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Summary

Solutions to engineering problems depend more and more on numerical

methods. One of these methods, the so-called finite element method, has

acquired over the years a central role in solving such problems. Its versatil-

ity relies on the capacity of the method to discretize the physical domain of

the problem into simple elements: triangles, quadrilateral, tetrahedra, etc.

However, for problems with complex geometries, interfaces, or involving im-

portant topological changes in time such as fluid-structure interaction prob-

lems, the construction of the domain partition becomes a bottleneck. Many

solutions have been proposed, such as the so-called immersed approaches.

Moving from this framework, in the present work we first analyze several

immersed strategies from the literature. A noticed crucial issue is the accu-

racy of immersed finite elements approaches. The goal of the present work

is to provide an accurate immersed method.

The envisaged strategy consists in locally remeshing elements cut by the

structure. A notable feature of this approach is the presence of anisotropic

or distorted elements. Such elements are non-standard and many questions

remain open such as their inf-sup stability with mixed finite elements for

incompressible flows, especially for triangles. We first focus on the Hood-

Taylor element and we show inf-sup stability issues in the remeshing strategy,

but inf-sup instability is obtained in rare occasions, and thus this mixed

element may be inf-sup stable for wide range of applications. Nevertheless,

we present a strategy to stabilizes the element.

Finally, we present a fluid-structure interaction problem with an thin

hinged rigid leaflet to which we apply the locally remeshing strategy. In

this problem, since the pressure is likely to be discontinuous across the solid,

mixed elements with discontinuous pressures are a natural choice. Again, we
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focus on inf-sup stability issues for two common mixed elements with discon-

tinuous pressures, namely the schemes with constant and with discontinuous

piecewise linear pressures. We show that these two elements are likely to be

inf-sup unstable when the distortion of the mesh is important, while the ele-

ments with continuous pressures studied in this work remain inf-sup stable,

though they are not straightforward to implement since discontinuity across

the structure must be taken into account.

Keywords: mixed finite elements, incompressible viscous flows, fluid-

structure interaction, Stokes and Navier-Stokes equations, immersed meth-

ods, anisotropic meshes
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CHAPTER 1

Introduction

In this thesis we deal with fluid dynamics problems. In particular, we

treat incompressible and viscous fluids, which are commonly described using

the incompressible Navier-Stokes system of equations in the velocity-pressure

formulation. These equations are based on the assumptions that: the fluid

is incompressible, isothermal, the density constant, and Newtonian (i.e., the

relation between the stress and the strain rate is linear). In particular, it

follows that because the density is constant the conservation of mass reduces

to the incompressibility constraint, that is the divergence of the velocity

is null. Furthermore, because the fluid is isothermal the conservation of

momentum and conservation of mass are decoupled from the conservation of

energy.

Finding the analytical solution of the Navier-Stokes system of equations

is often impossible. These solutions exist but only for simple data. As a

consequence, we build a discrete model to the continuous one which we can

solve using computers. The main idea is that, for u the solution of the

continuous problem and uh the solution of the discrete problem, where h is a

parameter describing the discretization of the problem, we require that the

error (in a suitable norm) u− uh tends to zero, as h tends to zero.

There are several techniques available to obtain a discrete problem asso-

ciated to the continuous one. In this thesis, we deal with the finite element

method. This method is based on the Bubnov-Galerkin method, i.e., by

building a finite dimensional subspace of the space in which we seek a so-

lution to a weak (integral) form of the discrete problem. The finite element

method provides a procedure to build such a subspace. We first mesh the

domain by dividing it into elements (e.g., triangles), we then associate a

function (e.g., a polynomial) on each element, and finally we provide global

(i.e, over the whole domain) regularity and differentiability properties to the
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set of functions defined on each element. The solution to the discrete prob-

lem, uh, is thus sought in such a space and h is usually the diameter of the

element.

A key issue of the finite element method is to measure how fast finite ele-

ments converge to the solution of the continuous problem. Roughly speaking,

the rate of convergence of the finite element method depends on the degree

of the polynomial, in case we use polynomials, and of the regularity of the

solution of the continuous problem. For example, if the solution is suffi-

ciently regular then piecewise linear elements converge quadratically in the

L2-norm. The regularity of the solution of the continuous problem may de-

pend on the geometry of the domain, initial and boundary conditions, on

the physical parameters of the equations as well as on the load.

The mixed finite element method is a common approach to solve in-

compressible fluid dynamics problems. In this method, the incompressibility

constraint is enforced weakly via a Lagrange multiplier. Because we use

the velocity-pressure formulation of the Navier-Stokes system of equations,

the Lagrange multiplier corresponds to the pressure. As a consequence, two

fields have to be discretized, hence the term mixed. The mixed finite ele-

ment method explains, among other things, how to select the velocity and

the pressure finite element spaces since they cannot be picked arbitrarily.

The reason is that the well-posedness of the continuous problem does not

extend automatically to the discrete one, on the contrary to the finite element

method with the Bubnov-Galerkin approach. With mixed finite elements a

specific condition for the discrete problem must be checked. In the literature

that constraint is often named inf-sup.

Problems we have in mind are related to interface problems, in particular

to fluid-structure interaction ones where the common boundary between the

fluid and the solid defines the interface. For such type of problems, their

solutions are expected to show singularities or discontinuities across the in-

terface. However, the solution is likely to be regular away from the interface,

and thus a strategy could be to find a way to correctly capture the singular-

ities around the interface. We may divide such problems in two types: with
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sharp or spread interfaces. For the former, the interface is codimension one

with respect to the geometry of the problem, while the latter is codimension

zero. It implies that in the first case the singularity is sharp while, in the

second case, it induces large gradients. In this work we only deal with sharp

interfaces.

A common approach to solve sharp interface problems is to divide the

“global” domain, i.e., the domain of definition of the problem, into sub-

domains that are separated by interfaces. Then, sub-finite element spaces

are built on each sub-domain and interfacial constraints are enforced between

the spaces. If we look at the problem in this way we might see new issues, in

particular for moving interfaces: how to build a mesh for the sub-domains

and how to enforce the constraints at the interface.

Regarding the first issue, building meshes for the sub-domains is difficult

and many methods, instead, retain a mesh for the global domain. As a

consequence, they often loose accuracy because the finite element spaces

do not catch the singularity or the discontinuities, in general because the

elements of the mesh do not fit the interface. In the literature such an

approach is called “immersed”. The term “immersed” has to be taken in a

broad sense, i.e., it includes methods such as the immersed boundary method,

the fictitious domain, embedded and unfitted methods. The present work is

grounded on immersed approaches and we aim at providing an accurate one.

The second issue is also an active area of research, especially regarding

weak enforcement of interfacial constraints, i.e., the constraints are enforced

in the weak formulation of the problem and not in the finite element spaces.

In the present work we do not get into details regarding weak strategies

for enforcing interfacial constraints. Rather, the method we present rely

on strong enforcement of interfacial constraints, that is directly into the

finite element spaces. However, some numerical examples with Lagrange

multipliers for such constraints are presented as well as discussions of various

weak approaches from the literature.

The core of the present work is based on a strategy that consists in

remeshing solely the elements of the mesh of the global domain, that are

3



cut by the interface. For 2D problems, such a strategy involves anisotropic

triangles, which are very flat triangles. It is well-known that the finite el-

ement method retains optimal convergence on anisotropic meshes (under

several conditions) but their use for incompressible flow problems with the

mixed finite element method (which we describe later) has not been exten-

sively discussed in the literature and not at all for the proposed remeshing

strategy.

The mixed finite element method is well established and there exists

many velocity-pressure schemes that have been formally proven to be inf-sup

stable. However, most of the proofs require the mesh to be isotropic and the

necessity of this assumption is an open issue for many mixed finite element

schemes. However, we employ anisotropic elements and this issue is crucial

and the present work provides new results regarding inf-sup stability of some

common finite element schemes on anisotropic meshes and, in particular, in

the context of the presented “immersed” approach. In this work we only deal

with 2D problems and the results are presented for triangles.

1.1. Organization of the thesis

The thesis is divided in three main chapters.

The first main chapter deals with a 1D study of several methods found

in the literature for interface problems, in particular for fluid-structure in-

teraction ones. This work has been performed in collaboration with Lucia

Gastaldi and Daniele Boffi. It has been published in [7].

The second main chapter discusses a method based on the conclusive

considerations of the first one for the two-dimensional steady incompressible

Stokes problem with an immersed boundary. In this chapter we do not have

an interface but an immersed boundary. However, interfaces and immersed

boundaries share, for our problems, two characteristics: they are immersed

in the global domain and essential constraints are enforced on them. This

chapter contains most of the necessary material for the interface problem

discussed in the last chapter. As discussed before, the method we study

consists in remeshing solely the elements of the mesh of the global domain

that are crossed by the immersed boundary such that newly added elements,
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called sub-elements, fit the immersed boundary. We use such a subdivision

strategy to build a new finite element basis such that we may: i) represent

accurately the immersed boundary, and ii) impose Dirichlet boundary con-

ditions on it in a strong way. However, the subdivision process may imply

the generation of anisotropic elements, which, for the incompressible Stokes

problem, may result in the loss of inf-sup stability even for well-known stable

mixed finite element schemes. This chapter focuses on that issue with contin-

uous pressure mixed finite elements. In particular, we test the Hood-Taylor

element showing that it may not be stable in the present framework. We

also demonstrate numerically that by adding a cubic bubble to the velocity

space we stabilize the element on the generated anisotropic triangles. This

work has been done jointly with Franco Brezzi and it has been published in

[8].

The last main chapter applies the results of the second chapter to a fluid-

structure interaction problem where the structure is a hinged rigid leaflet,

i.e., a simple bar. Advantages are twofold: as pointed out in the second

chapter, essential constraints between the fluid and the solid may be directly

enforced in the finite element spaces and, for the fluid-structure problem in

mind, we may employ elements that permit the fluid stress to be discon-

tinuous across the structure. Because anisotropic triangles are employed we

focus on their inf-sup stability, and since elements with discontinuous pres-

sures are convenient to use we test them in this chapter. We actually show

that their use with anisotropic triangles is limited and that mixed elements

with continuous pressure perform much better. The extensive study of the

mixed element with discontinuous pressures is presented in the third appen-

dix. This work has been done in collaboration with Alessandro Veneziani.

We then draw our conclusions with considerations on possible future

works.

Four appendices are attached. The first appendix has extended numerical

tests for the first chapter. The second appendix contains numerical results

on the use of a Lagrange multiplier for imposing Dirichlet boundary condi-

tions for a two-dimensional incompressible steady Stokes problem. The third

5



appendix is a complement of Chapter 3, which provides extended results of

the finite element pairs studied in Chapter 3, but we also add new results

on the two mixed finite element schemes with discontinuous pressures used

in Chapter 4. This work has been done in collaboration with Franco Brezzi.

The last appendix are notes related to the finite element implementation.
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CHAPTER 2

A study on immersed 1D finite element methods

2.1. Introduction

Increasingly enhanced computer performances allow nowadays to tackle

very large fluid-structure interaction problems, and state of the art examples,

such as parachutes, wind turbines, or biomechanics applications, are now

the object of active research (see, e.g., [88]). Furthermore, problems with

very large structural deformations are still open to major improvements. In

particular, a promising class of methods for such a type of problems belongs

to so-called immersed boundary approaches. Many variants of this category

of techniques have been proposed in the literature under several names, such

as immersed boundary methods, unfitted and embedded methods, fictitious

domain methods, etc.

Accordingly, the goal of the present work is to give highlights of some

fundamental issues of immersed approaches by studying a simple 1D problem

within the finite element method. In particular, we study some original

approaches dating back to the 70-90’s and a more recent one based on the

extended finite element method, able to cure some issues of the original

methods. For the latter method, we also focus on the issues that may be

encountered in higher dimensions, as well as on possible solutions.

We consider problems involving multiple materials, and hence character-

ized by the presence of an interface, on which constraints have to be imposed.

For instance, fluid-structure interaction situations belong to this category of

problems, where velocity and stress continuities have to be imposed at the

fluid-structure interface. From the numerical standpoint, two different ap-

proaches may be considered, the first one with a mesh fitting the interface,

and the second one with a mesh not fitting the interface. The latter ap-

proach, named unfitted or embedded, has the advantage of enabling the use
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of meshes independent of the geometry, and it is the focus of the present

chapter.

The present problem is also referred in the literature as an elliptic in-

terface problem. Typically, solutions of elliptic interface problems are not

smooth over the whole domain, but they are smooth away from the inter-

face (see, e.g., [64], [66], and [77]). Earliest error estimates can be traced

back to 1970 with the work of Babǔska (see [10]) in which the author pro-

vided a method based on a penalty approach. An almost optimal order of

convergence is recovered for piecewise linear elements in the H1-norm, more

preciselyO(h3/4). In [14], Barrett et al. proposed to enrich the finite element

space on elements cut by the interface and to enforce weakly the continuity

constraint using a penalty approach. They proved the optimal error esti-

mate in the H1-norm but the estimate in the L2-norm is still suboptimal,

i.e., O(h3/2). However, these authors show that the optimal error in the

L2-norm can be recovered far away of the interface. In [54] a similar method

is proposed using the Nitsche method, instead of the penalty method, and

the optimal error estimate is obtained in both H1- and L2-norms. In [68],

the finite element space is not enriched, but a constraint on the mesh around

the interface is added. The constraint consists in defining a “resolution” of

the interface by the mesh, and it has to be at least of O(h2) for piecewise

linear elements such that the optimal rate of convergence for the L2- and

H1-norms can be attained. However, the development of methods for ellip-

tic interface problems differs from the development of fictitious methods for

fluid-structure interaction problems, even if many similarities between the

various approaches may be portrayed. In the present chapter we consider

methods proposed in the literature for fluid-structure interaction problems.

In this context, we discuss four possible schemes: i) a one-field Ficti-

tious Domain method; ii) a continuously extended two-field Fictitious Domain

method with Boundary Lagrange Multipliers; iii) a continuously extended two-

field Fictitious Domain method with Distributed Lagrange Multipliers; iv) a

discontinuously extended Fictitious Domain method with boundary Lagrange
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multipliers, named herein two-field Discontinuous Fictitious Domain. In the

following, we briefly discuss the four methods.

The one-field Fictitious Domain method (shortly, one-field FD) is in-

spired by the Immersed Boundary method, proposed by Peskin in the 70’s

(see [81] and references therein), and it is based on rewriting the problem as

a function of a single field defined on the global domain, which is the union

of the fluid and the solid domains. In general, the fluid model is extended

over the solid domain, and the solid problem acts as a constraint on the fluid

extended domain. It follows that the value of the global fluid field naturally

describes the fluid in the fluid domain and the solid in the solid region. Since

we deal with one field over the whole domain, the continuity at the interface

is automatically satisfied, while a discontinuity in the gradient of the global

fluid field may occur, with important implications for numerical methods.

The continuously extended two-field Fictitious Domain method with

Boundary Lagrange Multipliers (shortly, two-field FD/BLM) is inspired by

the original approach proposed by Glowinski in the 90’s (see [52] and ref-

erences therein). The method formalizes the problem with two fields: the

global fluid and the solid. The global fluid field is defined on the global do-

main, such that it describes the fluid in the fluid domain and it is non-physical

(fictitious) in the solid domain. The continuity between the two fields at the

interface is enforced with a boundary Lagrange multiplier, that may intro-

duce a discontinuity in their gradients between the physical fluid domain

and the non-physical fluid region. Indeed, the Lagrange multiplier repre-

sents the jump in the gradient between the physical and the non-physical

fluid domains.

The continuously extended two-field Fictitious Domain method with dis-

tributed Lagrange multipliers (shortly, two-field FD/DLM) is also described

in [52] and is based again on two fields, as the previous method, but here

the fictitious fluid and the solid fields are constrained to match in the solid

domain with a distributed Lagrange multiplier. However, similarly to what

happens with the two techniques previously described, a discontinuity in the
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gradient is introduced in the global fluid field between the physical fluid do-

main and the non-physical fluid region. Indeed, the distributed Lagrange

multiplier imposes that the non-physical fluid behaves as the solid, thus im-

posing a jump at the interface.

The discontinuously extended Fictitious Domain method with boundary

Lagrange multipliers (shortly, two-field DFD/BLM), inspired by the extended

finite element method, has been proposed in [48]. The method is a two-field

problem, where the fluid is extended in the fictitious domain by zero, and

thus is based on the introduction of a strong discontinuity at the interface

between the physical fluid and the fictitious fluid. As a consequence the

method differs from all three methods previously described, which are char-

acterized by a continuous global fluid field. Since it is a two-field method we

have to enforce the continuity between the two fields at the interface. This

operation is performed with a boundary Lagrange multiplier.

In this work, we propose a qualitative and quantitative analysis of the

four previously mentioned techniques within the framework of the finite el-

ement method. For each scheme we present a variational formulation and

its finite element approximation. The focus is on the discrete schemes and

their performance. In particular, the variational method is presented for-

mally, also if without any rigorous mathematical analysis, and it serves as

a justification of the proposed algorithms. We aim at studying a simple

model reproducing the typical characteristics of a fluid-structure problem,

that is, a problem with continuity of the primal fields and with a possible

discontinuity in the gradient at the interface. In fact, we focus on a steady

Poisson problem defined on 1D domains with two different materials, where

one surrounds the other; the problem under consideration requires that the

continuity of the primal fields and of their fluxes is maintained at the inter-

face. The main reasons for studying primarily a 1D problem are to provide

easy and comprehensive formulations of the various methods and to analyze

features of the methods that are already distinctive in 1D; however, practical

implications for extensions to higher dimensions are identified and discussed

as well.
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We perform numerical tests to analyze the convergence properties in the

L2-norm, in theH1-norm, and in theH1-norm far away from the interface, of

the four methods with different mesh refinement strategies and various mate-

rial parameters. In particular, we show that, using linear finite elements, the

one-field FD, two-field FD/BLM, and two-field FD/DLM methods are only

first-order accurate, while the two-field DFD/BLM method is second-order

accurate. We also point out the importance of quadrature over elements cut

by the interface, since it is directly related to computational efficiency. As

mentioned above, the chapter is then completed by a discussion on critical

problems in higher dimensions, in particular about the imposition of the con-

tinuity constraint. The main interest in this respect is in the construction of

second order accurate schemes for the approximation of interface problems

with non fitting meshes.

Before proceeding with the core of the chapter, we wish to emphasize

that we do not discuss here other second-order accurate approaches, such as

the Fat Boundary method (see [74] and [19] for an analysis with a similar 1D

problem) and the Immersed Interface method (see [69]). The Fat Boundary

method uses an iterative Dirichlet/Neumann domain decomposition type of

approach, while the Immersed Interface method modifies locally (i.e., on ele-

ments crossed by the interface) the shape functions such that they represent

the interface constraints, introducing physical parameters in the definition

of the shape functions. We therefore believe that these methods do not fit

within our comparative study.

Moreover, we highlight that a Poisson problem similar to the one treated

in the present chapter has been used within the framework of the spectral

element method in [94]. In particular, Vos et al. investigated the two-field

FD/DLMmethod, the Finite Cell method (see [78]) with boundary Lagrange

multipliers, the Fat Boundary method, and a modified formulation of the Fat

Boundary method with boundary Lagrange multipliers. We note that the

Finite Cell method shares similarities with the two-field DFD/BLM method

we consider herein, since the physical parameter for the global fluid is set to a

very small value in the solid domain. With this chapter, we aim at providing

11



A B C D

Ω1 Ω2 Ω1

Σ Σ

(a) Geometry of the problem. (b) Analytical solution for a uniform load,

showing a kink at the interface.

Figure 2.1. A two material 1D Poisson framework.

a similar study of various fictitious domain methods with traditional finite

elements, and we believe that such a study highlights some fundamental

issues that one has to take into account to develop this type of methods.

2.2. Model problem

We consider a Poisson problem characterized by two distinct materials,

such that at the interface only continuity of the primal fields and of the

corresponding fluxes have to be guaranteed.

As described in Fig. 2.1, Material 1 and Material 2 are defined on Ω1 and

Ω2, respectively, with Ω1 = ]A,B[∪ ]C,D[ and Ω2 = ]B,C[. We denote the

interface between Ω1 and Ω2 by Γ (i.e., Γ = {B,C}). The global domain Ω

is the union of Ω1, Ω2, and Γ, that is Ω = ]A,D[. External boundaries (i.e.,

∂Ω = {A,D}) are denoted by Σ.

In the following we introduce classical functional spaces that will be

used in the rest of the chapter. In particular, L2(Ω) is the space of square

integrable functions on Ω, H1(Ω) is the space of functions defined on Ω that

belong to L2(Ω) together with their first derivative, and H1
0 (Ω) the space of

functions belonging to H1(Ω) and vanishing on ∂Ω.

The strong formulation for the described problem can be written as fol-

lows:
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Find two functions u1 : Ω1 → R and u2 : Ω2 → R smooth enough

such that

(2.1)



−(α1u
′
1)′ = f1 on Ω1,

−(α2u
′
2)′ = f2 on Ω2,

u1|Γ = u2|Γ,

(α1u
′
1)|Γ = (α2u

′
2)|Γ,

u1|Σ = 0,

where α1 ≥ ᾱ > 0, α2 ≥ ᾱ > 0, f1, and f2, are given regular functions,

and u|Γ is the restriction of u on Γ.

Remark 1. In Problem (2.1), we consider for simplicity homogeneous

Dirichlet boundary conditions on Σ but other boundary conditions can be

considered as well.

The standard weak formulation corresponding to Problem (2.1) can be

readily obtained as:

Find u ∈ H1
0 (Ω) such that

(2.2)
∫

Ω
αu′v′dx =

∫
Ω
fvdx ∀v ∈ H1

0 (Ω),

where

α =

α1 on Ω1

α2 on Ω2

, and f =

f1 on Ω1

f2 on Ω2

.

We may also split the one-field Problem (2.2) into:

Find (u1, u2) ∈ W = {(v1, v2) ∈ H1(Ω1) × H1(Ω2); with v1|Σ =

0 and v1|Γ = v2|Γ} such that

(2.3)
∫

Ω1

α1u
′
1v
′
1dx+

∫
Ω2

α2u
′
2v
′
2dx−

∫
Ω1

f1v1dx−
∫

Ω2

f2v2dx = 0

∀(v1, v2) ∈W .
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Remark 2. A discretization with finite elements of Problem (2.3) re-

quires two partitions, one for Ω1 and another one for Ω2. In 1D this implies

that the problem is fitted, since the partitions share common nodes at their

interfaces. However, in higher dimensions, following the denomination of

[56], we distinguish two interface fitted cases: matching and non-matching.

We say that an interface fitted problem is matching when all nodes on the in-

terface are shared by both meshes. On the contrary, we say that an interface

fitted problem is non-matching when the nodes lying on the boundary are not

necessarily common to both meshes.

Remark 3. We add two comments on formulation (2.3). Firstly, it is

clear that if integrals are evaluated exactly, then the problem is equivalent

to a standard Galerkin approach. However, when considering multidimen-

sional problems, integration might be a difficult task and we may consider

two different meshes for Material 1 and Material 2. Such a strategy results

in a different method, that may converges, or may not, as it possibly loses

consistency. Such issues are shown in numerical tests. Secondly, the reader

may see the one-field FD method as a heuristic way for dealing with more

complex problems such as those presented in, e.g., [24] and [23].

2.3. A one-field Fictitious Domain method

The one-field Fictitious Domain method (one-field FD) consists in rewrit-

ing Problem (2.3) in terms of a single continuous field u defined over the

whole domain Ω, where u|Ω1
= u1 and u|Ω2

= u2, with u|Ωi denoting the

restriction of u on Ωi. Since we deal with a single continuous field u, the

continuity constraint at the interface is automatically satisfied, while the

continuity of the flux still needs to be enforced.

2.3.1. Continuum formulation

The strong formulation for the one-field Fictitious Domain problem can

be written as follows:

14



Find one function u : Ω→ R with u|Σ = 0 such that

(2.4)

−(αu′)′ − f = 0 on Ω,

Jαu′KΓ = 0,

where we split α and f defined in Problem (2.2) such that

α =

α1 on Ω1

(α2 − αf ) + αf on Ω2

,

with αf chosen such that αf ≥ ᾱ > 0, and

f =

f1 on Ω1

(f2 − ff ) + ff on Ω2

.

The symbol J·KΓ denotes the jump on Γ.

Remark 4. Since we consider an extension of Material 1 over Ω2 we

denote Material 1 over the whole domain Ω as extended (thus the subscript

e) and the non-physical part (i.e., the part on Ω2) as fictitious (thus the

subscript f). These notations are used hereafter.

Setting

(2.5) αe =

α1 on Ω1

αf on Ω2

, and fe =

f1 on Ω1

ff on Ω2

,

the weak formulation for Problem (2.4) can be readily obtained as:

Find one function u ∈ H1
0 (Ω) such that

(2.6)


∫

Ω
αeu

′v′dx−
∫

Ω
fevdx+

∫
Ω2

(α2 − αf )u′v′dx

−
∫

Ω2

(f2 − ff )vdx = 0,

∀v ∈ H1
0 (Ω).

It is clear that Problem (2.6) is equivalent to Problem (2.3) in the sense

that u|Ω1
= u1 and u|Ω2

= u2. Moreover in Problem (2.6) we look for
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(a) An embedded domain strategy.

A B C D

Ωh Ωk
2

h

k

(b) an unfitted mesh strategy.

Figure 2.2. An embedded domain method.

a function u ∈ H1
0 (Ω), thus satisfying automatically the continuity of the

primal field on Γ. The continuity of the flux on Γ is instead naturally enforced

in the weak formulation by continuity of the test function; see also [29], [30],

and [89].

2.3.2. Discrete formulation

As discussed in Remark 2, we construct meshes with respect to the do-

main of integration for the integrals involved in the problem formulation.

In Problem (2.6) integrals are defined on Ω and Ω2, and, accordingly, we

construct partitions for such domains. We consider Ωh and Ωk
2 as partitions

for Ω and Ω2, respectively, where h and k are the sizes of the largest element

in each partition (see Fig. 2(b)).

Given a finite-dimensional space V h ⊂ H1
0 (Ω), the discrete formulation

for Problem (2.6) can be readily obtained as:

Find uh ∈ V h such that

(2.7)


∫

Ωh
αe(u

h)′(vh)′dx+

∫
Ωk2

(α2 − αf )(uh)′(vh)′dx =∫
Ωh
fev

hdx+

∫
Ωk2

(f2 − ff )vhdx

∀vh ∈ V h.

Given the following approximation

uh(x) = N(x)û,

with N(x) being standard piecewise linear shape functions defined on Ωh and

û the primal field nodal value vector, the algebraic formulation corresponding
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Ωh Ωk

2

Figure 2.3. Quadrature issue on elements of Ωk
2 for shape

functions with support on a partition for Ω. If we consider the

shape function Ni (defined on a partition of Ω with support

on [xi−1, xi+1]) admitting a kink on xi in an element of a

partition for Ω2 (Kj = [yj , yj+1]), an exact integration on

Kj requires to integrate on two sub-elements: [yj , xi] and

[xi, yj+1]. The blue zone corresponds to the integral of Ni on

[yj , yj+1].

to Problem (2.7) reads:

(2.8) Aû = b,

where 
A|ij =

∫
Ωh
αeN

′
iN
′
jdx+

∫
Ωk2

(α2 − αf )N ′iN
′
jdx,

b|i =

∫
Ωh
feNidx+

∫
Ωk2

(f2 − ff )Nidx.

Remark 5. We note that in Equation (2.8) the evaluation of the integrals

defined over Ωk
2 is not an easy task. In fact, the functions Ni are polynomials

over the elements of Ωh; and may not be necessarily global polynomials. They

are in general piecewise polynomials, when they are considered with respect

to the elements of the discretization Ωk
2. As an example, we may consider the

case presented in Fig. 2.3. From a practical point of view, the main issue is to

integrate over sub-elements which may be not trivial in higher dimensions.

We do not discuss in detail such an issue in the present chapter, but the

interested reader is referred to, e.g., [47] for a review on possible integration

strategies.
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2.4. A continuously extended two-field Fictitious Domain method

with boundary Lagrange multipliers

The one-field Fictitious Domain method, described in the previous sec-

tion, was based on the introduction of a single field u defined over the whole

domain Ω. On the contrary, the two-field Fictitious Domain method intro-

duces an extended field for Material 1 over the whole domain Ω, which is

fictitious on Ω2.

In the corresponding discrete formulation we consider unfitted meshes

discretizing two fields, and hence we may use a boundary Lagrange multiplier

to weakly enforce continuity of the primal fields in both materials at the

interface.

In order to obtain a formulation that is consistent with Problem (2.1)

we introduce an extension of u1 on Ω2 that does not necessarily maintain

continuity of the derivatives of the extended u1 on Γ. As a consequence,

we have to consider on which side of the interface (physical or fictitious) we

impose continuity of the flux; for convenience, we hereafter denote by Γ1 and

Γ2 the limit to Γ approached from Ω1 and Ω2, respectively.

2.4.1. Continuum formulation

The two-field Fictitious Domain formulation is then given by:

Find two functions ue : Ω→ R and u2 : Ω2 → R, with ue|Σ = 0, such

that

(2.9)



−(αeu
′
e)
′ = fe on Ω,

−(α2u
′
2)′ + (αfu

′
e)
′ = f2 − ff on Ω2,

ue|Γ = u2|Γ,

(α1u
′
e)|Γ1

= (α2u
′
2)|Γ2

.

The weak formulation for Problem (2.9) can be readily obtained as:
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Find two functions (ue, u2) ∈ EΓ = {(ue, u2) ∈ H1
0 (Ω) ×

H1(Ω2); with ue|Γ = u2|Γ} such that for all (ve, v2) ∈ EΓ we have∫
Ω
αeu

′
ev
′
edx+

∫
Ω2

α2u
′
2v
′
2dx−

∫
Ω2

αfu
′
ev
′
2dx =∫

Ω
fevedx+

∫
Ω2

(f2 − ff )v2dx.

(2.10)

Since the discrete space for the extended Material 1 field may not be in-

terpolatory at the interface, we choose to enforce weakly with a boundary La-

grange multiplier the constraint ue|Γ = u2|Γ, giving rise to the two-field Fic-

titious Domain with Boundary Lagrange Multipliers (two-field FD/BLM).

Find two functions ue ∈ H1
0 (Ω) and u2 ∈ H1(Ω2), and the Lagrange

multipliers λB ∈ R and λC ∈ R such that

(2.11)



∫
Ω
αeu

′
ev
′
edx+ λBve(B)− λCve(C) =

∫
Ω
fevedx∫

Ω2

α2u
′
2v
′
2dx−

∫
Ω2

αfu
′
ev
′
2dx− λBv2(B)

+ λCv2(C) =

∫
Ω2

(f2 − ff )v2dx,

ξB(ue(B)− u2(B)) = 0,

ξC(ue(C)− u2(C)) = 0,

∀v1 ∈ H1
0 (Ω), ∀v2 ∈ H1(Ω2), ∀ξB ∈ R and ∀ξC ∈ R.

Remark 6. We point out that the space of the Lagrange multiplier corre-

sponds to the trace of H1(Ω) on Γ, i.e., H−1/2(Γ), the dual of H1/2(Γ) since

Γ ∩ ∂Ω = ∅. In one-dimension, the trace of H1 is R. It can be shown that

the Lagrange multipliers can be interpreted as the flux across the interface:

λC = −α2u
′
2(C) + α1u

′
e(C) and λB = −α2u

′
2(B) + α1u

′
e(B).

By introducing a Lagrange multiplier we add a constraint to the system,

resulting in a saddle point problem. In order for a saddle point problem to

be well-posed an inf-sup condition has to be satisfied (see [22] and references
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therein). At the discrete level, such an issue is a very difficult task. We

discuss the problem in Section 2.8.

2.4.2. Discrete formulation

As explained in Section 2.3.2 for the discrete formulation of the one-

field FD method, we consider Ωh and Ωk
2 to be partitions for Ω and Ω2,

respectively, with mesh sizes h and k. Given finite-dimensional spaces V h

and W k such that V h ⊂ H1
0 (Ω) and W k ⊂ H1(Ω2), the discrete formulation

for Problem (2.11) reads:

Find two functions uhe ∈ V h and uk2 ∈W k, and Lagrange multipliers

λ̃B ∈ R and λ̃C ∈ R, such that

(2.12)



∫
Ωh
αe(u

h
e )′(vhe )′dx+ λ̃Bv

h
e (B)− λ̃Cvhe (C) =

∫
Ωh
fev

h
e dx,∫

Ωk2

α2(uk2)′(vk2 )′dx−
∫

Ωk2

αf (uhe )′(vk2 )′dx

− λ̃Bvk2 (B) + λ̃Cv
k
2 (C) =

∫
Ωk2

(f2 − f1)vk2dx

ξB(uhe (B)− uk2(B)) = 0,

ξC(uhe (C)− uk2(C)) = 0,

∀vhe ∈ V h, ∀vk2 ∈W k, ∀ξB ∈ R and ∀ξC ∈ R.

Given the following approximations

uhe (x) = N(x)ûe, uk2(x) = M(x)û2,

where N(x) and M(x) are standard piecewise linear shape functions, ûe and

û2 are the primal field nodal value vectors, and λ̂ = {λB, λC}>, the algebraic
formulation corresponding to Problem (2.12) reads

(2.13)


Ae 0 L>e

−Ae2 A2 −L>2

Le −L2 0




ûe

û2

λ̂

 =


fh

fk

0

 .
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The components of the system matrix are given by



Ae|ij =

∫
Ωh
αeN

′
iN
′
jdx,

Ae2|ij =

∫
Ωk2

αfM
′
iN
′
jdx,

A2|ij =

∫
Ωk2

α2M
′
iM
′
jdx,

Le|ij = (δiNj)|Γ,

L2|ij = (δiMj)|Γ,

where δ1|B = 1, δ1|C = 0, δ2|B = 0, δ2|C = 1, and those of the right hand

side by 
fh|i =

∫
Ωh
feNidx,

fk|i =

∫
Ωk2

(f2 − ff )Midx.

Remark 7. In system (2.13) the terms Ae2 is difficult to compute since

the functions Ni are not defined on Ωk
2 but on Ωh (see Remark 5 for a dis-

cussion on the implementation).

2.5. A continuously extended two-field Fictitious Domain method

with distributed Lagrange multipliers

In the two-field Fictitious Domain method, described in Section 2.4, we

considered two fields ue and u2, where ue was u1 extended continuously over

Ω2. The coupling between ue and u2 at the interface was enforced with a

boundary Lagrange multiplier. Since ue is fictitious on Ω2 (i.e., it has no

physical meaning) we may constrain the extension of u1 on Ω2 such that

ue|Ω2
= u2 (see [52]). Since the nodes of the meshes for Ω1 and Ω2 are

not necessarily common to both meshes, we may choose to enforce weakly

the constraint ue|Ω2
= u2 with a distributed Lagrange multiplier, giving rise

to the two-field Fictitious Domain with Distributed Lagrange Multipliers

(two-field FD/DLM).
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2.5.1. Continuum formulation

Analogously to the case of the two-field FD/BLM method, the weak

formulation for the two-field Fictitious Domain with a strong enforcement of

the constraint ue|Ω2
= u2 is given by:

Find (ue, u2) ∈ EΩ2 = {(ue, u2) ∈ H1
0 (Ω)×H1(Ω2); with ue|Ω2

= u2}
such that ∫

Ω
αeu

′
ev
′
edx+

∫
Ω2

α2u
′
2v
′
2dx−

∫
Ω2

αfu
′
ev
′
2dx =∫

Ω
fevedx+

∫
Ω2

(f2 − ff )v2dx,

(2.14)

∀(ve, v2) ∈ EΩ2 .

Enforcing weakly the constraint ue|Ω2
= u2, it follows that Problem

(2.14) with distributed Lagrange multipliers reads:

Find two functions ue ∈ H1
0 (Ω), u2 ∈ H1(Ω2), and a Lagrange mul-

tiplier λ ∈ L2(Ω2) such that

(2.15)



∫
Ω
αeu

′
ev
′
edx+

∫
Ω2

λvedx =

∫
Ω
fevedx,∫

Ω2

α2u
′
2v
′
2dx−

∫
Ω2

αfu
′
ev
′
2dx−

∫
Ω2

λv2dx

=

∫
Ω2

(f2 − ff )v2dx,∫
Ω2

ξ(ue − u2)dx = 0,

∀ve ∈ H1
0 (Ω), ∀v2 ∈ H1(Ω2), and ∀ξ ∈ L2(Ω2).

Remark 8. We note that the two-field FD/DLM method is asymmetric.

It is possible to obtain a symmetric formulation by replacing ue by u2 in the

second equation of (2.15), since they are equal on Ω2. At the continuous

level both formulations are identical, but that is not the case at the discrete

level (see [6] for more details on the asymmetric formulation).
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2.5.2. Discrete formulation

As explained in Section 2.3.2 for the discrete formulation of the one-field

FD method we consider Ωh and Ωk
2 to be partitions for Ω and Ω2, respectively,

with mesh sizes h and k.

Given finite-dimensional spaces V h and W k such that V h ⊂ H1
0 (Ω) and

W k ⊂ H1(Ω2), the discrete formulation of Problem (2.15) reads:

Find two functions uhe ∈ V h, uk2 ∈ W k, and the Lagrange multiplier

λk ∈W k such that

(2.16)



∫
Ωh
αe(u

h
e )′(vhe )′dx+

∫
Ωk2

λkvhe dx =

∫
Ωh
fev

h
e dx,∫

Ωk2

α2(uk2)′(vk2 )′dx−
∫

Ωk2

αf (uhe )′(vk2 )′dx

−
∫

Ωk2

λkvk2dx =

∫
Ωk2

(f2 − ff )vk2dx∫
Ωk2

ξk(u
h
e − uk2)dx = 0,

∀vhe ∈ V h, ∀vk2 ∈W k, and ∀ξk ∈W k.

Remark 9. In Problem (2.16), we choose to use continuous finite ele-

ments for the Lagrange multiplier. However, since the distributed Lagrange

multiplier is only in L2(Ω2) we may use discontinuous finite elements, as

well.

Given the following approximations

uhe (x) = N(x)ûe, uk2(x) = M(x)û2, λk(x) = M(x)λ̂,

where N(x) and M(x) are standard piecewise linear shape functions, ûe, û2,

and λ̂ are the primal field and Lagrange multiplier nodal value vectors, the

algebraic formulation corresponding to Problem (2.16) reads

(2.17)


Ae 0 L>e

−Ae2 A2 −L>2

Le −L2 0




ûe

û2

λ̂

 =


fh

fk

0

 .
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The components of the system matrix are given by

Ae|ij =

∫
Ωh
αeN

′
iN
′
jdx,

Ae2|ij =

∫
Ωk2

αfM
′
iN
′
jdx,

A2|ij =

∫
Ωk2

α2M
′
iM
′
jdx,

Le|ij =

∫
Ωk2

MiNjdx,

L2|ij =

∫
Ωk2

MiMjdx,

and those of the right hand side by
fh|i =

∫
Ωh
feNidx,

fk|i =

∫
Ωk2

(f2 − ff )Midx.

2.6. A discontinuously extended two-field Fictitious Domain

method with boundary Lagrange multipliers

In all previously presented methods, an extension of Material 1 is con-

structed on Ω2 such that the extended formulation is continuous over Ω. In

the next approach we also consider a two-field method but we extend u1 on

Ω2 such that ue|Ω2
= 0. Therefore, the extended u1 is discontinuous over the

interface. The continuity of the primary fields at the interface is enforced

with a boundary Lagrange multiplier defined on the physical sides of Material

1. We define the obtained method as the discontinuously extended two-field

Fictitious Domain method with boundary Lagrange multipliers (two-field

DFD/BLM).

2.6.1. Continuum formulation

In the previously described methods we considered αe and fe given by

Equation (2.5) with the condition that αe ≥ ᾱ > 0.

Here we consider the following extension:

(2.18) αe =

α1 on Ω1

α̃1 on Ω2

, and fe =

f1 on Ω1

0 on Ω2

,
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where α̃1 ≥ ᾱ > 0.

Let us introduce the space of discontinuous ue on Γ,

D = {ue ∈ L2(Ω); with ue|Ω1
∈ H1(Ω1),

ue|Ω2
∈ H1

0 (Ω2), and ue|Σ = 0}.

Then, since ue admits a discontinuity on Γ we have to consider on which

side of Γ we impose the continuity constraint. A weak formulation for the

two-field DFD/BLM technique is given by the following statement:

Find (ue, u2) ∈ DΓ = {(ue, u2) ∈ D × H1(Ω2); with ue|Γ1
= u2|Γ2

}
such that

(2.19)
∫

Ω
αeu

′
ev
′
edx+

∫
Ω2

α2u
′
2v
′
2dx−

∫
Ω
fevedx−

∫
Ω2

f2v2dx = 0,

∀(ve, v2) ∈ DΓ.

We note that using the definitions of αe and fe we recover Problem (2.3).

In the following discrete formulation, partitions for Ω and Ω2 may not

be fitted, and hence the standard shape functions defined on a partition of

Ω may not be interpolatory on the interface. As a consequence, we choose

to enforce weakly the constraint ue|Γ1
= u2|Γ2

. For this purpose a boundary

Lagrange multiplier is here employed, obtaining the following weak formula-

tion:

Find two functions ue ∈ D, u2 ∈ H1(Ω2), and Lagrange multipliers

λB ∈ R and λC ∈ R such that

(2.20)



∫
Ω
αeu

′
ev
′
edx+ λBve(B1)− λCve(C1)

=

∫
Ω
fevedx,∫

Ω2

α2u
′
2v
′
2dx− λBv2(B2) + λCv2(C2)

=

∫
Ω2

f2v2dx,

ξB(ue(B1)− u2(B2)) = 0,

ξC(ue(C1)− u2(C2)) = 0,
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∀ve ∈ D, ∀v2 ∈ H1(Ω2), and ∀ξB ∈ R and ∀ξC ∈ R, whereby B1 we

mean B approached from Ω1, etc.

2.6.2. Discrete formulation

As explained in Section 2.3.2 for the discrete formulation of the one-

field FD method, we consider Ωh and Ωk
2 to be partitions for Ω and Ω2,

respectively, with mesh sizes h and k. We also assume that Ω2 contains at

least one element of Ωh. It implies that we associate with each Lagrange

multiplier on B and C at least one degree of freedom in the fictitious domain

(denoted “free” node), otherwise the system is overconstrained. This can

be overcome considering the extended finite element method on elements

crossed by the interface as presented, for instance, in [38], such that the

system has enough “free” nodes with respect to the number of Lagrange

multipliers. We point out that all degrees of freedom of the field of Material

1 that are associated to elements without support on Ω1 are eliminated from

the linear system of equations. Moreover an extension of the DFD/DLM

method to higher dimensions is not trivial due to locking issues, as further

discussed in Section 2.8.

Given finite-dimensional spaces V h and W k such that V h ⊂ H1
0 (Ω) and

W k ⊂ H1(Ω2), the discrete formulation of Problem (2.20) reads:

Find uhe ∈ V h
|Ω1

, uk2 ∈ W k, and Lagrange multipliers λ̃B ∈ R and

λ̃C ∈ R, such that

(2.21)



∫
Ωh
HΩ1αe(u

h
e )′(vhe )′dx+ λ̃Bv

h
e (B)− λ̃Cvhe (C)

=

∫
Ωh
fev

h
e dx,∫

Ωk2

α2(uk2)′(vk2 )′dx− λ̃Bvk2 (B) + λ̃Cv
k
2 (C)

=

∫
Ωk2

f2v
k
2dx,

ξBu
h
e (B)− ξBuk2(B) = 0,

ξCu
h
e (C)− ξCuk2(C) = 0,
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∀vhe ∈ V h
|Ω1

, ∀vk2 ∈W k, ∀ξB ∈ R and ∀ξC ∈ R,

where HΩ1(x) is the Heaviside function, that is 1 on Ω1 and 0 otherwise.

Given the following approximations

uhe (x) = N(x)ûe, uk2(x) = M(x)û2,

where N(x) and M(x) are standard piecewise linear finite elements, ûe and

û2 are the primal field nodal value vectors, and λ̂ = {λB, λC}>, the algebraic
formulation to Problem (2.21) reads

(2.22)


Ae 0 L>e

0 A2 −L>2

Le −L2 0




ûe

û2

λ̂

 =


fh

fk

0

 .

The components of the system matrix are given by

Ae|ij =

∫
Ωh
αeN

′
iN
′
jdx,

A2|ij =

∫
Ωk2

α2M
′
iM
′
jdx,

Le|ij = (δiNj)|Γ,

L2|ij = (δiMj)|Γ,

where δ1|B = 1, δ1|C = 0, δ2|B = 0, δ2|C = 1, and those of the right hand

side by 
fh|i =

∫
Ωh
feNidx,

fk|i =

∫
Ωk2

f2Midx.

2.7. Numerical tests

To test the performance of the four different methods discussed in Sec-

tions 2.3-2.6, we study the model in Section 2.2, considering a h-refinement

strategy with piecewise linear finite elements and different material param-

eters (see Table 2.1). Additional tests are performed with two more combi-

nations of material parameters and they are given in A. The additional tests

reported in A confirm the trends observed with the numerical tests of this

section.

27



Material Test 1 Test 2

α1 1 4

α2 4 1
Table 2.1. Material parameters definitions.

As discussed in Remark 5, many integrals involve terms that are not

global polynomials on elements of the mesh of Ω2, but are polynomials on

sub-elements of the mesh of Ω2 (as depicted in Fig. 2.3). As a consequence,

we have to integrate exactly with 2 Gauss points1 per sub-element (see again

Fig. 2.3), and we denote this integration strategy as exact quadrature scheme.

Also, since integration schemes over sub-elements may be expensive, we per-

form integration using a standard Gauss quadrature over the elements of all

meshes (2 Gauss points per element in our test problems), and we denote

this integration strategy as approximated quadrature scheme.

2.7.1. Test problems

For all methods we consider the following geometry: A = 0, B = e,

C = 1+π, D = 6 (see Fig. 1(a) for a description of the geometry). Interfaces

B and C are such that the problem remains unfitted for all refinement steps

(see Table 2.2 and 2.3), and, to accomplish this goal easily, we select irrational

numbers for B and C and rational numbers for A and D. The material

parameters for Material 1 (α1) and Material 2 (α2) are chosen constant on

]A,B[∪ ]C,D[ and ]B,C[, respectively, and we select constant loads f1 = 1

on ]A,B[∪ ]C,D[ and f2 = 1 on ]B,C[. The extension of Material 1 for

the one-field FD and two-field FD methods over Ω2 is chosen such that

αf = α1 and ff = f1. For the two-field DFD method αe and fe are defined

in Equation (2.18).

The different set of material parameters are given in Table 2.1 with the

corresponding analytical solutions reported in Fig. 2.4.

1Since the two-field FD/DLM method requires at least 2 Gauss points per element

to integrate exactly integrals involving the distributed Lagrange multiplier, we choose to

use a 2 Gauss-Legendre point rule for all integral terms for all methods
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Figure 2.4. Analytical solutions for the numerical test with

f1 = 1 on ]A,B[∪ ]C,D[, f2 = 1 on ]B,C[, for the different

material parameters reported in Table 2.1.

All simulations are performed using piecewise linear finite elements to

approximate all unknown fields, including the discrete distributed Lagrange

multipliers which are defined on the mesh of Ω2.

2.7.2. Refinement ratios

Recalling that h and k denote, respectively, the sizes of the largest

element in Ωh and Ωk
2, we denote by hr = h/k the mesh ratio, by L

the length of ]A,D[ (i.e., Ω), and by L2 the length of ]B,C[ (i.e., Ω2).

We consider two uniform h-refinement strategies such that hr < 1 (i.e.,

hr = L/L2 × 1/8 = 6/(1 + π − e)× 1/8 ≈ 1/2, that is, h is “roughly” twice

smaller than k) and hr > 1 (i.e., hr = L/L2×1/2 = 6/(1 +π− e)×1/2 ≈ 2,

that is, h is “roughly” twice larger than k). Such mesh refinement strategies

are presented for each mesh in Tables 2.2 and 2.3.

For the one-field FD with an exact quadrature scheme the choice of a

partition for Ω2 has no impact on the solution since integration is performed

exactly. On the contrary, with the approximated quadrature scheme the in-

tegration error depends on the partition for Ω2, and thus on the mesh ratio

hr. However, since the mesh ratio has no impact on the rate of convergence

of the method with an exact quadrature scheme and that, with an approx-

imated one, the mesh ratio has only an impact on the integration error, we

pick only one refinement strategy (i.e., hr > 1 presented in Table 2.2, that is

the one that leads to the best quadrature). Such a choice implies that care
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h/L 1/24 1/48 1/96 1/192 1/368 1/768 1/1536 1/3072

k/L2 1/12 1/24 1/48 1/96 1/192 1/368 b1/768 1/1536

Table 2.2. Mesh refinement strategy for a mesh ratio hr ≈ 2.

h/L 1/24 1/48 1/96 1/192 1/384 1/768 1/1536 1/3072

k/L2 1/3 1/6 1/12 1/24 1/48 1/96 1/192 1/368

Table 2.3. Mesh refinement strategy for a mesh ratio hr ≈ 1/2.

should be taken to generalize the results for different mesh ratios with an

approximated quadrature scheme.

For two-field methods, boundary and distributed Lagrange multipliers

are different since, for a 1D problem, a boundary Lagrange multiplier is

defined on a set of discrete points and a distributed Lagrange multiplier on

a segment. The boundary Lagrange multiplier is thus identically defined for

every choice of meshes for Ω2. Its definition is only affected by the choice

of a mesh for Ω (because the evaluation of the shape functions M(x) at

the boundary of the domain Ω2 is always 1, which is not the case for shape

functions N(x) at the boundary of the domain Ω2). Thus, the convergence

rate is not affected by a change in the mesh ratio. We therefore pick an

arbitrary mesh ratio (i.e., hr > 1 as presented in Table 2.2) for problems

with boundary Lagrange multipliers. For distributed Lagrange multipliers

we choose to use a mesh of Ω2 with piecewise linear finite elements, and thus

the method with distributed Lagrange multipliers depends on the mesh ratio

hr. We test the two-field FD/DLM method with both mesh ratios hr > 1

and hr < 1, as presented in Tables 2.2 and 2.3.

2.7.3. Error measurement

Since the one-field FD method involves a single field uh, we use the

relative error in L2-norm, defined by

(2.23) E0,Ω =

(∫
Ω(u− uh)2dx

) 1
2(∫

Ω u
2dx
) 1

2

=
||u− uh||0,Ω
||u||0,Ω

,

where u is the analytical solution of the problem over Ω.
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In the same fashion, we define the relative H1-seminorm by

(2.24) E1,Ω =

(∫
Ω(u′ − u′h)2dx

) 1
2(∫

Ω(u′)2dx
) 1

2

=
|u′ − u′h|1,Ω
|u′|1,Ω

.

We note that the H1-seminorm is equivalent to the H1-norm in virtue of the

Poincaré-Friedrichs inequality.

In [68] it is pointed out that when computing the H1-norm away from

the interface the optimal convergence rate in the H1-norm can be obtained,

precisely when using the error measurement:

(2.25) E1,Ω\Γε with Γε = {x ∈ Ω : dist(x,Γ) < ε}.

In the numerical tests we choose ε = h. Such a choice is discussed in Re-

mark 10

Remark 10. In [68] a constraint for the construction of the mesh is

added. It is required that the mesh is “ε-resolved” near the interface, i.e.,

there must not be an element that overlaps Γε. In that work, it is proved that

for ε = O(h2) the method has the optimal rate of convergence in both L2-

and H1-norms. However, in our numerical experiments the mesh is not ε-

resolved for ε = O(h2) but it is for ε = O(h). It justifies our choice of ε = h.

In the present numerical tests we show that we do not have the optimal rate

of convergence for the H1(Ω)- and L2(Ω)-norms, at the exception of the

DFD/BLM method, but we may attain it using the H1(Ω\Γε)-norm.

For two-field methods we only measure errors in physical domains (i.e.,

Ω1 and Ω2). Our error measurement (in L2-norm) is given by

(2.26) E0,Ω =

(
||u1 − uhe ||2Ω1

+ ||u2 − uk2||2Ω2

) 1
2

(||u1||2Ω1
+ ||u2||2Ω2

)
1
2

,

where || · ||Ω is defined as in (2.23) and u1 and u2 are the analytical solutions

of the problem over Ω1 and Ω2, respectively.

In the same fashion, the H1-seminorm is defined by

(2.27) E1,Ω1,Ω2 =

(
|u1 − uhe |21,Ω1

+ |u2 − uk2|21,Ω2

) 1
2

(|u1|21,Ω1
+ |u2|21,Ω2

)
1
2

,
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while our measurement in the H1(Ω\Γε)-seminorm is given by

(2.28) E1,Ω1\Γε,Ω2
.

2.7.4. Results

In order to emphasize the impact of the quadrature schemes, we first

present the results with an exact quadrature scheme and then with an ap-

proximated quadrature. Finally, we discuss the conditioning of the various

methods.

2.7.4.1. Finite elements with exact quadrature

For the one-field FD

method we observe in Fig. 5(a) and Fig. 5(b) that the rates of convergence

oscillate, but averagely a convergence of order 1 is attained in L2-norm and

of order 1/2 in H1-norm. Instead, in the H1(Ω\Γε)-seminorm a linear order

of convergence is achieved. We recall that assuming an exact integration this

method is equivalent to the standard Galerkin method.

Remark 11. We can observe in Fig. 6(a) that the error u − uh at the

interface propagates to the whole domain, preventing a possible optimal con-

vergence rate in the L2-norm away from the interface. On the contrary, for

the H1-norm, we can observe (see Fig. 6(b)) that the error in the derivatives

clearly converges linearly away from the interface, even showing a super-

convergence property at the middle of the elements not cut by the interface.

Differently to u − uh, the quantity u′ − u′h does not appear to converge on

the interface, but here the support of the large error values is limited to the

elements crossed by the interface. It follows that the optimal rate of conver-

gence would be obtained if the error is integrated only on elements not crossed

by the interface. This example also shows that if the mesh is ε-resolved with

ε = O(h2), then we may obtain the optimal rate of convergence in the H1-

norm for a smaller ε, i.e., ε < h, as observed in [68].

For the two-field FD/BLM method, we also observe in Fig. 7(a) and

Fig. 7(b) that the rates of convergence also oscillate but averagely the method

has a convergence of order 1 in the L2-norm and of order 1/2 in theH1-norm.

On the contrary to the one-field FD method, the error in the H1(Ω\Γε)-norm
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appears to be optimal only with α1/α2 < 1 while the error for α1/α2 > 1

in the H1(Ω\Γε)-norm is equivalent to the error in the H1-norm. Indeed,

the norm for the two-field problems is defined as a combination of the errors

in both fields. Results from the one-field method show that the error is

concentrated at the interface, and thus in case of a two-field problem the

error on the interface is “transmitted” from the first field to the second field.

It follows that a suboptimal H1(Ω\Γε) rate of convergence is obtained. In

fact, further tests show that the H1(Ω\Γε) rate of convergence is optimal if

the error is restricted to Ω1 but not if it is restricted to Ω2. Surprisingly, for

α1/α2 < 1 the H1(Ω\Γε) convergence rate is almost optimal, indicating an

almost optimal rate of convergence in the H1(Ω2)-norm.

Remark 12. The two-field FD/BLM may be second-order accurate if u′1
is continuous over Ω, as described in [50]. But such a case is unlikely with

our definition of the extension over the whole domain Ω of the load f1. We

note that in order to obtain an optimal method we may seek for an extension

ff on Ω2 such that ue ∈ H2(Ω) (see for instance the work of [43]).

For the two-field FD/DLM method we observe in Fig. 2.9 that for a

mesh ratio hr ≈ 1/2 the method has a linear convergence behavior in L2.

This result is due to the poor approximation of the Lagrange multipliers.

That issue also occurs for fitted meshes (see Remark 13). On the contrary,

for a mesh ratio hr ≈ 2 the method converges with oscillatory rates of

convergence, but averagely the rate of convergence is linear in L2, as depicted

in Fig. 2.8.In general, the H1 convergence rate appears closer to 1/2 rather

than 1, showing a suboptimal behavior. On the contrary, for the H1(Ω\Γε)
rate of convergence, identical conclusions can be drawn from the two-field

FD/BLM method.

Finally, the two-field DFD/BLM method is second-order accurate, as

depicted in Fig. 2.10. We note that the error is slightly dependent of the

material ratio.

To summarize, the fact that the first three methods are not second-order

accurate is not surprising, since they are all characterized by a discontinuity
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in the gradient at the interface; as a consequence, their corresponding solu-

tions are not in H2(Ω) and the rate of convergence cannot be optimal. The

solution depends on the position of the interface with respect to the mesh

of Ω, which varies arbitrarily with a h-refinement, and hence the rates of

convergence are not constant.However, results confirm that away from the

interface the H1 rate of convergence may be optimal, i.e., in the H1(Ω\Γε)-
norm. Comparing one-field and two-field methods, there is a clear advantage

in using a one-field approach since the optimal H1(Ω\Γε) convergence rate

is recovered on both Ω1 and Ω2. However, for two-field methods the optimal

rate of convergence in the H1(Ω\Γε)-norm is recovered only restricting it to

Ω1 but the rate of convergence is almost optimal when α1/α2 < 1, a case

which represents a large class of applications. On the contrary to the pre-

vious methods, the two-field DFD method explicitly takes into account the

discontinuity at the interface in the finite element space and thus it attains

a second-order rate of convergence.

Remark 13. With fitted meshes all methods are second-order accurate,

except the two-field FD/DLM method which is only first-order accurate with

a mesh ratio strictly lower than 1. The fact that the methods are second-

order accurate with fitted meshes results from our finite element basis that

allows jumps in the gradient at vertices. In the case of the two-field FD/DLM

method with fitted meshes and a mesh ratio strictly lower than 1, the method

is not second-order accurate since the Lagrange multiplier space is not rich

enough (see Fig. 2.11).

2.7.4.2. Finite elements with approximated quadrature

The one-field FD method with approximate quadrature converges with

a similar rate of convergence as with an exact quadrature scheme only if

the material ratio α1/α2 is lower than one, as depicted in Fig. 5(c), while

it simply does not converge otherwise, as depicted in Fig. 5(d). Another

noticeable result is that the H1(Ω\Γε) rate of convergence is suboptimal

with a rate of 1/2. For the one-field FD method the mesh ratio and the

quadrature rule are a very important factor. Indeed, for a finer partition of

Ω2, or a more precise quadrature rule, the quadrature error is reduced and
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thus the method may converge even for a large material ratio α1/α2, since

the method converges with an exact integration. Nevertheless, the relation

between the quadrature rule and the material ratio remains unclear, and thus

the approximated quadrature for the one-field FD method requires specific

care.

The two-field FD/BLM and two-field FD/DLM methods with approx-

imate quadrature converge for all cases with similar convergence rates as

with an exact quadrature, as depicted for the FD/BLM method in Fig. 2.7,

and for the FD/DLM method in Fig. 2.8 and Fig. 2.9. Such a result follows

from the two-field structure of the methods, which implies that as long as

the extended Material 1 may converge then the convergence for both fields

is maintained. Similar results as with the exact integration cases are found

for the errors in the H1(Ω)- and H1(Ω\Γε)-seminorms.

The two-field DFD/BLM method loses its second order property in the

L2-norm and it appears to converge at most linearly, as depicted in Fig. 2.10.

We show the importance of an exact quadrature for the two-field DFD/BLM

method in another numerical test by integrating with a higher number of

Gauss points on elements crossed by the interface. The results in Fig. 2.12

show that a clear quadratic rate of convergence is recovered with 400 Gauss

points per element crossed by the interface. Notice that when using approx-

imated quadrature the H1(Ω\Γε) convergence rate remains optimal and it is

almost optimal in the H1(Ω)-seminorm.

The integration scheme is an important point to be taken into account

since it influences the cost of the method. A first-order accurate method

is interesting if it is much faster in terms of computational time than a

second-order accurate method. We might therefore use a standard integra-

tion scheme with the first-order accurate methods since their convergence

rates are not drastically changed with respect to an exact integration scheme

(with special care for the one-field FD method). On the contrary, for the

two-field DFD method it is mandatory to integrate exactly or a drastic loss
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(a) Test 1 Exact (α1/α2 = 1/4).
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(b) Test 2 Exact (α1/α2 = 4).
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(c) Test 1 Approximated (α1/α2 = 1/4).
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(d) Test 2 Approximated (α1/α2 = 4).

Figure 2.5. The one-field FD method.

in the rate of convergence in the L2-norm has to be expected, but approxi-

mated integration appears to have a small impact on the H1 and H1(Ω\Γε)
rates of convergence.

2.7.4.3. Conditioning

The condition numbers for the various methods are presented in

Fig. 2.13. Clearly, the one-field method as well as the methods using bound-

ary Lagrange multipliers show a standard O(h−2) conditioning. Instead, the

method using the distributed Lagrange multipliers shows a much higher con-

ditioning of order O(h−4); this result appears to be independent of the mesh

ratio.
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(a) Error u− uh
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(b) Error u′ − u′h

Figure 2.6. Errors for Test 1 (α1/α2 = 1/4) with the

one-field FD method with exact quadrature (i.e., standard

Galerkin). The dots symbolize the position of the nodes,

while the red lines the position of the interface.
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(a) Test 1 Exact (α1/α2 = 1/4).
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(b) Test 2 Exact (α1/α2 = 4).
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(c) Test 1 Approximated (α1/α2 = 1/4).
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(d) Test 2 Approximated (α1/α2 = 4).

Figure 2.7. The two-field FD/BLM method.
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(a) Test 1 Exact (α1/α2 = 1/4).

���� ���� ���� ���� ���

�

����

����

����

����

���

�
��
�
��
�	

�
�
��


�
�
��

�
��
�
��
�

�
�

�������

�	�
�������

�	��
�������


�����	


�����	��

(b) Test 2 Exact (α1/α2 = 4).
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(c) Test 1 Approximated (α1/α2 = 1/4).
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(d) Test 2 Approximated (α1/α2 = 4).

Figure 2.8. The two-field FD/DLM method with hr ≈ 2.
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(a) Test 1 Exact (α1/α2 = 1/4).
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(b) Test 2 Exact (α1/α2 = 4).
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(c) Test 1 Approximated (α1/α2 = 1/4).
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(d) Test 2 Approximated (α1/α2 = 4).

Figure 2.9. The two-field FD/DLM method with hr ≈ 1/2.
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(a) Test 1 Exact (α1/α2 = 1/4).
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(b) Test 2 Exact (α1/α2 = 4).
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(c) Test 1 Approximated (α1/α2 = 1/4).
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(d) Test 2 Approximated (α1/α2 = 4).

Figure 2.10. The two-field DFD/BLM method.
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Figure 2.11. Convergence rates of the two-field FD/DLM

problem for a fitted case and different mesh ratios, with A=0,

B=3, C=4.5, D=6. The coefficients are given by α1 = 1 and

α2 = 4 (similar results can be obtained with different material

ratios). It can be noticed that, for this method, hr < 1 results

in first-order convergence also for the fitted case.
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Figure 2.12. Importance of the quadrature scheme for the

two-field DFD/BLM method using a standard quadrature

with a different number of Gauss points on elements cut by

the interface. Since the method is independent of the mate-

rial ratio, we perform only one test, Test 1 (see Table 2.1),

and the h-refinement strategy is described in Table 2.2. It

can be observed that a clear quadratic rate of convergence is

recovered with 400 Gauss points.
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Figure 2.13. Condition numbers of the global linear system

of the various methods. The problem under consideration

is Test 1 with exact quadrature. However, similar results

were obtained for different material parameters with exact

and approximated integrations.
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2.8. Discussion on the extension to higher dimensions, with a

focus on the discontinuously extended two-field Fictitious

Domain method with boundary Lagrange multipliers

The methods discussed in this chapter represent a stepping stone for

multiple dimensional problems. For instance, the one-field method of Sec-

tion 2.3 can be seen as an extremely simplified configuration with respect

to more complex fluid-structure interaction problems studied in [24] or [23].

The order of accuracy of these methods is limited by the regularity of the

solution and by the fact that the computational mesh does not fit with the

interface. The focus of this chapter is to compare different approaches in

order to identify the numerical schemes that can achieve higher order of

convergence also in presence of material discontinuities.

Two-field methods, like the ones discussed in Sections 2.4 and 2.5 are

saddle point problems and thus they require that an inf-sup condition is

satisfied. Interested readers are referred to, e.g., [50] for Boundary Lagrange

Multipliers and to [51] or [6] for distributed Lagrange multiplier. Since

these methods are only first-order accurate we choose not to give here a

detailed account about their extension, and we focus instead on the two-

field DFD/BLM method which, under the assumptions presented in this

chapter, is second-order accurate.

A simple approach for the Lagrange multiplier (e.g., by constructing a

piecewise linear Lagrange multiplier space where the nodes are the intersec-

tion points of the interface with the extended mesh) in 2D or 3D results

in locking (see for instance [84] and Appendix B). Such a problem occurs

since there are more constraints by the Lagrange multiplier than “free” nodes

associated with the elements cut by the interface.

We mention three possible strategies to solve the problem:

(1) Adding degrees of freedom in the primary field, such as bubbles (see

[83]);

(2) Lowering the dimension of the Lagrange multiplier space (see [16]);

(3) Using stabilization techniques such as Nitsche

(see [84]) or Barbosa-Hughes (see [57]).
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The first strategy, if used with a piecewise constant Lagrange multiplier,

consists in enriching elements cut by the interface with a bubble function

(the bubble can be eliminated at the element level by static condensation).

It is also possible to apply static condensation a second time to eliminate

the Lagrange multiplier, and thus the method shares similarities with the

Nitsche method (as shown in the work of [83]). An important feature of

the method is that it does not depend on user parameters, unlike the third

approach.

The second strategy has been applied to 2D problems in [16] and to

3D problems in [58]. The method consists in properly selecting intersection

vertices of the interface with the extended mesh and taking the trace on the

interface of the shape functions of the global mesh to build the Lagrange

multiplier finite element space. Such a method is called the “Lagrange Mul-

tiplier Vital Vertices.” It has been proven in [16] that it satisfies an inf-sup

condition for 2D problems. We note that the main drawback of lowering the

dimension of the Lagrange multiplier space is that it reduces the accuracy

of the flux at the interface.

Concerning the third strategy, we have to say that the Nitsche method

was introduced for interface problems in [54]. However, it has been shown

in [84] that this method does not achieve satisfactory results for specific sit-

uations, but that a slight modification of the method introducing a second

user parameter cures the problem. This method is known as the γ-Nitsche

method. We point out that in [54] the first Nitsche parameter is given by

geometrical consideration, and is thus defined locally on each intersected ele-

ment, while the parameter γ may more likely depend on material parameters.

Alternatively, in [57], a Barbosa-Hughes stabilization technique is proposed.

We note that it has been shown in [87] that such a stabilization technique

can be derived from the Nitsche method. Both approaches are dependent

on user parameters which depend heavily on how the interface cuts the ele-

ment. An inappropriate choice of parameters might result in a dramatic loss

of accuracy. For instance, specific techniques have to be employed when sub-

elements are very small compared to their global elements (see for instance
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[57]). However, a promising path following [21] on the use of stabilization by

projection has been introduced for boundary Lagrange multipliers in, e.g.,

[13], avoiding the computation of a stabilization parameters. These kinds

of approaches constitute currently an active area of research (see, e.g., [27]

and [2]).

2.9. Conclusive considerations for Chapter 2

In this chapter, we aimed at giving highlights of some fundamental issues

of immersed approaches. In particular, within the finite element method,

we analyzed various embedded approaches in order to tackle a 1D Poisson

problem with different materials in a unified framework. We focused on

four embedded methods inspired by the Immersed Boundary, the Fictitious

Domain, and the Extended Finite Element, methods.

Detailed results showed that, in unfitted cases, the first three studied

methods are only first-order accurate since they consider a continuous ex-

tension using standard finite elements, while the method inspired by the

extended finite element method is second-order accurate because the irreg-

ularity of the solution at the interface was explicitly taken into account.

Moreover, since it seems that for the latter method it is not straightforward

conserving the optimal second order of convergence in higher dimensions

while imposing essential constraints inside elements, we also commented on

possible extension strategies of such a method to 2D/3D.

We note that one of the main issues regarding the efficiency of the method

inspired by the extended finite element method, besides the imposition of

essential boundary conditions on the interface, lies in the need to integrate

correctly over sub-elements to obtain second-order accuracy. In other words,

an important work is required in order to compute the intersection of the

interface with the crossed elements. On the contrary, a much cheaper and

easier to implement, in particular in 2D/3D, integration scheme may be used

for first-order accurate methods without corrupting their rate of convergence.

Therefore, a trade-off between computational cost and accuracy has to be

always considered when dealing with immersed approaches.
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CHAPTER 3

An “immersed” finite element method based on a

locally anisotropic remeshing for the incompressible

Stokes problem

3.1. Introduction

One of the key ingredients of the success of the finite element method is

its flexibility in the representation of the geometry on which the problem is

defined. However, for several applications with highly complex geometries

or very localized singularities (such as interfaces, cracks, etc.), generating a

correct geometry representation is a difficult task.

In this chapter we study an alternative approach, that consists in using

a mesh which does not fit a priori the geometry, or the singularities, of the

problem. For this reason, we refer to such class of approaches as immersed

boundary methods. In the literature, these methods may be found under

several names such as embedded, unfitted, and fictitious domain.

Many immersed boundary methods do not take into account explicitly

the existence of the boundary and, as a consequence, they experience loss of

accuracy. A possible solution consists in enriching the finite element basis on

the elements that are crossed by the immersed boundary, such that the irreg-

ularity of the solution is taken into account. An example of methods using

local enrichments are the so-called eXtended Finite Element Method (XFEM)

(see [57] for a presentation of the XFEM method in the context considered

in the present chapter, or [47] for a general overview of the method).

A first difficulty of the XFEM is that classical enriched functions might

not be smooth inside an element, which leads to one of the major issues

associated with such a methodology, i.e., a correct integration on elements

that contain discontinuous functions. Nevertheless, the enriched functions
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are piecewisely smooth and, since the boundaries or the singularities are

codimension 1 with respect to the geometry of the problem, we may construct

“subelements” on which we can use standard quadrature rules. It follows that

an important work is required to compute geometric structures to integrate.

A second difficulty is the imposition of essential constraints since the

finite element basis may not be interpolatory on the immersed boundary.

A possible solution consists in weakly enforcing constraints inside elements.

However, such a strategy is not an easy solution (see for instance [84] and

references therein).

On the contrary, in [61] an alternative approach is proposed. The method

consists in reconstructing standard shape functions on the previously de-

scribed subelements. Such an operation is rather an easy task with respect

to the computational work required to obtain a geometric representation of

the subelements. Their strategy is to use a stabilized low order finite ele-

ment scheme such that newly added degrees of freedom, resulting from the

reconstruction of the mesh, may be eliminated, with the advantage of a di-

rect impact on the size of the system to solve. Drawbacks of the method are

twofold. Firstly, only low order elements can be used such that there are no

additional degrees of freedom and a stabilized finite element scheme is needed

to ensure stability. Secondly, low order elements have a poor representation

of the geometry and higher order elements may be preferred.

In the present chapter, we propose an approach similar to the one pro-

posed by [61], but with higher order elements, starting from the Hood-

Taylor. Notably, the subdivision process generates highly distorted elements.

This approach is also similar to Octree and Delaunay mesh generation with

boundary recovery (see, e.g., [72] or [46] and references therein). In a sim-

ilar framework as proposed here, in [90] and [91] higher order elements are

used for a fluid dynamics problem. However, both of these works employ

a “smoothing” procedure in order to ensure a “good” shape of the refined

elements. In particular, in [91] a geometric parameter is introduced to en-

force well shaped elements. However, here we prefer not to use a smoothing

procedure such that there is no change in the distribution of the vertices of
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the original mesh. An important consequence of such a choice is that the

subdivision process generates highly distorted elements.A possible effect of

the distortion of the elements for the Stokes problem is a loss in the inf-sup

stability, even for well known stable elements. In [5], it has been noted that

the Hood-Taylor may lack of inf-sup stability on stretched meshes. They pro-

vide five numerical tests and the Hood-Taylor element fails three of them.

They also showed that adding an extra bubble to the velocity field stabilizes

the element for all tests provided. Since our application may generate differ-

ent structures for the distorted elements, we propose a test inspired by the

presented immersed approach to stress the stability of both finite element

scheme by computing a Smallest Generalized Eigenvalue (SGE) test. We

effectively show that P2/P1 may be unstable, whereas P+
2 /P1 (i.e., P2/P1

with a cubic bubble on the velocity field) passes all SGE-tests. Additionally,

we show with the SGE-test that the loss of stability of P2/P1 may occur

within small triangles in corners for which both edges are constrained by

a Dirichlet boundary condition. We then present more complex cases from

real applications to check the results from the SGE-tests. We present a test

for which no elements are constrained in a corner and we find that both

schemes are stable. Hence, it appears that P2/P1 may be stable for a wide

class of applications, but not for all, as we present two other problems where

instability arises, as guessed from the SGE-test results. On the contrary, the

inf-sup stability of P+
2 /P1 element is always obtained.

3.2. Geometry

In this section we consider the geometric aspects of the method, i.e., the

problem of the construction of a mesh conveniently discretizing the consid-

ered physical domain. Two strategies are possible: “fitted” or “unfitted” (cf.

Figure 3.1).

In the fitted approach the discretized domain fits the boundary of the

problem, while in the unfitted approach the physical domain is a subset of

the discretization. More precisely, in the unfitted case, we consider a problem

defined on Ω ⊂ R2 such that a part of the boundary of ∂Ω, denoted by Γ

(named immersed boundary), is not fitted a priori by the triangulation of Ω̂,
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Ω
Γ

Ωi

(a) Physical domain

Γ

Ω

(b) Fitted grid

Σ

Ω̂ Γ

(c) Unfitted grid

Figure 3.1. Fitted and unfitted discretizations of the phys-

ical region Ω: Ωi is the interior (non physical) domain, Γ is

the immersed boundary, Σ = ∂Ω̂ is the external boundary,

and Ω̂ := Ω ∪ Ωi ∪ Γ is the discretized domain.

with Ω ⊂ Ω̂. The part of the boundary ∂Ω that is fitted by the triangulation

of Ω̂ is denoted by Σ.

We illustrate the problem in Figure 1(c). To avoid the difficulties and

the costs connected with the generation of fitted meshes in complicated situ-

ations, we propose to start with a regular unfitted mesh Ω̂ and to represent Γ

by a linear reconstruction on such a triangulation, as illustrated in Figure 3.2.

The reconstruction procedure is presented in detail in the next section.

3.2.1. Interface reconstruction

We assume that a regular triangulation T̂ of Ω̂ (named background mesh)

and the interface Γ satisfy the conditions presented in [54], that is the bound-

ary Γ crosses once two triangle edges. We note that there always exists a

sufficiently fine triangulation of Ω̂ such that the conditions are fulfilled for

any smooth immersed boundary. The reconstructed boundary of Γ is denoted

Γh and it is the linear interpolation of all intersections with the background

mesh edges. It follows that the reconstructed interface is a segment in each

intersected element, and it defines a new domain Ωh such that ∂Ωh = Σ∪Γh

(cf. Figure 3.2). Domain Ωh is referred to as integration domain. We point

out that the linear reconstruction of Γ is not a limitation of the method we

propose and that, in a case with a curved immersed boundary, isoparametric
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Σ

Ω̂
Γ

(a) Immersed boundary and a trian-

gulation of Ω̂.

Γh
Ωh

(b) Interface reconstruction (in

green) and integration domain

(in blue).

Figure 3.2. Description of the interface reconstruction pro-

cess. The immersed boundary is denoted by Γ and the linear

reconstruction of the immersed boundary, with respect to the

background mesh, is denoted by Γh. In the remainder of the

chapter we also consider the integration domain Ωh (in blue),

defined such that ∂Ωh = Σ ∪ Γh.

elements may be used, as well as more complex algorithms, to describe the

boundary.

We consider such types of methods as belonging to an “intersection class”

of methods, since they require to compute intersection points between the

immersed boundary and the mesh. On the contrary, for instance, the Finite

Cell Method (see [78]) or the approach recently proposed by [15] does not

belong to this class of methods. Knowing intersection points allows a subdi-

vision of the mesh, which may be used for integration, construction of shape

functions, etc. We point out that computing the intersection points is very

demanding in terms of computational cost, and is a fundamental part of all

codes using such an approach.

3.3. Model problem: Incompressible Stokes

Let Σ = ΣD∪ΣN where ΣD denotes the part of the external boundary on

which we impose a Dirichlet boundary condition and ΣN the part on which
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we impose a Neumann boundary condition, whose value is assumed to be zero

without loss of generality. On the other hand, on Γ, we consider homogeneous

Dirichlet boundary conditions on Γ but non homogeneous Dirichlet boundary

conditions can be applied as well. Neumann boundary conditions are not

considered here because they can be enforced “naturally” in the variational

formulation, and as a consequence, they are easier to tackle. The model

problem we consider in this chapter is given by the following standard weak

form of the incompressible Stokes equation:

Find (u, p) ∈ V (Ω)×Q(Ω) such that ∀(v, q) ∈ V 0(Ω)×Q(Ω):

(3.1)


∫

Ω
∇u : ∇v dΩ−

∫
Ω
pdiv (v) dΩ =

∫
Ω

f · v dΩ,∫
Ω
q div (u) dΩ = 0,

where 
V (Ω) := {v ∈ [H1(Ω)]2; v|ΣD = uD and v|Γ = 0},

V 0(Ω) := {v ∈ [H1(Ω)]2; v|ΣD = 0 and v|Γ = 0},

Q(Ω) := L2(Ω).

Remark 14. The constraint u|Γ = 0 is strongly enforced since it is

imposed in the trial and test spaces. On the contrary, the incompressibility

constraint is enforced weakly in the formulation and the pressure p is the

corresponding Lagrange multiplier. We note, that since a weak imposition

of a constraint with a Lagrange multiplier results in a saddle point problem,

we have to choose a stable pair of elements for the velocity and the pressure

satisfying an inf-sup condition (see [22]). This issue is discussed further in

Section 3.4. We note that in the case ΣN is empty then Q(Ω) := L2(Ω)/R.

3.3.1. A fundamental problem of immersed methods

In this Section we present a classical unfitted method (see the example in

[67]) which consists in using the triangulation T̂ to build the finite element

spaces and we point out its difficulties. We present the discretized problem
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with classical Hood-Taylor P2/P1 finite elements (but the method may be

generalized). The considered problem reads:

Find (uh, ph) ∈ V h ×Qh such that ∀(vh, qh) ∈ V h
0 ×Qh:

(3.2)


∫

Ωh

∇uh : ∇vh dΩh −
∫

Ωh

ph div (vh) dΩh =

∫
Ωh

f · vh dΩh,∫
Ωh

qh div (uh) dΩh = 0,

where

Vh := {v ∈ C0(Ω̂); v|T ∈ [P2]2,v|ΣhD
= uD and v|Γh = 0, ∀T ∈ T̂ }

⊂ V(Ω̂),

Vh
0 := {v ∈ C0(Ω̂); v|T ∈ [P2]2,v|ΣhD

= 0 and v|Γh = 0,∀T ∈ T̂ }

⊂ V0(Ω̂),

Qh := {q ∈ C0(Ω̂); q|T ∈ [P1], ∀T ∈ T̂ } ⊂ L2(Ω̂),

where T̂ is a triangulation of Ω̂, Pk is the space of polynomials of degree

k, and Σh
D is the discrete external Dirichlet boundary.

It is important to note that in Problem (3.2) the integration is performed

on Ωh and not on Ω̂ (see Section 3.3.2.1 for a subdivision strategy of Ω̂ to

perform the quadrature). Indeed, as discussed in the work of [75] one cannot

hope to obtain an optimal rate of convergence if the integration is performed

on Ω̂. This result is independent of how the constraint u = 0 on Γ is imposed.

For the considered problem, it is not possible to obtain optimal rate of

convergence because the spaces V h and V h
0 are not rich enough (see [67] for

more details). We illustrate this issue in Figure 3.3. Indeed, for a general

set of elements there are more constraints on the immersed boundary (i.e.,

at the intersection of the immersed boundary with the background mesh

element edges) than nodes of the intersected elements that do not belong to

the physical domain (named “free nodes”). As a consequence, the system is

overconstrained and locking may occur. For example, in [16] an algorithm

is presented such that two degrees of freedom are uniquely associated with

an interface constraint. But, one of the drawbacks of the approach is that it
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(a) Two internal con-

straints are satisfied

since two “free” nodes

are associated to it.

(b) The problem is over-

constrained since only

one “free” node is asso-

ciated with the two in-

ternal constraints.

(c) This generic macro-

element shows that the

internal constraints

cannot be imposed and

thus locking occurs.

Figure 3.3. In this example we consider a single field prob-

lem. The elements are P1 and the physical domain is depicted

in blue. It follows that the diamonds are “free” nodes (i.e.,

their values have no physical relevance) while the dots are

physical nodes. We want to illustrate the difficulty of impos-

ing the internal constraint u = 0 on the red squares. See also

Appendix B for a discussion of locking issues using collocated

Lagrange multipliers.

weakens the imposition of the Dirichlet boundary constraint on the immersed

boundary.

We point out that since it is not possible to strongly impose the condition

u = 0 on Γh in order to obtain optimal rates of convergence, weak imposition

of the Dirichlet condition is often used. A weak imposition can be performed,

for instance, with a Lagrange multiplier (but checking the inf-sup condition

for such a method is not an easy task, see [16] and references therein) or the

Nitsche method which requires additional user parameters. Weak imposition

of essential boundary conditions is still an active area of research (see for

instance [28] for an example of the Nitsche method for the Stokes problem

or alternative approaches in [12]) and [33]. The method we propose in the

following avoids the use of complex strategies for weakly imposing essential

boundary conditions. It consists in building a finite element basis that is
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interpolatory on the intersection points of the immersed boundary and the

background mesh edges in order to impose Dirichlet boundary conditions

strongly.

3.3.2. A method by a locally anisotropic remeshing

In the following, we propose a method that considers a special local

refinement using a subdivision of elements cut by the immersed boundary.

The method differs form the classical one presented in Problem (3.2), which

uses the triangulation T̂ to build the finite elements. The proposed method

consists in refining all elements cut by the immersed boundary such that

a locally fitting mesh may be built. In particular, we show that such a

subdivision process may not lead to a unique subdivision into triangles and

we present a strategy to select the best subdivision.

3.3.2.1. Subdivision

For triangles cut by the immersed boundary we consider the two cases,

depending if the subelement belonging to Ωh is: a) a triangle, or b) a quadri-

lateral.

In the present work we consider finite elements only on triangles and

thus in case b) we have to subdivide the quadrilateral into two triangles. As

depicted in Figure 4(a), the subdivision into triangles of a quadrilateral is not

unique, and therefore we propose a strategy to choose the best subdivision.

The selection method for the subdivision of the quadrilateral into triangles is

based on selecting the best element ratio pair, with the element ratio defined

by

σ =
h

d
,

where h and d are the diameters of the circumscribed and inscribed circles,

respectively (see Figure 4(b)).

Remark 15. It is clear that the subdivision may imply distorted elements.

In two famous independent papers, [98] and [96] introduced the minimum

angle condition for triangles. The condition requires that the smallest angle

of a triangle has to be bounded from below by a strictly positive real. The

53



(a) Non unicity of the quadrilateral subdivision.

The pair of triangles giving the smallest ele-

ment ratios is selected (i.e., the pair on the

left in this example).

(b) The diameters of

the circumscribed

and inscribed cir-

cles are denoted

h and d, respec-

tively.

Figure 3.4. Selection of the quadrilateral subdivision in

subtriangles and description of the element ratio.

minimum angle condition is a sufficient (but not necessary) condition to

guarantee the convergence of the finite element method. In [11] and [62] the

maximum angle condition is introduced, which stipulates that the largest angle

of a triangle has to be bounded above by a real strictly lower than π. Again

the condition is sufficient to guarantee the optimal convergence of the finite

element method. However, it has been noted in [53] that the maximum angle

condition is not necessary and the finite element method for 2D problems may

converge optimally without a maximum angle condition satisfied. Moreover,

since we consider a saddle point problem, an inf-sup condition has to be

satisfied as well, and finite element schemes that are stable on well shaped

elements may not be stable on anisotropic ones. We discuss further this issue

in Section 3.4.

Accordingly, in the following sections, we consider a triangulation Tr built
as follows. Given a shape regular triangulation T̂ of Ω̂ (i.e., the background

mesh), we denote by TΓ the triangulation of all elements that are crossed by

Γ. As previously explained it is possible to build a subtriangulation T ′Γ|T on

every T ∈ TΓ such that T ′Γ fits Γ, with respect to the linear reconstruction

of Γ. Then, we consider the triangulation Tr made of all elements in T̂ that
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(a) Original mesh T̂ . (b) Refined mesh Tr.

Figure 3.5. Subdivision operation of T̂ into Tr.

are entirely in Ωh and all elements of T ′Γ that are in Ωh. The operation is

illustrated in Figure 3.5 for the case of an immersed disk.

3.3.2.2. Application to the incompressible Stokes problem

In the following we give an example of the discretized Stokes problem

using the locally refined method with the P2/P1 finite element scheme:

Find (uh, ph) ∈W h ×Rh such that ∀(vh, qh) ∈W h
0 ×Rh:

(3.3)


∫

Ωh

∇uh : ∇vh dΩh −
∫

Ωh

ph div (vh) dΩh =

∫
Ωh

f · vh dΩh,∫
Ωh

qh div (uh) dΩh = 0,

where

Wh := {v ∈ C0(Ωh); v|T ∈ [P2]2,v|ΣhD
= uD and v|Γh = 0,∀T ∈ Tr}

⊂ V(Ωh),

Wh
0 := {v ∈ C0(Ωh); v|T ∈ [P2]2,v|ΣhD

= 0 and v|Γh = 0, ∀T ∈ Tr}

⊂ V0(Ωh),

Rh := {q ∈ C0(Ωh); q|T ∈ [P1], ∀T ∈ Tr} ⊂ L2(Ωh).

As we shall see later, such a scheme might not be a good choice for

our method due to the instability of the Hood-Taylor element on distorted

meshes. Therefore, we also consider the so-called P+
2 /P1 element, whose
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finite element space, for our application, is defined by

(3.4) Wh := {v ∈ C0(Ωh); v|T ∈ [P2 ⊕B3]2,v|ΣhD
= uD, v|Γh = 0,∀T ∈ Tr},

Wh
0 := {v ∈ C0(Ωh); v|T ∈ [P2 ⊕B3]2,v|ΣhD

= 0, v|Γh = 0,∀T ∈ Tr},
where B3 denotes the space of cubic bubble functions (see [22] for more

details).

Remark 16. As presented in Equation (3.4) the bubbles are used on all

elements of the mesh Tr. In practice, we add the bubble only on subtriangles.

In Figure 3.6 we compare the methods presented with Problem (3.2)

and Problem (3.3). We note that the present method has more degrees of

freedom than the original described method. In [61], which is based on a

stabilized P1/P0 scheme, added discontinuous pressure degrees of freedom are

eliminated by static condensation, while the new velocity degree of freedom

are actually Dirichlet boundary nodes.

3.4. The inf-sup condition on anisotropic elements

Given the approximations uh =
∑n

i=1 Niûi and ph =
∑m

i=1Mip̂i, where

Ni and Mi are the finite element bases for Wh and Rh (with n and m

the number of degrees of freedom, respectively) the discrete incompressible

Stokes problem in matrix form reads

(3.5)

A BT

B 0

û

p̂

 =

 f̂

ĝ

 ,

where
A|ij =

∫
Ωh

∇Ni : ∇Nj dΩh ∀(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n},

B|ij = −
∫

Ωh

Mi div(Nj) dΩh ∀(i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}.

Let n + 1, . . . , n + nD be the eliminated degrees of freedom laying on ΣD,

the right hand side reads
f̂ |i =

∫
Ωh

fh ·Ni dΩh − (ĀûD)|i ∀i ∈ {1, 2, . . . , n},

ĝ|i = −(B̄ûD)|i ∀i ∈ {1, 2, . . . ,m},
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Velocity Pressure

Original approach 
with

Locally refined 
approach with

Figure 3.6. Comparison between original P2/P1 (Prob-

lem (3.2)) and locally refined P+
2 /P1 (Problem (3.3)). The

black dots are common degrees of freedom, white dots are

eliminated degrees of freedom (i.e., the nodes that are present

in the original method which are not present in the locally

refined method), red squares are added degrees of freedom,

and triangles are bubble degrees of freedom.

where 

Ā|ij =

∫
Ωh

∇Ni : ∇Nj dΩh,

∀(i, j) ∈ {1, 2, . . . , n} × {n+ 1, n+ 2, . . . , n+ nD},

B̄|ij = −
∫

Ωh

Mi div(Nj) dΩh,

∀(i, j) ∈ {1, 2, . . . ,m} × {n+ 1, n+ 2, . . . , n+ nD},

and ûD are the nodal boundary values of uD.
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In the following we also use the pressure mass matrix defined by

(3.6) M|ij =

∫
Ωh

MiMjdΩh ∀(i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . ,m}.

The euclidean norm is given by ||v̂||20 = v̂T v̂ with v̂ ∈ Rn. We also

consider the norm defined by the stiffness matrix A, that is ||v̂||2A = v̂TAT v̂

and its associated dual norm given by ||v̂||2A′ = v̂TA−T v̂. Let q̂ ∈ Rm,

then the norm used for the pressure field is given by ||q̂||2M = q̂TMT q̂ and

its associated dual norm by ||q̂||2M ′ = q̂TM−T q̂, where M is defined in

Equation (3.6).

It is well known that a key component for Equation (3.5) to have a unique

solution is the satisfaction of the following condition (see [22]):

Inf-sup: ∃βh > 0 (independent of h) such that

(3.7) max
v̂∈Rn\{0}

v̂TBT q̂

||v̂||A
≥ βh||q̂||M ∀q̂ ∈ Rm

Being ûI and p̂I the vectors of analytical solutions at the nodes for the

velocity and the pressure, respectively, an error estimate is given by (see

[22]):

||ûI − û||A ≤ C
(
||̂f ||A′ + β−1

h ||ĝ||M ′
)
,(3.8)

||p̂I − p̂||M ≤ C
(
β−1
h ||̂f ||A′ + β−2

h ||ĝ||M ′
)
,(3.9)

where C denotes a general constant independent of h and βh.

We clearly can see from Equations (3.8) and (3.9) that if βh → 0 as

σ →∞ then the error for the pressure may not be bounded and it depends

on 1/β2
h, while the velocity field may also not be bounded but it depends

only on 1/βh.

We equip the space V and Q (see Equations (3.1)) with the norms
||v||2V =

∫
Ω
∇v : ∇vdΩ,

||q||2Q =

∫
Ω
q2dΩ,

where v ∈ V(Ω) and q ∈ Q(Ω). Given that uI =
∑

i û
I
iNi and qI =

∑
i q̂
I
iMi

are the interpolant of the analytical solution using the finite element basis,
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it can be shown that (see [9])

||ûI − û||A ≤ C
(
β−1
h ||uI − uh||V + ||pI − ph||Q

)
,(3.10)

||p̂I − p̂||M ≤ C
(
β−2
h ||uI − uh||V + β−1

h ||pI − ph||Q
)
.(3.11)

To conclude, it is very important that for the chosen finite element choice

βh remains bounded from below as σ increases. In other words, we would

like to have βh to be independent of σ.

3.4.1. Numerical methods to measure the inf-sup condition (a

Smallest Generalized Eigenvalue test)

In order to test if our finite element scheme choice remains stable as σ

increases, we compute numerically the inf-sup constant.

It can be proven that (see, e.g., [40]) the inf-sup constant βh is given by

the square root of the lowest positive eigenvalue of the following generalized

eigensystem:

(3.12) BA−1BTq = λMq,

where BA−1BT is called the Schur complement.

Remark 17. In the case of an enclosed flow, the first eigenvalue is zero,

since it represents the constant pressure mode. In such a case βh is esti-

mated by the square root of the second lowest eigenvalue. On the contrary, if

the problem admits a Neumann boundary condition then all eigenvalues are

strictly positive.

3.5. Numerical Tests

In this section we propose two kinds of numerical experiments, solved

both with the P2/P1 and P+
2 /P1 schemes described above. We recall that,

when considering the P+
2 /P1 scheme, the bubbles are added only on the

subtriangles. On all other elements the P2/P1 scheme is used.

The first experiment is a test in which the “inflow” condition is applied

on the immersed boundary. We then study the solution of the problem on

very simple meshes as the position of the immersed boundary varies. We

consider three cases for the SGE-test: a constant flow, a Poiseuille flow, and
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a colliding flow. Each SGE-test has an analytical solution, which is presented

in subsequent sections.

The second set of experiments explores three applications. The first

problem is a Stokes flow around a disk, with the disk boundary being the

immersed boundary. The second problem is a flow against an “obstacle”

that defines a part of the boundary of the fluid domain. The third problem

is a “surface” flow problem, where the surface is described by an immersed

boundary.

We also provide and discuss for some representative tests the condition

number, denoted by κ, of Schur complement, see Equation (3.12)

Remark 18. We point out that in all presented tests integration was

performed exactly. However, further numerical experiments showed that the

use for P+
2 /P1 of the integration rule exact on P2/P1 (clearly leading to

an under-integration of the terms involving bubble shape functions) leads to

practically identical results. This is in agreement with what is expected from

a theoretical point of view. It thus follows that P+
2 /P1 at a cost similar to

P2/P1.

3.5.1. Smallest Generalized Eigenvalue test problems

The Smallest Generalized Eigenvalue test (SGE-test) is presented in Fig-

ure 3.7. The background mesh is defined on [−1, 1] × [−1, 1] and the mesh

used for the SGE-test is shown in Figure 3.8. The problem consists in vary-

ing the position of an "immersed" boundary (depicted in red in Figure 3.7)

from −1 to 0, representing two tests:

• Test 1: a→ 0 with inflow positions described in Table 1(a) (exam-

ples are given in Figures 8(a)),

• Test 2: b→ 0 with inflow positions described in Table 1(b) (exam-

ples are given in Figure 8(d)).

The physical domain of the problem is on the right of the immersed bound-

ary. We necessarily impose a Dirichlet boundary condition on the immersed

boundary, which are different for each cases: the constant flow, the Poiseuille

flow, and the colliding flow.
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Figure 3.7. Immersed boundary (dotted red), physical do-

main (in blue) geometric data for an SGE-test problem.

a 1e−1 1e−2 1e−3 1e−4 1e−5

σ 9.6 99.6 1.0e3 1.0e4 1.0e5

(a) Test 1: a→ 0.

b 1e−1 1e−2 1e−3 1e−4 1e−5

σ 13.1 140 1.4e3 1.4e4 1.4e5

(b) Test 2: b→ 0.

Table 3.1. Geometric considerations for both tests. The

highest element ratio is denoted by σ.

We note that in both tests the element ratio σ scales linearly. In the

following, we report the numerical results relative to the different flow con-

ditions considered.

For the first two SGE-test cases, we evaluate the results in terms of the

discrete L2-norm for both the velocity and the pressure fields. More precisely

given ûIi = u(xi) and p̂Ii = p(xi) the analytical solution of the velocity and

the pressure, respectively, at the node xi, the discrete L2 velocity error is

defined by

ev =
√

(ûI − û)T (ûI − û) = ||ûI − û||0,
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(b) a=0.3 (c) a=0.2

(c) Test 1: Deformation of the refined elements as a tends to 0.

(e) b=0.3 (f) b=0.2

(f) Test 2: Deformation of the refined elements as b tends to 0.

Figure 3.8. Mesh under consideration for the SGE-tests

with different immersed boundary positions. The background

domain is defined on [−1, 1]× [−1, 1]. Smallest element ratios

for the considered values in the two tests are depicted in Ta-

ble 3.1

and the discrete L2 pressure error is defined by

ep =
√

(p̂I − p̂)T (p̂I − p̂) = ||p̂I − p̂||0.

3.5.1.1. Constant flow

The first case consists in imposing a constant inflow. The boundary

conditions are ux = 1 and uy = 0 on x = a− 1 for Test 1 and on x = −b for
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Test 2, respectively. On x = 1 and y± 1 we apply the so-called “do-nothing”

boundary condition, that is ∇u ·n−pn = 0, where n is the outward normal.

The analytical solution for the constant flow problem is given by


ux(x, y) = 1,

uy(x, y) = 0,

p(x, y) = 0.

For Tests 1 and 2, (see results in Table 3.2 and Table 3.3, respectively)

it is clear that both elements are stable as the numerical inf-sup constant

remains bounded from below. Moreover, as already pointed out, the element

ratio increases linearly for both tests and thus the condition that the element

ratio remains bounded from above is not a necessary condition for both finite

element schemes.

The condition number of the Schur complement (see Equation (3.12))

is denoted by κ. We can observe in Table 3.2 that for Test 1 κ scales as

a−1, while we see from Table 3.3 that for Test 2 it scales as b−2. We point

out that for Test 1 the smallest area of the triangles scales as a while for

Test 2 it scales as b2, leading to the different conditioning rates of the Schur

complement between Test 1 and Test 2. Bounds for the conditioning of the

Schur complement are provided in, e.g., [22] or in Proposition 4.47 from [42]

as function of the inf-sup constant and the condition number of the pressure

mass matrix. A bound for the mass matrix with anisotropic elements is

provided in, e.g., [63]. The results are consistent with the theory.

3.5.1.2. Poiseuille flow

The second case consists in a viscous flow between two infinite plates

positioned respectively on y± 1. The boundary conditions are ux = (1− y2)

and uy = 0 on x = a − 1 for Test 1 and x = −b for Test 2. On y = ±1 the

so-called “no-slip” boundary condition is applied, that is u = 0. On x = 1

the do-nothing boundary condition is applied. The analytical solution for
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a 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.505 0.500 0.500 0.500 0.500

κ 4.93e+02 5.01e+03 5.07e+04 5.02e+05 5.02e+06

ev 7.172e-15 1.41e-14 4.99e-13 1.11e-12 1.48e-12

ep 1.499e-14 8.42e-14 3.43e-12 7.71e-12 1.15e-11
(a) P2/P1

a 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.667 0.636 0.633 0.632 0.632

κ 2.91e+02 3.11e+03 3.14e+04 3.14e+05 3.14e+06

ev 1.010e-14 8.38e-15 1.11e-13 3.27e-12 3.55e-11

ep 2.337e-14 2.76e-14 7.66e-13 2.00e-11 2.30e-10
(b) P+

2 /P1

Table 3.2. Constant flow Test 1: a→ 0.

b 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.548 0.509 0.501 0.500 0.500

κ 2.26e+03 2.65e+05 2.76e+07 2.76e+09 2.76e+11

ev 1.792e-15 1.68e-15 1.55e-15 2.09e-15 1.73e-15

ep 7.767e-14 2.36e-13 2.99e-12 8.47e-11 3.87e-10
(a) P2/P1

b 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.686 0.657 0.640 0.638 0.638

κ 1.23e+03 1.42e+05 1.46e+07 1.46e+09 1.47e+11

ev 2.086e-15 2.49e-15 1.82e-15 2.72e-15 3.17e-15

ep 2.440e-14 7.71e-13 5.76e-12 9.46e-11 1.35e-09
(b) P+

2 /P1

Table 3.3. Constant flow Test 2: b→ 0.

the Poiseuille flow problem is given by

(3.13)


ux(x, y) = (1− y2),

uy(x, y) = 0,

p(x, y) = 2− 2x.
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a 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.360 0.354 0.354 0.354 0.354

κ 2.24e+02 1.70e+03 1.65e+04 1.64e+05 1.64e+06

ev 6.642e-16 2.66e-15 1.03e-13 2.20e-13 4.79e-12

ev 8.058e-15 3.49e-14 1.63e-12 3.46e-12 7.56e-11
(a) P2/P1

a 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.405 0.393 0.392 0.392 0.392

κ 1.28e+02 1.06e+03 1.03e+04 1.03e+05 1.03e+06

ev 1.122e-15 4.46e-15 2.77e-14 1.77e-12 6.08e-12

ev 1.691e-14 4.29e-14 2.23e-13 1.46e-11 5.03e-11
(b) P+

2 /P1

Table 3.4. Poiseuille flow Test 1: a→ 0.

As for the constant flow, also in this case, both finite element schemes

are stable for Test 1 (see Table 3.4).

However, for Test 2, the P2/P1 finite element is not stable anymore

(see Table 5(a)), as the inf-sup constant decreases sublinearly (with a rate

of O(b1/2)) as b tends to 0. We remark that in case one uses a geometric

tolerance as employed in [91] or with the XFEM, this result points out the

direct dependence of the inf-sup constant on such a geometrical tolerance.

The P+
2 /P1 scheme is instead stable. The main difference with the constant

flow SGE-test is the presence of Dirichlet boundary conditions on y = ±1.

Further tests presented in Appendix C show that the instability appears

from the upper left corner of the domain, where a small triangle, while well

shaped, has an area that decreases as O(b2). We point out that, to the best

of the authors’ knowledge, a proof of stability of P+
2 /P1 for distorted meshes

has not been published.

We note that the solution for the constant flow and the Poiseuille flow

is contained in the finite element spaces. Therefore, even if the numerical

inf-sup constant tends to zero, the solution remains close to zero (see error

estimates in Section 3.4).
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b 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.198 0.066 0.021 0.007 0.002

κ 8.51e+03 7.40e+06 7.27e+09 7.26e+12 7.26e+15

ev 1.171e-15 8.58e-16 8.49e-16 8.64e-16 6.59e-16

ev 1.459e-13 9.11e-13 4.39e-10 2.12e-08 2.61e-06
(a) P2/P1

b 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.435 0.380 0.370 0.369 0.368

κ 1.43e+03 2.00e+05 2.13e+07 2.15e+09 2.15e+11

ev 9.710e-16 9.51e-16 1.01e-15 1.35e-15 7.23e-16

ev 1.644e-14 2.80e-13 4.89e-12 6.00e-11 3.99e-10
(b) P+

2 /P1

Table 3.5. Poiseuille flow Test 2: b→ 0.

Regarding the conditioning of the Schur complement we can observe in

Table 5(a), i.e., in the case P2/P1 is inf-sup unstable, that the condition

number worsens since it does not scale as b−2 but as b−3. This result is

consistent with the theory.

3.5.1.3. Colliding flow

The third case is a colliding flow problem. In this case, we impose Dirich-

let boundary condition everywhere, including the immersed boundary. They

are given by the following, which is the analytical solution of the problem.
ux(x, y) = 20xy3,

uy(x, y) = 5x4 − 5y4,

p(x, y) = 60x2y − 20y3 + constant.

Since it is an enclosed flow problem, the following constraint on the pressure

is added: ∫
Ω
p dΩ = 0.

For SGE-test case 3, we use the relative error norm, that is

ev,r = ||ûI − û||0/||ûI ||0,
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a 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.369 0.367 0.366 0.366 0.367

rev 3.90e-02 3.86e-02 3.86e-02 3.86e-02 3.86e-02

rep 7.82e-01 7.74e-01 7.75e-01 7.75e-01 7.75e-01
(a) P2/P1

a 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.376 0.376 0.376 0.376 0.376

rev 4.05e-02 3.84e-02 3.83e-02 3.82e-02 3.82e-02

rep 7.58e-01 7.77e-01 7.80e-01 7.81e-01 7.81e-01
(b) P+

2 /P1

Table 3.6. Colliding flow Test 1: a→ 0.

and

ep,r = ||p̂I − p̂||0/||p̂I ||0,

for the velocity and the pressure, respectively.

Again for Test 1 (see Table 3.6) both finite element schemes are sta-

ble and for Test 2 (see Table 3.7) the P2/P1 scheme is not stable, on the

contrary to the P+
2 /P1 scheme. In this case, the analytical solution is not

contained anymore in the finite element space and we can observe that, as

the numerical inf-sup constant βh tends to 0 as b→ 0 with a rate of O(b1/2),

the relative pressure error explodes linearly, which is in accordance with the

error estimates in Equation (3.9). On the contrary, the velocity error remains

bounded, which is not expected from the error estimate in Equation (3.8).

More precisely, we would expect the velocity error to increase with an order

of O(b1/2). However, a good velocity field with a bad pressure field is often

seen, for example with the Q1/P0 mixed element.

3.5.2. Applications

In this section, we present various possible applications as described in

Figure 3.9. For the first experiment (see Figure 9(a)), we compare a fitted

and an unfitted solution. We also investigate some extreme cases, with very

distorted elements that can occur during simulations. We show that the
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b 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.197 0.066 0.021 0.007 0.002

rev 5.23e-02 6.23e-02 6.56e-02 6.60e-02 6.60e-02

rep 3.66e+00 5.03e+01 5.33e+02 5.37e+03 5.37e+04
(a) P2/P1

b 1e−1 1e−2 1e−3 1e−4 1e−5

βh 0.360 0.335 0.328 0.327 0.327

rev 5.22e-02 6.22e-02 6.56e-02 6.60e-02 6.60e-02

rep 1.14 2.17 2.45 2.48 2.49
(b) P+

2 /P1

Table 3.7. Colliding flow Test 2: b→ 0.

Γ

r

(a) Flow around a disk.

a

b
Γ

(b) Flow against an obsta-

cle.

a Γ

(c) surface flow.

Figure 3.9. Three flow problems. The striped zone is ex-

cluded from the fluid domain.

P2/P1 is actually stable for that problem. Nevertheless, we show that the

solution using the P+
2 /P1 is smoother. Then, we present two additional

applications (described in Figures 9(b) and 9(c)) for which the P2/P1 fails,

while P+
2 /P1 is stable. For both failing cases, the culprit is a very small

triangle in corners for which Dirichlet boundary conditions are applied on

both boundary edges, as found in the SGE-tests. For all tests we do not

present the results for the velocity field but the solution is in accordance

with those obtained with the SGE-tests, i.e., the accuracy of the velocity

field remains very good even when highly distorted elements are present.
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3.5.2.1. Flow around a disk

We here consider a problem consisting of a flow around a cylinder be-

tween two plates. By symmetry, the problem reduces to a 2D flow around a

disk, whose boundary is defined as an immersed boundary (see Figure 9(a)).

The fluid domain is defined on [−1, 1] × [−1, 1]. The inflow condition is a

Poiseuille inflow and is given by Equation (3.13), no-slip boundary conditions

are prescribed on y = ±1 and a do-nothing boundary condition is applied

on x = 1. The disk has a radius of 0.3 and a no-slip boundary condition is

applied on its surface. A comparison between a standard finite element so-

lution and the proposed method is presented in Figure 3.10 with the P2/P1

scheme for both methods. We can observe that the solution is similar to a

standard finite element solution, and thus the presented method provides an

accurate solution of the problem.

In the following we discuss in more details possible effects of distorted

elements with the P2/P1 and the P+
2 /P1 elements. We present two cases

with highly distorted elements. The first one with a background mesh of

11 × 11 quadrilaterals and the second with a background mesh of 23 × 23

quadrilaterals, then divided into triangles with their diagonals such that

x− y = constant. The results are presented in Figure 3.11. We observe that

the inf-sup constant is identical (βh ≈ 0.18) for both finite element schemes

on meshes with distorted elements, and thus indicating stability of both

schemes. However, we can see that the P+
2 /P1 solution is smoother than the

pressure solution with the P2/P1 element. Also, the oscillations appear to

vanish as the mesh size is reduced. We point out that, in this problem, none

of the distorted elements are recessed in a corner with Dirichlet boundary

conditions applied on both corner sides. This situation occurs in the constant

SGE-test problem for which both finite element schemes are stable for all

tests. Therefore, it is possible that for many practical applications the P2/P1

element is actually stable.

3.5.2.2. Flow against an obstacle

In this problem (depicted in Figure 9(b)) we consider a flow problem

against an “obstacle”. In this particular case the immersed boundary is not
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(a) Fitted mesh with 2884 elements. (b) Unfitted mesh with 2902 elements.
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(c) Fitted pressure.
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(d) Unfitted pressure.

Figure 3.10. Solution of the incompressible Stokes problem

around a disk with the P2/P1 and a Poiseuille inflow. The

radius of the disk is 0.3.

closed and defines a part of the outer boundary of the fluid domain. The

background fluid domain is defined on a [−1, 1] × [−1, 1] discretized by a

mesh of 43× 43 quadrilaterals subdivided into triangles with their diagonals

such that x + y = constant and the immersed boundary as described on

Figure 9(b). For the present test we set a = −0.333 and b = 0.3333.

The boundary conditions are applied as follows. On x = −1 the

Poiseuille inflow is applied (see Equation (3.13)). On y = 1, x = 1, and Γ, no-

slip boundary conditions are applied. On y = −1 we impose the do-nothing

boundary condition.
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(a) Locally refined with a back-

ground mesh 11× 11

(b) Locally refined with a back-

ground mesh 23× 23
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(c) Pressure field P2/P1; βh ≈

0.183
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(d) Pressure field P2/P1; βh ≈

0.182
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(e) Pressure field P+
2 /P1; βh ≈

0.183
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(f) Pressure field P+
2 /P1; βh ≈

0.182

Figure 3.11. Effects of distorted elements for two different

meshes (11× 11) and (23× 23). The immersed boundary has

a radius of 0.3 and is discretized with 89 linear elements.

Computations show (see Figure 3.12) that the numerical inf-sup constant

is smaller for the P2/P1 element with βh ≈ 0.054 than for the P+
2 /P1 with

βh ≈ 0.265. The numerical inf-sup constant for the P+
2 /P1 is in the range of
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the stable cases presented in the SGE-tests (see Section 3.5.1), while for the

P2/P1 scheme it is an order of magnitude smaller than stable values. We

can observe the effect of locking in Figure 12(d) and absence of locking for

the P+
2 /P1 element in Figure 12(f). The culprit is due to a small triangle

recessed in the upper right corner (see Figures 12(a) and 12(b)). The locking

effect is observed only on a triangle in a small corner with Dirichlet boundary

conditions on both edges, thus reflecting the results obtained in the Poiseuille

and colliding SGE-tests. In that situation the P2/P1 element is unstable for

the Poiseuille and colliding Test 2. However, the locking effects are quite

small as it can be seen by comparing Figure 12(c) with Figure 12(e). We

point out that the peak of pressure for both elements is due to the irregularity

of the solution resulting from the L-shaped immersed boundary.

3.5.2.3. A “surface” flow problem

In this problem (represented in Figure 9(c)) we consider a “surface” flow,

where the surface is described as an immersed boundary. The background

mesh is defined on a [−1, 1]×[−1, 1] discretized by a mesh of 43×43 quadrilat-

erals subdivided in triangles with their diagonals such that x+y = constant.

The surface Γ is represented by y = 0.03 − (1/11) sin (4πx) and is dis-

cretized by 1001 segments. On x = −1 and y = [−1, 0.03] we impose

u = {(0.03 − x)(1 + x), 0}T . On y = −1 and Γ a no-slip boundary con-

dition and on x = 1 and y = [−1, 0.03] a do-nothing boundary condition are

applied.

For this problem similar results as with the obstacle problem are ob-

tained, that is, a much lower numerical inf-sup constant (βh ≈ 0.064) is

obtained for the P2/P1 element than for the P+
2 /P1 element (βh ≈ 0.208).

The inf-sup values suggest a possible locking effect with the P2/P1 element.

Indeed, looking at Figure 13(c) a very low pressure value is present (around

−80), while such a low pressure is absent in the pressure field with the P+
2 /P1

element (see Figure 13(e)). Looking at the zooms (Figures 13(d) and 13(f)),

we can observe that the very low pressure value for the P2/P1 element arises

on the upper (small) triangle (see Figure 13(b)), for which, on two of its
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Zoom

(a) Mesh of 43 × 43 on

[−1, 1]2.

(b) Zoom.
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(c) Pressure solution for

P2/P1; βh ≈ 0.054.

(d) Zoom on locking effect

for the P2/P1 element.
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(e) Pressure solution for

P+
2 /P1; βh ≈ 0.265.

(f) Zoom where no locking

effects are visible with

the P+
2 /P1 element.

Figure 3.12. Presentation of the “obstacle” problem and re-

sults. In particular, locking effects are present for the P2/P1

element. We note that it occurs in a small triangle in the

corner (see zoom 12(d)) with Dirichlet boundary condition,

as in the Poiseuille SGE-test.
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Zoom

(a) Background mesh with sub-

divided elements defined by

Γ.

(b) Zoom: a small triangle

in the corner with Dirich-

let boundary as in the

Poiseuille SGE-test.
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(c) Pressure solution for

P2/P1; βh ≈ 0.064.

−1 −0.99 −0.98 −0.97

0.01

0.02

0.03

 

x

 

y

−80

−60

−40

−20

0

20

40

(d) Zoom on locking effect for

the P2/P1 element.
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(e) Pressure solution for

P+
2 /P1; βh ≈ 0.208.
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(f) Zoom where no locking ef-

fects are visible with the

P+
2 /P1 element.

Figure 3.13. Presentation of the mesh and results for the

“free surface” flow problem. Locking effects are visible (wrong

value (-80) of the pressure on the upper left corner triangle)

for the P2/P1 scheme and absent for the P+
2 /P1 scheme.

edges we impose a Dirichlet boundary condition. On the contrary, for the

P+
2 /P1 we obtain a satisfactory value.

74



3.6. Conclusive considerations for Chapter 3

In this chapter we presented an unfitted grid method, in which the im-

mersed boundary was reconstructed linearly (but the linear reconstruction

of the interface is not a restriction of the method). The reconstruction was

performed locally (i.e., at the element level) which requires the computation

of intersection points with the background mesh. The previously described

steps are common to most eXtended Finite Element Method (XFEM) imple-

mentations. The presented method differs from XFEM since each element

intersected by the immersed boundary were subdivided into subelements on

which we reconstructed a finite element basis, as in a refined approach. The

advantages are twofold. Firstly, we obtain an accurate representation of the

immersed boundary. Secondly, it is very easy to impose Dirichlet bound-

ary condition on the immersed boundary. But, that subdivision may induce

highly distorted elements. In this chapter, we focused on the case of the

P2/P1 element and pointed out its defects; in particular, we show that for

our application the P2/P1 scheme may not be inf-sup stable when elements

are highly distorted. Numerical investigations showed that locking effects

may occur on distorted elements in corners for which Dirichlet boundary

conditions are imposed on both sides. Therefore, the stability of the element

may be guaranteed for a large class of problems, but not for all as showed.

Nevertheless, we presented a solution which consists in enriching the velocity

space with a bubble (named herein P+
2 /P1). It was shown numerically that

such a finite element scheme is inf-sup stable in all presented tests.
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CHAPTER 4

A locally anisotropic fluid-structure interaction

remeshing strategy for thin structures with

application to a hinged rigid leaflet

4.1. Introduction

A classical approach for the numerical simulation of fluid-structure in-

teraction is the Arbitrary Lagrangian Eulerian (ALE) method (see, e.g.,

[39] and references therein). It is well known that this method may not be

adequate when the structure undergoes large deformations. In this case, al-

ternatives are provided by the so-called “immersed” approaches, also known

under the name of Immersed Boundary Method (see, e.g., [81] or [59]), Fic-

titious Domain (see, e.g., [52]), embedded/unfitted (see, e.g., [97]), etc. In

these methods, on the contrary to the ALE method, the fluid mesh is given

a-priori and independently of the location of the structure.

Many immersed approaches are known for lacking of accuracy with re-

spect to the ALE method (see, e.g., [92] and references therein). The

loss of accuracy is in general due to the non conformity of the fluid/solid

meshes and/or an inaccurate enforcement of the coupling constraints. Ac-

cordingly, many researches in the last decade have focused on developing

accurate immersed approaches and today we may distinguish two types of

accurate strategies: iterative ones (see, e.g., [74] and [44]) and direct strate-

gies. Among the latter, we mention the Immersed Interface Method (see,

e.g., [70]), the eXtended Finite Element Method (XFEM) (see, e.g., [48]),

and a local refinement strategy (see, e.g., [61] or [91]). The present work

collocates within the latter direct strategy, i.e., the local refinement.

In particular, the presented method shares similarities with the eXtended

finite element method, which consists in constructing a finite element basis
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able to accurately resolve the singularities introduced by the structure. A

major difficulty of the eXtended finite element method is to enforce the

fluid/solid interface constraints. This issue has recently been an important

field of research (see, e.g., [55] or [33] and references therein). Differently,

the local refinement approach consists in locally refining the initial fluid

mesh such that it conforms with the solid mesh. The method avoids a com-

plex implementation and, thanks to conformity, the fluid/structure interface

constraints may directly be enforced in the finite element spaces. In [91]

a smoothing strategy is used to maintain a relative isotropy of the refined

mesh. One of the drawbacks of this approach is that the more the isotropy of

the refined mesh is guaranteed, the more the refined mesh is modified with

respect to the original mesh. On the contrary, in [61] the original mesh is

used without changing its topology (i.e., only elements cut by the immersed

structure are modified). However, the present strategy employ anisotropic

elements and, therefore, we talk of a locally anisotropic remeshing approach.

Since our problem consists of incompressible fluids and that our method

of choice to solve them is the mixed finite elements, we have to deal at

the same time with mixed finite elements and anisotropic elements. The

combination of the two leads to two major issues: an ill-conditioned linear

system (issue possibly already present in the standard finite element method

with anisotropic elements) and a possible lack of inf-sup stability even for

mixed elements that are inf-sup stable on isotropic meshes. We point out

that in [61] a streamline upwind Petrov Galarkin scheme with low order

elements is used and it is known to help circumventing the inf-sup condition

on distorted meshes (see, e.g., [73] or [76]). In the present work we focus on

solving the inf-sup stability issue with higher order elements. In addition,

we also discuss the linear system ill-conditioning.

The present work takes inspiration from [61], where: i) only the elements

crossed by the solid are remeshed so to fit with the immersed boundary; ii)

lower order elements are used to ensure that no additional degrees of free-

dom result from the remeshing strategy; and iii) the nodes lying on the

immersed boundary are not considered as degrees of freedom, precluding

78



strongly coupled strategies. Instead, we want to have the freedom of using

high order elements, so to avoid stabilization of the inf-sup condition, and

of using strongly coupled strategies; we thus do not eliminate the nodes on

the internal boundary. In [8] it is investigated the use of the P2/P1 element

for a 2D steady incompressible Stokes problem using the locally anisotropic

remeshing strategy and it was shown that P2/P1 may not be inf-sup sta-

ble with triangles in corners with Dirichlet boundary conditions applied on

both edges, but that adding a bubble to the velocity space stabilizes P2/P1

with the present remeshing strategy. Furthermore, the gradient of the veloc-

ity and the pressure of the fluid are discontinuous across the structure, and

thus it may be convenient to use mixed finite elements with element-wise

discontinuous pressures, as used in [91] and for this reason we study two

such elements: P2/P0 and P+
2 /P

d
1 with constant and linear pressures, re-

spectively. However, as we shall see these two elements have inf-sup related

issues on anisotropic meshes and thus we also use the mixed finite elements

studied in [8] namely P2/P1 and P+
2 /P1 but in such a way that the pressure

is discontinuous across the solid.

Finally, in terms of the fluid-solid interaction scheme, we use a strongly

coupled one within a time advancing implicit Euler scheme such that added

mass effects are avoided (see, e.g., [31]).

4.2. Continuous problem

4.2.1. The fluid problem

For the fluid, a standard Newtonian model with constant density is

adopted. Therefore, the set of equations governing the motion of the fluid is

given by the classical incompressible Navier-Stokes equations:

(4.1)


ρf

(
∂u

∂t
+ u · ∇u

)
− div(µ∇su) +∇p− f = 0,

div (u) = 0,

where ρf designates the density, µ the dynamic viscosity, u the velocity, p

the pressure and ∇su is defined as ∇su = ∇u + (∇u)T .
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Figure 4.1. An example of a hinged rigid leaflet sets in mo-

tion by an unsteady fluid.

4.2.1.1. Boundary and initial conditions

We consider Eq. (4.1) in a fixed domain Ω with ∂Ω = ΣD∪ΣN such that

ΣD ∩ ΣN = ∅, completed by the following boundary and initial conditions:

(4.2)

u = bD on ΣD,

−pn + µ(∇su)n = bN on ΣN ,

(4.3) u(x, 0) = ui(x) on Ω,

where n designates the outward normal of ∂Ω. We assume that ΣN is not

empty such that the pressure is uniquely defined.

4.2.2. The solid problem

For the solid we choose a hinged rigid leaflet of length L with negligible

width, only one rotational degree of freedom, and a rotational spring to the

leaflet (see Fig. 4.1).

For describing the motion of the leaflet we use a polar coordinate system

with pole R ∈ R2, the point of rotation of the leaflet. We denote by θ and

r the angular and radial coordinates, respectively.

The leaflet is initially at θ0 and has a constant mass distribution. The

leaflet equation is thus given by

(4.4) I
d2θ

dt2
+ κ (θ − θ0) = τ,

where τ is the torque exerted on the bar, defined as

(4.5) τ(t) =

∫
Γ
rfs(r, t)dr,
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with fs the net balance of the stress acting on the two sides of the bar (see

Fig. 4.1), κ the spring torsional elastic modulus, and I the moment of inertia

(for a bar) with a constant linear density ρs given by

I =

∫
Γ
ρsr

2dr =
ρsL

3

3
.

4.2.3. Fluid-structure interaction coupling

The coupling between the fluid and the solid is exerted by the fulfillment

of the kinematic constraint

(4.6) u = r
dθ

dt
n+,

and the conservation of momentum

fs(θ, t) = P− − P+,

where the right hand side is the drop of pressure across the solid. DefiningP
+n+ = −p+n+ + µ(∇su+)n+,

P−n− = −p−n− + µ(∇su−)n−,

we obtain that

(4.7) fs(θ, t) = Jpn+ − µ(∇su)n+KΓ · n+

where symbol J·K denotes the jump across Γ, i.e.,

Jpn+ − µ(∇su)n+KΓ = (p|Γ+ − p|Γ−)n+ − µ(∇s(u|Γ+ − u|Γ−))n+,

with v|Γ the trace of v on Γ.

4.3. Time discretization and linearization

For the fluid we use the first order backward Euler scheme to discretize

the velocity time derivative, that is

(4.8)
∂u

∂t

∣∣∣∣
tn+1

≈ un+1 − un

δt
,

where δt is the time step. We also choose the velocity at the previous time

step as the convective velocity, according to the classical Picard approach

such that the convective term in Eq. (4.1) is given by

(4.9) (u · ∇u)tn+1 ≈ un · ∇un+1,
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leading to a first-order in time scheme.

For the solid we employ a centered scheme for the acceleration, that is

(4.10)
d2θ

dt2

∣∣∣∣
tn+1

≈ θn+1 − 2θn + θn−1

δt2
,

and for the velocity we use a backward Euler scheme, that is:

(4.11)
dθ

dt

∣∣∣∣
tn+1

≈ θn+1 − θn
δt

.

4.3.1. Strong formulation of the coupled problem

Using Eq. (4.8)-(4.11) in Eq. (4.1)-(4.7), the time discretized problem in

strong form reads:

Problem 2: Given fn+1, bn+1
D , bn+1

N , un, θn, and θn−1, find u =

un+1, p = pn+1, θ = θn+1 such that
ρf

( u

δt
+ un · ∇u

)
− div(µ∇su) +∇p

= fn+1 + ρf
un

δt

in Ω\Γn(4.12a)

div (u) = 0 in Ω(4.12b)

u = bn+1
D on ΣD(4.12c)

− pn + µ(∇su)n = bn+1
N on ΣN(4.12d)

u− r θ
δt

n+ = −rθ
n

δt
n+ on Γn(4.12e)

τn+1 =

∫
Γn
rJpn+ − µ(∇su)n+K · n+dr,(4.12f)

I
θ

δt2
+ κθ − τn+1 = κθ0 + 2I

θn

δt2
− I θ

n−1

δt2
.(4.12g)

Notice that we impose the coupling between the fluid and the solid on Γ

at time n, denoted by Γn. Indeed, the position of the leaflet at time n + 1

is an unknown of the problem and enforcing the coupling on Γn is coherent

with our choice for the time stepping, i.e., a first-order in time scheme.

4.3.2. Weak formulation of the coupled problem

We consider the classical Sobolev spaces; accordingly L2(Ω) denotes the

space of square summable functions in Ω, H1(Ω) is the space of functions
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that are in L2(Ω) with first derivatives in L2(Ω). The space H1
Σ(Ω) denotes

the space of functions in H1(Ω) with vanishing traces on ΣD and H1,n
Σ,Γ(Ω)

is the space of functions in H1(Ω) with vanishing trace on ΣD ∪ Γn.

For simplicity and without loss of generality, let assume that bD = 0 (see

Eq. (4.2)), and thus only the essential interfacial constraints are imposed on

Γn such that we have the lifting of the interfacial constraints defined as

gn+1 ∈
[
H1

Σ(Ω)
]2 and un+1

0 ∈
[
H1,n

Σ,Γ(Ω)
]2

has a null trace on Γn with

(4.13) un+1 = un+1
0 + gn+1,

where gn+1
|Γn = (r(θn+1− θn)/δt)n+ (see Eq. 4.12e). Then our weak formula-

tion for Problem 2 reads:

Problem 3: Given fn+1, bn+1
N , un, θn, θn−1, find u0 = un+1

0 ∈
[H1,n

Σ,Γ(Ω)]2, p = pn+1 ∈ L2(Ω), and θ = θn+1 ∈ R, such that ∀(v, q, γ) ∈
[H1,n

Σ,Γ(Ω)]2 × L2(Ω)× R we have

∫
Ω
ρf

(u0

δt
+ un · ∇u0

)
· v +

∫
Ω
µ∇su0 : ∇v −

∫
Ω
p div (v)

+

∫
Ω
ρf

( g

δt
un · ∇g

)
· v +

∫
Ω
µ∇sg : ∇v

=

∫
Ω

fn+1 · v +

∫
Ω
ρf

un

δt
· v +

∫
ΣN

bn+1
N · v

(4.14a)

−
∫

Ω
q div (u0)−

∫
Ω
q div (g) = 0(4.14b)

τn+1 =

∫
Γn
r
(
Jpn+ − µ(∇sg)n+K

)
· n+dr(4.14c)

g|Γn = (r(θ − θn)/δt)n+,(4.14d) (
I
θ

δt2
+ κθ − τn+1

)
γ =

(
κθ0 + 2I

θn

δt2
− I θ

n−1

δt2

)
γ.(4.14e)

4.4. Locally anisotropic remeshing strategy and finite elements

This section is devoted to the construction of a partition T n of Ω based on

an initial partition T of Ω, which is given independently of the position of the

leaflet, as well as the associated finite element spaces. The construction of T n

is built upon a locally anisotropic remeshing. A more detailed presentation of
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the locally anisotropic remeshing strategy is given in Chapter 3 but we give

here a short presentation of the remeshing with additional considerations for

the tip of the leaflet. Furthermore, for the problem in mind the partition T n

is built in such a way that it is fairly easy to:

(1) enforce the kinematic constraint between the fluid and the solid,

and

(2) construct finite element spaces with discontinuous pressures and

velocity derivatives across the solid.

Moreover, since we use high order finite elements for the velocity field

and a local remeshing we explain how we interpolate the values of the veloc-

ity field computed at previous time steps on several nodes of the remeshed

mesh. We then give a discrete formulation of Problem 3. Moreover, since

we use high order finite elements and a local remeshing strategy, some nodal

values of the velocity field, on the initial mesh, are not directly known from

computation at time n+1, and thus we have to interpolate, which we explain.

Finally, we summarize in the form of an algorithm all previously discussed

steps. Next section, Section 4.5 is then devoted to the algebraic formulation

of the problem.

4.4.1. Locally anisotropic remeshing

We start by an isotropic triangulation T of Ω given independently of the

position of the leaflet at time n (see, e.g., [40] for a definition of an isotropic

mesh (named there a shape regular mesh) and [65] for a discussion on shape

assumptions for triangular meshes). The strategy employed is to refine the

initial mesh solely on elements crossed by the solid. As often requested in the

literature (see, e.g., [54]), we assume that Γn intersects twice the boundary

of a triangle from T and that it crosses two of the triangle edges. We call it a

full-cut. As pointed out in [54], given any solid geometry, there always exists

a sufficiently fine fluid mesh such that the assumptions previously discussed

are satisfied. Importantly, we add to the full-cut assumptions that we also

accept Γn to cut only once a triangle boundary for the tip of the leaflet,

called a tip-cut (see Fig. 4.2).
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Full-cut Tip-cut Invalid-cut

Figure 4.2. Mesh assumptions with respect to Γn (dashed).

Full and tip cuts are the only two admissible ones.

Now that we have the intersection points of Γn with the edges of the

elements of T we can remesh. We recall that by hypothesis Γn crosses a

triangle boundary of T on two points for a full-cut, each point belonging to

a distinct edge, or only once for a tip-cute. For each element of T crossed

by Γn we consider a Delaunay triangulation of the set of points composed

by the vertices of the triangle and the two intersection points for a full-cut

or the single intersection point and the tip of the leaflet for a tip-cut (see

Fig. 4.3). We call this remeshing a sub-triangulation. We point out that a

Delaunay triangulation maximizes the minimal angles (see, e.g., [18]).

We now can construct a new partition denominated T n that consists

of all triangles of T that are not crossed by Γn and the triangles of the

sub-triangulation of all the elements cut by Γn. We define the remeshed

partition by Ωn
h =

⋃
k Tk where Tk is a triangle of T n. As opposed to T ,

notice that T n is not in general isotropic. It has been noted in [11] that an

isotropic partition is not a necessary assumption for the optimal convergence

of the finite element method. However, the distortion of the mesh affects the

conditioning of the system (see, e.g., [63]). In Section 4.6 we will discuss

these topics in more details.

It is interesting to observe that using the partition T n we can easily

enforce the kinematic constraints on Γn since we have nodes of T n lying

on Γn. Furthermore, across Γn the stress may jump, which means that we

have a discontinuous pressure and a discontinuity in the derivatives of the

velocity that have to be properly taken into account. With T n a pressure
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(a) Full-cut sub-triangulation:

subdivided into 3 subtrian-

gles.

(b) Tip-cut sub-triangulation:

subdivided into 4 subtrian-

gles

Figure 4.3. Spatial discretization: full and tip triangle subdivisions.

basis that allows a jump across Γnh is promptly constructed, while the jump

in the derivatives of the velocity is automatically managed by standard nodal

C0-Lagrange basis.

4.4.2. Choice of the finite element spaces

Anisotropic partitions may impact adversely inf-sup stability of mixed

finite elements. In this section we introduce the various mixed finite ele-

ments used in the numerical tests and we discuss their inf-sup stability in

the context of the present method. More details are given in the numerical

tests section.

We use two pressure implementations:

(1) Element-wise discontinuous pressure that intrinsically allows jumps

in the pressure across element edges. Indeed, the pressure is in L2

and thus discontinuous elements are allowed;

(2) “Continuous” pressure that are continuous everywhere in the fluid

domain, except across the immersed boundary since we wish to

allow the pressure to jump across the leaflet. Obviously, such an

element is harder to implement and it requires additional degrees of

freedom along the structure and thus in the pressure finite element

space.
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Accordingly to the previous discussion, in the present work we consider

the following mixed approximation schemes:

a. P2/P0: continuous piecewise quadratic velocity and piecewise con-

stant pressure:Vn+1
h,Γ = {v : v|T ∈ (P2)2,∀T ∈ T n} ∩ [H1,n

Σ,Γ(Ω)]2,

Qn+1
h = {q : q|T ∈ P0, ∀T ∈ T n} ∩ L2(Ω).

Here Pk denotes the space of polynomials of order k.

b. P+
2 /P

d
1 : continuous piecewise quadratic with a cubic bubble veloc-

ity and discontinuous piecewise linear pressure:
Vn+1
h,Γ = {v : v|T = v2

|T + v+
|T ; v1

|T ∈ (P2)2,

v+
|T ∈ (P3)2,v+

|∂T = 0, ∀T ∈ T n} ∩ [H1,n
Σ,Γ(Ω)]2

Qn+1
h = {q : q|T ∈ P1, ∀T ∈ T n} ∩ L2(Ω),

c. P2/P1: (Hood-Taylor) continuous piecewise quadratic velocity and

continuous piecewise linear pressure but discontinuous across the

structure:Vn+1
h,Γ = {v : v|T ∈ (P2)2,∀T ∈ T n} ∩ [H1,n

Γ,Σ(Ω)]2

Qn+1
h = {q : q|T ∈ P1, ∀T ∈ T n} ∩ {H1(Ω\Γn) ∩ L2(Ω)}.

d. P+
2 /P1: continuous piecewise quadratic with a cubic bubble velocity

and continuous piecewise linear pressure but discontinuous across

the structure:
Vn+1
h,Γ = {v : v|T = v2

|T + v+
|T ; v1

|T ∈ (P2)2,

v+
|T ∈ (P3)2,v+

|∂T = 0, ∀T ∈ T n} ∩ [H1,n
Σ,Γ(Ω)]2

Qn+1
h = {q : q|T ∈ P1, ∀T ∈ T n} ∩ {H1(Ω\Γn) ∩ L2(Ω)}.

For a general and detailed presentation of the previously presented finite

element spaces and an extensive presentation of the theory on mixed finite

elements see [22].

One of the major issues for mixed elements on anisotropic mesh is that

the inf-sup constant, indicated in the following with β, may degenerate to
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zero for highly anisotropic elements. The effects of a very low inf-sup con-

stant are twofold. Firstly, the velocity and the pressure fields may have a

very large bound, of O(β−1) and O(β−2), respectively. Secondly, the condi-

tioning of the system is affected since dependence of the condition number

of the Schur complement for the steady incompressible Stokes problem on β

is O(β−2) (see, e.g., [22] or [40]). We point out that the conditioning of the

Schur complement is also affected by the distortion of the elements even for

inf-sup stable elements on anisotropic meshes (see Proposition 4.47 in [42])

since the conditioning of the pressure mass matrix worsens as the elements

are more distorted.

We now provide the various results on distorted meshes regarding the

mixed finite elements used in this work.

a. P2/P0: We know from [4] that P2/P0 is stable on a large class

of distorted meshes. Despite these results, using a similar study

as performed in Chapter 3, it may be shown that P2/P0 can be

unstable with anisotropic elements and not only in corners (see

Appendix C).

b. P+
2 /P

d
1 : To the best knowledge of the authors there are no results

for this element. Nevertheless, we show that P+
2 /P

d
1 (which is used

in [91]) is highly unstable on anisotropic elements, as we shall see

in the numerical tests (see Appendix C).

c. P2/P1: It has been shown numerically in [5] that P2/P1 may fail on

distorted meshes while P+
2 /P1 passes all proposed tests. In Chapter

3 it has been shown numerically that, for a similar method as pro-

posed in the present document but for the steady 2D incompressible

Stokes problem, P2/P1 may fail on triangles in corners for which

Dirichlet boundary conditions are applied on both boundary edges.

Actually such a situation is unlikely to occur for our FSI problem,

except perhaps for refined elements near the point of rotation of the

leaflet. Nevertheless, no spurious modes are seen in our numerical

tests with that element.
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d. P+
2 /P1: On the contrary to P2/P1, and as suggested from the re-

sults in [5], the P+
2 /P1 element passes all tests. For that reason,

P+
2 /P1 is our element of choice. However, no formal proof of the

stability of P+
2 /P1 on anisotropic meshes is known to the authors.

We point out that, when a mixed element is inf-sup unstable, the effect

of the spurious modes are only local and on very small elements, which

may have a limited impact on the motion of the leaflet, as obtained in the

numerical tests. The rigidity of the leaflet may also play an important role

in this. However, among all tested mixed elements, the best and safest is

P+
2 /P1 (see also implementation considerations in Remark 19).

Remark 19. In the current implementation we add the bubble over the

whole mesh. However, a more computationally efficient approach would be

to add the bubble only on the distorted elements. Furthermore, for P+
2 /P1

it is not necessary to integrate exactly all polynomial degrees higher than

those present using P2/P1 (i.e., terms involving the bubble shape functions),

making it a competitive alternative to P2/P1 (see Chapter 3).

4.4.3. Previous time step velocity interpolation

In Problem 3 (see Eq. (4.14)), two velocity terms at time n are required,

but some nodal values in the neighborhood of the structure are unknown

with respect to the velocity solution over the initial mesh T (see Fig. 4.4).

In order to compute the missing values we build the quadratic interpo-

lator Π over T , i.e., over the initial mesh. Let Vh be the finite dimensional

subspace of [H1(Ω)]2 built over T using piecewise quadratic Lagrange shape

functions (each shape function is denoted by Ni) such that Vh = span(N).

More precisely, we assume that we know ûn, i.e., the velocity nodal values

at time tn over the mesh Ωh, and thus the interpolation Πun is defined by

Πun(x) =
∑

i û
n
i Ni(x).

Remark 20. The use of the interpolant introduces an error. In particu-

lar, Πun(xn) is not divergence free in general. Such an issue is well known.

However, as pointed out in [91], the error introduced is found to be small. We

point out that the issue could be avoided for the convective term resorting to
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Γn Γn

Πun

(Π)−1un+1
T T n

Figure 4.4. The solution un is required for computing un+1

but some nodal values are unknown on T n. They are depicted

by red crosses. Hence interpolation is necessary using Π as-

suming that we know un on T (discussed in Sec. 4.4.3). In

the same manner from the mesh T some nodal values of the

solution un+1 are unknown (depicted with a blue square),

and thus interpolation using (Π)−1 is required (discussed in

Sec. 4.4.5) in order to obtain all nodal values on T of un+1.

a full implicit strategy by using un+1
h ·∇un+1

h instead of Πunh(xn+1) ·∇un+1
h .

However, such a strategy has not been tested here.

4.4.4. Discrete problem

Now using the elements defined in Sec. 4.4.2, we build finite dimensional

spaces Vn+1
h,Γ and Qn+1

h such that Vn+1
h,Γ ⊂ [H1,n

Σ,Γ(Ω)]2 and Qn+1
h ⊂ L2(Ω).

It follows that the discretized problem is given by:
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Problem 4: Given fn+1, bn+1
N , unh, θ

n, θn−1, find u0,h = un+1
0,h ∈

Vn+1
h,Γ , ph = pn+1

h ∈ Qn+1
h , and θ = θn+1 ∈ R, such that ∀(vh, qh, γ) ∈

Vn+1
h,Γ ×Qn+1

h × R we have

∫
Ωnh

ρf {(u0,h + gh) /δt+ Πun · ∇ (u0,h + gh)} · vh

+

∫
Ωnh

µ∇s (u0,h + gh) : ∇vh −
∫

Ωnh

ph div (vh)

=

∫
Ωnh

(
fn+1 + ρfΠun/δt

)
· vh +

∫
ΣN

bn+1
N · vh

(4.15a)

−
∫

Ωnh

qh div (u0,h)−
∫

Ωnh

qh div (gh) = 0(4.15b)

τn+1 =

∫
Γn
r
(
Jphn+ + µ(∇sgh)n+K

)
· n+dr(4.15c)

gh|Γn = (r(θ − θn)/δt)n+.(4.15d) (
I
θ

δt2
+ κθ − τn+1

)
γ =

(
κθ0 + 2I

θn

δt2
− I θ

n−1

δt2

)
γ(4.15e)

4.4.5. Velocity “re”-interpolation for the initial mesh

When using a linear interpolant, all nodal values required to construct the

interpolant are directly available from all computed time steps, while with a

higher order interpolant such as P2, this is no longer true (see Fig. 4.4). In-

deed, for a P2 interpolant the mid edge nodes of the elements cut by the solid

are not known directly from the computation at time n + 1. Therefore, we

need to interpolate them using an interpolant built upon T n. We point out

that the “re”-interpolation strategy requires to interpolate on distorted ele-

ments. However, for Lagrange-L2 interpolation the maximal angle condition

is not even necessary (see, e.g., [3]) for the interpolant to be bounded.
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4.4.6. Fluid-structure interaction algorithm

To conclude this section, the fluid solver algorithm reads:

Algorithm 1:
Data: Given ui, Γ0, T , loads and BCs

for n do
Build T n+1 from Γn and T (see Sec. 4.4)

Solve Problem 4 (see Sec. 4.4.4 and 4.4.3)

Store velocity results on T solution with reinterpolation of

unknown velocity nodal values (see Sec. 4.4.5)

Update leaflet position, that is Γn ← Γn+1

n← n+ 1

end

4.5. Algebraic formulation of the coupled problem

Considering the finite element spaces described in Sec. 4.4.2 we can con-

struct (see Eq. (4.13))

(4.16) uh =

nu∑
j=1

Njûj +

nu+nΓ∑
j=nu+1

Nj ĝj ,

where ûj are the fluid velocity nodal values in the fluid domain, i.e., nodes

in Ωn
h\Γn, and ĝj are the fluid velocity nodal values on the leaflet, i.e., nodes

lying Γn. Furthermore, in Eq. (4.16) we have û ∈ Rnu and ĝ ∈ RnΓ (where

nu and nΓ are the number of velocity degrees of freedom in Ωn
h\Γn and on Γn,

respectively) and we define Vn+1
h,0 = span(Nn) such that Vn+1

h,0 ⊂ [H1
0 (Ω)]2

and thus uh ∈ Vn+1
h,0 ; while

(4.17) ph =
m∑
j=1

Mn
j p̂j

with p̂ ∈ Rm (where m is the number of degrees of freedom for the pressure)

and Qn+1
h = span(Mn) implying that ph ∈ Qn+1

h . We point out that from

here on we do not explicitly state time dependence of Nn and Mn for ease of

notation since no references are made in what follows to the shape function

defined on T .
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Now, by employing (4.16) and (4.17) in (4.15) with a suitable construc-

tion of N and using the Bubnov-Galerkin method we can obtain the following

algebraic representation of the coupled problem

(4.18)


A Al DT 0

0 C 0 lθ

D Dl 0 0

lu ll lp s





û

ĝ

p̂

θ


=



b̂u

b̂g

0̂

λ


.

Indeed, in the following we associate the velocity nodal values in the

fluid domain by the index set Iu = {1, 2, . . . , nu}, and the velocity nodal

values on the leaflet by the index set Ig = {nu + 1, nu + 2, . . . , nu +nΓ}, and
Ip = {1, 2, . . . ,m} the set of pressure degrees of freedom, then the system of

equation (4.18) is constructed as follows.

4.5.1. The algebraic fluid part

In (4.18) we have:

A = M/δt+ O + K

with 

M|ij =

∫
Ωnh

ρfNj ·Ni

K|ij =

∫
Ωnh

µ∇sNj : ∇Ni

O|ij =

∫
Ωnh

ρf (Πun · ∇Nj) ·Ni

∀(i, j) ∈ Iu × Iu.(4.19)

We then have

Al = Ml/δt+ Ol + Kl

with the matrices defined as in Eq. (4.19) but for all (i, j) ∈ Iu × Ig. Then

the divergence terms are given by
D|ij = −

∫
Ωnh

Mi div (Nj) ∀(i, j) ∈ Ip × Iu

Dl|ij = −
∫

Ωnh

Mi div (Nj) ∀(i, j) ∈ Ip × Ig
,
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and the right hand side is given

(4.20) b̂u|i =

∫
Ωnh

(fn+1 + Πun/δt) ·Ni ∀i ∈ Iu.

4.5.2. The algebraic coupling part

We first deal with the kinematic constraint (i.e., Eq. (4.15d)) which is

represented by the matrix C and the vectors b̂g and lθ.

Let xi be the set of points of intersection of the fluid mesh T with Γn

and the mid points between two intersection points (since we use a Lagrange

P2 basis), and let R be the axis of rotation, then

(4.21) r̂i =
√

(xi −R)T (xi −R)

is the discrete counterpart of the radial coordinate r of the leaflet. Then the

discrete counterpart of Eq. (4.15d) is given by

(4.22) C|ij = δij ∀(i, j) ∈ Ig,

and lθ = {l̂xθ , l̂
y
θ}T (where upper-script x and y denote the x and y compo-

nents) with l̂
x
θ|i = −(r̂i/δt)n

+
x

l̂yθ|i = −(r̂i/δt)n
+
y

where n+ = {n+
x , n

+
y }T (see Fig. 4.5). The right hand side is given by

b̂g = {b̂xg , b̂yg}T with

(4.23)

b̂
x
g|i = −(r̂iθ

n/δt)n+
x

b̂yg|i = −(r̂iθ
n/δt)n+

y

.

To construct the discrete counterpart of the torque acting on the solid

(see Eq. (4.5) or Eq. (4.15c)) we use a residual approach implemented as

follows.

Following [32], we prolong Γnh into Γn,eh (see Fig. 4.5) such that it divides

Ωn
h into two domains: Ωn,−

h and Ωn,+
h with Ωn

h = Ωn,−
h ∪ Ωn,+

h ∪ (Γnh ∪ Γn,eh ).

Because we use a conforming method we can multiply the first equation of

the system of equations (4.12) by test functions Ni with support on Γnh.
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Ωn,−
h

Ωn,+
h

Γn
h

Γn,e
h

n+

Figure 4.5. The leaflet can be virtually extended by Γn,eh

such that Ωh = Ωn,+
h ∪ Ωn,−

h .

Then, by integrating by parts on each subdomain Ωn,−
h and Ωn,+

h and finally

summing both equations we obtain that

(4.24)



∫
Ωnh

ρf
(
un+1
h /δt+ Πun · ∇un+1

h

)
·Ni +

∫
Ωnh

µ∇sun+1
h : ∇Ni

−
∫

Ωnh

div (Ni) p
n+1
h −

∫
Ωnh

(
fn+1 + ρfΠun/δt

)
·Ni

=

∫
Γnh∪Γn,eh

Jpn+1
h n+ − µ(∇sun+1

h )n+K ·Ni.

Assuming the stress to be continuous over Γn,eh , that is Jpn+1
h n+−µ(∇sun+1)n+KΓn,eh

=

0 and using the velocity and pressure definition in Eq. (4.16) and (4.17) in

Eq. (4.24) with the notation of Eq. (4.18) we deduce that the nodal hydro-

dynamic force on the leaflet is given by

(4.25) f̂f = Āuû + Ālĝ + D̄T
l p̂− b̂l

where the matrices are given as in Eq. (4.19) but for all (i, j) ∈ Ig × Iu,
(i, j) ∈ Ig ×Ig, (i, j) ∈ Ig ×Ip, respectively, and b̂l is given as in Eq. (4.20)

but for all i ∈ Ig.
Now, using Eq. (4.7), we obtain the nodal load coupling:

(4.26) f̂s =
(
Āuû + Ālĝ + D̄T

l p̂− b̂l

)
· n+.

Writing the radial coordinate of the leaflet (i.e., r) defined in Section 4.2.2

(see Fig. 4.1) as an isoparametric representation based on the nodal values

r̂i (see Eq. (4.21)) and the finite element basis N we have

(4.27) r =
∑
i∈Ig

r̂iNi.
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Then, using Eq. (4.27) in Eq. (4.5) and we obtain

(4.28) τ =
∑
i∈Ig

r̂i

∫
Γ
fsNi,

with

(4.29)
∫

Γ
fsNi = f̂s|i.

By using (4.26) with (4.29) in (4.28), we conclude that

(4.30) τn+1 = r̂T [(Āuû + Ālĝ + D̄T
l p̂− b̂l) · n+].

Now, using (4.30) with (4.15e) and the matrices as defined in (4.18), we

deduce that 
lu = −r̂T (Āu · n+)

lg = −r̂T (Āl · n+)

lp = −r̂T (D̄T
l · n+)

.

4.5.3. The algebraic solid part

Using Eq. (4.15e) we have in (4.18)

(4.31) s = I/δt2 + κ,

and, for the right hand side using the notation in (4.30), we have

λ = −r̂T (b̂l · n+) + I/δt2
(
2θn − θn−1

)
+ κθ0.(4.32)
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4.6. Numerical experiments

In this section we perform four numerical tests:

• Test 1: validation. We consider a test performed in References

[32]-[37] with P+
2 /P1. We solve this test for stability reasons, as

explained in Sec. 4.4.2. We focus on the inf-sup stability issues in

Test 2. Unfortunately, due to the fact that we do not have access

to the numerical solution proposed in [32] or [37] we can perform

only a qualitative comparison.

• Test 2: massless leaflet without a rotational spring and effects of the

triangles anisotropy on the mixed elements. The leaflet is massless

and there is no rotational spring attached, i.e., ρs = 0 g.cm−1 and

κ = 0 dyn.cm.rad−1 and we compare the results with the approxi-

mated asymptotic solution provided in [79]. We perform the test

with all four finite element schemes and we discuss the effects of the

distortion of the elements on the inf-sup constant, as well as on the

conditioning of the linear system. We also show the smallest and

largest angles during the simulation for the P+
2 /P1 element and we

compare the results with the condition number of the linear system.

• Test 3: massive leaflet without a rotational spring. We take into

account the inertial effects by setting various values of the moment

of inertia of the leaflet: I = 0.1, 0.2, 1, 2, 10 g.cm2 and without a

rotational spring, that is by setting κ = 0 dyn.cm.rad−1. Because

we now focus on the motion of the leaflet that test is only performed

with the P+
2 /P1 element.

• Test 4: massive leaflet with a rotational spring. We take into ac-

count the inertial effects and the effects of a rotational spring. We

set I = 0.51 g.cm2 and three values for κ. For the same reason as

with Test 3, we perform the test only with the P+
2 /P1 element.

It is interesting to observe that in general only few benchmarks exist in

the literature for the fluid-structure interaction problems with a rigid leaflet.

For instance, we recall [32] with the velocity-pressure Navier-Stokes formu-

lation, and [80] and [95] using the streamfunction vorticity formulation of
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the Navier-Stokes equations. Therefore, it is difficult to perform a compar-

ison, since different formulations came with different boundary conditions.

However, we think that even a qualitative comparison is important to assess

reliability of the results in absence of analytical solutions.

4.6.1. Test 1: validation

The present test is mutated from test case 1 of [32]. The mesh is defined

on the rectangular domain [−3 cm, 3 cm]× [0, 1 cm]. The leaflet has a length

of 0.8 cm with an initial angle of π/2 and (0, 0)T is its point of rotation. The

momentum of inertia of the leaflet is I = 0.51 g.cm2. The fluid density and

viscosity are ρf = 1 g.cm−2 and µ = 0.03 g.s−1, respectively. The simulation

is performed from 0 s to 4 s with a δt = 4/500 s. The problem is pressure

driven, where the boundary condition on x = 3 is a “do-nothing” condition

(that is pn−µ(∇u)n = 0), and the pressure (in g.s−2) on x = −3 is by the

periodic function of period 0.8 defined in Eq. 4.33 (see also Fig. 4.6.1).

(4.33) pin(t) =



500 0 ≤ t < 0.3,

5000 (0.7− 2t) 0.3 ≤ t < 0.4,

−500 0.4 ≤ t < 0.7,

5000 (2t− 1.5) 0.7 ≤ t < 0.8.

On the wall, i.e., at y = {0, 1}, a no-slip condition is enforced (i.e.,u = 0).

The fluid mesh is a 139 × 57 union jack discretization of the domain.

We point out that the high number of elements is not driven by the fluid-

structure problem but rather by stability issues due to Neumann boundary

conditions at the inflows. In addition it is well known that using ∇su with

do-nothing boundary conditions induces some undesired spurious effects (see,

e.g., [60] or [93]) so we retain ∇u for this test, i.e., the Cauchy tensor for

the viscous term.

The results are provided in Fig. 4.7, where a good qualitative behavior

is clearly observed.
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Figure 4.6. Test 1: Pressure inflow condition defined in Eq. 4.33

4.6.2. Test 2: massless leaflet without a rotational spring and

effects of the triangles anisotropy on the mixed elements

In this problem the leaflet has no mass and no spring is attached, and

thus Eq. (4.4) reduces to

τ(t) = 0.

That problem has been studied in [79] and where an asymptotic analysis of

the valve opening without vortex shedding is presented.

The computational domain is the rectangle [−1 cm, 6 cm]× [0, 1 cm]. At

the inflow x = −1, the velocity is given by Eq. (4.34) (see also Fig. 4.6.2).

(4.34) u(x, y, t) = {(1− cos (πt/T ))/2, 0}T .

The length of the leaflet is L = 0.999 cm. The no-slip boundary condition

on y = 0 is applied. The do-nothing (or “stress-free”) boundary condition

is applied on x = 6 (that is pn − µ(∇su)n = 0). A symmetry boundary

condition is imposed on y = 1, i.e., only normal velocity components are set

to zero and tangential ones are set to do-nothing (see, e.g., [36]). The initial

condition is ui = 0. The time period is set to T = 10 s. The viscosity is set

to µ = 0.001 g.cm−2. We use a 127 × 19 discretization of the fluid domain,

the time step is set to δt = 10/128 s and the simulation is performed from 0

to 10 seconds.
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94 CHAPTER 4. FSI WITH LAGRANGE MULTIPLIERS

-600

-400

-200

 0

 200

 400

 600

 0  0.5  1  1.5  2  2.5  3  3.5  4

In
le

t p
re

ss
ur

e

Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2  2.5  3  3.5  4

O
rd

in
at

e 
of

 th
e 

va
lve

 e
xt

re
m

ity

Time

Case 1
Case 2
Case 3

Figure 4.9: Simulations on a straight 2D pipe with different maximum valve
openings. Case 1: 10o (smallest stenosis), case 2: 20o, case 3: 45o (strongest
stenosis). Top : inlet pressure vs. time. Bottom : ordinate of the extremity
of the valve vs. time.
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(b) Results from the present method using P+
2 /P1.

Figure 4.7. Test 1: Comparison of the ordinates of the

leaflet tip between [32] or [37] and the present method. Case

1, Case 2, and Case 3, denote the motion of leaflet such that

θ ∈ [10◦, 90◦], θ ∈ [20◦, 90◦], and θ ∈ [45◦, 90◦], respectively.

An approximation of the asymptotic solution for the motion of the rigid

leaflet problem assuming that no vortex are generated behind the leaflet is
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Figure 4.8. Test 2: Velocity inflow condition defined in Eq. 4.34

given by (see [79]):

(4.35)
dθ

dt
=

2ux(t) sin (θ)

(sin (θ)− 2)
,

with ux(t) = (1− cos (πt/T ))/2. On Fig. 4.9 we can observe that no vortex

shedding is present. We deduce that the solution proposed in [79] is suitable

for our problem. Indeed, as shown on Fig. 4.10 the motion of the leaflet

is in accordance with the asymptotic analysis. We recall that Eq. (4.35)

is only an approximation of the asymptotic solution. We can see that all

four finite element schemes provide a similar displacement of the leaflet. As

we pointed out in Sec. 4.4 the mesh is not isotropic, as it can be seen on

Fig. 4.11, leading to possible issues with the inf-sup stability and condition

number issues. In Fig. 4.12 we report the condition number of the linear

system (see Eq. (4.18)) for the four finite element schemes. The condition

number of the linear system is affected by the inf-sup constant β. We recall

that for the steady incompressible Stokes problem, the conditioning of its

Schur complement scales as β−2. Since β is affected by the distortion of the

elements, the condition number of the linear system will also be affected. Inf-

sup unstable finite elements are expected to show a much worse conditioning

than stable elements. This is precisely what we observe. We also recall that
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t = 1.4

t = 2.8

t = 4.2

t = 7

t = 10

Figure 4.9. Test 2: Streamlines snapshots, for a massless

leaflet without a spring attached and using P+
2 /P1. It can be

observed that no vortex shedding is present.

the conditioning of the Schur complement is also affected by the conditioning

of the pressure mass matrix (see Proposition 4.47 in [42]).

(1) For the P2/P0 element we see on Fig. 4.12 two peaks indicating

ill-conditioning, of one order of magnitude higher than the highest

peaks using P2/P1 and P+
2 /P1. Indeed, we can observe on Fig. 4.14,

which represents the pressure field at the time of the first peak,

spurious modes (a zoom on the culprit is showed on Fig. 4.15).
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Figure 4.10. Test 2: Confrontation of the leaflet motion for

the various elements with respect to the solution of Eq. (4.35).

P2b/P1d and P2b/P1 denote the P+
2 /P

d
1 and P+

2 /P1 ele-

ments, respectively.

(2) For the P+
2 /P

d
1 element, the associated linear system is very ill-

conditioned with respect to the other elements, indicating that the

inf-sup constant is much more sensitive to mesh distortion (or the

conditioning of the associated pressure mass matrix). On Fig. 4.14

we can observe some spurious modes on the pressure field at the

time of one of the peaks present on Fig. 4.12. A zoom on the

spurious modes is presented on Fig. 4.15.

(3) For the P2/P1 (Hood-Taylor) element, as pointed out in Sec. 4.4.2,

the inf-sup constant may be very small on small elements in re-

cessed corners with Dirichlet boundary conditions enforced on both

boundary edges but such a situation is very unlikely to occur here,

leading to a stable scheme. Indeed no spurious modes are visible

on Fig. 4.14.

(4) The P+
2 /P1 element is stable, as discussed in Chapter 3 and no

spurious modes are visible on Fig. 4.14. Globally the conditioning

is of the same order as with P2/P1.
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t = 1.4 t = 2.8 t = 4.2

Figure 4.11. Test 2: Distortion of the mesh with the P+
2 /P1 element.
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Figure 4.12. Test 2: Condition number of the linear system

and all elements.

The stable schemes P2/P1 and P+
2 /P1 show a much better conditioning than

the inf-sup unstable schemes pointing out the importance of having inf-sup

stable elements on distorted meshes.

Remark 21. In [91] the method employed uses the P+
2 /P

d
1 element with

a similar approach for the local refinement as performed here but maintaining

good element ratios by a smoothing procedure. However, our results show

that extending the method presented in [91] to very stretched elements is not

straightforward since inf-sup stability issues occur with P+
2 /P

d
1 . We thus

show the necessity of the smoothing procedure with P+
2 /P

d
1 .
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Figure 4.13. Test 2: Min and π-max angles when using P+
2 /P1.

In Remark 15 in Chapter 3, we discuss implications of the minimal and

maximal angles conditions with the finite element method. On Fig. 4.13 we

report the min and π-max angles during the simulation for Test 1 using the

P+
2 /P1 element. It clearly appears that the largest angle has a much larger

bound away from π than the smallest angle away from 0. The difference

between the min and π-max angles is roughly of an order of magnitude.

The largest difference between the min and π-max angles is of two orders of

magnitude. By comparing the conditioning of the linear system associated

to P+
2 /P1 (on Fig. 4.12) and the minimal and maximal angles we observe

that only the minimal angle has an impact on the conditioning of the system,

as we can observe that the two highest condition numbers correspond to two

very small angles, at time t = 2.5 s and t = 3.98 s.
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P2/P0 at t = 3.83

P+
2 /P

d
1 at t = 3.13

P2/P1 at t = 3.2

P+
2 /P1 at t = 3.9

Figure 4.14. Test 2: Pressure field of the elements for Test

2, at times corresponding to ill conditioned linear systems. It

shows the inf-sup stability issue for the P+
2 /P0 and P2/P

d
1

elements.

P2/P0 at t = 3.83 P+
2 /P

d
1 at t = 3.13

Figure 4.15. Test 2: Zoom on effects of elements distortion:

presence of spurious modes. The leaflet is depicted in red.

4.6.3. Test 3: massive leaflet without a rotational spring

In this problem, inspired by [95], we study the sole effect of inertia. The

domain under consideration is [−3 cm, 3 cm]× [0, 4 cm]. A no-slip boundary
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Figure 4.16. Test 3: Velocity inflow condition defined in Eq. 4.36

condition on y = 0 cm and a symmetric boundary condition on y = 4 cm are

applied, while the inflow boundary condition is imposed on x = ±3 cm and

it is given by (see also Fig. 4.6.3)

(4.36) u(x, y, t) = {sin (2πt), 0}T .

The fluid density is set to ρf = 1.0 g.cm−2 and the viscosity to µ =

0.005 g.s−1. The length of the leaflet is L = 1 cm. The initial condition

is set by ui = 0. The mesh size is 113 × 63 and the time step is set at

δt = 0.001 s with a time range from 0 to 5 seconds. Various values for the

mass of the leaflet are considered, as we vary the moment of inertia of the

leaflet (see Eq. (4.4)) with I = 0.1, 0.5, 1, 2, 10 g.cm2.

We can observe from Fig. 4.17 that it is more difficult to set in motion

the leaflet as it is heavier. We may also see that the average angle of the

leaflet over a period is not constant in time, in particular when the leaflet is

light.
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Figure 4.17. Test 3: Test for five values of I. No rotational

spring is attached to the leaflet.

4.6.4. Test 4: massive leaflet with a rotational spring

In this problem, we propose to test the complete system, with different

values for κ, the stiffness of the spring. We choose κ = 0, 1, 5, 10 dyn.cm.rad−1.

The moment of inertia of the leaflet is I = 0.51 g.cm2. For the parameters of

the fluid we choose µ = 0.03 g.s−1 and ρf = 1.0 g.cm−2. The fluid domain

has the following dimensions: [−2 cm, 6 cm]× [0 cm, 1.61 cm], over which we

use a 179 × 33 discretization. The length of the leaflet is L = 0.8 cm. The

time step is set at δt = 1/100 s and time range is from 0 to 1 second. The

inflow boundary condition on x = −2 is given by the following equation:

(4.37) u(x, y, t) = {5(sin (2πt) + 1.1), 0}T .

We impose the no-slip boundary condition on y = 0 and y = 1.61, and a

do-nothing outflow on y = 6. The initial condition is ui = 0. The parameters

for this problem are inspired from [49] and [32].

As a consistency check with expectations form physics, we can observe

from Fig. 4.19 that, for a light stiffness, the spring is pushed much further

than for the case with a higher stiffness. We may notice that when the flow

slows down (after t = 0.25), for the case with κ = 5 and κ = 10 the spring

is pushed back by the energy accumulated in the spring during the spring
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Figure 4.18. Test 4: Velocity inflow condition defined in Eq. 4.37
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Figure 4.19. Test 4: Different values of κ.

compression phase, while for κ = 1 only a slight return is observed, and none

for the case κ = 0.

We may observe from Figs. 4.20 and 4.21 that at time t = 0.25 (i.e, at

the inflow velocity peak) a large pressure jump is present across the leaflet,

stressing the importance of allowing the pressure to be discontinuous across

the leaflet. At times t = 0.25 and t = 0.75 a clear pressure jump across the

leaflet is visible, without any spurious oscillations that may have resulted

from continuous pressure and/or continuous velocity derivatives across the
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t = 0.25

t = 0.5

t = 0.75

Figure 4.20. Test 4: Normalized velocity field of using the

P+
2 /P1 with κ = 10 at various time snapshots.

structure. At that time the inflow velocity decelerates and the leaflet starts

to push back. This effect is particularly visible for κ = 5 and κ = 10. At time

t = 0.75 (i.e., lowest velocity inflow) we can observe that a second vortex has

been generated from the push back of the leaflet by the rotational spring.
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t = 0.25

t = 0.5

t = 0.75

Figure 4.21. Test 4: Pressure field of using the P+
2 /P1 ele-

ment with κ = 10 at various time snapshots.

4.7. Conclusive considerations for Chapter 4

In this chapter we have presented an “immersed” type method based on a

locally anisotropic remeshing strategy for thin structures, with an application

to the case of a hinged rigid leaflet. The results are presented for two-

dimensional problems. The method relies on remeshing only elements that

are cut by the immersed structure such that the vertices of the triangles of the

original mesh remain fixed during the simulation. Furthermore, it is possible

to impose the kinematic constraints strongly and to build finite element

spaces with a discontinuous pressure and discontinuous velocity derivatives

across the leaflet in a fairly easy way.

The main feature of the method is the presence of distorted elements near

the structure. It is well known that anisotropic elements are allowed within

the finite element method. However, since our method uses incompressible

fluids we employ the mixed finite element method, whose finite elements
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require the fulfillment of an inf-sup condition, which even if satisfied for

isotropic meshes may not be for anisotropic ones.

In the present chapter we used different mixed finite element schemes,

using both continuous (but discontinuous across the leaflet) and element-

wise discontinuous pressures with C0-elements for the velocity field. More

precisely, we tested the P2/P0, the P+
2 /P

d
1 , the P2/P1, and the P+

2 /P1,

mixed finite elements. We first validated the fluid-structure algorithm with

results from the literature. We then compared the various mixed finite ele-

ments emphasizing on the inf-sup stability and the conditioning of the linear

system.

We showed inf-sup issues and strong conditioning issues for the P2/P0

element and in particular for the P+
2 /P

d
1 element, but inf-sup stability for the

P2/P1 and P+
2 /P1 elements. Because some elements are distorted all finite

elements have conditioning issues but stable elements show a much better

conditioning than unstable ones, as expected from the theory. However, we

observed that the inf-sup condition issue does not have a major impact on

the behavior of the leaflet, since spurious modes are localized on very small

elements.

The rigidity of the leaflet may have an important role in that result. It

was also observed the importance of having a discontinuous pressure field

across the leaflet.
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CHAPTER 5

Conclusions and future works

Initiated in the 70’s, immersed approaches remain an active topic of re-

search, emphasizing the difficulty of the problem. In particular, the trade-off

“accuracy versus computational time” is acutely observed within such ap-

proaches. We deliberately chose an approach that sharpens accuracy. The

focus of the work was on the use of anisotropic elements. Even if the method

is not new we found few results on the inf-sup stability of mixed finite el-

ements in such a framework. In this work we provided simple numerical

tests to analyze such an issue as well as an application to a fluid-structure

interaction problem.

In Chapter 2 we reviewed four “immersed” methods found in the liter-

ature. This chapter emphasized on several important notions such as the

construction of the finite elements and how to enforce interface constraints

in the context of an immersed approach. Two key concepts arose in order

to obtain an accurate solution of the problem: the necessity for the finite

element space to allow for discontinuities when necessary and the necessity

of an accurate quadrature. Chapter 3 provides a method that satisfies both

requirements.

In Chapter 3 we proposed a 2D method to accurately solve immersed

boundary problems by solely remeshing elements crossed by the immersed

boundary. A notable feature of the method is the presence of anisotropic

elements. The focus of the chapter was on the inf-sup stability of P2/P1 on

such elements. It was found that this scheme may be unstable in corners

were Dirichlet boundary conditions are imposed on two edges of the element.

However, if Dirichlet boundary conditions are imposed on only one edge then

the method was showed to be stable, implying that P2/P1 might be stable

for a large range of applications. Nevertheless, we presented an element that
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passes all proposed tests, namely P+
2 /P1, where + designates a cubic bubble

with null trace on the edges of the element.

In the last chapter, an application of the results of Chapter 3 was pro-

vided to a fluid-structure interaction problem with a thin hinged rigid leaflet.

In this chapter, we used several mixed finite elements on distorted meshes,

which we tested within the proposed FSI framework. In particular, we found

out that the elements using discontinuous pressures (namely, P2/P0 and

P+
2 /P

d
1 ) might not be adapted, even if they are a natural choice for such a

problem because the pressure is likely to be discontinuous across the thin

structure. The inf-sup instabilities have impacts primarily on the pressure

field and on the conditioning of the system to solve, especially for P+
2 /P

d
1 .

Nevertheless, inf-sup unstable elements had a negligible impact on the mo-

tion of the rigid leaflet with respect to stable elements. Further studies are

required for instance on flexible leaflets to assess this result. On the contrary,

the elements with continuous pressures were shown to be up to be inf-sup

stable, especially P+
2 /P1.

Future works may deal with two important issues not discussed in-depth

in the present work: the conditioning of the various matrices with anisotropic

elements and the extension to 3D of the refinement strategy. For the first

problem, specific preconditioning may reduce the effects of anisotropic ele-

ments on both mass and stiffness matrices (see, e.g., [63]) or using a “multi-

scale” approach as in [45]). For the second problem, a newly numerical

method named the Virtual Element Method (VEM) (see, e.g., [35] and [34])

has two very nice properties that could be employed in the framework dis-

cussed in this thesis: it allows elements to be arbitrary polytopes and it is

very robust when elements are highly distorted.
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APPENDIX A

Additional results to Chapter 2
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(a) Test with α1/α2 = 1/100
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(b) Test with α1/α2 = 100

Figure A.1. Analytical solutions for the numerical test with

f1 = 1 on ]A,B[∪ ]C,D[, f2 = 1 on ]B,C[, for the different

material parameters.
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(a) Exact with α1/α2 = 1/100.
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(b) Exact with α1/α2 = 100.
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(c) Approximated with α1/α2 = 1/100.
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(d) Approximated with α1/α2 = 100.

Figure A.2. The one-field FD method.
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(a) Exact with α1/α2 = 1/100.

���� ���� ���� ���

�

����

����

����

����

���

�
��
�
��
�	

�
�
��


�
�
��

�
��
�
��
�

�
�

�������

�	�����

�	
��
������


���
�	


���
�	��

(b) Exact with α1/α2 = 100.
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(c) Approximated with α1/α2 = 1/100.
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(d) Approximated with α1/α2 = 100.

Figure A.3. The two-field FD/BLM method.
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(a) Exact with α1/α2 = 1/100.
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(b) Exact with α1/α2 = 100.
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(c) Approximated with α1/α2 = 1/100.
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(d) Approximated with α1/α2 = 100.

Figure A.4. The two-field FD/DLM method with hr ≈ 2.
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(a) Exact with α1/α2 = 1/100.
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(b) Exact with α1/α2 = 100.
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(c) Approximated with α1/α2 = 1/100.
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(d) Approximated with α1/α2 = 100.

Figure A.5. The two-field FD/DLM method with hr ≈ 1/2.
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(a) Exact with α1/α2 = 1/100.
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(b) Exact with α1/α2 = 100.
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(c) Approximated with α1/α2 = 1/100.
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(d) Approximated with α1/α2 = 100.

Figure A.6. The two-field DFD/BLM method.
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APPENDIX B

A collocated Lagrange multiplier method for

embedded Dirichlet boundary conditions

B.1. Introduction

We consider the problem of imposing an essential conditions on a bound-

ary that is not fitted by a mesh, as in Chapter 3. As explained in that chap-

ter, two questions arise in order to obtain the optimal order of convergence:

(1) How to integrate only in the physical domain?

(2) How to impose correctly the essential boundary condition?

In this appendix we focus on the second question using the Lagrange multi-

plier method. The first question was already discussed in Chapter 3.

In the finite element method there exists two strategies to impose essen-

tial boundary conditions: strongly or weakly. A strong imposition means

that the condition is enforced directly into the finite element space. Such

an approach is particularly appealing when the mesh does fit the boundary

because the elements are interpolatory at the nodes lying on the boundary.

Therefore, it is enough to impose the constraint at each node directly in the

finite element space. On the contrary, a weak enforcement of the Dirich-

let boundary condition does not require any specific shape functions on the

boundary. Such an approach is interesting when the boundary does not fit

the mesh. In the literature two strategies are generally employed: with a

Lagrange multiplier, which introduces a new unknown but is parameter free

or with a “stabilization” such as penalty or Nitsche that modifies the original

weak formulation but in general it introduces a “user” parameter. We note

that a combined strategy is often used. It appears that the construction

of such a method is far from trivial since care has to be taken for selecting

the Lagrange multiplier finite element space. Otherwise, boundary locking

occurs.. This issue is well described in [84] with the Mortar method. The
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Mortar method in [84] consists in computing every intersection points be-

tween the mesh and the embedded boundary to use them as grid points for

the Lagrange multiplier. However, it is known that with piecewise linear or

piecewise constant elements for the Lagrange multiplier the method locks.

At least with piecewise linear elements for the primary field. Nevertheless,

in this appendix we investigate this issue with a collocated Lagrange mul-

tiplier on a piecewise linear reconstruction of the embedded boundary for a

Stokes problem using P2/P0. We consider two strategies for the Lagrange

multiplier. The first strategy consists in imposing the constraint at the in-

tersection points between the embedded boundary and the mesh and the

second strategy consists in imposing the constraint at the center of each

element-wise linear reconstruction of the embedded boundary.

B.2. The model problem

We recall the problem under consideration. Given Ω ⊂ Ω̂ ⊂ R2 (see

Figure B.1) we solve:

(B.1)



−∆u +∇p = 0 in Ω,

div (u) = 0 in Ω,

∂u

∂n
− pn = 0 on ΣN ,

u = g on ΣD,

u = 0 on Γ := ∂Ω/∂Ω̂,

where g is a suitable given function, while ΣD ∪ ΣN = ∂Ω̂ and ΣD ∩ ΣN =

∅. We denote ΣD and ΣN as external Dirichlet and Neumann boundary

conditions, respectively. The outward normal is denoted n.

Remark 22. For simplicity we impose homogeneous Dirichlet conditions

on Γ, vanishing Neumann boundary conditions on ΣN and a null body-load

but an extension is straightforward.

Its classical weak formulation reads:
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Ωi

Ω̂ := Ω ∪ Ωi ∪ Γ

Γ

∂Ω̂Ω

Figure B.1. Description of the domains and boundaries.

Find (u, p) ∈ (V ×Q) such that for all (v, q) ∈ (V0 ×Q)

(B.2)


∫

Ω
∇u : ∇vdΩ−

∫
Ω
pdiv (v) dΩ−

∫
Γ

(
∂u

∂n
− pn

)
· vdΓ = 0,∫

Ω
q div (u) dΩ = 0,

where 
V := {v ∈ [H1(Ω)]2| v|ΣD = g and v|Γ = 0},

V0 =:= {v ∈ [H1(Ω)]2| v|ΣD = 0 and v|Γ = 0},

Q := L2(Ω).

Remark 23. In Equation (B.2) the term
∫

Γ(∂u∂n − pn)dΓ is equal to zero

because v vanishes on Γ but we keep this term for a later use.

In the following we do not impose the condition u|Γ = 0 directly in the

finite element space but by introducing a Lagrange multiplier λ = (pn −
∂u/∂n) such that Problem (B.2) reads:

Find (u, p,λ) ∈W ×Q× Λ such that for all (w, q, ξ) ∈W0 ×Q× Λ

(B.3)



∫
Ω
∇u : ∇vdΩ−

∫
Ω
p div (v) dΩ +

∫
Γ
λ · vdΓ = 0,∫

Ω
q div (u) dΩ = 0,∫

Γ
ξ · udΓ = 0,
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Γ

Γh

Ωh

Ω̂h

Figure B.2. Linear reconstruction of the embedded bound-

ary and the reconstructed domain of integration.

where

(B.4)


W := {w ∈ [H1(Ω)]2| w|ΣD = g},

W0 := {w ∈ [H1(Ω)]2| w|ΣD = 0},

Λ := [L2(Γ)]2.

B.3. The unfitted discretize problem

In the classical finite element method we look for a discrete solution on a

grid of Ω but in the unfitted formulation the discrete solution is on a mesh of

Ω̂, denoted Ω̂h. In this method we consider a linear reconstruction on each

element of the embedded boundary (denoted Γh) (see Figure B.2) such that

the domain of integration Ωh satisfy Γh = ∂Ωh/∂Ω̂h.

The discrete problem reads: Find (uh, ph,λh) ∈ (Ŵ h × Q̂h × Λh) such

that, for all (vh, qh, ξh) ∈ (Ŵ h
0 , Q̂

h,Λh):

(B.5)



∫
Ωh

∇uh : ∇vhdΩh −
∫

Ωh

ph div (vh) dΩh +

∫
Γh

λh · vhdΓh = 0,∫
Ωh

qh div (uh) dΩh = 0,∫
Γh

ξh · uhdΓh = 0,
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where 

Ŵ h ⊂ Ŵ := {w ∈ [H1(Ω̂)]2,w|ΣD = g}

Ŵ h
0 ⊂ Ŵ0 := {w ∈ [H1(Ω̂)]2,w|ΣD = 0}

Q̂h ⊂ Q̂ := L2(Ω̂)

Λh ⊂ [L2(Γh)]2.

Remark 24. Notice that we do perform the integration of Problem (B.5)

on Ωh. Furthermore, we have W ⊂ Ŵ and Q ⊂ Q̂. We also slightly change

the problem as we consider Λh ⊂ [L2(Γh)]2 and not Λh ⊂ Λ since we linearize

Γ into Γh. However, we have limh→0 Γh = Γ.

In the following we give a precise definition of Λh. The space we consider

is (see, e.g., [20] or [52])

(B.6) Λh :=

{
λh(x) =

Nλ∑
k=1

λkδ(x− xk)

}
,

where δ(·) is the Dirac delta function and Nλ is the number of Lagrange

multiplier nodes. Such a choice corresponds to a collocation type method.

Indeed, we impose the boundary condition on an arbitrary set of xk. In the

numerical tests we present two choices for the set of xk.

B.4. Numerical tests

We propose to solve the Stokes problem in Ω̂ := [0, 1]2 with boundary

conditions: u|Σ1
= (1−y2), u|Σ2

= 0 and free stress on Σ3 (see Figure 3(a)).

The radius of the circle described by Γ is 0.4.

We propose two different strategies for the Lagrange multiplier. The

first strategy denoted “Edge” is the set of all the intersection points of the

embedded boundary with the edges of the elements. The second strategy

denoted “Mid” is the set of all mid-points of the piecewise linear reconstruc-

tion with the intersection points of the embedded boundary and the edges

of the elements. The two strategies are depicted in Figure 3(b). The code

uses piecewise quadratic and piecewise discontinuous elements for the veloc-

ity and the pressure, respectively. The solution is compared to a simulation
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Σ
1

Σ
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Σ
2

Σ
3

Γ

(a) Mesh description: 1568 elements,

embedded boundary radius of 0.4

with 607 elements; performed with

FreeFem++ (see [82]). The number

of elements on Γh is kept constant

for all simulations and is of the same

order than the fitted discretization of

Γ (i.e., 600 elements).

(b) Strategies of a collocated Lagrange

Multiplier over a linearized embed-

ded boundary: 1) at the edge (de-

noted “Edge” - black squares) and

2) at the middle (denoted “Mid” -

white squares). We note that the

black disks are physical nodes and

the white circle is a free node.

Figure B.3. Description of the discretization of the problem

and the Lagrange multiplier strategies.

with a discretization of 500 × 500 for Ω̂ and discretization of 600 elements

for Γ. The meshes are performed with FreeFem++ (see [82]). The error is

computed by interpolating the solution of the unfitted mesh on the fitted

mesh and then compared to the fitted solution. We use a trapezoidal rule

on each element to perform the integration. In order to test the method

we first consider a problem with a free stress condition on Γ such that no

Lagrange multipliers are used. The results show (see Figure B.4) that the

method has a quadratic and a linear rate of convergence for the velocity and

the pressure, respectively. The method is optimal with embedded natural

conditions for a P2/P0 scheme.

On the contrary, for essential boundary conditions, the method is sub-

optimal in velocity and even only first order with the Edge strategy. Never-

theless, the Mid strategy performs better in all cases. We note that the rate

of convergence of the pressure is almost optimal but we can see from Fig. B.5
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Figure B.4. Optimal rate of convergence for a P2/P0

scheme with a free stress condition on Γ.
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Figure B.5. Spurious oscillations of velocity field in x with

the Mid Lagrange multiplier strategy for a 1568 elements uni-

form mesh.

that oscillations occur in elements crossed by Γ. Such an issue can be under-

stood from Fig. 3(b). Indeed, the Edge and the Mid strategies have 3 and

2 constraints, respectively, for one free degree of freedom (the white circle).

As a consequence, assuming the primary field is a piecewise linear element,

it is expected that both methods lock. However, the Mid strategy behave

better than the Edge strategy (see Fig. 6(a)). Notice that the pressure field

converges with the optimal rate of convergence (see Fig. 6(b)).
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(a) Sub optimal rate of convergence in velocity for a P2/P0 scheme: coef-

ficient after a regression analysis: 0.94 for Edge LM and 1.34 for Mid

LM, respectively.
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(b) Almost optimal convergence in pressure.

Figure B.6. Rate of convergence of a P2/P0 scheme in L2-

norm of the velocity and pressure for the Stokes problem with

homogeneous Dirichlet conditions on Γ.

B.5. Conclusive considerations for Appendix B

We introduced an unfitted finite element method with a collocated La-

grange multiplier with an application to the Stokes problem. We performed
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a linear reconstruction of the embedded boundary with respect to the mesh.

As a consequence, the method requires to integrate over domains crossing

the support of the shape functions. In this appendix we chose to integrate

over sub-elements.

In the numerical analysis we proposed two strategies for the collocated

Lagrange multiplier. The first strategy consisted in imposing the constraints

on the intersection of the embedded boundary with the mesh element edges

and the second strategy on the mid distance between these intersection

points. The results with a P2/P0 code show that both methods lead to

boundary locking and thus in a sub-optimal rate of convergence for the ve-

locity. Nevertheless, the pressure converge almost optimally. We also showed

that the second strategy, even if not optimal is a much better choice than

the first.
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APPENDIX C

A numerical evaluation of the inf-sup stability of

mixed finite elements on anisotropic triangles for

the incompressible Stokes problem

In this appendix we give extended results to Chapter 3 for mixed finite

elements on anisotropic triangles. We analyze the eigenvalues and eigenvec-

tors of the elements P2/P0, P2/P1, P+
2 /P1 and P+

2 /P
d
1 on the simple test

developed in Chapter 3. We then determine the number of spurious modes

for each elements and their locations.

C.1. Introduction

Many proofs of convergence for the finite element method rely on a shape-

regularity constraint of the mesh, i.e., that for a triangle the smallest angle

is bounded below (a similar assumption can be generalized to quadrilaterals

using the element mesh ratio). This condition is sufficient for the finite

element method to converge (see, e.g., [98]). However, it is also known from,

e.g., [11] and [62] that the shape regularity assumption is not necessary.

Indeed, a less stringent constraint, often called shape semi-regularity, requires

for a triangle that its maximal angle be strictly bounded away from π. This

condition is sufficient for the finite element method to converge.

There is a large range of applications for which shape semi-regular meshes

are useful, in particular for fluid problems: from boundary layer meshes to

immersed boundary methods, just to name a few applications. A classical

model for incompressible fluid dynamics is the Stokes problem, which is the

focus of the present appendix, and many researches for the Stokes problem

appear to be oriented toward the use of boundary layer meshes and in the

literature two types of shape semi-regular meshes are often considered: edge

(or layer) meshes (see Figure 1(a)), and corner meshes (see Figure 1(b)).
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(a) An edge (or layer)

mesh.

(b) A corner mesh.

Figure C.1. Two types of shape semi-regular meshes.

We first quickly recall the reasons for the present study. The mixed finite

element method is widely used to treat incompressible flow problems. The

shape regularity assumption is in general assumed and its necessity appears

to be an open problem for many mixed finite elements. The present appendix

discusses that issue.

One of the main requirement for convergence of the mixed finite element

method is inf-sup stability. More precisely, for the incompressible Stokes

problem, there exists a strictly positive constant (independent of the mesh

size) that bounds the divergence operator. The question for anisotropic

meshes is to know if the inf-sup constant is also independent of the shape of

the elements.

In this appendix we only focus on conforming finite element pairs for the

steady incompressible Stokes problem.

It is shown in [17] that a stabilized Q1/Q1 (with a continuous pressure)

and a stabilized Q1/P0 are stable on layer meshes with a bounded grading

factor, i.e., there cannot be a large difference of size between adjacent ele-

ments. In this paper, the authors claim that the result can be extended to

general affine 2D and 3D elements. For all the cited works that follows, no

grading factor are required. In [85] it is proved that the Qk/P
d
k−2 (k ≥ 2,

for discontinuous pressures) is stable on layer meshes but no proof is given

for corner meshes. Indeed, it is shown in [86] that the Q2/P0 element fails

on corner meshes. It is shown in [1] that the Qk/P
d
k−1 element fails on edge

meshes, and that the dependence of the inf-sup constant is on the inverse
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of the mesh ratio. They also show that the Qk+1/P
d
k−1 element is stable

on edge meshes, but with some dependence on k. For corner meshes, they

confirm the numerical result in [86], that is Qk+1/P
d
k−1 is unstable for such

meshes. They give a lower bound for the inf-sup constant showing a depen-

dence on the inverse of the square root of the mesh ratio. More importantly,

it is proved that adding an extra polynomial on the velocity space stabilizes

the element on corner meshes, but the order of the polynomial depends on

the mesh ratio. In [71] a proof of stability of the Q1/P0 element stabilized

with a pressure jump strategy is given. It is proved that the inf-sup constant

is independent of the element mesh ratio on both edge and corner meshes.

We point out that for all previously cited papers, proofs are given only for

quadrilaterals and the tensorial structure of quadrilateral meshes is in gen-

eral usually used, precluding a straightforward extension to affine mappings

and thus triangles. Most of the results only apply for affine mappings on

quadrilaterals. Other results for stabilized quadrilaterals are given in, e.g.,

[26], [73], or [25].

Regarding triangles, in [5] it is showed numerically that the P2/P1 is

stable on triangular edge meshes but that it fails on triangular corner meshes.

More importantly, it is shown that P+
2 /P1 (i.e., P2/P1 with an added cubic

bubble) passed all proposed tests. No proof of stability of the P+
2 /P1 is

given and up to now, to the best authors’ knowledge, no proof is known. In

the work of [4] a proof of the stability of the P2/P0 element for both edge

and corner meshes is given but with some restriction on corner meshes. In

[76] a residual-free-bubble stabilized formulation for the P1/P1 is proposed

on general triangular meshes. The element is proven stable but under some

restrictions on the orientation of the mesh with respect to the solution of the

problem. We point out that in the work [71] the authors claim that their

results can be extended to triangles but no formal proof is given.

In this appendix we present new numerical results following the work

performed in Chapter 3. Indeed, only few results for triangles have been

found in the literature. In particular, we show a test case for which the P2/P0

element fails and not only in corners with Dirichlet boundary conditions.
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This result shows that shape semi-regularity of the mesh is not a sufficient

condition for this element. We also recover the results of [5] and Chapter 3 for

P2/P1 and P+
2 /P1. With respect to Chapter 3, in this appendix, we provide

additional results for P2/P1 on the order of degeneracy of the spurious modes

and their locations. Another new result concerns the P+
2 /P

d
1 element (i.e.,

Crouzeix-Raviart) which fails for both “edge” and “corner” meshes. Moreover,

on the contrary to the other elements, the P+
2 /P

d
1 element shows two kinds

of pressure spurious modes: the first one with a dependence on σ1/2, where

σ is the aspect ratio, as the other unstable elements, and the second one

with a dependence on σ. This result is similar to those found in [1] for the

Q2/P
d
1 element.

C.2. Problem

We recall that (see Chapter 3) the algebraic Stokes problem using the

Finite Element Method reads: Find (v̂, q̂) ∈ Rn × Rm such that

(C.1)

A BT

B 0

û

p̂

 =

 f̂

ĝ


In Problem (C.1), A is the Laplacian operator matrix (or stiffness matrix),

B is the divergence operator matrix.

It is well known that in order to have a unique and stable solution to

Problem (C.1), the following condition is required (known as the inf-sup

condition see, e.g., [22]): ∃βh > 0 (independent of h) such that

(C.2) max
v̂∈Rn\{0}

v̂TBT q̂

||v̂||A
≥ βh||q̂||M ∀q̂ ∈ Rm.

Where ||v̂||2A = v̂TAT v̂ is the norm associated to the matrix A, and ||q̂||2M =

q̂TMT q̂ is the norm associated with the matrix M, the pressure mass matrix.

As discussed above, a crucial issue is precisely the dependence of βh on

the shape of the elements in the mesh T .

C.3. Eigenvalue tests of the associated numerical inf-sup constant

to the incompressible Stokes problem

We propose the constant flow problem (see Equation C.3) with different

boundary conditions (see Fig. C.2).
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(C.3)


ux(x, y) = 1,

uy(x, y) = 0,

p(x, y) = 0.

(a) Problem 1: with Dirichlet

boundary conditions on y =

±1.

(b) Problem 2: with Neumann

boundary conditions on y =

±1.

Figure C.2. Boundary value problems under consideration

for the inf-sup eigenproblem.

More importantly, we consider three meshes for the inf-sup test problems:

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure C.3. The three meshes used for the generalized

eigenproblem with different immersed boundary positions.

The background domain is defined on [−1, 1]2.

133



We are interested in these numerical tests to evaluate the eigenvalues and

eigenvectors of the associated numerical inf-sup generalized eigenproblem:

(C.4) BA−1BTq = λMq.

We perform the tests with four mixed finite elements: P2/P0, P2/P1

(with continuous pressure), P+
2 /P1 (with continuous pressure) where + de-

notes a cubic bubble, and P+
2 /P

d
1 (with discontinuous pressure). It is known

that all four finite element schemes are inf-sup stable with isotropic meshes

(see, e.g., [22] for detailed presentations and stability proofs).

We point out that all eigenvectors are orthogonalized using the Gram-

Schmidt process.

C.4. Summary of Results

We first present a summary of the results and then in Section C.5 we give

a series of plots of the first 8 square rooted eigenvalues of the generalized

inf-sup eigenproblem (C.4). These plots allow deducing for the unstable

cases, the order of degeneracy of the numerical inf-sup constant as function

of a or b, as well as the number of degenerative modes. We then present

a representation of some of the spurious modes. All eigenvectors given in

the following sections represent degenerative cases with a or b equal to 10−5.

Spurious mode representations are not depicted on the real mesh since the

distorted elements are very small but on more representative meshes. The

element P+
2 /P

d
1 has many spurious modes and it is not possible to represent

them all. We proceed to a selection of the spurious modes to represent.

We invite the readers to check tables reporting the first eigenvalues and

eigenvectors in the Tables in Section C.6. We point out that regarding the

tables for the P+
2 /P

d
1 element, pressure on a given element reads P (x, y) =

cst + (dx)x+ (dy)y, where cst, dx and dy are real numbers.

The summary of results is associated to a table (see Tab. C.1) that

reports for each mesh and each tests (i.e., a→ 0 and b→ 0) if it passes the

test (i.e., if the numerical inf-sup constant remains bounded) or the number

of spurious modes.
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The instability of the P2/P0 element comes from a single pressure mode

on elements with the area behaving as O(b2) (see, e.g., Fig. C.5 and C.7).

This element fails for both problems. It implies that spurious modes are

not concentrated only in corners on which Dirichlet boundary conditions are

imposed. Also, all spurious modes have a dependence on 1/
√
b.

The instability of P2/P1 comes from a single rogue pressure mode on

corners with Dirichlet boundary conditions (see Figures C.11 and C.13).

Indeed, for Problem 2 and for Problem 1 with the Mesh 3, the pair is stable

for all tests, even when the smallest element area is O(b2). These results are

in accordance with the observations made in Chapter 3. Convergence rates

of the spurious modes have a dependence on 1/
√
b.

The P+
2 /P1 element passes all tests.

The P+
2 /P

d
1 element is the only one that fails for all tests. Furthermore,

this element does not only have spurious modes with a dependence on 1/
√
a

and 1/
√
b but also with a dependence on 1/b and 1/a. In particular, this

result implies that the condition number of the Schur complement would be

much larger than for the other finite elements. We also observe that the

number of spurious modes with an order 1/2 corresponds to the number of

spurious modes of the P2/P0 element.
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Mesh: 1 2 3

a→ 0

P2/P0 P P P

P2/P1 P P P

P+
2 /P1 P P P

P+
2 /P

d
1 2 2 2

b→ 0

P2/P0 2 2 1

P2/P1 1 2 P

P+
2 /P1 P P P

P+
2 /P

d
1 5 5 4

(a) Problem 1: with Dirichlet

boundary conditions on y =

±1.

Mesh 1 2 3

a→ 0

P2/P0 P P P

P2/P1 P P P

P+
2 /P1 P P P

P+
2 /P

d
1 2 2 2

b→ 0

P2/P0 1 P 1

P2/P1 P P P

P+
2 /P1 P P P

P+
2 /P

d
1 2 1 2

(b) Problem 2: with Neumann

boundary conditions on y =

±1.

Table C.1. Summary of the results: if an element passes

the test it is denoted by P. On the contrary, if an element

fails the test the table shows the number of spurious modes.
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C.5. Eigenvalues and eigenvectors representation

Problem 1 (Dirichlet on y = ±1) with P2/P0 for b→ 0 and Mesh 1
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Figure C.4. There are 2 order 1/2 spurious modes.
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(a) Mode 1.
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(b) Mode 2.

Figure C.5. Spurious modes are clearly located on elements

with the smallest areas.
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Problem 1 (Dirichlet on y = ±1) with P2/P0 for b→ 0 and Mesh 2
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Figure C.6. There are 2 order 1/2 spurious modes.
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(b) Mode 2.

Figure C.7. Spurious modes: in the top and bottom corners.
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Problem 1 (Dirichlet on y = ±1) for P2/P0 with b→ 0 and Mesh 3
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Figure C.8. There is 1 order 1/2 spurious mode.
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Figure C.9. In this test there is only one mode over both

elements 3 and 4.
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Problem 1 (Dirichlet on y = ±1) for P2/P1 with b→ 0 and Mesh 1
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Figure C.10. There is 1 order 1/2 spurious mode.
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Figure C.11. The spurious mode is localized only on the

node that is on the smallest element area and not connected

to other elements. This result is in accordance with the re-

sults of more general test performed in Chapter 3. This test

provide a clear location for the spurious mode.
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Problem 1 (Dirichlet on y = ±1) for P2/P1 with b→ 0 and Mesh 2
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Figure C.12. There are 2 order 1/2 spurious modes.
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(a) Mode 1: O(
√
b).
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(b) Mode 2: O(
√
b).

Figure C.13. This result is consistent with the results of

Problem 1 with Mesh 1. Indeed, we have two elements in

corners and thus two spurious modes. For Problem 1 with

Mesh 3 there are no elements in a corner and as consequence

the element is stable.
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Problem 1 (Dirichlet on y = ±1) for P+
2 /P

d
1 with a→ 0 and Mesh 1
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Figure C.14. There is are order 1 and one order 1/2 spuri-

ous modes.
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(a) Mode 1: O(a).
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(b) Mode 2: O(
√
a).

Figure C.15. Notice that the order 1 spurious mode is lo-

cated on the element which have two edges with a Dirichlet

boundary condition enforced. On the contrary, the order 1/2

spurious mode is located on the element with only one edge

constrained by a Dirichlet boundary condition. In Problem

2, both distorted elements have a spurious mode but with a

degeneracy of order 1/2.

142



Problem 1 (Dirichlet on y = ±1) for P+
2 /P

d
1 with a→ 0 and Mesh 2
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Figure C.16. There are 1 order 1 and 1 order 1/2 spurious modes.
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(a) Mode 1: O(a).
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(b) Mode 2: O(
√
a).

Figure C.17. In this example, none of the distorted ele-

ments have Dirichlet boundary conditions on two of their

edges. Nonetheless, this element has an order 1 spurious

mode. This result is important since it indicates that it is

not only in corners that this element shows a much faster de-

generacy of the numerical inf-sup constant with respect to the

other elements. An identical result is obtained for Problem 2

with Mesh 2 as a→ 0.
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Problem 1 (Dirichlet on y = ±1) for P+
2 /P

d
1 with a→ 0 and Mesh 3
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Figure C.18. There are 2 order 1 spurious modes. In this

case, spurious modes are located on elements with an edge

on y ± 1.
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(b) Mode 2: O(a).

Figure C.19. This result is consistent with Problem 1 with

Mesh 1 as a → 0 which has a spurious mode of O(a) on

the distorted corner element. In this case we have two O(a)

spurious modes since the two distorted elements are in corners

with Dirichlet boundary conditions on both their edges. As

we shall see with Problem 2, there are two spurious modes

with this problem but both with orders 1/2 since there are

Dirichlet boundary conditions only on one edge.
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Problem 1 (Dirichlet on y = ±1) for P+
2 /P

d
1 with b→ 0 and Mesh 1
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Figure C.20. There are 5 spurious modes: 3 order 1 and 2

order 1/2.
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(a) Modes dx 1 to 3: O(b).
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(b) Mode dx 4: O(
√
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(c) Mode dx 5: O(
√
b) .

Figure C.21. Spurious modes for P+
2 /P

d
1 modes are difficult

to analyze. For this case we only depict the dx modes. See

the eigenvectors in Section C.6 for more details.
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Problem 1 (Dirichlet on y = ±1) for P+
2 /P

d
1 with b→ 0 and Mesh 2

10�5 10�4 10�3 10�2 10�1

b

10�6

10�5

10�4

10�3

10�2

10�1

100

S
p
u
ri

o
u
s
 m

o
d
e
 e

ig
e
n
v
a
lu

e
s

1

2

3

4

5

6

7

8

Slope=1/2

Slope=1

Figure C.22. There are 5 spurious modes: 3 order 1 and 2

order 1/2.
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Figure C.23. Representation for all cst and dx spurious modes.
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Problem 1 (Dirichlet on y = ±1) for P+
2 /P

d
1 with b→ 0 and Mesh 3
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Figure C.24. There are 4 spurious modes: 3 order 1 and

1 order 1/2. By comparing the results from Problem 1 and

2 for b → 0 and Mesh 3 we deduce that the first two modes

result from the Dirichlet BCs on y ± 1 while the last two are

also present with Neumann BCs on y ± 1.
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(a) Constant spurious

modes 1 to 3: O(b).
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(b) Representation for

the constant and dy

mode 4: O(
√
b).
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(c) Representation for the

dx mode 4: O(
√
b).

Figure C.25. For spurious modes 1 to 3 (i.e., O(b)) a repre-

sentation for the modes dx and dy is not clear. We invite the

reader to look at the numerical values of the eigenvectors in

Section C.6. Notice that for the mode 4 (O(b)) the constant

spurious mode corresponds to the position of the spurious

modes of the P2/P0 element for the same problem.
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Problem 2 (Neumann on y = ±1) for P2/P0 with b→ 0 and Mesh 1
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Figure C.26. There is 1 order 1/2 spurious mode. For Prob-

lem 1 there are two modes located on elements 3 and 6.
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Figure C.27. The single spurious mode is not on the ele-

ment with an edge on y = 1. The spurious mode is located

near two elements which are distorted. This result is impor-

tant since it indicates, on the contrary to the P2/P1, that

the tested element may be unstable when only one edge is

constrained. We also notice, with respect to Problem 1, that

there is no spurious mode on element 6. Indeed, for Problem

2 with Mesh 2 P2/P0 is stable.
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Problem 2 (Neumann on y = ±1) for P2/P0 with b→ 0 and Mesh 3
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Figure C.28. There is 1 order 1/2 spurious mode. In this

case, identical results with Problem 1 are obtained.
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Figure C.29. Spurious mode locations: identical to the re-

sults with Problem 1.
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Problem 2 (Neumann on y = ±1) for P+
2 /P

d
1 with a→ 0 and Mesh 1
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Figure C.30. There are 2 order 1/2 spurious modes. For

this problem there are only 2 order 1/2 modes since there is

no Dirichlet boundary conditions on y±1. On the contrary, in

Problem 1, there is 1 order 1 spurious mode, since there is one

element on which it is imposed Dirichlet boundary conditions

on two edges.
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Figure C.31. Representation for cst and dx modes 1 and 2.
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Problem 2 (Neumann on y = ±1) for P+
2 /P

d
1 with a→ 0 and Mesh 2
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Figure C.32. There are 2 spurious modes: 1 order 1 and 1

order 1/2. For both Problem 1 and Problem 2 the spurious

modes are not located on elements with an edge on y±1 and

as a consequence results are identical. Again, this result indi-

cates that the P+
2 /P

d
1 element has an order 1 inf-sup constant

not only with Dirichlet boundary conditions in corners of the

mesh.
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Figure C.33. Representation for spurious modes 1 and 2

(identical to the result of Problem 1).
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Problem 2 (Neumann on y = ±1) for P+
2 /P

d
1 with a→ 0 and Mesh 3
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Figure C.34. There are 2 spurious modes: 2 order 1/2. We

recall that for Problem 1 there are 2 order 1 modes. The

two problems differ by the boundary conditions on y± 1. As

for the case with Mesh 1, Dirichlet boundary conditions in

corners (i.e., the degrees of freedom are only on one edge)

imply an order 1 mode, and an order 1/2 mode if there are

degrees of freedoms on two edges.

1

2

3

4

5

6

(a) Mode 1:
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(b) Mode 2:

Figure C.35. Representation for spurious modes 1 and 2

(identical to the results of Problem 1).
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Problem 2 (Neumann on y = ±1) for P+
2 /P

d
1 with b→ 0 and Mesh 1
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Figure C.36. There are 2 spurious modes: 1 order 1 and 1

order 1/2.
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Figure C.37. Representation for spurious modes 1 and 2.
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Problem 2 (Neumann on y = ±1) for P+
2 /P

d
1 with b→ 0 and Mesh 2
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Figure C.38. There is 1 spurious mode: 1 order 1.
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Figure C.39. Spurious cst and dy modes representation.

For the dx spurious mode all elements are affected.
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Problem 2 (Neumann on y = ±1) for P+
2 /P

d
1 : b→ 0: Mesh 3
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Figure C.40. There is 2 modes: 1 order 1 and 1 order 1/2.
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(f) dy

Figure C.41. Representation for spurious modes 1 O(b)

(top) and 2 O(
√
b) (bottom). Notice that the cst spurious

mode scales as b1/2 at the exact same location as with P2/P0.
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βh 3.65e-03 5.44e-03 6.26e-01 7.46e-01

1 -3.09e-16 -4.71e-11 7.17e-02 -7.32e-01

2 -2.52e-12 -5.00e-06 -1.33e-01 -5.61e-01

3 5.04e-07 1.00e+00 1.81e-06 -1.86e-06

4 -2.52e-12 -5.00e-06 4.95e-01 1.90e-01

5 1.00e-10 -1.41e-10 6.99e-01 2.00e-02

6 1.00e+00 -5.04e-07 -6.99e-11 -2.00e-12
Table C.2. Problem 1 with P2/P0 for b→ 0 and Mesh 1.

βh 3.65e-03 3.65e-03 8.16e-01 8.16e-01

1 -6.31e-01 -7.76e-01 4.81e-11 -5.19e-11

2 -6.31e-11 -7.76e-11 -4.80e-01 5.19e-01

3 -1.00e-15 1.00e-15 -5.19e-01 -4.80e-01

4 1.00e-15 1.00e-15 5.19e-01 4.80e-01

5 7.76e-11 -6.31e-11 4.80e-01 -5.19e-01

6 7.76e-01 -6.31e-01 -4.81e-11 5.19e-11
Table C.3. Problem 1 with P2/P0 for b→ 0 and Mesh 2.

βh 3.65e-03 2.43e-01 5.77e-01 8.16e-01

1 -4.24e-05 7.65e-01 1.42e-05 -1.88e-01

2 -4.24e-05 6.30e-01 1.17e-05 1.88e-01

3 7.07e-01 5.50e-05 -7.07e-01 -1.44e-10

4 7.07e-01 2.87e-05 7.07e-01 -1.06e-10

5 1.63e-09 -1.36e-01 -2.51e-06 -1.88e-01

6 2.10e-14 -2.03e-06 -3.76e-11 -9.46e-01
Table C.4. Problem 1 with P2/P0 for b→ 0 and Mesh 3.

C.6. Spurious mode eigenvectors
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βh 2.11e-03 3.27e-01 4.80e-01 6.38e-01

1 -1.11e-06 9.41e-01 -1.71e-01 -1.92e-01

2 5.56e-07 -2.98e-01 -5.97e-02 -4.35e-01

3 -1.67e-06 1.53e-01 7.55e-01 3.26e-01

4 2.22e-06 -5.33e-02 -5.04e-01 -8.58e-03

5 -1.00e+00 -1.58e-06 -2.22e-06 -5.92e-07

6 1.69e-12 1.15e-06 -6.95e-02 1.50e-01

7 2.83e-12 -7.36e-08 1.87e-01 -4.04e-01

8 -4.47e-11 2.02e-08 -3.17e-01 6.83e-01
Table C.5. Problem 1 with P2/P1 for b→ 0 and Mesh 1.

βh 1.81e-03 2.13e-03 4.33e-01 6.35e-01

1 9.99e-01 -3.33e-02 -6.84e-06 2.57e-07

2 -6.84e-06 6.08e-08 -1.00e+00 -1.81e-02

3 5.16e-07 4.83e-07 2.32e-02 -5.28e-01

4 -2.28e-07 -1.83e-06 -8.38e-03 7.04e-01

5 3.33e-02 9.99e-01 -1.94e-07 1.55e-06

6 3.80e-14 -5.39e-12 -3.87e-06 2.10e-01

7 -4.15e-12 1.93e-11 -1.46e-06 -3.50e-01

8 3.39e-13 3.63e-12 5.20e-07 2.10e-01
Table C.6. Problem 1 with P2/P1 for b→ 0 and Mesh 2.
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βh 8.94e-06 1.84e-03 3.67e-01 4.52e-01

cst

1 4.47e-01 -2.89e-07 3.46e-02 -1.12e-02

2 -1.51e-11 9.06e-08 9.13e-02 -2.00e-01

3 6.93e-12 2.35e-06 -3.16e-01 -6.68e-02

4 -5.63e-07 -4.47e-01 -1.70e-01 -9.06e-02

5 1.56e-12 1.90e-06 -7.33e-02 -8.04e-02

6 2.23e-12 -8.17e-07 -2.71e-02 7.45e-02

dx

1 8.94e-01 9.64e-07 -1.73e-02 -5.60e-03

2 -1.38e-10 4.34e-07 2.63e-01 -4.85e-03

3 -1.25e-11 5.92e-06 -1.93e-01 -2.05e-02

4 1.10e-06 -8.94e-01 8.50e-02 -4.53e-0

5 -2.14e-11 4.69e-06 3.13e-01 1.19e-02

6 9.51e-12 2.28e-07 -2.07e-01 -4.79e-01

dy

1 -1.19e-05 6.24e-07 3.33e-01 -1.85e-01

2 3.44e-11 1.84e-07 2.76e-01 1.56e-02

3 -3.01e-11 -1.80e-06 -6.72e-02 -2.73e-01

4 -2.35e-11 4.15e-06 1.66e-01 -1.44e-02

5 -2.07e-12 -1.64e-06 1.17e-01 3.44e-01

6 9.51e-12 2.28e-07 -4.49e-01 8.13e-02
Table C.7. Problem 1 with P+

2 /P
d
1 for a→ 0 and Mesh 1.
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βh 8.94e-06 2.60e-03 3.67e-01 4.74e-01

cst

1 1.19e-11 -1.52e-06 -3.42e-02 -4.80e-02

2 -3.71e-11 2.97e-06 -1.42e-01 1.48e-01

3 3.16e-01 -3.16e-01 -1.92e-01 8.79e-02

4 -3.16e-01 -3.16e-01 -1.92e-01 8.79e-02

5 3.71e-11 2.97e-06 -1.42e-01 1.48e-01

6 -1.19e-11 -1.52e-06 -3.42e-02 -4.80e-02

dx

1 -1.32e-11 -3.13e-07 -2.04e-01 -4.77e-01

2 -7.50e-11 8.19e-06 2.19e-01 1.04e-01

3 6.32e-01 -6.32e-01 9.59e-02 -4.40e-02

4 -6.32e-01 -6.32e-01 9.59e-02 -4.40e-02

5 7.50e-11 8.19e-06 2.19e-01 1.04e-01

6 1.32e-11 -3.13e-07 -2.04e-01 -4.77e-01

dy

1 1.32e-11 3.13e-07 5.03e-01 5.20e-02

2 -3.74e-11 2.40e-06 -9.77e-02 -1.65e-01

3 -2.36e-06 -8.18e-06 9.26e-07 -3.08e-06

4 -1.39e-06 9.15e-06 -2.85e-06 4.82e-06

5 -3.74e-11 -2.40e-06 9.77e-02 1.65e-01

6 1.32e-11 -3.13e-07 -5.03e-01 -5.20e-02
Table C.8. Problem 1 with P+

2 /P
d
1 for a→ 0 and Mesh 2.
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βh 8.94e-06 8.94e-06 3.84e-01 4.64e-01

cst

1 1.73e-01 -4.12e-01 -6.63e-02 1.31e-01

2 -1.32e-11 1.00e-11 -3.98e-02 1.03e-01

3 1.19e-11 1.92e-12 2.54e-01 -4.82e-02

4 7.17e-12 -9.70e-12 2.54e-01 -4.82e-02

5 -1.65e-11 2.09e-12 -3.98e-02 1.03e-01

6 4.12e-01 1.73e-01 -6.64e-02 1.31e-01

dx

1 3.47e-01 -8.24e-01 3.32e-02 -6.54e-02

2 -6.52e-11 1.26e-10 -2.76e-01 1.39e-01

3 1.56e-12 1.07e-11 4.89e-02 -6.32e-02

4 -6.34e-12 -8.71e-12 4.89e-02 -6.32e-02

5 -1.34e-10 -4.42e-11 -2.76e-01 1.39e-01

6 8.24e-01 3.47e-01 3.32e-02 -6.54e-02

dy

1 2.18e-06 9.20e-07 -4.26e-01 1.63e-02

2 6.49e-12 -4.09e-11 -2.68e-01 -1.31e-01

3 1.16e-12 3.16e-11 -3.84e-03 -3.07e-01

4 2.13e-11 2.34e-11 3.84e-03 3.07e-01

5 -3.32e-11 -2.47e-11 2.68e-01 1.31e-01

6 -6.85e-06 -2.88e-06 4.26e-01 -1.63e-02
Table C.9. Problem 1 with P+

2 /P
d
1 for a→ 0 and Mesh 3.
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βh 8.50e-06 1.68e-05 3.00e-05 5.16e-03 6.58e-03 3.87e-01

cst

1 -3.08e-01 -2.52e-01 2.05e-01 1.59e-11 -6.51e-06 4.31e-11

2 2.37e-02 -1.39e-02 1.84e-02 3.01e-07 -4.75e-02 -2.13e-06

3 5.45e-03 -3.21e-03 4.25e-03 1.44e-07 3.03e-02 8.13e-09

4 -2.37e-02 1.39e-02 -1.84e-02 3.03e-07 4.75e-02 -1.64e-06

5 2.23e-02 -1.32e-01 -1.28e-01 -6.04e-02 2.36e-06 3.77e-01

6 -7.52e-02 4.45e-01 4.33e-01 2.83e-01 -8.27e-06 1.51e-01

dx

1 -3.17e-07 -1.37e-06 1.35e-06 8.33e-12 -1.58e-06 -6.03e-11

2 -7.28e-02 4.28e-02 -5.66e-02 -1.23e-06 3.11e-01 1.23e-05

3 -3.64e-01 2.14e-01 -2.83e-01 -5.65e-06 -8.28e-01 2.56e-06

4 2.10e-06 2.33e-06 6.00e-06 1.81e-06 8.66e-06 -1.13e-05

5 1.11e-02 -6.59e-02 -6.41e-02 -2.89e-01 2.15e-06 8.84e-02

6 5.57e-02 -3.30e-01 -3.21e-01 8.55e-01 2.12e-06 -6.14e-02

dy

1 -6.15e-01 -5.03e-01 4.10e-01 4.85e-11 -1.40e-05 -2.21e-11

2 4.73e-02 -2.78e-02 3.68e-02 6.02e-07 -9.50e-02 -4.25e-06

3 -6.08e-01 3.57e-01 -4.73e-01 -1.50e-06 4.40e-01 -2.51e-06

4 4.73e-02 -2.78e-02 3.68e-02 -1.81e-06 -9.50e-02 1.08e-05

5 -4.46e-02 2.64e-01 2.56e-01 1.21e-01 -4.73e-06 -7.54e-01

6 5.57e-02 -3.30e-01 -3.20e-01 -2.95e-01 6.45e-06 -5.06e-01
Table C.10. Problem 1 with P+

2 /P
d
1 for b→ 0 and Mesh 1.
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βh 1.54e-05 1.70e-05 2.55e-05 5.16e-03 5.16e-03 3.87e-01

cst

1 4.22e-01 4.42e-01 -1.32e-01 1.77e-01 1.77e-01 -4.17e-03

2 -1.25e-01 -1.31e-01 3.92e-02 -3.78e-02 -3.78e-02 -1.04e-02

3 9.47e-02 2.79e-06 3.02e-01 2.04e-06 2.04e-06 3.04e-08

4 -9.47e-02 -1.72e-07 -3.02e-01 -1.19e-06 -1.19e-06 9.57e-08

5 1.25e-01 -1.31e-01 -3.92e-02 -4.71e-02 -4.71e-02 -2.22e-03

6 -4.22e-01 4.42e-01 1.32e-01 2.21e-01 2.21e-01 -8.91e-04

dy

1 -3.12e-01 -3.27e-01 9.81e-02 5.35e-01 5.35e-01 1.69e-03

2 -6.25e-02 -6.55e-02 1.96e-02 -1.81e-01 -1.81e-01 -2.44e-03

3 2.09e-06 2.62e-06 -2.25e-05 5.36e-07 5.36e-07 3.98e-07

4 -1.95e-06 2.62e-06 2.29e-05 1.16e-06 1.16e-06 -1.46e-07

5 6.25e-02 -6.55e-02 -1.96e-02 -2.25e-01 -2.25e-01 -5.21e-04

6 3.12e-01 -3.27e-01 -9.81e-02 6.67e-01 6.67e-01 3.62e-04

dy

1 3.12e-01 3.27e-01 -9.80e-02 1.84e-01 1.84e-01 -1.39e-02

2 -2.50e-01 -2.62e-01 7.84e-02 -7.55e-02 -7.55e-02 -2.08e-02

3 1.89e-01 8.20e-06 6.03e-01 4.83e-06 4.83e-06 2.69e-07

4 1.89e-01 -2.28e-06 6.03e-01 1.43e-06 1.43e-06 -2.36e-07

5 -2.50e-01 2.62e-01 7.84e-02 9.43e-02 9.43e-02 4.44e-03

6 3.12e-01 -3.27e-01 -9.80e-02 -2.30e-01 -2.30e-01 2.98e-03
Table C.11. Problem 1 with P+

2 /P
d
1 for b→ 0 and Mesh 2.
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βh 8.48e-06 8.94e-06 3.62e-05 5.16e-03 2.88e-01 4.30e-01

cst

1 -1.80e-01 3.16e-01 -2.60e-01 3.18e-06 3.18e-06 -4.84e-04

2 1.46e-02 -1.23e-07 -1.01e-02 1.18e-06 1.18e-06 2.80e-03

3 -1.76e-06 1.19e-06 1.22e-06 -1.18e-01 -1.18e-01 1.70e-02

4 1.76e-06 1.19e-06 -1.22e-06 -1.18e-01 -1.18e-01 1.70e-02

5 -1.46e-02 1.23e-07 1.01e-02 1.18e-06 1.18e-06 2.80e-03

6 1.80e-01 3.16e-01 2.60e-01 3.18e-06 3.18e-06 -4.84e-04

dx

1 -1.59e-07 1.14e-06 -1.27e-06 1.30e-10 1.30e-10 -5.61e-03

2 -5.86e-02 5.23e-06 4.05e-02 -4.72e-01 -4.72e-01 5.98e-02

3 -2.93e-01 -1.97e-06 2.03e-01 4.41e-01 4.41e-01 -3.08e-01

4 2.93e-01 -6.88e-06 -2.03e-01 4.41e-01 4.41e-01 -3.08e-01

5 5.86e-02 4.25e-06 -4.05e-02 -4.72e-01 -4.72e-01 5.98e-02

6 1.26e-06 3.08e-06 2.87e-06 1.49e-10 1.49e-10 -5.61e-03

dy

1 -3.60e-01 6.32e-01 -5.20e-01 6.35e-06 6.35e-06 2.42e-04

2 2.93e-02 -2.46e-07 -2.03e-02 4.72e-06 4.72e-06 6.80e-03

3 -4.98e-01 6.81e-06 3.44e-01 -2.62e-01 -2.62e-01 -6.33e-01

4 -4.98e-01 1.54e-06 3.44e-01 2.62e-01 2.62e-01 6.33e-01

5 2.93e-02 -2.46e-07 -2.03e-02 -4.72e-06 -4.72e-06 -6.80e-03

6 -3.60e-01 -6.32e-01 -5.20e-01 -6.35e-06 -6.35e-06 -2.42e-04
Table C.12. Problem 1 with P+

2 /P
d
1 for b→ 0 and Mesh 3.
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βh 5.48e-03 5.77e-01 8.16e-01 8.80e-01

P0

1 1.46e-11 -2.43e-11 -8.45e-06 -1.91e-01

2 5.00e-06 -1.58e-10 -7.07e-01 -2.74e-01

3 -1.00e+00 1.83e-10 3.43e-11 -2.74e-06

4 5.00e-06 1.43e-10 7.07e-01 -2.74e-01

5 8.02e-11 1.50e-05 3.93e-05 7.39e-01

6 -1.82e-10 -1.00e+00 8.03e-10 1.11e-05
Table C.13. Problem 2 with P2/P0 for b→ 0 and Mesh 1.

βh 5.77e-03 5.77e-01 8.16e-01 9.66e-01

P0

1 3.90e-11 8.03e-16 -1.13e-05 7.00e-01

2 7.07e-06 -8.12e-11 -7.07e-01 -1.24e-05

3 -7.07e-01 -7.07e-01 8.12e-11 2.07e-15

4 -7.07e-01 7.07e-01 -8.12e-11 -1.73e-15

5 7.07e-06 8.12e-11 7.07e-01 1.24e-05

6 3.90e-11 -3.10e-16 1.13e-05 -7.00e-01
Table C.14. Problem 2 with P2/P0 for b→ 0 and Mesh 3.

165



βh 1.89e-03 2.93e-03 5.55e-01 6.29e-01

cst

1 -1.89e-02 -4.47e-01 -4.63e-01 -2.30e-01

2 -8.02e-08 -1.86e-07 -1.20e-01 -9.08e-03

3 2.80e-06 8.65e-07 1.79e-01 -4.11e-02

4 -4.47e-01 1.90e-02 2.66e-02 3.89e-02

5 1.79e-06 -9.57e-08 -7.38e-02 1.10e-01

6 -1.04e-06 -2.23e-08 1.07e-01 -2.68e-01

dx

1 -3.79e-02 -8.94e-01 2.32e-01 1.15e-01

2 2.99e-07 8.57e-06 -3.77e-02 2.70e-03

3 6.34e-06 1.51e-06 2.44e-01 -2.90e-01

4 -8.94e-01 3.79e-02 -1.33e-02 -1.94e-02

5 3.95e-06 -5.73e-08 -1.90e-01 4.96e-02

6 6.07e-07 -1.26e-07 -8.05e-03 1.38e-01

dy

1 3.07e-06 1.11e-05 -5.88e-01 -2.84e-01

2 -2.37e-07 -4.48e-06 -1.41e-01 -1.98e-02

3 -1.61e-06 2.95e-06 1.58e-01 2.95e-01

4 3.93e-06 1.10e-07 -3.80e-01 3.85e-01

5 -1.67e-06 9.99e-08 7.33e-02 -3.31e-01

6 1.47e-06 -5.45e-08 -1.33e-01 4.47e-01
Table C.15. Problem 2 with P+

2 /P
d
1 for a→ 0 and Mesh 1.
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βh 8.95e-06 2.80e-03 6.14e-01 6.76e-01

cst

1 -2.18e-13 -1.86e-06 2.36e-01 2.72e-01

2 -4.99e-12 3.18e-06 -9.29e-02 -2.71e-02

3 3.16e-01 -3.16e-01 1.31e-06 -8.50e-02

4 -3.16e-01 -3.16e-01 -1.03e-06 -8.50e-02

5 6.56e-11 3.18e-06 9.29e-02 -2.71e-02

6 -3.52e-11 -1.86e-06 -2.36e-01 2.72e-01

dx

1 -5.07e-12 7.85e-07 -7.48e-02 -1.20e-01

2 -3.24e-12 7.01e-06 -1.43e-01 2.37e-01

3 6.32e-01 -6.32e-01 1.06e-06 4.25e-02

4 -6.32e-01 -6.32e-01 -4.94e-07 4.25e-02

5 1.37e-10 7.01e-06 1.43e-01 2.37e-01

6 2.00e-11 7.85e-07 7.48e-02 -1.20e-01

dy

1 2.83e-12 -2.44e-06 3.50e-01 4.68e-01

2 -7.70e-12 3.01e-06 -2.04e-01 -3.07e-01

3 -2.36e-06 -8.18e-06 4.58e-01 -1.08e-05

4 -1.39e-06 9.15e-06 4.58e-01 1.15e-05

5 -6.51e-11 -3.01e-06 -2.04e-01 3.07e-01

6 4.93e-11 2.44e-06 3.50e-01 -4.68e-01
Table C.16. Problem 2 with P+

2 /P
d
1 for a→ 0 and Mesh 2.
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βh 2.92e-03 2.92e-03 5.39e-01 5.82e-01

cst

1 -3.16e-01 -3.16e-01 3.97e-01 4.21e-01

2 -2.34e-08 -1.62e-07 3.15e-02 4.14e-02

3 4.24e-07 8.42e-07 -8.09e-02 -3.06e-02

4 4.23e-07 -8.42e-07 8.09e-02 -9.64e-02

5 -2.31e-08 1.62e-07 -3.15e-02 6.70e-02

6 -3.16e-01 3.16e-01 4.17e-01 -3.82e-01

dx

1 -6.33e-01 -6.32e-01 -1.98e-01 -2.11e-01

2 6.10e-06 6.02e-06 1.93e-02 1.74e-02

3 1.07e-06 1.40e-06 -1.60e-01 5.64e-02

4 1.06e-06 -1.40e-06 1.60e-01 -7.37e-02

5 6.09e-06 -6.03e-06 -1.93e-02 3.31e-02

6 -6.32e-01 6.33e-01 -2.08e-01 1.91e-01

dy

1 -5.26e-06 -6.38e-06 5.00e-01 5.27e-01

2 -3.03e-06 -3.19e-06 3.05e-02 4.55e-02

3 1.70e-06 2.15e-06 2.77e-03 -1.68e-01

4 -1.70e-06 2.15e-06 2.77e-03 1.65e-01

5 3.03e-06 -3.20e-06 3.05e-02 -7.03e-02

6 -1.64e-05 1.90e-05 -5.17e-01 4.74e-01
Table C.17. Problem 2 with P+

2 /P
d
1 for a→ 0 and Mesh 3.
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βh 2.98e-05 6.58e-03 3.24e-01 3.87e-01

cst

1 9.91e-07 1.42e-06 -4.80e-11 8.73e-06

2 -3.30e-02 -4.75e-02 1.60e-06 -2.91e-01

3 -7.62e-03 3.03e-02 -5.67e-07 -2.43e-01

4 3.30e-02 4.75e-02 -1.60e-06 2.91e-01

5 -3.93e-11 -5.65e-11 -7.22e-11 -3.46e-10

6 -1.05e-05 -1.50e-05 -6.73e-01 1.52e-06

dx

1 -1.32e-06 -1.90e-06 6.40e-11 -1.16e-05

2 1.02e-01 3.11e-01 -8.67e-06 1.91e-01

3 5.08e-01 -8.28e-01 1.08e-05 1.18e-01

4 -3.86e-06 8.66e-06 -1.36e-10 -3.99e-06

5 -3.75e-10 -5.40e-10 -1.72e-05 -9.12e-10

6 5.62e-06 8.07e-06 3.07e-01 6.66e-06

dy

1 1.32e-06 1.90e-06 -6.40e-11 1.16e-05

2 -6.61e-02 -9.50e-02 3.20e-06 -5.82e-01

3 8.49e-01 4.40e-01 -2.34e-05 -2.09e-01

4 -6.61e-02 -9.50e-02 3.20e-06 -5.82e-01

5 5.59e-11 8.03e-11 5.85e-11 4.92e-10

6 1.05e-05 1.50e-05 6.73e-01 -1.52e-06
Table C.18. Problem 2 with P+

2 /P
d
1 for b→ 0 and Mesh 1
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βh 2.24e-05 3.24e-01 3.24e-01 5.77e-01

cst

1 -8.01e-05 6.73e-01 -1.31e-02 -1.41e-01

2 -2.66e-10 7.22e-11 -1.44e-12 1.53e-05

3 3.16e-01 3.90e-05 3.75e-05 6.29e-06

4 -3.16e-01 -3.90e-05 -3.75e-05 -6.29e-06

5 2.66e-10 -1.37e-12 -7.22e-11 -1.53e-05

6 8.01e-05 -1.31e-02 -6.73e-01 1.65e-01

dx

1 4.30e-05 -3.07e-01 5.98e-03 -6.17e-01

2 -2.85e-09 1.72e-05 -3.35e-07 4.50e-05

3 -2.08e-05 -2.57e-09 -2.47e-09 -6.05e-05

4 2.13e-05 2.63e-09 2.53e-09 6.05e-05

5 2.89e-09 -3.35e-07 -1.72e-05 -4.77e-05

6 -4.30e-05 5.98e-03 3.07e-01 7.24e-01

dy

1 -8.01e-05 6.73e-01 -1.31e-02 -1.41e-01

2 -3.90e-10 5.84e-11 -1.18e-12 2.16e-05

3 6.32e-01 7.80e-05 7.50e-05 3.66e-06

4 6.32e-01 7.80e-05 7.50e-05 3.66e-06

5 -3.90e-10 1.09e-12 5.84e-11 2.16e-05

6 -8.01e-05 1.31e-02 6.73e-01 -1.65e-01
Table C.19. Problem 2 with P+

2 /P
d
1 for b→ 0 and Mesh 2.
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βh 3.74e-05 5.16e-03 2.88e-01 4.35e-01

cst

1 -5.34e-07 -1.06e-10 1.78e-06 -1.36e-11

2 1.78e-02 1.18e-06 -5.94e-02 1.49e-07

3 -2.14e-06 -1.18e-01 -3.25e-06 -1.52e-02

4 2.14e-06 -1.18e-01 3.12e-06 -1.52e-02

5 -1.78e-02 1.18e-06 5.94e-02 1.55e-07

6 5.34e-07 -1.06e-10 -1.78e-06 -1.38e-11

dx

1 7.12e-07 1.42e-10 -2.38e-06 1.81e-11

2 -7.12e-02 -4.72e-01 2.38e-01 -6.09e-02

3 -3.56e-01 4.41e-01 -5.78e-01 3.08e-01

4 3.56e-01 4.41e-01 5.78e-01 3.08e-01

5 7.12e-02 -4.72e-01 -2.38e-01 -6.09e-02

6 -7.12e-07 1.42e-10 2.38e-06 1.84e-11

dy

1 -7.12e-07 -1.42e-10 2.38e-06 -1.81e-11

2 3.56e-02 4.72e-06 -1.19e-01 6.03e-07

3 -6.05e-01 -2.62e-01 3.03e-01 6.33e-01

4 -6.05e-01 2.62e-01 3.03e-01 -6.33e-01

5 3.56e-02 -4.72e-06 -1.19e-01 -6.15e-07

6 -7.12e-07 1.42e-10 2.38e-06 1.84e-11
Table C.20. Problem 2 with P+

2 /P
d
1 for b→ 0 and Mesh 3.
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APPENDIX D

Notes on the finite element implementation

The finite elements implementations have been written from scratch by

the author. The code used in Chapter 2 is a 1D code written in Python

using Numpy and Scipy. This code only handles piecewise linear elements

both with exact and approximated quadratures. Many error measurements

in various norms, as described in Chapter 2, have been implemented both

for nodal and integral errors.

The code used in Chapters 3 and 4 and in Appendices B and C has been

written in MATLAB. It is inspired by the implementation in [41] and there

is not a single for-loop on elements. It drastically improve efficiency since all

operation over the elements are performed vectorially. The mesh is provided

by FreeFem++ (see [82]) because it has a very simple management of the

boundary conditions for 2D problems. The code only handles affine trian-

gles. It also has XFEM type sub-integration strategies for affine mappings

alongside the collocated Lagrange multiplier as described in Appendix B.

The implemented elements are: P+
1 /P1 (MINI), P2 − iso − P1/P0, P2/P0,

P2/P1 (Hood-Taylor), P+
2 /P1, and P+

2 /P
d
1 (Crouzeix-Raviart). The version

of the code used in Appendix B allows for selective type of elements between

refined and non-refined elements. Also, different quadrature rules can be

used for all operators and over refined and non-refined elements. Such capa-

bilities are not implemented in the time dependent Navier-Stokes version of

the code used in Chapter 4. In that version, a single element, as well as a

single quadrature rule, have to be used for all elements, intersected or not.

All versions of the code use backslash as linear solver.

The intersection algorithm has been also written by the author. For

simple cases, such as straight lines over the whole domain, a level set ap-

proach has been used. For more complex geometries, a discrete description

of the immersed boundary has to be given by set of segments. Again, there
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is not a single for-loop over the elements of the fluid domain in order to

compute the intersections of the immersed boundary with the edges of the

fluid mesh. Indeed, for a given point in the fluid domain a function evaluates

all barycentric coordinates for all triangles with respect to that point. The

triangle which contains the point is found if all the barycentric coordinates

are positive. The algorithm then loops over all segments of the immersed

boundary and all edges of the triangles (except if that edge has already been

intersected). When it finds the intersected edge it moves to the next element

associated to it and it reiterate until all segments of the immersed boundary

have been parsed. Therefore, the algorithm loops only over intersected fluid

elements. Robust implementations of segments intersections as well as right

or left position of a point with respect to a segment have been used in order

to avoid round-off errors.
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