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Context: aortic valve-blood fluid-structure interaction

Figure: MRI showing motion of an aortic valve
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Immersed methods:
a 1D presentation



1D Problem: A 1D interface toy problem

A B C D

Ω1 Ω2 Ω1

Σ ΣΓ Γ

Figure: Ω = Ω1 ∪ Ω2 ∪ Γ

I Finite elements
Let uh(x) =

∑N
j ûjφj(x) with Vh = Span(φj) such that

Vh ⊂
{

u ∈ C0(Ω)
∣∣u|∂Ω = 0

}
I Galerkin method

Find uh ∈ Vh(Ω) such that∫
Ω
αu′hv′hdx =

∫
Ω

fvhdx ∀vh ∈ Vh

with

α =
{
α1 on Ω1

α2 on Ω2
& f =

{
f1 on Ω1

f2 on Ω2
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j ûjφj(x) with Vh = Span(φj) such that

Vh ⊂
{

u ∈ C0(Ω)
∣∣u|∂Ω = 0

}
I Galerkin method

Find uh ∈ Vh(Ω) such that∫
Ω
αu′hv′hdx =

∫
Ω

fvhdx ∀vh ∈ Vh

with

α =
{
α1 on Ω1

α2 on Ω2
& f =

{
f1 on Ω1

f2 on Ω2



1D Problem: Error estimates

Pick an arbitrary mesh over Ω and:

Given α ∈ C0(Ω) and f ∈ L2(Ω) then u ∈ C1(Ω) thus{
||u − uh ||1 . h1

||u − uh ||0 . h2

where || · ||1,Ω and || · ||0,Ω are H 1 and L2 norms over Ω, respectively.

But if we have, e.g.: α1 ∈ R+ and α2 ∈ R+ with α1 6= α2 then α /∈ C0 thus
u /∈ C1(Ω) but we only have u ∈ C0(Ω) as a consequence{

||u − uh ||1 . h1/2

||u − uh ||0 . h1
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Numerical tests

� Geometry: A = 0, B = e, C = 1 + π, D = 6
� Loads: fe = 1 on ]A,D[ and f2 = 1 on ]B,C [
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Figure: Analytical solutions: α1 = 1 and α2 = 4



1D Problem: numerical tests
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1D Problem: numerical tests
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Second order “Immersed” approaches for interface problems

� Immersed Interface Method (IIM) LeVeque 1994
© Build shape functions embedding interface constraints
I Pros High order, no added dofs
I Cons Requires ad-hoc interface shape functions construction

� eXtended Finite Element Method (XFEM) Hansbo 2002, Wall
2008
© Build Finite element spaces allowing discontinuities inside elements:

weakly couple fluid and solid materials
I Pros High order
I Cons integration issues, weak coupling issues, added dofs

� Local refinement van Loon 2004, Ilinca 2010
© Local mesh refinement around interface
I Pros High order, strong interface constraints enforcement
I Cons Smoothing operation (to avoid distorted elements), added degrees

of freedom

Not an exhaustive list!



2D extension:
Refinement with anisotropic elements



Boundary reconstruction & integration domain

� Step 1: define an extended mesh
� Need: reconstruct boundary to properly detect integration domain

Ωh : integration domain

◦ Necessity of integration over Ωh pointed out in ?

Σ

Ω̂
Γ Γh

Ωh

I •: intersection points of the immersed boundary with mesh
I Γh : reconstructed immersed boundary
I Ωh : integration domain with ∂Ωh = Σ ∪ Γh



Incompressible Stokes: continuous strong form

� Need: impose Dirichlet BCs on immersed boundary Γ

−∆u +∇p = 0 in Ω Balance of momentum
div (u) = 0 in Ω Incompressibility
∂u/∂n− pn = 0 on ΣN Neumann BC
u = g on ΣD External Dirichlet BC
u = 0 on Γ := ∂Ω/∂Ω̂ Immersed Dirichlet BC

I g: suitable given function
I ΣD ∪ ΣN = ∂Ω̂ and

ΣD ∩ ΣN = ∅
I n outward normal

Ω
Γ

Ωi n

ΣD ΣN

� Neumann BC on Γ easier (weakly imposed)



Proposed approach: a locally anisotropic remeshing

X Idea: consider new DOFS on the immersed boundary
X Idea: subdivide elements cut by immersed boundary
X Idea: subdivide elements only into triangles

� Problem: subdivision of quadrilaterals into triangles is not unique

Two possible choices Element ratio σ = h/d

� Problem: avoid distorted elements as much as possible

Given an element ratio σ, an element is distorted when σ is large

X Idea: choose the pair of triangles with best element ratios
X Actually: Delaunay triangulation leads to best choice
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A subdivision example

Original mesh T̂ & circle Γ

Refined mesh Tr

Clearly the method may induce a mesh with distorted elements



A subdivision example

Original mesh T̂ & circle Γ Refined mesh Tr

Clearly the method may induce a mesh with distorted elements



Mixed FEM: an algebraic presentation

� Algebraic (Galerkin) system[
A BT

B 0

]{
û
p̂

}
=
{

f
g

}

� 2D incompressible Stokes problem
A|ij =

∫
Ωh

∇Ni : ∇NjdΩh ∀(i, j) ∈ {1, . . . ,n} × {1, . . . ,n}

B|ij = −
∫

Ωh

Mi div(Nj)dΩh ∀(i, j) ∈ {1, . . . ,m} × {1, . . . ,n}

with N velocity shape functions, M pressure shape functions



Conditions for a non-singular system

Discrete inf-sup condition required to properly solve previous algebraic
system
� ∃β > 0 (independent of h) such that

max
v6=0∈Rn

vTBTq
||v||A

≥ β||q||Q ∀q ∈ Rm

� Error estimate (?)

||u− û|| . ||f ||+ β−1||g||

||p− p̂|| . β−1||f ||+ β−2||g||

with u exact solution at nodes and for suitable norms

Problem: if β → 0 as element ratio σ →∞, then
I errors are not bounded
I pressure error deteriorates faster than velocity error
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A numerical measure for inf-sup constant

� Goal: numerically show if a finite element approximation is stable for
large element distortions

� Discrete inf-sup constant given by square root of lowest positive
eigenvalue of generalized eigensystem (e.g., ?)

BA−1BTq = β2
hQq,

with pressure mass matrix Q defined as

Q|ij =
∫

Ωh

MiMjdΩh

� Remark on conditioning (e.g., ?)

κ(BA−1BT) . β−2
h κ(Q)

where κ condition number



2D Problem: Mixed finite elements in consideration

P2/P0 P+
2 /Pd

1

P2/P1 P+
2 /P1

All elements are inf-sup stable under isotropic mesh distortion



A Smallest Generalized Eigenvalue test
Test D Test N

Remeshing examples:
a → 0 b → 0

a = 0.2 a = 0.3 b = 0.3 b = 0.2



Test and results

Mesh 1 Mesh 2 Mesh 3

Test D
Mesh: 1 2 3

a → 0

P2/P0 P P P
P2/P1 P P P
P+

2 /P1 P P P
P+

2 /Pd
1 2 2 2

b → 0

P2/P0 2 2 1
P2/P1 1 2 P
P+

2 /P1 P P P
P+

2 /Pd
1 5 5 4

Test N
Mesh 1 2 3

a → 0

P2/P0 P P P
P2/P1 P P P
P+

2 /P1 P P P
P+

2 /Pd
1 2 2 2

b → 0

P2/P0 1 P 1
P2/P1 P P P
P+

2 /P1 P P P
P+

2 /Pd
1 2 1 2

P if inf-sup stable, number of spurious modes otherwise



Comments

� Stability for distorted triangular elements is important
Element numerics theory reference
P+

2 /P1 stable proof? Apel 2003
P2/P1 (Taylor-Hood) not stable Apel 2003
P+

1 /P1 (MINI) not stable Russo 1996
P2/P0 not stable (despite Apel 2004)
P+

2 /Pd
1 not stable

� Stabilization: specific stabilization may be used for distorted
elements



Application to an Fluid-Structure
Interaction problem:

an hinged rigid leaflet



Application problem

θ

Hinged rigid leaflet under fluid load.



FSI Application: Coupled system

Fluid Solid Coupling

Problem: Let Ω be the fluid domain, Γ the leaflet, & ΣD ∪ ΣN = ∂Ω
Find u, p, θ such that

ρf

(
∂u
∂t + u · ∇u

)
− div(µ(∇u +∇Tu)) +∇p = f in Ω\Γ

div (u) = 0 in Ω\Γ
u = bD on ΣD

−pn + µ(∇u +∇Tu)n = bN on ΣN

u(x, 0) = ui(x) in Ω

I d2θ

dt2 = τ

u = r dθ
dt n+ on Γ

τ =
∫

Γ
rJpn+ − µ(∇u +∇Tu)n+K · n+



FSI Application: Coupled system

Fluid Solid Coupling terms

� Unknowns
I u Fluid velocity around leaflet
I g Fluid velocity on leaflet (subscript l restriction on the leaflet)
I p Fluid pressure
I θ Leaflet angle

� Global system A Al DT 0
0 C 0 lθ
D Dl 0 0
lu ll lp s




û
ĝ
p̂
θ

 =


b̂u

b̂g
0̂
λ


I Matrix A: Stiffness, Mass, & Convection (Picard fixed point) terms
I Matrix D: Divergence terms
I Scalars s and λ: solid
I Vectors lu , lu , lp: Conservation of momentum
I Matrix C & vector lθ: Kinematic constraint



FSI Application: Numerical test 1
I Domain [−3, 3]× [0, 1] cm2 discretized
I Fluid ν = 0.03 cm2 · s−1

I Solid L = 0.8 cm, rotation around (0, 0), I = 0.51 g2, θ0 = π/2
I BCs: top: no-slip; bottom: no-slip; outflow: free-stress; inflow:
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FSI Application: Video Numerical Test 1

Speed (top) & Pressure (bottom) (using P+
2 /P1)


motion.mp4
Media File (video/mp4)



FSI Application: Validation Numerical Test 1

94 CHAPTER 4. FSI WITH LAGRANGE MULTIPLIERS
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Figure 4.9: Simulations on a straight 2D pipe with different maximum valve
openings. Case 1: 10o (smallest stenosis), case 2: 20o, case 3: 45o (strongest
stenosis). Top : inlet pressure vs. time. Bottom : ordinate of the extremity
of the valve vs. time.
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Extracted from Causin 2005 using P+
2 /P1

I Case 1: θ ∈ [10◦, 90◦]
I Case 2: θ ∈ [20◦, 90◦]
I Case 3: θ ∈ [45◦, 90◦]



FSI Application: Numerical Test 2: massless leaflet
I Fluid domain: [−1, 6]× [0, 1]
I Fluid: ν = 0.001 (Reynolds ≈ 1000)
I Solid: L=0.999, rotation around (0, 0), θ0 = π/2
I BCs: bottom: no-slip; top: symmetric; outflow: free-stress; inflow:
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FSI Application: Numerical Test 2 elements distortion
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Media File (video/mp4)



FSI Application: Numerical Test 2 leaflet motion
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FSI Application: Numerical Test 2 conditioning
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FSI Application: Numerical Test 2 spurious modes

P2/P0 P+
2 /Pd

1



Conclusions

Proposed an immersed approach using an anisotropic remeshing
I Studied inf-sup stability issues with a series of numerical tests

I Showed that as is, mixed elements with discontinuous pressure not
suitable

I Application to a simple fluid-structure interaction problem
I Stabilization strategies: proofs of concept

Further researches
I Lower order schemes: P+

1 /P1

I Conditioning issues

I Extension to 3D
I The Virtual Element Method
I ...
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I On the 1D part:

F. Auricchio, D. Boffi, L. Gastaldi, A. Lefieux, and A. Reali. A study
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I On the 2D part:

F. Auricchio, F. Brezzi, A. Lefieux, and A. Reali. An “immersed” finite
element method based on a locally anisotropic remeshing for the
incompressible stokes problem.
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I On the FSI problem:

F. Auricchio, A. Lefieux, A. Reali, and A. Veneziani. A locally
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structures with application to a hinged rigid leaflet.
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Contributions

I In mathematics:
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I In computational hemodynamics:
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Last but not least: Computational hemodynamics

The iCardioCloud project

� Pre-processing:
I Patient specific geometry: reconstructed from Computed

Tomography
I Patient specific inflow: from Magnetic Resonance Imaging MRI
I Reconstructed with VMTK/Tetgen

� Simulations:
I LifeV: a collaborative parallel (Trilinos based) finite element library:

half million lines of C++ code
I Mesh: Around 3 millions tetrahedra: ≈ 160 Gigas in RAM
I Navier-Stokes with MINI (P+

1 /P1) and inf-sup stable
I Second order in time Backward-Euler scheme
I In house HPC cluster (& more with FERMI (IBM BlueGene/Q)):

design and installation
� Post-processing:

I Paraview: streamlines, WSS, OSI
I VMTK: Particule tracking, Pathlines,
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Last but not least: a confrontation MRI - CFD


MRICFD.mp4
Media File (video/mp4)



Last but not least: post vs followup operative



Thank you for your attention!
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