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Abstract

Starting from meshfree methods, the Smoothed Particle Hydrodynamics (SPH) is 
introduced as a complementary tool for numerical simulation of peculiar 
hydrodynamic problems: its potential advantages with respect to traditional grid-
based techniques are pointed out.

The governing fluid dynamic equations are recalled and their numerical 
discretization in the SPH approximation is illustrated. Further numerical aspects 
relevant to SPH are also discussed, such as solid boundaries treatment.

Finally some applications of the SPH method for simulating engineering hydraulic 
problems are shown, involving rapidly varied free surface flows with large 
displacements and impacts, scouring phenomena and interaction with rigid 
bodies.
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Purposes and Outline of the Work

This work aims at provide the basic knowledge on the Smoothed Particle 
Hydrodynamics method (SPH) for numerical application to hydrodynamic 
problems including interaction with rigid solid body. 

The structure of the work consists of the following sections:

1. Grid-based and meshless methods.

2. Basics of the SPH method with mathematical and numerical fundamentals.

3. Implementation of the SPH method on the Navier-Stokes Eq.s.

4. Application of the SPH method to free-surface hydrodynamic problem 
including interaction with solid rigid body.
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1. Grid-Based and Meshless Methods

1.1 On the role of numerical modeling

1.2 Grid-based methods: Lagrangian grid and Eulerian grid

1.3 Meshfree methods and meshfree particle methods

1.4 Advantages of meshfree particle methods

1.5 Particle approximation principle
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1.1 The Role of Numerical Modeling

Numerical simulation translates important aspects of the physical problem into a discrete form 

of mathematical description.

Numerical simulation has become a very important tools in the analysis of complex engineering 

problems owing to the increasing computers capabilities, their versatility of application and the 

removal of the numerous assumptions for the achievement of an analytical solution.

However numerical simulation is strongly interconnected to physical and theoretical models 

owing to some intrinsic lacks (e.g. needs of calibration and validation through experimental 

data and exact solutions) that limits their reliability as an individual instrument of investigation.

Theoretical models Numerical modelsPhysical models 

Analytical solutions Numerical solutions Experimental data

Comparison and verification of assumptions 
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1.1 Numerical Solution Strategy

The general flow-chart followed by several numerical 

simulation techniques is shown at the left-hand side.

Starting from the physical phenomenon and focusing 

on those aspects relevant to the investigation, a 

simplified mathematical model is derived in the form 

of governing Eq.s and limit conditions (Initial and/or 

Boundary Eq.s).

The first step to numerically solve the above set of 

Eq.s consists of domain discretization (i.e. the 

continuum is represented by discrete components or 

elements connected through nodes).

It is followed by numerical discretization to obtain 

discrete representation of the governing Eq.s 

according to domain discretization technique.

A set of ordinary differential Eq.s with respect to time 

is obtained for transient problems: these should be 

translate into a computer code.
[Liu & Liu, 2007]

Physical phenomena

Mathematical models
(governing Eq.s)

Domain discretization

Numerical algorithms &
Numerical discretization 

Coding & implementation
(accuracy, speed, 
robustness etc.)
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1.2 Grid-Based Methods

Grid-based methods adopt a computational frame which is made up of nodes, where the field 
variables are evaluated, that are related each other through a predefined nodal connectivity: 
accuracy of numerical approximation is closely related to mesh topography (shape, size etc.).

There are two fundamental approach for domain discretization:

Lagrangian approach: follows a material 
description.

The computational grid is assumed to be 
attached to the continuum following its 
deformation: no mass flux occurs between 
adjacent elements.

E.g. Finite Element Method [Zienkiewicz & 
Taylor, 1989]

Finite element model of an off-shore 
wind turbine [Bontempi et al. 2006a].
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1.2 Grid-Based Methods

Eulerian approach: follows a spatial 
description.

The computational grid is assumed to be 
fixed on the physical space: no deformation 
occurs as the continuum evolves; mass flux 
between adjacent cells have to be simulated.

E.g. Finite Difference Method

Finite difference model of the Venice lagoon for 
wind-wave analysis [Manenti et al. 2006b].

Grid-based methods adopt a computational frame which is made up of nodes, where the field 
variables are evaluated, that are related each other through a predefined nodal connectivity: 
accuracy of numerical approximation is closely related to mesh topography (shape, size etc.).

There are two fundamental approach for domain discretization:
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1.2 Comparison of Grid-Based Methods

The complementary pros and cons of each method are summarized below: 

Lagrangian approach

+ the lack of convective term in the 
governing equation simplified their numerical 
handling;

+ it becomes easy to track the time-history 
of the field variables at a material point;

+ the mesh can adapt to irregular and 
complex geometries and describes free or 
moving boundaries and material interfaces;

+ no grid point is needed outside the 
continuum;

- large deformation of the continuum and 
following high mesh distortion can negatively 
affect the numerical accuracy;

- the adaptive mesh rezoning technique can 
overcome the above problem but introduces 
much computational effort.

Eulerian approach

- convective transport should be simulated 
and can influence the integration time step;

- it become difficult to track the time history 
of field variables at a fixed material point;

- cumbersome numerical mapping is required 
to handle complex geometries and difficulty 
arises in determining free or moving 
boundaries and material interfaces

- the computational grid should be large 
enough to cover also the portion of the space 
the fluid can move to.

+ large deformation of the continuum do not 
cause mesh distortion and taint of the 
numerical solution;

+ no adaptive behavior is needed.
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1.3 Meshfree and Meshfree Particle Methods

Even if grid-based numerical methods are consolidated tools for the analysis of advanced 
problem in both fluid and solid mechanics [Bontempi et al., 2008], they suffers from some 
inherent difficulties which limit their applicability to other fields [Manenti et al., 2008]. 

The basic idea of the meshfree methods is to discretize the continuum through a set of nodes 
without the connective mesh in order to follow the deformation experienced by the material 
and avoid the degradation of the numerical result maintaining a suitable computational effort.

When the nodes assumes a physical meaning, i.e. they represent material particles carrying 
physical properties, the method is said to be meshfree particle and follows, in general, a 
Lagrangian approach. 

Nevertheless there are some examples where particles are fixed in the Eulerian space as 
interpolation points.
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1.4 Advantages of Meshfree Particle Methods

When adopting a discrete set of particles without topological connectivity (i.e. a grid) for 
representing the material continuum, treatment of large deformation problems is relatively 
easier.

The particle tracking along with the relevant field variables can be obtained by numerical 
solution of the discretized set of governing Eq.s.

Representation of free and moving surface becomes an easier task.

There are however some topics related to meshfree particle methods that still requires further 
study for possible engineering application (e.g. representation of interfaces between different 
continua, modeling of solid boundaries with complex geometries, fluid and solid dynamic 
interaction involving structure deformation etc).
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1.5 Particle Approximation Principle

The solution strategy of a meshfree particle method is similar as for grid-based method:

# domain discretization with a finite number of particles;

# numerical discretization of the system of partial differential Eq.s;

# numerical technique to solve the resulting ordinary differential Eq.s in transient problems. 

In particular the process of numerical discretization involves the approximation of functions, 
derivatives and integrals at a particle by using the information at all its neighbors, i.e. the 
surrounding particles that exert an influence on it.

The above procedure is called particle approximation.
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2. Basics of the SPH method

2.1 Integral representation and kernel approximation of a function

2.2 Kernel properties and some examples of kernel function

2.3 Kernel approximation of a function derivative

2.4 Particle approximation of a function and its derivative
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2.1 Integral Representation of a Function

Smoothed Particle Hydrodynamics was originally developed as a probabilistic meshfree 
particle method for simulating astrophysical problems [Lucy, 1977], [Gingold & 
Monaghan, 1977].

It was later modified as a deterministic meshfree particle method and applied to continuum 
solid and fluid mechanics [Monaghan, 1994], [Monaghan, 1992].

The basic step of the method for domain discretization, field function approximation and 
numerical solution can be summarized as follows [Liu & Liu, 2007]:

1. The continuum is decomposed into a set of arbitrarily distributed particles with no 
connectivity (meshfree);

2. The integral representation method is adopted for field function approximation;

3. Particle approximation is introduced for converting integral representation into finite 
summation.
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2.1 Integral Representation of a Function

The concept of integral representation of a generic function f(x) of the position vector x used 

in the SPH method originates from the identity [Li & Liu, 2004]:

(1)( ) ( ) ( ) xxxxx ′
Ω

Ω′′−= ∫ dff δ

Ω

x
x’

dΩx’f(x)
f(x’)
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2.1 Integral Representation of a Function

The concept of integral representation of a generic function f(x) of the position vector x used 

in the SPH method originates from the identity [Li & Liu, 2004]:

(1)

where the function f is defined on the n-dimensional domain Ω, dΩx’ is the elementary 

volume surrounding the point at x’ located in the neighborhood of the point at x and δ (x-x’)
is the Dirac delta function defined as (in one-dimensional space):

(2)

Since the Dirac delta function lacks some required properties for a “well behaved function”
such as continuity and differentiability it is replaced by a kernel function that mimic it.

( ) ( ) ( ) xxxxx ′
Ω

Ω′′−= ∫ dff δ

( )
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2.1 Kernel Approximation of a Function

The integral approximation in term of the smoothing interpolant kernel W is thus given by:

(3)

In general W is a central function (i.e. it depends on r=|x-x’| which is the modulus of the 

relative distance) and it is similarly denoted by:

(4)

The letter h denotes the so called smoothing length.

The kernel function is defined over a compact support Ω(κh) whose finite extension (κh) is 

proportional to the smoothing length: W represent an approximation of the Dirac delta 

function, thus Eq. (4) is said to be the kernel approximation of Eq. (1).

( ) ( ) ( )∫
Ω

′Ω′′−= xxxxx dfhWf ,

( ) ( ) ( )∫
Ω

′Ω′= xxx dfhrWf ,
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2.2 Properties of Kernel

There are some important features common to the kernel functions usually adopted in fluid 
and solid dynamic computations:

(5)

(6)

(7)

(8)

( )∫
Ω

′ =Ω′− 1, xxx dhW

( ) ( )xxxx ′−=′−
→

δhW
h

,
0

lim

( ) hhW κ>′−=′− xxxx if0,Compact support

Delta function 
property

Normalization 
condition

( ) ( )hW
r

WhW ,)(, xx
xx
xxxx xx −′−∇=
′−
′−

∂
∂

=′−∇ ′
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2.2 Examples of Kernel Function

The integral approximation in term of the smoothing interpolant kernel W is thus given by:

(9)

The Gaussian kernel function is adequately smooth even for higher order derivatives and 
provides stable and accurate results even for disordered particles distributions.

Even if it is not compactly supported it approaches rapidly to zero and can be regarded as 
compact in numerical computations; however for higher order derivatives the radius of the 
support may increase significantly in order to assure the above requirement.

( ) ( ) ( )22
22

exp1, hr
h

hrW n −=
π

Gaussian
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2.2 Examples of Kernel Function

The integral approximation in term of the smoothing interpolant kernel W is thus given by:

(10)

where             and the normalization factor Cn assumes the following values depending on 

the problem dimension:

This function is widely used due to its narrower support: it resemble a Gaussian function but 
its second derivatives is piecewise linear function and is thus less smooth and stable when the 
particle disorder is high.
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2.3 Kernel Approximation of a Function derivative

When substituting the generic function f with ∇· f in Eq. (4) is obtained:

(11)

where the derivatives in the nabla operator are taken with respect to the point at x’. By 

considering the generic identity:

(12)

Substituting into Eq. (11) and applying the divergence theorem it follows:

(13)

( ) ( )[ ] ( )∫
Ω

′′ Ω′⋅∇=⋅∇ xx xx dhrWff ,

[ ] [ ] [ ]WfWfWf ∇⋅−⋅∇=⋅∇

( ) ( ) ( ) ( ) ( )[ ]∫∫
Ω

′′
Ω∂

Ω∇⋅′−′=⋅∇ xxxxx dhrWfdShrWff ,,
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2.3 Kernel Approximation of a Function derivative

When substituting the generic function f with ∇· f in Eq. (4) is obtained:

(11)

where the derivatives in the nabla operator are taken with respect to the point at x’. By 

considering the generic identity:

(12)

Substituting into Eq. (11) and applying the divergence theorem it follows:

(13)

The first integral on the right-hand side is evaluated on the surface elements dS of the 

frontier ∂Ω of the integration domain Ω: if the compact support of W falls within Ω the 

surface, this integral must be zero according to Eq. (7).

( ) ( )[ ] ( )∫
Ω

′′ Ω′⋅∇=⋅∇ xx xx dhrWff ,

[ ] [ ] [ ]WfWfWf ∇⋅−⋅∇=⋅∇

( ) ( ) ( ) ( ) ( )[ ]∫∫
Ω

′′
Ω∂

Ω∇⋅′−′=⋅∇ xxxxx dhrWfdShrWff ,,
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2.3 Kernel Approximation of a Function derivative

In virtue of the kernel property defined by Eq. (8) it results:

(14)

or simply:

(14’)

Eq. (14’) means that the differential operation on the function f is shifted on the smoothing 

function W.

( ) ( ) ( )[ ]∫
Ω

′Ω∇⋅′=⋅∇
)(

,
h

dhrWff
κ

xxxx

( ) ( ) ( )[ ]∫
Ω

′Ω∇⋅′=⋅∇
)(

,
h

dhrWff
κ

xxx
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2.4 Particle Approximation

At the generic i-th point the discrete form of the integral kernel approximation for the set of 

material particles representing the discretized continuum can be obtained by the so called 

particle approximation (denoted by <f(xi)>): ( ) ( )

( ) ( )∑

∫

=

Ω

≅

Ω=

N

j j

j
ijj

jiji

m
hrWf

dfhrWf
I

j

1
,

,)(

ρ
x

xx x

The summation is extended to the N
neighboring particles with volume 

∆Vj=mj/ρj in the compact support 

(or influence domain) ΩI of the i-th 

particle.

The symbol rij=|xi-xj| denotes the 

modulus of the relative distance.
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2.4 Particle Approximation

At the generic i-th point the discrete form of the integral kernel approximation for the set of 

material particles representing the discretized continuum can be obtained by the so called 

particle approximation (denoted by <f(xi)>): 

(15)

( ) ( )

( ) ( )∑

∫

=

Ω

≅

Ω=

N

j j

j
ijj

jiji

m
hrWf

dfhrWf
I

j

1
,

,)(

ρ
x

xx x

The estimate of the function f is thus carried out as the sum of the values it assumes on the 

neighboring points within the support weighted by the smoothing function W.
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2.4 Particle Approximation

Thus for the generic i-th particle the discrete particle approximation yields the following 

estimate of the function and its derivative based on the information contained at the 

neighboring particles in the support domain ΩI:  

(16)

From the above Eq.s it results that particle approximation allows to estimate the field 
variables without using a topological connective grid between the particles for carrying out 
the numerical integration.
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1
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xx
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2.4 Particle Approximation Properties

It is worth to note that the following properties exists for the particle approximation:   

(17)

where c is a constant. The first and second relation states that the estimate <> is a linear 

operator.

2121

11

2121

ffff

fcfc

ffff

=

=

+=+
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2.4 Particle Approximation

Alternative expressions for the derivative of the generic function f could be obtained by 

considering the following identities:  

(18)

(19)

being q an integer.

Since the particle approximation is a linear operator, by substituting Eq. (18) or (19) into the 
latter of Eq. (16) it follows respectively:

(20)

(21)

( ) ρρρ ∇⋅−⋅∇=⋅∇ fff
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,xxxρ

( ) ( ) ( ) ( )∑
=
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3. Implementation of Navier-Stokes Eq.s

3.1 Derivation of governing Eq.s (Navier-Stokes Eq.s) 

3.2 SPH formulation of Navier-Stokes Eq.s

3.3 Other numerical aspects relevant to SPH

3.4 Boundary conditions

30

3.1 Mass Balance or Continuity Eq.

According classical mechanics the mass of a fluid system is unchanged regardless of its state 
of motion. 

When considering a fluid element, the mass balance Eq. states that the time rate of change of 
the specific mass within the volume must equates the net flow in each coordinate direction; it 
can thus be obtained (summation over repeated indices is assumed):

(22)

( )
0=

∂

⋅∂
+

∂
∂

j

j

x
u

t
ρρ( )

0
1 x

u⋅ρ ( ) ( )
1

1

1
1

0

0
dx

x
uu ⋅

∂
⋅∂

+⋅
x

x

ρρ

t∂
∂ρ

1dx

( )
0

2 x
u⋅ρ

( ) ( )
2

2

2
2

0

0
dx

x
uu

x
⋅

∂
⋅∂

+⋅
x

ρρ

2dx

x1

x2
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3.1 Mass Balance or Continuity Eq.

By solving the product in the partial derivative of the second term on the left-hand side of Eq. 
(22) and applying the Reynolds Transport Theorem follows:

(23)

When considering an incompressible flow the time rate of change of mass when following a 

material fluid particle should be zero (i.e. Dρ/Dt=0):

(24)

j
j

j

j

x
u

tDt
D

Dt
D

x
u

Dt
D

∂
∂

+
∂
∂

=

=⋅∇+=
∂

∂
+

ρρρ

ρρρρ

with

0or0 u

0or0 =⋅∇=
∂

∂
u

j

j

x
u
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3.1 Momentum Balance Eq.

When applying the Newton Second Law to the material fluid particle of volume δV , the net 

force F it experiences must equals the product of its mass times the acceleration:

(25)

( ) 3,2,1== iF
Dt

uVD
i

iδρ

The net force F=(F1,F2,F3) is made 

up, for a fluid particle, of three 
contributions: body force, pressure 
force, viscous force. 
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3.1 Momentum Balance Eq.

By assuming body term due to the gravity only and that the axis x3 is directed upward, Eq. 

(26) turns into (summation over repeated indices is assumed):

(27)
( ) 3,2,111 3 =

∂

∂
+

∂
+∂

−=
∂
∂

+
∂
∂ i

xx
xgp

x
uu

t
u

j

ij

ij

i
j

i τ
ρ

ρ
ρ

The left-hand side term of Eq. (27) (i.e. the material or Lagrangian derivative) has been 
rewritten in Eulerian form through the Reynolds Transport Theorem: the time rate of change 

following the particle motion D/Dt consists of a local time rate of change (non-stationary 

field) and a convective term related to particle velocity (convective transport).

Local 
term

Convective 
term

( ) 3,2,1== iF
Dt

uVD
i

iδρ

When applying the Newton Second Law to the material fluid particle of volume δV , the net 

force F it experiences must equals the product of its mass times the acceleration:

(25)
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3.1 Momentum Balance Eq.

When considering a Newtonian fluid the viscous stress tensor τij is proportional to the strain 

rate tensor εij through a constant coefficient called dynamic viscosity µ: 

(28)

where δij is the Kronecker delta. Substituting into Eq. (27) yields: 

(29)

where the ratio µ/ρ is the dynamic viscosity often denoted by ν.
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3.2 SPH Formulation of Governing Eq.s

The SPH formulation of the Continuity Eq. can be obtained through the particle approximation 
procedure by taking into account the properties in Eq.s (17). 

By considering the identity (20) 

(20)

the continuity Eq. (23) 

(23)

with the assumption of the identity W(rij,h)=Wij becomes in the particle approximation:

(31)( )∑
=

∇⋅−−=
N

j
ijijj
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D

1
uuρ

u⋅∇−= ρρ
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D

( ) ( ) ( )[ ] ( )∑
=

∇⋅−=⋅∇
N

j
ijijjii hrWffmf

1
,xxxρ
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3.2 SPH Formulation of Governing Eq.s

The SPH formulation of the Momentum Eq.s can be obtained through the particle 
approximation procedure by taking into account the properties in Eq.s (17). 

From the Eq. (21) with q=2:

(21’)

and from the latter of Eq.s (29) 

(29)

considering an inviscid fluid (i.e. µ=0) follows:

(32)

being g the gravity acceleration vector.
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3.2 SPH Formulation of Governing Eq.s

In the Eq. (32) usually an additional term is added to the pressure term for achieving numeric 
stability especially when simulating shock wave front. Based on the von Neumann-Richtmyer
artificial viscosity for converting kinetic energy into heat during sudden compression of the 
continuum, Monaghan (1989) propose the following formulation which also prevents 
particles penetration: 

(33)

where cs i and cs j are the sound speed of particle i and particle j respectively, αM and βM are 

non-dimensional coefficients (typically βM=0) and φij:

(33’)

( )
( )
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3.2 SPH Formulation of Governing Eq.s

The hypothesis of weakly compressible fluid is assumed: this is valid as long as the local 

deviations of the fluid density from the reference value ρ0 remain sufficiently small. 

Such an hypothesis allows to adopt a relatively large time increment (which must satisfies the 
Courant condition) thus producing positive effects concerning the required computational 
resources.

For a single phase physical system the adopted form of the state equation is: 

(34)

with p0 the reference pressure, K and γ coefficients related to fluid properties and 

thermodynamic status. Eq. (34) allows to decuple the dynamic and cinematic problem.

The hypothesis of weakly compressible fluid implies that the Mach number remains 
sufficiently small; according to Monaghan (1994) the following condition have to be 

satisfied, with u a characteristic velocity of the problem:

(35)
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3.3 Other Numerical Aspects

XSPH: this variant, proposed by Monaghan (1994), corrects particle velocity assuring more 
ordered flow and prevents penetration between continua when high speed or impact occur.

(36)

Tensile instability: causes exponential growth of particles velocity for small perturbation of 
their position in a region of the continuum with a tensile state of stress. When compression 
occurs clumping of particles may took place. Modified kernel function have been proposed for 
remedial [Morris, 1996].

Correction of kernel: particles near free surface are characterized by a truncated kernel 
function due to the lack of neighbors. The normalization condition in Eq. (5) is no more 
satisfied and a possible solution is to multiply the kernel function for a normalization factor 
such as:

(37)
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3.3 Normalization of Kernel Derivatives

The effect induced by non-uniform covering of the support domain due to particle disorder

lead to an inaccurate estimate of the derivatives of the trial 

function f=1+4x2+4y2 [Falappi, 2006].
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3.3 Normalization of Kernel Derivatives

A normalization technique based on the Taylor series expansion of the kernel function can

be adopted for enhancing the solution accuracy of the SPH 
interpolation even near the free-boundaries.
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3.3 Other Numerical Aspects

Neighboring particles searching: particle approximation need to know the neighbors of a 

particle Pi to estimate the field variable at that point; neighbors of Pi are those particles inside 

the influence domain of Pi. Since computational point are not connected each other, neighbors 
of the generic particle changes in time as the fluid evolves in space and should be searched 
continuously. 

Even if different approaches exists for neighboring particle searching [Liu & Liu, 2007], linked

Ω

κh

κh
Influence 

domain of Pi

Pi

neighboring 

cells of Pi
list algorithm is widely 
adopted for constant 
smoothing length.

A mesh is overlaid on the 
computational domain and 
all particles are assigned 
to the corresponding cell 
through a linked list: the 
search of the neighbors of 

Pi restricts to the particles 
in the surrounding cell of 

Pi.

neighbor of 

particle Pi
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3.3 Solution Strategy

The following procedure provides a typical solution strategy for solving the governing Eq.s in 
the SPH method:

Domain discretization with 
particles

Eq.s discretization with 
particle approximation

Update particles 
acceleration

Update particles velocity 
and position

Update particles density and 
pressure

Initial/boundary conditions

Time increment

Smoothing corrections 

Neighboring particle search

Initialization 

Iterative calculation 
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3.4 Boundary Conditions (Boundary Forces)

In astrophysical problem no solid boundary exists; with the extension of the SPH method to 
fluid mechanic computations several approaches for treating boundary conditions were 
developed:

Monaghan & Koss (1999) proposed a technique based on the Lennard-Jones formulation 
for the intermolecular repulsive force. This method, so called boundary forces method, is 
based on the distribution of fixed “guard” particles along the boundaries which exerts suitable 
forces on the nature of the problem as function of the distance between the boundary and the 
inner particle.
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3.4 Boundary Conditions (Ghost Particles)

A different methodology for simulating solid boundary [Libersky et al., 1993] is to create, 
at each time step, additional particles as reflected images of the fluid particles located within 
a layer near the boundaries (seen as mirrors); the density (pressure) and velocity of each of 
these ghost particles are assigned so as to accomplish conditions of reflection or linear 
extension.

This method appears to be the most rigorous even if it become very cumbersome for three-
dimensional complex geometries.
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3.4 Boundary Conditions (Semi-Analytic Integral)

This method is based on a direct evaluation of the boundary contributions to the SPH 
approximation of the fluid-dynamic equations through the analytical computation of integral
terms [Di Monaco et al., 2009].

The solid boundary is replaced by the fluid which extends out with a suitable distribution of 
velocity and pressure: unlike ghost particle method, the boundary is supposed to be 
continuous (i.e. made up of infinite particles).

Influence 
domain of 

i-th particle
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4. Numerical Applications of the SPH method

4.1 One-dimensional wave generation 

4.2 Coupled moving boundary

4.3 Sediment flushing

4.4 Three-dimensional dambreak

48

4.1 One-Dimensional Wave Generation

A flume with piston-type wavemaker has been simulated for generating regular wave trains.

Piston-type 
wavemaker

Wave gauge

( )
( ) khkh
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S
H

22sinh
sinh4 2

0 +
=
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Piston-type 
wavemaker

e = 0.5 S0 sin(ωt)
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coscosh,
0

2

0

0

+
=

−=
ω

ωη

Transfer function

Surface elevation (far field)

The analytical solution [Biésel, 1951] provides the reference for evaluating the numerical 

results at the wave gauge.
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4.2 Coupled Moving Boundary

3-D view of 
the FB

3-D view of 
the FBPile mooring 

system

A floating box with one degree of freedom (heave) is simulated in the wave flume.

Numerical results are compared with experimental data [Manenti et al., 2008].

50

4.3 Sediment FlushingT= 0 s

T= 36 s

T= 48 s

T= 0 s

T= 48 s

Physical and numerical two-dimensional model of sediment 

flushing during the opening of a bottom outlet of a dam 

[Agate et al., 2009], [Manenti et al, 2009]. 
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4.4 Three-Dimensional Dambreak
A general approach for modeling solid boundaries with the integral semi-analytic technique 

has been developed for handling complex three-dimensional geometries [Di Monaco et al., 

2009]. 
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