design of an aircraft to significantly reduce the weight of several different

components;

� for the minimization of mass sheet metal chassis components for lightweight, fuel

efficient vehicles;

� for the creation of lighter, safer passenger seats for airline passengers;

� to reduce weight in the NASA Altair Lunar Lander Descent Module;

� to decrease the use and cost of materials in the packaging of home appliances;

� for architectural and aesthetic purposes in construction of buildings.

1.3.1 Truss-based approach

Maximization of the stiffness

The first question we have to answer is:

How can we measure the stiffness of a structure? Most authors suggest to use the com-

pliance C of the bars, i.e. FTu, where u are the displacements of the bar nodes and F

are the given external forces at these nodes. Therefore if the bar is very stiff then its

section is very wide.

And, consequently, the second question is:

What are the advantages for this choice? First, in a nested formulation, the compliance
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Figure 1.7: Continuum topology optimization for a cantilever. Figure taken from [20].

is a convex function of the design variables, which are the cross-sectional areas of the

bars. Second, in a bar where the compliance has been minimized for a given amount of

material, all bars have the same stress which means a good use of the available material.

Here is the optimization problem in nested formulation that we will tackle:8>>>>>><
>>>>>>:

min
x;u

FTu

s:t: K(x)u = FPn
j=1 ljxj � Vmax

x 2 X = fx 2 Rn : xmin
j � xj � xmax

j ; j = 1; :::; ng

(1.42)

where:

� n is the number of bars;

� K(x) is the global stiffness matrix of the structure;

� Vmax is the maximum allowed volume of the bars;

� lj is the length of bar j;

� xj is the cross-sectional area of bar j.

The external load F does not depend on the design variables (we assume that). Since

the cross-sectional area cannot be negative or infinite, it is assumed xmin
j � 0 and
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y

Figure 1.8: Schematization of the bar to be studied.

xmax
j < +1. Next we will define the process to find the global stiffness.

Consider the bar in [Fig. 1.8], the versor ej can be written as

ej =

"
cos �j
sin �j

#
:

The displacements at the ends of the bar in a vectorial way are

uj =

"
uj;1
uj;2

#

where

uj;1 =

"
uj;1x
uj;1y

#
uj;2 =

"
uj;2x
uj;2y

#
:

How to define the elongation �j of the bar and the external forces fj applied at the

ends?
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F

xj = Aj

Figure 1.9: Example of optimizing cantilever.

�j = [�eTj eTj ]| {z }
Bj

uj (1.43)

fj = BT
j sj (1.44)

where sj is the force in the bar. If sj > 0, bar j is in tension, otherwise it is in com-

pression. Hook’s law states that sj = �jxj and, since we know that the stress in the bar

is

�j = E�j (1.45)

and the strain

�j =
�j
lj

(1.46)

where E is Young’s modulus which is assumed to be the same for all the bars of the

structure, it is possible to write sj as function of �j

sj =
E�jxj
lj

: (1.47)

For simplicity we define Dj as

Dj =
Exj
lj

: (1.48)



20 Topology Optimization

Inserting the equation (1.43) in (1.47), and then in (1.44) we obtain

fj = kjuj (1.49)

where

kj = BT
j DjBj (1.50)

is the stiffness of bar j. It is proved that kj is a function of the design variables, hence

kj(xj) = k0jxj , where k0j is constant and can be written as

k0j =
E

lj

2
666666666664

cos2 �j cos �j sin �j � cos2 �j � cos �j sin �j

cos �j sin �j sin2 �j � cos �j sin �j � sin2 �j

� cos2 �j � cos �j sin �j cos2 �j cos �j sin �j

� cos �j sin �j � sin2 �j cos �j sin �j sin2 �j

3
777777777775
: (1.51)

Furthermore the displacements uj of bar j can be expressed as function of the global

displacements u as

uj = Cju (1.52)

where Cj is a matrix made of 1 and 0. Now inserting the previous equation (1.52)

in (1.49) and premultiplying by CT
j , we get the global equilibrium equations for the

structure

F = K(x)u: (1.53)

It is clear that the global stiffness matrix K(x) appears as

K(x) =
nX
j=1

Kj(x) =
nX
j=1

CT
j kj(x)Cj : (1.54)

The matrix Kj(x) is a global version of the element stiffness matrix kj(x), whose nonzero

elements are the elements of kj(x) that correspond to the degrees of freedom in the global

displacement vector u. We can express Kj(x) as

Kj(x) = K0
jxj = CT

j k0j(x)Cjxj (1.55)

and then the global stiffness matrix becomes

K(x) =
nX
j=1

K0
jxj : (1.56)

In (1.53) F is

F(x) =
nX
j=1

CT
j fj : (1.57)
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Since the contribution from the unknown reaction forces from supports and the unknown

forces from neighboring bars will be zero, we may rewrite equation (1.57) as

F(x) =
nX
j=1

CT
j f a

j (1.58)

where f a
j is the vector of forces on the end points of bar j and F is the vector of the total

applied force on the structure. The total element external forces fj may be calculated

once has been solved for the displacements. The elongation �̄ of all bars in the structure

is given by

�̄ = �Bu (1.59)

where

�B =

2
666666664

B1C1

B2C1

:

:

:

BnCn

3
777777775
: (1.60)

If (1.44) is written for the whole structure, it becomes:

F = �B
T
s (1.61)

where s are the forces in all bars. If �B is invertible then:

u = �B
�1
� = �B

�1
diag

�
l1
Ex1

; : : : ;
ln
Exn

�
�B
�T

F (1.62)

and we can define the stress in all the bars:

� = diag

�
1

x1
; : : : ;

1

xn

�
�B
�T

F: (1.63)

Nested formulation

If the global stiffness matrix of the structure is non-singular, it is possible to use the

nested formulation. Generally in topology optimization global stiffness is singular. We

might prevent the simultaneous formulation by putting the lower bounds (that is null)

to a very small and positive value: x
j
min = � > 0. It may be proven that as � ! 0, the

solution of for x
j
min = � approaches that of for x

j
min = 0.

The main difficulty is to find a suitable value for the lower bound �. If � is too small

K(x) can be ill conditioning, if � is too large, the deleted bars may posses structural
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importance. We write the nested formulation:

8>>>>>>>><
>>>>>>>>:

min
x

FTu(x)

Pn
j=1 ljxj � Vmax

x 2 X = fx 2 Rn : xmin
j � xj � xmax

j ; j = 1; :::; ng

: (1.64)

Why should we prefer nested formulation to simultaneous formulation? The main reason

is that the nested formulation is convex and simultaneous formulation is not [24]. The

problem (1.64) can be resolved through the application of techniques seen in 1.2.3.

Minimization of volume

Before starting to discuss the issue in general terms, we focus our attention on the fol-

lowing problem taken from [24].

Exercise Consider a cantilever beam, fixed at the left end and subject to a vertical

force F at the right end. The beam consists of 2 segments, each of length L. The density

is called �. Each segment cross section has a hollow square form, see [Fig. 1.10]. The

thickness is called t for all segments and the side length xS for segment S = 1; 2. The

moment of inertia, IS can be calculated from classical formulation. If it is assumed

t << xS , for all S, then

IS =
x4S
12
�

(xS � 2t)4

12
=

2tx3S
3

: (1.65)

We want to minimize the weight of the beam under the constraint that the displacement

at the tip � is lower than�0. The design variables are the cross-sectional sizes. The weight

can be written (t << xS) as:

f(xS) = 4�t
NX
S=1

xS : (1.66)

The displacement at the tip of the beam can be seen as the sum of contributions from

each segment when other segments are considered as rigid, that is

� =
NX
S=1

�S (1.67)

where �S is the displacement at the tip of the cantilever for a system where only segment

S is elastic. Since we consider small displacements such that sin �S � �S hence:

�S = �S + (S � 1)�S (1.68)
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1 2

d

F
xA

t

xA

LL

Figure 1.10: Cantilever and the cross section.

where �S and �S are the displacement and the rotation at the right-hand side of segment

S when only this segment is elastic [Fig. 1.11]. �S and �S can be found with through the

following equations:

�S =
MSL

2

2EIS
+
FSL

3

3EIS
; �S =

MSL

EIS
+
FSL

2

2EIS
(1.69)

where E is Young modulus, MS = (S � 1)LF and FS = F . Inserting (1.69) in (1.68)

and then the results in (1.67) we obtain:

� =
FL3

2Et

NX
S=1

(S2 � S +
1

x3S
) (1.70)

The minimization problem we have to resolve is:8>>><
>>>:
min
x1;x2

f(x1; x2) = 4�Lt(x1 + x2)

s:t: 1
x3
1

+ 7
x3
2

� 2�0Et
FL3

x1 > 0; x1 > 0

: (1.71)

Assuming equality in the non strict inequality constraint we solve:

x�1 =

�
1 + 71=4

2�0Et
FL3

�1=3
x�2 = 71=4

�
1 + 71=4

2�0Et
FL3

�1=3
: (1.72)
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S  - 1
S  + 1 SN qS

ds
dS

1

Figure 1.11: Cantilever when only A is elastic.

what happens if we minimize the tip displacement having the weight as constraint?8>>><
>>>:
min
x1;x2

1
x3
1

+ 7
x3
2

s:t: 4�Lt(x1 + x2) < Wlim

x1 > 0; x1 > 0

(1.73)

where Wlim is the upper bound of the weight. We resolve the problem as before and we

find:

x��1 =

�
Wlim

2�0Et
FL3 (1 + 71=4)

�1=3
x��2 = 71=4

�
Wlim

2�0Et
FL3 (1 + 71=4)

�1=3
: (1.74)

Thus, the solution of (1.73) can be obtained by scaling the solution of the reversed

problem and viceversa.

We will now generalize this result for the truss-based approach. We write the problem

of minimizing the compliance under a volume constraint and the problem of minimizing

the volume under a compliance constraint as:8>>><
>>>:
min
x

FTu(x)

s:t: lTx� Vmax � 0

x 2 X

(1.75)
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8>>><
>>>:
min
x

lTx

s:t: FTu(x)� Cmax � 0

x 2 X

(1.76)

(we will call (1.75) as (A) and (1.76) as (B)); where l is a vector with the lengths of the

bars, Cmax > 0 is the maximum allowed compliance in problem (B) and Vmax > 0 is

the maximum allowed volume in problem (A). Under the assumption that the lower and

upper bounds are not active in (A) and (B), we have to prove:

x�B =
C�
A

Cmax
x�A; C�

A = FTu(x�A) (1.77)

x�A =
Vmax

V �
B

x�B; V �
B = lTx�B (1.78)

where x�A is the solution of problem (A) and x�B is the solution of problem (B). We write

KKT condition for (A):

� u(xA)
TK0

ju(xA) + �Alj = 0 (1.79)

�A(l
TxA � Vmax) = 0 (1.80)

lTxA � Vmax � 0 (1.81)

�A � 0 (1.82)

and for (B):

lj � �Bu(xB)
TK0

ju(xB) = 0 (1.83)

�B(F
Tu(xB)� Cmax) = 0 (1.84)

FTu(xB)� Cmax � 0 (1.85)

�B � 0: (1.86)

Let xA the solution to (A) and x�B =
C�
A

Cmax
x�A. We will show that exists a ��B � 0 such as

(��B; x
�
B) is a KKT point for (B). Since the problem is convex, x�B is a solution to (B).

Definition 5 Admit that the positive definite global stiffness matrix be written as in

(1.56) for any x and x� = �x; � 6= 0. Hence u(x�) = u(x)=� solves K(x�)u(x�) = F if,

and only if, u(x) solves K(x)u(x) = F .

Demonstration of what it is said in the previous definition:

nX
j=1

xjK
0
ju(x) = F ()

nX
j=1

�xjK
0
j

u(x)

�
= F () K(x�)

u(x)

�
= F: (1.87)

Thus, u(x�) = u(x)=� is the unique solution to equilibrium equations for the design

x�. This definition is useful, in fact:

u(x�B) = u(x�A)
Cmax

FTu(x�A)
: (1.88)
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In this equation the denominator cannot be zero since the compliance C is always definite

positive, in fact C = FTu(x) = u(x)TKu(x), where K is definite positive and u 6= 0

since F 6= 0. From (1.79) we have

��A =
u(x�A)

TK0
ju(x

�
A)

lj
(1.89)

where ��A is positive, because, if it were zero, the strain energy should be zero for all

elements. From (1.83) and (1.88) we get

lj � ��B

�
Cmax

FTu(x�A)

�2
u(x�A)

TK0
ju(x

�
A) = 0: (1.90)

Inserted in (1.89):

��B =
1�

Cmax
FTu(x�A)

�2
��A

> 0: (1.91)

So (1.86) is proved. From (1.88) we have

FTu(x�B)� Cmax = FT
�

Cmax

FTu(x�A)

�
u(x�A)� Cmax = 0: (1.92)

Thus, (1.80) and (1.81) are satisfied. Since all KKT conditions of (B) are satisfied, we

know that u(x�B) as defined above is a solution to (B). Now let x�B be a solution to (B),

and let x�A = x�B(Vmax=l
Tx�B) then

u(x�A) =
lTx�B
Vmax

u(x�B) (1.93)

using (1.79) and (1.83)

��A =

�
lTx�B
Vmax

�2
��B

> 0 (1.94)

so (1.86) is valid and (1.78) yields

lTx�A � Vmax = lT
�
Vmax

lTx�B

�
x�B � Vmax = 0: (1.95)

Hence (1.80) and (1.81) is valid, proving that x�A is a solution to (A).

Sensitivity Analysis

To solve optimization problems, it is often necessary to differentiate the objective func-

tions and the constraint functions with respect to the design variables. The procedure
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which is carried out to obtain the derivatives is called sensitivity analysis where sensi-

tivity means nothing but derivative. The theme, though relatively simple from a math-

ematical point of view, is fundamental for the use of optimization theory, especially

in the case of the approximated problems. The main methods employed to obtain the

derivatives are:

� analytical methods

� numerical methods

Beside these main procedures, however, there are other methods which combine the two

listed above. Subsequently, we will describe briefly the principles of the operation.

Analytical methods Consider gi(x) : Rn ! R
l, in order to obtain the analytical

expression for @gi(x
k)n@xj at k iteration, we apply the chain rule:

@gi(x
k)

@xj
=
@gi(x

k;u(xk))

@xj
+
@gi(x

k;u(xk))

@u

@u(xk)

@xj
(1.96)

where @gin@u is a row matrix, and @un@xj is a column matrix.

In the analytical method, @un@xj is obtained by differentiation of the equilibrium

equations K(x)u(x) = F(x). The result is then inserted into (1.96). In order to avoid

writing all the passages, we get

@u(xk))

@xj
= K(xk)�1

�
@F(xk)

@xj
�
@K(xk)

@xj
u(xk)

�
: (1.97)

Since our purpose is not to describe verbosely, we will use a good example. We want to

calculate the sensitivity of compliance g0(x;u(x)) = F(x)Tu(x). First we differentiate

the sensitivity

@g0(x
k;u(xk))

@xj
=
@F(xk)T

@xj
u(xk)

@g0(x
k;u(xk))

@u
= F(xk)T (1.98)

Inserting (1.97) and the equation just written in (1.96) we obtain, after few passages,

@g0(x
k)

@xj
= 2u(xk)T

@F(xk)T

@xj
� u(xk)T

@K(xk)T

@xj
u(xk): (1.99)

It is remarkable that the method just presented is exact method.

Numerical methods Frequently, analytical methods are difficult to implement from

the mathematical point of view and from a computational point of view, so we resort to

numerical methods which are an approximation of the former. The numerical methods

employed to approximate the value of the derivatives are essentially two: the forward

difference approximation and central difference approximation. Here is the formulation

for the two method:
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� For forward difference approximation

@gi(x
k)

@xj
�
gi(x

k + hej)� gi(x
k)

h
(1.100)

where ej = [0; : : : ; 0; 1; 0; : : : ; 0]T and h is a small number greater than one;

� For central difference approximation

@gi(x
k)

@xj
�
gi(x

k + hej)� gi(x
k � hej)

2h
(1.101)

where ej = [0; : : : ; 0; 1; 0; : : : ; 0]T and h is a small number greater than one.

1.3.2 Density-based approach

The density-based approach is a type of approach much more general than the truss-

based approach, and reflects the purest conception of topology optimization. There is

much interest for this technique mainly due to the fact that the obtained outcomes

are often surprising [Fig. 1.12]. The goal is to find the optimal distribution of material

in a determined domain in order to maximize an objective function satisfying a set of

constraints. Loads, boundary conditions and maximum volume allowed for the structure

are known; shape and connectivity, instead, are not and are found as a result of the

optimization. The final result shows the locations in space where there should be material

and the locations which should be void.

Consider the design domain 
 discretized by n finite elements, to each element can

be assigned a design variable �e 2 (0; 1] to represent its relative density, where e =

1 : : : n. These design variables can be collected into a vector � 2 R
n. The assembled

global stiffness matrix K(�) is dependent on the design variables and it has dimension

of dxd, where d is the number of degrees of freedom. The displacements vector u 2 Rd

can be determined by the equilibrium equations

K(�)u = F (1.102)

where F 2 Rd the external load.

Assuming linear elasticity, the strain and stress tensors can be related to the displacement

vector through the kinematic and constitutive equations, that is

�ij =
1

2
(ui;j + uj;i) (1.103)

�ij = Dijkl�kl (1.104)

where D is the constitutive matrix dependent on Poisson’s ratio � and Young’s modulusE0.

The density design variable, at the end of the optimization, should be maximum or min-

imum (1 or 0), such that the discretized domain appears black and white. A common



1.3 On topology optimization 29

Figure 1.12: Example of density-based approach. Figure taken from [4].

approach to enforce this bi-color solution is to use the Solid Isotropic Material with Pe-

nalization (SIMP) approach to penalize the intermediate densities. According to this

approach, the Young’s modulus Ee of each element can be written as

Ee = �peE0 (1.105)

where E0 is the Young’s modulus of the solid material, and p is the penalization power. By

using a penalized Young modulus, the assembled stiffness matrix has an explicit depen-

dence on each density design variables, with

K(�) =
nX
e=1

�pek0 (1.106)

where k0 is the element stiffness matrix which employs the solid material’s Young’s

modulus E0.

For the discretized domain 
, the mass can be calculated as:

M(�) =
nX
e=1

Ve�eff;e (1.107)

where Ve is the volume of a mesh element and �eff;e represents the effective density of

the material for a single element. If the elements of the mesh have unitary volume, as
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often happens, (1.110) becomes:

M(�) =
nX
e=1

�eff;e (1.108)

Since the effective density can be written as:

�eff;e = �mat�e (1.109)

where �mat is the density of the solid material. Then we define the mass function, the

one which should be minimized, such as

m(�) =
nX
e=1

�e (1.110)

�mat is neglected as a constant.

Frequently, in order to ensure a black and white resulting scheme, it is useful to penalize

the mass. Initially mass function is

m(�) =
nX
e=1

�e; (1.111)

but with penalization becomes

m(�) =
nX
e=1

�e + ��e(1� �e) (1.112)

where � is a penalty coefficient. The second term is different from zero when the density

assumes intermediate value.

Minimization of compliance with mass constraint

One common objective for topology optimization problems is the minimization of the

compliance subject to a mass constraint. In this formulation, the purpose is to distribute

a given amount of material to achieve a structure with maximum stiffness, i.e. minimizing

compliance. The problem can be mathematically described as8>>>>>><
>>>>>>:

min
�

C(u) = uTKu

s:t:
Pn

e=1 �e � m0 e = 1; : : : ; n:

Ku = F

0 < �min � �e � �max

(1.113)

where:

� u are the global displacements,
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� K is the global stiffness matrix,

� m0 is the maximum allowed for mass function,

� �min is the minimum relative density (typically set to 10�3).

� is non zero to avoid singularities in the stiffness matrix. [42] is a synthetic paper on

minimization of compliance.

Minimization of mass with stress constraints

Despite the well-known mathematical background of compliance minimization in topol-

ogy optimization, this problem is not representative of practical structural issues. To

determine the lightest structure that does not fail would be a more useful goal. Once

we know the value of the stress tensor, it is possible to replace the stress values ob-

tained in the chosen material failure function F (�). Thus, the stress-constrained mass

minimization optimization problem can be written as8>>>>>><
>>>>>>:

min
�

m(�) =
Pn

e=1 �e

s:t: F (�e)=�y � 1 e = 1; : : : ; n:

Ku = F

0 < �min � �e � �max

(1.114)

where �y is the material yield strength. Clearly failure occurs when F (�e) > �y. One of

the most basic failure criteria is the Von Mises stress criterion. For isotropic materials

with mainly ductile behavior, the Von Mises failure criterion is the most widely used

failure function, and is given by

�vm =

s
1

2
[(�22 � �11)2 + (�33 � �22)2 + (�33 � �11)2] + 3(�212 + �223 + �231): (1.115)

However, it has been recognized that topology optimization with stress constraints may

encounter singularities as noted in [43] and [45]. In both cases, a three-bar truss problem

was analyzed, and it was discovered that the the global optimum can only be obtained

if one of the trusses is removed, which would in effect violate that member’s stress con-

straint.

This phenomenon is caused by the discontinuous nature of the stress function: as �! 0,

the stress approaches infinity; while when � = 0, the stress is undefined. As the truss

area approaches zero, the stress approaches a large value and the constraint becomes

violated. Physically, however, this stress constraint should be eliminated when the area

is exactly zero. A stress-constrained structural topology optimization approach which

does not treat this singularity appropriately prevents material from being removed com-

pletely. There are several papers covering the topic, the more interesting being [40] and

[41].
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Problem of singularities: relaxation techniques

Cheng and Guo [36] proposed �-relaxation as a solution to the inaccessibility of singular

optima. This strategy was first introduced to truss optimization and has also proved

to be effective for continuum topology optimization. To make sure that the constraint

on the stress is always satisfied when the density vanishes, the stress constraint can be

written as

�e

�
�vm
�y

�
� 0: (1.116)

However, one can see that as the density approaches zero, the stress remains finite and

the constraint is violated. The relaxation approach implies that the stress constraint

and the variable lower bounds are perturbed by a small parameter, � > 0, such that the

degenerate part in the feasible region is smoothed. This relaxation modifies (1.116) to

�e

�
�vm
�y

�
� � (1.117)

where � is called relaxation parameter.

The alternative formulation of �-relaxation proposed by Duysinx in [38] is often used:�
�vm
�y

�
� 1�

�

�e
+ � � 0 (1.118)

Here, an additional term has been introduced to eliminate any perturbation of the con-

straints for solid densities � = 1. [Fig. 1.13], [Fig. 1.14], [Fig. 1.15], [Fig. 1.16] show the

effect of relaxation on the feasible domain for different values of the relaxation param-

eter. In these figures, point B is the global minimum in the degenerate region of line

segment BC. The contour of the objective function is shown, with the feasible region in

gray, and point A being a local minimum. As � decreases, point B approaches the true

optimum, but remains difficult to achieve. Conversely, as � increase, point B moves away

from the true optimum, but becomes simpler to achieve.

Bruggi, in [39], introduced an alternative �-relaxation scheme known as the qp-

approach. Here is the stress constraints written with this approach:

�
�pq
e

�
�vm
�y

�
� 1 (1.119)

where

�pq = p� q (1.120)

In the equation above p is the penalization factor and q is a real number with values 0 �

q � p. In density-based topology optimization the qp-approach is generally applied using

a relatively large constant relaxation parameter, typically 0:5 � � � 1. The formulation

proposed by Lee et al. [40] is simpler, showing good results:

�
1

2
e

�
�vm
�y

�
� 1 (1.121)
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Figure 1.13: No relaxation, � = 0. Figure taken from [5].

Figure 1.14: � = 0:15. Figure taken from [5].
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Figure 1.15: � = 0:05. Figure taken from [5].

Figure 1.16: � = 0:01. Figure taken from [5].
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Different formulations of relaxation techniques have been employed in literature; they

are often are closely related but differ in their exact implementation.

Continuation Method

The presence of penalization parameter p creates a complication that plagues the con-

tinuum problem of topology optimization. The penalization parameter is essential for

obtaining the scheme void-solid, however it causes the onset of a large number of local

minima. One approach to avoid local minima is to use a continuation method, a concept

first introduced by Allaire and Francfort in [44]. The idea is to begin the optimiza-

tion with no penalization of intermediate densities, setting p = 1, and then gradually

increasing the SIMP penalization parameter until an acceptable void-solid solution is

obtained. Therefore, by delaying the penalization, one prevents the optimizer from pre-

maturely converging to a sub optimal solution. Though this method, as shown by many

authors, gives satisfactory results, it cannot be guaranteed with the utmost confidence

that the point of minimum found is actually global. Nevertheless, it is the best possible

solution currently available.
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Chapter 2

Cellular materials

2.1 Introduction

Mankind has always been looking for materials will might offer great performance. A

timeline is the conventional way in which we can observe the evolution of human knowl-

edge about materials over the course of the centuries [Fig. 2.1]; a timeline, however,

lacks completely information about the properties of every material. There is a way to

overcome the issue and manage to see the progress in the use of different materials in

relation to certain properties, and that is using the property charts. Material property

charts, like those proposed by Ashby, possess certain properties on the abscissa axis and

on the ordinate axis. Many combinations are possible [Tab. 2.1], but there are obvious

incentives for seeking materials with greater strength and, frequently, with greater stiff-

ness. Recently, a combination of high strength and stiffness at a low weight is very sought

after, especially in the transportation and aerospace industry as direct drivers. In order

to show the qualitative development in the use of materials, we include some Ashby

charts “strength–density” for three successive points in historical time [Fig. 2.2]. These

charts are very useful for visually identifying peculiar features of materials and often

highlight issues hardly anticipated by more canonical methods of investigation.

In prehistory, the materials we know cover only a small fraction of strength–density

space. But with the Roman empire, around the time of Augustus, there was a great

expansion of the knowledge of metals, with a significant filling of the chart. Until the

Renaissance, the materials used did not vary much from those used by the Romans. In

the following centuries we have the discoveries of cast iron and later aluminum. Around

the middle of the 20th century, the metals envelope has expanded considerably and we

note a new envelope of synthetic polymers which occupy an important position. Between

then and the present day, the expansion has been dramatic [Fig. 2.3].

There are a large amount of materials known today, but it is equally clear that the ma-

terials we know do not possess some features. Indeed, observing some of today’s charts,

we realize that large parts of the space are populated with materials, but other parts are
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Figure 2.1: Materials time-line. The scale is nonlinear with big steps at the bottom, small ones

at the top. Figures taken from [6].
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(a)

(b)

(c)

Figure 2.2: Progressive filling of the charts in time. Figures taken from [6].
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Table 2.1: Some properties for Ashby charts.

General Mechanical Thermal Electrical

Price Moduli Melting Point Conductivity

Density Yield strength Specific heat Dielectric constant

Embodied energy Tensile strength Thermal conductivity Dielectric strength

Carbon footprint Hardness Expansion coefficient Loss coefficient

Elongation

Fatigue strength

Fracture strength

Damping coefficient

not: there are holes.

Some holes, or a part of them, are inaccessible for fundamental reasons, but others are

simply empty and in principle they could be filled [50]. We notice that an ideal material

with high stiffness and low density would naturally be in the top-left corner and a poor

material would be in the bottom-right corner. What kind of materials can fulfill the need

of low weight and high strength or stiffness?

� One approach to filling empty spaces in material property charts consist in creating

new materials, developing new metal alloys, new polymer formulations and new

compositions of glass and ceramic, which will extend the populated areas of the

special maps.

� Another approach is that of manipulating microstructure, using thermo-mechanical

processing to control the distribution of phases and defects of materials.

� A third approach is to combine two or more existing materials to create hy-

brids. The great success of composites (e.g. carbon and glass fiber reinforced),

at one extreme, and of synthetic cellular materials, at another (hybrids of material

and void space), in filling the previously empty areas of the property chart is an

encouragement to explore ways in which such hybrids can be designed.

The first two approaches have been explored systematically leaving little room for further

gains, while the third has led to the development of very promising materials: the

so-called architectured materials. [Fig. 2.4] illustrates some examples. The basic idea

is to optimize of binomial material-geometry in order to obtain materials with better

combinations of properties.
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Figure 2.3: Stiffness–density chart and strength-density chart.
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Figure 2.4: Some of the best known architectured materials. Figure taken from [8].

2.2 Initial considerations

By the terms cellular material we mean an assemblage of cells made of solid edges or

faces, joined together in order to fill the space [13]. They are commonly found in nature;

some examples would be bones [Fig. 2.6], wood [Fig. 2.5], sponge [Fig. 2.7] or coral. They

are an important class of engineering materials, but generally neglected. They are pro-

duced in enormous scale and, including wood, their business is comparable with that of

glass industry. However they are less studied and less understood than any other class

of material. In this chapter we will examine them closely.

Short classification

Generally cellular materials can be divided into two families:

� foams

� lattice materials or most commonly lattices

Foams are characterized by a stochastic disposition of unit cells as it is shown in [Fig. 2.10],

while lattice materials are constituted by periodic repetition of a single cell or a group

of cells [Fig. 2.11]. Furthermore, cellular materials can be 2D or 3D. For a 2D, the

unit cell is repeated in a 2D plane and is infinitely extruded in the perpendicular plane

[Fig. 2.8]; for a 3D cellular material, the unit cell is tessellated in three perpendicular
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Figure 2.5: Microscopic vision of wood. Figure taken from [87].

Figure 2.6: Microscopic vision of bone. Figure taken from [88].

Figure 2.7: Microscopic vision of sponge. Figure taken from [89].
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Figure 2.8: 2D extruded honeycomb. Figure taken from [90].

Figure 2.9: 3D lattice. Figure taken from [97].

directions [Fig. 2.9].

In the case of 3D cellular materials, cell-covering provides another distinction: so we

define cellular material with open-cell if each unit cell is composed of struts and cellular

material with closed-cell if it is composed of a pockets.

The current use of cellular materials

Lattice materials have led to a change in material perspective from a structural to a mul-

tifunctional point of view. For instance, besides providing superior structural properties

about weight, these micro-architectured materials can offer multifunctional properties

besides high specific stiffness and strength. We report some examples:

Packaging The essence of protective packaging is the ability to convert kinetic energy

into some other sort of energy via plasticity, visco-elasticity or friction, keeping the peak

force under the threshold therefore avoiding damages. The package should be able to

convert the energy of the impact in a different direction. See [Fig. 2.12] for the comparison

between an elastic solid material and a cellular material made of the same material of the

solid. The figure shows clearly the better performance of a cellular material. Nowadays,

foams are widely used for that kind of application.
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Figure 2.10: Example of cell distribution in a foam. Figure taken from [91].

Figure 2.11: Example of cell distribution in a lattice. Figure taken from [10].
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Thermal insulation Today thermal insulation is the most common use of cellular

materials. In particular closed-cell foams have the lowest thermal conductivity than

conventional non-vacuum insulation. Many factors contribute to decrease thermal con-

ductivity:

� the low fraction of solid phase,

� the smallness of the cell which avoids convection and also radiation through ab-

sorption and reflection at the cell wall,

� poor conductivity of internal gas.

This feature is very useful for several purposes, for example in the insulation for liquid

oxygen rocket tanks, in frozen food industry for refrigerated trucks or railway car, in

the transport of liquefied gas around the world in tankers lined with foam etc. Further-

more, the thermal expansion coefficient is the same of the solid material which they are

made of, but with smaller moduli and, for this reason, they have a good thermal-shock

resistance. Their use as heat shields or ablative coatings is thus explained.

Buoyancy Already Pliny the Elder (Roman author, naturalist and admiral of Ves-

pasian navy) in his work Naturalis Historia describes the use of cork as fishing float. To-

day plastic lattices are used in this field because they do not corrode and also they retain

buoyancy when extensively damaged.

Acoustic cloaking It is proved that, enveloping an object with a particular type of

foam, this is cloaked from acoustic field. When insulated with this cloaking material, the

object no more alters the acoustic pressure field and hence seems invisible.

Negative Poisson’s ratio The effective material properties not only depend on the

relative density, but also on the geometry of the unit cell. For example, the hex-chiral

lattice shown in [Fig. 2.14] possesses negative Poisson’s ratio and therefore expands in

transverse direction when put in traction in a longitudinal direction.

Effective zero coefficient of thermal expansion As this material is heated homo-

geneously, the relative distance between the nodes remains same. This is achieved by

suitably contrasting the coefficient of thermal expansion of inner member materials with

outer member materials.

Seismic isolation systems In [11] the author proposes the use of a particular lattice

called Pentamode [Fig. 2.13] in order to reduce the effects of seismic waves on the struc-

ture. Pentamode lattices are artificial structural crystals showing shear moduli markedly

smaller than the bulk modulus. Such systems have, from a mechanical standpoint, zero
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Figure 2.12: Comparison between energy absorption in an elastic solid material and in a foam

made of the same material. Figure taken from [13].

or nearly zero shear moduli (five soft modes and only one stiff mode, that is volumetric

deformation). This feature is very useful when you need to dampen the horizontal waves

of an earthquakes in order to avoid a collapse of the building. The development of this

technology could lead to a replacement of the existing dampers.

2.3 Mechanical overview

2.3.1 Relative density

The most important feature of a cellular solid is its relative density �� [14]:

�� =
~�

�s
(2.1)

where ~� is the density of cellular solid and �s is the density of solid of which it is

made. Cellular materials resemble frameworks when relative density is less than 0.2. The

relative density is directly related to the thickness t and length l of the a strut, in

according to:

�� = A

�
t

l

�
(2.2)

for 2D cellular solid. A is a constant that depends on geometry. As just mentioned, a

three dimensional lattice or foam can be either open-cell or closed-cell. Open-cell mi-

crostructures comprise a three dimensional disposition of interconnected struts and have
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Figure 2.13: Pentamode lattice. Figure taken from [11].

Figure 2.14: Lattice with negative Poisson’s ratio. Figure taken from [95].
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Figure 2.15: Cell to the left collapses due to mechanism. Cell to the right does not collapse. Figure

taken from [14].

the property that �� scales with (t=l)2, instead, closed-cell microstructures with plate-like

cell faces of thickness t and side length l, are characterized by a relative density which

scales with t=l. In general artificial closed-cell microstructures have thicker edges than

faces so the relative density is similar to the same feature of an open-cell microstructure.

2.3.2 Stretching-dominated and bending-dominated

Consider the pin-jointed frames shown in [Fig. 2.15] to the left. The considered frame is

a mechanism. It is simple to observe that, when loaded, the struts rotate about the joints

causing the frame to collapse because there are neither stiffness nor strength. Conversely,

the triangulated frame shown in [Fig. 2.15] to the right is a structure where, when loaded,

the struts indeed support axial loads going in compression or in traction. The deformation

is stretching-dominated and the frame collapses by the stretching of the struts. What if

we we block the rotations at nodes? For the first frame, the applied load induces bending

moments at the blocked joints, and this leads the struts to bend, this is why, this kind of

structure is called bending-dominated. However, for the triangulated structure the con-

dition of block has no effect on the macroscopic stiffness or strength; although the struts

bend, the frame is still stretching-dominated and the collapse load is dictated mainly

by the axial strength of the struts. At constant relative density, stretching-dominated

frames are 10 times stiffer and 3 times more resistant than structures bending-dominated

ones.
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Bending-dominated

Consider the cellular solid as sketched in [Fig. 2.16]. The material behaves as linear

elastic at the first stage, hence may collapse in three different ways:

� plastic yielding,

� elastic buckling,

� brittle crushing.

After the collapse, the structure continues to deform with constant stress till the so-called

densification. This phenomenon involves a great growth of stress with little strain. Roughly,

we could say that the cellular material is crushed and internal voids tend to cancel, cre-

ating a sort of solid material.

In this part we are going to show that relative density can be easily related to the me-

chanical properties of cellular materials. Imagine a cell loaded at the edges by forces F

[Fig. 2.17]. We know the deflection of the struts at the center line � has the following

relation:

� /
FL3

EsI
(2.3)

where L is the length of the cell edge, Es is the Young’s modulus of solid material of

which the cell is made and I is the moment of inertia equal to t4 n 12. The compressive

strain to which is subject the cell meets:

� /
2�

L
: (2.4)

Since F / �L2 and � = ~E�, where ~E is Young’s modulus of cellular material, assembling

the previous results:

~E

Es
/

�
~�

�s

�2
:

The same approach is used in order to define the failure strength ~�p. The cell walls yield

when the force exerted on them exceeds their fully plastic moment, i.e.

Mp =

�
�yt

3

4

�
(2.5)

where �y is the yield strength of solid material. Knowing that M / �L3 we can write:

~�p
�y
/

�
~�

�s

�3=2
:

Frequently, elastomeric materials fail because of elastic buckling. Since the Eulerian

buckling load is:

Fb /
EsI

L2
(2.6)
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Figure 2.16: Bending-dominated foam. Figure taken from [50].

the stress ~�b responsible of elastic buckling is:

~�b / Es

�
~�

�s

�2
:

Another type of failure is brittle collapse for which it is:

~�cr
�R

/

�
~�

�s

�3=2

where ~�cr is the stress of crushing, whereas �R is the stress of rupture of a struts.

Stretching-dominated

The line of thought used to give an insight on stretching-dominated structure is similar

to the one used in the previous paragraph 2.3.2. Consider the tensile loading of the

material. The relation between elastic moduli and densities is given by:

~E

Es
/

�
~�

�s

�
:

Comparing this results with the ratio of Young’s moduli for bending-dominated, it is

evident the greater stiffness of stretching-dominated material. When the elastic limit is

reached, the structure meets plastic yielding, buckling or fracture. Elastic limit, in terms

of stress, follows this relation:

~�p
�y
/

�
~�

�s

�
:

In the same way, we can identify the buckling strength:

~�b
Es
/

�
~�

�s

�2
:
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Figure 2.17: Where: (a) is undeformed cell (b) is linear elastic strut bending. Cell collapse by

(c) elastic buckling (d) plastic yielding (e) brittle crushing. Figures taken from [13].
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Figure 2.18: Stress–strain curve for a bending-dominated structure. Figure taken from [13].

In this case, the ratio between densities is squared; indeed, buckling depends on the

slenderness of struts, i.e. tnl, which is linked to densities (2.2). The fracture strength,

typical for ceramic materials, scale as:

~�cr
�R

/

�
~�

�s

�2
:

There are many tables in the literature that estimate (from empirical data) the coef-

ficients of proportionality for the formulations above. These results are clear because

they show that both the modulus and initial collapse strength of a stretching-dominated

material are much greater than those of a bending-dominated one with the same rela-

tive density. Observing the figures [Fig. 2.18] and [Fig. 2.19], we note that stretching-

dominated structures are more profitable in order to reach the aim of low weight and

high stiffness and strength, conversely they have lower performance in energy absorption

due primarily to shortness of plateau stress.

The theory linked to 2.3.2 is borrowed from [50].

2.3.3 Stretching- or bending-dominated?

Maxwell’s rule

An arrangement of pin-jointed struts becomes a rigid structure when it is statically and

kinematically determinate. Note that a structure is statically determinate if the equilib-

rium equations can determine the internal member deflections. Kinematic determinacy

of a pin jointed frame implies that the position of any joint relative to another joint could

be determined purely in terms of individual strut lengths. For a finite pin-jointed lattice

in space, the necessary conditions for kinematic and static determinacy, were first given

by J. C. Maxwell [34] in the mid-nineteenth century. Maxwell analyzed a pin-jointed
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Figure 2.19: Stress–strain curve for a stretching-dominated structure. Figure taken from [13].

frame (hinged at its corners) made up of b struts and j frictionless joints. He showed

that a two-dimensional statically and kinematically determinate frame has the property

that:

M = b+ 2j + 3 = 0 (2.7)

and in 3D:

M = b+ 3j + 6 = 0: (2.8)

Two hundred years after that, 3D relation is generalized by C.R. Calladine as:

M = b+ 3j + 6 = s�m (2.9)

where s and m are the states of self-stress and mechanisms, respectively. Each can be

determined by finding the rank of the equilibrium matrix describing the frame in a full

structural analysis as follow from studies made by C. R. Calladine and S. Pellegrino.

If M < 0 the frame is a mechanism; it has one or more degrees of freedom and in these

directions allows displacements so it has no stiffness or strength. Therefore, the blocking

of the nodes generates a bending-dominated structure. If M = 0 the frame ceases to be

a mechanism and, if it is loaded, its members are subject to tension or compression, so

can be classified as stretching-dominated structure. If M > 0 the frame is characterized

by self-stress state.

That is valid for finite frameworks, but cellular material is made of several cells, so now

we proceed to analyze the rigidity criteria of infinite frameworks. Consider a large pin-

jointed framework with an average connectivity (number of struts at a node) Z. The

total number of struts b in the framework is < jZ=2. From the Maxwell’s criterion we

get that the necessary condition for rigidity is Z = 4 in the 2D case and Z = 6 in the

3D case.
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Figure 2.20: Z=4, presence of mechanisms. Figure taken from [50].

We can observe that, as in the case of finite frameworks, the condition above is not suffi-

cient. In fact, the framework drawn in [Fig. 2.20] has Z = 4 (Maxwell’s rule is satisfied)

but admits one mechanism and one state of self stress. Conversely, the framework drawn

in [Fig. 2.21] has still an average connectivity of four but does not possess mechanism

or self-stress state. Detailed information can be found in [14].

The nature of Maxwell’s criterion as a necessary rather than sufficient condition gives

insight into the design of lattice materials, and reveals why foams are almost always

bending-dominated. Since our objective is the study of materials with high strength and

stiffness, this thesis will continue considering preponderantly lattice materials.

2.4 Effective material properties of lattice material

The characterization seen previously for bending- and stretching-dominated structure

represents a good way to approach the mechanical behavior of cellular material and

gives us an easy physical insight, but its implementation is difficult for a lattice having a

complex unit cell and cannot serve as an efficient way of comparing various new topolo-

gies based on their structural capabilities. Effective material properties can be tools of

comparison for an engineer, allowing him to confront structural properties of different

topologies in order to choose the optimum lattice topology for a specific loading condi-

tion. Three main methods are used to derive effective material properties:

� Finite element approach (FEA). Direct computation using the Finite Element ap-

proach requires building a finite element model of lattice and applying convenient
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Figure 2.21: Z=4, absence of mechanisms. Figure taken from [50].

boundary conditions in order to simulate uni-axial tension and pure shear condi-

tions. Through stress and strain measures from these tests, it is possible to estimate

the effective material properties of lattice materials.

In their famous paper [32], Wallach and Gibson managed to predict the effective

material properties and shear modulus of a 3D octet lattice (a particular type of

lattice). Though it is relatively simple to build a finite element model, the method

has disadvantages linked to an accurate judgment of boundary conditions to cap-

ture the global effects (which are not so immediate) and high computational cost

for large lattice. Furthermore, anisotropy is a problem when cumbersome finite

element computations have to be repeated multiple times in order to deduce strain

tensor and stress tensor.

� Homogenization method. In order to deduce the effective material properties, the

lattice is seen as an effective continuum; therefore, the size of the unit cell should

be much more smaller than the macroscopic size of the material as a whole. This is

a necessary condition to avoid size effects. Literature about homogenization is very

rich. The homogenization method was applied by Chen et al. [33] by equating the

strain energy of a discrete structure to the strain energy of an equivalent micro-

polar continuum. However, their model gives moduli that are too large (i. e. the

structure is too stiff), as reported by Fleck and Qui [35]. Kumar et al. [46] have

recently used homogenization method by taking terms until second order deriva-

tives in the Taylor series expansion for displacements and rotations. However, their

model cannot be employed for lattices such as in Kagome and Hexagonal honey-
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comb. Gonella et al. [47] have incorporated higher order terms in the Taylor series

expansion and have used their model to predict the wave-bearing characteristics

of lattice materials pertaining to the lower branches of the dispersion curves. How-

ever, their model shows the same restriction on the choice of unit cell as [46], which

limits its functionality.

� Wave-based dynamic method (WDM). This approach has been shown in [48] us-

ing the theory of Timoshenko to find the effective moduli of infinite Triangular,

Hexagonal, Square and Kagome lattices. Numerical results agree with the analyt-

ical predictions. Phani et al. have employed this approach to predict the wave

bearing characteristics of the lattice materials through the so-called dispersion

curves. Their approach essentially uses Floquet-Bloch formalism to take advantage

from the repeatability of the unit cell and finite element analysis. It is true that

the Wave-based dynamic method requires only the finite element modeling of a

unit cell becoming computationally efficient and, because of this, it could be em-

ployed also for complex isotropic lattice topology. However, their model is limited

to effective property estimation of isotropic topologies.

2.4.1 Homogenization method

Preliminary concepts

As the amount of articles and books shows, the homogenization method is the most

used and studied. The principle of homogenization, which makes it easier to calculate

the properties of a composite material, is particularly interesting.

The characteristics of microstructure of a lattice structure control the macroscopic char-

acteristics. The main goal of the homogenization approach is to derive effective mechan-

ical properties (elastic modulus, yield strength, strength) from the microstructure. This

concept can be applied to periodic lattice structures; indeed, lattice structure can be

thought as a heterogeneous material made of solid material and voids. In order to explain

the relationship between macroscopic mechanical properties and microscopic character-

istics, several methods have been proposed. We propose the discrete homogenization

approach by [49] since it can be applied to lattice structures made of any structural

elements, which can be modeled using finite element analysis. Moreover the analysis in

[49] is very clear and intuitive. The approach is based on multi-scale analysis. There are

two different length scales:

(a) the length scale of a unit cell as microscopic scale,

(b) the length scale of a lattice part as macroscopic scale.

As already mentioned, the dimension of a unit cell is much smaller than the dimension of

the whole lattice structure. We introduce periodic direction vectors defined as quantity

at the microscopic scale, which represents periodic directions and periodic lengths of unit

cells. For the characteristic quantity at macro scale, the macroscopic strain tensor is se-
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Figure 2.22: Example of representative unit cell. In this case a cubic unit cell.

lected, which describes the deformation of the lattice structure. The cardinal principle of

the method we are going to illustrate is the equation between macroscopic strain energy

after deformation (due to a given macroscopic strain field) and the microscopic strain

energy of a representative unit cell (due to changes in periodic direction vectors after

deformation). This way, the homogenized mechanical properties are often determined in

terms of strut diameter and strut length by comparing the macroscopic and microscopic

strain energy.

Approach

Since a lattice structure is made of several unit cells located periodically, the position

and displacement can be expressed through a representative unit cell [Fig. 2.22]. The

representative unit cell is a unit cell which does not have duplicated edges along the

periodic direction. Two classes of nodes in a unit cell are defined: the internal nodes

connecting elements of a given unit cell and the boundary nodes that link elements of

confining cells. Due to periodicity, we observe that the boundary nodes must correspond

along the periodic vectors; it can be concluded then that a subset of the unit cell nodes is

sufficient to generate all the nodes of the lattice. These independent nodes comprise the

internal nodes (which do not have a corresponding node in the unit cell) and a selection

of boundary nodes. When the representative unit cell is repeated in the X, Y , and Z

directions, a lattice structure is created. For simplicity, consider the cell in [Fig. 2.22].
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The position of arbitrary nodes in the lattice structure is represented as follows:

rk = r0 + niai i = 1; 2; 3 ni 2 N (2.10)

where

� r0 is a position vector of the independent node,

� ni is an integer multiplier,

� ai is a periodic direction vector which defines the size of unit cell.

The subscript k indexes the nodes in the unit cell and subscript i generates repeated

unit cells. Under a uniform macroscopic stress, an infinite lattice gets deformed while

keeping its periodicity. If rk represents the undeformed situation and

r0k = r00 + nia
0
i i = 1; 2; 3 ni 2 N (2.11)

the deformed situation, it is possible, by subtracting r0k to rk, to write the nodal dis-

placement as

uk = u0 + ni�ai i = 1; 2; 3 ni 2 N (2.12)

where u0 is the displacement vector of the independent node and �ai the change in

periodic vectors from their undeformed configuration to deformed configuration. We

collect all nodal degrees of freedom (DOFs) of a unit cell in an array defined as:

d =

2
666666664

d1

d2

:

:

:

dk

3
777777775

(2.13)

where dk is the kth nodal DOFs including translation and rotation

dk =
h
uk vk wk �xk �yk �zk

i
(2.14)

so that d is a k x 6 matrix. In the same way, the collection of independent nodal DOFs

d0 is defined. The nodal DOFs d are represented in terms of independent nodal DOFs

and periodic vectors as

d = B0d0 + Ba�a (2.15)

B0 expresses the dependencies between the nodes of the unit cell in relation to the pe-

riodic vectors; it has as many row blocks as the number of nodes of the unit cell and as

many column blocks as the numbers of independent nodes; for each row only one column

block is non zero; the blocks are identity matrices of the size of the number of DOFs for
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each node.

Ba expresses the relative displacements between corresponding boundary nodes of the

unit cells, as a function of the change in the periodic vectors; it has as many row blocks

as the number of nodes of the unit cell and many column blocks as the number of inde-

pendent periodic vectors; the blocks are signed in order to consider negative translations.

The next step is to formulate the static equilibrium expression for the periodic lattice

structure using the finite element analysis technique. In the deformed configuration, the

internal forces of any cell of the lattice must balance the forces applied by the surrounding

cells. In the linear case, the nodal forces of the unit cell can be written as

Fuc = Kucd (2.16)

where Kuc is the unconstrained stiffness matrix for the unit cell and Fuc is the nodal force

vector. In the deformed configuration, the resultant force applied by surrounding edges

at each node must be null. Due to the periodicity of lattice structure, the equilibrium

equation can be represented by nodal forces in the unit cell using B0 which describes

the periodicity in the unit cell

BT
0 Fuc = BT

0 Kucd = 0: (2.17)

Inserting (2.15) in (2.17) we obtain

BT
0 KucB0d0 = �BT

0 KucBa�a = 0 (2.18)

Since the unconstrained stiffness matrix is singular, the equation cannot be solved di-

rectly. Then we use the pseudo-inverse technique indicated with (�)+:

d0 = �(B
T
0 KucB0)

+BT
0 KucBa�a = D0�a: (2.19)

After substituting (2.19) into (2.15), the nodal DOFs are calculated as

d = (B0D0 + Ba)�a = Da�a: (2.20)

The strain energy stored in a unit cell after deformation is

W =
1

2
dTKucd =

1

2
�aTDT

aKucDa�a =
1

2
�aTK�a�a (2.21)

It is necessary to write the deformation work as a function of the components of a

uniform macroscopic strain field acting on the lattice. The changes in periodic vectors

can be evaluated using the macroscopic strain field as below:

�a = �Ma (2.22)
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where �M is the Cauchy strain tensor. It is possible to group the equations for all periodic

vectors as

�a = B��M =

2
6666666666666664

a1x 0 0
a1y
2 0 a1z

2

0 a1y 0 a1x
2

a1z
2 0

0 0 a1z 0
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a2x 0 0
a2y
2 0 a2z

2
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2 0

0 0 a2z 0
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a3z
2 0
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2
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2
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yz
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xy
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(2.23)

where B� is the macroscopic strain. Substituting (2.23) into Eqs. (2.21) and (2.20) we

get

d = DaB��M = D��M (2.24)

W =
1

2
�TMBT

� K�aB��M : (2.25)

Since the material stiffness is equal to the Hessian of the strain energy with respect to

the deformation components, then

K� =
1

V
BT
� K�aB� (2.26)

where V is the volume of a unit cell. The elastic modulus can be extracted by inverting

of the stiffness matrix.

Internal forces and buckling

It is possible to model the single elements using Euler-Bernoulli theory. Following [53]

we can write:

(i) the edge stretching s

s =
u2 � u1

L
(2.27)

where u1 and u2 are the displacements of the ends along the element axis;

(ii) the curvatures (�y; �z) around the axes perpendicular to the element axis x

�y = x

�
12
w1 � w2

L3
� 6

�y1 � �y2
L2

�
+ 6

w2 � w1

L2
+ 2

2�y1 � �y2
L

(2.28)

�z = x

�
12
v1 � v2
L3

+ 6
�z1 � �z2

L2

�
+ 6

v2 � v1
L2

� 2
2�z1 � �z2

L
(2.29)

where v1 and v2 are the displacements of the ends in y direction and w1 and w2 in z

direction; �y1 and �y2 are the rotations of the ends around y-axis and �z1 and �z2 are



62 Cellular materials

the rotations of the ends around z-axis; x can vary from 0 to L;

(iii) the angle of twist �

� = �x2 � �x1 (2.30)

where �x2 and �x1 are the rotations around x-axis.

Then, we can calculate:

(i) the normal force

N = EsAs (2.31)

(ii) the bending moments

My = EsIzz�y Mz = EsIyy�z (2.32)

(iii) the torsion moment

T =
GsJp�

L
(2.33)

where Es is the elastic modulus of solid material, Gs is the shear modulus of solid

material, A is the cross sectional area, Iii are the moment of inertia and Jp is the polar

moment of inertia.

If we want to know when the buckling occurs, we have to resolve

(K + �K�)x = 0 (2.34)

where K and K� are the stiffness matrix and the stress stiffness matrix of the structure

[54]. The smallest eigenvalue is the multiplying factor of the applied stress which provokes

buckling of the cell elements.

2.5 Manufacturing of cellular materials

Due to the required intricate internal geometry, manufacturing a component with cellu-

lar structure is nearly impossible with traditional subtractive process. That is why the

researchers have turned to other technologies such as additive manufacturing, forming,

molding and joining as means of producing this class of material.

2.5.1 Stochastic cellular structures

Having a random distribution of pores throughout, foams are produced by introducing

a bubbling agent to the metal during the solidification transition. Foam manufacturing

methods are classified into three groups: sinterization, direct foaming and indirect foam-

ing via a precursor.

The first method consists in sintering powders which are either loosely compacted or

have a filler material that disintegrates during sintering operation [Fig. 2.23]. These foams

can be net-shaped and can be created from a wide variety of materials. The remaining

methods are used especially to manufacture metallic foams. Direct foaming [Fig. 2.24]

of metallic melts can be accomplished in one way among these three:
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Figure 2.23: Foam made by sinterization. Figure taken from [92].

Figure 2.24: Foam made by direct foaming. Figure taken from [93].
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� Injection of gas into the liquid metal from an external source.

� Injection of gas blowing agents into the molten metal to cause the formation of

gas.

� Preparation of supersaturated metal-gas systems under high pressure.

While direct foaming techniques can only create foams in bulk, net-shaped parts can be

molded using indirect techniques. Indirect foaming of metals is accomplished by mixing

metal powders with a blowing agent, by compacting the mix and by foaming the compact

by melting. A very comprehensive book which deals with the issue is undoubtedly [16].

2.5.2 Ordered cellular structures

Though ordered cellular structures are more difficult and expensive to manufacture than

stochastic structures, this class of structures offers a repeatable part quality through

careful (and often tedious) construction of the cellular structure.

Honeycombs via crimping or stamping

This process involves stamping or crimping thin sheets of metal into a corrugated shape

and then joining them to create ordered cellular structures [Fig. 2.25]. Very frequently,

these structures consist of periodically repeating hexagonal cells, even if the possibility

of having different topologies of the cell is being studied. Typically, thin but strong

skins are bonded to the lightweight honeycomb core to create sandwiches that should

address to structural applications. Although this cost-effective process creates strong and

lightweight structure, a significant issue is the inability for the designer to project the

macrostructure. Moreover, the process of crimping and stamping is limited to uniform,

hexagonal, cellular structures. Frequently, other cell shapes offer superior strength and

stiffness and it may be desirable to manufacture cellular structures with variable cell

sizes and topologies for specific applications. Furthermore, there are difficulties with

manufacturing the cellular sandwiches into complex, non-planar shapes due to induced

anticlastic property.

Lattice materials

These truss structures are created by specialized casting techniques. Jamcorp [62] pro-

duces their lattice block materials using sand casting techniques. Chiras and al. have

employed rapid prototyping to create truss structure patterns for an investment casting

process with Beryllium copper alloy [63]. This process is considered costlier and has poor

results in structures that contain significant casting porosity (partly a consequence of

the complex topology, which makes difficult continuous fluid access to the solidification

interface). The use of a ductile Beryllium copper casting alloy compensates for these

faults, but not for the high cost and weight.
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Figure 2.25: Process of crimping and stamping. Wang (2005).

2.5.3 Problem of the current cellular material manufacturing

From a high level of abstraction, four severe limitations are predominant in the cellular

material manufacturing processes just mentioned:

� non-repeatable results some procedures create cellular structures where voids are

distributed randomly (foams); as a result, part quality is not consistent;

� limited materials current techniques can draw from a limited selection of working

materials;

� limited topology of structure many cellular manufacturing techniques cannot predict

the morphology of the pores, or can only produce one certain pore size or shape;

� limited part geometry current techniques are unable to produce cellular structures

for any three dimensional geometry.

The capabilities of the individual processes are presented in [Tab. 2.2].

As can be observed in [Tab. 2.2], no single process satisfies all the requirements of an

ideal cellular material manufacturing process. These limitations are representative of the

overall lack of designer freedom offered by these different manufacturing techniques. The

largest limitation of stochastic cellular structures is the complete lack of control that a

designer has over the topology, the size and the shape of the unit cell. Although these

techniques offer a cost-effective way of lowering density, they do not provide repeatable

and predictable results. Generally it can be noted that these processes are extremely

difficult to control and therefore cannot be improved through process optimization. By
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Table 2.2: Designer freedom offered by various cellular material production techniques.

Type Process Repeatable Material Cell structure Macrostructure

Freedom Freedom Freedom

Foams Sinterization X X

Direct foaming

Indirect foaming X

Lattice Crimping & Stamping X X

Casting techniques X

comparing the two classes of cellular materials, we can notice that foams are inexpensive,

but place material in locations where it contributes little to the achievement of material

properties. Lattice materials, on the other hand, can be produced through several, for

the most part, costly techniques. They can be designed to optimize multifunctionality

by placing material at locations where mechanical and other favorable characteristics are

simultaneously maximized. While it is true that ordered cellular materials offer a designer

more control over material placement, the existing manufacturing techniques constrain

the designer to a predetermined cell structure, material type, and macrostructure. Such

limitations prevent a designer from creating an ideal cell structure for the multiple design.

Between the four limitations listed, the inability to create unlimited cell structure is,

perhaps, the most debilitating. If the key benefit of using cellular materials is increased

part strength maintaining a low mass (or another parameter), a designer will desire to

have complete control over the placement of material and the determination of proper

cell topology for the specific product intent.

2.5.4 3D printing for lattice materials

Before starting this part you should read chapter 3. As mentioned before, the design

of lattices is the subject of optimization techniques (often topological), whereas foams

are hard to optimize. Our goal is to present a way to manufacture a cellular material

previously optimized so we consider only lattice material. For this purpose, we seek a

way to overcome the limitations seen in 2.5.3.

Overcoming limitations

Contrary to traditional manufacturing technologies which create objects through the

subtraction of material from a work piece, 3D printing creates parts through the suc-

cessive addition of material layer-by-layer. Due to this approach, 3D printing processes

offer the utmost geometrical freedom in the design and manufacture of an artifact. As

such, some researchers have looked into using 3D printing techniques for the production

of cellular materials.
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Figure 2.26: Manufacturing process for creating cellular castings - from digital mold to resultant

casting. Figure taken from [9].

There are many commercial 3D printing technologies, each having their own principal

solution (from the use UV laser and photopolymer resin to precisely extruding a heated

plastic filament), but each has a goal in common: the manufacturing of a part through

successive deposition of material one cross-sectional layer at a time.

3D printing techniques have been employed in the past for the creation of truss struc-

ture patterns for the investment casting process used to make lattice block materials

[Fig. 2.26]. This indirect process is not only expensive, but it limits as well the sizes of

cells and trusses which can be created. The resulting structures are typically plagued

by porosity due to the inability of the fluid to access all parts of the truss structure

[63]. Furthermore, indirect processing places a constraint on the cell topologies which

can be made, indeed only materials with interconnected cells are feasible. Consequently,

the interest has moved on direct processes.

Direct processes

Literature about 3D printing is fairly recent and mostly characterized by argumentative

descriptions of various print jobs. If we add to 3D printing the theme of cellular materials,

literature becomes quite limited. Nevertheless, there are some interesting papers. In

general, observing the most cited papers, some very common techniques for 3D printing
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Table 2.3: Designer freedom offered by various cellular material production techniques. Intro-

duction of 3D printing.

Type Process Repeatable Material Cell structure Macrostructure

Freedom Freedom Freedom

Foams Sinterization X X

Direct foaming

Indirect foaming X

Lattice Crimping & Stamping X X

Casting techniques X

3D printing (direct process) X X X X

of lattice materials are:

� Electron beam melting (EBM)

� Selective Laser Melting (SLM)

� Fused Deposition Modeling (FDM)

� Self-propagating Photopolymer Waveguides (SPPW)

In table [Tab. 2.3], similar to the first [Tab. 2.2], the improvement due to 3D prit-

ing is clear. In the following text, we will outline the techniques listed above, focusing

particularly on critical aspects.

Electron Beam Melting (EBM) Electron Beam Melting uses an electron beam to

join powder particles. The parts created by this process do not require additional ther-

mal treatments and do not present porosity. The exclusive use of metal powder is a

remarkable technical restriction of this process. Interestingly, building takes place in a

vacuum, so a clear path for the electrons towards the power bed is created. The pro-

cedure is not cheap, but thanks to that, the parts do not suffer from impurities and

have high strength properties. Arcam, the company which placed EBM technology on

the market, states that a wide variety of metal powders can be processed with the EBM

process, although they “initially chose to concentrate on the use of H13 tool steel alloys

for tooling applications.”

When it comes to building an object through 3D printing, a significant issue arises: how

to introduce an analytical model that interprets, in the best way, the behavior of the

printed object [Fig. 2.27]. We analyze the case of a lattice materials produced through

3D printing, using [64] as a reference . The analytical model is linked to the study of a

basic structure which makes up the cellular material, i.e. the unit cell.

A question which causes the divergence in behavior between the analytical model and
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Figure 2.27: Example of printed lattice material made of Ti6Al4 V. Figure taken from [64].

Figure 2.28: Surface sintering seen under the microscope. Figure taken from [64].

the real object is linked to the thermal dissipation during the fabrication process. This

causes an important surface sintering of fabricated parts , which reduces the geometrical

accuracy of the structures and creates microfractures. The surface roughness affects the

precise determination of effective strut dimensions. In order to obtain a mechanically

equivalent dimension, which could be employed in the mechanical property predictions

in the analytical model, the minimum fully solid-sectional dimension was frequently used

as the dimension of the struts [Fig. 2.28].

There is also an issue related to the realization of the cellular designs. Once the struc-

ture has been fabricated it can be noted that the thickness of the strut is greater than

projected, while the length of the struct is lower than projected. [Fig. 2.29].

Another difficulty derives from overheating. [Fig. 2.30] shows an example of overheat-

ing. All three struts in [Fig. 2.30] were fabricated with the same process, i. e. with same
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Figure 2.29: Problem linked to effective length of the strut. Figure taken from [64].

parameters and settings. However, since the diameter of the beam was around 0.1 mm,

significant overheating occurred when, for instance, one decides to realize a strut with

a diameter of 0.2 mm under the designed scanning strategy, thus leading to the defor-

mation of the resulting structure. Certain thin features might not be manufacturable

under certain process settings and an accurate thermal-mechanical analysis is necessary

to characterize the effect of dimensions and scanning strategies on the quality of the

parts.

Furthermore, in geometric modeling the material properties of cellular structures were

assumed to be homogeneous, which is a very rough approximation. Indeed, we know

that 3D printing processes introduce intrinsic anisotropy into the structure due, mainly,

to the layered process. After all the correction factors for the problems cited above were

considered and inserted in the analytical model, we can make a comparison between

the analytical model predictions (made through the finite-element simulation) and the

experimental results. In general, as shown in [64], the simulation results agree very well

with the experimental results, which implies that the material properties of the cellular

structure are consistent and predictable.

Fused Deposition Modeling (FDM) Fused Deposition Modeling uses a heating

chamber to liquefy polymers. A polymeric filament is pushed into the chamber by a

tractor wheel arrangement and, after the process of liquefaction, a new, partially-melted

filament is pushed out. The main drawback in using this technology is the build speed. As

mentioned earlier, the inertia of the plotting heads means that the maximum speeds and

accelerations which can be obtained are certainly smaller than other systems (EBM,
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Figure 2.30: Overheating problem. Figure taken from [64].

SLM, SPPW). Furthermore, FDM requires material to be plotted in a point-wise way

that involves many changes in direction.

We can use the FDM technology in three different ways in order to obtain lattice mate-

rials. The first way is undoubtedly the most common and also the one which was first

studied. It consists in the realization of the so-called structure woodpile [Fig. 2.30]. Each

strut corresponds to the deposition of the single filament, whereby the mechanical char-

acterization of the printed object is strongly connected to the mechanical behavior of the

filament itself and the mutual accession between the filaments. [65] includes a discussion

on this matter.

The second way is to create 2D lattice material extruded in the third direction as we

see in [Fig. 2.32] taken from [66], whereas the third method is definitely the one that

arouses most interest for the construction of lattice optimized. Important in this regard

is [67] which provides specimens of lattice materials [Fig. 2.33].

As the paper shows, some cellular lattices, fabricated by FDM, are tested in com-

pression to obtain the elastic modulus and the collapse stress of the lattice. The strut

diameter is measured in several points of each strut in order to compute the probability

of the diameters. Then, finite element models based on a single beam and on the whole

lattice specimen are developed to predict the elastic modulus and the collapse stress

of the lattice. To do so, different models with variable and constant cross sections are

generated using both beam and whole lattice models. The results show that, to obtain

a good accuracy, it is necessary to model the cross section variations along the strut’s

length. It is also proved that the whole lattice model predicts a lower mechanical stress-

strain curve than that by the beam model. It might be because of stress concentration at

some regions. Finally, the stress-strain curves and deformed configurations obtained us-

ing beam and whole finite element models are compared with experimental findings. The
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Figure 2.31: 3D Printed lattice material as structure woodpile. Figure taken from [65].

Figure 2.32: Optical image of 3D printing of a triangular honeycomb. Figure taken from [66].
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Figure 2.33: A PLA cellular lattice structure fabricated by FDM. Figure taken from [67].

results demonstrate that the whole lattice model is more accurate when each strut has a

constant diameter along the length. However, the beam models are more computation-

ally efficient, but require more intervals of different diameter along the length.

The techniques of fused deposition modeling are characterized by the use of plastic ma-

terials as low-melting. This is definitely a disadvantage; a possible remedy derives from

developing new techniques using various types of plastic materials.

Selective Laser Melting (SLM) In Selective Laser Melting process, each layer of

powder is molten by a high-energy laser beam. The laser can operate in both continuous

and pulse mode. The continuous mode is characterized by a laser spot diameter of about

0.2 mm, while the diameter of the laser spot in the pulse mode is about 0.07 mm. The

laser beam is directed onto the powder surface by means of scanning mirrors in order

to define each layer of the powder. The powder deposition system consisted of a powder

platform, and a coater, a tool which serves to deposit powder layers with thickness of

about 0.03 mm in only one direction.

SLM is probably the most rapidly growing technique in 3D printing technologies; this is

due to the possibility to create metal parts with complex shapes and intrinsic engineered

characteristics. Furthermore, SLM can produce parts whose mechanical properties are

comparable with those of components made with traditional processes. Most SLM litera-

ture focuses on the optimization of the technological process to obtain almost full density

of parts and good mechanical properties of the bulk materials. More recently, the use of

SLM has been extended to the fabrication of lattice structures ([68],[69],[70]). Techni-

cal literature does not present a lot of systematic investigations on properties of lattice

structures in relation to different cell topologies, characterized by certain relative density,

thermal dissipation and mechanical strength.
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Figure 2.34: Truss thickness measured via microscope. Figure taken from [72].

An exception is represented by [72]. Said paper studies the feasibility of manufactur-

ing lattice structures [Fig. 2.35] adopting SLM process and their properties has been

studied. A Ti6Al4V powder was employed, because of its biocompatibility (very use-

ful in medical field) and corrosion resistance. The results of the microscopic analysis

demonstrate the great accuracy of the manufacturing process with a gap in model di-

mensions less than 0.05 mm (the different specimens have a side between 1.6 cm and 2.4

cm)[Fig. 2.34]. The layer fabrication leads to a certain dimensional variation at the level

of the single cell, which can affect the effective relative density of the lattice structures

in comparison with the designed porosity.

The roughness of the surface varying between a value of 0.006 - 0.015 mm is a difficulty

that we encounter in the printed material; this is not negligible when you want to create

a finite element model. The compression tests that were performed in order to evaluate

the mechanical behavior under compression of the micro-lattice topology variants found

that the carrying-load capability of the structure is affected by strut edge size and cell

size and also that peak and collapse stress values increase almost linearly with relative

density.

A similar paper, [71], considers another type of powder: 18Ni Marage 300 powder.

The Selective Laser Melting (SLM) has evolved from the Selective Laser Sintering (SLM),

from which it differs in two fundamental aspects: the type of powder employed and the

mechanism by which alloy powder particles. In fact, the powder used by the SLM pro-

cess is generally metallic, whereas in SLS process can also be plastic. The term melting

is linked to the fact that the powder particles are fused to form the solid part, while

sintering means that the particles do not melt, but they reach a temperature such that

the outer part soften and burst sticking to the adjacent particles. Literature neglects the

process mainly because of its poor mechanical properties compared to those found for

the SLM.
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1 cm

Figure 2.35: Samples on the building platform. Figure taken from [72].

Self-Propagating Photopolymer Waveguides (SPPW) This technology was cre-

ated with the intent to overcome the shortcomings of more established 3D printing tech-

niques. The major difficulties in traditional 3D printing process are related to the poor

scalability and to the time necessary for printing.

The materials created by SPPW are formed by to ultraviolet rays a two dimensional

mask with a pattern of holes covering a reservoir containing a particular photomonomer

[Fig. 2.36]. UV rays, filtering through the openings, create thin beams which, at cer-

tain points, join beams generated by other rays. The chemical process that turns pho-

tomonomer in polymer, using the energy released by ultraviolet rays, is called polymeriza-

tion. The post-processing step consists in the removal trough solvent-based or physically

of the remaining resin. By simultaneously forming an interconnected array of these fibers

in three dimensions and removing the uncured monomer 3D lattices open-cell are real-

ized [Fig. 2.37]. In order to obtain certain architectural features, it is possible to control

the fiber angle, diameter and three dimensional spatial location during fabrication.

In [74] and [73] strengths and weakness of this process are investigated. It is possible

to fabricate open-cellular materials with lattice member diameters ranging from 0.01

mm to 1 mm with a relative density between 5% up to 30%. The overall material thick-

nesses can range from 0.01 mm to over 25 mm [Fig. 2.38]. The lattice member angle

with respect to the exposure plane can be controlled between 50°-65° for intersecting

waveguides; vertical members are also possible. When lattice member angles are greater

than 70°, intersecting waveguides can pair off together to form a single propagating ele-

ment. These variations in the lattice feature dimensions are made possible by changing

mask features. In addition to the unit cell architectures, non-symmetric architectures,

such as functionally graded materials, or hierarchical structures are also possible. This

process is the only known fabrication approach that enables such flexibility and precision
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Figure 2.36: Schematic representation of the process used to form micro-lattice structure from a

self-propagating polymer waveguides. Figure taken from [74].

Figure 2.37: Example structure formed by this process. Figure taken from [74].
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Figure 2.38: Demonstration of a significantly reduced size that can be achieved. Figure taken

from [74].

of the material micro-architecture in combination with the potential for scalable, cost-

effective manufacturing. The key distinction of this approach is its ability to fabricate a

three-dimensional material from a single, two-dimensional exposure plane.

SPPW process is very similar to stereolithography. Unfortunately, unlike stereolithogra-

phy, SPPW does not allow arbitrary shapes to be formed within the starting resin bath,

but it has the potential to form a wide range of 3D polymer structures based on linear

rod-type elements. The major advantage is in the speed with which polymerization can

form the resulting 3D structure. For stereolithography, the elements within the structure

are formed in a serial fashion (frequently stereolithography process can take many hours

or days), while the optical waveguide process can form all rod-type or linear elements in

the structure in parallel with a single exposure step (typically < 1 minute). As already

mentioned, another important feature characterizing SPPW is the scalability, that is the

possibility to create lattice material with different dimensions.

Interestingly, the polymer is not fully cross-linked and can be shaped into complex curva-

tures. Even after curving the material in the desired manner and subjecting it to thermal

post-cure procedure the micro-lattice structure will maintain this shape. The [Fig. 2.39]

shows an anticlastic curvature which is not possible with conventional honeycomb cellu-

lar materials and difficult to achieve with stochastic foams.

The technique shown can be used to realize and control a wide variety of polymeric

micro-truss structures. These micro-truss structures can also be used as templates to

form other cellular materials. For example, the micro-truss structures can be converted

to ceramic or metallic cellular materials using processes commonly applied to convert

polymer foams. The ability to fabricate micro-truss structures of different materials

together with the geometric flexibility of the process allow the engineers considerable

flexibility in designing cellular structures with a wide range of mechanical and physical
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Figure 2.39: Example of a micro-lattice structure with anticlastic curvature. Figure taken from

[74].

properties.



Chapter 3

3D printing

3.1 Introduction

The first experiments date back to the 1960s, but it was not until the mid-1980s that

pioneers such as Scott Crump (who founded Stratasys) and Charles Hull (who founded

3D Systems) developed a range of technologies now known as 3D printing. Their work

was based on additive processes which created solid objects layer by layer. As these

processes evolved, they became known as Additive Manufacturing (AM). Because many

AM methods were based on ink-jet printing technology, the term 3D printing has been

widely adopted by the industry and mass media to refer to any AM process. While the

term Addictive Manufacturing is very explanatory of the production process, we choose

to use the term 3D printing because of its greater impact in conveying the image of an

object built in three dimensions.

As many business experts say, 3D printing technology is disruptive because it seems to

be cheaper, simpler and more convenient to use than traditional manufacturing tech-

nology. It is possible to say that current technology is good enough to serve markets

that previously did not have manufacturing capability (e.g. small factories, hospitals,

schools).

Obviously, a disruptive technology starts as inferior to the dominant technology of the

time. When the first experimental 3D printers emerged about 30 years ago, the product

quality was very far from that of the traditional production techniques. However, new

techniques can find a niche in a market neglected by current technology. Therefore, 3D

printing was placed at the service of rapid prototyping, which was an expensive process

using traditional manufacturing techniques. Therefore it became possible to create cheap

and high-quality prototypes, which in turn sped up product development. Afterwards,

3D printing started to be used to directly manufacture customized goods.

This new technique evolves rapidly, with practical examples in several industries includ-

ing aerospace, automotive and health care. Although it has been applied mainly to small

volume production, the products may be far superior — which means lighter, stronger,
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custom-made, already assembled and cheaper — to those created with traditional man-

ufacturing processes. That is because 3D printing can control exactly how materials are

deposited, making it possible to create structures which could not be produced using

conventional means.

Another disruptive element is certainly the fact that a single 3D printer can create dif-

ferent products. This is an advantage over traditional manufacturing methods, where

the production line must be modified and tailored if the product is changed, requiring

expensive investment in tooling and considerable downtime in the manufacturing pro-

cess. It would be great to imagine a future factory that can manufacture automotive

components or medical products all in the same facility via 3D printers.

The ability to build a wide range of products, coupled with the fact that 3D printing can

be done closed to the point of consumption (amount of product required by consumers),

will generate serious changes to supply chains and economic models. Many steps in the

supply chain, like distribution, storage and retail, could potentially be eliminated. The

economics of manufacturing will also change. Manufacturing is less labor-intensive, em-

ploys less material, produces less waste and can use new materials which are light and

strong. Customization becomes very easy, starting new product strategies and customer

relationships through collaboration with customers to create products.

Currently, and for the near future, 3D printing cannot produce finished products on an

industrial scale. However, to dismiss the impact of 3D printing would be like ignoring the

impending revolution (just as the minicomputer makers did when personal computers

appeared).

3.2 Overview

3.2.1 Definition

3D printing or Additive Manufacturing is a process of making three dimensional solid

objects from a digital file. The creation of a 3D printed object is attained using additive

processes. In an additive process an object is created by laying down successive layers

of material until the whole object is built. Each of these layers can be seen as a thin

horizontal cross-section of the eventual object.

3.2.2 Printing process in 8 steps

Most 3D printing processes involve the following eight steps [20]:

Step 1: Virtual model It is necessary to start from a 3D model which describes the

external geometry of the object. We can use professional CAD (Computer Aided Design

as computer graphics software) or reverse engineering equipment (e.g. laser and optical

scanning).
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Step 2: Conversion to .STL file This format describes the external surfaces of the

original CAD model and forms the basis for calculation of the slices.

Step 3: Transfer of .STL file to the machine This step may require some general

manipulation of the file in order to set the correct size, position, and orientation for

building.

Step 4: Machine setup We have to set up the machine before the beginning of the

build process. For instance, we would set build parameters like material constraints,

energy source, layer thickness, timings or other.

Step 5: Printing Printing the object is an automated process and the machine can

mostly carry on without user control. Only superficial monitoring of the machine needs

to take place in order to ensure the absence of macroscopic errors.

Step 6: Removal After the printing process is completed, we have to remove the

object from the machine. The machine has safety interlocks to ensure, for example, that

the operating temperatures are sufficiently low or that there are no moving parts.

Step 7: Post processing The printed objects often require an amount of additional

cleaning up before they are ready to be use. Parts may be weak at this stage or they may

have supporting features that must be removed. Time and careful, experienced manual

manipulation are paramount.

Step 8: Finishing Many objects require, before being ready to be used, some fin-

ishing. For instance, it may be necessary to paint their surface to give it an acceptable

texture. Treatments may be laborious if the finishing requirements are very exacting. Fre-

quently, the printed object must be assembled with other mechanical or electronic com-

ponents to form a final product.

3.2.3 Techniques of printing

Not all 3D printers use the same technology. All the several available way to print in 3D

are additive; they differ mainly in the way the layers are built to create the final object.

Since 2012 the American Society for Testing and Materials (ASTM) developed a set of

standards to classify the Additive Manufacturing processes into 7 categories. According

to Standard Terminology for Additive Manufacturing Technologies, these seven processes

are:

1. Vat Photopolymerization

2. Material Jetting
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3. Binder Jetting

4. Material Extrusion

5. Powder Bed Fusion

6. Sheet Lamination

7. Directed Energy Deposition

We provide below a short description of the above-mentioned techniques:

Vat Photopolymerization

The fundamental process that characterizes Vat Photopolymerization [Fig. 3.1] method

is the hardening of photopolymer resin contained in vat through ultraviolet rays(UV).

The most commonly used technology in this processes is Stereolithography (SLA). This

technology uses a vat of photopolymer resin hardening in contact with the ultraviolet

rays and a UV laser to build the object, one layer at a time. For each layer, the laser

beam creates a cross-section of the part pattern on the surface of the resin. The exposure

to ultraviolet rays solidifies the resin and makes sure that the new layer is joined to the

previous one.

After the pattern has been outlined, the elevator platform descends by a distance equal to

the thickness of a layer (0.06 mm to 0.14 mm). Afterwards, a new layer of resin is injected

on top of the platform by covering the material previously hardened. On this new liquid

surface, the subsequent layer pattern is traced, joining the previous layer. The finite three

dimensional object is formed this way. Stereolithography requires the use of supporting

structures which serve to link the object to the platform and to hold the object since

otherwise it would float in the basin filled with liquid resin. These reinforcements are

removed manually after the object is completed.

This technique was invented in 1986 by an engineer named Charles Hull, who also

invented the STL file format and founded the company 3D Systems.

Material Jetting

In this process, the material is deposited on a build platform in droplets through a

nozzle of small diameter, similarly to how a 2D printed inkjet works, but it is applied

layer-by-layer in order to define a 3D object, and then hardened by UV light [Fig. 3.2].

Binder Jetting

In Binder Jetting we use two materials: powder base material and a liquid binder

[Fig. 3.3]. The procedure consists in spreading the powder (contained in a build cham-

ber) in equal layers and then in the application of the binder through jet nozzles. This
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Figure 3.1: Vat photopolymerisation schematics. Figure taken from [80].

Figure 3.2: Material Jetting schematics. Figure taken from [81].
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Figure 3.3: Binder Jetting schematics. Figure taken from [82].

liquid binder glues the powder particles in the shape determined by 3D model of the

object. The finished object is glued together by binder remains in the container with the

powder base material. When 3D printing is complete, the residual powder is removed

and is possible to use that powder to 3D print the next object.

This technology was first developed at the Massachusetts Institute of Technology (MIT)

in 1993; in 1995 Z Corporation obtained an exclusive license.

Material extrusion as Fused Deposition Modeling

The term Fused Deposition Modeling and its acronym FDM was introduced for the

first time by Stratasys Inc., which owns the patent. An equivalent denomination, Fused

Filament Fabrication (FFF), was introduced by the members of the RepRap project,

in order to use a similar technique, but without the legal limits the old name implies

[Fig. 3.4].

The FDM technology uses a plastic or metal wire, wound into a reel, which is carried

towards the nozzles. Then, the nozzle is heated to melt the material and can be moved in

both horizontal and vertical directions by a numerically-controlled mechanism, directly

governed by a computer-aided manufacturing (CAM) software package. A specific file

called G-code contains the coordinates for moving the nozzles. The object is created by

extruding melted material to form layers. The material hardens immediately after ex-

trusion from the nozzle. The plastic filaments used consist of two main materials: ABS
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Figure 3.4: FDM schematics. Figure taken from [83].

(Acrylonitrile Butadiene Styrene) and PLA (Polylactic acid), but many other materi-

als are available, for instance, (PC) Polycarbonate, (PA) Polyamide, (PS) Polystyrene,

lignin, rubber etc. . Typically, printers have two nozzles, one for the building material

and the other to achieve the supports.

FDM was invented by Scott Crump in the late ’80s. After patenting this technology, he

founded with his wife the company Stratasys in 1988. The software that comes with this

technology automatically generates support structures if required.

Powder Bed Fusion

The Powder Bed Fusion process includes the following commonly used printing tech-

niques:

� Selective Laser Sintering (SLS),

� Selective Laser Melting (SLM),

� Direct Metal Laser Sintering (DMLS),
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Figure 3.5: SLS schematics. Figure taken from [84].

� Electron Beam Melting (EBM),

� Selective Heat Sintering (SHS).

Powder Bed Fusion (PBF) methods employ either a laser or electron beam to melt and

sinter material powder.

The most commonly used technology in this processes is Selective Laser Sintering (SLS)

[Fig. 3.5]. This technique employs a high power laser to sinter particles of plastic,

metal, ceramic or glass powders into a mass which has a determined three dimensional

shape. The laser selectively sinters the powdered material by scanning the layers gener-

ated by the 3D modeling program on the surface of a powder bed. After each cross-section

is scanned, the powder bed is lowered and a new layer of powder is placed and the pro-

cess is repeated until the object is finished. Part of the residual powder will become a

support structure for the object. Therefore, there is no need for any support structure

generated by the printers, which is a good advantage over FDM and SLA. All unused

powder can be employed again for the next print. Selective Laser Sintering was devel-

oped and patented by Carl Deckard and Joseph Beaman at the University of Texas at

Austin in the mid-1980s, under sponsorship of DARPA. A similar process was patented

without being commercialized by R. F. Housholder in 1979.

The other techniques mentioned before are quite similar, differing in few aspects. For in-

stance, in the SLM the powder is not sintered, but is melted; in EBM, laser is substituted

by an electron beam.

Sheet Lamination

The process of Sheet Lamination consists in joining of the sheets through the use of an

external force [Fig. 3.6]. The sheets can be made of metallic, papery or polymeric ma-
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Figure 3.6: Sheet Lamination schematics. Figure taken from [99].

terial. The best known and most used processes are: Ultrasonic Additive Manufacturing

(UAM) and Laminated Object Manufacturing (LOM).

The Ultrasonic Additive Manufacturing process uses sheets and ribbons of metal, which

are bound together by using ultrasonic welding. The procedure requires additional com-

puter numerical control and removal of the unbound metal during the welding pro-

cess. UAM uses metals as aluminum, copper, stainless steel and titanium. The process

is low temperature and allows the creation of internal geometries; it can bond different

materials and requires relatively little energy, as the metal is not melted.

Laminated Object Manufacturing uses a similar layer by layer approach but employs

only paper as material and adhesive glue instead of welding. The LOM process uses

a cross-hatching method during the printing process to allow for easy removal post

build. Laminated objects are, often used for aesthetic and visual models, are not suit-

able for structural use.

Directed Energy Deposition

This process is mostly used in the high-tech metal industry and in rapid manufacturing

applications [Fig. 3.7]. The 3D printing apparatus is usually attached to a multi-axis

robotic arm; consists of a nozzle that deposits metal powder or wire on a surface and an
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Figure 3.7: Directed Energy Deposition schematics. Figure taken from [84].

energy source (laser, electron beam or plasma arc) which melts it, therefore creating a

solid object.

The processes of Addictive Manufacturing are in continuous development, so new tech-

nologies of fabrication will be soon available.

3.2.4 Types of printable materials

3D printing started with plastics, but today there is a surprising and growing variety of

printable materials which includes ceramics, food, glass and even human tissue [19].

Researchers, organizations and hobbyists from all over the world have modified the un-

derlying methods of printing to dramatically widen the scope of possibilities. For exam-

ple, researchers at the University of Exeter (England, U.K.) have modified a 3D printer

to print chocolate; Cornell University (New York, U.S.A), working with the French Culi-

nary Institute (New York, U.S.A), drew inspiration from that idea and created a range

of 3D printed food items such as miniature space shuttles made of ground scallops and

cheese.

The principles have even been applied to biological tissue, opening the door to research

on a range of health applications:

� Washington State University (Oregon, U.S.A.) has developed a bone-like material

that provides support for new bone to grow.

� Researchers from the University of Glasgow (Scotland, U.K.) have perfected a

system that creates organic and inorganic compounds, which they believe could

have long term potential for creating customized medicines.
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Figure 3.8: Example of accuracy of 3D printing. Figure taken from [93]

� Organovo (U.S.A.) has created some human tissues using human cells as material

and has also printed a human vein.

Scholars in the field are working on several different techniques that can control the ex-

act material properties of printed components, even down to the microscopic crystalline

structures of metals, changing the bonds between the atoms and the arrangement of the

molecules. For example, 3D printing of metal can result in more uniform microstruc-

tures due to rapid solidification, in contrast to the traditional metal casting or forging,

which require metal to cool from the outer surface to the core. 3D printing would allow

engineers to control the object’s strength, hardness, flexibility and ability to support

stress. The result of this research will be products exhibiting combinations of physical,

electrical and mechanical properties that are only dreamed about today.

The University of Illinois Lewis Research Group (U.S.A.) has created a number of cus-

tom inks (printing materials) with very small feature sizes [Fig. 3.8].

Also the Massachusetts Institute of Technology (MIT) Media Lab (Massachusetts,

U.S.A.) is conducting research about 3D printing and available materials as well. For

instance, it is experimenting with printing large molds for concrete structures using a

spray polyurethane foam. Printing with polyurethane offers advantages in weight, time,

control and stability compared to concrete. It also useful for thermal insulation. Once

printed, the mold can be filled with concrete or another castable building material. MIT

has printed several prototype wall molds which are 1.5-2 m tall as they are exploring the

benefits of large-scale 3D printed molds including design, cost, efficiency and safety.

Contour Crafting is a 3D printing technology invented by Prof. Behrokh Khoshnevis of
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Figure 3.9: 3D printed wall. From University of Naples Federico II.

the University of Southern California (California, U.S.A.). He proposes 3D printing an

entire house using specially formulated concrete outgoing from a large nozzle, target-

ing low-cost and emergency housing. One of the objectives is to build an entire 240 m2

in 20 hours (fixtures will be placed at the end) with extremely large 3D printers. The

social implications of using automated construction to replace dilapidated or destroyed

dwellings can be considered significant. The Italian company WASP is working on build-

ing a printer to produce houses walls as well.

Sinterhab project is studying a lunar base constructed by 3D printing using lunar powder

as a base material. Similar researches and projects could allow faster construction for

lower costs; the possibility to build off-Earth habitats has been investigated [Fig. 3.9].

3.3 Current applications

The following quotes give a good introduction to the current state of the applications of

3D printing:

Engineers and designers have been using 3D printers for more than a decade,

but mostly to make prototypes rapidly and cheaply. [...] the majority are used

as functional models, prototypes, and casting patterns, or for presentation

models. [...] as the technology is getting better more things are being printed

as finished goods. [...] around 28% of the output of 3D printers is now final

products rather than prototypes, and this is expected to rise to 50% by 2016

and 80% by 2020. [Technopolis Group 2013]
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Figure 3.10: Local Motor car 3D printed during the International Manufacturing Technology

Show (2014). Figure taken from Wikipedia.

The compound annual growth rate (CAGR) of additive manufacturing was

29.4% in 2011 [...]. The CAGR for the industry’s 24 year history is 26.4%. The

AM industry is expected to continue strong double-digit growth over the

next several years. By 2015, Wohlers Associates believes that the sale of AM

products and services will reach 3.7 billion of dollars worldwide, and by 2019,

surpass the 6.5 billion of dollars mark. [Wohlers Associates 2012]

In the following pages, typical examples for applications of 3D printing are presented:

Automobile components

The Swedish supercar manufacturer Koenigsegg produces One, a supercar with side mir-

ror internals, air ducts, titanium exhaust components, and even complete turbocharger

assembles that have been 3D printed as part of the manufacturing process.

An American company Local Motors, has developed large-scale additive manufacturing

processes suitable for printing the body of an entire car. The first car was printed during

a motor show in front of thousand people.

Urbee is the name of the first car in the world car mounted using the technology 3D

printing (its bodywork and its windows were printed). It was created in 2010 through the

partnership between the US engineering group Kor Ecologic and the company Stratasys

(manufacturer of printers Stratasys 3D).

BMW produces prototypes of engine parts for motor sports racing cars that have been
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fabricated using Selective Laser Sintering.

Some luxury car manufacturers, like Bentley and Rolls-Royce, produce some parts more

economically by using 3D printing instead of conventional manufacturing.

Also Tesla, a producer of electric cars, builds automobile components by using 3D print-

ers.

Aircraft components

Airbus Group has developed the technology with the intent to manipulate metals, ny-

lon and carbon-reinforced plastics at a molecular level, which allows the application for

high-stress scenario, typical of critical aviation uses. Compared to a traditional machined

part, those produced by 3D printing are up to 65% lighter, but equally strong. The de-

velopment of 3D printing is an activity that involves the entire Airbus Group, with

applications in the production of fixtures and tooling for Airbus, Eurocopter (manu-

facturer of helicopters) and Astrium (aerospace company). In 2011, Airbus Group also

produced a door bracket through using 3D printing.

Boeing and other companies in the aerospace sector have also developed large internal

3D printing research groups. The Boeing company has been utilizing Selective Laser

Sintering for flight hardware in regular production since 2002, for both military and

commercial programs.

Health care

For the first time the lower jaw of a patient was completely replaced by an artificial jaw

which was 3D printed. Titanium powder was used to print that implant.

Future applications are 3D printed organs [Fig. 3.11]. Parts of bones have been produced

by using 3D printing. Some of these artificial bones are even degradable and after some

time will be replaced by the body’s own bone tissue. Parts from faces or ears as well are

often produced by 3D printers. Silicon is used as a material instead of titanium because

of its better suitability in medical fields.

However, research in this area is still far away from practical applications applications,

that is to say transplantation. Scientists developed an artificial ear with the help of

3D printing; the ear was purposely different from the natural human ear: an antenna

which is part of the artificial ear registers frequencies that a person would not be able

to perceive. Many applications of 3D printing are now available also for dentistry and

hearing aids.

Architectural models

Architects are often forced to show their clients drawings of their projects and clients

usually need to see the product from all possible view-points in space to get a clear picture

of the design. In order to get these scale models to clients in less time, architecture firm
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Figure 3.11: 3D printed heart. Figure taken from [85]

tend to choose 3D printing. Using 3D printing, it is possible to reduce long times of

production, producing lighter models.

Other applications

In 2013, the world’s first handgun made almost entirely by a 3D printer was printed. 15

of 16 pieces were printed by a 3D printer using ABS (Acrylonitrile Butadiene Styrene)

as a material. The pictures of 3D printed handgun, which was only a prototype, went

viral all over the world. The company which built the gun planned to publish the digital

file for the gun production online, which drew a lot of criticism.

For the first time Nike produced a part of a shoe, the plate, by using 3D printing tech-

nique.

A huge range of different products can be purchased online. This includes jewelry, games,

clothes, furniture, gadgets, design articles and more.

Private consumers constitute an important market for 3D printing that is in constant

growth. Consumer interest derives from the affordable price of the new generation

of printers but also from the popularity that 3D printing has gained in the last few

years. Some of the information on 3D printing we included comes from Wikipedia [18],

but the web is saturated with it.

3.4 Ten reasons for choosing 3D printing

Reason one: Different types of objects. 3D printers are able to create objects of

very different shapes, a feature that makes them similar to human artisans. Traditional

machines can produce a limited range of objects, i.e. they are not very versatile. Indeed,
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Figure 3.12: Example of architectural 3D model depicting a stadium. Figure taken from [86].

if you wanted to change the type of object to be produced, it would be necessary to

retrain or even change the machinery. A 3D printer only needs a digital design and new

material.

Reason two: More complicated = more expensive? In the manufacture of an

object, traditionally, the more complicated the object’s shape, the more expensive its

realization. Generally, the process of 3D printing a complex object does not require more

time, more ability or higher costs than a simpler product. This will change the way in

which the cost of objects is attributed.

Reason three: No limit in shape. The main limitation of a human artisan is

represented by the tools at his disposal. For example, a traditional wood lathe can only

make round objects, a molding machine can only make an established shape set by the

mold. A 3D printer can create an infinite number of shapes. Human imagination is the

only constraint.

Reason four: No assembly required. Traditional production is strongly linked to

the assembly line. In modern factories, products are made of pieces which are assem-

bled by human workers or by a machine in order to build the final object. Assembling

and mounting require high costs, especially when considering the possibility of a prod-

uct made up by a large number of pieces. In the 3D printing process, the product is

manufactured and assembled entirely by printer itself, solving this age-old problem.
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Principle five: Print on demand. A 3D printer is capable of producing objects

when they are actually required. This reduces the need for inventory and the problem

of unsold products. Another advantageous aspect could be the minimization of the cost

of transportation by creating objects in a place close to where they are needed.

Reason six: No particular skills. Artisans have to train a lot before acquiring all

the necessary skills. The introduction of computers in mass production has resulted in

a decrease of these skills; however, the presence of an expert who understands how to

operate the production machines is still necessary. In a production by 3D printing, the

most onerous work is related to the creation of the object’s virtual model. Achieving

an object of equal complexity with an injection molding machine requires many more

skills. The ease of use and implementation could offer new ways of production in remote

and extreme conditions.

Reason seven: Portable manufacturing. The production capacity of a 3D printer

is much greater than the production capacity of a traditional machine. For instance, the

injection molding machine can build objects much smaller than itself. A 3D printer is

capable of producing objects as large as its platform to print. Once we invent a way to

move the printing apparatus independently, we would be able to build directly very big

and complex objects, like an entire house.

Reason eight: Little waste material. 3D printers working with metal produce

less waste by-product than traditional manufacturing techniques. Generally machining

metal is very wasteful and more than 80% percent of the original metal gets ground off

and ends up on the floor. 3D printing is less wasteful for metal manufacturing.

Reason nine: Perfect copies. When a digital music file is copied there is no loss

of audio quality. In a near future, 3D printing process would extend digital precision to

the world of physical objects. 3D scanning technology and 3D printing are the keys to

combine the physical world with the digital. We will scan, modify, and duplicate physical

objects to create perfect replicas.

Reason ten: Infinite shades of materials. The combination of different materials

in a single product is difficult for existing machinery. Since machines work according to

traditional production methods (which are very different: some cut, some merge, some

drip), the concurrent use of a large assortment of materials is hard to put in practice. 3D

printing has the ability to melt and mix different raw materials. New mixtures of raw

materials could offer a wide range of unexplored materials with new properties or useful

behaviors.
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Lipson and Kurman’s book [17] includes a very detailed explanation about the con-

venience of 3D printing.



Chapter 4

Lightweight structure: design and
production

This chapter presents two codes whose ultimate goal is to outline structures with better

features than those they would have without the use of a topology optimization algo-

rithm. The first code considers the optimization of a beam subject to a determined static

load according to the density-based approach. The second code, instead, arises from the

necessity to obtain a 2D lattice material that is characterized by light weight without

affecting the necessary shear stiffness and axial stiffness. The optimization process is

made possible by the software Matlab, well-known in the scientific community and char-

acterized by a high-level language which allows to group commands using simple single

strings. The last part of the chapter refers to two 3D printed objects.

4.1 Realization of a beam

4.1.1 Approach to the problem

In this section we will show the functioning of the code implemented in order to obtain

a beam optimized according to the density-based approach. Since the problem we are

facing is two-dimensional, unlike traditional problems, we consider the area and not the

volume. As in the case of volume, � is a relative density which indicates the filling per-

centage of the mesh element (cube, square, etc.) in which the structure is discretized. We

are referring to the problem of minimization of the mass subject to stress constraints. For

the generic problem, already seen in 1.3.2, it is possible to write:8>>>>>><
>>>>>>:

min
�e

m(�) =
Pn

e=1 �e

s:t: F (�e)=�y � 1 e = 1; : : : ; n:

Ku = F

0 < �min � �e � �max

(4.1)
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Though the structure of the problem remains the same, we add displacement constraints,

so the problem becomes:

8>>>>>>>>>><
>>>>>>>>>>:

min
�e

m(�) =
Pn

e=1 �e + ��e(1� �e)

s:t:

�
�vme
�y

�
� 1� �

�e
+ � � 0 e = 1; : : : ; n:

U � Ulim

Ku = F

0 < �min � �e � �max

(4.2)

In the previous system (4.2) we have noted the introduction of the mass penalty and the

relaxation of stress constraints. The method we are going to use, i. e. SIMP, is based on

a heuristic relation between element density �e and element Young’s modulus Ee given

by:

Ee = Ee(�e) = �peE0 �e 2 (0; 1] (4.3)

A modified SIMP approach is given by

Ee = Ee(�e) = Emin + �pe(E0 � Emin) �e 2 (0; 1] (4.4)

where Emin is the elastic modulus of the void material, which is non-zero to avoid sin-

gularity of the finite element stiffness matrix, and E0 is the elastic modulus of solid

material. This new formulation of SIMP offers several advantages, like the independency

between the minimum value of the material’s elastic modulus and the penalization power

[26].

Frequently, in the implementation of codes we meet problems that are not identified in

the general theory and that therefore lead to numerical difficulties. These numerical dif-

ficulties are mesh-dependency, checkerboard patterns and local minima. In particular, the

problem of the checkerboards consists of alternating areas with void and solid spaces in

the optimized configuration. Originally that type of effect was believed to be part of the

optimal solution. Later it was discovered that the problem is related to poor modeling

of the stiffness of the checkerboard (thanks to studies conducted in the mid 1990s by

Sigmund and Diaz, and, almost simultaneously, by Jog and Haber). Mesh-dependency

pertains to the problem of not obtaining qualitatively the same solution for different

mesh-sizes or discretization. [28] is a truly enlightening paper on the problems just men-

tioned. In order to mitigate mesh-dependency and checkerboard patterns, researchers

have proposed the use of regularization techniques. One of the most common approaches

is the use of density filters. A basic filter density function is defined as

~�e =

P
j2Ne Hejaj�jP
j2Ne Hejaj

(4.5)
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where Ne is the neighborhood of an element �e with area ae, and Hej is a weight factor

[26]. The neighborhood is defined as

Ne = fj : dist(e; j) � Rg; (4.6)

where the operator dist(e; j) is the distance between the center of element e and the

center of element j, and R is the size of the neighborhood or filter size. The weight factor

Hej is defined as a function of the distance between elements in the neighborhood, for

example

Hej = R� dist(e; j); (4.7)

where j � Ne. In this way, the filtered density ~�e defines a modified density that is

incorporated in the topology optimization formulation and the SIMP model becomes

Ee(~�e) = Emin + ~�pe(E0 � Emin) ~�e 2 (0; 1]: (4.8)

This regularized SIMP interpolation formula is employed in this work. To counter the

possibility of local minima we use the continuation method seen in 1.3.2.

4.1.2 Finite Element Analysis

Following the regularized SIMP method given by (4.8) and the generalized Hooke’s law,

the bidimensional constitutive matrix for an isotropic element e is interpolated from void

to solid as

Ce(~�e) = Ee(~�e)C
0
e; ~� 2 (0; 1] (4.9)

where C0
e is the constitutive matrix with unit Young’s modulus. Using the finite element

method, the elastic solid element stiffness matrix is the area integral of the elements

constitutive matrix Ce(~�e) and the strain–displacement matrix B in the form of

ke(~�e) =

Z +1

�1

Z +1

�1
BTCe(~�e)B

Td�d� (4.10)

where � and � are the natural coordinates as sketched in [Fig. 4.1], and the square

coordinates of the corners are illustrated in [Tab. 4.1]. The strain–displacement matrix

B relates the strain �e and the nodal displacement ue as �e = Bue. Using the SIMP

method, the element stiffness matrix is interpolated as

ke(~�e) = Ee(~�e)k
0
e (4.11)

where

k0e =

Z +1

�1

Z +1

�1
BTC0

eB
Td�d� (4.12)

where k0e is the elastic solid element stiffness matrix with unitary elastic modulus.

The global stiffness matrix K is obtained by the assembly of elementary matrix ke,

K(~�) = An
e=1ke(~�e) = An

e=1Ee(~�e)k
0
e; (4.13)
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Node � �

1 -1 -1

2 1 -1

3 1 1

4 -1 1

Table 4.1: Square element with node numbering conventions.

x

h

1 2

34

Figure 4.1: Natural coordinates.
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where n is the total number of elements.

The nodal displacements vector U(~�) is the solution of the equilibrium equation

K(~�)U(~�) = F (4.14)

where F is the vector of nodal forces and it is independent from physical densities ~�.

Now it is possible to calculate the strain �e

�e =

2
64�xx�yy

xy

3
75 (4.15)

the strain �e as

�e = Bue (4.16)

and then the stress �e

�e =

2
64�xx�yy
�xy

3
75 (4.17)

as

�e = Ce(~�e)�e: (4.18)

The values obtained with (4.18) are inserted in the Von Mises formulation already seen

in (1.115). For brevity of notation, we omitted the dependence of physical densities ~� on

the design variables �, ~� = ~�(�). To write this paragraph we drew inspiration from [42].

4.1.3 Sensitivity analysis

The derivative of the objective function can be easily obtained as

@m(~�)

@~�e
=

nX
e=1

1 + �(1� ~�e)� �~�e =
nX
e=1

1 + �(1� 2~�e): (4.19)

Instead, in the case of the derivatives of the constraint functions, it is a priority to find

the displacement’s derivative with respect to the density. Once we have done this, it is

trivial to find the derivative of strain and therefore the derivative of stress.

The starting point is

K(~�)U(~�) = F (4.20)

and differentiating with respect to ~�e

@K(~�)

@~�e
U(~�) + K(~�)

@U(~�)

@~�e
= 0 (4.21)

which yields
@U(~�)

@~�e
= �K�1(~�)

@K(~�)

@~�e
U(~�) (4.22)
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and the derivative of the stress can be written as

@�e(~�e)

@~�e
=
@Ee(~�e)

@~�e
C0
eBue + Ee(~�e)C

0
eB

@ue(~�e)

@~�e
(4.23)

Hence it is simple to replace the values obtained in the derivative of Von Mises criterion.

4.1.4 Functioning of the algorithm

Here is a summary for the operation of the optimization algorithm:

1. Choose the initial values of design variables � and the size of the neighborhood R

(generally 1.5-2).

2. Global stiffness matrices are assembled for the calculation of elementary displace-

ments ue, elementary strains �e and elementary stresses �e.

3. Calculation of the sensitivity of the objective function and the constraint functions

with respect to the design variables.

4. Effective use of the Sequential Quadratic Programming by which upgrades the

design variables.

5. If the penalization factor p has not reached its maximum, increase it. The initial

p is equal to the unit, whereas the final one is equal to 4.

6. Check whether the algorithm converges, that is to say if the thresholds, imposed

on design variables and on the value of the objective function, are exceeded and if

the maximum number of iteration has been reached. If the above-mentioned does

not happen, go back to Step 2.

4.1.5 Matlab optimization

Matlab provides three types of algorithms to solve optimization problems:

� Gradient-based algorithms,

� Heuristic algorithms,

� Direct-search algorithms.

Gradient-based algorithms The gradient-based algorithms are frequently called clas-

sic algorithms. This type of algorithms employs the gradient of objective function and

constraint functions to check the direction in order to position at a point closer to the

optimum point. The functioning of these algorithms is explained in 1.2.

Classic algorithms provided by Matlab are:
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� Interior-point,

� Sequential Quadratic Programming,

� Active-set,

� Trust region.

Heuristic algorithms The term heuristic suggests a technique designed to solve an

optimization problem quicker when classic methods are too slow, or to find an approx-

imate solution when classic methods fail to find any exact solution. This is achieved

by trading optimality, completeness, accuracy, or precision for speed. In a way, it can

be considered a shortcut. The heuristic optimization’s goal is to produce a solution in

a reasonable period of time that is good enough to solve the problem at hand. This

solution may not be the best of all the actual solutions to this problem, or it may sim-

ply approximate the exact solution. However, it is still valuable because finding it does

not require a prohibitively long time. Heuristics may produce results by themselves, or

they may be used in conjunction with classic optimization algorithms to improve their

efficiency (e.g., they may be used to generate good seed values). Fundamental questions

that must be asked to decide whether to use a heuristic algorithm are:

� When several solutions exist for a given problem, does the heuristic guarantee that

the best solution will be found? Is it necessary to find the best solution?

� When several solutions exist for a given problem, can the heuristic find them all? Do

we actually need all solutions?

� Can the heuristic provide a confidence interval for the purported solution? Is the

error bar on the solution unreasonably large?

� Is this the best-known heuristic for solving this type of problem?

In some cases, it may be difficult to decide whether the solution found by the heuristic

is good enough, because the theory underlying that heuristic is not very elaborate. The

heuristic algorithms Matlab provides are:

� Genetic algorithm,

� Simulated annealing,

� Particle swarm.
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Direct-search algorithms Direct-search algorithms is a family of numerical optimiza-

tion algorithms that do not require the gradient of the problem to be optimized. Hence,

direct-search algorithms can be employed on functions that are not continuous or differ-

entiable. Such optimization methods are also known as pattern-search, derivative-free,

or black-box algorithms. Matlab provides a generic solver called Pattern search method.

Paper [78] examines these methods more in depth. In the proposed code, we decide to

use a gradient-based algorithm (Sequential Quadratic Programming) since the objective

function is known and also the constraint functions. In addition, the first derivatives of

the functions can be easily found (see 4.2.4), whereby the second derivatives are quickly

approximated by the solver. Given the explicit formulation of the problem it is not

necessary to consider other types of algorithms (heuristic algorithms and direct-search

algorithms), which are mainly used when there is a difficulty in defining the function

especially of their derivatives. For well-defined problems like the one discussed, the use

of algorithms not based on the gradient leads to good results, but not comparable with

those of classic algorithms.

4.1.6 Use of the code

In this problem, a rectangular domain is constrained at the two ends and a point load

is applied at the center [Fig. 4.2]. Due to symmetry, only the right half of the beam is

modeled, as sketched in [Fig. 4.3]. Thence, the optimization of the MBB (Messerschmitt-

Bolkow-Bolhm) beam was performed to check if the code worked.

The half-beam is 50 mm in length (l) and 25 mm in height (h), modeled with 1250 quad-

rangular elements, 1326 nodes, and 2652 degrees of freedom. The material parameters

are E0= 2100 MPa, � = 0.3 with a force of P = 10 N in the vertical direction. The limits

are:

� �max = 40 MPa,

� �max = 1 mm.

For completeness, we report the results of the beam considered as full, i. e. the relative

densities of each element of which is composed the mesh is equal to 1: the maximum

stress of Von Mises (extrados of the center line) is equal to 10.5 MPa, and the maximum

displacement (at the center line) is equal to 0.18 mm.

The figures in [Fig. 4.4] show how the iterative process, produced by Matlab, leads to

the optimal solution. The images reported are the most significant for the phase of figure

formation. For the latest iterations (from iteration 41) there are no big differences, it is

easy to see that the final image and the previous running deck are almost identical. It

is important to note that the starting point has been chosen with a density equal to 1

for all quadrangular elements; this assumption is not relevant in the prosecution of the
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L = 10 cm

P = 10 N

d

Figure 4.2: Structure to be analyzed [1].

optimization, but it is relevant that, starting from this density, the process requires a

smaller number of iterations.

The iterations produced by Matlab are 49. The thresholds chosen to block the process

are applied to the design variables (10�3) and to the objective function (10�6). For more

information about stopping criteria see [78]. With a simple personal computer, the op-

timization thus presented has a duration of about 120 minutes. The figures [Fig. 4.5]

and [Fig. 4.6] show the final structure optimized in terms of density and stress. The

maximum stress recorded is 40.0004 MPa whereas the maximum vertical displacement

is equal to 0.9522 mm. The maximum mass function is 2500 (initial domain as full),

whereby that optimized is 763.

What would happen if we changed the limits of Von Mises stress and vertical displace-

ment? Suppose we take as limits 10.5 MPa and 0.22 mm, which is the maximum stress

recorded in the full beam and the displacement of the full beam increased by 20%(of

0.18 mm + 0.2 0.18 mm). The final maps of density are displayed in [Fig. 4.8] and Von

Mises stress is shown in [Fig. 4.9]. Maximum Von Mises stress is 10.53 MPa, maximum

vertical displacement is 0.218 mm and the final mass function is 2094.

If the beam was constrained in some other way, keeping 40 MPa and 1 mm as limits

of Von Mises stress and vertical displacement ? For instance, consider the structure in

[Fig. 4.7]. As done previously, we will model only half of the beam, simply by fixing

the part in [Fig. 4.3] which was just supported. We observe that the result of the opti-
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h

l

P

Figure 4.3: MBB beam: geometry and loading.
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(a) iteration 0 (b) iteration 6

(c) iteration 13 (d) iteration 19

(e) iteration 25 (f) iteration 35

(g) iteration 41 (h) iteration 49

Figure 4.4: Progressive optimization.
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Figure 4.5: Final result [1].

Figure 4.6: Von Mises stress [1].



4.1 Realization of a beam 109

Figure 4.7: Structure to be analyzed [2].

Figure 4.8: Final result [2].
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Figure 4.9: Von Mises stress [2].

mized beam provides a maximum Von Mises stress equal to 31.7 MPa [Fig. 4.11], and a

maximum vertical displacement (at the center of the beam) of 0.55 mm. The final mass

function is of 496 [Fig. 4.10].

4.2 Realization of 2D lattice material

4.2.1 Approach to the problem

The code we have achieved has the aim of demonstrating how it is possible to connect

the themes of the (topological) optimization and lattice materials. The code is intended

for two-dimensional periodic materials, but can be implemented for three-dimensional

problems. In doing so, the processing time and memory required by the computer would

increase.

The objective of the optimization is to find the minimum weight of a two-dimensional

periodic lattice material under simultaneous axial and shear stiffness constraints or more

simply means that the optimized lattice maintains a minimum axial stiffness as well as

a minimum shear stiffness.

We use as guideline paper [37]. The theory is similar (obviously not identical), but

the implementation of the code is different. The optimization algorithm starts with a

complete mesh finite element. In order to maintain greater generality, it was decided to

use beam elements rather than truss elements. This is because the beam elements support
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Figure 4.10: Final result [3].

Figure 4.11: Von Mises stress [3].
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the load not only axially (as truss elements), but also flexurally; said assumption is very

important when treating anisotropic materials for which the request of axial and bending

stiffness can be very different. However, observe that lattice materials are frequently

statically determined and hence carry the load axially.

The principle on which the algorithm is based, is explained in removing the inefficient

elements and resizing the remaining ones until the algorithm does converge to a solution

of minimum weight. The problem can be expressed mathematically:8>>><
>>>:
min
x

��(x) =
P

8e2

ve(x)
V 


s:t: C

E(x) � C�

E

C

G(x) � C�

G

(4.24)

where:

� x is the vector of design variables, i.e. the cross section of each element;

� 
 is a discretized domain representing a unit cell or fraction;

� �� is the relative density of the lattice;

� ve is the volume of the element e;

� V 
 is the volume of design domain;

� C

E and C


G are the compliances of the design domain under uniaxial compressive

and shear states of stress, respectively;

� C�
E and C�

G are the upper bounds on the compliances.

Even if the approach we present can be employed for any kind of section of the element,

in this case we will use a circular section, so that the radius of the section becomes our

design variable x. In order to keep all the design variables between 0 and 1, the radius

of element e can be represented by

re(xe) = rmaxx
e (4.25)

where rmax is the maximum radius and xe is the design variable for the radius of element

e. The algorithm that we propose to create must allow the achievement of the minimum

weight while succumbing to certain restrictions, and must be able to obtain a structure

with the least number of elements possible. For this reason, we add a penalty function

to the relative density ��, so (4.24) can be rewritten as8>>>>>><
>>>>>>:

min
x

(1 + !p�el(x))��(x) = (1 + !p�el(x))
P

8e2

ve(x)
V 


s:t: C

E(x) � �E �CE

C

G(x) � �G �CG

0 � xmin � xe � 1

(4.26)
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where:

� !p is a penalizing weight for existence of each element;

� �el is the number of existing elements;

� �E and �G express the prescribed minimum relative axial and shear stiffness in

non-dimensional form, respectively;

� �CE and �CG are the compliances of the design domain entirely filled with the con-

stituent material and subjected to uniaxial compressive and uniaxial shear states

of stress, respectively;

� xmin is a small number to keep the stiffness matrix positive definite.

Since the most used optimization algorithms are the well-known gradient-based, i.e. al-

gorithms that use the derivatives of objective functions and constraint functions, is

necessary to express �el as a differentiable function, which is why we write:

�el =
X
8e2


Hp(x
e) (4.27)

where H is the regularized Heaviside step function [77] as

H(xe) = 1� exp(��xe) + xeexp(��) (4.28)

When � approaches infinity, the above function approximates the Heaviside function

more and more accurately.

4.2.2 Finite Element Analysis

The definition of global stiffness matrix is the most important issue for the finite element

analysis, which is aimed at the solution of mechanical problems. Then, the displacements

of free degrees of freedom and the reaction forces of the constrained degrees of freedom

can be deduced. Each element is associated with a matrix of elementary stiffness ob-

tained through the theory of Timoshenko, which is adopted because the initial mesh

is frequently constituted by thick elements whose deformation in shear is not negli-

gible. When calculating axial compliance, it is possible to use an elementary matrix

obtained by the theory of Euler-Bernoulli, since the deviation in terms of values with

that of Timoshenko is insignificant. Assembling the stiffness matrices of each element we

achieve the global stiffness, written as

Kd =

"
Kff (x) Kfc(x)

Kcf (x) Kcc(x)

# "
df (x)

dc

#
=

"
ff (x)

fc(x)

#
= f (4.29)
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where K is the global stiffness, d is the displacement vector and f is the force vector. The

unknowns of the system are the free displacements df and the reaction forces fc. First

we calculate the free displacements

df (x) = Kff (x)
�1(ff (x)�Kfc(x)dc) (4.30)

subsequently, we can obtain the reaction forces fc

fc(x) = Kcfdf (x) + Kcc(x)dc: (4.31)

4.2.3 Calculation of the compliance

The explicitation of axial and shear compliance is necessary. A generic formulation is

given by [76]:

C
(x) = fTf (x)df (x)� fTc (x)dc: (4.32)

Given the generality of (4.32) it can be employed for both compliances mentioned above.

Boundary condition for the calculation of axial compliance The introduction

of a unit cell is usually based on certain assumptions, such as a regular pattern in the

microstructure, which is sometimes a reasonable approximation or an idealization other-

wise. A regular pattern offers certain symmetries, which can then be employed to define

the unit cell and to derive the boundary conditions for micromechanical analysis. In

the literature, there are many accounts where simplistic boundary conditions have been

imposed to unit cells in an intuitive manner, sometimes, rather casually and without

much justification. Such simplistic boundary conditions are correct only in a few spe-

cial cases. Another very confusing issue is how many boundary conditions need to be

prescribed at any given part of the boundary of a unit cell. Sometimes, only one dis-

placement has been prescribed but in other cases, more than one are prescribed.

In order to avoid the use of mere intuition,we use [75] as reference in which the mode of

constraint of the unit cell is explained in depth.

Consider a rectangular unit cell with dimensions LX and LY along the X and Y

directions, respectively. Often it is assumed that the desired unit cell has reflectional

symmetry [Fig. 4.12] about the X and Y so that the design domain 
 can be cho-

sen as one quarter of the lattice unit cell. The compliance of the design domain under

uniaxial loading along the Y direction can be calculated with the following prescribed

displacements and boundary conditions [Fig. 4.13]

uXjX=0
= 0 uX

jX=L

X

= �XXL


X (4.33)

uYjY=0 = 0 uY
jY=L


Y

= �Y Y L


Y (4.34)

where:
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Figure 4.12: Square packing with further reflectional symmetries.

� uX and uY are translational degrees of freedom along X and Y ;

� L
X and L
Y are the dimensions of the design domain 
 ;

� �XX and �Y Y are the normal strains along X and Y .

Only �Y Y is the applied uniform strain along the Y axis, whereas �XX are the resulting

uniform strain along the X axis required to ensure a one-dimensional state of stress along

the Y direction.

The rotational degrees of freedom are chosen to be compatible with the translational

degrees of freedom for axial stiffness at these boundaries and are as follows:

�ZjX=0 = 0 �Z
jX=L


X

= 0 (4.35)

�ZjY=0 = 0 �Z
jY=L


Y

= 0 (4.36)

where �Z is rotational degree of freedom about Z axis, which is the axis coming out of

the Cartesian plane XY . This choice of constraint conditions is equivalent to imposing

the minimum for the Young’s modulus of the lattice Elattice that is

�E =
Elattice

E
(4.37)

where E is Young’s modulus of constituent material.
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Y

X

Figure 4.13: Constraints of a quarter of a unit cell used for the calculation of the axial compli-

ace; the uniform translation is applied along the Y direction in Y = L



Y
.

Boundary condition for the calculation of shear compliance Like for the cal-

culation of the axial compliance, we proceed to the calculation of the shear compli-

ance, i.e. the compliance of the design domain under uniaxial shear in the XY plane. It

can be calculated with the following prescribed displacements and boundary conditions

[Fig. 4.14]:

uYjX=0 = 0 uY
jX=L


X

= 0 (4.38)

uXjY=0
= 0 uX

jY=L

Y

= 
Y XL


Y (4.39)

The rotational degrees of freedom are not constrained. This choice of constraint condi-

tions is equivalent to imposing the minimum for the shear modulus of the lattice Glattice

i.e.

�G =
Glattice

G
(4.40)

where E is the shear modulus of constituent material.

Of course, by suitably modifying the constraints it is possible to find stiffness (and

therefore also compliance) in other directions. Boundary conditions presented for axial

compliance and for shear compliance are individually applied to the lattice to evaluate

C

E and C


G respectively. It is worth mentioning that the proposed approach for the



4.2 Realization of 2D lattice material 117

Y

X

Figure 4.14: Constraints of a quarter of a unit cell used for the calculation of the shear compli-

ance; the uniform translation is applied along the X direction in Y = L



Y
.

extraction of axial and shear moduli only requires two analyses, while the conventional

approach requires 3 and 6 distinct analyses in 2D and 3D respectively, to fully charac-

terize the unit cell elastic properties. Furthermore, the proposed approach allows us to

model one quarter of unit cell; given that the cost of inverting the stiffness matrix is

cubic in the number of degrees of freedom, this reduces the computational cost.

4.2.4 Sensitivity analysis

The key step in the optimization process is efficiently computing derivatives of the ob-

jective functions and constraint functions. Topology optimization problems are often

large-scale and the use of traditional numerical methods such as the finite difference

method is not efficient. Thus, we employ an analytical method to compute derivatives

efficiently. In deriving the derivatives of functions with respect to design variables, two

groups of functions can be recognized. One group is explicitly a function of design vari-

ables, for which derivatives are simple to compute. In objective function, �el and ��el are

explicitly functions of design variables, i.e. x, and their derivatives with respect to xe

are:
�el
dxe

= �exp(��xe) + exp(��); (4.41)
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d��

dxe
=

1

V 


dve

dxe
: (4.42)

The second group contains functions that are not explicitly dependent on the design

variables. For instance C
 is a function of df , which, in turn, is a function of the inverse

of Kff . Now, if you were to use a method of numerical calculation, the computation

of the derivative would be very cumbersome. This is why the best choice is to use an

analytical method. To solve our problem, we use the adjoint method and consequently

we take the derivative of the function with the addition of the equilibrium equation with

an arbitrary constant vector �:

dC


dxe
=

d

dxe
�
C
 + �(Kffdf + Kfcdc � ff )

�
: (4.43)

From equation (4.29) we get

fc = Kcfdf + Kccdc (4.44)

And substituting this equation in (4.32) and then in (4.43) we obtain

dC


dxe
=

�
dfTf
dxe

�dT
c

dKfc

dxe

�
(df��)+�

T dKff

dxe
df�dT

c

dKcc

dxe
dc+

ddT
f

dxe
(Kff��(ff�Kfcdc)):

(4.45)

Because we do not want to calculate ddT
f =dx

e, then we do an assumption on � i.e.

� = �K�1
ff (ff �Kfcdg) = �df (4.46)

so the equation (4.45) can be written as

dC


dxe
= 2

dfTf
dxe

df � dT dK

dxe
d (4.47)

since they are not applied forces, the first term of the second member in (4.47) is canceled

and therefore
dC


dxe
= �dT dK

dxe
d (4.48)

4.2.5 Functioning of the algorithm

Here is a summary for the operation of the optimization algorithm:

1. You must choose the initial values of design variables x; in general, each variable

is assigned the maximum value.

2. The global stiffness matrices are assembled for the calculation of the axial compli-

ance C

E , and the shear compliance C


G .

3. You must calculate free displacements df and reaction forces fc for the two systems

of constraint seen in figure [Fig. 4.13] and [Fig. 4.14].
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4. Calculation of the objective function’s sensitivity and of the constraint functions

with respect to the design variables.

5. Effective use of the Sequential Quadratic Programming by which the design vari-

ables are upgraded.

6. Check whether the algorithm converges, that is to say if the threshold imposed

on design variables is exceeded or if it has reached the maximum number of itera-

tions. If the above does not happen, go back to Step 2.

7. Check whether �el (in its values modified � and !p) has reached its maximum

value, and if the resulting solution is satisfactory, though this does not happen �el
is changed (in its values modified � and !p) and you go back to Step 2.

8. If there is any item that is xe � xlim, then you must remove it and go back to Step

1.

In Step 8 xlim might be 1% - 0.1% of rmax. As in 4.1 we employ the Sequential Quadratic

Programming. The threshold is imposed on x and is equal to 10�6. For more information

about stopping criteria see [78].

4.2.6 Comparison

In order to investigate the efficiency of the results obtained, the code can compare the

results obtained, with Hashin–Shtrikman (H–S) bounds for isotropic two-phase (solid-

void) composites, that can be obtained as follows:

�HS
E �

��

3� 2��
(4.49)

�HS
G �

K ��

(1� ��)(K + 2G) +K
(4.50)

where �HS
E and �HS

G are the relative axial and shear moduli of the cellular material

at the H-S bounds, respectively, G and K are the shear and the bulk moduli of the

constituent material, respectively, and �� represent the relative density of the composite

material. This comparison helps quantifying the effect of anisotropy on the mechanical

efficiency of the lattices.

It is instructive to compare the performance of our optimized lattices with that of classic

2D lattice designs, in particular hexagonal, fully triangular, and Kagome designs. The

values of �E and �G for hexagonal have been obtained by

�HE =
3

2
��3 (4.51)

�HG =
3(1 + �)

4
��3 (4.52)
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(a) Locally connected mesh (b) Fully connected mesh

Figure 4.15: Initial meshes used to model a square unit cell.

and fully triangular

�FTE =
1

3
�� (4.53)

�FTG =
(1 + �)

4
�� (4.54)

where �HE and �HE are relative axial and shear moduli of hexagonal design and �FTE
and �FTE are relative axial and shear moduli of fully triangular design, respectively. We

remember that the elastic properties of a Kagome design are identical to those of a fully

triangular lattice. It is simple to note as hexagonal design is always less stiff than fully

triangular and Kagome.

4.2.7 Use of the code

There are two different initial mesh topologies:

� meshes with local connections, where the nodes are connected those closest to them

with horizontal, vertical and diagonal elements.

� meshes with full connections, where each pair of nodes is connected by an element

(the elements that overlap are removed, if necessary).

The two types of initial meshes are shown in [Fig. 4.15].

Consider the following values of �E and �G equal to 10�1; 10�2; 10�3 and 10�4. The

combinations we need to examine are 16 as it is evident in [Tab. 4.2]. For each iteration

we perform two FEM analysis: one to calculate the axial compliance and the other for

the shear compliance. Knowing that, when � tends to infinity, H tends to the number

of the elements actually present in the cell, we assume a value of � = 100. The value

of penalty !p generally is varied from 0.1 to 0.001, hence it is assumed !p = 0:01. The
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Table 4.2: Combinations of �E and �G.

combo �E �G

1 10�1 10�1

2 10�1 10�2

3 10�1 10�3

4 10�1 10�4

5 10�2 10�1

6 10�2 10�2

7 10�2 10�3

8 10�2 10�4

9 10�3 10�1

10 10�3 10�2

11 10�3 10�3

12 10�3 10�4

13 10�4 10�1

14 10�4 10�2

15 10�4 10�3

16 10�4 10�4

maximum radius, rmax, is set to Lmin=5 and kept fixed during the optimization, where

Lmin is the length of shortest element in the mesh, to ensure that the Timoshenko beam

theory can be applied. For simplicity, only crossings that occur at the square lattice

grid points are assumed to be lattice nodes. This simplification is conservative, indeed,

introducing lattice nodes at each crossing would result in a stiffer structure. Finally, we

have chosen a mesh of 7x7 nodes (120 elements) to model a quarter of unit cell, for locally

connected mesh, and a mesh of 4x4 nodes (120 elements) for fully connected mesh.

Graphical results for fully connected meshes and for locally connected mesh are

reported in appendix 4.3, from whose optimal designs we can draw some general obser-

vations. These conclusions hold for both mesh connectivities:

� Most topologies include two groups of bars: vertical and diagonal members; the

former are efficient in compression, whereas the latter in shear. In situations where

�G � �E , the bending stiffness of diagonal members is sufficient to support the

axial stiffness, and no vertical elements generally appear.

� About 50% of the optimized designs all elements have the same cross-sectional

area, about 40% have two groups of elements and for the remaining cases three

groups of elements emerge.
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� Notice that the existence of non-strong elements in the optimal solution (particu-

larly at high stiffness), in spite of the penalization they receive from !p, is proof

of the structural benefit of hierarchy and complexity.

� Although the actual lattice topologies are significantly different for the local and

full mesh connectivities, the relative densities are very similar in both cases.

� For all combinations the shear constraint is active, while for specific combinations,

the axial stiffness constraint can be inactive. Frequently the structure we obtain

has an unwanted axial overstiffness, so we can find axial resistances thousands of

times higher than initially established.

� Observe that optimized lattices with high shear stiffness and low axial stiffness

have cubic symmetry. This is due to the fact that these lattices possess strong

diagonal elements, which provide equal axial stiffness in the X and Y direction by

bending. On the contrary, optimized lattices with low shear stiffness and high axial

stiffness, have weak diagonal members and their effect on axial stiffness becomes

negligible compared to that of the axial members.

When �G � �E , that is when it is required that the shear stiffness is greater than

the axial one, the structure of the optimized cell presents better characteristics than con-

ventional cellular materials such as hexagonal or fully triangular and Kagome. It is also

remarkable that they have characteristics far superior to the limits of Hashin–Shtrickman

bounds. When �G < �E , instead, it is evident that the optimized material, from the

point of view of the shear stiffness, has worse characteristics than those of fully triangular

and Kagome. The author notes also that once the relative density has exceeded 12% the

optimized material is always better (and in the case that �G � �E that �G < �E) of

existing lattice materials and the limits of Hashin–Shtrickman bounds. Tables [Tab. 4.3]

and [Tab. 4.3] show the results for the aforementioned combinations of �E and �G where

Fully triangular lattice, Kagome lattice and Hexagonal lattice are considered with the

same relative density �� as the optimized lattice.

Many of the optimal topologies obtained are hierarchical; indeed, they contain sub-

lattices with elements of different sections. It is true that manufacturing of hierarchical

designs presents challenges in comparison with simpler geometries, but it useful to study

hierarchy in achieving lightweight lattices with prescribed elastic properties. This is why

we repeat the optimization taking into account the combinations of �E and �G we have

just illustrated [Tab. 4.2] and imposing the conditions that all elements in the lattice

must have the same cross-sections (a sort of simplified size optimization). For each com-

bination, we see an increase of relative density compared to topology optimization. The

percentage increases is depicted in [Tab. 4.5]. For locally connected meshes, percentage

increases between 15% and 57%; these numbers change to 41% and 88% in the case of

fully connected meshes.
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Table 4.3: Results for locally connected mesh. HSa for Hashin–Shtrickman axial bound, HSs

for Hashin–Shtrickman shear bound; TKa for Fully triangular lattice and Kagome lattice axial

bound, TKs for Fully triangular lattice and Kagome lattice shear bound; Ha for Hexagonal lattice

axial bound, Hs for Hexagonal lattice shear bound.

�E �G HSa HSs TKa TKs Ha Hs ��(%)

10�1 10�1 X X X X X X 9.80

10�1 10�2 X X X X X 5.39

10�1 10�3 X X X X X 4.97

10�1 10�4 X X X X 4.92

10�2 10�1 X X X X X X 6.75

10�2 10�2 X X X X X X 0.98

10�2 10�3 X X X X X 0.54

10�2 10�4 X X X X 0.50

10�3 10�1 X X X X X X 6.75

10�3 10�2 X X X X X X 0.68

10�3 10�3 X X X X X X 0.10

10�3 10�4 X X X X X 0.05

10�4 10�1 X X X X X X 6.75

10�4 10�2 X X X X X X 0.68

10�4 10�3 X X X X X X 0.07

10�4 10�4 X X X X X X 0.01
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Table 4.4: Results for fully connected mesh. HSa for Hashin–Shtrickman axial bound, HSs

for Hashin–Shtrickman shear bound; TKa for Fully triangular lattice and Kagome lattice ax-

ial bound, TKs for Fully triangular lattice and Kagome lattice shear bound; Ha for Hexagonal

lattice axial bound, Hs for Hexagonal lattice shear bound.

�E �G HSa HSs TKa TKs Ha Hs ��(%)

10�1 10�1 X X X X X X 7.49

10�1 10�2 X X X X X 4.96

10�1 10�3 X X X X X 4.84

10�1 10�4 X X X X X 4.83

10�2 10�1 X X X X X X 5.70

10�2 10�2 X X X X X X 0.75

10�2 10�3 X X X X X 0.48

10�2 10�4 X X X X X 0.48

10�3 10�1 X X X X X X 5.70

10�3 10�2 X X X X X X 0.57

10�3 10�3 X X X X X X 0.04

10�3 10�4 X X X X X 0.05

10�4 10�1 X X X X X X 5.70

10�4 10�2 X X X X X X 0.57

10�4 10�3 X X X X X X 0.06

10�4 10�4 X X X X X X 0.01
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Table 4.5: Percentage increase for locally connected mesh and fully connected mesh.

�E locally Fully

10�1 10�1 15.8 24.4

10�1 10�2 52.9 49.9

10�1 10�3 56.6 51.1

10�1 10�4 57.1 51.2

10�2 10�1 41.7 41.8

10�2 10�2 15.5 24.2

10�2 10�3 52.6 51.5

10�2 10�4 56.14 51.8

10�3 10�1 41.7 41.8

10�3 10�2 41.8 41.5

10�3 10�3 41.4 69.2

10�3 10�4 18.3 62.8

10�4 10�1 51.1 41.8

10�4 10�2 41.7 41.8

10�4 10�3 41.4 56.1

10�4 10�4 37.7 87.7

4.3 Use of 3D printing

3D printing has been carried out by the technique of Fused Deposition Modeling (FDM). The

3D printer used is fabricated by Leapfrog [Fig. 4.16]. More information about this 3D

printers manufacturer and technical specifications on its 3D printers can be found at the

website http://www.lpfrg.com.

In this section we are going to show the objects printed. We have printed two objects

through the use of the first code described 4.1.

The first object is sketched in [Fig. 4.5]. It is possible to print the structure just as

it is presented in 4.1.6, but size does not allow the viewer to grasp the details of the

optimization. This is why the size of the beam has been doubled and has been set an

adequate thickness:

� length = 200 mm

� height = 50 mm

� thickness = 4 mm

The material used is PLA. The procedure used for the realization of the object can be

read in 3.2.2. In [Fig. 4.17] the process is shown schematically; see [Fig. 4.18] for a picture

of the printed objects.

http://www.lpfrg.com
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Figure 4.16: 3D printer used. Figure taken by Leapfrog website.

Figure 4.17: Main steps in 3D printing.

Figure 4.18: First 3D printed object.
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Figure 4.19: Solutions penalized (already seen) and solutions not penalized.

In the cases just analyzed in 4.1.6, the coefficient of penalization is assumed to be

equal to 4. This choice is dictated by the desire to have a white-black solution type , where

black represents the presence of mass and white represents the absence of mass. What

would happen if we optimize it with a coefficient of penalization equal to 1, i. e. in the

absence of penalization? Intuitively we can speculate the presence of intermediate den-

sity (gray areas), as indeed happens looking at [Fig. 4.19].

[Fig. 4.19] shows the results of maximum Von Mises stress, maximum vertical dis-

placement and mass for penalized and not penalized solutions. It can be noted that the

solutions without penalization are advantageous in terms of mass function. But can we

realize them with 3D printing?

It is possible by exploiting the concept of cellular materials. These particular materials

allow variable relative densities as seen in 2.3. In addition, a 3D printer’s default option

is the possibility between structures such as honeycomb, square, triangular lattice and

many others to fill of the structure [Fig. 4.20]. The filling of the printed object is called,

in technical terms, infill. In [Fig. 4.21] is sketched the relative density map related to

the case 1 without penalization shown in [Fig. 4.19]. The ranges of relative density con-

sidered are 10. If relative density falls in the range [0; 0:1) then it assumes a value of 0.1,

if it falls in the range [0:1; 0:2) then it is assumed the value of 0.2 and so on until the

last interval (0:9; 1]. [Fig. 4.22] portrays the printed second object.
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Figure 4.20: Example of percentage increase of infill. Figure taken from [98].

Figure 4.21: Relative density map.
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Figure 4.22: Second 3D printed object.
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Concluding Remarks

Structural optimization is well-established from the academic point of view, as the mas-

sive amount of papers on the theme proves. In particular, topology optimization is being

deeply investigated as fundamental step of the complete optimization process. By “com-

plete optimization process”, we mean the consecutive use of topology optimization and

shape optimization; the former helps us to understand what is the best distribution of

the material in the space allowed, the latter allows us to modify in detail the previous

result.

Many companies usually use optimization techniques and dedicated softwares to boost

the performances of their products, requiring highly specialized professionals. Never-

theless, the theme of optimization is often overlooked in the training of future engi-

neers. More time should be devote to the subject. As well as bringing undoubted positive

characteristics to the designed structures, the optimization process allows the engineers

to be aware of how the distribution of mass, shape and density of materials could affect

the potential of a structure.

In this thesis, we were faced with one of the major issues concerning optimization, the

high variability in terms of shape and size of the optimized structures even though there

is a slight variation of the constraints or loads. Traditional production machinery is often

able to produce only one type of shape. This a significant problem. The solution provided

by 3D printing will enable us to overcome this limitation thanks to 3D printing’s ability

to create completely different shapes in an efficient and inexpensive way.

Obviously, given the relative novelty of 3D printing techniques, there are many possible

improvements. For instance, there is often a request to use a wider range of printable

materials or build objects in large scale (house walls, columns, beams, etc.). Another

question which remains unanswered regards the mechanical model can be associated to

a printed object. As we have discussed in detail previously, these issues are being studied

and are already providing interesting ideas.

Earlier we have seen how to apply topology optimization to a cell of lattice material. Lat-

tice materials suffer from a lack of consideration by professionals working in industrial

and architectural fields. It is enough to note that the term cellular materials is often de-

clined only for one type of material: foams. In fact, foams find wide usages in the sector

of thermal and acoustic insulation, but also in the protection from impacts. However, the
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growing demand for lightweight structures, which maintain adequate levels of stiffness

and strength at the same time, changed the perception towards lattice materials that,

albeit slowly, are being rediscovered.

Using topology optimization to improve the characteristics of lattice materials may be

the starting point to rethink the concept of lightweight structure from the design stand-

point. In the same way, the current limits of 3D printing may represent a starting point

to consider new ways of building with less manpower, fewer cost and less waste in terms

of time and material used.



Graphical results

Below, we show the results of the optimizations for locally connected mesh (LCM) and

fully connected mesh (FCM).

(a) (LCM) �E = 10
�1, �G = 10

�1 (b) (LCM) �E = 10
�1, �G = 10

�2

(c) (LCM) �E = 10
�1, �G = 10

�3 (d) (LCM) �E = 10
�1, �G = 10

�4
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(a) (LCM) �E = 10
�2, �G = 10

�1 (b) (LCM) �E = 10
�2, �G = 10

�2

(c) (LCM) �E = 10
�2, �G = 10

�3 (d) (LCM) �E = 10
�2, �G = 10

�4

(a) (LCM) �E = 10
�3, �G = 10

�1 (b) (LCM) �E = 10
�3, �G = 10

�2

(c) (LCM) �E = 10
�3, �G = 10

�3 (d) (LCM) �E = 10
�3, �G = 10

�4
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(a) (LCM) �E = 10
�4, �G = 10

�1 (b) (LCM) �E = 10
�4, �G = 10

�2

(c) (LCM) �E = 10
�4, �G = 10

�3 (d) (LCM) �E = 10
�4, �G = 10

�4

(a) (FCM) �E = 10
�1, �G = 10

�1 (b) (FCM) �E = 10
�1, �G = 10

�2

(c) (FCM) �E = 10
�1, �G = 10

�3 (d) (FCM) �E = 10
�1, �G = 10

�4
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(a) (FCM) �E = 10
�2, �G = 10

�1 (b) (FCM) �E = 10
�2, �G = 10

�2

(c) (FCM) �E = 10
�2, �G = 10

�3 (d) (FCM) �E = 10
�2, �G = 10

�4

(a) (FCM) �E = 10
�3, �G = 10

�1 (b) (FCM) �E = 10
�3, �G = 10

�2

(c) (FCM) �E = 10
�3, �G = 10

�3 (d) (FCM) �E = 10
�3, �G = 10

�4
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(a) (FCM) �E = 10
�4, �G = 10

�1 (b) (FCM) �E = 10
�4, �G = 10

�2

(c) (FCM) �E = 10
�4, �G = 10

�3 (d) (FCM) �E = 10
�4, �G = 10

�4
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