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Chapter 1
Introduction

The study of fluidmechanics dates (at least) back to ancient Greece and Rome,
in particular with the famous work of Archimedes (ca. 250 BC). The study
of eddies, vortices, and turbulence by Leonardo da Vinci in the Renaissance
(ca. 1508) is commonly considered as the pioneering work on fluid dynamics.
Around a century and a half after Newton’s Principia Mathematica (1687), a
rigorous continuum mechanics framework for fluid dynamics was developed
in the form of the Navier-Stokes equations1 (NSEs). Ever since, the NSEs
have been the universally accepted model for viscous flow problems.

Until today the behavior of solutions to the NSEs is still not fully under-
stood. Analytical solutions for the NSEs can only be derived under special
assumptions, with simple geometries for which the complexity of the equa-
tions can be reduced. For instance, solutions for the flow between two parallel
plates or for the flow in a circular pipe can be represented explicitly. In general
cases and with more complex geometries, solving the NSEs analytically is
generally impossible. Moreover, from a purely mathematical point of view,
the question about the existence and smoothness of solutions to the NSEs
in three dimensions is still an open problem [1]. Answering this question
is considered as one of the seven most important open problems in mathe-
matics as formulated by The Clay Mathematics Institute, with an award of
US$ 1,000,000 offered for a solution.

The advent of computers opened new doors to studies and applications
of NSEs. This branch of computational science is referred to as Computa-
tional Fluid Dynamics (CFD). Computational science is a rapidly growing

1 The major contributions to the development of the NSEs are generally attributed to Euler
(1757), Navier (1823), Cauchy (1828), Poisson (1829), Saint Venant (1843) and Stokes
(1845).
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2 1 Introduction

multidisciplinary field that employs advanced computing technology to study
complex problems, and is nowadays commonly considered as the third pillar
of science, besides the traditional theory and experimentation pillars. The
combination of mathematical analysis and the power of computers makes it
possible to solve the NSEs numerically. The work in this thesis is conducted
within the scope of the field of CFD, as it considers the development of a
geometrically versatile solution technique for the NSEs.

1.1 Background

In this thesis we focus ourselves to incompressible flow problems, which
are governed by the incompressible Navier-Stokes equations2 (NSEs). In an
incompressible flow the density of a fluid element does not change during its
motion. For incompressible flows, the divergence of the velocity field is zero.
From a continuum mechanics point of view, the incompressible NSEs can be
derived from the conservation laws of momentum and mass.

1.1.1 Finite Element Methods for incompressible fluid flows

The NSEs are useful for describing many physical phenomena in science and
engineering. The applications are vast, ranging from atmospheric changes,
ocean currents, and surface flows in rivers in geo-engineering, to fluid flows
in pipes and subsurface flows in oil reservoirs in petroleum engineering,
and air flow around wings in aerospace engineering. Nowadays, computer
simulations of the NSEs play an important role in, for example, the design
of aircraft and cars, studying blood flows inside the human body, designing
power stations, and understanding pollution transport.

Finite Element Analysis (FEA) was pioneered by Courant (1943), who uti-
lized the Ritz method to obtain approximate solutions of vibration systems.
The term “Finite Element” was later introduced in the work of Clough (1960).
Since its introduction, FEA has been applied and developed intensively, with
contributions from many different fields, including engineering and mathe-
matics. We refer the reader to, e.g., Refs. [2–4] for reference works regarding

2 Throughout this thesis, when we refer to the NSEs, the incompressibility assumption is
implied.



1.1 Background 3

FEA. The first applications of the FEM for solving Stokes and the NSEs were
studied in the 1970s. The stability analysis for FEM of these equations was
introduced by Babuška in 1971 [5] and Brezzi in 1974 [6]. Prior to that, the
problem on the existence and smoothness of the continuous NSEs in two
dimensions was solved by Ladyzhenskaya in 1961 [7], and the necessary and
sufficient condition for the well-posedness of bilinear operators in Hilbert
spaces – nowadays referred to as the inf-sup condition – was stated by Necas
in 1962 [8]. The inf-sup condition is the foundation for the development of
inf-sup stable mixed element methods for fluids. The early monographs in
FEM for fluids of Girault and Raviart (1979) [9], and the extended versions
in 1986 and 2012 are classical references [10, 11] in this field. Other classic
references for mixed and hybrid methods are the books by Boffi, Brezzi and
Fortin [12, 13].

The incompressibility constraint in the NSEs and its Stokes linearization
does not allow for straight-forward application of the FEM in the sense that
the discrete approximation spaces for velocity and pressure cannot be chosen
arbitrarily. Instead, a compatible pair must be selected to satisfy the inf-sup
condition. If the inf-sup condition is violated, unphysical spurious oscillations
occur. The same phenomena happens in (linear) elasticity problems when the
material is (quasi-)incompressible (such as rubber-like materials). Finding
pairs of inf-sup stable spaces has been an active field of research over the last
decades. The recently proposed periodic table of mixed elements (Arnold and
Logg [14]) – which has been developed in the framework of finite element
exterior calculus (FEEC) [15–17] – aims at systematically classifying the
(well-)known pairs, and to indicate new mixed element pairs.

An alternative approach to circumvent the inf-sup stability condition is to
use stabilization techniques. In this class of techniques the variational form
is modified. This approach allows for using identical discrete approximation
spaces for both the velocity and the pressure fields. Some of the most pop-
ular methods in this framework are Brezzi-Pitkäranta stabilization [18] and
SUPG/PSPG/Galerkin-Least Square (GLS) type stabilizations [19–23]. The
Brezzi-Pitkaranta formulation is non-consistent – i.e., the problem is (slightly)
modified – and only achieves optimal convergence rates for linear approxi-
mations. PSPG/GLS stabilization on the other hand is optimally high-order
accurate, and fully consistent (provided that the exact solution is sufficiently
smooth). However, PSPG/GLS stabilization introduces a quite strong artificial
coupling between the velocity and the pressure, and also needs a modifica-
tion of the right hand side of the system. A later development of PSPG/GLS
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is the Variational Multiscale Method [24–28]. Prominent alternative tech-
niques that have been developed for fluid problem stabilization are stream
functions [29–32], algebraic sub-grid scales [33, 34], fractional step finite
elements [35], projection-based stabilization [36, 36–39], and the continuous
interior penalty method [40–42]. The continuous interior penalty method is
quite different from the other approaches mentioned above in the sense that
the stabilization is defined on the skeleton structure of the mesh, instead of
element-wise. The methods proposed in this thesis are inspired by this idea.

Although the FEM is very successful in solving incompressible fluid flow
problems (and PDEs in general), in practice, the meshing process for complex
geometries is commonly experienced to be the bottleneck in a complete anal-
ysis cycle [43]. This meshing process includes geometry clean-up procedures,
and communication between the CAD design and the polygonal approxima-
tion of that geometry in order to e.g. refine the FEM mesh. This problem has
led to a demand for minimizing the time of this pre-analysis stage. The most
prominent candidates to solve this problem are Isogeometric Analysis (IGA)
and immersed methods.

1.1.2 Isogeometric analysis

Isogeometric analysis (IGA) was proposed by Hughes et al. in 2005 [44] as a
framework to reduce the gap between Computer Aided Design (CAD) and Fi-
nite Element Analysis (FEA). CAD is extensively used in industry, including
the automotive industry, the ship building industry, the aerospace industry,
architectural design, prosthetics, and many more. Traditionally, CAD files
generated by designers must be transformed into (generally) geometrically
approximate meshes before they can be input to FEA codes. This meshing
procedure – which includes the geometry clean-up operations in order to
apply a tessellation algorithm – is far from trivial, and for complex engineer-
ing designs it accounts for the large majority of the complete analysis time.
Moreover, the polygonal approximation geometry of the original CAD design
potentially leads to solution instabilities (e.g., in imperfection-sensitive prob-
lems such as buckling) and reduced analysis accuracy (e.g., in sliding contact
problems or boundary layer phenomena). Boundary conditions can become in-
consistency by the geometry approximation (e.g. the Sapondzhyan—Babuška
plate paradox where boundary conditions in the original problem and the
geometric limit problem are different [45, 46]). The fundamental idea of IGA
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is to eliminate the meshing step by directly using the CAD model for the
analysis.

Amongst the computational geometry technologies, Non-uniform Ratio-
nal B-splines (NURBS) are the industry standard [47–50]. NURBS exactly
represent conic sections such as circles, cylinders, and spheres. NURBS pos-
sess various useful mathematical properties, such as built-in refinement al-
gorithms, point-wise positivity, the convex hull property, and the variation
diminishing property in the presence of discontinuous data. A property that
has deserved special attention in the context of IGA is the higher-order con-
tinuity of NURBS, this in contrast to the C0-continuity of Lagrange bases
employed in the traditional FEM. In IGA the NURBS basis functions inher-
ited from CAD are employed directly for the analysis. For analysis-suitable
CAD models, geometrically exact meshing procedures can therefore seam-
lessly be performed on the coarsest level of the CAD geometry. Refinement,
de-refinement, and degree elevation are naturally facilitated by the CAD
model.

Over the past decade, isogeometric analysis has been applied in a wide
range of research areas, and has been shown to outperform traditional C0 ba-
sis functions in many disciplines, including: solid mechanics [44], structural
mechanics [51–57], fluids dynamics [58], fluid-structure-interactions [59–
62], electromagnetics [63, 64], magnetohydrodynamics [65], contact mechan-
ics [66–69], shape optimization [70–75], fracture mechanics and phase-field
modeling [76–81], free-boundary problems [82], multiscale homogenization
problems [83, 84], and many more. We refer to Ref. [43] for an overview
of established IGA developments. The most prominent methodological de-
velopments to the field of IGA include research on T-splines [85, 86], col-
location methods [87–89], boundary-element methods [90, 91], subdivision
surfaces [92, 93], approximation properties [94–97], multi-patch coupling
techniques [98–101], volume parameterizations [102], domain decomposi-
tion techniques [103], local refinement strategies [104–106], splines for un-
structured meshes [107, 108], and preconditioning techniques [109–113]. A
comprehensive overview of the mathematical perspective on IGA can be
found in Ref. [114]. An interesting aspect of IGA is that traditional Gauss
quadrature is not economically optimal in the sense that it does not take
into account the high continuity across elements. This issue is addressed in
Refs. [115, 116], where optimal quadrature rules for IGA are proposed. Also,
the classical element-by-element assembly procedure leads to unnecessarily
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high costs when applied to IGA. This problem can be resolved by applying a
row-by-row assembly procedure [117].

Within the context of fluid flow problems – particularly in the incompress-
ible regime – IGA has been applied very successfully. Within the frame-
work of inf-sup stable spaces for mixed formulations [13], the control over
inter-element continuity in IGA has enabled the generalization of existing
compatible discretization pairs to arbitrary orders and regularities, and the
development of novel IGA discretizations, most notably: Taylor-Hood ele-
ments [94, 118, 119], Nédélec elements [118], subgrid elements [119, 120],
and H(div)-conforming elements [118, 121–123].

One of the open challenges for IGA for fluids, and for IGA in general, is
that complex geometries originating from industry usually involve multiple
trimming surfaces/curves. These trimmed objects cannot be treated within the
conforming IGA framework. In order to facilitate treatment of such objects,
the conforming IGA framework can be enriched with immersed simulation
technology, which is regarded as the natural analysis equivalent of trimmed
geometries in CAD.An additional advantage of immersed IGA is that it allows
to deal with large mesh deformations, which typically occur in, for example,
fluid-structure interactions and free-boundary problems.

1.1.3 Immersed methods & Immersogeometric analysis

The pivotal idea of immersed methods is to extend a geometrically complex
physical domain of interest into a geometrically simple embedding domain,
on which a regular mesh can be built easily. There are varieties of techniques
in the literature that belong to the class of immersed methods, such as: the
immersed boundary method (IBM) by Peskin [124], the immersed finite
element methods [125], the immersed interface method [126], the immersed
boundary finite volume method [127, 128], the embedded boundary method
[129], the Cartesian-grid method [130], the fat-boundary method [131], the
XFEM/GFEM/PUFEM [132–134], Web-splines [135], CutFEM [136], and
the Finite Cell Method [137]. These methods – and similar techniques that
we did not list above – typically differ from each other in one or more of the
following aspects: boundary condition imposition, variational formulations,
integration of cut-elements, the employed basis functions, the modification of
the background approximation spaces, and the approximation of Dirac-delta
functions, amongst others.
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This thesis focuses on the Finite Cell Method (FCM) introduced by Rank
and co-workers in 2007, which is a natural companion to isogeometric anal-
ysis. The framework leveraging the advantages of both isogeometric analysis
and FCM-type immersed techniques is referred to as immersogeometric anal-
ysis. The use of B-spline basis functions within an FCM framework was first
considered by Schillinger et al. [138–140]. Fig. 1.1 illustrates a difference
in the discretization metheology between Isogeometric analysis and Immser-
sogeometric analysis. On the one hand immersogeometric analysis facilitates
consideration of CAD trimming curves in the context of isogeometric analy-
sis. On the other hand, it enables the constructions of high-regularity spline
spaces over geometrically and topologically complex volumetric domains, for
which analysis-suitable spline parametrizations are generally not available.
This approach has been applied to various problems in solid and structural
mechanics (see [141] for a review), in image-based analysis [142, 143], in
fluid-structure interaction problems [144, 145] (the term "immersogeometric
analysis" was coined in this context), and in various other application areas.

When considering immersed methods for fluid problems, due to the exis-
tence+ of cut elements, the stability aspects related to the inf-sup condition
from the incompressibility constraint, along with the treatment of condition-
ing issues are of crucial importance. In the context of the FEM, there are
various approaches addressing those issues. For the conditioning, one of the
most successful remedies is the Ghost-penalty stabilization proposed by Bur-
man [146]. In the Ghost-penalty approach, the original variational form is
augmented with a least-squares term controlling the (high-order) jumps of
the derivatives of variables over element interfaces located near cut bound-
aries. The background approximation basis functions are kept unchanged.
The work in this thesis is also inspired by this idea. This is different from ap-
proaches where basis functions are modified [135], or from preconditioning
algorithms [147]. Another noteworthy treatment is proposed in [148] under
the name Stable Generalized Finite Element Method (SGFEM), the pivotal
idea of which is to modify solution space enrichment functions to improve
conditioning. For the inf-sup stability, similar aspects have been studied in the
context of, e.g., XFEM and CutFEM [149–153]. .

Although immersed FEM for fluids is a mature field of research – in
which the most important aspects have been studied in detail – extension of
these developments to the immersogeometric setting is a new and active area
of research. A contribution in this direction of research that is particularly
noteworthy is the work of Hsu and co-workers [144, 154, 155], which demon-
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(a) Isogeometric analysis (b) Immersogeometric analysis

Fig. 1.1: Comparison of the computation of a horizontal potential flow along a cylin-
der using (a) conforming isogeometric analysis, and (b) immersogeometric analysis
(the background color represents the flow speed). In the conforming IGA setting of
sub-figure (a) the domain is parametrized using four NURBS patches, whose bound-
aries are indicated by the blue lines. The corresponding control points – with varying
weights – are indicated by the blue circles. For the analysis a single uniform refine-
ment of the geometric model is performed. The element boundaries and associated
control points - which are directly associated with the NURBS basis functions used
for the analysis – are marked in red. In the immersed IGA setting of sub-figure (b) the
domain is parametrized by a single rectangular B-spline patch, whose borders and
control points are indicated in blue. The circular exclusion is geometrically modeled
by means of a trimming curve, which is printed in green. A refined B-spline patch is
used for the analysis, the elements and control points of which are indicated in red.
Note that the elements that do not intersect the domain are discarded. For the mesh
shown here all (quadratic) B-spline shape functions have support on the computa-
tional domain, as a consequence of which all (red) computational control points are
maintained.

strates the potential of immersogeometric analysis to solve highly complex
problems in engineering and biomechanics. The full potential of immersoge-
ometric analysis for fluid flow problems (in particular the IGA version of the
FCM), however, remains to be unlocked. The work in this thesis contributes
to unlocking this potential.
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1.2 Aims & scope

The main goal of this dissertation is to develop a robust simulation strategy
for incompressible flow problems based on the isogeometric and immersoge-
ometric analysis frameworks. The developed simulation strategy should not
compromise the key idea of IGA that simulations can be performed directly on
the CAD geometry, so that the developments herein improve typical design-
through-analysis workflows for CFD problems. To accomplish our primary
goal, we identify the following objectives:

1. We first aim at investigating the complications related to the usage of
isogeometric inf-sup stable elements in an immersed settings. Our goal
is to clarify the conditions under which the performance of inf-sup sta-
ble elements for immersogeometric analysis deteriorates compared to the
conforming isogeometric setting, and to identify the underlying causes of
this deterioration.

2. Based on the results pertaining to the first objective we wish to develop an
alternative numerical method that rigorously resolves the identified com-
plications. We aim at providing detailed insights into the performance of
this novel approach by considering a wide range of benchmark problems.
These insights do not only encompass accuracy and stability aspects, but
also implementation and analysis workflow aspects.

We shall focus our scope on incompressible fluid flows, in particular the
steady Stokes equations and the steady and unsteady Navier-Stokes equations.
To focus on inf-sup stability aspects we consider problems with moderate
Reynolds numbers, thereby excluding convection-dominated flow problems.
Although the developments in this thesis are conducted within a mathemat-
ically rational framework, we note that a stability proof for the developed
simulation framework is beyond the scope of this work. This thesis is outlined
as follows:

In Chapter 2, we study the applicability of conforming isogeometric inf-sup
stable velocity-pressure pairs to immersogeometric analysis. We consider the
most prominent pairs, viz., Taylor-Hood elements, Sub-grid elements, Raviart-
Thomas elements, and Nédélec elements. To understand the performance of
these element families in an immersed settings, we study their behavior for
the prototypical problem of steady Stokes flow in a quarter annulus ring. We
present numerical result that convey that all isogeometric element families
exhibit local oscillations in the pressure field near cut boundaries. The oc-
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currence of such oscillations on cut elements with relatively large volume
fractions implies that this problem is related to the inf-sup stability of the dis-
crete problem, rather than to conditioning issues related to cut elements with
small volume fractions. We conclude that off the shelf usage of isogeometric
inf-sup stable pairs in an immersed setting deteriorates the stability proper-
ties of these elements, which motivates us to explore alternative stabilization
techniques.

In Chapter 3 we propose a novel skeleton-based stabilization technique
to circumvent the inf-sup stability condition for mixed problems. Since this
stabilization technique is not specific to the immersed setting, in this chapter
we introduce it in the conforming isogeometric setting (the extension to the
immersed setting is discussed in Chapter 4). The pivotal idea of the method
that we propose is the introduction of a penalty term that controls the jump
of high-order derivatives of the pressure field over the skeleton structure of
the mesh, which allows utilization of identical discrete spaces for the velocity
and pressure fields. This method – which to the best of our knowledge is new
in the context of mesh-conforming isogeometric analysis – can be considered
as a high-regularity extension of the (Continuous) Interior Penalty methods,
making it applicable to a broad class of spline discretizations with arbitrary
continuity conditions across element interfaces. We study the performance of
the proposed formulation for a range of Stokes flow and steady and unsteady
Navier-Stokes flow benchmark cases at moderate Reynolds number, including
the case of a multi-patch NURBS-based isogeometric analysis. We observe
that the skeleton-based stabilization method yields solutions free of spurious
oscillations, and yields optimal rates of convergence under mesh refinements.
We observe excellent results for a large range of stabilization parameters in
the conforming IGA setting, which is a precursor for successful extension of
the stabilization method to the immersed setting.

In Chapter 4 we extend the stabilization technique of Chapter 3 to the case
of immersogeometric analysis of incompressible flow problems. We con-
sider immersogeometric analysis using identical maximum regularity spline
spaces for the pressure and the velocity. We treat the inf-sup instability of the
pressure field and the conditioning issue related to small cut-elements in the
same fashion, viz. by minimizing the jump of highest-order derivatives of the
field variables over the element interfaces. We apply the pressure skeleton-
stabilization term proposed in Chapter 3 to the immersed setting in unaltered
form, and supplement the formulation with a Ghost-penalty stabilization term
to treat the cut-element conditioning issue. We observe that the method ob-



1.2 Aims & scope 11

tains oscillation-free solutions, also in the vicinity of immersed boundaries.
The formulation yields high-order optimal convergence rates under mesh re-
finements. To demonstrate the stability and robustness of the method, we
apply the proposed formulation to the simulation of fluid flow in a porous
medium, the geometry of which is directly extracted from 3D µCT scan data
[143].





Chapter 2
Mixed Isogeometric Finite Cell Methods for the
Stokes problem

Abstract
We study the application of the Isogeometric Finite Cell Method (IGA-

FCM) to mixed formulations in the context of the Stokes problem. We inves-
tigate the performance of the IGA-FCM when utilizing some isogeometric
mixed finite elements, namely: Taylor-Hood, Sub-grid, Raviart-Thomas, and
Nédélec elements. These element families have been demonstrated to perform
well in the case of conforming meshes, but their applicability in the cut-cell
context is still unclear. Dirichlet boundary conditions are imposed byNitsche’s
method. Numerical test problems are performed, with a detailed study of the
discrete inf-sup stability constants and of the convergence behavior under
uniform mesh refinement.

Reproduced from: T. Hoang, C.V. Verhoosel, F. Auricchio, E.H. van Brummelen, A.
Reali, Mixed Isogeometric Finite Cell Methods for the Stokes problem, Computer Meth-
ods in Applied Mechanics and Engineering, Volume 316, 2017, Pages 400-423, DOI:
10.1016/j.cma.2016.07.027
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2.1 Introduction

Isogeometric analysis (IGA) was proposed in [44] as a framework to reduce
the gap between Computer Aided Design (CAD) and Finite Element Analysis
(FEA). The fundamental idea of IGA is to employ the same basis functions to
describe both the geometry of the domain of interest and the field variables.
In contrast to conventional FEA which typically uses Lagrange polynomials
as basis functions, IGA utilizes basis functions inherited from CAD mod-
eling such as B-splines and NURBS. For analysis-suitable CAD models,
geometrically exact meshing procedures can seamlessly be performed on the
coarsest level of the CAD geometry. Splines provide a flexible way for re-
finement, de-refinement, and degree elevation. Furthermore, splines allow
one to achieve higher-order continuity, this in contrast to the C0-continuity
provided by the traditional FEM. Isogeometric analysis has been applied in
a wide range of application areas, from solid and structures, to fluids, and
multi-physics modeling; see [43] for an overview of established IGA devel-
opments. More recent contributions to the field of IGA include research on
T-splines [85, 86], collocation methods [87–89], multi-patch coupling tech-
niques [54, 98–100], local refinement strategies [104–106], and many more.
A review of the mathematical foundation of isogeometric methods can be
found in [114].

Recently, the advantages of the high order basis functions in isogeomet-
ric analysis have been combined with the topological flexibility of the finite
cell method (FCM). The FCM in its original form was introduced by Rank
and co-workers [137, 156], and belongs to a larger class of methods for
which the domain boundaries do not align with the meshes (e.g., embedded
domain methods, immersed boundary methods, fictitious domain methods,
see [157–159]). The main idea is to extend the physical domain of interest
with complexly-shaped boundaries into a larger embedding domain of sim-
ple/regular geometry, where a mesh and approximation space can be built
more easily. The exploitation of this concept in the context of isogeometric
analysis was first considered by Schillinger et al. [138–140]. This approach
has been successfully applied to various problems in solid and structural
mechanics (see [141] for a review), in image-based analysis [142, 143], in
fluid-structure interaction problems [144, 145], and in many other application
areas.

In this work, we investigate the capability of the isogeometric-based finite
cell method (IGA-FCM) for solving Stokes-flow problems. When discretiz-
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ing the Stokes problem, the velocity and pressure spaces cannot be chosen
arbitrarily. In order to obtain a discretization which is free of locking and
spurious oscillations, this pair of spaces needs to satify the inf-sup (or LBB)
condition [5–7, 13]. In the context of IGA, the flexibility of B-splines on
structured meshes allows one to construct inf-sup stable velocity and pres-
sure spaces with arbitrary orders, and with different regularities. Herein we
study the performance of the IGA-FCM in the context of mixed formula-
tions utilizing four important families of isogeometric mixed elements, viz.
Taylor-Hood [94, 118, 119], Sub-grid [119, 120], Nédélec [118], and Raviart-
Thomas [118, 121] elements. These isogeometric element families have been
demonstrated to perform well in the case of conforming meshes. However, in
the cut-cell context their applicability is still not clear. Therefore, we present
a detailed numerical study and comparison of these element families in terms
of: i) discrete inf-sup constants, and ii) convergence behavior of the errors un-
der uniform mesh refinements. This investigation provides valuable insights
into the capabilities of these element families for mixed form FCM prob-
lems in general, and complements the recent advances on the application of
(IGA-)FCM to flow problems [144, 154, 160, 161].

The structure of this paper is as follows: Section 2 states the Stokes problem
with Nitsche’s method and discusses its well-posedness. Section 3 presents a
concise introduction to the IGA-FCMwith mixed formulations, and discusses
in detail some of the related computational aspects. Section 4 presents the
above-mentioned pairs of mixed spaces which are then numerically investi-
gated in Section 5. Conclusions are finally drawn in Section 6.

2.2 Problem formulation

Our investigation of the properties of IGA-FCM for mixed problems will
be presented in the context of the Stokes equations. The Stokes equations
are the archetypal model problems for mixed formulations, representative of
incompressible creeping flow and incompressible linear elasticity [13]. In this
work, we will restrict ourselves to two-dimensional problems. However, most
results extend mutatis mutandis to three dimensions.
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2.2.1 Stokes problem

Let Ω be an open bounded domain in R2 with Lipschitz boundary ∂Ω. We
assume that ∂Ω is composed of two complementary open subsets ΓD and ΓN ,
i.e., ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. The steady Stokes problem is given by

−∇ · (2µ∇su) + ∇p = f in Ω
∇ · u = 0 in Ω

u = g on ΓD

2µ∇su · n − pn = h on ΓN

(2.1)

where the body force f : Ω → R2, the Dirichlet data g : ΓD → R
2, and the

Neumann data h : ΓN → R
2 are exogeneous data. The exterior unit normal

vector to ∂Ω is denoted by n, and ∇su := 1
2
(
∇u + (∇u)T

)
is the symmetric

gradient of u.
In a creeping-flow context, µ represents the kinematic viscosity, and u and p
indicate fluid velocity and pressure, respectively. In the context of incompress-
ible linear elasticity, µ stands for the shear modulus, and u and p respectively
represent the displacement and pressure-like fields.

The weak formulation of (2.1) reads:

Find (u, p) ∈ Vg,ΓD ×Q such that

2µ
∫
Ω

∇su : ∇sw dΩ−
∫
Ω

p divw dΩ =
∫
Ω

f · w dΩ+
∫
ΓN

h · w dΓ ∀w ∈ V0,ΓD,

−

∫
Ω

q divu dΩ = 0 ∀q ∈ Q,

(2.2)

where the function spaces are defined as

Vg,ΓD :=
{
u ∈ [H1(Ω)]2 : u = g on ΓD

}
, Q := L2(Ω)

Here H1(Ω) denotes the usual Sobolev space of square-integrable functions
with square integrableweak derivatives. In the case of pureDirichlet boundary
conditions, i.e., if ΓD coincides with all of ∂Ω, the pressure is determined up
to a constant. Therefore, in that case, we will supplement the system with the
zero average pressure condition

Q := L2
0(Ω) ≡

{
q ∈ L2(Ω) :

∫
Ω

q dΩ = 0
}
.
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2.2.2 Nitsche’s method for Dirichlet boundary conditions

In (2.2), Dirichlet boundary conditions are imposed strongly, i.e., they are
incorporated into the function space asVg,ΓD . Standard finite-element approx-
imations of (2.1) are based on conforming subspace approximations, which
implies that the finite-element approximation space is subject to the same
Dirichlet boundary conditions as Vg,ΓD . In the immersed-boundary setting
considered in this work, such a strong enforcement of boundary conditions
is intractable. One way to bypass this issue is to impose Dirichlet boundary
conditions in a weak sense. Common approaches are (see, e.g., [162]): penalty
methods, Lagrange multipliers, or Nitsche’s method. In this work, Nitsche’s
method [163] is favored because it preserves consistency, symmetry, elliptic-
ity, and it extends directly to high-order finite-element approximations.

To provide a setting for the Galerkin finite-element approximation of (2.2)
with weakly-enforced boundary conditions via Nitsche’s method, we first
introduce a rectangular ambient domainA ⊃ Ω that encompasses the physical
domain Ω; see Fig. 4.4. We cover A with a uniform mesh T h

A
composed of

rectangular open element domains with diameter h > 0. We denote by T h the
corresponding mesh on Ω,

T h =
{
κ ⊂ Ω : κ = k ∩Ω, k ∈ T h

A

}
and by Eh the corresponding set of boundary edges,

Eh =
{
e ⊂ ∂Ω : e = int(∂κ ∩ ∂Ω), κ ∈ T h}

where int(·) denotes the interior of set (·). In particular, Eh
D designates the

boundary mesh that covers the Dirichlet boundary, ΓD. The mesh T h
A

serves
as a support structure for a pair of regular finite-element or isogeometric
approximation spaces. The restrictions of these approximation spaces to the
physical domain in turn provide the approximation spaces Vh ⊂ [H1(Ω)]2 for
the velocity approximation and Qh ⊂ Q for the pressure approximation.
Weak enforcement of Dirichlet boundary conditions via Nitsche’s method

relies on a stabilization term that is proportional to the reciprocal length of
boundary edges. To define the Nitsche stabilization term, for each boundary
edge e ∈ Eh we denote by he its length. Alternatively, he can be defined as
he :=

√
area(κe)where κe is the element connected to the boundary edge e, and

area(κe) is its area. The two definitions of he are equivalent for shape-regular
meshes, in the sense that for shape-regular meshes there exist (moderate)
constants c ≥ c > 0 such that c length(e) ≤

√
area(κe) ≤ c length(e).
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The discretized problem with Nitsche’s weak enforcement of Dirichlet
boundary conditions can be cast into the form:

Find (uh, ph) ∈ Vh ×Qh such that

ah(uh, vh) + b(ph, vh) = lh
1 (v

h) ∀vh ∈ Vh,

b(qh, uh) = l2(qh) ∀qh ∈ Qh,
(2.3)

where

ah(uh, vh) = 2µ
( ∫
Ω

∇suh : ∇svh dΩ−
∫
ΓD

(∇suh · n) · vh dΓ

−

∫
ΓD

(∇svh · n) · uh dΓ
)
+ µ

∑
e∈EhD

∫
e

β

he
uh · vh dΓ

b(qh, vh) = −

∫
Ω

qh divvh dΩ+
∫
ΓD

qh n · vh dΓ

lh
1 (v

h) =

∫
Ωα

f · vh dΩ+
∫
ΓN

h · vh dΓ−2µ
∫
ΓD

(∇svh · n) · g dΓ

+ µ
∑

e∈EhD

∫
e

β

he
g · vh dΓ

l2(qh) =

∫
ΓD

qh n · g dΓ

(2.4)

in which β > 0 is a suitable stabilization parameter. In the bilinear form ah,
the second term in parenthesis is the consistency term. The third term is the
symmetric consistency term, which is added to preserve the symmetry of
ah and, correspondingly, to retain consistency of the dual bilinear form. The
ultimate term associated with the β parameter is referred to as the stabilization
term and serves to ensure stability.

The stabilization parameter β can be set uniformly for all edges or it can
be determined locally for each edge by solving an associated local eigenvalue
problem; see [164, 165]. In our numerical experiments in Section 2.5, we se-
lect β as a uniform global constant. We note that if the stabilization parameter
is selected appropriately, i.e., large enough to retain stability but not so large
to cause ill-conditioning, the observed differences in the results are negligi-
ble. The two distinct definitions of he, i.e., as length(e) or as

√
area(κe), then

generally also lead to negligible differences in the observations. Sensitivity
of the results to the stabilization parameter β and to the definition of he can
however emerge if irregular (e.g., sliver-type) cut elements occur.
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It is to be noted that the condition b(qh, vh) = 0 in combination with
Qh ⊇ divVh does not generally imply divvh = 0 on account of the additional
term

∫
ΓD

qh n · vh dΓ in the bilinear form b. This additional term emerges
from the weak imposition of Dirichlet boundary conditions via Nitsche’s
method. Indeed, if the Dirichlet boundary conditions are strongly imposed
and incorporated in Vh, then n · vh = 0 on ΓD and the additional term
vanishes.

2.2.3 Well-posedness: continuity and inf-sup conditions

To establish conditions for well-posedness of the saddle-point problem (2.3),
we introduce the norms:

‖v‖2Vh := ‖∇v‖2L2(Ω)
+

∑
e∈EhD

ν

he
‖v‖2L2(e) , ‖q‖2Qh := ‖q‖2L2(Ω)

(2.5)

for some positive constant ν ∈ R>0. Problem (2.3) is well-posed if and only
if the following conditions hold [6, 13]:

• Continuity of ah and b:

∃Ca ∈ R>0 : ah(uh, vh) ≤ Ca
uh


Vh

vh


Vh ∀(uh, vh) ∈ Vh × Vh

(2.6)
∃Cb ∈ R>0 : b(qh, vh) ≤ Cb

qh


Qh

vh


Vh ∀(qh, vh) ∈ Qh × Vh

(2.7)

• Weak coercivity of ah on the kernel of b:

∃α ∈ R>0 : inf
uh∈Zh\{0}

sup
vh∈Zh\{0}

ah(uh, vh)uh


Vh

vh


Vh

≥ α (2.8)

with
Zh :=

{
vh ∈ Vh : b(qh, vh) = 0, ∀qh ∈ Qh}

• Inf-sup condition on b:

∃γ ∈ R>0 : inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

b(qh, vh)qh


Qh

vh


Vh

=: γh ≥ γ (2.9)



20 2 Mixed Isogeometric Finite Cell Methods for the Stokes problem

The mesh-dependent term in the norm for the velocity space in (2.5) is
required for continuity of the bilinear form ah according to (2.6) with respect
to the ‖ · ‖Vh-norm. Indeed, the Cauchy-Schwarz inequality in combination
with a standard discrete trace inequality (see, e.g., [166, Lemma1.44] or [167])
conveys:���� ∫

ΓD

(∇suh · n) · vh dΓ
���� ≤ ∑

e∈EhD

∇suh

L2(e)

vh
L2(e)

≤
∑
e∈EhD

Ctr,e
√

he

∇uh

L2(κe )

vh
L2(e)

≤
Ctr
√
ν

( ∑
e∈EhD

∇uh
2
L2(κe )

)1/2 ( ∑
e∈EhD

ν

he

vh2
L2(e)

)1/2
≤

Ctr
√
ν

uh


Vh

vhVh (2.10)

for certain edge-wise positive constants Ctr,e ∈ R>0, dependent on the shape
of κe but independent of he, and Ctr = max{Ctr,e : e ∈ Eh

D}. From (2.10) one
can infer that ah is bounded and coercive on Vh for appropriate choices of β
and ν. Equation (2.6) follows directly from (2.10) for appropriate β and ν.
The continuity condition on b (2.7) is also satisfied for the norms in (2.5). The
coercivity of the bilinear form ah : Vh × Vh → R transfers to the subspace
Zh ⊂ Vh, which implies (2.8).
The inf-sup condition on b in (2.9) is generally more subtle and requires

a suitable choice of the approximation-space pair (Vh,Qh). In the context of
IGA, stable pairs (Vh,Qh) have been studied in, e.g., [94, 118–120]. These IGA
velocity-pressure pairs will be discussed in section (2.4.2) before considering
their extension to the finite-cell setting. The discrete inf-sup constant γh

in (2.9) can be computed explicitly based on the algebraic representation of
(2.3); see Section 3.4.2.

Remark 2.1.With a minor modification, system (2.3) is also representative of
compressible elasticity problems:

Find (uh, ph) ∈ Vh ×Qh such that

ah(uh, vh) + b(ph, vh) = lh
1 (v

h) ∀vh ∈ Vh,

b(qh, uh) − 1
λc(qh, ph) = l2(qh) ∀qh ∈ Qh,

. (2.11)

where µ, λ are the first and second Lamé parameters, respectively, uh is
the displacement field, p = −λdivu represents the pressure-like field, and
c(p, q) =

∫
Ω

pq dΩ. For well-posedness of the problem in the nearly incom-
pressible limit λ/µ � 1, it is important that the inf-sup condition of (2.9)
holds also in this case; see, e.g., [13].
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2.3 Mixed formulation of the Finite Cell Method

A





h

h

Fig. 2.1: Setup of the FCM: The physical domain Ω is embedded into an ambient
domain A. The ambient domain is divided into cells, which serve as a support
structure for a FEM or IGA approximation space. Cells that do not intersect the
physical domain are discarded (white). Cells that do intersect the physical domain
form a discrete embedding domain Ωh (grey).

The Finite Cell Method (FCM) was introduced by Rank and coworkers in
[156]. In its original form, the FCM combines three concepts: the fictitious
domain method, the p-version FEM, and an adaptive integration technique for
cut cells. In this section, we first discuss the fundamental ideas of the FCM
along with its volume and boundary integration procedures. We then present
the algebraic form of the FCM for mixed formulations.

2.3.1 Basic setup of the Finite Cell Method

In the FCM the physical domain is embedded into a fictitious (or embedding
or ambient) domain A with simple – typically rectangular – geometry; cf.
Fig. 4.4. This extended domain is covered by a collection T h

A
of cells of

regular shape, where the affix h > 0 indicates a resolution parameter, e.g.,
h = max{diam(κ) : κ ∈ T h

A
}. Cells that do not intersect the physical domain
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are discarded, and the remaining cells serve as a support structure for basis
functions in a similar manner as the elements in FEM. The remaining cells
form a discrete embedding domain,

Ω
h := {∪κ : κ ∈ T h

A , κ ∩Ω , ∅};

see Fig. 4.4. The FCMprovides a formulation for the numerical approximation
of the problem under consideration on the physical domainΩ and its extension
onto the discrete embedding domain Ωh. Significance is assigned only to the
discrete approximation on Ω. While the general computational scheme is
similar to standard FEM, essential boundary conditions are typically weakly
enforced in the FCM. This weak enforcement is most commonly based on
Nitsche’s method [163], which circumvents the indeterminate behavior of
the approximation space along the – in principle arbitrary shaped – domain
boundary ∂Ω.

To mitigate conditioning problems related to the occurence of cut cells with
small volume fractions, in the FCM it is common practice to assign a (very
small) virtual “stiffness” to the exterior of the domain [168]. This extension
of the problem onto the exteriorΩh \Ω generally leads to inconsistency of the
formulation, which in some cases can affect the behavior of mixed elements.
Therefore, we do not use a virtual “stiffness” in this work, but instead we use
a Jacobi preconditioner to avoid ill-conditioning problems [147].

2.3.2 Computation of volume integrals

By virtue of the fact that the FCM formulation is restricted to the physical
domain,Ω, the integrands to be evaluated over cells that are intersected by the
boundary, ∂Ω, are generally discontinuous. Accordingly, standard quadrature
rules yield inadequate accuracy on cut cells. The FCM is therefore generally
complemented with an adaptive numerical-integration technique.

Hereinwe employ the commonly usedmulti-level integration scheme based
on recursive bi-sectioning [139]. While cells that are completly within the
physical domain are integrated using standard quadrature rules, an adaptive
integration technique is used for cut cells. This technique subdivides each
cut cell into four uniform subcells and this subdivision process is continued
recursively, i.e., the subcells which are intersected by the boundary are again
partitioned into four uniform subcells. This process is repeated until a pre-
scribed recursion depth k ∈ Z≥0 has been reached. On this deepest level of
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Fig. 2.2: Illustration of the FCM discretization along with Gauss point distribution
for a quarter annulus. Red points are located inside the physical domain and blue
points are outside the physical domain. In this example, the refinement depth is equal
to 4.

recusion, quadrature points exterior to Ω are discarded. The resulting recur-
sive bi-sectioning process exhibits a quadtree structure in 2D and an octree
structure in 3D. The detection of subcell boundary intersections is based on
performing an inside-outside check of the subcell vertices on each level of the
recursion. We note that for the analytical geometries considered herein the
employed top-down approach robustly controls the integration accuracy. For
arbitrary geometries this top-down recursion can halt prematurely, leading to
geometric inaccuracies [169]. A bottom-up approach can in such cases be
employed to retain geometric precision.

In this work we use B-spline basis functions in combination with the afore-
mentioned adaptive integration technique. The integrals in each (sub)cell are
evaluated with p+ 1 Gauss quadrature points in each direction. The recursion
depth is selected such that the integration error is negligible compared to
the discretization error. For higher-order approximations, this implies that the
required integration depth generally increases rapidly as the mesh is refined,
typically proportional to h1−p where p indicates the order of accuracy of the
considered FEMor IGA space (in the energy norm). Although no new degrees
of freedom are introduced as the integration depth increases, the computa-
tional cost related to the integration of cut cells does increase significantly.
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This increase in computational effort can be ameliorated by means of recent,
more advanced cut-cell integration techniques, e.g., [143, 170–172].

2.3.3 Computation of boundary integrals

When the FCM is used in combination with IGA, the boundaries of the
domain are usually represented by spline curves (in 2D) or spline surfaces (in
3D). These parametrized curves or surfaces can then be used directly for the
evaluation of boundary integrals.

To determine the boundary integrals in (2.4), notably, the contribution of
the Dirichlet boundary to all functionals and the contribution of the Neumann
boundary to lh

1 , we assume that a parametrization of the boundary is avail-
able. As illustrated in Fig. 2.3 the intersections of the boundary with the
background mesh T h

A
are located. In this way, the boundary is partitioned into

a set of (curved) edge elements, Eh. Each of these edge elements inherits its
parameterization from the underlying parameterization of the boundary. For
simple boundary geometries, such as lines, circles or conic sections, this step
can be efficiently performed, especially in 2D, by virtue of the regularity of the
the background mesh. By assigning quadrature points to the edge elements,
the boundary integrals can be evaluated. In this work we employ p + 1 Gauss
points for the edge elements.

In case of complex geometries, one can linearize or approximate the bound-
ary with a more simple/regular parameterization before computing the inter-
section with the mesh. Alternatively, following [143], an accurate approxi-
mation to the boundary can be obtained by connecting the intersection points
of the boundary with the integration subgrid, viz. the highest level of bi-
sectioning used in the integration procedure. The latter procedure is also
particularly useful if a parametrization of the boundary is not available, e.g.,
if the boundary is described by means of a level-set function.

2.3.4 Matrix form of the mixed finite cell method

Suppose that {Nu
i }

nu
i=1 and {N

p
i }

np

i=1 are basis functions of the finite dimensional
velocity spaceVh and pressure spaceQh, respectively, i.e.,Vh = span{Nu

i }
nu
i=1,

and Qh = span{N p
i }

np

i=1. These basis functions can be constructed by using
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Fig. 2.3: An illustration of the boundary integration for a quarter annulus (here,
p = 2). Red squares correspond to intersection points, while blue circles correspond
to integration points.

finite element technology, isogeometric analysis (e.g., B-spline, NURBS), or
possibly with (local) adaptivity [140]. A detailed review can be found in [141].

The approximate velocity uh and pressure ph are then written as

uh(x) =
nu∑
i=1

Nu
i (x)ûi, ph(x) =

np∑
i=1

N p
i (x)p̂i

where û = (û1, û2, ...)
T and p̂ = (p̂1, p̂2, ...)

T are vectors of degrees of freedom.
The corresponding algebraic form of (2.3) reads[

A BT

B 0

] [
û
p̂

]
=

[
f1
f2

]
(2.12)

where the matrices A,B, and vectors f1, f2 are given by

Ai j = ah(Nu
j,N

u
i )

Bi j = b(N p
j ,N

u
i )

f1i = lh
1 (N

u
i )

f2i = l2(N
p
i )

In our numerical computations, we extract the approximate solution
from (2.12). The discrete form of the mixed FCM formulation can also serve
to compute the discrete inf-sup constant γh in (2.9) for a particular pair of
velocity and pressure approximation spaces. The discrete inf-sup constant
coincides with the square root of the smallest non-zero eigenvalue of the
following generalized eigenvalue problem (see, e.g., [173]):
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BM−1
uuBTq = (γh)2Mppq, (2.13)

where Muu and Mpp are the Gramian matrices associated with the inner
products in Vh and Qh, respectively:

(Muu)i j = (Nu
i ,N

u
j )Vh (Mpp)i j = (N

p
i , N

p
j )Qh

The norms associated to (·, ·)Vh and (·, ·)Qh are specified by (2.5).
If the Neumann boundary is not empty, all eigenvalues of (2.13) are strictly

positive, and the discrete inf-sup constant corresponds to the smallest eigen-
value. In the case of pure Dirichlet boundary conditions, the smallest eigen-
value is zero and it has algebraic and geometric multiplicity one. The associ-
ated eigenvector corresponds to the constant pressure mode. In this case, the
discrete inf-sup constant is the second smallest eigenvalue.

The essential advantage of FCM is that it admits regular and structured
meshes even for complex geometries. Regular, structured meshes facilitate
the definition and evaluation of higher-order bases and bases with increased
smoothness compared to standard FEA, viz. Ck-continuous bases with k ≥ 1.
Recently, several inf-sup stable approximation-space pairs have been intro-
duced, based on the increased smoothness provided by B-spline bases. In
Section 2.4, we review common pairs of approximation spaces and their con-
struction, while, in Section 2.5, we present a numerical investigation of these
spaces in the context of the FCM.

2.4 Isogeometric analysis and mixed elements

In this section we first present a brief overview of the isogeometric analysis
concepts relevant to thiswork; then,we introduce theB-spline pairs of velocity
and pressure spaces herein studied.

2.4.1 Fundamentals of B-splines

Given two integers p ≥ 0 and n > 0, n B-spline basis functions of degree
p can be defined over a knot vector Ξ =

[
ξ1, ξ2, ..., ξn+p+1

]
, which is a non-

decreasing sequence of parametric coordinates, ξi ≤ ξi+1, i = 1, ..., n+ p. If all
interior knots are equally spaced the knot vector is called uniform; otherwise,
it is called non-uniform. If the first and the last knots are repeated p+ 1 times,
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the knot vector is called open. In what follows, we always employ open knot
vectors, and without loss of generality, we also assume the parameter domain
to be [0, 1]. Basis functions formed from open knot vectors are interpolatory
at the boundaries of the parameter domain.

A B-spline basis function isC∞- continuous inside knot spans and, at most,
Cp−1-continuous at a knot. If an interior knot value is repeated more than one
time, it is called a multiple knot. We introduce the vector [ζ1, ..., ζm] of knots
without repetitions, and the vector [r1, ..., rm] of their associated multiplicities
such that

Ξ = [ζ1, ..., ζ1︸   ︷︷   ︸
r1 times

, ζ2, ..., ζ2︸   ︷︷   ︸
r2 times

, ..., ζm, ..., ζm︸    ︷︷    ︸
rm times

]

where
∑m

i=1 ri = n + p + 1.
At a knot of multiplicity ri the continuity is Cαi where αi = p − ri is the

regularity.
The associated knot mesh on the parameter domain [0, 1] is defined as

Ih = {I = (ζi, ζi+1), 1 ≤ i ≤ m − 1}

For an element I ∈ Ih, we set hI = diam(I), and the global mesh parameter is
indicated as h = max{hI}I∈Ih .

Given a knot vector, the B-spline basis functions Ni,p(ξ) are defined starting
with the piecewise constants (p = 0)

Ni,0(ξ) =

{
1, if ξi ≤ ξ < ξi+1,

0, otherwise; (2.14)

and for p ≥ 1, they are defined recursively by the Cox-de Boor formula [47]

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) . (2.15)

We denote the space of open B-splines spanned by the basis functions Ni,p

with regularity α at all internal knots by

Sp
α,h ≡ Sp

α(Ih) := span{Ni,p}
n
i=1.

For each B-spline basis function Ni,p we also define the associated Greville
abscissa, i.e., the knot average

ξi,p =
ξi+1 + ... + ξi+p

p
, i = 1, ..., n.
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When the multiplicity of the internal knots is not greater than p, all the
Greville abscissae are distinct, i.e., for each Greville abscissa there is only one
associated B-spline basis function.

In two dimensions, we consider the parameter domain Ω̂ = (0, 1)2 ⊂ R2

(Fig. 2.4a). Given the integers pd , αd , and knot vectors Ξd with associated
knot mesh Ih,d , where d = 1, 2, the knot meshMh for the two dimensional
parametric domain is defined as

Mh = ⊗d=1,2Ih,d

For an element Q ∈ Mh, we set hQ = diam(Q), and the global mesh is
indicated as h = max{hQ}Q∈Mh

.
The space of bivariate B-splines is defined as

Sp1,p2
α1,α2,h

≡ Sp1,p2
α1,α2 (Mh) := ⊗d=1,2Spd

αd (Ih,d) = span{Ni,p1(ξ)Nj,p2(η)}
n1,n2
i=1, j=1

where {Ni(ξ)}
n1
i=1 and {Nj(η)}

n2
j=1 are canonical bases of Sp1

α1 and Sp2
α2 . The

Greville abscissae of a bivariate B-spline are defined as γ̄i j,p = (ξi,p1, η j,p2)

with ξi,p1, η j,p2 being respectively the Greville abscissae of Ni,p1 and Nj,p2 .
B-spline surfaces are obtained from linear combinations of bivariate B-

spline basis functions

S(ξ, η) =
∑
i, j

Pi, j Ni,p1(ξ)Nj,p2(η)

where Pi, j are the so-called control points.
For the regular grids consider herein, the control points and the Greville

abscissae have coincident locations.
An illustration of a bivariate B-spline and its associated control points for

p1 = 3, p2 = 2, α1 = 2, α2 = 1 is presented in Fig. 2.4.
In order to approximate the unknown fields, isogeometric analysis employs

the isoparametric concept as in standard FEM, i.e., the same B-spline basis
functions are used for the description of both the geometry and the unknown
fields. In the case of mixed formulations, the pressure field and each compo-
nent of the velocity field possess their own control nets, which are all defined
on the same geometry. The basis functions associated with these control nets
are then used to approximate the fields; see Section 2.4.2.
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(a) Parameter domain

(b) Physical domain

Fig. 2.4:An illustration of a bivariate B-spline basis function on a rectangular domain
with p = (3, 2), α = (2, 1). (a) Parameter domain: The triangles denote the Greville
absissae (and the one associated with the considered basis function is marked in
red). (b) Physical domain: The dashed line denotes the control net; the solid lines
denote the knot lines (i.e., the mesh); the circles denote the control points (and the
one associated with the considered basis function is marked in red).

2.4.2 Mixed B-spline discretizations

As mentioned in the previous sections, one important advantage of FCM is
that the background mesh of the immersed domain is regular. This allows one
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to use only B-splines for the approximation instead of NURBS as in standard
IGA. The immersed domain is a rectangle (in 2D, or rectangular cuboid
in 3D) and therefore the geometry map becomes affine. As a consequence,
pull-back mappings such as the Piola transform become trivial. We note that
low-order B-splines can be used for the analysis, even if the physical domain
is parameterized by high-order splines.

(a) Taylor-Hood element (b) Raviart-Thomas element

(c) Nédélec element (d) Sub-grid element

Fig. 2.5: Control nets (dash lines) associated with four families of IGA mixed ele-
ments (p = 2). Green squares denote control points for pressure, red triangles those
for velocity’s 1st component, and blue triangles those for velocity’s 2nd component.
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In this work, we investigate the behavior of the following families of mixed
elements in the IGA-FCM setting, which are graphically depicted in Fig. 2.5:

• Taylor-Hood element [94, 118, 119] ( Fig. 2.5a):{
VTH

h = (Sp+1,p+1
p−1,p−1,h)

2,

QTH
h = Sp,p

p−1,p−1,h.
(2.16)

The velocity and pressure spaces are defined on the same knot mesh with
the same regularity. The two components of velocity are defined with
the same space. The velocity space is one order higher than the pressure
space. This implies that the multiplicity of the knots of the velocity space
is increased by one with respect to that of the pressure space.

• Raviart-Thomas element [118, 121] ( Fig. 2.5b):{
VRT

h = Sp+1,p
p,p−1,h × Sp,p+1

p−1,p,h,

QRT
h = Sp,p

p−1,p−1,h.
(2.17)

This is a H(div) conforming element. The velocity space is anisotropic
with respect to the degree. Both velocity and pressure spaces are defined
on the same knot mesh with their highest regularities.

• Nédélec element [118] ( Fig. 2.5c):{
VND

h = Sp+1,p+1
p,p−1,h × Sp+1,p+1

p−1,p,h ,

QND
h = Sp,p

p−1,p−1,h.
(2.18)

This element “lies" between the Taylor-Hood and the Raviart-Thomas
elements. The velocity space uses equal degrees for both components as
in the Taylor-Hood element, while maintaining the regularities of Raviart-
Thomas element. Both velocity and pressure spaces are define on the same
knot mesh.

• Sub-grid element [119, 120] ( Fig. 2.5d):{
VSG

h = (S
p+1,p+1
p,p,h/2 )

2,

QSG
h = Sp,p

p−1,p−1,h.
(2.19)

The velocity and the pressure spaces are defined on different knot meshes.
The velocity knot mesh is obtained by subdividing each element of the
pressure knot mesh into four elements (in 2D, and 8 elements in 3D.) Both
velocity and pressure spaces have their highest regularities.
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Since the velocity mesh is refined with respect to the pressure mesh,
the Gauss points are associated with the velocity mesh. Consequently,
in order to evaluate the pressure basis functions in these points, a special
data structure is needed to allow the determination of the pressure element
associated with a particular velocity element.

2.5 Numerical experiments

In this section we investigate the numerical performance of IGA-FCM for
mixed formulations. System (2.12) is solved using the four mixed element
families discussed in Section 2.4.2. The numerical inf-sup values are com-
puted by solving the generalized eigenvalue problem (2.13).
The accuracy of the IGA-FCM approximation depends on the applied

integration depth. If the integration depth is insufficient, the accuracy of
the approximation is determined by the integration error, rather than the
error in the IGA approximation. This is particularly manifest for higher-order
approximations, due the fact that the integration scheme is typically of low
order (1 or 2); see Section 2.3.2. In our test cases, we have selected integration
depth k = 13. This integration depth ensures that for the considered range of
polynomial orders and mesh-sizes, the integration error is subordinate to the
IGA-approximation error. Hence, it allows to test and compare the different
methods in the considered range of mesh-sizes and polynomial orders. We
use Jacobi preconditioning in the solution procedure for the discrete systems,
to reduce the effect of ill-conditioning and the corresponding solution error
on the accuracy of the results. The condition numbers of the linear systems
corresponding to the IGA-FCM discretization generally increase as the mesh
is refined, because mesh refinement typically leads to the occurrence of cut
cells with smaller volume fractions due to the fact that the number of cut cells
increases, and as the polynomial order of the approximation is increased [147].
In all computations, we have used a global, uniform p-dependent stabiliza-

tion parameter according to β = 5(p + 1)2. The p-dependence of the stabi-
lization parameter has been selected in accordance with the corresponding
dependence of the constant in the underlying discrete trace inequality [167].
It is to be mentioned that on fine meshes and at higher orders of approxima-
tion, the convergence results presented in Section 2.5.3 display some minor
(non-essential) sensitivity to the stabilization parameter.
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2.5.1 Dirichlet quarter-annulus problem

We investigate the properties of the IGA-FCM mixed formulation in combi-
nation with the element families in (2.16)–(2.19) on the basis of (2.3) on an
open quarter-annulus domain

Ω =
{
(x, y) ∈ R2

>0 : 1 < x2 + y2 < 16
}
,

with inner radius R1 = 1 and outer radius R2 = 4; see Fig. 2.6. Dirichlet
boundary conditions are prescribed on the entire boundary ∂Ω = ΓD and,
accordingly, it holds that ΓN = ∅. The data f and g are selected such that

u1 = 10−6x2y4(x2 + y2 − 1)(x2 + y2 − 16)(5x4 + 18x2y2 − 85x2 + 13y4 − 153y2 + 80),

u2 = 10−6xy5(x2 + y2 − 1)(x2 + y2 − 16)(102x2 + 34y2 − 10x4 − 12x2y2 − 2y4 − 32),

p = 10−7xy(y2 − x2)(x2 + y2 − 16)2(x2 + y2 − 1)2 exp
(
14(x2 + y2)−1/2)

(2.20)
satisfy (2.3). The sample solution (4.20) has been taken from [174]. Note
that u1 and u2 vanish on ∂Ω and, hence, g = 0. Moreover, the pressure
complies with

∫
Ω

p = 0. The exact velocity and pressure contours are plotted
in Fig. 2.7.

Fig. 2.6: Geometry setup for the quarter annulus problem.
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(a) First component of the velocity (b) Second component of the velocity

(c) Pressure

Fig. 2.7: Analytical solution of the quarter annulus problem.

2.5.2 Numerical inf-sup test

To test the stability of the IGA-FCM formulation for the four different families
of mixed elements, we compute the associated discrete inf-sup values by
means of (2.13) for pressure polynomial degrees p ∈ {1, 2, 3} and on a
sequence of uniform background meshes with 8 × 8, 16 × 16, 32 × 32, and
64 × 64 elements. The results are reported in Table 2.1 and visualized in
Fig. 2.8. Table 2.1 conveys that for all four families of mixed finite-elements
the corresponding discrete inf-sup constants are bounded from below away
from 0. In particular, the Taylor–Hood and Sub-grid elements display very
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Table 2.1: Discrete inf-sup constants of IGA-FCM for the quarter annulus problem
using the four considered mixed elements with polynomial degrees p ∈ {1, 2, 3} for
the pressure field.

Mesh
Cinf−sup 8 × 8 16 × 16 32 × 32 64 × 64

TH .5551 .5174 .4900 .4703
p = 1 RT .2931 .2860 .2324 .2482

ND .5195 .5173 .4899 .4703
SG .6393 .5619 .5157 .4861

TH .5469 .5137 .4879 .4690
p = 2 RT .2266 .1979 .1995 .1621

ND .4303 .4538 .3893 .3964
SG .6221 .5562 .5132 .4848

TH .5438 .5122 .4870 .4685
p = 3 RT .2110 .1897 .1753 .1696

ND .3588 .3701 .3058 .3095
SG .6155 .5538 .5121 .4842

similar inf-sup values for all considered polynomial orders. On the finest mesh
(64×64), these elements exhibit inf-sup values of approximately 0.47−0.49,
essentially independent of p. For the Nédélec element, the inf-sup value tends
to decrease as the polynomial order increases. While for p = 1 the inf-sup
constant of the Nédélec element is comparable to that of the Taylor–Hood and
Sub-grid elements, for p ∈ {2, 3} it exhibits smaller values.
The Raviart–Thomas element yields the smallest inf-sup values. This result

is consistent with the fact that the divergence of the velocity space is smallest
for the Raviart–Thomas elements, in the sense that divVRT

h is a proper subset
of divVTH

h , divVND
h and divVSG

h . One may also note that the inf-sup value of
the Nédélec element generally lies between the inf-sup values of the Raviart–
Thomas element and of the Taylor–Hood element, which is in agreement
with the inclusion relations VRT

h ⊂ VND
h ⊂ VTH

h . Fig. 2.8 corroborates that
for the considered range of polynomial orders and meshes, all four elements
pass the inf-sup test. The numerical results thus suggest that all four elements
are stable on uniform meshes, irrespective of the mesh-size and polynomial
order. The results in Fig. 2.8 also convey that the inf-sup constant of the
Raviart–Thomas element exhibits some fluctuations as the mesh-size varies.
This behavior can be attributed to the fact that the Raviart–Thomas element
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belongs to the H(div)-conforming family, i.e., the divergence operator maps
VRT

h into and onto QRT
h . On account of the compatibility between divVRT

h
and QRT

h , the Raviart–Thomas element is sensitive to the manner in which
constraints such as Dirichlet conditions are imposed, because such constraints
generally interfere with the congruence of divVRT

h and QRT
h .
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Fig. 2.8: Discrete inf-sup constants of IGA-FCM for the quarter annulus problem
using the four considered mixed elements with polynomial degrees p ∈ {1, 2, 3} for
the pressure field.
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2.5.3 Convergence study

In this section, we test the convergence of the IGA-FCM formulation for the
four considered mixed element families. Table 2.2 presents the relative L2

and H1 errors of the velocity field, and the L2 error of the pressure field,
when the degree of the pressure is p = 1. For Taylor–Hood, Nédélec and
Sub-grid elements, the velocity spaces are isotropic and one order higher
than that of the pressure space. The optimal convergence rate for the velocity
approximations that can be obtained with these elements is therefore 2 in
the H1-norm and 3 in the L2-norm. For the Raviart–Thomas element, the
velocity approximation space is anisotropic with respect to the degree, and
the space is complete only up to degree p. The optimal convergence rates of
the velocity approximation in the H1-norm and the L2-norm are then restricted
to 1 and 2, respectively. Table 2.2 corroborates that the aforementioned optimal
convergence rates are indeed obtained.

Considering the convergence of the pressure approximation, the results in
Table 2.2 indicate that the Taylor–Hood, Nédélec and Sub-grid element yield
optimal convergence rates, in particular, ‖p− ph‖L2 = O(hp+1) as h→ 0. The
Raviart–Thomas element appears to display a suboptimal convergence rate,
although the asymptotic convergence rate is not yet fully apparent from the
considered sequence of meshes. The following a-priori estimate (see [121,
Theorem 6.2])

‖p − ph‖ ≤

(
1 +

1
γh

)
inf

qh∈Qh

‖p − qh‖Qh
+

Ca

γh
‖u − uh‖Vh

(2.21)

however conveys that the convergence rate of the pressure is potentially re-
stricted by the convergence rate of the velocity in the H1-norm, which is
only of order p = 1 for the Raviart–Thomas element, and therefore one or-
der lower than the interpolation error in the pressure. For the Taylor–Hood,
Nédélec and Sub-grid elements, the velocity-approximation error decays as
‖u − uh‖Vh

= O(hp+1) as h → 0, and this rate coincides with the rate of
convergence of the pressure-interpolation error.

To facilitate a comparison of the results obtained bymeans of the fourmixed
elements in the context of IGA-FCM, Fig. 2.9 plots the relative errors with
respect to the total degrees of freedom (of the velocity and pressure spaces).
One can observe that the Sub-grid element provides the most efficient approx-
imation, in that it achieves the lowest error per degree of freedom for both
pressure and velocity. This result is consistent with the theory of k-refinement,
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since both the velocity and pressure of the Sub-grid element possess the high-
est order of continuity that can be attained without degenerating to a single
element.

Table 2.2:Relative error of IGA-FCM for the quarter annulus problem for the Taylor–
Hood (TH), Raviart–Thomas (RT), Nédélec (ND) and Subgrid (SG) elements with
p = 1 for the pressure field.

Mesh
8 × 8 16 × 16 32 × 32 64 × 64

‖u − uTH
h
‖L2 7.76e-2 1.49e-2 2.24e-3 3.11e-4

order – 2.38 2.74 2.85
‖u − uTH

h
‖H1 3.68e-1 1.28e-1 2.98e-2 6.23e-3

order – 1.53 2.10 2.26
‖p − pTH

h
‖L2 7.57e-1 2.27e-1 3.97e-2 8.23e-3

order – 1.74 2.51 2.27

‖u − uRT
h
‖L2 3.37e-1 1.29e-1 3.85e-2 1.02e-2

order – 1.38 1.74 1.92
‖u − uRT

h
‖H1 6.27e-1 3.62e-1 1.88e-1 9.38e-2

order – 0.79 0.94 1.01
‖p − pRT

h
‖L2 4.00e0 2.78e0 1.69e0 6.01e-1

order – 0.53 0.71 1.50

‖u − uND
h
‖L2 9.46e-2 1.67e-2 2.42e-3 3.23e-4

order – 2.51 2.78 2.90
‖u − uND

h
‖H1 2.86e-1 8.94e-2 2.51e-2 6.41e-3

order – 1.68 1.83 1.97
‖p − pND

h
‖L2 9.23e-1 2.84e-1 5.73e-2 1.18e-2

order – 1.70 2.31 2.28

‖u − uSG
h
‖L2 1.36e-1 2.13e-2 2.82e-3 3.51e-4

order – 2.68 2.92 3.01
‖u − uSG

h
‖H1 3.07e-1 9.22e-2 2.49e-2 6.45e-3

order – 1.73 1.89 1.95
‖p − pSG

h
‖L2 8.30e-1 1.77e-1 4.79e-2 7.83e-3

order – 2.23 1.89 2.61
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(a) Relative L2- error of velocity, p = 1
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(b) Relative H1- error of velocity, p = 1

10
1

10
210

−3

10
−2

10
−1

10
0

10
1

√
ndof

R
el
at
iv
e
L
2
er
ro
r
of

p
re
ss
u
re

RT
TH
ND
SG

O(N−2)

(c) Relative L2- error of pressure, p = 1

Fig. 2.9: Relative error of IGA-FCM for the quarter annulus problem versus the total
number of degrees of freedom for the Taylor–Hood (TH), Raviart–Thomas (RT),
Nédélec (ND) and Sub-grid (SG) elements with p = 1 for the pressure field†.
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In a similar manner, we test the four considered mixed elements with
pressure spaces of degree p = 2 and p = 3. The corresponding results are
presented in Table 2.3 and Fig. 2.10, and in Table 2.4 and Fig. 2.11,
respectively. For p = 2, the observed convergence rates for the Taylor–Hood
and Nédélec elements are close to the optimal convergence rates. For the
Sub-grid element, the results indicate an optimal rate of convergence for
the velocity approximation. The results for the pressure approximation are
inconclusive. For the Raviart–Thomas element, the velocity approximation
displays optimal convergence rates in both the H1-norm and the L2-norm.
The convergence rate for the pressure approximation again appears to be
suboptimal, similar to the case of p = 1. Also for p = 3, the Raviart–Thomas
element exhibits optimal convergence rates for the velocity and a suboptimal
convergence rate for the pressure. The results for the Taylor–Hood andNédélec
elements for p = 3 suggest optimal convergence rates for these elements.
According to Table 2.4, the Sub-grid element exhibits suboptimal convergence
rates for p = 3. Especially the observed rate of decay of the L2-norm of
the error in the pressure approximation, which is approximately 2.6, falls
short of the optimal convergence rate of 4. It appears that this significantly
suboptimal convergence rate of the error in the pressure approximation of
the Sub-grid element is due to the fact that the FCM acts differently on the
micro-elements of the velocity approximation than on the macro-elements of
the pressure approximation. However, the precise mechanism and the relation
to the polynomial degree p of the approximation remain topics for further
study.

†It is important to note that, because the velocity space of the RT element in (2.17) is
anisotropic with respect to the degree and is only complete up to order p, the corresponding
optimal convergence rates for the velocity approximation are one order lower than those for
the other elements.
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Table 2.3:Relative error of IGA-FCM for the quarter annulus problem for the Taylor–
Hood (TH), Raviart–Thomas (RT), Nédélec (ND) and Sub-grid (SG) elements with
p = 2 for the pressure field.

Mesh
8 × 8 16 × 16 32 × 32 64 × 64

‖u − uTH
h
‖L2 1.64e-2 1.79e-3 1.54e-4 1.15e-5

order – 3.20 3.54 3.74
‖u − uTH

h
‖H1 5.29e-2 9.93e-3 1.57e-3 2.32e-4

order – 2.41 2.66 2.76
‖p − pTH

h
‖L2 – 9.49e-2 1.26e-2 1.65e-3 2.24e-4

order – 2.91 2.94 2.88

‖u − uRT
h
‖L2 1.40e-1 2.00e-2 2.53e-3 3.07e-4

order – 2.81 2.99 3.04
‖u − uRT

h
‖H1 2.68e-1 6.94e-2 1.73e-2 4.21e-3

order – 1.95 2.01 2.04
‖p − pRT

h
‖L2 5.08e0 1.93e0 2.38e-1 6.31e-2

order – 1.40 3.01 1.92

‖u − uND
h
‖L2 2.52e-2 2.25e-3 1.72e-4 1.21e-5

order – 3.48 3.71 3.82
‖u − uND

h
‖H1 7.33e-2 1.22e-2 1.74e-3 2.35e-4

order – 2.59 2.81 2.89
‖p − pND

h
‖L2 2.68e-1 3.47e-2 4.16e-3 4.12e-4

order – 2.95 3.06 3.34

‖u − uSG
h
‖L2 4.07e-2 3.09e-3 2.04e-4 1.35e-5

order – 3.72 3.92 3.92
‖u − uSG

h
‖H1 8.99e-2 1.36e-2 1.84e-3 2.43e-4

order – 2.73 2.88 2.92
‖p − pSG

h
‖L2 1.75e-1 3.37e-2 3.68e-3 7.10e-4

order – 2.37 3.19 2.37
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(a) Relative L2 error of velocity, p = 2
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(c) Relative L2 error of pressure, p = 2

Fig. 2.10:Relative error of IGA-FCM for the quarter annulus problem for the Taylor–
Hood (TH), Raviart–Thomas (RT), Nédélec (ND) and Sub-grid (SG) elements with
p = 2 for the pressure field.
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Table 2.4:Relative error of IGA-FCM for the quarter annulus problem for the Taylor–
Hood (TH), Raviart–Thomas (RT), Nédélec (ND) and Sub-grid (SG) elements with
p = 3 for the pressure field.

Mesh
8 × 8 16 × 16 32 × 32 64 × 64

‖u − uTH
h
‖L2 3.28e-3 1.99e-4 9.28e-6 3.60e-7

order – 4.04 4.42 4.69
‖u − uTH

h
‖H1 9.96e-3 1.06e-3 9.26e-5 7.50e-6

order – 3.23 3.52 3.63
‖p − pTH

h
‖L2 1.46e-2 3.37e-3 2.56e-4 2.35e-5

order – 2.12 3.72 3.44

‖u − uRT
h
‖L2 3.98e-2 2.85e-3 1.79e-4 1.14e-5

order – 3.80 3.99 3.97
‖u − uRT

h
‖H1 7.30e-2 9.88e-3 1.25e-3 1.57e-4

order – 2.88 2.98 3.00
‖p − pRT

h
‖L2 2.59 2.75e-1 4.00e-2 3.25e-3

order – 3.24 2.78 3.62

‖u − uND
h
‖L2 5.78e-3 2.62e-4 1.05e-5 3.87e-7

order – 4.46 4.64 4.77
‖u − uND

h
‖H1 1.69e-2 1.45e-3 1.07e-4 7.59e-6

order – 3.54 3.76 3.82
‖p − pND

h
‖L2 1.31e-1 7.15e-3 3.75e-4 2.91e-5

order – 4.19 4.25 3.69

‖u − uSG
h
‖L2 9.58e-3 3.91e-4 1.64e-5 9.14e-7

order – 4.62 4.57 4.17
‖u − uSG

h
‖H1 2.13e-2 1.73e-3 1.31e-4 1.28e-5

order – 3.62 3.73 3.35
‖p − pSG

h
‖L2 6.56e-2 8.77e-3 1.44e-3 2.32e-4

order – 3.14 2.63 2.63
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(a) Relative L2 error of velocity, p = 3
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(c) Relative L2 error of pressure, p = 3

Fig. 2.11:Relative error of IGA-FCM for the quarter annulus problem for the Taylor–
Hood (TH), Raviart–Thomas (RT), Nédélec (ND) and Sub-grid (SG) elements with
p = 3 for the pressure field.
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Inspection of the pressure approximations reveals that all four elements
exhibit pressure oscillations near the cut boundary. These pressure oscillations
are particularlymanifest on coarsemeshes and at low orders of approximation.
Fig. 2.12 presents the pressure approximation provided by the Taylor–Hood
element for p = 1 on ameshwith 32×32 elements. This result is representative
of the pressure approximations provided by the other three element families.
Moreover, it is noted that the pressure oscillations are insensitive to the type of
Nitsche stabilization, in the sense that results obtainedwith a local stabilization
parameter (see Section 2.2.2) or with a (skew-symmetric) parameter-free
Nitsche formulation [175] only show non-essential differences with the results
obtained using global stabilization as presented here. The pressure oscillations
near the cut boundary are clearly discernible. It is to be mentioned that the
pressure oscillations decay fast under mesh refinement and order elevation,
in accordance with the aforementioned convergence rates for the pressure
approximations.

Fig. 2.12: Illustration of pressure oscillations in the vicinity of cut boundary (p = 1,
32 × 32 mesh).

2.6 Conclusions

We investigated the properties of the Isogeometric Finite-Cell Method
(IGA-FCM) for mixed formulations, in the context of the Stokes prob-
lem. We considered four different families of isogeometric mixed elements,
namely, Taylor–Hood, Raviart–Thomas, Nédélec, and Sub-grid elements. For
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a generic test case corresponding to a quarter-annulus domain, we computed
the numerical inf-sup constants for the aforementioned element families for
linear, quadratic and cubic pressure approximations. The results convey that
all four elements pass the inf-sup stability test in the IGA-FCMsetting.We also
assessed the convergence behavior of the four element families under mesh
refinement for linear, quadratic and cubic approximations. For the Taylor–
Hood and Nédélec elements, optimal convergence rates were observed for
the velocity approximation in both the H1-norm and the L2-norm and for
the pressure approximation in the L2-norm. The Raviart–Thomas element
yields an optimal convergence rate for the velocity approximation, but the
pressure approximation is generally suboptimal. The convergence behavior
of the Sub-grid element depends on the order of approximation. For linear
pressure approximations, we observed optimal convergence rates for both ve-
locity and pressure. For quadratic approximations, the convergence rate for
the velocity approximation appears optimal, but the observed convergence
for the pressure is irregular and inconclusive. For cubic approximations, the
observed convergence rates for the Sub-grid element are suboptimal, both for
velocity and for pressure.

For the Taylor–Hood and Nédélec element families, the observed optimal
convergence rates of IGA-FCM are in agreement with corresponding results
in the literature for boundary-fitted approximations. For the Raviart–Thomas
elements, the observed optimal convergence rate for the velocity approxima-
tion is in accordance with corresponding results for fitted approximations.
However, the suboptimal convergence rate for the pressure approximation of
the Raviart–Thomas elements in the IGA-FCM context is at variance with the
optimal rates that have been observed in the literature for fitted approxima-
tions. The suboptimal convergence rates for higher-order Sub-grid elements
are also incongruent with corresponding results in the literature for fitted
approximations.



Chapter 3
Skeleton-stabilized IsoGeometric Analysis:
High-regularity Interior-Penalty methods for
incompressible viscous flow problems

Abstract
ASkeleton-stabilized IsoGeometricAnalysis (SIGA) technique is proposed

for incompressible viscous flow problems with moderate Reynolds number.
The proposed method allows utilizing identical finite dimensional spaces
(with arbitrary B-splines/NURBS order and regularity) for the approximation
of the pressure and velocity components. The key idea is to stabilize the jumps
of high-order derivatives of variables over the skeleton of the mesh. For B-
splines/NURBS basis functions of degree k with Cα-regularity (0 ≤ α < k),
only the derivative of order α + 1 has to be controlled. This stabilization
technique thus can be viewed as a high-regularity generalization of the (Con-
tinuous) Interior-Penalty Finite Element Method. Numerical experiments are
performed for the Stokes and Navier-Stokes equations in two and three dimen-
sions. Oscillation-free solutions and optimal convergence rates are obtained.
In terms of the sparsity pattern of the algebraic system, we demonstrate that
the block matrix associated with the stabilization term has a considerably
smaller bandwidth when using B-splines than when using Lagrange basis
functions, even in the case of C0-continuity. This property makes the pro-
posed isogeometric framework practical from a computational effort point of
view.

Reproduced from: T. Hoang, C.V. Verhoosel, F. Auricchio, E.H. van Brummelen, A. Re-
ali, Skeleton-stabilized IsoGeometric Analysis: High-regularity Interior-Penalty methods
for incompressible viscous flow problems, Computer Methods in Applied Mechanics and
Engineering, submitted, October 2017
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3.1 Introduction

Isogeometric analysis (IGA) was introduced by Hughes et al. [44] as a novel
analysis paradigm targeting better integration of Computer Aided Design
(CAD) and Finite Element Analysis (FEA). The pivotal idea of IGA is that it
directly inherits its basis functions from CAD modeling, where Non-uniform
Rational B-splines (NURBS) are the industry standard. For analysis-suitable
CAD models, geometrically exact analyses can be performed on the coarsest
level of the CAD geometry. This contrasts with conventional FEA, which
typically uses Lagrange polynomials as basis functions defined on a geomet-
rically approximate mesh. An additional highly appraised property of IGA is
that splines allow one to achieve higher-order continuity, in contrast to the
C0-continuity of conventional FEA. We refer to [43, 114] for an overview of
established IGA developments.

In the context of viscous flow problems – particularly in the incompress-
ible regime – IGA has been applied very successfully. Within the frame-
work of inf-sup stable spaces for mixed formulations [13], a variety of com-
patible discretizations has been developed, most notably: Taylor-Hood ele-
ments [94, 118, 119], Nédélec elements [118], subgrid elements [119, 120],
and H(div)-conforming elements [118, 121–123]. The mixed discretization
approach leads to a saddle point system where the discrete velocity and pres-
sure spaces are chosen differently in order to satisfy the discrete inf-sup
condition. The advantage of this approach is that a stable discrete system is
obtained straightforwardly from the continuous weak formulation (without
any modifications) if the pair of discrete spaces is chosen appropriately.

In practice, employing the same discrete space for the velocity and pres-
sure fields can provide advantages in term of implementation and computer
resources. These advantages becomemore pronounced in multi-physics prob-
lems with many different field variables, for which the derivation of inf-sup
stable discrete spaces can be non-trivial. The data structures required to rep-
resent the different spaces can make this approach impractical in terms of
implementation and computational expenses. Moreover, in the context of
IGA, using the same discretization space for all field variables enables direct
usage of the CAD basis functions, which is highly beneficial from the vantage
point of CAD/FEA integration.

Although there are merits in using the same discrete space for all field vari-
ables, without modification this generally leads to an unstable system in the
Babuška-Brezzi sense. A common remedy to circumvent this issue is to use
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stabilization techniques. Various stabilization techniques have been studied
in the IGA setting, most notably: Galerkin-least squares and Douglas-Wang
stabilization [94] and variational multiscale stabilization (VMS) [28]. The
structure of these approaches is that the stabilization is based on element-by-
element residuals. We note that recently a combination of VMS and compati-
ble B-splines is studied in [176]. It is also noteworthy that for incompressible
elasticity the use of inf-sup stable discretizations can be circumvented by
using stream functions [174], B-bar method [177] and BD-bar method [178].

In this contribution we propose a novel skeleton-based stabilization tech-
nique for isogeometric analysis of viscous flow problems, like those described
by the Stokes equations and incompressible Navier-Stokes equations with
moderate Reynold’s numbers. The skeleton-based stabilization allows utiliz-
ing identical finite dimensional spaces for the approximation of the pressure
and velocity fields. The central idea is to supplement the variational formula-
tionwith a consistent penalization term for the jumps of high-order derivatives
of the pressure across element interfaces. By taking into account the local con-
tinuity at each element interface, the stabilized formulation can be applied to
B-splines/NURBSwith varying regularities, including the case of multi-patch
geometries.

The proposed stabilization technique only controls the (α + 1)-th order
derivative in the case of B-splines/NURBS basis functions of degree k with
Cα-regularity. Therefore it can be regarded as a generalization of the con-
tinuous interior penalty finite element method [40] where C0 Lagrange basis
functions are employed. This generalization enables the consideration of a
large class of problems in isogeometric analysis for fluid flows. The present
work encompasses a detailed study of the effect of the stabilization opera-
tor on the sparsity pattern of the mixed matrix – including an analysis of
its complexity with respect to the B-splines/NURBS order – from which it
is observed that the proposed technique optimally exploits the higher-order
continuity properties of isogeometric analysis. We present a series of de-
tailed numerical benchmark simulations to demonstrate the effectivity of the
stabilization technique. In particular we show that oscillation-free solutions
are attained, and the method yields optimal convergence rates under mesh
refinements.

The outline of the paper is as follows. In Section 3.2 we recall the essential
aspects of isogeometric analysis. In particular we introduce the skeleton struc-
ture and jump operators, and we discuss the local continuity properties across
element interfaces. The skeleton-based isogeometric analysis technique for
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the Navier-Stokes equations is then introduced in Section 3.3. In Section 3.4
we discuss the matrix form and implementation aspects of the method, along
with a study of the effect of the skeleton-stabilization operator on the sparsity
pattern of the algebraic system. A series of numerical test cases is consid-
ered in Section 3.5 to demonstrate the performance of the proposed method.
Conclusions are finally presented in Section 3.6.

3.2 Fundamentals of skeleton-based isogeometric analysis

Fig. 3.1: Notations for a parameterization of a multipatch geometry.

To provide a setting for the skeleton-based stabilization proposed in Sec-
tion 3.3 and to introduce the main notational conventions, we first present
multi-patch non-uniform rational B-spline (NURBS) spaces. We consider a
domain Ω ⊂ Rd (with d = 2 or 3) with Lipschitz boundary ∂Ω as exempli-
fied in Fig. 3.1. The domain Ω is parameterized by a, possibly multi-patch
(npatch ≥ 1), non-uniform rational B-spline (NURBS) such that

Ω =

npatch⋃
%=1

χ% ◦ Ω̂%, (3.1)

where Ω̂% and χ% are the patch-wise geometric maps and parameter domains,
respectively, with the parametric map defined as

χ% : Ω̂% → Ω%,

x =
n%∑
I=1

R̂%,I(ξ %)X%,I,
(3.2)
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where {R̂%,I : Ω̂% → Ω%}
n%
I=1 and {X%,I ∈ R

d}
n%
I=1 are the set of NURBS basis

functions and the associated set of control points, respectively. The NURBS
basis functions are constructed based on a set of non-decreasing knot vectors,
{Ξδ%}

d
δ=1, with

Ξ
δ
% = [ξ

δ
%,1, . . . , ξ

δ
%,1︸         ︷︷         ︸

rδ
%,1times

, ξδ%,2, . . . , ξ
δ
%,2︸         ︷︷         ︸

rδ
%,2times

, . . . , ξδ
%,mδ

%
, . . . , ξδ

%,mδ
%︸             ︷︷             ︸

rδ
%,mδ%

times

], (3.3)

such that the number of basis functions per patch is n% = ⊗d
δ=1{(

∑mδ
%

i=1 rδ%,i) −
kδ%−1}, with kδ% the degree of the spline in the direction δ (δ = 1, . . . , d). Note
that for open B-splines the multiplicity of the first and last knot values is equal
to rδ

%,1 = rδ
%,mδ

%
= kδ%+1. The regularity of the basis in the parametric directions

depends on the order and the multiplicity of the knot value: αδ%,i = kδ% − rδ%,i
for i = 1, . . . ,mδ

%. On every patch the knot vectors partition the domain into a
parametric mesh T̂%. The corresponding partitioning of the domain Ω follows
as

T h =

npatch⋃
%=1

χ% ◦ T̂%. (3.4)

The superscript h indicates the dependence of the partition on a mesh (res-
olution) parameter h > 0. We associate with the mesh T h the skeleton∗:

F h
skeleton = {∂K ∩ ∂K′ | K,K′ ∈ T h,K , K′}. (3.5)

Note that since the skeleton-based stabilization technique considered in this
work pertains to inter-element continuity properties, the boundary faces are
not incorporated in the skeleton. The skeleton (3.5) can be decomposed in the
intra-patch skeleton, F h

intra, and the inter-patch skeleton, F
h

inter:

F h
intra :=

npatches⋃
%=1

χ% ◦ F̂% with F̂% :=
{
∂K̂ ∩ ∂K̂′ | K̂, K̂′ ∈ T̂%, K̂ , K̂′

}
,

(3.6a)
F h

inter := F h
skeleton \ F

h
intra. (3.6b)

It evidently follows from these definitions that F h
skeleton = F

h
intra ∪ F

h
inter and

F h
intra ∩ F

h
inter = ∅.

∗ This should not be confused with the topological skeleton concept in geometric modeling.
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Continuity across a patch interface is achieved bymatching the knot vectors
associatedwith the two sides of the interface, and bymaking the corresponding
control points on both patches coincident. In terms of the NURBS basis this
is equivalent to linking the NURBS basis functions corresponding to the
coincident control points. We denote the set of all basis functions over the
domain Ω – where interface functions have been linked – by R := {RI : Ω→
R}nI=1. The space spanned by this basis is denoted by S := span(R). Let us
note that in the general case of a non-conforming muti-patch structure, multi-
patch coupling techniques can be used such as the Nitsche’s method [98, 165]
or the isogeometric mortar method [101].

To define the regularity of the spline space S we introduce the plane (or
line in the two-dimensional case) in the parameter domain of patch % which
is perpendicular to the δ-direction, with its coordinate ξδ equal to that of the
knot value ξδ%,i (see Fig. 3.1):

∆
δ
%,i :=

{
ξ = (ξ1, . . . , ξd) | ξδ = ξδ%,i and ξ

δ′ ∈ [ξδ
′

%,1, ξ
δ′

%,mδ
%
] for δ′ , δ

}
.

(3.7)

The regularity of the space S across an intra-patch face F ∈ F h
intra can then

be defined through the unique combination of the patch index %, the direction
δ, and the knot index i, such that the associated parametric face F̂% resides in
the plane ∆δ%,i. In combination with the C0-continuity condition across patch
boundaries, the regularity of the faces F ∈ F h

skeleton is then given by:

α(F) :=

{
αδ%,i, ∃!(%, δ, i) : χ−1

% ◦ F ⊂ ∆δ%,i, F ∈ F h
intra,

0, F ∈ F h
inter.

(3.8)

For all functions f ∈ S the jumps of its k-th normal derivatives across an
interface vanish in accordance with

n∂k
n f o = 0, 0 ≤ k ≤ α(F), (3.9)

where the jump for some function φ is defined as nφo ≡ nφoF := φ+ − φ−,
and the superscripts + and − refer to the traces of φ on the two opposite sides
of F.

From (3.8) it is inferred that in the interior of a patch the regularity per
direction is controlled by the knot vector multiplicity, while across patch
boundaries merely C0-continuity of the basis holds. We denote by Sk

α the
spline space with global isotropic degree k and per skeleton face regularity α
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in accordance with definition (3.8). In the special case of a global intra-patch
regularity ᾱ ∈ N, i.e., α(F) = ᾱ, 0 ≤ ᾱ ≤ k − 1 ∀F ∈ F h

intra we denote the
function space by Sk

ᾱ . A special case of this function space is that in which
full regularity is achieved, i.e., ᾱ = k − 1.

3.3 Skeleton-stabilized Isogeometric Analysis for the
Navier-Stokes equations

In this section we introduce the skeleton-penalty formulation for the Navier-
Stokes equations in the context of Isogeometric Analysis. We commence
with the formulation of the time-dependent Navier-Stokes equations in Sec-
tion 4.2.1. Next, we introduce the discrete skeleton-penalty formulation in
Section 3.3.2.

3.3.1 The time-dependent Navier-Stokes equations

Weconsider the unsteady incompressibleNavier-Stokes equations on the open
bounded domain Ω ∈ Rd (with d = 2 or 3). The Lipschitz boundary ∂Ω is
split in two complementary open subsets ΓD and ΓN (such that ΓD ∪ ΓN =

∂Ω and ΓD ∩ ΓN = ∅) for Dirichlet and Neumann conditions, respectively.
The outward-pointing unit normal vector to ∂Ω is denoted by n. For any
time instant t ∈ [0,T) the Navier-Stokes equations for the velocity field
u : Ω × [0,T) → Rd and pressure field p : Ω × [0,T) → R read:

Find u : Ω × [0,T) → Rd , and p : Ω × [0,T) → R such that:
∂tu + ∇ · (u ⊗ u) − ∇ · (2µ∇su) + ∇p = f in Ω × (0,T),

∇ · u = 0 in Ω × (0,T),
u = 0 on ΓD × (0,T),

2µ∇su · n − pn = h on ΓN × (0,T),
u = u0 in Ω × {0}.

(3.10)

Here µ represents the kinematic viscosity, and the symmetric gradient of
the velocity field is denoted by ∇su := 1

2
(
∇u + (∇u)T

)
. The exogenous data

f : Ω × (0,∞) → Rd and h : ΓN × (0,∞) → Rd , represent the body forces
and Neumann conditions, respectively. Without loss of generality we herein
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assume the Dirichlet data to be homogeneous. The initial conditions in (4.1)
are denoted by u0 : Ω→ Rd .

For any vector space V, we denote by L(0,T ;V) a suitable linear space
ofV-valued functions on the time interval (0,T). We consider the following
weak formulation of (4.1):

Find u ∈ L(0,T ;V0,ΓD ) and p ∈ L(0,T ;Q), given u(0) = u0,
such that for almost all t ∈ (0,T):
(∂tu,w) + c(u; u,w) + a(u,w) + b(p,w) = `(w) ∀w ∈ V0,ΓD,

b(q, u) = 0 ∀q ∈ Q.

(3.11)

The trilinear, bilinear, and linear forms in this formulation are defined as

c(v; u,w) := (v · ∇u,w) , (3.12a)
a(u,w) := 2µ (∇su,∇sw) , (3.12b)
b(q,w) := − (q, divw) , (3.12c)
`(w) := (f,w) + 〈h,w〉ΓN , (3.12d)

where (·, ·) and 〈·, ·〉ΓN denote the inner product in L2(Ω) and dual product in
L2(ΓN ), respectively. The function spaces in (3.11) are defined as

V0,ΓD :=
{
u ∈ [H1(Ω)]d : u = 0 on ΓD

}
, Q := L2(Ω).

In the case of pure Dirichlet boundary conditions, i.e., if ΓD coincides with all
of ∂Ω, the pressure is determined up to a constant. In that case, the pressure
space is subject to the zero average pressure condition:

Q := L2
0(Ω) ≡

{
q ∈ L2(Ω) :

∫
Ω

q dΩ = 0
}
. (3.13)

3.3.2 The Isogeometric Skeleton-Penalty method with
identical discrete spaces of velocity and pressure

In this contribution we study the discretization of (3.11) by utilizing identical
spline discretizations for the velocity and pressure fields. The global isotropic
order of the spline space is denoted by k and its regularity by α (with 0 ≤
α(F) ≤ k − 1 ∀F ∈ F h

skeleton; see Section 3.2):

Vh :=
[
Sk
α

]d
∩V0,ΓD, Qh := Sk

α ∩ Q. (3.14)
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The semi-discretization in space of the weak form (3.11) then reads:
Find uh ∈ L(0,T ;Vh) and ph ∈ L(0,T ;Qh), given uh(0) = uh

0 ,
such that for almost all t ∈ (0,T):
(∂tuh,wh) + c(uh; uh,wh) + a(uh,wh) + b(ph,wh) = `(wh) ∀wh ∈ Vh,

b(qh, uh) = 0 ∀qh ∈ Qh.
(3.15)

The pair of spaces (Vh,Qh) in (4.12) does not satisfy the inf-sup condition,
and hence the discretization in (3.15) is unstable. To stabilize the system, we
propose to supplement the formulation with the skeleton-penalty term,

s(ph, qh) :=
∑

F∈F h
skeleton

∫
F
γµ−1h2α+3

F n∂α+1
n phon∂α+1

n qhodΓ, (3.16)

whereα is the regularity of the considered spline space at the element interface
F ∈ F h

skeleton, γ > 0 is a global stabilization parameter, and hF is a length
scale associated with this element interface. Here we define this length scale
as

hF :=
|K+F |d + |K

−
F |d

2|F |d−1
, (3.17)

where K+F and K−F are two elements sharing the interface F, and | · |d is
the d-dimensional Hausdorff measure. The stabilized semi-discrete system
– to which we refer as the isogeometric skeleton-penalty formulation for the
Navier-Stokes equations – then reads:

Find uh ∈ L(0,T ;Vh) and ph ∈ L(0,T ;Qh), given uh(0) = uh
0 ,

such that for almost all t ∈ (0,T):
(∂tuh,wh) + c(uh; uh,wh) + a(uh,wh) + b(ph,wh) = `(wh) ∀wh ∈ Vh,

b(qh, uh) − s(ph, qh) = 0 ∀qh ∈ Qh.
(3.18)

Remark 3.1. The power 2α + 3 associated with the interface length hF in
(4.15b) follows from scaling arguments. The global stabilization parameter
γ depends on the utilized spline space Sp

α. For a sufficiently smooth pressure
solution, viz. p ∈ Hα+1(Ω), the stabilized formulation (3.18) is variationally
consistent with the weak form (3.11).

Remark 3.2. A special case, which is very common for CAD models, is that
in which the highest regularity spline space, Sk

k−1, is used within each patch of
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the domain, whileC0-continuity is established between patches. The skeleton-
penalty term (4.15b) in this case reads:

s(ph, qh) :=
∑

F∈F h
intra

∫
F
γµ−1h2k+1

F n∂k
n phon∂k

n qhodΓ

+
∑

F∈F h
inter

∫
F
γµ−1h3

Fn∂nphon∂nqhodΓ.
(3.19)

Remark 3.3. The formulation (3.18) based on the skeleton-penalty stabiliza-
tion term (4.15b) can also be applied to Lagrange bases, which is – in terms of
function spaces – equivalent with the special case corresponding to regularity
α = 0. In this case, only the jump of first order derivatives must be stabilized.
This case is known as the continuous interior penalty finite element method
[40]. For higher smoothness B-splines, Sk

α, with regularity α ≥ 1, the jump of
first order derivatives vanishes, as a consequence of which the formulation in
[40] cannot be applied. Thus, formulation (4.15b) is the high-regularity gen-
eralization of the continuous interior penalty finite element method. Note that
although the formulation in [40] is equivalent to the special case of α = 0,
the use of higher-order Bézier elements instead of higher-order Lagrange
elements affects the sparsity pattern (see Section 3.4.3).

Remark 3.4. The weak formulation of the steady Stokes problem associated
with (3.11) is given by:

Find u ∈ V0,ΓD and p ∈ Q such that:
a(u,w) + b(p,w) = `(w) ∀w ∈ V0,ΓD,

b(q, u) = 0 ∀q ∈ Q.
(3.20)

Similar to formulation (3.18), the isogeometric skeleton-penalty formulation
for the Stokes equations reads:

Find uh ∈ Vh and ph ∈ Qh such that:
a(uh,wh) + b(ph,wh) = `(wh) ∀wh ∈ Vh,

b(qh, uh) − s(ph, qh) = 0 ∀qh ∈ Qh.

(3.21)

It is well-known that problem (3.20) is the first-order optimality condition for
the saddle point (u, p) of the Lagrangian functional (see e.g. [13])

L(v, q) =
1
2

a(v, v) + b(q, v) − `(v), (v, q) ∈ V0,ΓD × Q. (3.22)
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Analogously, the stabilized discrete system (3.21) is related to the optimization
problem for the modified Lagrangian functional

Lh(vh, qh) = 1
2 a(vh, vh) + b(q, vh) − `(vh) − J(qh), (vh, qh) ∈ Vh × Qh,

(3.23)
with

J(qh) =
γ

2

∑
F∈F h

skeleton

∫
F
µ−1h2α+3

F

��n∂α+1
n qho��2 dΓ. (3.24)

The stabilized discrete system (3.21) follows directly from the first-order opti-
mality condition for this modified Lagrangian functional, and the stabilization
term (4.15b) appears as the variational derivative of (3.24). From (3.24) it is
seen that the stabilization term (4.15b) effectively leads to minimization of
the jump of high-order derivatives of the pressure over the skeleton F h

skeleton
in a least-squares sense.

Remark 3.5. For quasi-uniform meshes, the length scale hF can alternatively
be defined as

hF :=
|K+F |

1/d
d + |K−F |

1/d
d

2
, (3.25)

or, even simpler, as

hF :=

{
length(F) d = 2,
diam(F) d = 3.

(3.26)

The numerical results presented in Section 3.5 are based on definition (3.26).

3.4 The algebraic form of Skeleton-stabilized Isogeometric
Analysis

In this section we discuss various algorithmic aspects of the proposed
skeleton-based stabilization framework. In Section 3.4.1we briefly discuss the
employed solution procedure for the unsteady Navier-Stokes equations, after
which the algebraic form of the formulation is introduced in Section 3.4.2.
The effect of the proposed stabilization term on the sparsity pattern of the
system matrix is then studied in detail in Section 3.4.3.
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Input: u0, ∆t, tol # initial condition, time step, Picard tolerance

# Initialization at t = 0
u0 = u0

# Time iteration (θ = 1
2: Crank-Nicolson)

for ı in 1, 2, . . . :
# Picard iteration

uı0 = uı−1

pı0 = pı−1 if ı > 1 else 0
for  in 1, 2, . . . :

Find (uı, pı) ∈ Vh × Qh such that ∀(w, q) ∈ Vh × Qh:(
uı
−uı−1

∆t ,w
)
+ θ

(
c(uı

−1; uı,w) + a(uı,w)
)

+(1 − θ)
(
c(uı−1; uı−1,w) + a(uı−1,w)

)
+ b(pı,w) = θ`ı(w) + (1 − θ)`ı−1(w),

b(q, uı) − s(pı, q) = 0.

if max{‖uı − uı
−1‖, ‖p

ı
 − pı

−1‖} < tol:
break

end
end

end
Algorithm 1: Solution procedure for the unsteady Navier-Stokes equations

3.4.1 The unsteady Navier-Stokes solution procedure

We employ a standard solution procedure for the unsteady Navier-Stokes
equations. Crank-Nicolson time integration is considered in combination with
Picard iterations for solving the nonlinear algebraic problem in each time step.
The employed solution strategy is summarized in Algorithm 1. We denote the
constant time step size by∆t and the time step index by ı, such that t = ı∆t. The
solution at time step ı is denoted by (uı, pı), and the time-dependence of the
non-autonomous linear operator `(w) is similarly indicated by a superscript:
`ı(w). The Picard iteration counter is denoted by , and the unresolved solution
at iteration  by (uı, pı). Note that for the sake of notational brevity we here
omit the superscript h from the variables.
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3.4.2 The algebraic form

Let {Ru
i }

nu
i=1 and {Rp

i }
np

i=1 denote two sets of NURBS basis functions for
the velocity and pressure fields, respectively. These basis functions span the
discrete velocity and pressure spaces

Vh = span{Ru
i }

nu
i=1, Qh = span{Rp

i }
np

i=1, (3.27)

and, accordingly, the approximate velocity field uh(x, t) and pressure field
ph(x, t) can be written as

uh(x, t) =
nu∑
i=1

Ru
i (x)ûi(t), ph(x, t) =

np∑
i=1

Rp
i (x)p̂i(t), (3.28)

where û(t) = (û1, û2, . . . , ûnu )
T and p̂(t) = (p̂1, p̂2, . . . , p̂np )

T are vectors of
degrees of freedom. The corresponding algebraic form of (3.18) then reads

For each t ∈ (0,T), find û = û(t) ∈ Rnu and p̂ = p̂(t) ∈ Rnp ,
given û(0) = û0, such that:
M∂t û + [C(û) + A] û + BT p̂ = f,

Bû − Sp̂ = 0.

(3.29)

with the matrix entries given by:

Ai j = a(Ru
j,R

u
i ), (3.30a)

Bi j = b(Rp
i ,R

u
j ), (3.30b)

C(û)i j = c(û; Ru
j,R

u
i ), (3.30c)

Si j = s(Rp
j , Rp

i ), (3.30d)

Mi j = (Ru
j,R

u
i ), (3.30e)

fi = `(Ru
i ). (3.30f)

The algebraic form of the solution Algorithm 1 is presented in Algorithm 2.
We note that computation of the stabilization matrix S requires a data

structure related to the skeleton F h
skeleton of the mesh T h. This data structure

is constructed such that at each element interface F ∈ F h
skeleton, the jump

of high-order derivatives of the basis functions over F can be evaluated. It
should be noted that this skeleton structure is compatible with the recently
proposed efficient row-by-row assembly procedure for IGA [117].
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Input: û0, ∆t, tol # initial condition vector, time step, Picard tolerance

# Initialization at t = 0
û0 = û0

# Time iteration (θ = 1
2: Crank-Nicolson)

for ı in 1, 2, . . . :
# Picard iteration

ûı
0 = ûı−1

p̂ı
0 = p̂ı−1 if ı > 1 else 0

for  in 1, 2, . . . :
Obtain (ûı

, p̂ı
 ) by solving the linear system:[

1
∆t M + θ

(
(C(ûı

−1) + A
)

BT

B −S

] [
ûı


p̂ı


]
=

[(
1
∆t M − (1 − θ)

(
C(ûı−1) + A

))
ûı−1 + θf ı + (1 − θ)f ı−1

0

]

if max{ ‖ûı
 − ûı

−1 ‖, ‖p̂
ı
 − p̂ı

−1 ‖ } < tol:
break

end
end

end

Algorithm 2: Algebraic form of the solution procedure for the unsteady
Navier-Stokes equations

3.4.3 The k/α-complexity of the skeleton-penalty operator on
sparsity pattern

The skeleton-based stabilization operator (4.15b) affects the sparsity pattern of
the discretized Navier-Stokes system due to the fact that the jump operators on
the (higher-order) derivatives provide additional connectivity between basis
functions. To illustrate this effect we consider the spline space Sk

α , for which
the derivative of order α + 1 are stabilized. The top row of Fig. 4.6 shows
univariate cubic B-spline bases with C2, C1, C0-regularity, and C0 Lagrange
(from left to right). The second rowplots the stabilized (orderα+1) derivatives
for each basis. The third row shows the sparsity pattern of the skeleton-penalty
matrix S associated with the operator s(ph, qh).

The bandwidth† of the skeleton-penalty matrix S is equal to α + 2, which
ranges from 2 forC0-splines (or at patch interfaces) to a maximum of k+1 for
splines with full continuity (typical for intra patch interfaces). This observed
decrease in bandwidth with decrease in regularity stems from the fact that the

† The bandwidth is defined as the smallest non-negative integer b such that Si j = 0 if
|i − j | > b.



3.4 The algebraic form of Skeleton-stabilized Isogeometric Analysis 61

number of order α + 1 derivatives of the basis functions that vanish on the
interfaces increaseswithα. This behavior contrastswith classicalC0 Lagrange
basis functions, for which the bandwidth is equal to 2k (the last column
of Fig. 4.6). The resulting increase in bandwidth of the jump stabilization
matrix with increase in Lagrange basis order is an important drawback of the
interior penalty method compared to element-based stabilization techniques.
By construction, B-spline bases ameliorate this issue in the sense that even at
full continuity the bandwidth of the skeleton-penalty matrix is considerably
smaller than that of the Lagrange basis of equal order. This advantage – which
extends to higher dimensions – makes the proposed stabilization technique
computationally practical for a wide range of applications.
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Fig. 3.2: Sparsity pattern of the skeleton-penalty matrix, illustrated with univariate cubic spaces: spline S3
α space with full regularity

α = 2 (first column), reduced regularity α = 1 (second column), minimal regularity α = 0 (third column), and C0 Lagrange space
(last column). The top row shows the basis functions, the second row the stabilized (order α + 1) derivatives, and the third row the
matrix sparsity pattern of the skeleton-penalty matrix S. The bandwidths of S in the spline cases are α + 2, much smaller than in the
Lagrange case 2k.
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3.5 Numerical experiments

In this section we investigate the numerical performance of the Skeleton-
stabilized IsoGeometric Analysis framework for a range of numerical test
cases for viscous flow problems. These test cases focus on various aspects of
the framework, most notably its accuracy and convergence under mesh refine-
ment, its stability, and its robustness with respect to the model parameters.

3.5.1 Steady Stokes flow in a unit square

We consider the steady two-dimensional Stokes problem – i.e., problem (3.11)
without time-dependent and convective terms – in the unit square domain
Ω = (0, 1)2. The body force f is taken in accordance with the manufactured
solution [118]:

u =
(

2ex(−1 + x)2x2(y2 − y)(−1 + 2y)
(−ex(−1 + x)x(−2 + x(3 + x))(−1 + y)2y2)

)
(3.31a)

p = (−424 + 156e + (y2 − y)(−456 + ex(456 + x2(228 − 5(y2 − y))

+ 2x(−228 + (y2 − y)) + 2x3(−36 + (y2 − y)) + x4(12 + (y2 − y))))).

(3.31b)

This manufactured solution is visualized in Fig. 3.3a. Note that homoge-
neous Dirichlet boundary conditions are imposed on the complete boundary
∂Ω, and that a zero average pressure condition,

∫
Ω

p dΩ = 0, is imposed to
establish well-posedness. We use a Lagrange multiplier approach to enforce
this condition.

In Fig. 3.3 we study the asymptotic h-convergence behavior of the pro-
posed method for B-splines of degree k = 1, 2, 3 with the highest possible
regularities, i.e. Ck−1. The coarsest mesh considered consists of 4 × 4 ele-
ments, which is uniformly refined until a 128 × 128 mesh is obtained. The
stabilization parameter is taken as γ = 1 (k = 1), 5 × 10−2 (k = 2), 10−3

(k = 3). The solution obtained using quadratic splines with 16 × 16 elements
is shown in Fig. 3.3a. One can observe that both the pressure and velocity
solutions are oscillation-free for all considered cases. Optimal convergence
rates are obtained for both the velocity and the pressure field. For the L2-norm
and H1-norm of the velocity error, Fig. 3.3b and 3.3c respectively, asymptotic
rates of k + 1 and k are obtained. For the L2-norm of the pressure shown in
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Fig. 3.3d we observe asymptotic rates of approximately k + 1
2 , which is half

an order higher than those of the H1-norm of the velocity error. For inf-sup
compatible discretization pairs where the degrees of the pressure and velocity
spaces are k − 1 and k respectively, the rate of convergence of the L2-norm of
the pressure error is known to be equal to that of the H1-norm of the velocity
error. We attribute the improved rate for the pressure error using equal order
spaces to the fact that compared to the compatible setting the pressure space
is one order higher.

In Fig. 3.4 we study the sensitivity of the computed results with respect to
the Skeleton-Penalty stabilization parameter γ. The h-convergence behavior
of the solution using C1-continuous quadratic B-splines is studied for a wide
range of stabilization parameters, viz. γ ∈ (5 × 10−6, 1). We observe that the
stabilization parameter does not affect the accuracy of the velocity field in
the L2-norm and H1-norm, see Fig. 4.10a and 4.10b, respectively. This is
an expected results, as the introduced Skeleton-Penalty term acts only on the
pressure field. The pressure solution accuracy is affected by the selection of
the stabilization parameter, see Fig. 4.10c. Choosing γ too large will lead
to ill-conditioning of the system, while taking γ too small will lead to loss
of stability. Fig. 3.4 conveys, however, that the parameter can be selected
from a wide range without a significant effect on the accuracy. For the case
considered here accuracy deterioration remains very limited in the range
γ ∈ (5 × 10−4, 5 × 10−2). Moreover, for all considered cases we observe the
rate of convergence to be independent of the choice of γ.

The performance of the proposed Skeleton-stabilized IsoGeometric Anal-
ysis framework is further studied based on the generalized Stokes equations
with homogeneous Dirichlet boundary conditions:

Find u : Ω→ Rd , and p : Ω→ R such that:
σu − ∇ · (2µ∇su) + ∇p = f in Ω,

∇ · u = 0 in Ω,
u = 0 on ΓD,

(3.32)

This system – for which the body force f is selected in accordance with the
manufactured solution (3.31) – is characterized by the Damköhler number

Da =
σL2

µ
, (3.33)

where σ is the reaction coefficient, and L is a characteristic length scale for
the problem (in this case the width/height of the unit square). In Fig. 3.5 we
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(a)Manufactured solution (b) L2 velocity error

(c) H1 velocity error (d) L2 pressure error

Fig. 3.3: (a) Solution for the steady Stokes problem in Section 3.5.1, pressure (color)
and velocity (vector field). (b-d) Mesh convergence results for B-splines of order
k = 1, 2, 3 and Ck−1 regularity.

study the h-convergence behavior of Ck−1-continuous B-splines for various
degrees k = 1, 2, 3 and Da = 1, 10, 1000. To control the reaction term, we
supplement the stabilization term with a contribution from σ to the scaling
ratio, i.e.,

s(ph, qh) =
∑

F∈F h
skeleton

∫
F
γ(µ + σh2

F)
−1h2α+3

F n∂α+1
n phon∂α+1

n qhodΓ.
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(a) L2 velocity error (b) H1 velocity error

(c) L2 pressure error

Fig. 3.4: Sensitivity of the quadratic spline approximation of the Stokes problem on
the unit square with respect to the stabilization parameter γ.

The stabilization parameter is now chosen equal to γ = 1 (k = 1), 5e− 2 (k =
2), 1e − 3 (k = 3). Note that the non-reactive case of Da = 0 corresponding
to σ = 0 resembles the case considered above. For all considered cases we
observe the approximation of the velocity solution and pressure solution to
be virtually independent of the Damköhler number.

To understand the effect of reduced regularity – which is of particular
importance in the case of multi-patch models – we first study the B-spline
discretization of the Stokes problem on the unit square with varying intra-
patch regularities. That is, we consider the spline discretizations Sk

α of order k
with regularity α = 0, . . . , k − 1. A stabilization parameter of γ = 10−αk−4 –
which effectively decreases the penalty parameter with increasing order and
regularity – was found to yield an adequate balance between accuracy and
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(a) Da = 1

(b) Da = 10

(c) Da = 1000

Fig. 3.5: h-convergence behavior of Ck−1-continuous B-spline spaces of degree
k = 1, 2, 3 for various Damköhler numbers.

stability for the considered simulations. Derivation of a rigorous selection
criterion for the penalty parameter is beyond the scope of the current work.
Note that because the case of k = 1 and α = 0 has already been considered
above, we here restrict ourselves to the spline degrees k = 2, 3, 4. The h-
convergence results are collected in Fig. 3.6.Note thatwe plot the errors versus
the square root of the number of degrees of freedom to enable comparison of
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the various approximations. We observe optimal convergence rates for both
the velocity and the pressure approximation for all cases. As anticipated the
accuracy per degree of freedom improves with increasing regularity. Note that
in the case of Sk

0 – which is equivalent to the Lagrange basis – we observe
similar approximation behavior as for the continuous interior-penalty method
[40].

(a) k = 2, α = 0, 1

(b) k = 3, α = 0, 1, 2

(c) k = 4, α = 0, 1, 2, 3

Fig. 3.6: h-convergence results for the Stokes problem on a unit square using B-
splines spaces Sk

α of various degrees k = 2, 3, 4 and regularities 0 ≤ α ≤ k − 1.
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3.5.2 Steady Stokes flow in a quarter annulus ring

To demonstrate the performance of the proposed Skeleton-Penalty stabiliza-
tion in the context of IsoGeometric Analysis, we consider the steady Stokes
problem in the open quarter annulus domain

Ω =
{
x ∈ R2

>0 : R1 < |x| < R2
}
,

with inner radius R1 = 1 and outer radius R2 = 4. We parametrize this domain
using NURBS. Homogeneous Dirichlet boundary conditions are prescribed
on the entire boundary ∂Ω = ΓD and, accordingly, it holds that ΓN = ∅.
The body force f is selected in accordance with the manufactured solution
[174, 179]

u(x) =

(
10−6x2y4(x2 + y2 − 1)(x2 + y2 − 16)(5x4 + 18x2y2 − 85x2 + 13y4 − 153y2 + 80)
10−6xy5(x2 + y2 − 1)(x2 + y2 − 16)(102x2 + 34y2 − 10x4 − 12x2y2 − 2y4 − 32)

)
,

(3.34a)

p(x) = 10−7xy(y2 − x2)(x2 + y2 − 16)2(x2 + y2 − 1)2 exp
(
14(x2 + y2)−1/2) . (3.34b)

Note that u vanishes on ∂Ω in accordance with the Dirichlet boundary condi-
tion. Moreover, the pressure complies with

∫
Ω

p dΩ = 0. This manufactured
solution is illustrated in Fig. 3.7.

In this example we consider B-spline bases of orders k = 1, 2, 3 on meshes
ranging from 8×8 to 128×128 elements.Wedivert here from the isoparametric
concept in order to also study the performance of linear bases, which are in-
capable of parametrizing the annulus ring exactly. We will consider NURBS-
based isogeometric analysis in later test cases. For the simulation, the stabi-
lization parameter is taken as γ = 1 (k = 1), 5 ·10−2 (k = 2), 1 ·10−3 (k = 3).
In Fig. 3.7a the pressure solution obtained using C1-continuous quadratic
B-splines on a 32 × 32 element mesh is shown, which is observed to be free
of oscillations. In Fig. 3.7b and 3.7c we observe optimal convergence rates
for the velocity error of k + 1 for the L2-norm and k for the H1-norm, respec-
tively. As for the unit square problem considered above, an asymptotic rate
of convergence of approximately k + 1

2 is observed for the L2-norm of the
pressures.
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(a)Manufactured solution (b) L2 velocity error

(c) H1 velocity error (d) L2 pressure error

Fig. 3.7: (a) Pressure solution for the steady Stokes problem on a quarter annulus
ring in Section 3.5.2. (b-d) h-convergence results for B-splines of order k = 1, 2, 3
and Ck−1 regularity.

3.5.3 Steady Navier-Stokes flow in a full annulus domain

As the baseline test case for the Skeleton-stabilized IsoGeometric analysis of
the steady incompressible Navier-Stokes equationswe consider the cylindrical
Couette flow between two cylinders as shown in Fig. 3.8a, which was studied
in the context of compatible spline discretizations in [122]. The outer cylinder
is fixed, while the inner cylinder rotates with surface velocity U = ωR1. For
low Reynolds numbers the flow in between the cylinders will remain steady,
two-dimensional, and axisymmetric. The analytical velocity solution of the
problem is then given by
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u =
(
−(Ar + Br−1) sin(θ)
(Ar + Br−1) cos(θ)

)
, (3.35)

where (r, θ) are the polar coordinates originating from the center of the cylin-
ders, and

A = −U
δ2

R1(1 − δ2)
, B = U

R1

1 − δ2 , (3.36)

with δ = R1/R2 the ratio of radii of the inner and outer cylinders. The
analytical pressure solution is a constant function, which supplemented with
the zero average pressure condition

∫
Ω

p dΩ = 0 results in a zero pressure
field. Here we consider the case of ω = 1, R1 = 1, and R2 = 2. The solution
for this case is illustrated in Fig. 3.8c.

(a) (b) (c)

Fig. 3.8: (a) Setup of the cylindrical Couette flow problem. (b) Two-dimensional
polar mesh, and (c) a typical solution of the radial velocity component.

For the parametrization of the geometry the polar map

(0, 1)2 3 (ξ1, ξ2) 7→ F(ξ1, ξ2) =

(
((R2 − R1)ξ2 + R1) sin(2πξ1)

((R2 − R1)ξ2 + R1) cos(2πξ1)

)
(3.37)

is used, where (ξ1, ξ2) are the coordinates of the unit square parameter domain.
The problem is discretized using B-splines of degree k = 1, 2, 3 with Ck−1-
regularity, which are periodic in the circumferential ξ1-direction. In Fig. 3.9
we study the mesh convergence behavior of the velocity approximation in
the L2-norm and H1-norm. The coarsest mesh considered consists of 8 × 2
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elements (two elements in the radial direction), which is uniformly refined
until a mesh of 128 × 32 elements is obtained. We observed optimal rates
of convergence for all orders in both the L2-norm and H1-norm. The pre-
asymptotic behavior observed for the H1-norm is a result of the fact that the
boundary layer near the inner circle is not even remotely resolved by a single
element. By virtue of the nature of the problem, the analytical zero pressure
field is satisfied identically.

(a) L2 velocity error (b) L2 velocity error

Fig. 3.9: h- convergence study of the cylindrical Couette flow problem using various
order B-splines with Ck−1 regularity.

3.5.4 Navier-Stokes flow around a circular cylinder

To study the performance of the proposed formulation for the Navier-Stokes
equations in further detail we consider the benchmark problem proposed by
Schäfer and Turek [180]. In this benchmark the flow around a cylinder which
is placed in a channel is studied. The geometry of this test case is shown
in Fig. 3.10, where the channel length is L = 2.2m, the channel height is
H = 0.41m, and the cylinder radius is R = 0.05m. The center of the cylinder
is positioned at 1

2 (W,W) = (0.2, 0.2)m, which has an offset of 1
2δ = 0.005m

with respect to the center line of the channel (such that W = H − δ = 0.4m).
At the inflow boundary (x = 0) a parabolic horizontal flow profile is imposed
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u(0, y) =
(

4Umy(H − y)/H2

0

)
with maximum velocity Um. A no slip boundary condition is imposed along
the bottom and top boundaries, as well as along the surface of the cylinder.
At the outflow boundary (x = L) a zero traction boundary condition is used.
The density and kinematic viscosity of the fluid are taken as ρ = 1.0 kg/m3

and µ = 1 × 10−3 m2/s, respectively.
We consider two cases, one corresponding to an inflow velocity that results

in a steady flow, and one corresponding to an inflow velocity that results in
an unsteady flow. These two cases are characterized by the Reynolds number

Re =
2ŪR
µ
,

where Ū = 2
3Um is the mean inflow velocity. As quantities of interest we

consider the drag and lift coefficients

cD =
FD

ρŪR
, cL =

FL

ρŪR
,

where FD and FL are the resultant lift and drag forces acting on the cylinder.
These forces are weakly evaluated as (see e.g., [181])

FD = R(u, p; `1), FL = R(u, p; `2),

where
R(u, p; `i) := (∂tu, `i) + c(u; u, `i) + a(u, `i) + b(p, `i),

with `i ∈ [H1
0,∂Ω\Γ(Ω)]

d and `i |Γ = −ei, i = 1, 2. We note that these lift
and drag evaluations are consistent with the weak formulation (3.18), and
are different from the formulations given in [182] and [183] where in the
former, the time derivative term is neglected (so only consistent for the steady
case), and in the latter, both the convective term and time derivative term are
neglected (thus only consistent for the case of steady Stokes equations). For
the steady test case, we also consider the pressure drop over the cylinder

∆p = p(W/2 − R,W/2) − p(W/2 + R,W/2),

and for the unsteady test case, we consider the Strouhal number

St =
D f
Ū
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Fig. 3.10: Multi-patch parametrization of the channel flow problem with a circular
obstacle.

as additional quantities of interest, where f is the frequency of vortex shedding
and D is the diameter of the cylinder.

The geometry is parameterized by a quadratic (k = 2) multi-patch NURBS
surface, as shown schematically in Fig. 3.10. The boundaries between the
five patches are indicated by the solid red lines, while the element boundaries
within the patches are marked by dashed red lines. Full Ck−1-continuity is
maintained at the intra-patch element boundaries. For the coarsest mesh we
employ 8×5 elements in the circumferential and radial direction, respectively,
for each of the four patches adjacent to the cylinder. The discretization of the
downstream patch conforms with its neighboring patch and consists of 8 × 8
elements in the vertical and horizontal direction, respectively. The employed
NURBS are non-uniform as themeshes are locally refined toward the cylinder,
and coarsened toward the outflow boundary.

We discretize both the velocity components and the pressure using the
NURBS basis employed for the geometry parametrization, making this a
true isogeometric analysis. Our coarsest quadratic NURBS mesh is refined
uniformly to study the h-convergence behavior of the above-mentioned quan-
tities of interest. Moreover, we elevate the order of our coarsest mesh to a
cubic (k = 3) multi-patch NURBS surface with Ck−1-continuity inside the
patches, and subsequently perform uniform mesh refinements to study the
h-convergence behavior for the cubic case.

3.5.4.1 Steady flow

We first consider the case of Reynolds number Re = 20, for which a steady
flow develops. The velocity magnitude and pressure solutions for this case are
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shown in Fig. 3.11. A two times uniform refinement of the coarsest quadratic
NURBS mesh is used to compute this result, which contains ndof = 12180
degrees of freedom. The computed drag and lift coefficients, cD = 5.5798 and
cL = 0.010605, are in excellent agreement, respectively, with the benchmark
ranges (5.57, 5.59), and (0.0104, 0.0110) reported in [180], as is the computed
solution for the pressure drop ∆p = 0.117514.

Fig. 3.11: Velocity magnitude (top) and pressure (bottom) solutions of the steady
cylinder flow problem using quadratic NURBS with ndof = 12180.

In Fig. 3.12 we present the h-convergence results for the three quantities of
interest. For the quadratic case in Fig. 3.12a we consider five meshes, where
the coarsest one corresponding to the geometry parameterization, results in
1056 degrees of freedom, and the four times uniformly refined mesh results
in 177636 degrees of freedom. The errors are computed with respect to the
high-quality reference values proposed in [184]:

Cre f
D = 5.57953523384, Cre f

L = 0.010618948146, ∆re f
p = 0.11752016697

We observe convergence of all three quantities of interest to the benchmark
solutions. In particular for the lift coefficient and the pressure drop the ob-
served asymptotic rates match well with the expected optimal rates of 2k
[185]. In Fig. 3.12b we consider the mesh convergence of the quantities of
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interest for the cubic NURBS case, for which the coarsest mesh consists of
1356 degrees of freedom, and the finest mesh (4 uniform refinements) consists
of 181356 degrees of freedom. As expected we observed improved rates of
convergence compared to the quadratic case. Note that in terms of degrees
of freedom there is virtually no difference between the finest quadratic mesh
and the finest cubic mesh, which conveys that increasing the spline order is
favorable from an accuracy per degree of freedom point of view. We expect
that the irregular behavior of the convergence rate for the lift coefficient on
the finest cubic meshes is related to approaching the accuracy of the reference
solution from [184].

(a) Quadratic (k = 2) NURBS

(b) Cubic (k = 3) NURBS

Fig. 3.12: h- convergence results for the drag coefficient (left column), lift coefficient
(middle column) and pressure drop (right column) of the steady cylinder flowproblem
for quadratic (top row) and cubic (bottom row) NURBS.

3.5.4.2 Unsteady flow

For the case of Reynolds number Re = 100 there is no longer a steady solution.
Instead, once the flow is fully developed, oscillatory vortex shedding occurs,
as illustrated by the snapshot shown in Fig. 3.13. For this figure, a two times
uniformly refined quadratic NURBS parametrization is used, which results in
a total of 12180 degrees of freedom. In order to capture the vortex shedding,
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the downstream mesh characteristics have been adjusted in comparison to the
steady test case, in the sense that the refinement zone stretches out further
behind the cylinder. We have used a time step of ∆t = 1/20 s for the first 4 s
of the simulations in order to let the flow develop, after which we switch to
a smaller time step size of ∆t = 1/200 s to accurately capture the oscillatory
behavior of the solution. In Fig. 3.14 the evolution of the drag coefficient,
lift coefficient and pressure drop over time is shown for the fully developed
vortex shedding flow.

Table 3.1 presents a comparision result for three consecutive uniform mesh
refinement levels using quadratic NURBS and ∆t = 1/200 s. The flow is only
considered when it is fully developed. The time cycle is arbitrarily chosen
such that at the start and end of the interval, the lift coefficients attain two
consecutive local minima. The quantities of interest are the minimum and
maximum of the lift and drag coefficients, the length of the time cycle, and
the Strouhal number. From Table 3.1, we compute Table 3.2, which shows
the relative errors of the quantities of interest (and their convergence rates).
We observe that these quantities of interest converge very well to the high-
quality results reported in [186]. At the first level of refinement with only
3420 degrees of freedom, the results already start to be closed to the reference
values, with the relative errors of 5.53×10−3 and 8.96×10−3 for the minimum
and maximum of the drag coefficient, and approximately 8 × 10−2 for the
minimum and maximum of the lift coefficient. At the third level of refinement
with 45828 degrees of freedom, when the mesh is fine enough to resolve the
boundary layer around the cylinder, and to accurately capture the dynamics
of the flow, we obtain the convergence rates of 2k (k = 2) as in the steady
test case, with errors of 1.34 × 10−4 and 8.08 × 10−5 for the minimum and
maximum of the drag coefficient, and 1.49 × 10−3 and 1.12 × 10−3 for the
minimum and maximum of the lift coefficient, respectively.
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Fig. 3.13:A snapshot of velocity (top) and pressure (bottom) of the unsteady cylinder
flow problem (Re=100); A Von Kármán vortex street is clearly visible behind the
cylinder.

Fig. 3.14: Drag coefficient, lift coefficient and pressure drop over time (left) and a
zoom of one period (right) for the unsteady cylinder flow problem. These results are
based on a quadratic NURBS k = 2 discretization with two levels of refinements
from the coarsest mesh.
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Table 3.1:Minimum andmaximumof the drag and lift coefficients, time cycle length,
and the Strouhal number for the unsteady cylinder flow problem. For all cases the
degree is k = 2 and the time step size is ∆t = 1/200.

Level ndof min CD max CD min CL max CL 1/ f St
1 3420 3.18175 3.25632 -1.10535 1.06472 0.34500 0.28986
2 12180 3.16893 3.23507 -1.04482 1.00895 0.33500 0.29851
3 45828 3.16469 3.22765 -1.01977 0.98547 0.33000 0.30303

Ref [186]: 6 667264 3.16426 3.22739 -1.02129 0.98657 0.33125 0.30189

Table 3.2: Relative error convergence of the minimum and maximum of the drag
and lift coefficients of the unsteady cylinder flow problem, computed from Table 3.1.
For all cases the degree is k = 2 and the time step size is ∆t = 1/200. The rate of
convergence is here indicated by r .

Level ndof error min CD error max CD error min CL error max CL

1 3420 5.53×10−3 8.96×10−3 8.23×10−2 7.92×10−2

2 12180 1.47×10−3 (r = 2.08) 2.38×10−3 (r = 2.09) 2.30×10−2 (r = 2.00) 2.26×10−2 (r = 1.97)
3 45828 1.34×10−4 (r = 3.62) 8.08×10−5 (r = 5.11) 1.49×10−3 (r = 4.14) 1.12×10−3 (r = 4.54)

3.5.5 Three-dimensional Navier-Stokes flow in a sphere

To demonstrate the performance of the Skeleton-Penalty formulation in the
three-dimensional case, we consider the 3D benchmark problem of Navier-
Stokes flow proposed by Ethier and Steinman in [187] with the domain con-
sidered a sphere. We parametrize the spherical geometry by mapping a bi-unit
cube parameter domain Ω̂ = (−1, 1)3 3 ξ onto the physical domain Ω 3 x
through

x =
©«
ξ1
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2
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. (3.38)

We consider the manufactured solution
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u(x) = ©«
−a[eax sin(ay + dz) + eaz cos(ax + dy)]
−a[eay sin(az + dx) + eax cos(ay + dz)]
−a[eaz sin(ax + dy) + eay cos(az + dx)]

ª®¬ , (3.39a)

p(x) = −
a2

2
[
e2ax + e2ay + e2az + 2 sin(ax + dy) cos(az + dx)ea(y+z)

+ 2 sin(ay + dz) cos(ax + dy)ea(z+x) + 2 sin(az + dx) cos(ay + dz)ea(x+y)] .
(3.39b)

with parameters a = 1 and d = 1.

(a) Pressure (b) Velocity magnitude

Fig. 3.15: Solution of the Ethier-Steinman Navier-Stokes flow in a 3D sphere using
213 quadratic B-spline elements.

We discretize the problem using a uniform B-spline discretization. In
Fig. 3.15 we show the solution obtained using 213 quadratic B-spline ele-
ments, from which we observe that the solution is free of oscillations. In
Fig. 3.16 we study the mesh convergence behavior for the orders k = 1, 2, 3.
The considered meshes consist of 53, 83, 123, and 183 elements. We observe
optimal rates of converge of k + 1 and k for the L2-error norm and H1-error
norm for the velocity field, respectively. Consistent with the observations of
earlier simulations we observe a rate higher than k for the L2-error norm of
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the pressure field, which we attribute to the use of identical spaces for the
pressures and velocities.

Fig. 3.16:Mesh convergence results for the Ethier-Steinman Navier-Stokes flow in a
3D sphere.

3.6 Conclusions

We proposed a stabilization technique for isogeometric analysis of the incom-
pressible Navier-Stokes equations employing the same discretization space for
the pressure and velocity fields. The pivotal idea of the developed technique
is to penalize the jumps of higher-order derivatives of pressures over element
interfaces. Since this technique leverages the skeleton structure of geometric
models, we refer to it as a Skeleton-based IsoGeometric Analysis technique.
The proposed Skeleton-stabilization penalizes the order α+1 derivative jumps
for bases with Cα regularity, and hence can be considered as a generalization
of continuous interior penalty finite element methods for traditional C0 finite
elements. An important advantage of this technique in comparison to inf-sup
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stable approaches is that it allows the usage of the same discretization space
for all field variables. In the context of isogeometric analysis this improves
the integration between CAD and analysis, since the technique enables direct
usage of the CAD basis for the discretization of all fields.

The proposed Skeleton-Penalty stabilization operator is consistent for so-
lutions with smooth pressure fields. The operator is symmetric and acts only
on the pressure space. As a result it does not introduce artificial coupling
between the pressure space and the velocity space, and it does not destroy
symmetry in the case of the Stokes system. Moreover, no modification of
the right-hand-side vector is required, in contrast to some of the alternative
stabilization techniques. Considering the bandwidth of the Skeleton-Penalty
matrix, there is a substantial advantage to the use of splines, as they ameliorate
the large bandwidth that emerges for skeleton-based stabilization operators in
Lagrange-based continuous interior penalty methods.

We have observed the proposed Skeleton-Penalty method to yield solu-
tions that are free of pressure oscillations and velocity locking for a wide
range of test cases. Optimal convergence rates have been observed for all
considered spline orders and regularities, including the case of multi-patch
splines. Although a detailed study of the selection of the penalization param-
eter is beyond the scope of this manuscript, we have observed robustness of
the method within a sufficiently large range of penalization parameters. We
note that this observation does not necessarily extend to extreme cases, such
as flows with very high Reynolds number.

In this manuscript we have restricted ourselves to the case of moderate
Reynolds numbers. Extension to high Reynolds numbers needs a further
investigation, as it is anticipated that additional stabilization of the velocity
space is then required. We note that in the case of discontinuous spaces –
which we have omitted in this work – the proposed stabilization technique
fits into the discontinuous Galerkin methodology. We have relied on standard
finite element data structures, and we have not considered optimizations that
are possible within the isogeometric analysis framework.



Chapter 4
Skeleton-stabilized ImmersoGeometric Analysis for
incompressible viscous flow problems

Abstract
A Skeleton-stabilized ImmersoGeometric Analysis technique is proposed

for incompressible viscous flow problems with moderate Reynolds number.
The proposed formulation fits within the framework of the finite cell method,
where essential boundary conditions are imposedweakly using a Nitsche-type
method. The key idea of the proposed formulation – which was considered
in the conforming isogeometric analysis setting by Hoang et.al. [188] – is to
stabilize the jumps of high-order derivatives of variables over the skeleton
of the background mesh. The formulation allows the use of identical finite-
dimensional spaces for the approximation of the pressure and velocity fields in
immersed domains. The stability issues observed for inf-sup stable discretiza-
tions of immersed incompressible flow problems [179] are avoided with this
formulation. For B-spline basis functions of degree k with highest regularity,
only the derivative of order k has to be controlled, which requires specifica-
tion of only a single stabilization parameter. The Stokes and Navier-Stokes
equations are studied numerically in two and three dimensions using various
immersed test cases. Oscillation-free solutions and optimal convergence rates
can be obtained.

Reproduced from: T. Hoang, C.V. Verhoosel, C. Qin, F. Auricchio, A. Reali, E.H. van
Brummelen, Skeleton-stabilized ImmersoGeometric Analysis for incompressible viscous
flow problems, in preparation
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4.1 Introduction

Finite Element Analysis (FEA) of incompressible flow problems has been an
active topic of research over the last decades, with research interests ranging
from theoretical aspects to engineering applications. In recent years, IsoGe-
ometric Analysis (IGA) – a spline-based finite element simulation paradigm
proposed by Hughes et al. [44] with the aim of establishing a better integra-
tion between Computer-Aided Design (CAD) and FEA – has been studied
in the context of incompressible flow problems. Isogeometric analysis of
mixed formulations for incompressible flow problems based on inf-sup stable
velocity-pressure pairs has been studied in detail in the literature, which has
led to the development of a range of isogeometric element families, namely:
Taylor-Hood elements [94, 118, 119], Sub-grid elements [119, 120], H(div)-
conforming elements [118, 121–123], and Nédélec elements [118]. These
element families have been demonstrated to be suitable for the discretization
of incompressible flow problems, by virtue of the fact that they leverage the
advantageous mathematical properties of the spline basis functions used in
isogeometric analysis [114].

The Finite Cell Method (FCM) – an immersed finite element method in-
troduced by Rank et al. [137] – has been found to be a natural companion to
isogeometric analysis. The key idea of the FCM is to embed a geometrically
complex physical domain of interest into a geometrically simple embedding
domain, on which a regular mesh can be built easily. The framework in which
IGA and FCM are integrated – first considered by Schillinger, Rank et al.
[138–140] – is also referred to as immersogeometric analysis [144, 145]. On
the one hand immersogeometric analysis facilitates consideration of CAD
trimming curves in the context of isogeometric analysis. On the other hand, it
enables the construction of high-regularity spline spaces over geometrically
and topologically complex volumetric domains, for which analysis-suitable
spline parametrizations are generally not available. The isogeometric finite
cell method has been applied to various problems in solid and structural me-
chanics (see [141, 189] for comprehensive reviews), in image-based analysis
[142, 143], in fluid-structure interaction problems [144, 145], and in various
other application areas.

In Hoang et.al [179] we have found that when the inf-sup stable isogeomet-
ric element families for incompressible flow problems are applied in the finite
cell setting, local pressure oscillations generally occur in the vicinity of cut
boundaries. An illustration of this oscillatory behavior is shown in Fig. 4.1a.
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When employing the Galerkin-Least square (GLS) method, we observe sim-
ilar behavior, as shown in Fig. 4.1b. The occurrence of such oscillations on
cut elements with relatively large volume fractions implies that this prob-
lem is related to the inf-sup stability of the discrete problem, rather than to
conditioning issues related to cut elements with small volume fractions. It
is important to note that although the inf-sup stable discretization pairs (and
GLS) lead to close-to-optimal converge behavior of global error measures,
the oscillations in the pressure field near the immersed boundaries persist
under mesh refinement. As a consequence, the approximation of quantities of
interest related to the immersed boundaries is below standard, which makes
the inf-sup stable (and GLS) isogeometric approach less attractive for a large
class of immersed incompressible flow problems.

(a) (b)

Fig. 4.1: Unphysical pressure oscillations are observed when the Stokes problem
is solved in the standard finite cell setting using (a) inf-sup stable isogeometric
elements, shown here for Taylor-Hood (see Ref. [179] for details), and (b) using a
Galerkin Least-squares method.

In this manuscript we propose an alternative formulation – based on the
skeleton-based stabilization technique developed by Hoang et.al [188] in
the context of conforming isogeometric analysis – to resolve the stability
problems associated with immersed inf-sup isogeometric discretization pairs.
In this formulation –which can be regarded as a high-regularity generalization
of the continuous interior penalty method by Burman and Hansbo [40] – we
rely on stabilization of the mixed form problem by amending the formulation
with a skeleton-based penalty term. This alternative form of stabilization
relaxes the compatibility constraints on the function spaces to be used, which
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allows us to consider identical discretization spaces for both the velocity
and the pressure fields. Our work is related to developments that have been
made in the context of XFEM and CutFEM [149–153], and is particularly
inspired by the Ghost penalty stabilization technique of Burman and Hansbo
[146, 190]. A novelty of our work is that we fully exploit the maximum
regularity of the B-spline basis functions used in IGA, as a consequence of
which the introduced stabilization operator only acts on the interface jumps
of the highest order derivative of the basis functions. As a result we only
require a single stabilization term to control both the inf-sup stability of the
mixed problem and its related pressure-space conditioning issues. We herein
propose to supplement the skeleton-based stabilized formulation in [188] with
a ghost-penalty term for the velocity space, which is not required from the inf-
sup stability point of view, but which is essential to control the conditioning
of the discretized problem.

This paper is outlined as follows. In Section 4.2 we commence with the
introduction of the unsteady incompressible Navier-Stokes equations and the
essentials of the finite cell method. In Section 4.3we then present the skeleton-
stabilized formulation developed and studied in this work. In Section 4.4 we
discuss the algebraic form of of the developed stabilized formulation, and its
effect on the sparsity structure of the system to be solved. The proposed formu-
lation is studied by a series of numerical test cases in Section 4.5, including
the case of a three-dimensional image-based analysis of a microstructural
porous medium flow. Conclusions are finally presented in Section 4.6.

4.2 Preliminaries

Before we introduce the skeleton-based stabilized formulation in Section 4.3,
we here first introduce the problem setting for the unsteady Navier-Stokes
equations, and the fundamental concepts of the isogeometric finite cell
method.

4.2.1 The unsteady incompressible Navier-Stokes equations

Weconsider the unsteady incompressibleNavier-Stokes equations on the open
bounded domainΩ ∈ Rd , where d = 2, 3 denotes the spatial dimension of the
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domain. The Lipschitz boundary ∂Ω is split in the Dirichlet boundary, ΓD,
and the Neumann boundary, ΓN , such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅.
The unit normal vector to ∂Ω, which points out of the domain, is denoted by
n. For any time instant t ∈ [0,T) the Navier-Stokes equations for the velocity
field u : Ω × [0,T) → Rd and pressure field p : Ω × [0,T) → R read:

Find u : Ω × [0,T) → Rd , and p : Ω × [0,T) → R such that:
∂tu + ∇ · (u ⊗ u) − ∇ · (2µ∇su) + ∇p = f in Ω × (0,T),

∇ · u = 0 in Ω × (0,T),
u = g on ΓD × (0,T),

2µ∇su · n − pn = h on ΓN × (0,T),
u = u0 in Ω × {0}.

(4.1)

In this problem formulation the symmetric gradient of the velocity field is
denoted by ∇su := 1

2
(
∇u + (∇u)T

)
and µ represents the kinematic viscosity.

The exogenous data f : Ω × (0,∞) → Rd , g : ΓD × (0,∞) → Rd , and
h : ΓN × (0,∞) → Rd represent body forces, prescribed velocity, and traction
data, respectively. The initial data in the strong form (4.1) are denoted by
u0 : Ω→ Rd .
To provide a framework for the derivation of the immersed formulation

introduced in the next section, we here first present the weak formulation in
the conforming setting. For any vector space V, we denote by L(0,T ;V) a
suitable linear space of V-valued functions on the time interval (0,T). The
weak formulation of the initial boundary value problem (4.1) then follows as:


Find u ∈ L(0,T ;Vg,ΓD ) and p ∈ L(0,T ;Q), subject to u(0) = u0,
such that for almost all t ∈ (0,T):
(∂tu,w) + c(u; u,w) + a(u,w) + b(p,w) = `1(w) ∀w ∈ V0,ΓD,

b(q, u) = 0 ∀q ∈ Q.

(4.2)

The linear operators in this formulation are defined as

c(v; u,w) := (v · ∇u,w) , (4.3a)
a(u,w) := 2µ (∇su,∇sw) , (4.3b)
b(q,w) := − (q, divw) , (4.3c)
`1(w) := (f,w) + 〈h,w〉ΓN , (4.3d)

where (·, ·) denotes the inner product in L2(Ω) and 〈·, ·〉ΓN denotes the inner
product in L2(ΓN ). The function spaces in (4.2) are defined as
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Vg,ΓD :=
{
u ∈ [H1(Ω)]d : u = g on ΓD

}
, Q := L2(Ω), (4.4)

and the velocity test space, V0,ΓD , is taken as the homogeneous version of
Vg,ΓD . In the case of pure Dirichlet boundary conditions the pressure is
determined up to a constant, which then requires supplementation of the
additional pressure condition:

Q := L2
0(Ω) ≡

{
q ∈ L2(Ω) :

∫
Ω

q dΩ = 0
}
. (4.5)

4.2.2 The finite cell method

In the finite cell method, the physical domain of interest, Ω, is immersed into
a geometrically simple ambient domain, A ⊃ Ω, as illustrated in Fig. 4.2a.
In this manuscript we consider the ambient domain to be rectangular, so that
it can be partitioned by a regular grid with uniform spacing h > 0. We refer to
this partitioning as the ambient domain mesh, T h

A
. Elements in this ambient

domain mesh that do not intersect the physical domain are discarded in the
finite cell analysis, which leads to the definition of the finite cell background
mesh:

T h := {K ∈ T h
A : K ∩Ω , ∅} (4.6)

The ambient domain mesh and background mesh are illustrated in Fig. 4.2.
The conceptual idea of the finite cell method is to construct a suitable dis-

cretization space on the background mesh, and to use that basis in a Galerkin
formulation pertaining to the physical domain. Dirichlet boundary conditions
on non-conforming edges are typically enforced weakly, most commonly by
means of Nitsche’s method [163]. We will introduce the Nitsche formula-
tion for the problem (4.1) in Section 4.3. In the remainder of this section
we introduce the B-spline basis defined over the background mesh, and the
integration procedure employed to evaluate volume and (immersed) surface
integrals over elements that are cut by the immersed boundary.

4.2.2.1 B-spline basis

By virtue of the fact that in the finite cell method basis functions are con-
structed on a regular background mesh, it enables the isogeometric analysis
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(a) (b)

Fig. 4.2: Schematic representation of (a) the physical domainΩ and ambient domain
A as considered in the finite cell method, and (b) the ambient domain mesh, T h

A

(covering the complete ambient domain), and background mesh, T h (marked by the
yellow background shading).

of complex-shaped physical domains. In this manuscript we restrict ourselves
to a single patch open B-spline basis over the ambient domain mesh, defined
by non-decreasing knot vectors in all spatial directions δ = 1, . . . , d,

Ξ
δ = [ξδ1, . . . , ξ

δ
1︸     ︷︷     ︸

(k+1)−time

, ξδ2, . . . , ξ
δ
mδ−1, ξ

δ
mδ, . . . , ξ

δ
mδ︸         ︷︷         ︸

(k+1)−time

], (4.7)

In accordancewith the definition of openB-splines the first and last knot values
are repeated k + 1 times, where k denotes the global isotropic polynomial
degree of the basis. We align the knot vectors with the ambient domain,
which essentially implies that the we have an identity geometric map between
the parameter domain and the ambient domain. The spacing between two
consecutive knots is therefore equal to the global isotropic mesh parameter h.

Using the knot vectors (4.7) a B-spline basis of degree k can be constructed
over the ambient domain bymeans of the recursive Cox-DeBoor formula [47].
We denote this B-spline basis by N k

A
= {N k

A,I : A → R}nAI=1, where the total
number of basis functions is equal to nA = ⊗d

δ=1{m
δ + k − 1}, with mδ the

number of unique knot values per direction. In the finite cell analysis we
discard the basis function that are not supported on the background mesh T h,
so that the B-spline basis follows as:

N k := {N ∈ N k
A : supp(N) ∩ T h , ∅} (4.8)
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Note that, by definition, all basis functions in N k have positive support over
the physical domain Ω. The cardinality of N k is denoted by n ≤ nA . We
herein consider maximum regularity B-spline bases – as indicated by the
non-repeated internal knot values in (4.7) – so that the basis functions are
Ck−1 continuous. The B-spline function space Sk spanned by the basisN k is
therefore a finite dimensional subspace of the Sobolev space Hk(Ωh), where
Ωh = int(

⋃
K∈T h

K).

4.2.2.2 Cut cell integration

For elements in the background mesh that are intersected by the boundaries of
the physical domain, standard quadrature rules are inaccurate, since effectively
discontinuous functions are integrated over such cut cells. The FCM therefore
generally employs an advance numerical-integration technique for cut cells.
Herein we use the bisectioning-based segmentation scheme proposed in [143]
in the context of the isogeometric finite cell analysis of image-based geometric
models, which also enables us to extract a parametrization and quadrature
rules for the immersed boundaries.

Fig. 4.3: Illustration of the bisection-based tessellation scheme used to generate
quadrature rules for the cells that are cut by the immersed boundary. The vertex
markers indicate whether the employed interpolant of the level set function is zero
(on the boundary), positive (inside the domain), or negative (outside the domain).
The red points in the sub-cell zooms are an illustration of the distribution of the
integration points in such cells.

We illustrate the bisection-based tessellation scheme in Fig. 4.3 for com-
pleteness. The element-by-element routine commences with the evaluation of
a level set function in the vertices associated with a %max-times uniform re-
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finement of the element. This level set can either be derived from voxel data in
a scan-based analysis, or a signed-distance function can be considered in the
case that the geometry is provided by a CADmodel. The integration points for
a cut cell are assembled by traversing the levels of uniform refinement, where
for each sub-cell in that level it is determined whether the interface passes
through it. If all vertices of a sub-cell exceed a specified threshold value (zero
in the case of a signed-distance function) the sub-cell is kept as an integration
sub-cell. Otherwise a further subdivision of the sub-cell is considered, and the
same check is performed on the next level. On the lowest level this recursion
is closed with a tessellation procedure. From an implementation perspective
the integration points and weights on all sub-cells are collected on the level
of the cut-element, which essentially provides us with an integration scheme
tailored to the cut element.

The tessellation procedure used on the deepest level of integration refine-
ment provides uswith the possibility to extract a parametrization of the bound-
ary. In essence, the immersed boundary is reconstructed on an element-by-
element basis by identifying the faces of the integration sub-cells that coincide
with the immersed boundary. The collection of sub-cell faces that approxi-
mates the immersed boundary provides a piece-wise linear parametrization of
this boundary. Using this piece-wise parametrization, quadrature rules can be
constructed. Evidently, the refinement parameter %max controls the accuracy
with which the geometry is approximated.

4.3 Skeleton-stabilized immersogeometric analysis for the
Navier-Stokes equations

In this section we introduce the skeleton-stabilized immersed isogeometric
analysis formulation for the Navier-Stokes equations. We commence with the
definition of the topological structures on which this stabilization technique is
based, after which we present the two stabilization aspects in our formulation,
viz. the Ghost penalty stabilization of the velocity components at the cut
boundaries, and the pressure stabilization on the skeleton of the background
mesh.
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(a) (b)

Fig. 4.4: Schemtatic representation of (a) the skeleton structure, and (b) the ghost
interface structure.

4.3.1 The background mesh: skeleton structure and ghost
structure

We consider the background mesh T h as defined in Section 4.2.2. The stabi-
lized formulation presented herein is based on the skeleton of this background
mesh, which is defined as

F h
skeleton = {∂K ∩ ∂K′ | K,K′ ∈ T h,K , K′}. (4.9)

This skeleton, for which the mesh parameter h is associated with that of the
background mesh, is illustrated in Fig. 4.4a. Note that the boundary faces of
the mesh T h are not a part of this skeleton mesh.

Besides the skeleton structure (4.9)we also consider that part of the skeleton
which coincides with the faces of all cut cells in the domain, to which we refer
as the ghost skeleton:

F h
ghost = F

h
skeleton ∩

{
F | F ⊂ ∂K : K ∈ T h,K ∩ ∂Ω , �

}
(4.10)

This ghost skeleton structure is illustrated in Fig. 4.4b, where the mesh
parameter h is still associated with that of the background mesh. Note that
this structure does also contain some faces that do not intersect the boundary
of the physical domain.

Since we herein consider single patch discretizations of the ambient domain
with maximal regularity the basis functions areCk−1 continuous over all faces
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in the skeleton mesh Fskeleton. Therefore, the jumps in the normal derivative
up to order k − 1 of all functions in Sk = span(N k) vanish:

n∂i
n f oF = 0, 0 ≤ i ≤ k − 1, ∀ f ∈ Sk, (4.11)

where the jump operator n·o associates to any function f in the broken Sobolev
space { f ∈ L2(Ω) : f |K ∈ H1(K), ∀K ∈ T h} the L2(F h

skeleton)-valued
function:

n f o = f + − f −

The superscripts (·)± refer to the traces of f on the two opposite sides of each
face F ∈ F h

skeleton, with an arbitrary allocation of + and −.

4.3.2 The Skeleton-stabilized finite cell formulation

In this contributionwe study the discretization of problem (4.1) using identical
highest smoothness spline discretizations for the velocity and pressure fields:

Vh :=
[
Sk ]d

, Qh := Sk . (4.12)

The Skeleton-stabilized finite cell formulation for the system (4.1) reads:


Find uh ∈ L(0,T ;Vh) and ph ∈ L(0,T ;Qh), subject to uh(0) = uh

0 ,
such that for almost all t ∈ (0,T), for all (wh, q) ∈ Vh × Qh:
(∂tuh,wh) + c(uh; uh,wh) + ah(uh,wh) + sh

ghost(u
h,wh) + bh(ph,wh) = `h

1 (w
h),

bh(q, uh) − sh
skeleton(p

h, qh) = `h
2 (q

h),
(4.13)

whereuh
0 corresponds to a projection of the initial data on [S

k]d , andwhere the
linear operators as introduced in the conforming setting in equation (4.3) are
supplemented with additional terms for Nitsche’s imposition of the boundary
conditions [163]:

ah(uh,wh) := a(uh,wh) − 2µ
[
〈∇suh · n,wh〉ΓD + 〈∇

swh · n, uh〉ΓD
]
+ µ〈βh−1uh,wh〉ΓD,

(4.14a)

bh(qh,wh) := b(qh,wh) + 〈qh,wh · n〉ΓD, (4.14b)
`h1 (w

h) := `1(wh) − 2µ〈∇swh · n, g〉ΓD + µ〈βh−1g,wh〉ΓD, (4.14c)
`h2 (q

h) := 〈qhn · g〉ΓD, (4.14d)
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where 〈·, ·〉ΓD denotes the inner product in L2(ΓD). The two stabilization
operators that are appended to the weak form (4.13) are defined as:

sh
ghost(u

h,wh) :=
∑

F∈Fghost

∫
F
γ̃µh2k−1n∂k

n uho · n∂k
n vho ds, (4.15a)

sh
skeleton(p

h, qh) :=
∑

F∈F h
skeleton

∫
F
γµ−1h2k+1n∂k

n phon∂k
n qho ds, (4.15b)

where γ̃ and γ denote certain suitable positive stabilization parameters; see
Remark 4.2 below.

The operator sghost(uh,wh) is referred to as the Ghost-penalty operator [146,
190]. This term – which penalizes the (non-vanishing) jump in the k-th order
normal derivative on the ghost skeleton, enables scaling of the Nitsche penalty
term by the reciprocal mesh size parameter h−1 of the background mesh,
independent of the cut-element configurations. Without the ghost-penalty
term, the Nitsche term would have to be based on the reciprocal of the cut-
element size to ensure stability. However, this would result in configuration-
sensitive stability and severe ill-conditioning in critical cases such as sliver cut
configurations. The ghost-penalty stabilization hence effectively controls the
conditioning of the velocity contributions to the formulation. The condition
numbers then scale as in the case of conforming discretizations, and are
independent of the configuration of the cut cells [146, 190].

The operator sskeleton(ph, qh) in (4.13) is referred to as the Skeleton-penalty
operator, which was developed for conforming isogeometric discretizations of
the unsteady incompressible Navier-Stokes equations in [188], and is applied
here without any modification to the immersed setting. This term allows to
use identical pairs of spaces for the velocity and pressure fields, as defined in
equation (4.12). It should be emphasized that the skeleton structure is defined
not only inside the physical domain but in the whole background mesh. In
this way, the pressure-stabilization not only ensures inf-sup stability over
the complete domain but also resolves the conditioning issue related to the
pressure field in the case of pathological cut configurations.

Remark 4.1.We note that the stabilization parameters γ and γ̃, and the vis-
cosity parameter µ, in the operators (4.15a) and (4.15b) are kept inside the
integrand for the sake of generality. For the simulations considered herein –
where we focus on moderate Reynolds numbers flows – these scalings are
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defined globally. This global scaling may not extend to, e.g., the more general
case of convection-dominated flows.

Remark 4.2. The positive parameters γ and γ̃ are selected in an ad hocmanner,
where an important guideline is that they should decrease with increasing
regularity. In the full regularity setting considered herein, this implies that
they decrease with increasing order of the discretization. Since we are using
identical highest-regularity B-spline spaces for velocity and pressure fields,
we have found that for our test cases acceptable results are generally obtained
by assigning the same value to both parameters, i.e. γ = γ̃.

Remark 4.3. The pressure skeleton-stabilization term and the ghost penalty
stabilization term scale differently with the mesh size, viz. with h2k+1 and
h2k−1, respectively. This difference stems from the fact that the velocity field
resides in H1, while the pressure resides in L2. Note that although we have
restricted ourselves herein to regular meshes with global and isotropic size h,
there is no fundamental restriction to the application of the formulation (4.13)
in the context of non-uniformly spaced grids.

The rationale behind the skeleton-stabilized formulation – which for suffi-
ciently smooth velocity and pressure solutions (u ∈ [Hk(Ω)]d and p ∈ Hk(Ω))
is consistent with (4.1) – is that it effectively targets the shortcomings observed
using inf-sup stable spaces. The skeleton stabilization operator (4.15b) is tied
to the background domain, in the sense that it is completely independent of
the shape and volume fraction of the cut cells it pertains to. As a consequence,
the stabilizing effect of the operator does not decrease with decreasing volume
fractions. This contrasts the situation in which inf-sup stable pairs are con-
sidered, since in that setting the cut cell characteristics have been observed
to impact the inf-sup stability [179]. Moreover, the stabilization operator
(4.15b) can be conceived of as a weakly imposed constraint on the highest-
order non-vanishing derivative of the pressure field, which essentially means
that it controls the smoothness of the extension of the interior domain into
the exterior domain. In [188] we have demonstrated that the operator (4.15b)
is related to the least squares minimization problem for the highest-order
derivative jumps. Thereby the operator effectively suppresses oscillations in
the pressure field near the immersed boundaries.
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4.4 The algebraic form

Using the B-spline basis functions as defined in Section 4.2.2, the velocity
and pressure field can be expressed as

uh(x, t) =
nu∑
i=1

Ni(x)ûi(t), ph(x, t) =
np∑
i=1

Ni(x)p̂i(t). (4.16)

Note that the basis functions for the velocity field are printed in bold font to
indicate that these are vector-valued. The coefficients corresponding to these
basis functions are assembled in the vector û(t) = (û1, û2, . . . , ûnu )

T . The
basis functions for the pressure are evidently scalar-valued, with associated
coefficient vector p̂(t) = (p̂1, p̂2, . . . , p̂np )

T . In the absence of constraints, the
number of velocity-degrees of freedom, nu, is d times that of pressure degrees
of freedom, np.

Consistent with (4.16) the discrete approximation spaces can be defined as
Vh = span{Ni}

nu
i=1 and Qh = span{Ni}

np

i=1, so that the formulation (4.13) can
be cast into a time-dependent algebraic system of equations of size n = nu+np:


For each t ∈ (0,T), find û = û(t) ∈ Rnu and p̂ = p̂(t) ∈ Rnp ,
given û(0) = û0, such that:
M∂t û +

[
C(û) + A + Sghost

]
û + BT p̂ = f1,

Bû − Sskeletonp̂ = f2.

(4.17)

We employ Crank-Nicolson time integration with Picard iterations to solve
this nonlinear algebraic problem in time. See Ref. [188] for details regarding
the solution algorithm.

The matrices and vectors in (4.17) pertaining to the standard volume and
boundary surface terms can be expressed in terms of the operators (4.14) as:

C(û)i j := c(û; N j,Ni), (4.18a)
Ai j := ah(N j,Ni), (4.18b)
Bi j := b(Ni,N j), (4.18c)
f1,i := `h

1 (Ni) (4.18d)
f2,i := `2(Ni). (4.18e)

The stabilization matrices in (4.17) pertain to the skeleton and ghost structure
of the background mesh, F h

skeleton and F h
ghost, respectively, and hence require
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data structures to evaluate the jump of high-order derivatives of the basis func-
tions across the background mesh element interfaces through the operators in
(4.15) as:

Sskeleton,i j = sh
skeleton(Nj, Ni), (4.19a)

Sghost,i j = sh
ghost(N j,Ni). (4.19b)

Due to the fact that the jump operators on the highest-order derivatives
of the B-spline basis functions provide additional connectivity between basis
functions, the stabilization matrices (4.19) have an effect on the sparsity
pattern of the algebraic problem. In Fig. 4.5 we present a comparison of the
sparsity patterns of the systemmatrices for the cases of a second-order (k = 2)
B-spline basis as considered herein and a second-order (k = 2) Lagrange basis
(closely resembling the continuous interior penalty method). Note that since
both bases are constructed over the same background mesh, the number of
Lagrange basis functions is significantly larger (approximately k-times) than
the number of B-spline basis functions, by virtue of the fact that, as opposed
to Lagrange basis functions, for full-regularity B-splines the number of basis
functions does not scale proportionally with the degree of the basis to the
power d.

Inspection of the velocity-velocity and pressure-pressure blocks reveals that
the footprint of the stabilization operators have a different effect for the two
bases, in the sense that for the k = 2 case 2k = 4 off-diagonal bands are
observed for the Lagrange basis, and k + 1 = 3 for the B-spline basis. This
difference – which becomes more pronounced when the degree k increases
– was also observed in the mesh conforming case in Ref. [188], with the
difference that in the immersed setting both the velocity and pressure space
are stabilized, thereby making the impact of the stabilization operators on the
computational effort larger in the immersed setting. Following the arguments
in Ref. [188], the difference in number of off-diagonal bands can be explained
by comparison of the one-dimensional B-spline and Lagrange bases, as shown
for the cubic (k = 3) case in Fig. 4.6. This Figure corroborates that in the
case of full-regularity B-splines all derivative jumps up to order k − 1 vanish
across element interfaces, as a result of which only the k-th derivative jump
operator impacts the sparsity pattern. The number of off-diagonal bands for
the stabilization operators is therefore in this case equal to k + 1. In contrast,
for Lagrange bases, the lower-order derivative jumps are non-vanishing, as a
result of which 2k off-diagonal bands appear.
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(a) B-spline basis (b) Lagrange basis

Fig. 4.5: Illustration of the sparsity patterns of the system matrix corresponding
to (4.17) for (a) a second-order B-spline basis, and (b) a second-order Lagrange
basis. The stencil of the B-spline case is smaller than that of the Lagrange case.
See Fig. 4.6 for more elaborations. Note that here both bases are constructed over
the same background mesh and therefore result in different numbers of degrees of
freedom; the figure sizes are thus not of the same scale.
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(a) B-spline case (b) Lagrange case

Fig. 4.6: Comparison of the (a) univariate cubic B-spline basis of full regularity, and (b) univariate cubic Lagrange basis. Due to the
Ck−1 continuity of the B-spline basis only the k-th derivative jump is non-vanishing, this in contrast to the case of the C0 continuous
Lagrange basis. Moreover, the bandwidth in the B-spline case is k + 1, much smaller than in the Lagrange case which is 2k.
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4.5 Numerical experiments

In this section we investigate the numerical performance of the proposed
immersed skeleton-stabilized formulation. In all cases, the system (4.13) is
solved using identical highest-regularity B-spline spaces for the approxima-
tions of the velocity and pressure fields. Unless stated otherwise, the number
of bi-sectioning levels that determines the accuracy of the geometry repre-
sentation is taken equal to six in the two-dimensional simulations, and equal
to five in the three-dimensional case. Evidently, when studying higher-order
approximations, one ideally wants to resolve the geometry as closely as pos-
sible. The above-mentioned selected levels of bi-sectioning are chosen such
that the simulations remain computationally tractable.

4.5.1 Steady Navier-Stokes flow in a quarter annulus domain

We consider the steady Navier-Stokes equations on an open quarter-annulus
domain

Ω =
{
(x, y) ∈ R2

>0 : R2
1 < x2 + y2 < R2

2
}
,

with inner radius R1 = 1 and outer radius R2 = 4; see Fig. 4.7. Dirich-
let boundary conditions are prescribed on the entire boundary ∂Ω = ΓD.
The body force f and Dirichlet data g are selected in accordance with the
manufactured solution

u1 = 10−6x2y4(x2 + y2 − 1)(x2 + y2 − 16)(5x4 + 18x2y2 − 85x2 + 13y4 − 153y2 + 80),

u2 = 10−6xy5(x2 + y2 − 1)(x2 + y2 − 16)(102x2 + 34y2 − 10x4 − 12x2y2 − 2y4 − 32),

p = 10−7xy(y2 − x2)(x2 + y2 − 16)2(x2 + y2 − 1)2 exp
(
14(x2 + y2)−1/2),

(4.20)
of problem (4.1) without the inertia term and with viscosity µ = 1. This
manufactured solution is adopted from Refs. [174, 179]. Note that u1 and u2
vanish on ∂Ω, and hence g = 0. Moreover, the manufactured pressure solution
complies with the zero-average pressure condition

∫
Ω

p = 0, which is imposed
here by means of a Lagrange multiplier.

We tested this problem for the Stokes case (µ = 0) in Ref. [179] with dif-
ferent families of inf-sup stable isogeometric spaces. A representative result
for that setting is shown in Fig. 4.1a, from which unphysical pressure oscil-
lations in the vicinity of the cut elements are clearly observed. Using inf-sup
stable pairs, similar oscillations are also observed in the Navier-Stokes case.
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Fig. 4.7: Geometry definition of the quarter-annulus ring problem.

In contrast, the pressure field computed using the skeleton-stabilized formu-
lation (4.13) – illustrated in Fig. 4.8 for the case of quadratic B-splines with
a 21 × 21 elements ambient domain mesh – is free of oscillations. Note that
the physical domain is completely immersed in the ambient domain, in the
sense that none of the boundaries conform to the background mesh.

Fig. 4.8: Pressure solution of the steady Navier-Stokes equations in the quarter
annulus domain with µ = 1, computed using the skeleton-stabilized formulation with
quadratic B-splines. The original ambient domain mesh consists of 21×21 elements.

In Fig. 4.9 we present mesh convergence results for the proposed stabilized
formulation, where a sequence of uniformly refined background meshes is
generated starting from the 11 × 11 elements coarsest ambient domain mesh.
The finest level ambient domain mesh contains 176 × 176 elements. We
consider k = 1, 2, 3 full-regularity B-splines with stabilization parameters
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γ = 10 for k = 1, γ = 0.1 for k = 2, γ = 5 × 10−4 for k = 3 and γ̃ = 10−k−1

for all k. We observe optimal rates of convergence of k + 1 and k for the L2-
norm and H1-norm of the velocity field, respectively. For the L2-norm of the
pressure we observe the optimal rate of k. It is notable that the convergence
behavior of the stabilized formulation considered here is highly regular on
all considered meshes, as opposed to the convergence behavior of the non-
stabilized FCM formulation; cf. [179].

(a) L2 velocity error (b) H1 velocity error

(c) L2 pressue error

Fig. 4.9:Mesh convergence study of the steadyNavier-Stokes equations with µ = 1 in
a quarter annulus ring using the skeleton-stabilized formulation with linear, quadratic
and cubic full-regularity B-splines.
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In Fig. 4.10 we study the solution sensitivity with respect to the skeleton
stabilization parameter γ, where the ghost-penalty parameter is fixed at γ̃ =
5 × 10−3. The h-convergence behavior of the solution using C1-continuous
quadratic B-splines is studied for a wide range of stabilization parameters, viz.
γ ∈ (5×10−5, 10). We observe that the pressure stabilization parameter γ does
not affect the accuracy of the velocity field in the L2-norm and H1-norm. This
behavior is expected, as the Skeleton-penalty term acts only on the pressure
field, similar as in the conforming isogeometric analysis setting considered
in Ref. [188]. The pressure solution accuracy is affected by the selection of
the stabilization parameter, but Fig. 4.10 conveys that the parameter can be
selected from a wide range (approximately γ ∈ (5 × 10−4, 5 × 10−1)) with
minor influence on the accuracy. The convergence rate remains optimal for
all considered choices of the stabilization parameter.

4.5.2 Navier-Stokes flow around a cylinder

We revisit the benchmark problem proposed by Schäfer and Turek [180],
which we considered in the mesh-conforming isogeometric analysis setting
in Ref. [188]. In this test case a cylinder of radius R = 0.05m is placed in
a channel of height H = 0.41m and length L = 2.2m. The center of the
cylinder is positioned at a horizontal distance of W = 0.2m from the inflow
boundary at x = 0, and at a vertical distance of W = 0.2m from the bottom
channel wall at y = 0. Note that the cylinder has a small offset with respect
to the center line of the channel, introducing a non-symmetry in the problem.
At the inflow boundary the parabolic flow profile

u(0, y) =
(

4Umy(H − y)/H2

0

)
with maximum velocity Um is imposed. There is no slip at the bottom and
top boundaries, as well as along the surface of the cylinder, and a natural
boundary condition is used at the outflow boundary (x = L). The kinematic
viscosity of the fluid is taken as µ = 1 × 10−3 m2/s.
We consider the case of Re = 20 – with the Reynolds number defined as

Re = 2ŪR/µ (with mean inflow velocity Ū = 2
3Um – for which a steady flow

is obtained. We consider a sequence of uniform refinements of a relatively
coarse ambient domain mesh consisting of 36 × 22 elements. This coarsest
level mesh is a non-uniformly spaced full-regularity B-spline patch, with
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(a) L2 velocity error (b) H1 velocity error

(c) L2 pressure error

Fig. 4.10: Sensitivity of the quadratic spline approximation of the Navier-Stokes
problem with µ = 1 on the quarter annulus ring with respect to the stabilization
parameter γ.

the knot values selected so that relatively small elements are obtained in
the neighborhood of the cylindrical inclusion. The outer boundaries of the
ambient domain mesh coincide with the boundaries of the physical domain.
The essential boundary conditions are, however, still enforced weakly by
Nitsche’s method. Fig. 4.11 shows the speed and pressure computed on the
three times refined second-order B-spline mesh, which results in a system of
ndof = 148476 degrees of freedom. The obtained result is visually in good
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agreement with the benchmark result, and is free of pressure oscillations near
the immersed boundary of the cylinder.

Fig. 4.11: Velocity magnitude (top) and pressure (bottom) solutions of the steady
cylinder flow problem using quadratic B-splines with ndof = 148476.

In Table 4.1 we present the mesh converge results for various quantities
of interest, viz. the lift and drag coefficients, cL and cD, respectively, and the
pressure drop over the cylinder, ∆p. The drag and lift coefficients are defined
as

cD =
FD

ρŪR
=
R(u, p; `1)

ρŪR
, cL =

FL

ρŪR
=
R(u, p; `2)

ρŪR
,

where FD and FL are the resultant drag and lift forces acting on the cylinder,
which are evaluated weakly as (see e.g., [181, 191, 192])

R(uh, ph; `i) := (∂tuh, `i)+c(uh; uh, `i)+a(uh, `i)−2µ〈∇s`i ·n, uh−g〉ΓD+b(ph, `i),

with `i ∈ [H1
0,∂Ω\Γ(Ω)]

d and `i |Γ = −ei, i = 1, 2. The pressure drop is defined
as

∆p = p(W/2 − R,W/2) − p(W/2 + R,W/2).

From Table 4.1 it is observed that on the finest mesh all quantities of interest
are in excellent agreement with the benchmark result [184]. We note that –
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despite the fact that we here have selected the bi-sectioning integration depth
to ten – with the higher-order approximation of these quantities of interest
we anticipate deterioration of the approximation properties associated with
the reduced geometric regularity of the immersed boundary approximation.
We expect that the loss of convergence rate especially observed for the drag
coefficient can be attributed to this, but further investigation of this aspect is
warranted.

Level ndof hcylinder CD CL ∆p
0 2724 0.0142857 5.85317738567 0.009231742514 0.18749814772
1 9984 0.0071428 5.57503959343 0.011002907897 0.12424885895
2 38052 0.0035714 5.57961186549 0.010542479971 0.11504949327
3 148476 0.0017857 5.57989543774 0.010575002816 0.11703150638

Ref. [184] 5.57953523384 0.010618948146 0.11752016697

Table 4.1:Computed values of the drag and lift coefficients and pressure drop on four
refinement levels using the skeleton-stabilized formulation with quadratic B-splines.
The mesh resolution in the proximity of the cylinder is indicated by hcylinder, and the
total number of degrees of freedom by ndof .

4.5.3 Scan-based analysis of a porous medium flow

To demonstrate the potential of the proposed formulation for geometrically
and topologically complex three-dimensional domains,we consider a creeping
flow through a porous medium. The porous medium under consideration is
made of sintered glass beads. Three-dimensional gray-scale voxel data of the
specimen is obtained by a µCT-scanner with a voxel resolution of 25 µm. We
here consider a representative domain of 50 × 50 × 50 voxels.
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(a) Voxel domain

(b) Immersogeometric domain

Fig. 4.12:Two µCT-based geometricmodels of a sintered glass beads porousmedium
specimen. The original scan data consists of 125000 gray-scale voxels with a resolu-
tion of 25 µm.
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In this numerical simulation we compare the immersogeometric approach
considered in this work with a voxel-based analysis, which is commonly the
method of choice for this type of analyses. The geometric model for the voxel-
based analysis is obtained by direct segmentation of the gray-scale data, where
all gray-scale values larger than a specified threshold are eliminated from the
domain. The voxel model of the segmented void space – with a porosity of
28% – is shown in Fig. 4.12a. TheB-spline based finite cell domain is obtained
using the procedure proposed in Ref. [143]. First the gray-scale voxel data is
smoothened by convolution of that data with a (second-order) B-spline basis
constructed over the voxel grid, an operation that bears resemblance with
Gaussian blurring. Then a relatively coarse (second-order) B-spline mesh,
i.c. consisting of 12 × 12 × 12 elements, is created over the ambient domain
matching the scan size, so that the outer boundaries of the pore space reside in
the boundaries of the scan domain. The smooth B-spline level set function is
then segmented using the bi-sectioning procedure described in Section 4.2.2
with a bi-sectioning depth of two, where the threshold is calibrated based on
the porosity of the voxel model. The corresponding integration mesh – again
with a porosity of 28% – is shown in Fig. 4.12b.

Comparison of the two geometric models reveals that both models are visu-
ally very similar in terms of micro-structural features, which is expected based
on the calibrated porosity. Evidently, the surface representation of the models
is completely different. Whereas a staircase representation is obtained in the
voxel model, a piecewise linear representation of the surface is obtained in the
immersogeometric model, where it is noted that the intra-element curvature
of the surface is partially recovered by the bi-sectioning operation (i.e., the
geometric linearization error is associated with the size of the integration sub-
cells, and not with that of the size of the computational background mesh).
This difference in surface representation translates directly in a significant
difference of the internal surface area, which is equal to 15.5 mm2 for the
voxel model, and to 9.45 mm2 for the immersogeometric model. Indeed, a
significantly higher surface area is expected in the voxel representation. Ade-
quate representation of the surface is critical in many situations, for example
when surface reactions are considered such as in the case of biofilm growth
and mineral dissolution/precipitation in porous media [193], or when one is
interested in contact line dynamics for multi-phase porous media flows or
elasto-capillarity [194–196].
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(a) FLUENT: Velocity streamlines

(b) Skeleton-stabilized ImmersoGeometric: Velocity streamlines

Fig. 4.13: Comparison of the voxel method and the skeleton-stabilized immersogeo-
metric analysis results for the sintered glass beads specimen. The unit of velocity is
m/s and Pa.
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(c) FLUENT: Pressure

(d) Skeleton-stabilized ImmersoGeometric: Pressure

Fig. 4.13: (cont) Comparison of the voxel method and the skeleton-stabilized im-
mersogeometric analysis results for the sintered glass beads specimen. The unit of
pressure is Pa.
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In Fig. 4.13 we compare the analysis results obtained using the two ap-
proaches for a creeping flow governed by the Stokes equations with viscosity
µ = 10−3 Pa · s. The flow through the porous medium is forced by imposition
of a pressure difference of 1 Pa between the inflow (left) and outflow (right)
boundaries. All velocity components are zero on the other lateral bound-
aries, and no slip conditions are imposed on the interior surface. The voxel
method results are obtained using FLUENT, which is essentially a finite vol-
ume method where the degrees of freedom are closely related with the 35383
pore space voxels. The immersogeometric results are obtained on the above-
mentioned mesh using a second-order (k = 2) B-spline space, which contains
approximately 13 times fewer degrees of freedom than the FLUENT mesh.
The skeleton-penalty and ghost-penalty parameters are taken as γ = 10−2

and γ̃ = 10−4, respectively. From Fig. 4.13 we observe the results of both
models to be in good correspondence, despite the difference in computational
resolution. Let us note that although, because of post-processing artefacts,
the streamline patterns for the two simulations are visually distinct, the flow
fields are in fact very similar. It is important to note, however, that in terms of
computational accuracy the two methods are fundamentally different. In the
case of the voxel method, the computational resolution is closely tied to the
geometric model, whereas for the immersogeometric approach, the computa-
tional mesh resolution can be controlled independent of the geometric model.
As demonstrated in Ref. [143] for an elasticity problem, the decoupling of
the computational resolution from the geometric model opens the doors to
preforming (goal-)adaptive analyses with optimized meshes. In our future
work we aim at applying a similar strategy to optimally compute homoge-
nized permeability coefficients. Further optimization of the employed cut cell
integration procedures in terms of computational effort – which, per-element,
is significantly smaller for the voxel method – is required to allow upscaling
to large scale specimens.

4.6 Conclusions

A stabilized formulation is proposed for the (immersed) finite cell simula-
tion of unsteady incompressible flow problems using identical B-spline bases
for the velocity and pressure fields. This formulation extends the develop-
ments in Ref. [188], where mesh-conforming isogeometric analysis of in-
compressible flow problems using identical pressure and velocity bases was
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considered. The pivotal idea behind the considered stabilization technique
– which can be regarded as the isogeometric extension of the continuous
interior penalty method – is that the inf-sup condition is bypassed by sup-
plementing a penalty term for basis function derivative jumps across element
interfaces, thereby effectively penalizing oscillatory pressure behavior. The
mesh-conforming formulation is amended with a ghost-penalty stabilization
to resolve ill-conditioning issues associated with small volume fraction cut
cells in the immersed finite cell setting. This ghost-penalty term bears close
resemblance with the pressure-stabilization operator, but acts on the velocity
field in the vicinity of the immersed boundaries only.

An important aspect of this work is that we fully leverage the smoothness
properties of the full-regularity B-spline basis functions constructed over the
background mesh, in the sense that the stabilization operators only act on
the highest-order normal derivatives of the basis functions via their interface
jumps. All lower order derivatives vanish as a result of the continuity prop-
erties of the B-spline basis. One advantage of this isogeometric approach in
comparison to the case of a Lagrange-based analysis is that it only requires
a penalty parameter for the highest-order derivative jump. Moreover, the im-
pact of the stabilization term on the sparsity pattern of the system matrix is
significantly reduced when full-regularity B-splines are considered instead
of Lagrange finite elements. This is an important benefit of the considered
isogeometric approach from the perspective of computational effort.

In a series of two-dimensional benchmarks problems we have observed
optimal rates of convergence for the L2 and H1-norms of the velocity field and
the L2 norm of the pressure field. In comparison to the immersed simulation
results based on inf-sup stable isogeometric finite element pairs considered in
Ref. [179], we observe oscillation-free pressure fields near the cut boundaries.
As a result, using the skeleton-based stabilization technique considered herein,
quantities of interest pertaining to the immersed boundaries can be computed
reliably. It is noteworthy, however, that such quantities of interest are affected
by the regularity of the immersed boundary representation, which in this
work was based on a piece-wise linear representation corresponding to the
bi-section based tessellation scheme used to construct quadrature rules for cut
cells and their immersed boundaries.

An image-based three-dimensional analysis of a flow through a porous
medium was presented, where the geometry is defined by segmentation of the
smoothened µCT-scan voxel data. This simulation result demonstrates that
the proposed stabilization technique scales to the three-dimensional setting,
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which opens the door to applying B-spline discretizations to topologically
and geometrically complex volumetric domains.

The simulations considered herein were restricted to moderate Reynolds
number flows on uniform background meshes. In this setting satisfactory
results are obtained when the skeleton penalty parameter and ghost penalty
parameter are taken equal. The rates of convergence have been observed to
be insensitive to the choice of the penalization parameters for a wide range
of considered values. Consistent with observation in the conforming case,
the magnitude of the L2 pressure error is observed to be influenced by the
choice of the parameters, but a significant range of parameters exists for
which this error is insensitive to the precise values of the parameters. This
makes ad hoc selection of the parameters practical. The development of more
specific selection criteria – preferably in the formof rigorously derived explicit
expressions – is an import aspect of the further development of the proposed
simulation framework.

As part of the further development of the mathematical analysis of the pro-
posed formulation, in our future work we aim at obtaining amore fundamental
understanding of the influence of geometric irregularities on the approxima-
tion quality. In relation to this, we also aim at exploiting the locally refined
spline discretizations that can be constructed over the regular background
mesh, and to use these refinements in a mesh-adaptive analysis. Extension
to convection-dominated problems – which is a non-trivial extension in the
sense that an additional convection-stabilization technique must be combined
with the stabilization techniques already considered – is also an important
topic of further study.





Chapter 5
Conclusions & Future prospects

5.1 Conclusions

In this thesis we set out to develop an immersed isogeometric finite element
method for incompressible fluid flow problems. The point of departure for
our study was to assess the applicability of inf-sup compatible spline dis-
cretizations for the Stokes problem – which have been demonstrated to yield
excellent results in mesh-conforming isogeometric analysis – to an immersed
finite cell setting. We found that the most prominent isogeometric families
of inf-sup stable discretizations for the Stokes equation lose some of their
attractiveness in the immersed setting. From the perspective of stability, this
conclusion is motivated by the fact that we observe local oscillations in the
pressure field near the cut boundaries, despite the fact that – at least for the
geometrically simple problems considered herein – the numerical inf-sup
constants are bounded below away from zero. Unphysical pressure oscilla-
tions are observed even on shape-regular cells with relatively large volume
fractions. This observation suggests that the issue is more likely related to the
local loss of inf-sup stability in the cut regions, rather than to ill-conditioning
effects associated with small volume fraction cells. It is important to note
that although for all element families quasi-optimal convergence rates (in the
worst case, loss of about half an order) are observed for the H1-norm and
L2-norm of the velocity and the L2-norm for the pressure, oscillations on cut
boundaries persist under mesh refinement for all considered families of mixed
elements.

The oscillatory pressure field near the boundaries implies that quantities
of interest that pertain to the boundary cannot be approximated reliably.
This behavior impedes application of the method to moving-boundary and

115
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coupled problems such as fluid-structure interactions (FSI) and multi-phase
problems, because in such scenarios the quality of the solution at the bound-
ary is essential for the accuracy of the approximation of coupled systems.
These accuracy complications worsen with increasing geometric complexity,
particularly when the relative number of cut cells increases, which, from our
point of view, makes these methods impractical for high-fidelity simulations
in complex three-dimensional problems.

From this assessment we concluded that without modification of the formu-
lation, inf-sup stable discretizations would lose their merits when applied in
an immersed setting. This conclusion extends to Galerkin least-square type of
stabilization techniques, in the sense that such stabilization techniques would
also result in pressure oscillations near cut boundaries. This motivated us to
develop an alternative formulation that is capable of exploiting the benefits of
isogeometric analysis for immersed fluid flow problems. From our observa-
tions we infered that a satisfactory handling of pressure oscillations requires
an approach that maintains its effectivity on cut cells, which motivated us to
develop a stabilization technique based on the untrimmed background mesh.
Conceptually, such a stabilization technique should be insensitive with re-
spect to the cut cell volume fractions and configurations. The skeleton-based
approach technique developed herein is inspired by the (continuous) interior-
penalty method and ghost-penalty technique, which are known to effectively
treat instabilities.

Although it would be sufficient to amend the inf-sup stable discretization
of the mixed formulation with a stabilizing pressure term on the skeleton
faces in the vicinity of the cut boundaries, we considered it more elegant
and practical to apply the skeleton stabilization on the complete skeleton
of the background mesh. This approach then treats the stabilization of the
formulation for the interior part of the domain and the part associated with
the cut boundary cells in a uniformmanner, which effectivelymakes it possible
to consider discretization of the pressure field and velocity field using the same
spaces. The fact that the pressure stabilization is applied on the background
mesh essentially implies that the cut cells are stabilized in exactly the same
manner as the internal cells. In this approach it is furthermore natural to also
supplement the skeleton of the cut cell boundaries with a ghost penalty term
for the velocity field, thereby resolving ill-conditioning problems associated
with small volume fraction cells within the same skeleton-based stabilization
framework.
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From the vantage point of practicality it is advantageous that our stabiliza-
tion techniques enables consideration of the same space for the discretization
of both the pressure and velocity fields. This possibility is not only useful
in the immersed setting, but is also beneficial in the conforming isogeomet-
ric analysis setting, since it allows the direct usage of the CAD geometry
parametrization basis (provided that it is analysis-suitable) for the discretiza-
tion of all fields. In this sense our stabilization technique contributes to the
integration of CAD and analysis for mixed form problems. An illustrative
example of this benefit is provided in this thesis by the simulation of Navier-
Stokes flow around a cylinder using a multi-patch NURBS geometry, for
which results with a precision surpassing that of the state-of-the-art methods
are obtained.

An elegant novelty of our stabilization approach – which can be regarded
as the higher-regularity generalization of the (continuous) interior penalty
stabilization technique – – is that it optimally benefits from the higher-order
continuity of splines, since, in the full-regularity setting, only the highest
order derivative jump is non-vanishing. A practical consequence of this is that
only two stabilization parameters are required, viz. one for the background
skeleton pressure stabilization, and one for the ghost cell velocity stabilization.
From a computation-effort point of view, the higer-order continuity of splines
leads to more sparse stabilization matrices, in comparison to interior penalty
formulations for higher-order Lagrange finite elements.

The suitability of the proposed stabilized formulation for simulating im-
mersed incompressible fluid flow problems with moderate Reynolds numbers
has been demonstrated using a wide range of numerical test cases. The ap-
proach fully exploits the advantages associated with the higher-order smooth-
ness of spline discretizations in the immersed setting, and fits seamlessly in
the isogeometric analysis paradigm when considered in the mesh conforming
setting.

5.2 Future prospects

In this thesis we have restricted ourselves to Stokes flows and moderate
Reynolds numbers Navier-Stokes flows, for which convection-stabilization
is not required. Extension of our skeleton-based stabilization technique to
convection-dominated flows is non-trivial, in the sense that we anticipate that
the current formulation needs to be supplemented with additional stabiliza-
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tion terms. Evidently, considering the structure of the developed stabiliza-
tion framework, we wish to pursue a skeleton-based convection-stabilization
method. This extension appears to be feasible, as such a skeleton-based sta-
bilization of convective flows bears resemblance with (continuous) interior
penalty methods. Moreover, the fact that established convection-stabilization
techniques such as Variational Multiscale Methods (VMS) have already been
applied in the immersed isogeometric setting, suggests that there are no fun-
damental roadblocks that would hinder combination of our stabilization tech-
nique with convection-stabilization. Further study on this topic is, however,
required to develop an appropriate method, where a particular challenge will
be to select the parameters for the various means of stabilization.

The mathematical analysis of the skeleton-stabilization framework devel-
oped herein, most notably its well-posedness, was beyond the scope of this
thesis. Although our detailed numerical studies unambiguously indicate that
the formulation can be applied successfully to a broad range of problems,
a precise mathematical footing of the stabilization is indispensable to en-
sure stability in a general setting. We therefore consider further work on the
mathematical analysis of the formulation essential. This analysis should also
encompass the influence of the stabilization parameters. Although we have
experienced selection of these parameters to be practical in the sense that a
wide range of values can be chosen without having a significant influence on
the approximation, it would be desirable if analysis-based guidelines for the
parameter selection would be available.

The simulations considered in this work were all based on structured
meshes. These meshes are typically graded toward regions that require high
resolutions. Such refinements evidently propagate throughout tensor-product
patches, which, in general, leads to unnecessary refinements. Considering the
structure of the stabilization technique proposed herein, extension to hierar-
chical, locally refined meshes appears to be within reach. A future prospect
of our developments is therefore to employ our stabilization technique in an
adaptive setting, for which an additional challenge arises in the form of the
construction of appropriate error estimators. Another extension that would
improve the range of applicability of the proposed method is to enhance the
formulation with high-regularity multi-patch coupling techniques. This exten-
sion would have the potential to couple geometrically incompatible patches,
which would make it more practical from the point of view of CAD and
analysis integration.
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Finally, we note that the skeleton-based stabilization framework devel-
oped herein is anticipated to be applicable to a broad range of problems in
computational physics and engineering. Evidently, incompressible and nearly-
incompressible elasticity problems fit neatly in the developed framework, but
extension to other multi-field problems is possible. One of themost interesting
extensions in this sense would be to apply the formulation to fluid-structure in-
teraction problems, since in such problems, in particular for flexible structures,
the use of immersed techniques is commonly attractive. Another interesting
extension is to consider (immersed) coupled problems with more than two
fields. Our stabilization technique has the potential to significantly ease the
discretization and implementation of such problems, by virtue of the fact that
identical approximation spaces can be used for all fields. Also, the use of a
high-order geometry representation in order to optimally approximate sensi-
tive quantities of interests defined at the cut-boundaries is a topic of further
study.
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Summary

Finite Element Analysis (FEA) of incompressible flow problems has been an
active topic of research over the last decades, with research interests ranging
from theoretical aspects to engineering applications. In recent years, IsoGe-
ometric Analysis (IGA) – a spline-based finite element simulation paradigm
proposed by Hughes et al. in 2005 – has been demonstrated to be very suit-
able for the simulation of incompressible flow problems. One advantage of
isogeometric analysis is that it leverages the spline basis functions used to
parametrize the geometry to directly construct approximation spaces for the
velocity and pressure fields, thereby improving the integration between Com-
puter Aided Design (CAD) tools and finite element simulations. An additional
advantage of isogeometric analysis pertains to the smoothness of the employed
spline functions. The higher-order continuity of these functions can be lever-
aged to construct approximation spaces with superior properties compared to
traditional Lagrange finite elements.

Immersed simulation techniques – in particular the Finite Cell Method
(FCM) introduced by Rank et al. 2007 – are a natural companion to isogeo-
metric analysis. The key idea of such techniques is to extend a geometrically
complex physical domain of interest into a geometrically simple embedding
domain, on which a regular mesh can be built easily. Simulation strategies
leveraging the advantages of isogeometric analysis and immersedmethods are
referred to as immersogeometric analysis techniques. On the one hand immer-
sogeometric analysis facilitates consideration of CAD trimming curves in the
context of isogeometric analysis. On the other hand, it enables the construc-
tions of high-regularity spline spaces over geometrically and topologically
complex volumetric domains, for which analysis-suitable spline parametriza-
tions are generally not available.
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The main goal of this dissertation is to develop a robust simulation strategy
for incompressible flow problems based on the isogeometric and immersoge-
ometric analysis frameworks. To accomplish this goal, first the complications
related to using compatible isogeometric elements in an immersed context had
to be identified. Based on the insights from this study an alternative formula-
tion that rigorously resolves these complications could then be developed.

Isogeometric analysis of mixed formulations for incompressible flow prob-
lems based on inf-sup stable velocity-pressure pairs has been studied in detail
in the literature, which has led to the development of a range of isogeometric
element families, namely: Taylor-Hood elements, Sub-grid elements, Raviart-
Thomas elements, and Nédélec elements. To understand the performance of
these element families in an immersed setting, we have studied their behavior
for the prototypical problem of steady Stokes flow in a quarter annulus ring.
All isogeometric element families were found to exhibit local oscillations in
the pressure field near cut boundaries. The occurrence of such oscillations
on cut elements with relatively large volume fractions implies that this prob-
lem is related to the inf-sup stability of the discrete problem, rather than to
conditioning issues related to cut elements with small volume fractions.

We proposed a novel stabilization technique to avoid the stability problem
of immersogeometric analysis of incompressible flow problems based on
inf-sup stable velocity-pressure pairs. The pivotal idea of this technique is
to control the jump of high-order derivatives of the pressure field over the
skeleton structure of the mesh. This skeleton-based stabilization technique
allows utilizing identical discrete spaces for the velocity and pressure fields.
This method – which to the best of our knowledge is new in the context
of mesh-conforming isogeometric analysis – can be considered as a high-
regularity extension of the (Continuous) Interior Penalty methods, making it
applicable to a broad class of spline discretizations with arbitrary continuity
conditions across element interfaces. To enable application of the skeleton-
based stabilization technique in the immersogeometric context, the system had
to be complemented with a stabilization term for the velocity space similar
to that of the pressure space. In contrast to the pressure stabilization, the
velocity stabilization – which is referred to in the literature as Ghost-penalty
stabilization – is only applied at the faces of the background mesh skeleton
structure that are located near the cut boundaries.

Since the proposed skeleton-based stabilization technique is applicable
in the conforming setting, we have studied its performance for a range of
Stokes flow and moderate Reynolds number Navier-Stokes flow benchmark



problems on two and three-dimensional conforming meshes, including the
case of a multi-patch NURBS-based isogeometric analysis. We have observed
the skeleton-based stabilization method to yield solutions that are free of
pressure oscillations and velocity locking effects, and to yield optimal rates
of convergence under mesh refinement. Although a fundamental study of the
selection of the stabilization parameter is beyond the scope of this work, we
have observed robustness of the method within a sufficiently large range of
parameters. The observations for the conforming isogeometric setting extend
to the immersogeometric setting, where we have considered a range of two
and three-dimensional problems for incompressible flows. To demonstrate
the versatility of the proposed simulation strategy we have considered the
immersogeometric analysis of Stokes flow through a porous medium, where
the geometry is extracted directly from three-dimensional scan data.
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