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Abstract

Masonry is a typical composite structural material, that consists of units and

mortar. Masonry structures are very common in the World, even in seismic areas

where they undergo important damages and collapse. In fact, masonry is well

suited to withstand high compressive loads, but it cannot bear bending and shear

developed during earthquakes. Nevertheless, this material was used not only for

�simple� structures (such as small houses) but also for huge monuments (like

churches and cathedrals). It is important to point out that, up to some time

ago, no laws were written to prescribe how to build with masonry; this led to a

very di�erent way of building from place to place, from structure to structure.

During the last decades, research on masonry behavior during earthquake has

been considerably improved and a material adequate also in seismic areas was

developed, using also high strength mortars and good quality units.

Nowadays, the need for structure modeling and analysis tools is largely dif-

fused: very sophisticated �nite element models or extremely simpli�ed methods

are commonly used for the seismic analysis of masonry structures, but �nding

a unique model is not realistic because masonry structures di�er in materials,

texture and structural details.

The subject of this thesis deals with the modeling of masonry, starting from a

comparison with simple static tests performed during an experimental campaign

carried out by University of Pavia and EUCENTRE. The principal aim is to re-

produce the same results of experimental tests, through numerical modeling. A

�homogenization� of the material was chosen, trying to take advantage of con-

stitutive laws already implemented in the software and using equivalent materials

to model masonry.

The work done analyzed a variety of materials with the aim to �nd the one
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that best approximates the available experimental data for comparison. Nume-

rical tests start with the calibration of the parameters on a simple compression

test under uni-axial condition, and then continued with their validation with other

characterization tests.

The decision to try an equivalent material was due to the fact that the �nal

object was to eventually simulate the seismic tests on three prototypes of real

3D houses. This choice permits not to have an excessive computational burden

to be faced.

The following script is divided into four parts:

� Chapter I describes in details the research program carried out by Univer-

sity of Pavia and EUCENTRE for characterizing the seismic behavior of

undressed double-leaf stone masonry.

� Chapter II is a review of all the modeling techniques, available in literature

and implemented for masonry structures.

� Chapter III describes the computational code Abaqus.

� Chapter IV focuses on the material chosen for simulations and presents the

results �nd out during simulations.

� Chapter V brie�y describes a User Material found in literature.

� Chapter VI discusses possible future developments on masonry modeling.
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Sommario

La muratura è un tipico materiale strutturale composto da blocchi e malta. Le

strutture in muratura sono molto di�use nel mondo, anche nelle zone sismiche

dove subiscono importanti danni e spesso collassano. Infatti la muratura sop-

porta bene elevati carichi di compressione, ma non può sopportare momenti e

tagli che si sviluppano durante gli eventi sismici. Nonostante tutto però, questo

materiale è stato usato non solo per costruire semplici strutture (come possono

essere piccole case), ma anche grandi monumenti (come chiese e cattedrali).

E' importante sottolineare che �no a poco tempo fa, nessuna legge regolamen-

tava come costruire con la muratura; tutto ciò ha portato a diversi metodi di

costruzione che cambiano non solo da posto a posto, ma anche da struttura a

struttura.

Negli ultimi decenni, la ricerca nel campo del comportamento della muratura è

cresciuta notevolmente: grazie anche all'uso di malte ad alta resistenza e blocchi

di buona qualità è stato possibile ottenere un materiale adeguato anche in zona

sismica.

Attualmente, si è di�usa la necessità di modellare le strutture in muratura

con strumenti di analisi adatti: sono in uso per l'analisi simica, sia modelli molto

so�sticati agli elementi �niti, sia metodi notevolmente sempli�cati; un modello

unico non è pensabile in quanto le strutture in muratura di�eriscono per materiali,

struttura e dettagli costruttivi.

L'oggetto di questa tesi è la modellazione della muratura partendo dal con-

fronto con prove statiche eseguite durante una campagna sperimentale eseguita

presso l'Università di Pavia ed EUCENTRE. L'obbiettivo principale è quello di

ottenere gli stessi risultati dei test sperimentali attraverso una simulazione nu-

merica. Si è scelto di operare una �omogenizzazione del materiale, cercando di
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sfruttare le leggi costitutive già implementate nel software.

Il lavoro svolto ha compreso l'analisi di diversi materiali per trovare quello

che approssima meglio i dati sperimentali disponibili per il confronto. I test

sperimentali cominciano con la calibrazione dei parametri attraverso un test di

compressione semplice in condizioni monoassiali e proseguono con la validazione

attraverso gli altri test di caratterizzazione.

La decisione di utilizzare un materiale equivalente è stata presa pensando

all'obbiettivo �nale del lavoro di simulare le prove sismiche condotte su tre

prototipi in 3D. Questa scelta, infatti, permette di non avere un onere com-

putazionale eccessivo.

Il seguente elaborato è diviso in quattro parti:

� Il Capitolo I descrive in dettaglio il programma di ricerca eseguito presso

l'Università di Pavia ed EUCENTRE per caratterizzare il comportamento

sismico della muratura in pietra a doppio paramento.

� Il Capitolo II passa in rassegna tutte le tecniche di modellazione disponibili

in letteratura e implementate per le strutture in muratura.

� Il Capitolo III descrive il codice di calcolo utilizzato (Abaqus).

� Il Capitolo IV ha come argomento i materiali presi in considerazione nelle

analisi e i risultati prodotti con le simulazioni di calcolo.

� Il Capitolo V descrive brevemente lo User Material trovato in letteratura.

� Il Capitolo VI conclude il lavoro con una panoramica dei possibili sviluppi

futuri nella modellazione della muratura.
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Chapter 1

Experimental Program

In Italy, undressed double-leaf stone masonry is a common building technique

in existing buildings, but experimental tests are not so many and computational

modeling of masonry is a research �eld that need more e�orts.

University of Pavia and EUCENTRE carried out an experimental program on

the seismic behavior of undressed double-leaf stone masonry within the framework

of ReLUIS1 and EUCENTRE Research Programs 2. The whole research program

is fully described in [18, 19]. Here a brief summary of what was done is presented.

The experimental campaign was organized in three di�erent steps:

1. First of all the important choice of materials (mortar and units) and con-

struction techniques (double-leaf), with the purpose of reproducing the

typical conditions of old buildings (described in section 1.1);

2. Then the execution of tests (vertical compression, diagonal compression

and in-plane cyclic shear test) to characterize the mechanical properties of

the chosen masonry (explained in section 1.2);

3. The execution of shake-table tests on three full scale prototype buildings.

1Linea 1- Programma di Ricerca ReLUIS: �Valutazione e riduzione della vulnerabilità di
edi�ci in muratura� (Italian)

2Research Programm n. 2 - Executive Project for 2005-2008
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1.1. The double-leaf stone wall 1. EXPERIMENTAL PROGRAM

1.1 The double-leaf stone wall

The masonry type, used in this research program, reproduces old masonry typical

in Italy (�gure 1.1). Walls are built with two leaves of stones connected with

few transverse elements (through stones). This connection, together with the

mechanical properties of the materials used and the construction quality, are

responsible of the behavior of the whole panel. The number of through stones

derives from traditional rules of thumbs, thus sometimes this transverse stones

are missing and the interaction between the two leaves depends only on friction

between blocks. This fact can lead to very dangerous failure modes with loss of

wall integrity and structure collapse.

Figure 1.1: Double-leaf masonry (wall cross section)

Another important and uncertain factor in this construction technique is the

amount of mortar used between the stones in the wall. Infact, when units are

rough dressed stones or of extremely variable dimensions, a large amount of

mortar is needed3, a�ecting the strength properties of the panel. The mortar

must be well con�ned by units, otherwise local instability may occur with localized

compression cracks that develop in vertical and horizontal joints.

Double-leaf stone walls are extremely heterogeneous, that means it is very

di�cult to predict mechanical properties of masonry looking only at its compo-

3Sometimes when large amount of mortar is needed, it is common use to add chips of
stones to reduce the mortar volume.
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1. EXPERIMENTAL PROGRAM 1.1. The double-leaf stone wall

Figure 1.2: Structure collapse in Pescomaggiore, AQ (6th April 2009)

nents' characteristics. In order to predict the structural behavior of such masonry,

experimental information derived from tests is essential.

1.1.1 The stones

To reproduce the ancient technique of double-leaf stone walls, the choice of

materials and building techniques was made to create a representation of what

can be found in old existing buildings in Italy.

Figure 1.3: Credaro Stone

The natural stone selected was the Credaro stone (�gure1.3), which is a

3



1.1. The double-leaf stone wall 1. EXPERIMENTAL PROGRAM

sedimentary rock made of calcareous sandstone. This stone comes from near

Bergamo and was widely used as a building material in the past for its good

mechanical properties (which are shown in table 1.1).

Table 1.1: Credaro stone mechanical properties

Density 2579 Kg/m3

Compressive strength 165− 172 MPa
Flexural strength 19 MPa

1.1.2 The mortar

Also mortar had to be produced in a special way, in order to obtain something

similar to the mortar typical of historical buildings. The desired mortar should

not exceed 2 MPa of compression strength, while current mortars have higher

value for this characteristic.

The company Tassullo produced a pre-mixed natural hydraulic lime mortar

which was the basis of the mortar used. The initial product (T30V), used to

restore historical buildings, belongs to the CSIII class, according to the European

Standard EN 1015-11.

The initial resistance between 3.5 MPa and 7.5 MPa was appositely reduced

for these experimental tests, by adding a certain quantity of sand to the mix.

Several trials had to be done, but �nally the proportions were as follows:

1. 22%: ratio of sand and mortar volume;

2. 18%: ratio of sand and mortar weight.

Because of the curing time of the mortar, specimens had to be tested when the

mechanical properties of the mortar have became stable.

With standardized laboratory tests, it is possible to obtain the main mechani-

cal characteristics of the mortar: the tensile resistance is calculated from �exural

failure, while compressive strength is evaluated with compression tests.

According to EN1015-11, specimens dimension are 160 × 40 × 40 mm, and

tests were carried out at di�erent curing times (from 7 to over 90 days) in order

4



1. EXPERIMENTAL PROGRAM 1.1. The double-leaf stone wall

to collect information on the evolution of mechanical properties over time. The

most important compression tests were the ones performed after 28 days and 60

days. The resistance reached after 28 days is very close to the maximum value

and the curing process is considered completed after 60 days.

In �gure 1.4 the mean values of compressive strength (plus or minus standard

deviation) for di�erent curing periods is shown. Mean values of compressive

strength obtained after 28 and 60 days (1.71 MPa and 1.78 MPa, respectively),

do not change much, though a large number of samples were tested. Some

specimens were tested after 90 and 200 days, but the scarcity of data does not

allow to state that resistance is subjected to changes with passing of time.

Mechanical properties of this mortar can be considered constant after 30 days

of curing.The small number of specimens tested after 90 days or 200 days does

not allow to conclude the resistance signi�cantly varies further with time.

Figure 1.4: Compressive strength (plus or minus standard deviation) for different
curing periods

Table 1.2: Results: compression on mortar specimens

Proportion Curing time Compression strength Standard deviation

Proportion 1. 28 days 1.71 MPa 0.51 MPa
Proportion 2. 60 days 1.78 MPa 0.56 MPa

5



1.1. The double-leaf stone wall 1. EXPERIMENTAL PROGRAM

1.1.3 Specimens

In order to obtain a pseudo-prismatic shape (between 200 − 350 mm in height

and 100 − 150 mm in width), the stones were worked with hammer and then

placed on mortar layers trying to create horizontal courses. No through stones

were placed in the wall except for the edges. The space between the two wythes

was ful�lled with mortars and stone fragments; this space changed from point to

point, since the element size was quite variable. Even the mortar layers changed

in thickness, going from 20 mm to 30 mm at some points. The wall was 320 mm

deep, and this is the same thickness adopted for the prototypes to be tested on

the shake table.

The experimental program included tests with speci�c standards described

for new masonry typologies and extended, in this work, for the historical ma-

sonry analyzed. To decide the specimens' size, an average size of the units was

considered and the results are:

1. vertical compression tests were carried on 6 specimens with nominal di-

mensions of 1200× 800× 320 mm

2. diagonal compression tests were carried on 6 specimens with nominal di-

mensions of 1000× 1000× 320 mm

Specimens were obtained by cutting a unique long wall, in order to avoid edge

e�ects. In this way, specimens can be assumed to be representative of a the-

oretically homogeneous masonry layout, avoiding edge e�ect of through stones

(�gure 1.5).

The wall was then con�ned with vertical steel wires (to limit the damage

during the cut, �gure 1.5) and cut with an electric circular saw after a curing

time of about two and a half months. Specimens for vertical compression had

two concrete tie beams built before the cut, to facilitate transportation and to

distribute the load transmitted to the wall during testing. This procedure was not

used for the wall designed for diagonal compression, since it would have a�ected

the test.
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Figure 1.5: Wall edge before cut (left) and after cut (right)

1.2 Tests

1.2.1 Vertical compression tests

In vertical compression tests, the specimens are subjected to monotonic or cyclic

compression force. This resultant force must be kept in the centre of the wall

section trying to generate a uniform vertical stress in the specimen. As the load

increases, the deformation is determined directly on the wall. With this test, two

important characteristics of the material can be evaluated in the pseudo-elastic

behavior range: the masonry sti�ness (Young's modulus E) and Poisson's ratio

ν. Moreover, if tests are done up to failure, the ultimate strength and the

deformation capacity in compression can be studied.

The test apparatus is made up of a force-controlled press device (�gure

1.6), while displacements were measured with 8 Gefran PZ-12-A-50 displace-

ment transducers, placed on the specimens as shown in �gure 1.7. Transducers

are placed according to EN1052-1 standards, which prescribes that :

1. the distance between two transducers placed on the same wall side should

be approximately equal to half the width of the wall side itself;

7
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Figure 1.6: Vertical compression test setup

2. the initial length of the vertical transducers should be nearly h/3, where h

is the total height of the specimen.

Figure 1.7 shows that, four transducter were placed to measure vertical defor-

mations (number 1, 2, 4 and 5; length around 600 mm), two for deformation

in the horizontal plane (number 3 and 6; length around 400 mm) and two for

transverse horizontal displacements (number 7 and 8; length 20 mm).

Let l0i be the initial length of the ith potentiometer, the deformation corre-

sponding to the ith potentiometer εi, can be determined as:

εi =
(∆l)i

l0i
(1.1)

and the mean deformation is:

εvert =

∑4
k=1 εv,k

4
(1.2)

where εv,k represents the single vertical deformation of each potentiometer.
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Figure 1.7: Transducers on specimens (measures in mm)

As for vertical deformation, horizontal (eq.1.3) and transverse (eq. 1.4) de-

formation are:

εhor =

∑2
k=1 εh,k

2
(1.3)

εtransv =

∑2
k=1 εt,k

2
(1.4)

The specimens were subjected to cyclic loading of increasing intensity (table

1.3). The maximum load of each cycle was kept constant for about 60 seconds

before unloading; it is assumed that this is the time needed to stabilize the state

of stress in the specimens.

Young's modulus in compression is computed as:

E =
σv,el

ε (σv,el)
(1.5)

where σv,el is one third of the compressive strength fm = σv,max measured in the

specimen.
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Table 1.3: Loading cycle and nominal average compression for compression tests

Compression Load

0.2 MPa 51 kN
0.4 MPa 102 kN
0.6 MPa 154 kN
1.0 MPa 256 kN
1.4 MPa 358 kN
1.8 MPa 461 kN
2.2 MPa 563 kN
2.6 MPa 666 kN
3.0 MPa 768 kN
3.4 MPa 870 kN
3.8 MPa 973 kN

The equivalent Poisson's ratio is de�ned for the horizontal and the transverse

direction separately, because of the strong anisotropy of the material:

νhor =
εhor (σv,el)

εvert (σv,el)
(1.6)

νtransv =
εtransv (σv,el)

εvert (σv,el)
(1.7)

These parameters are calculated with the hypothesis of monotonic compres-

sion, thus deformation depends only on the level of vertical compression and

boundary conditions do not have any in�uence on the state of stress of the spec-

imen. This hypothesis is supposed to be true near the middle section of the panel,

where the instrumentation was �xed. Nevertheless, in the transverse direction

it was quite hard to place the transducers exactly in the middle, and this fact

reduces the con�dence of results.

Six specimens were tested; �gure 1.8 represents typical results available from

this kind of tests: the upper side shows the applied force over time while in the

lower side there is the σ − ε trend of the sixth test (this test is the one taken

into account during simulations).

Table 1.4 shows a summary of the results of the vertical compression tests.
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Figure 1.8: Upper side: applied load over time; Lower side:σ − ε diagram
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Table 1.4: Results of vertical compression tests

fm [MPa] ε (σv,max) σv,el ε (σv,el) E [MPa]
Mean 3.28 0.005 1.09 4.3E-4 2550

St. Dev. 0.26 0.0017 0.08 7.5E-5 345
C.o.V. 8% 34% 8% 17.4% 13.5%

εvert (σv,el) εhor (σv,el) νhor εtransv (σv,el) νtransv
Mean 4.3E-4 8.1E-5 0.19 6.4E-5 0.15

St. Dev. 7.5E-5 4.1E-5 0.08 2.2E-5 0.03
C.o.V. 17% 51% 42% 34% 18%

1.2.2 Diagonal compression tests

The diagonal compression test is used to determine shear sti�ness and strength

of masonry. The ASTM and RILEM international standards present two possible

interpretations of results.

Both standards state that if we consider a square homogeneous elastic ma-

sonry element, submitted only to shear stresses, the principal stresses at the

middle of the panel will be inclined by 45° to the head and bed joint axes. One

of the generated stresses is compressive, while the other is tensile. We assume

that failure occurs when the principal tensile stress reaches the diagonal tensile

strength of the masonry.

Figure 1.9: Tensional state stress from Mohr's circle (pure shear)
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From the experiment point of view, shear stress is produced by the simulta-

neous presence of compression and tension along the diagonals of the specimens.

The following relation can hence be derived:

τxy = σT = |σC | =
P

An
√

2
= 0.707 ·

P

An
(1.8)

where An is the cross section area of the panel and P the acting load. When

failure occurs, the tensile stress is equal to the strength of the material at the

centre of the panel:

ft = σT (1.9)

Figure 1.10: Diagonal compression setup

The simpli�ed hypothesis done is that in order to have a uniform distribution

of tension on the panel, an additional tensile force equal to P should be applied

to the other diagonal. Nevertheless, the real distribution of shear stresses is far

from uniform and the panel is not subject to pure shear. ASTM and RILEM,

13
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suggest a solution, that is widely used; the ultimate strength is then:

ft =
0.5 · Pmax

An
(1.10)

wereAn has already been de�ned, while Pmax is the maximum acting load reached

during the test.

The load was applied with the same compression machine describe in part

1.2.1. Figure 1.10 shows the test setup. For each specimen, 4 transducers where

placed on both sides along the diagonal. The initial lengths of the transducers

were highly variable, thus they were carefully measured before each test. The

tests were performed for subsequent load cycles (table1.5), identi�ed by increas-

ing values of the tensile stress acting at the middle of the panel.

Table 1.5: Loading cycle and nominal average compression for diagonal compres-
sion tests

σT [MPa] Load [KN]

0.025 16
0.05 32
0.075 40
0.1 64
0.125 80
0.150 96
0.175 112
0.2 128
0.225 114
0.25 160

For each of the wall sides, the angular deformation γ can be derived as follow:

γ = εvert + εhor (1.11)

where εvert = (ε1+ε3)/2 and εhor = (ε2+ε4)/2.

The shear modulus G in the elastic and post-elastic phase, can be determined.

As for the vertical compression tests, the value of G (for the elastic range) was

measured for the shear stress corresponding to one third of the maximum shear

stress:
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G =
1/3 · τmax
γ(τel)

where τel = 1/3 · τmax

The results obtained from the tests are summarized in table 1.6. The stress-

strain curve, corresponding to one of the performed tests (D4) and the applied

load over time, are shown in 1.11 . The specimens showed a macroscopically

linear behavior (constant slope of the curve) up to relatively high stress levels.

Table 1.6: Results of the diagonal compression tests

τASTMmax ft [MPa] 1/3 · τmax γ
Mean 0.197 0.137 0.065 7.96E-5

St. Dev. 0.043 0.031 0.015 2.45E-5
C. o. V. 21.8% 21.8% 21.8% 30.7%

1.2.3 Comments

The experimental tests described in this chapter provide the average value of

some mechanical characteristics (table 1.7) needed for modeling structural ele-

ments under cyclic load and masonry building under dynamic tests.

Table 1.7: Summary of results

fm [MPa] E [MPa] ft [MPa] G [MPa]
Mean 3.28 2550 0.137 840

St. Dev. 0.26 345 0.031 125
C.o.V. 8% 13.5% 21.8% 14.8%

A scatter in the results can be observed, but it is limited with respect to com-

pressive strength, while it is more evident for the Young's modulus. The largest

variation is observed for the tensile strength obtained from diagonal compression

tests. But this scatter is comparable to the one usually observed in tests on more

regular and new masonry.

The results obtained from this experimental program were compared to the

reference values provided by the Italian building code [20] to con�rm that the

masonry type used is classi�ed as �undressed stone masonry with regular texture�.
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Figure 1.11: Diagonal compression
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1.3 In-plane cyclic shear tests

With in-plane cyclic shear tests, the behavior of the wall subjected to reversal load

is studied. The axial force imposed on the specimens represents the gravity loads,

while the in-plane horizontal cycles simulate the seismic action. The information

collected from these tests are: strength parameters, displacement capacity and

hysteretic energy dissipation properties.

For the same specimen's dimensions, di�erent failure modes take place, de-

pending on the vertical axial compression:

� Bending/rocking mechanism (in case of low compression): the da-

mage is localized at the base and top cross sections and masonry dete-

rioration is observed at the compressed toes (the compressive strength is

locally exceeded);

� Shear failure modes: cracks develop along the compressed diagonal

of the panel if the conventional tensile strength of the material is exceeded;

� Horizontal cracks are governed by cohesion and friction and are u-

sually observed along mortar joints.

The geometry of the specimens, the boundary conditions and the axial load

applied were chosen in order to simulate a real wall of the 3D prototype. For this

reason, all tests were performed in a double bending con�guration. Moreover,

two axial load (0.5 MPa and 0.2 MPa) and two slenderness ratios were taken

into account. The specimens tested were:

� Squat: 2500× 2500× 0.32 mm

� Slender: 2500× 1500× 0.32 mm

1.3.1 Test setup and procedure

The cyclic in-plane tests were performed at EUCENTRE using the TREES Lab

technology. There are three servo-hydraulic actuators, each having a maximum

force capacity of 500 kN; two of them apply the axial compression, while the

17
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Figure 1.12: In-plane cyclic test: test setup

other imposes the horizontal displacements at the top of the specimen (�gure

1.12).

Di�erent restraint conditions can be imposed to the wall. A double bending

con�guration was chosen for all tests, thus the vertical rotation of the top steel

beam was prevented by means of a �hybrid� control of the vertical actuators (they

are forced to apply a constant total axial load and to maintain the same vertical

displacement). This kind of control is automatically managed via software.

The procedure provides a �rst step in which the specimens are subjected to

axial load only (80% of the value to be used during the test). The compression is

then increased to reach the desired value to perform the test. During the second

18
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phase of the test, the horizontal actuator is set in force control, and the specimen

is subjected to a shear force equal to 1/4 of the shear strength estimated during

complementary tests (described in part 1.2). The wall is �rstly pushed and then

pulled during a �rst sequence of loading called 1F. For the next sequence of three

cycles (2F, 3F and 4F), the actuator is switched to displacement control with a

target displacement equal to twice (2F), three times (3F) or four times (4F) that

measured at cycle 1F. These cycles are characterized by a test velocity equal to

0.025 mm/s.

The �D� set of cycles is a sequence of increasing target displacements cor-

responding to prede�ned values of drift, intended as the ratio between the hori-

zontal displacement at the top and the wall height (table 1.8). If the drift to be

applied at sequence 1D is less than those obtained for cycles 2F, 3F or 4F, these

�F� cycles are skipped. The velocity of the actuator increases in proportion to

the target displacement imposed.

The tests were stopped if the specimen presented potentially dangerous dam-

age, a signi�cant drop of lateral strength, or if the imposed drift reached the

maximum capacity (3%) of the testing apparatus.

The axial load level chosen was decided with a preliminary numerical analysis

of the reference full scale, two-storey prototype buildings and a maximum com-

pression in the order of magnitude of 0.2 MPa was estimated. However, such

a value is lower than the compressive strength of the material and lower than

maximum compressive stress found in existing three or four storey buildings. This

is due to the relatively small dimensions of the building prototypes subjected to

shake table testing. Thus, it was decided to perform also tests with a higher

level of applied compressive stress (0.5 MPa).

Four specimens, corresponding to the four combinations of parameters, were

tested according to the procedure described above. The specimen named as

CS00, built with a better quality mortar than the others, was tested with the

purpose of a preliminary veri�cation of the test setup.
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Table 1.8: Summary of sequence

Sequence Control Velocity Drift Displacement [mm]

1F force (2.0-0.5) kN/s (variable) (variable)
2F displ. 0.025 mm/s (variable) (variable)
3F displ. 0.025 mm/s (variable) (variable)
4F displ. 0.025 mm/s (variable) (variable)
1D displ. 0.025 mm/s ±0.050% ±1.25
2D displ. 0.038 mm/s ±0.075% ±1.875
3D displ. 0.05 mm/s ±0.100% ±2.5
4D displ. 0.065 mm/s ±0.150% ±3.75
5D displ. 0.08 mm/s ±0.200% ±5
6D displ. 0.1 mm/s ±0.250% ±6.25
7D displ. 0.12 mm/s ±0.300% ±7.5
8D displ. 0.16 mm/s ±0.400% ±10
9D displ. 0.2 mm/s ±0.500% ±12.5
10D displ. 0.24 mm/s ±0.600% ±15
11D displ. 0.28 mm/s ±0.700% ±17.5
12D displ. 0.32 mm/s ±0.800% ±20
13D displ. 0.4 mm/s ±1.000% ±25
14D displ. 0.5 mm/s ±1.250% ±31.25
15D displ. 0.6 mm/s ±1.500% ±37.5
16D displ. 0.7 mm/s ±1.750% ±43.75
17D displ. 0.8 mm/s ±2.000% ±50
18D displ. 1.0 mm/s ±2.500% ±62.5
19D displ. 1.0 mm/s ±3.000% ±75

1.3.2 Results

The CS00 specimen, showed a �exural failure mechanism with no diagonal cra-

cking, while for the other specimens collapse was always caused by diagonal

cracks.

The CS02 specimen (low compression level) showed an initial phase of �exural

damage, before reaching collapse in shear.

The two squat walls showed a clear shear failure, with cracks occurring along

the diagonals of the specimens. No evidences of sliding was observed in any of

the tests (possible sliding surfaces were monitored by transducers).
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Figure 1.13: Specimen CS01

Figure 1.14: Specimen CT01
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These experiments show that, for panels failed in shear, the ultimate shear

resistance was approximately equal to the force at which the �rst visible diagonal

crack appeared at the centre of the pier.

The shear strength associated with diagonal cracking can be expressed with

the equation proposed by Tunseck and Sheppard [29]:

V diag−crack
res =

ft · l · t
b
·

√
1 +

σ0

ft
(1.12)

where

b =


1.5 h/l > 1.5

h/l 1 ≤ h/l ≤ 1.5

1 h/l < 1

ft is the conventional diagonal cracking tensile strength of masonry;

σ0 indicates the mean compressive stress acting on the pier;

l is the wall base;

t is the wall thickness.

When �exural failure occur, it is also possible to write an expression for the

associated resistant shear force from the resistant moments which can develop

at the top and base sections of the wall:

M top
res =

σtop0 · t · l2

2
·

(
1−

σtop0

0.85 · fm

)

M base
res =

σbase0 · t · l2

2
·

(
1−

σbase0

0.85 · fm

)

V bending
res =

M top
res +M base

res

heff

(1.13)

where fm is the compressive strength of masonry, �top� and �base� refer

respectively to the top and base section of the wall. The assumption of constant

compression along the height of the walls is not acceptable since a signi�cant

amount of the compression level is due to the self weight.
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Tables 1.9 and 1.10 shows the values of tensile strength calculated from the

measured maximum shear force by inverting equation 1.12. A good match can

be observed between these values and those obtained from diagonal compression

tests.

Table 1.9: Summary of cyclic tests on slender walls

Specimen CS00 CS01 CS02
σ0 0.2 MPa 0.5 MPa 0.2 MPa

Max Shear 49 kN 94 kN 48 kN
Last cycle 17D (2.0%) 9D (0.5%) 12D (0.8%)
failure �exure shear �exure & shear

ftu [MPa] � 0.16 0.10

Table 1.10: Summary of cyclic tests on squat walls

Specimen CT01 CT02
σ0 0.5 MPa 0.2 MPa

Max Shear 234 kN 154 kN
Last cycle 9D (0.5%) 10D (0.6%)
failure shear shear
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Chapter 2

Modeling masonry: state of art

The purpose of this chapter is to describe how masonry can be modeled and

the methods available in literature. Even though masonry is an ancient building

technique, research in this �eld is very young and arose only in the last decades.

The interest shown by the research community was open to advanced numerical

tools, trying to separate masonry from its building tradition of trial and error.

The �rst attempt done by researchers was to import numerical tools available

from more advanced �elds, i.e. the mechanics of concrete. But such methods

have proved useful to simulate masonry behavior only under certain condition.

Thus, the particular features of masonry require appropriate tools to analyze

structures built with this material.

Researches came up with several numerical models, based on di�erent as-

sumptions and characterized by di�erent levels of detail. A unique model is not

realistic because masonry structures di�er in materials, texture and structural

details. Analysts should choose the model that best suited his case, taking into

account the information searched (serviceability, damage, collapse...), the ac-

curacy required (local or global behavior), the input data needed (information

about material) and �nally, costs (that include, also the time needed to complete

the analysis).

A division of all the methods implemented to model masonry is not available

in literature, thus we decided to start from the classi�cation proposed in [22].
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2.1 Limit analysis

The simplest method used to describe masonry comes from the Mechanics of

Solids and allows the study of the kinetics of collapse through the limit equilibrium

analysis.

With the basic assumptions of the method (which include no tensile strength

and in�nite compressive strength), the masonry panel can be modeled as kine-

matic chain of rigid blocks, described with the Lagrangian displacement magni-

tude at one point. Once suggested the failure mechanism, the system is reduced

to an equivalent single degree of freedom (SDF) system where the horizontal

static load factor can be calculated at the threshold of the system.

With the assumption of rigid behavior until the establishment of linkage, the

load factor represents the value (in g) of the horizontal acceleration at failure,

associated to the mechanism suggested.

The failure mechanisms can be divided into two types [8]. The mechanisms

of �rst type relate to the out-of-plane behavior of masonry (out of plane bending

and rocking.), while the mechanisms of second type include the in-plane behavior

of the panel (shear and bending damage).

Figure 2.1: Possible failure mechanism in masonry panels (adapted from [8])

With the aforementioned limit analysis method, the �rst failure mechanism is

studied in an acceptable way, however, the second failure mechanism is assessed

in an excessively precautionary way.

Disadvantages of the method just described are that it does not take into

account the elastic deformation of the structure and the post-elastic behavior; in
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fact the strategy always leads to the study of equilibrium and kinematics of rigid

bodies. Nevertheless, in the case of complex kinematics, the method has been

very useful for evaluating the e�ects of consolidations.

An important application of the limit principles is the analysis of masonry

arch [16]. Heyman's idea was that as most voussoir arches have low stresses

and lines of thrust lie well within the masonry which mean that factors of safety

have little relevance, thus a �geometrical� factor of safety may be de�ned. The

geometrical factor considers the minimum thickness arch of the same shape as

the real arch, which would just contain a proper line of thrust. This kind of

analysis was applied to the stone arch between the western towers of Lincoln

Cathedral and the Ponte Mosca in Turin and shows that the e�ect of geometry

changes due to yielding of the abutments.

2.2 Equivalent strut

Another possibility for modeling masonry is the equivalent strut approach, which

consider deformations in the elastic range possibly followed by inelastic defor-

mation. Models which belong to this class may be bi-dimensional or mono-

dimensional.

Figure 2.2: Masonry panel modeled through an equivalent strut [2]
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Figure 2.3: Masonry wall: equivalent strut [2]

Bi-dimensional approaches see masonry panels as equivalent elements with

two main dimensions, while in a mono-dimensional approach, the masonry panel

is divided into piers and lintels, regarded as equivalent struts. The connecting rod

(strut) corresponds to the reactive part of the masonry panel, thus its inclination

and its sti�ness must reproduce the average behavior of the wall. Each panel

can be in crisis if the equilibrium is not respected or cracks occur.

2.3 POR method

In 1978, Tomaºevic proposed a method called POR [28]. At that time, computer

where not so much widespread, so its �rst aim was to permit manual calculus to

verify masonry structures. The method was based on the shear resistance of plain

masonry walls failing, simulating story mechanism action of masonry buildings

at ultimate state. The analysis of each story is done separately. Such approach

greatly simpli�es the accounts, but does not permit to consider the other possible

failure modes.
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Such method in his �rst version had several disadvantages:

1. The only part where deformations and cracks can occur are the piers. Other

parts (lintels) are not considered places for possible damage.

2. The only possible failure mode is the shear one with diagonal crack. There

is no presence of rocking and sliding.

3. Floors are considered rigid.

Several improvements were proposed to overcome the second problem, while the

�rst and the third point have their limit inside.

Despite all the limitations mentioned before, the POR method has been

greatly useful. Moreover, it is still a fundamental reference for Italian Code [20]

for what concern the design of new buildings and the upgrading of old structures.

2.4 Macro-elements: equivalent models and

frame models

With the approach of macro-elements, masonry panels are represent as a com-

bination of structural elements (piers and lintels) as shown in �gure 2.4.

The macro-elements approach needs low computational e�orts because of the

reduction of the degrees of freedom, but this method gives a rough description

of the masonry elements. Usually, analysts choose the macro-elements approach

when the object of the analysis is the global behavior of an entire structure (under

cyclic loading).

An example of macro-element is the model proposed by Gambarotta and

Lagomarsino [7]. Their approach (which was able to catch both overturning

and hysteretic mechanism) has two degrees of freedom and was especially for

rectangular masonry panels. Their work was then improved [1], and a non linear

macro-element model was proposed. Figure 2.5 shows the macro-element; the

structure is divided into three sub-structures. There are two layers (inferior and

superior) where bending and axial e�ects are concentrate, while shear deformation

are presented only in the central part.
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Figure 2.4: An example of macro-element modeling of a masonry wall

The element static and kinematic behavior is described with displacements,

nodal rotations and resulting actions. Thus, it seems a mono-dimensional model,

but the introduction of an internal degree of freedom gives to the element the

ability to reproduce the behavior of masonry under cyclic load. For this reason,

besides the need of a calibration of the material parameters, this method was

very useful in research �eld as in practical applications.

Other important models that belong to the macro-element family are the

ones classi�ed as equivalent frames. An example of this sub-class is the SAM

method [13].

SAM was developed at University of Pavia to analyze multistory walls with

in-plane load and then improved for 3D problems.

As said before, the wall is divided into elements (piers and lintels) and rigid

nodes, represented with o�sets at the end of the elements. The piers height

is determined with rules (proposed by Dolce [4]) which approximately take into

account the deformation of the nodes; the lintels width in the model correspond

to the real width of the lintels in the structure. The macro-element pier or lintel

behavior is linear elastic up to the strength limit. Other important characteristics

of the SAM method are:
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Figure 2.5: Kinematic model for the macro-element [1]

1. Lintels and piers are modeled as Timoshenko beam;

2. the frame strength is determined with the minimum strength criterion;

3. The displacement capacity of the frame depends on the expected failure

mode.

The SAM method is valid and reliable to perform the push-over analysis of walls

in 3D problems. The strength limit introduced depend on the axial compression

of the piers at the single load step, thus they must be calculated with an iterative

procedure.

2.5 Detailed models

There are methods that consider masonry as a composite material, focusing on

the micro-modeling of each component (units and mortar) or on the macro-

modeling of masonry as a composite. The aforementioned strategies refer to

di�erent �elds of application: micro-models are applicable when the object of

the study is the local behavior of the masonry, while macro-model are used when

there must be a compromise between accuracy and e�ciency. Anyway, both of

these strategies need an exhaustive description of the material (usually done with

an experimental program on masonry specimens).

Figure 2.7 shows three di�erent ways of describing the material.
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Figure 2.6: SAM method [13]

Micro-modeling There are two di�erent kind of micro-model for masonry. In

the detailed micro-model, continuum elements are used to describe units and

mortar, while discontinuous elements are used to represent the unit-mortar in-

terface. The behavior of both units and mortar is taken into account and the

interface is a plane of potential crack. The aforementioned strategy is the most

accurate model for describing masonry behavior, but requires a high computa-

tional e�ort. Thus, detailed mico-models are use only for an elaborated study of

local response of masonry.

In the simpli�ed micro-modeling, units are �expanded� and are modelled with

continuum elements, while joints and unit-mortar interface are concentrated in

discontinuous elements. In this way, units are directly bounded by potential

fracture planes.

Both strategies have been developed for studying small elements with not

homogeneous state of stress and strain. For this reason, input data comes from

experimental laboratory tests on small samples.
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Figure 2.7: Modeling masonry (adapted from [10])

Macro-modeling (homogenization) Everything (unit, mortar and their in-

terface) is represented as a homogeneous anisotropic continuum. The macro-

modeling approach is the most practice-oriented, due to its low computational

request. This strategy needs an accurate description of the relationship between

average stresses and average strains. Parametes, which describe the continuum,

must be �nd out during tests on specimens (of large size) subjected to homoge-

neous state of stress.

Other advantages of macro-modeling include the fact that Finite Elements

meshes are simpler, since the internal structure of the masonry is not described,

and may not reproduce the masonry pattern. Moreover there are no complications

with interfaces because homogeneous properties have been already calculated

(with a micro-mechanical model).

Macro-models are used when the purpose of the research is the seismic be-

havior of old, complex, huge structures (i.e. bridges, cathedrals, historical build-

ings...)

An anisotropic plasticity model was proposed by Lourenço [10]. This imple-

mentation was (in its �rst formulation) suitable for modeling anisotropic materi-

als under plane condition: he considered individual yield criteria for tension and
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compression, according to di�erent failure mechanism.

The compressive yield criterion (derived from Hill yield surface) was associated

with a localized fractured process, while the tensile yield criterion (that refers to

Rankine yield surface) is associated to a more distributed fracture process (�gure

2.8)

Figure 2.8: Lourenço's composite yield surface [10]

Another model was proposed by Gambarotta and Lagomarsino [6, 5] for mod-

eling the seismic response of brick masonry. This model takes into account the

mechanical behavior of each components and their interfaces (such as decohe-

sion and slipping in mortar joints and faillure in bricks). The approach is suitable

for the evaluation of the lateral response of in-plane loaded brick masonry shear

walls.

The continuum model proposed is based on the assumption of an equivalent

strati�ed medium made up of layers representative of the mortar bed joints and

of the brick units and head joints, respectively. The constitutive equations are

obtained through a homogenization procedure which involves the damage model

of mortar joints [5] and simple damage constitutive equations for the brick layer.

This approach is used in �nite element analysis of the in-plane response of

brick masonry shear walls loaded either by cyclic horizontal actions superimposed

on vertical loads or by dynamic loads, which are representative of the seismic

actions. Validation tests were carried out and experimental results on squat and

slender shear wall agree with numerical results.
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Chapter 3

A commercial software:

ABAQUS

This chapter describes the software used for the simulations of masonry behavior;

the program chosen is Abaqus.

Abaqus is a �nite element program that helps solving problems ranging from

simple linear analyses to complex nonlinear simulations.

This code can solve problems that involve di�erent elements modeled by as-

sociating the geometry and the material of each element and then choosing their

interactions. In nonlinear analyses, load increments and convergence tolerances

are chosen by the program; in this way Abaqus keeps on adjusting them to ensure

that an accurate solution is obtained e�ciently.

The Abaqus product suite, is made up of four core software:

1. Abaqus/CAE

2. Abaqus/CFD

3. Abaqus/Standard

4. Abaqus/Explicit

A complete Abaqus analysis consists of three distinct steps (pre-processing, sim-

ulation, and post-processing), as shown in �gure 3.1.
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Figure 3.1: Abaqus software process

3.1 Pre-processing and Post-processing

Abaqus/CAE Abaqus/CAE (Complete Abaqus Environment) is a Computer-

Aided Engineering software application used in pre-processing (for design and

modeling the components) and in post-processing (for visualizing the Finite ele-

ment results).

The software is divided into modules that de�ne a logical aspect of the mod-

eling process. The modules are:

� Part: where the elements of the model are created.

� Property : materials and sections of each parts are de�ned

� Assembly : where the assembly is created and can be modi�ed. Every

model contains only one assembly, composed of instances of parts from

the model.

� Step: where it is possible to create analysis steps and specify output re-

quests.

� Interaction: where mechanical interactions (such as contacts) between

regions is managed.

� Load : where loads and boundary conditions are de�ned.

� Mesh: where the mesh is generated.

� Job: where jobs are created and their progression is monitored.
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� Sketch: where a sketch 1 is created.

� Visualization: where the output database is analyzed.

The model is build up by moving from module to module. When the model is

completed, Abaqus/CAE generates the input �le to be submitted to the Abaqus

analysis product. The input �le is read by Abaqus/Explicit or Abaqus/Standard

and information are sent to Abaqus/CAE to allow the monitoring of the job

progression. At the end of the job, the output database is generated and it can

be read using the Visualization module in Abaqus/CAE.

Abaqus/CFD Abaqus/CFD is a Computational Fluid Dynamics software ap-

plication which is new to Abaqus 6.10.

This product is not used in this thesis, but it is here brie�y described. It is

very similar to Abaqus/CAE, but it provides more sophisticated computational

�uid dynamics capabilities with extensive support for pre-processing and post-

processing. With Abaqus/CFD it is possible to solve nonlinear coupled �uid-

thermal and �uid structural problems.

3.2 Analysis procedures

The simulation is the stage in which Abaqus/Standard or Abaqus/Explicit solves

the numerical problem de�ned in the pre-processing step. The analysis of the

problem and its solution may take seconds or day, depending on the power of the

computer and the number of variables.

Abaqus/Standard Abaqus/Standard is able to solve a wide range of linear

and nonlinear problems that involve either static or dynamic response of ele-

ments. Usually, models generated in Abaqus are nonlinear and can involve many

variables.

1A sketch is a 2D pro�le used to help de�ning the geometry in Abaqus/CAE. A sketch
might be extruded, swept, or revolved to form a 3D part.
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Let u be the variable of the problem and F the force component, the problem

is to �nd out the solution u, solving the equilibrium equation below:

F(u) = 0 (3.1)

This problem is history-dependent, so the solution should be �nd for a series

of �small� increments, using Newton's method. This numerical technique for

solving nonlinear equilibrium equation, was chosen due to its better convergence

rate compared to modi�ed Newton or quasi-Newton method2.

Newton's method says that after an iteration i, an approximation to the

solution ui is obtained. Let ci+1 be the di�erence between this solution and the

exact solution of equation (3.1). This means that:

F(ui + ci+1) = 0 (3.2)

Expanding this equation in Taylor series:

F(ui) +
∂F

∂u
(ui)ci+1 +

∂2F

∂2u
(ui)c

2
i+1 + ... = 0 (3.3)

Considering ui as close approximation to the exact solution, the magnitude of

each ci+1 will be small and so, all but the �rst two terms above can be neglected

giving a linear system of equations:

Kici+1 = −Fi (3.4)

where Ki =
∂F

∂u
(ui) is the sti�ness matrix and Fi = F(ui).

As the iteration continues, the next approximation to the solution is then:

ui+1 = ui + ci+1

If all entries in Fi and in ci+1 are small, convergence of the method is granted.

This is checked by default in Abaqus/Standard solution.

2This is true for the types of nonlinear problems that are usually studied with Abaqus.
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Newton's method needs to calculate the Jacobian matrix and solve linear

equations at every single iteration . Thus, this method is computationally ex-

pensive.

Abaqus/Explicit Abaqus/Explicit is able to solve problems that involve short,

transient dynamic events (impact, blast, earthquake) and is also very e�cient for

highly nonlinear problems involving contact conditions.

This procedure is based upon the implementation of an explicit integration

rule using diagonal or �lumped� element mass matrices. If the applied load vector

Fi is known, the internal force vector Ii and the diagonal lumped mass matrix

M, the accelerations at the beginning of the increment are:

üi = M−1 · (Fi − Ii)

The problem is to �nd the dynamic equilibrium of the rigid body at the time t

solving the equations below:

u̇i+ 1
2

= u̇i− 1
2

+
∆ti+1 + ∆ti

2
üi

ui+1 = ui + ∆ti+1u̇i+ 1
2

where:

u is the degree of freedom, displacement or rotation;

u̇ is the velocity

ü is the acceleration

i is the subscript that refers to the increment number in the dynamic analysis

i± 1
2
are the subscripts that refer to mid increment values.

Abaqus/Explicit is explicit because the kinematic analysis can process to that

next increment knowing values of u̇i− 1
2
and üi from previous increment.

This method is computationally e�cient if the mass matrix of the problem is

diagonal because its inversion is easier.

The explicit method does not require any iteration nor the calculus of the

tangent sti�ness matrix.
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Stability Using Abaqus/Explicit, the time incrementation scheme is automatic

and does not required any user intervention.

The explicit procedure integrates through time by using many small time

increments. Its stability is conditioned and the stability limit for the operator is

given in terms of the highest eigenvalue in the system as:

� ∆t ≤ 2/ωmax neglecting dumping;

� ∆t ≤ 2/ωmax · (
√

1 + ξ2max − ξmax) considering dumping (ξ is the fraction

of critical damping in the highest mode).

Abaqus/Explicit contains a global estimation algorithm, which determines the

maximum frequency of the entire model. This algorithm continuously updates the

estimate for the maximum frequency. Abaqus/Explicit initially uses the element

by element estimates. As the step proceeds, the stability limit will be determined

from the global estimator once the algorithm determines that the accuracy of

the global estimation is acceptable.

A conservative estimate of the stable time increment is given by the minimum

taken over all the elements.

∆t = min

(
Lc

cd

)

where

Lc is the characteristic element dimension;

cd is the current e�ective, dilatational wave speed of the material.

For beam, shell or membrane elements, the thickness of the element is not

considered as the smaller dimension, but stability is referred to mid-plane.

Time increments must be minor than the stability limit. If this condition is

not met, the solution of the problem would be instable.
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Chapter 4

Material models and results

The core of this thesis is the material model for masonry and the study of its

behavior under monotonic loading, cyclic loading and during in-plane cyclic shear

tests. As already said in the Introduction, an �equivalent� masonry (homogenized

material) was chosen, trying to use several material models already implemented

in Abaqus. The choice was made after a rough classi�cation of all possible

material implementations available in Abaqus. We look for a material model:

1. able to describe di�erent behavior in tension and compression;

2. with non-linear behavior in plastic branch;

3. possibly anisotropic1.

It was not considered the progressive damage of the material, which means we do

not consider the decreasing of Young's modulus during loading-unloading cycles.

The analyzed material models are described below, taking into account Abaqus

Theory Manual [27] de�nition.

For each selected material model, several tests are performed to chose the

parameters and check the accuracy of results proposed by the software:

1. uni-axial compression of a cube in force control and displacement control;

2. uni-axial tension of a cube in force control and displacement control;

1The intention is to �nd a material able to describe di�erent behavior not in tension and
compression, but also when the load direction changes.
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3. uni-axial cycles in force control;

After that, the simulation of real tests done on masonry specimens is carried out.

The tests implemented are:

1. vertical compression (in the direction normal to bed joints) of a jointed

panel in force control;

2. diagonal compression of a panel in force control.

Finally, a comparison of the results produced with the di�erent material models

is presented.

4.1 Materials

4.1.1 Concrete damaged plasticity

The �rst choice is the concrete damaged plasticity model. The aforementioned

model, implemented for both Abaqus/Standard and Abaqus/Explicit, provides a

general capability for the analysis of concrete structures (but is suitable also for

quasi-brittle materials) under cyclic and dynamic loading.

This constitutive theory wants to capture the irreversible e�ects of damage

that occur in concrete under low con�ning pressure. To describe this behavior,

the following features are considered:

1. the di�erent yield strengths in tension and compression (with the initial

yield stress in compression a factor of 10 or more higher than the initial

yield stress in tension);

2. softening behavior in tension as opposed to initial hardening followed by

softening in compression;

3. di�erent degradation of the elastic sti�ness in tension and compression;

4. sti�ness recovery e�ects during cyclic loading;

5. rate sensitivity, especially an increase in the peak strength with strain rate.

The theory references of this implementation are the models propose by Lubliner

[12] and by Lee and Fenves [9].
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Strain rate decomposition The rate independent model is governed by an

additive strain rate decomposition:

ε̇ = ε̇el + ε̇pl

where ε̇ is the total strain rate and the superscripts 'el' and 'pl' refer to the

elastic and plastic part of the strain rate respectively.

Stress-strain decomposition Stress-strain relations are:

σ = Del :
(
ε− εpl

)
= (1− d) Del

0 :
(
ε− εpl

)
where Del

0 is the initial undamaged elastic sti�ness of the material, Del is the

degraded elastic sti�ness and d is the scalar sti�ness degradation variable (un-

damaged material d = 0, fully damaged material d = 1). Hence, damage is

represented with an isotropic reduction of the elastic sti�ness with the scalar

factor d.

Thus, the Cauchy stress is:

σ = (1− d) σ̄

where the e�ective stress σ̄ is de�ne as σ̄
def
= Del

0 :
(
ε− εpl

)
. When damage

occurs, the e�ective stress σ̄ represent the e�ective stress area that is resisting

the external loads. This is why it is better to formulate the plasticity problem in

terms of σ̄.

Hardening variables There are two di�erent hardening variables: the equiva-

lent plastic strain in tension ε̃plt and the equivalent plastic strain in compression

ε̃plc . Let ε̇
pl the vector of the hardening variables, their evolution is de�ned as:

˙̃εpl = h
(
σ̄, ˙̃εpl

)
· ε̇pl

Besides micro-cracking and crushing, the hardening variables control also the evo-

lution of the yield surface and the degradation of the elastic sti�ness. Moreover
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they are related to the fracture energy required to generate micro-cracks.

Under uni-axial condition it means that the stress curves have the form:

σt = σt

(
ε̃plt , ˙̃εplt , θ, fi

)
(4.1)

σc = σc
(
ε̃plc , ˙̃εplc , θ, fi

)
(4.2)

the subscripts 't' and 'c' refer to tension and compression respectively;

˙̃εplt and ˙̃εplc are the equivalent plastic strain ratios, while

ε̃plt =
´ t
0

˙̃εplt dt and ε̃
pl
c =

´ t
0

˙̃εplc dt are the equivalent plastic strain in tension

and compression;

θ is the temperature and

fi (i = 1, 2, ...) are other �eld variables.

The e�ective plastic strain rates under uni-axial loading conditions are given

as:

˙̃εplt = ε̇pl11 in uniaxial tension

˙̃εplt = −̇εpl11 in uniaxial compression

Let σc be as a positive quantities representing the magnitude of uni-axial com-

pression stress, thus σc = −σ11.

Starting from any point of the strain softening branch of the stress-strain

curves, the response of the concrete specimen is weaker: the elastic sti�ness of

the material appears to be damaged (or degraded). The degradation of the elastic

sti�ness is signi�cantly di�erent between tension and compression tests (�gure

4.1, �gure 4.2), but either case show a more pronounced e�ect as the plastic

strain increases. The concrete degradation is described through two independent

variables dt and dc, which are increasing function of the equivalent plastic strain

ε̃pl, the temperature θ and �eld variables fi:

dt = dt
(
ε̃t
pl, θ, fi

)
0 ≤ dc ≤ 1 (4.3)

dc = dc
(
ε̃c
pl, θ, fi

)
0 ≤ dc ≤ 1 (4.4)

Thus, let E0 be the undamaged elastic sti�ness, the stress-strain relations under
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Figure 4.1: Concrete response under uni-axial loading in tension

Figure 4.2: Concrete response under uni-axial loading in compression
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uni-axial loading are:

σt = (1− dt)E0

(
εt − ε̃tpl

)
(4.5)

σc = (1− dc)E0

(
εc − ε̃cpl

)
(4.6)

The yield surface size is determined by the e�ective uni-axial cohesion:

σ̄t =
σt

(1− dt)
= E0

(
εt − ε̃tpl

)
(4.7)

σ̄c =
σc

(1− dc)
= E0

(
εc − ε̃cpl

)
(4.8)

Under uni-axial cyclic loading conditions the degradation involves the inter-

action of the micro-cracks that constantly open and close. The elastic sti�ness

recovers as the load changes sign and passes from tension to compression. Un-

der such condition, the elastic modulus is given as a function of the undamaged

modulus E0 and the sti�ness reduction variable d:

E = (1− d)E0

The sti�ness reduction variable d is a function of the uni-axial damaged

variables dt and dc:

(1− d) = (1− stdc) (1− scdt)

where st and sc represent the sti�ness recovery e�ects associated to stress re-

versals:

st = 1− wt · r∗(σ̄11) ; st ≥ 0 and 0 ≤ wt ≤ 1

sc = 1− wc · (1− r∗(σ̄11)) ; sc ≤ 1 and 0 ≤ wc ≤ 1

and

r∗(σ̄11) = H(σ̄11) =

1 if σ̄11 > 0

0 if σ̄11 < 0

The weight factors wt and wc describe material properties link to sti�ness

recovery. Figure 4.3 shows the default behavior used in Abaqus: the compressive

sti�ness is recovered upon crack closure as the load changes from tension to

compression (wt = 0), while the tensile sti�ness is not recovered as the load
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changes from compression to tension once crushing micro-cracks have developed

(wc = 1).

Figure 4.3: Uni-axial load cycle (tension-compression-tension) wt = 0 and wc = 1

Yield function The state of failure or damaged is represented, in the e�ective

stress space, by the yield function:

F
(
σ̄, ε̇pl

)
≤ 0

The �nal form of the plastic-damage concrete model, takes into account di�erent

evolution of strength under tension and compression:

F
(
σ̄, ε̇pl

)
=

1

1− α
(
q̄ − 3αp̄+ β

(
ε̇pl
) {

ˆ̄σmax
}
− γ

{
−ˆ̄σmax

})
(4.9)

where

p̄ = −
1

3
σ̄ : I is the e�ective hydrostatic pressure;
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q̄ =

√
3

2
S̄ : S̄ is the Mises equivalent e�ective stress;

S̄ = p̄ I + σ̄ is the deviatoric part of the e�ective stress tensor σ̄;

ˆ̄σmax is the maximum eigenvalue of σ̄.

Let σ̄c and σ̄t be the e�ective tensile and compressive cohesion stresses, respe-

ctively, thus the function β
(
ε̇pl
)
is:

β
(
ε̇pl
)

=
σ̄c
(
ε̃plc
)

σ̄t

(
ε̃plt

) (1− α)− (1 + α)

The coe�cient α can be determined from the initial equi-biaxial and uni-axial

compressive yield stress, σb0 and σc0, as:

α =
σb0 − σc0
2σb0 − σc0

Typical values of α are between 0.08 and 0.12.

The Macaulay brackets are used to describe the ramp function:

{
ˆ̄σmax

}
=

0, ˆ̄σmax < 0

ˆ̄σmax, ˆ̄σmax ≥ 0
and

{
−ˆ̄σmax

}
=

0, ˆ̄σmax ≥ 0

ˆ̄σmax, ˆ̄σmax < 0

thus, in bi-axial compression, when ˆ̄σmax = 0, equation 4.9, reduces to the

Drucker-Prager yield condition.

The coe�cient γ enters in equation 4.9 only when the specimen is subjected

to tri-axial compression and ˆ̄σmax ≤ 0 (typical value for concrete is γ = 3).

Figure 4.4, shows a typical yield surface in the deviatoric plane for plane-stress

condition. It can be noted that besides all similarities that can be pointed out

looking at the yield surface of �gure 4.4 and Lourenço's yield criterion (�gure

2.8), the Concrete Damaged plasticity model is not able to reproduce di�erent

behavior of the material when load changes direction.
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Figure 4.4: Yield surface in plane stress

Flow rule The �ow potential G governs the plastic �ow with the �ow rule,

thus:

ε̇pl = λ̇ ·
∂G (σ̄)

∂σ̄

where λ̇ is the non-negative plastic multiplier that obey, together with the yield

function F , the Kuhn-Tucker conditions.

G is the Drucker-Prager hyperbolic function:

G =

√
(ε · σt0 · tanψ)2 + q̄2 − p̄ · tanψ

where ψ is the dilation angle measured in the p− q plane at high con�ning pres-

sure, σt0 is the uni-axial tensile stress at failure and ε is a parameter that describes

the rate at which the function approaches its asymptote (the �ow potential tends

to a straight line as the eccentricity tends to zero). This �ow potential, which is

continuous and smooth, ensures that the �ow direction is de�ned uniquely. The
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function asymptotically approaches the linear Drucker-Prager �ow potential at

high con�ning pressure stress and intersects the hydrostatic pressure axis at 90°.

4.1.2 Concrete smeared cracking

The second material chosen was the concrete smeared cracking model, provided

in Abaqus/Standard for plain concrete. Reinforced concrete can be modeled by

using rebar elements, but their behavior is independent of the concrete behavior.

This approach does not take into account the interaction between rebar and

concrete, but there are some aspects able to reproduce this link in reinforced

concrete (for example the �Tension Sti�ening� option allow to simulates the load

transfer across cracks).

This constitutive theory focuses mainly on cracking which is the most im-

portant aspect described and it occurs when stresses reach the �crack detection

surface�.

Other important features taken into account in the model are here brie�y

described:

1. The concrete behavior is intended for relatively monotonic loading under

low con�ning pressure; the model neglects any permanent strain associated

with cracking: cracks can close completely when the stress across them

becomes compressive.

2. The model does not track individual macro-cracks, but it is intended to

detect crack directions at a single constitutive calculation point. Once

cracks appear at a point, the component forms of all vector and tensor

valued quantities are rotated so that they lie in the local system de�ned by

the crack orientation vectors and normal to the crack faces.

3. The model puts together a �compressive� yield surface (a simple Coulomb

line written in terms of p and q) and a �crack detection� failure surface

(that represent cracks that occur at a material calculation point in tension,

�gure 4.5).

However several concerns raised against such model. The most important is that

the �nite element results do not converge to a unique solution. Mesh sensitivity

50



4. MATERIAL MODELS AND RESULTS 4.1. Materials

Figure 4.5: Concrete failure surfaces in plane stress

happens because the model simpli�es the concrete behavior and the third stress

invariant would be needed to improve this aspect of the material model.

Moreover, as already said for the concrete damaged plasticity model, also this

material model is not able to reproduce di�erent behavior of the material when

load changes direction.

4.1.2.1 Elastic-plastic model

Strain rate decomposition The strain rare decomposition, associated to the

compressive behavior is:

ε̇ = ε̇el + ε̇plc (4.10)

where ε̇ is the total mechanical strain rate, ε̇el is the elastic strain rate (that

includes crack detection strain) and ε̇plc is the plastic strain rate related to the

�compression� surface.
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Compression yield function The compression surface is de�ned by:

fc = q −
√

3 · a0 · p−
√

3 · τc = 0 (4.11)

where

p = −
1

3
· Tr (σ) is the e�ective pressure stress;

q =

√
3

2
S : S is the Mises equivalent e�ective stress;

S = pI + σ is the deviatoric part of the e�ective stress tensor σ;

a0 is a constant chosen from the ratio of the ultimate stress reached in

bi-axial compression to the stress reached in uni-axial compression;

τc is a hardening parameter.

The constant a0 depends on the user's data. In uni-axial compression, let σc be

the stress magnitude, thus

p =
1

3
· σc and q = σc

therefore, on the yield surface fc = 0:

τc

σc
=

(
1
√

3
−
a0

3

)
(4.12)

Moreover, in bi-axial compression:

p =
2

3
· σc and q = σbc

where σbc is the magnitude of each nonzero principal stress, thus on the yield

surface (fc = 0), it results that:

τc

σbc
=

(
1
√

3
−

2a0

3

)
(4.13)
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The a0 constant can be easily calculated from equation 4.12 and equation 4.13

a0 =
√

3 ·
1− rσbc
1− 2rσbc

(4.14)

where rσbc =
σubc

σuc
≈ 1.16.

Hardening variables Hardening is de�ned by specifying the magnitude of

the stress |σ11| in uni-axial compression tests as a function of the inelastic strain

magnitude |ε11|. The aforementioned data are used to de�ne τc as follow:

τc =

(
1
√

3
−
a0

3

)
σc (4.15)

Flow rule The model uses associated �ow, so ε̇plc = 0 unless fc = 0 and

λ̇c > 0 and:

ε̇plc = λ̇c

1 + c0

(
p

σc

)2
 ∂fc

∂σ
(4.16)

where c0 is a constant chosen so that the ratio of
(
εpl11

)
bc

in a monotonically

loaded bi-axial compression tests to
(
εpl11

)
c
in a monotonically loaded uni-axial

compression tests is a value (rεbc) speci�ed by the user as part of the failure

surface date (usually rεbc ≈ 1.28).

c0 is derived from the user's de�nition of rεbc, starting from the gradient of

the �ow potential for the compressive surface, thus:

∂fc

∂σ
=
∂q

∂σ
−
√

3 · a0 ·
∂p

∂σ

Since

∂p

∂σ
= −

1

3
I and

∂q

∂σ
=

3

2
·
S

q
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then, the gradient of the �ow potential is:

∂fc

∂σ
=

3

2
·
S

q
+

a0√
3
· I

In uni-axial compression (p = 1
3
σc, q = σc and S11 = −2

3
σc), the integral of

equation 4.16 gives:

(
εplc
)c
11

= λc

(
1 +

c0

9

)(
a0√

3
− 1

)

while in bi-axial compression when both nonzero principal stresses have the mag-

nitude σb0 and

p = 2
3
σbc = 2

3
· rσbcσc , q = σbc = rσbcσc and S11 = −1

3
· rσbcσc

the �ow rule gives

(
εplc
)bc
11

= λc

(
1 +

4

9
(rσbc)

2 c0

)(
a0√

3
−

1

2

)

4.1.2.2 Crack detection

When the stress is predominantly tensile, cracking and post-cracking behavior

are the most important aspects of the material implementation. The model take

advantage of a �crack detection� plasticity surface in stress space to determine

when cracking takes place and the orientation of the cracking. Then the post

failure behavior of cracked concrete is described with damaged elasticity.

Numerically, the �crack detection� plasticity model is used for the increment

in which cracking takes place, while, once the cracks presence and orientation

have been detected, the damaged elasticity is used. When a crack is detected, its

orientation is stored for subsequent calculations: subsequent cracks at the same

point are restricted to being orthogonal to the �rst crack direction (thus no more

than three cracks can occur) since stress components associated with an open

crack are not included in the de�nition of the failure surface used for detecting

the additional cracks. Cracks are not recoverable, but may open and close.
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For the post-crack behavior, we assume that the fracture energy required to

form a unit area of crack surface Gf is a material property and such a value

can be calculated from measuring the tensile stress as a function of the crack

opening displacement:

Gf =

ˆ
σtdu

But, with this assumption, when the elastic part of the displacement uel is elimi-

nated, the relationship between the stress and the remaining part of the displace-

ment (ucr = utot− uel) is �xed, regardless of the specimen size. For this reason,

the strain is multiplied by a characteristic length associated with the integration

point. This characteristic crack length is based on the element geometry and

formulation.

Strain rate decomposition The elastic strain rate ε̇el of equation 4.10 is

decomposed as follow:

ε̇el = ε̇d
el + ε̇plt

where ε̇d
el is the elastic strain rate and ε̇plt is the plastic strain rate associated

with the crack detection surface.

Yield function The �crack detection� surface (Coulomb line) has a simple

mathematical form but matches plane stress data quite well:

ft = q̂ −

(
3− b0

σt

σut

)
p̂−

(
2−

b0

3

σt

σut

)
(4.17)

where

σut is the failure stress in uni-axial tension

q̂ and p̂ are de�ned in the same way as p and q, except that all stress compo-

nents associated with open cracks are not included in these measures,

but they are invariants in subspaces of the stress space.

b0 is a constant.
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The constant b0 is function of the failure surface and is de�ned from the value

of the tensile failure stress σI in a state of bi-axial stress when the other nonzero

principal stress σII is at the uni-axial compression ultimate stress value σuc

Flow rule The crack detection model uses the assumption of associated �ow,

thus for ft = 0 and λ̇t > 0,

ε̇plt = λ̇t
∂ft

∂σ
(4.18)

otherwise ε̇plt = 0.

Hardening variables Tension sti�ening behavior is de�ned by introducing the

magnitude of of the stress σt in uni-axial tension, when S11 = 2
3
σt and q = σt.

Equation 4.18 and equation 4.17 give, with the assumption of uni-axial tension:

ε̇plt = λ̇t

(
2−

b0

3
·
σt

σut

)

Hence the σt(λt) relationship is obtained from the tension sti�ening input data

by integrating the above equation.

4.1.2.3 Damaged elasticity

After crack is detected, the damaged elasticity is used to model the failed mate-

rial. Let D be the elastic sti�ness matrix, thus:

σ = D : εel

Let α be a crack direction, the corresponding stress and strain are: σαα and

εelαα. When cracks occur and εopenαα > εelαα > 0, it results:

Dαα =
σopenαα

εopenαα

where σopenαα is the stress corresponding to εopenαα .
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4.1.3 Extended Drucker-Prager

The Extended Drucker-Prager model was then studied. This family of model is

suitable for frictional materials and is used when typical characteristics of granular

materials are shown, such as:

1. Yield surface is independent from pressure and the material becomes stronger

as the pressure increases;

2. Compressive yield strength is greater that the tensile yield strength;

3. Hardening and softening are isotropic;

4. Volume changes with inelastic behavior;

5. The material response is implemented for essentially monotonic loading.

This model needs linear elastic behavior if creep is de�ned, but in other cases the

porous elastic model can be used too. Besides that, anisotropy can't be de�ned

and it was already noticed that this aspect is important to model the diagonal

tests and the in-plane cyclic tests.

4.1.4 Cast Iron Plasticity

The cast iron plasticity model was developed for constitutive modeling pf gray

cast iron, which is more brittle than most metals. This brittleness is due to the

micro-structure of the material which is a distribution of graphite �akes in a

steel matrix. In tension the graphite �akes act as stress concentrators, leading

to an overall decrease in mechanical properties (such as yield strength). In

compression, on the other hand, the graphite �akes serve to transmit stresses,

and the overall response is governed by the response of the steel matrix alone.

Thus, the macroscopic characteristics of this material are:

1. di�erent yield strengths in tension and compression, with the yield stress

in compression being a factor of three or more higher than the yield stress

in tension;
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2. inelastic volume change in tension, but little or no inelastic volume change

in compression;

3. di�erent hardening behavior in tension and compression.

A Mises-type yield condition along with an associated �ow rule models the ma-

terial response under compressive loading, but this assumption is not true for

tensile loading, then a pressure-dependent yield surface is required to model the

brittle behavior in tension.

Even if this material model seems to be good for the �equivalent masonry�,

no trials were done to simulate the masonry behavior because this material, as

all the other, does not allow to consider anisotropy, which is important to model

the diagonal tests and the in-plane cyclic tests.

4.1.5 Porous Metal Plasticity

Another attempt has been made with the porous metal plasticity model. A

preliminary study of the material was carried out, before starting the calibration

of the model. The study revealed the fact that this model does not allow to

model the di�erent behavior in compression and tension.

The formulation is based on the yield condition suggests by Gurson:

F =

(
q

σy

)2

+ 2 · q1 · f · cosh

(
−

3

2
·
q2 · p
σy

)
−
(
1 + q3 · f 2

)
= 0 (4.19)

where

p = −
1

3
σ : I is the e�ective pressure stress;

q =

√
3

2
S : S is the Mises equivalent e�ective stress;

S = pI + σ is the deviatoric part of the e�ective stress tensor σ;

σy is the yield stress;
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f is the fraction of the voids in the material;

q1, q2, q3 are the coe�cients of the void volume fraction and pressure terms.

Lets take the case of uni-axial tension where:

p = −
1

3
· σ11 and q = σ11

equation 4.19 becomes:

F =

(
σ11
σy

)2

+ 2 · q1 · f · cosh

(
3

2
·
q2

σy
·

1

3
· σ11

)
= C (4.20)

where C = (1 + q3 · f 2).

The hyperbolic cosine is an even function and in this case is summed to a

always positive quantity, thus the di�erence in behavior related to the sign of σ11

is minimum.

For this reason, the porous metal plasticity model has been rejected and no

simulation where done with this implementation.

4.2 Discussion of results

As already said at the beginning of this chapter, for each material chosen, several

tests are performed to chose the parameters and check the accuracy of results

proposed by the software. Tests run for calibration are:

1. uni-axial compression of a cube in force control and displacement control;

2. uni-axial tension of a cube in force control and displacement control;

3. uni-axial cycles in force control.

For some parameters, these tests are not enough for a good calibration as di�erent

values do not change the material behavior: in these cases calibration is concluded

with the �rst test on the jointed specimen.

After the �rst step, the simulation of real tests done on masonry specimens

is carried out. The tests implemented are describe in section 4.2 and are:
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1. vertical compression (in the direction normal to bed joints) of a jointed

panel in force control;

2. diagonal compression of a panel in force control.

If the simulations lead to satisfactory results, the simulation of in plane cyclic test

is performed and �nally, a comparison of results produced with di�erent material

is done 2.

The reference σ − ε diagram for the compression tests comes from the sixth

specimen proved in the vertical compression test (�gure 4.6).
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Figure 4.6: Reference σ − ε diagram

2During these simulations the element used are C3D8R, that means 8-node linear brick,
reduced integration, hourglass control (for more details see [23])
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4.2.1 Concrete damaged plasticity

The concrete damaged plasticity model is described in part 4.1.1. Here, the

parameters needed to de�ne the concrete damaged plasticity model are analyzed;

the following data need to be characterize:

1. Dilation angle: ψ (in degrees) in the p�q plane.

2. Eccentricity: ε a small positive number that de�nes the rate at which the

hyperbolic �ow potential approaches its asymptote (default ε = 0.1)

3. fb0/fc0: that is σb0/σc0, the ratio of initial equi-biaxial compressive yield

stress to initial uni-axial compressive yield stress (default σb0/σc0 = 1.16)

4. K: Kc must satis�ed the yield condition, thus 0.5 < Kc < 1 (default

Kc = 2/3)

5. Viscosity Parameter: µ is used for the visco-plastic regularization on the

constitutive equation in Abaqus/Standard analysis (default µ = 0.0)

The values used for the �rst analysis are the default ones. If a parameter is

unknown, starting from the default value, some tests are performed to see how

the stress-strain diagram changes. Table 4.1 shows the parameters picked for

the �rst compression test and table 4.2 the ones chose after calibration.

Table 4.1: Parameters (�rst test)

ψ ε σb0/σc0 Kc µ

37° 0.1 1.16 0.67 0.0

Table 4.2: Parameters (after calibration)

ψ ε σb0/σc0 Kc µ

47° 0.1 1.00 0.51 0.0
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Figure 4.7: Comparison for di�erent value of ψ
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Figure 4.9: Comparison for di�erent value of Kc

Tests shown in �gures 4.7, 4.8, 4.9 are carried out for a jointed specimen, to

see how di�erent parameters value can change the �equivalent masonry� behavior.

In all diagrams only one parameter is made to vary while others are kept �xed.

Moreover the �compressive behavior� and the �tensile behavior� have to be

de�ned.

The compression behavior outside the elastic range is de�ned with a tabular

function of stress σc over the inelastic deformation ε̃inc (see �gure 4.10). Abaqus

automatically converts the inelastic strain values to plastic strain values.

If we de�ne the elastic strain:

εelc0 =
σc

E0

through the relationship:

ε̃inc = εc − εelc0
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the plastic strain value is obtained:

ε̃plc = ε̃inc −
dc

(1− dc)
·
σc

E0

Figure 4.10: De�nition of compressive inelastic strain

Table 4.3: Compressive behavior

Yield Stress [MPa] Inelastic strain

1.05 0
1.50 0.000261
2.13 0.000696
2.60 0.001172
2.94 0.001981
3.25 0.002524
3.31 0.003379
3.39 0.004254
3.38 0.004555
3.34 0.004864
3.31 0.005064
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Table 4.3 describe the tabular data introduced in Abaqus to de�ne the com-

pressive behavior of the material model used.

The tensile behavior after crack can be de�ned in two di�erent ways. The

�rst one de�nes the post-failure behavior giving the post-failure stress σt as a

function of cracking strain ε̃int (as happens in compression.). Figure 4.11 shows

the de�nition of ε̃int . This kind of approach introduces mesh sensitivity in case

of no reinforcement. Thus, as masonry is without reinforcements, its tensile

behavior after cracks is de�ned as a function of the fracture energy Gf required

to open a unit area of crack.

Under tension a concrete specimen will crack across some section. The cracks

opening do not depend on the specimen's length. The post-failure stress can

be de�ned as a tabular function of cracking displacement or of the associated

fracture energy. This last model assumes a linear loss of strength after cracking

(�gure 4.12).

Figure 4.11: De�nition of tensile inelastic strain

A typical value of Gf for unreinforced concrete is 40 N/m, thus for masonry,

a value ranging between 5 N/m and 10 N/m was taken into account.
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Nevertheless, despite this de�nition of tensile behavior, some mesh sensitivity

remains. The model requires a characteristic length (based on the element ge-

ometry and formulation) associated with an integration point; the characteristic

crack length is automatically decided by the software.

Figure 4.12: Post-failure stress-fracture energy curve

Damage is de�ned through dt and dc which are de�ned in part 4.1.1 and can

be speci�ed in tabular form, but in this case they are not required.

As already discussed in part 4.1.1, the sti�ness recovery is an important

aspect of concrete de�nition. In this case, the behavior of masonry correspond

to the default condition in Abaqus; it means that wt = 0 and wc = 1 (as already

shown in �gure 4.3).

The elastic properties must be de�ned to run the analysis: the Young's mod-

ulus �nd out during the experimental tests was E = 2550 MPa, but to better

simulate the masonry behavior a new modulus was used. The new sti�ness is:

Enew = 1.5 · E = 3825 MPa

The Poisson's ratio introduced is ν = 0.19.

The �rst implemented tests are carried out under uni-axial condition. Figure

4.13 shows a comparison, for the test of uni-axial compression of a cube, between

force and displacement control. The diagram shows also the envelope of the σ−ε
trend for the sixth specimen. It must be said that the parameters chosen well

simulate the behavior expected in compression under uni-axial condition.
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For what concern the behavior in tension, no data are available. Figure 4.14

shows a comparison between force and displacement control in a uni-axial tension

test of a cube.

Figure 4.15 represent the comparison between the experimental results and

the numerical Abaqus results for a cube under uni-axial cycles in force control

(Table 4.4). Even for cyclic load, Abaqus can follow masonry's behavior. Tests in

force control aborted at the maximum value of σ is reached, while in displacement

control the post-peak behavior is observed.

Uni-axial tests do not represent the real boundary condition of the specimen.

Thus, more tests are done on specimen of the same dimension of the one describe

in Chapter 1 subjected to vertical compression. With a jointed base, the material

behavior changes. Figure 4.16, shows the behavior of the material implemented

(in a compression test drove both in displacement and force control) compared

to the expected behavior. As for uni-axial tests, simulations run in force control

aborted as the maximum value of σ is achieved. The �General, Static� procedure

does not allow to follow the σ−ε diagram. A �Risk, Static� procedure is needed,

but with this type of analysis, no loading cycles are permitted.
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Figure 4.13: Comparison between experimental and numerical data in uni-axial
compression
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Figure 4.14: Behavior of the masonry material model in uni-axial tension
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Figure 4.15: Comparison between experimental and numerical data uni-axial
cycle
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Table 4.4: Load cycles

Time [s] Pressure [MPa]

0 0
20 0.2
80 0.2
100 0
160 0
200 0.4
260 0.4
300 0
360 0
420 0.6
480 0.6
540 0
600 0
700 1.0
760 1.0
860 0
920 0
1060 1.4
1120 1.4
1260 0
1320 0
1500 1.8

Time [s] Pressure [MPa]

1560 1.8
1740 0
1800 0
2020 2.2
2080 2.2
2300 0
2360 0
2620 2.6
2680 2.6
2940 0
3000 0
3300 3.0
2360 3.0
3660 0
3720 0
4060 3.4
4120 3.4
4460 0
4520 0
4900 3.8
4960 3.8
5340 0

The results obtained through simulations, especially the ones under cyclic

loading, although they are good in the �rst part of the test, do not lead to

satisfactory conclusions.

During diagonal tests, no better results are collected: as can be observed in

�gure 4.18, the material behaves in the same way as in vertical compression.

Infact, no anisotropy can be de�ned with the concrete damaged plasticity model

and this fact leads to the same results obtained in vertical compression tests.
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Figure 4.16: Vertical compression of a masonry panel: comparison between ex-
perimental and numerical data
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Figure 4.17: Comparison between experimental and numerical data uni-axial
cycle
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Figure 4.18: Comparison between experimental and numerical data: diagonal
compression test
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4.2.2 Concrete smeared cracking

The concrete smeared cracking model is used to de�ned the properties of plain

concrete outside the elastic range in Abaqus/Standard analysis. This material

implementation is good for monotonic loadings under low con�ning pressure.

The most important aspect of the model is cracking and its representation. The

data needed to characterize the material behavior are (table 4.5 shows the values

used for the simulation):

1. Comp Stress: the absolute value of compressive stress σtrue;

2. Plastic Strain: the absolute value of plastic strain, which is de�ne as:

εplln = ln (1 + εnom)−
σtrue

E

Table 4.5: Concrete smeared cracking values

Comp Stress [MPa] Plastic Strain

1.05 0
1.50 0.000261
2.13 0.000696
2.60 0.001172
2.94 0.001981
3.25 0.002524
3.31 0.003379
3.39 0.004254
3.38 0.004555
3.34 0.004864
3.31 0.005064

Several sub-options can be selected to better characterize the post-failure

behavior for direct straining across the cracks (�Tension Sti�ening�), how shear

sti�ness diminishes as the concrete cracks (�Shear Retention�) and, �nally, the

shape of failure surface (�Failure Ratios�).

The �Tension sti�ening� option allows to de�ne the strain-softening beha-

vior for cracked concrete, by means of a post-failure stress-strain relation or
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by applying a fracture energy cracking criterion. In this case, the post-failure

behavior is de�ned as a function of the displacement at which a linear loss

of strength after cracking gives zero stress. This approach is chosen to avoid

mesh sensitivity problems related to the stress-strain de�nition. A value of u0 =

5 · 10−5 m is introduced.

When crack occurs, the material's shear sti�ness diminishes. This e�ect can

be de�ned specifying the reduction in the shear modulus as a function of the

opening strain across the crack. A reduced shear modulus for closed cracks

can also be de�ned. When �Shear Retention� is not de�ned, Abaqus/Standard

automatically assumes a full shear retention material, which is true in case where

the response does not dependent on shear retention. The data required are:

1. �Rho_close�: ρclose is the multiplying factor that de�nes the modulus for

shearing of closed cracks as a fraction of the elastic shear modulus of the

uncracked concrete (default ρclose = 1)

2. �Eps_max�: εmax is the maximum direct strain across the crack (default:

full shear retention).

For the �rst simulation, the default values are used.

The �Failure Ratios� are used to de�ne the shape of the failure surface:

1. �Ratio 1� is the ratio of the ultimate bi-axial compressive stress to the

uni-axial compressive ultimate stress (default 1.16)

2. �Ratio 2� is the absolute value of the ratio of uni-axial tensile stress at

failure to the uni-axial compressive stress at failure (default 0.09)

3. �Ratio 3� is the ratio of the magnitude of a principal component of plastic

strain at ultimate stress in bi-axial compression to the plastic strain at

ultimate stress in uni-axial compression (default 1.28)

4. �Ratio 4� is the ratio of the tensile principal stress value at cracking in

plane stress, when the other nonzero principal stress component is at the

ultimate compressive stress value, to the tensile cracking stress under uni-

axial tension (default 1/3)
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Starting from default values, after some compression tests, the parameters shown

in table 4.6 were chosen.

Table 4.6: Failure Ratios

Ratio 1 Ratio 2 Ratio 3 Ratio 4

2 0.041 1.28 1.45

Tests shown in �gures 4.19 and 4.20 are carried out for a jointed specimen, to

see how di�erent parameters value can change the �equivalent masonry� behavior.

In all diagrams only one parameter is made to vary while others are kept �xed.
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Figure 4.19: Comparison with di�erent value of �Ratio 1� (compression)

The following �gures (4.21, 4.22, 4.23, 4.24, 4.25) show the results achieved

in force (and displacement) control for uni-axial compression, tensile and cyclic

tests and simulations performed on the jointed specimen. As in the previous case,

no problems raised neither in the uni-axial case nor during the compression of

the specimen trapped to the base. However, with cyclic loading, the simulation

stops after a few cycles. Several trial were done with di�erent time increments

∆t but results do not change and analysis aborts at the same point. This fact is

due to less robustness of the material implementation.
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Figure 4.20: Comparison with di�erent value of �Ratio 2� (compression)
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Figure 4.21: Comparison between experimental and numerical data in uni-axial
compression
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Figure 4.22: Behavior of the masonry material model in uni-axial tension
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Figure 4.23: Comparison between experimental and numerical data in uni-axial
cycle
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Figure 4.24: Comparison between experimental and numerical data of a wall
specimens in compression
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Figure 4.25: Comparison between experimental and numerical data of a wall
specimens during loading cycle
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Also for the concrete smeared cracking model, during diagonal tests, no bet-

ter results are collected: the material still behaves in the same way as in vertical

compression. Infact, no anisotropy can be de�ned with the concrete damaged

plasticity model and this fact leads to the same results obtained in vertical com-

pression tests.
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Figure 4.26: Comparison between experimental and numerical data: diagonal
compression test
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Chapter 5

A User Model take from

literature

As can be seen from results described in Chapter 4, materials already implemented

in Abaqus do not allow to easily model masonry behavior. Masonry needs a

particular constitutive model able to take into account all the characteristics

already described, such as the abilities to:

1. describe di�erent behavior in tension and compression;

2. simulate non-linear behavior in plastic branch;

3. simulate anisotropic behavior.

Numerical results in monotonic and cyclic uni-axial tests well simulate the ma-

sonry behavior available from experimental tests. Besides that, when boundary

conditions change, numerical problems do not allow to simulate the masonry's

real behavior.

The literature presents a study carried out by Dhanasekar and Haider[3]. In

their paper, an explicit �nite element modeling technique able to simulate non-

linear events is presented. The object of their research was masonry shear walls

�rst tested and then modeled through the use of Abaqus.

The model includes a user subroutine able to simulate masonry behavior.

Abaqus/Explicit provides an interface (VUMAT in Abaqus/Explicit, UMAT in

Abaqus/Standard) able to link the user material subroutine with the analysis
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program. The material was then implemented as a FORTRAN program and

incorporated as a VUMAT subroutine.

However explicit procedures are developed to solve dynamic problems such

as impact events where inertia is the most important character in the solution,

while tests modeled are pseudo-static. But, besides that, this procedure has also

worked out good solutions in static problems if several precautions are taken

during analysis.

Static solutions consider the time period, but it is not e�cient to perform

analysis in natural scale. For this reason, events must be sped up without in-

volving inertia e�ects. Some option can be used for achieving this purpose, such

as increasing the loading rate and the mass density. Moreover for avoiding sud-

den movements which cause inaccuracy in solutions, loads must be applied as

smooth as possible. Abaqus allow user in this work with the option �smooth step

amplitude�.

Another important check to see if the explicit analysis gives compatible static

solutions regards the energy of the system analyzed: it should be that the kinetic

energy stays is less than 10% of the Internal energy of the system. To have static

solution the density has been increased with a factor of g2.

The starting point for the VUMAT was Lourenço macro-modeling [10] brie�y

summarized in section 2.5 and here described in more details.

Lourenço's plane-stress model considers, a compressive yield criterion (de-

rived from Hill yield surface) associated with a localized fractured process, and a

tensile yield criterion (that refers to Rankine yield surface) associated to a more

distributed fracture process1.

Hill-type criterion In compression a Hill-type criterion is used. It must be sim-

ple and able to features di�erent compressive strength along x and y directions,

thus it is:

f2 = Aσ2
x +Bσxσy + Cσ2

y +Dτ 2xy − 1 = 0 (5.1)

1During these simulations the element used are CPS4R, that means 4-node bi-linear plane
stress quadrilateral, reduced integration, hourglass control (for more details see [23])
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A, B, C and D are material parameters de�ned as functions of the yield

values σcx(kc) and σcy(kc) along the material axes x and y :

A =
1

[σcx(kc)]
2 B =

β

[σcx(kc)] [σcy(kc)]

C =
1

[σcy(kc)]
2 D =

γ

[σcx(kc)] [σcy(kc)]

kc is a scalar able to control hardening and softening, while β is responsible

of rotation of the yield surface around the shear stress axis and γ of the shear

stress contribution to failure.

Rankine-type criterion In tension a Rankine-type yield criterion for orthotropic

material is used with di�erent tensile strengths along x and y directions:

f1 =
(σx − σtx(kt)) + (σy − σty(kt))

2
+

√√√√( (σx − σtx(kt))− (σy − σty(kt))
2

)2

+ ατ 2xy

(5.2)

where α is a parameter able to control the shear stress contribution to failure

and given as a function of the uni-axial tensile strengths ftx and fty and the pure

shear strength τ 2u :

α =
ftx · fty
τ 2u

σtx(kt) and σty(kt) are the exponential tension softening parameters for the

two normal directions given by:

σtx = ftx exp

(
−
h · ftx
Gfx

· kt

)
σty = fty exp

(
−
h · fty
Gfy

· kt

)

h is the characteristic length of elements (it depends on the mesh) and Gfx

and Gfy are the fracture energies of masonry along the x and y directions.
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Parameters This anisotropic composite yield criterion needs several parame-

ters to be identi�ed. In particular, seven strength parameters, such as ftx, fty,

fcx, fcy, α, β and γ, and �ve inelastic parameters, such as Gfx, Gfx, Gfx, Gfx

and kp. Figures 5.1 and 5.2 show tests needed to calibrate the model. With

these tests, the model parameters α, β and γ are:

α =
1

9
·

(
1 + 4

ftx

fα

)(
1 + 4

fty

fα

)

β =

[
1

f 2
β

−
1

f 2
cx

−
1

f 2
cy

]
fcxfcy

γ =

[
16

fγ
− 9

(
1

f 2
cx

+
β

fcxfcy
+

1

f 2
cxy

)]
fcxfcy

Figure 5.1: Tests to calibrate the model: uni-axial tension (a) parallel to bed
joints and (b) normal to bed joints; uni-axial compression (c) parallel to bed
joints and (d) normal to bed joints [10]

The VUMAT subroutine described in [3] needs 21 parameters for describ-

ing the masonry material model: table 5.1 shows and describes them. Values

reported are the ones used by Haider in [15] for the analyses of wide spaced re-

inforced masonry (referred as WSRM) and unreinforced masonry panels (URM).

The masonry considered is made up of clay blocks in single leaf

Energy for compression failure parallel to bed joints Gfcx and normal to bed

joints Gfcy are calculated from the relation proposed by Lourenço [10]:
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Figure 5.2: Possible tests to calibrate the model and calculate (a) parameter α,
(b) parameter β and (c) parameter γ, [10]

fci =

[
75

67

GfciEi

h

]0.5
The fracture energies Gtx and Gty come from:

fti =

[
GfiEi

h

]0.5
Finally, the shear modulus is de�ned as:

G =

√
ExEy

2 (1 + ν)

All these parameters can be easily determined with the tests described before

(see �gures 5.1 and 5.2), but unfortunately no data referring to this characteris-

tics are available now on our type of masonry which is really di�erent from the

one tested in [15, 3]. Moreover, data need for a good calibration of the model

cannot be determined from the information already derived from experimental

tests.

Besides that, several attempts were done to better know the subroutine and

see if results described by Dhanasekar and Haider [15, 3] are reproducible. Infact,

many problems arise starting from the Abaqus version used in the �rst part of this

work and regarding the interaction between Abaqus and the FORTRAN compiler
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Table 5.1: Material parameters for unreinforced masonry

N. Par. Value Units Description

1 ftx 0.60 MPa Tensile strength parallel to bed joints

2 Gtx 1.00 N−mm/mm2 Fracture energy parallel to bed joints

3 fty 0.35 MPa Tensile strength normal to bed joints

4 Gty 0.50 N−mm/mm2 Fracture energy parallel to bed joints

5 α 1.25 - Shear stress contribution factor to the tension failure

6 αg 1.00 - Mathematical variable for plastic �ow of masonry

7 fcx 3.00 MPa Compressive strength parallel to bed joints

8 Gfcx 0.302 N−mm/mm2 Energy for compression failure parallel to bed joints

9 fcy 18.00 MPa Compressive strength normal to bed joints

10 Gfcy 4.35 N−mm/mm2 Energy for compression failure normal to bed joints

11 β -1.17 - Bi-axial compressive strength factor

12 γ 4.00 - Shear stress contribution factor to compression failure

13 h mm Characteristic length of critical elements

14 kp 0.0025 - Strain compression failure

15 Ex 6000 MPa Young's Modulus of masonry parallel to bed joints

16 Ey 15000 MPa Young's Modulus of masonry normal to bed joints

17 Ez
2 1E-03 MPa Young's Modulus of masonry along thickness direction

18 νx 0.20 - Poisson's Ratio of masonry parallel to bed joints

19 νy 0.20 - Poisson's Ratio of masonry normal to bed joints

20 νz
3 1E-07 - Poisson's Ratio of masonry along thickness direction

21 G 3953 MPa Shear Modulus of masonry

needed to run the analysis.

The �rst comparison made regards the modal analysis done to compute the

natural frequency of the URM; �gure 5.3 shows the �rst mode of vibration from

[15] (natural frequency equal to 101.78 Hz, natural time period equal to 0.01 sec)

and �gure 5.4 shows results obtained during simulations (natural frequency equal

to 102.78 Hz, natural time period equal to 0.01 sec)

Another test was made for evaluate if strain and stress patterns are the com-

parable. After 2 mm of horizontal displacement, results are shown in �gures 5.6

and 5.7, while �gure 5.5 shows patters from Haider's simulations. The patterns

are quite di�erent and these di�erences may be due to di�erent characteristic

lengths and di�erent step time used in the analyses. Also �gure 5.8 and �gure 5.9

represent the normalized horizontal load versus the horizontal displacement and
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show that results are di�erent and the cause is that a more accurate study should

be made on step time and on the right characteristic lengths. The normalized

load is:

H =
HFem

0.22 ·
√
fm · Ag

· 103

where HFem is the horizontal load calculated from the model, fm is the peak

value of compressive strength equal to 13.7 MPa and Ag = tw · L is the gross

area of the wall.

Anyway it must be said that after this preliminary analysis, this VUMAT

subroutine is able to see masonry behavior during in-plane shear tests, but a

more accurate study on step time needed and on characteristic lengths should

be made. This subroutine is a powerful tool and might lead to good results, but

it can be used only for evaluating in-plane behavior and it is not able to simulate

out-of-plane masonry behavior.

Figure 5.3: First mode of vibration of URM from [15]
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Figure 5.4: First mode of vibration of URM

Figure 5.5: Stress (upper side) and strain (lower side) pattern after 5 mm of
horizontal displacement [15]
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Figure 5.6: Stress pattern after 2 mm of horizontal displacement

Figure 5.7: Strain pattern after 2 mm of horizontal displacement
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Figure 5.8: Normalized load versus horizontal displacement

Figure 5.9: Normalized load versus horizontal displacement [3]
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Chapter 6

Conclusions

In Chapter 2 a classi�cation of methods available in literature is carried out.

Here, two new method are brie�y described. The �rst one (section 6.1) is a

new method that comes from the analyses of masonry modeling problems and

is intended to overcome them. The second method (section 6.2) is now used to

model rocks, but it might be good also for masonry.

6.1 Localized damaged model

Finite element analysis of masonry usually do not provide a realistic simulation of

damage and usually mesh dependence can cause many problems. To overcome

these aspects Pelà, Cervera and Roca [21] propose a smeared model able to

capture individual discrete cracks. Through a cracking tracking algorithm the

crack is forced to develop along a single row of �nite elements.

The localized damaged model takes also into account the orthotropic behavior

of masonry with a new and original method which map stress and strain tensors

from the anisotropic real space to a scaled isotropic space. In this way there an

important gain from a computational point of view: the problem is solved in the

scale spaced and then mapped back to the anisotropic space.

The plane stress macro-model proposed in [21] is able to simulate several

important characteristic of the masonry material, such as:

1. the undamaged material is seen as an elastic orthotropic material;
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Figure 6.1: Relationship between the real anisotropic space and the mapped
isotropic space [21]

2. there are two main natural direction, parallel and normal to bed joints,

along which the material model has di�erent strength and di�erent soft-

ening behavior; the model uses in the mapped space, the Rankine criterion

in tension and the Faria criterion in compression;

3. the damaged sti�ness a�ects the unloading and the reloading processes;

4. during loading cycles with alternate load, the sti�ness recovers when cracks

close.

The model has been formulated for the two-dimensional case but it can be ex-

tended to the three-dimensional case, if additional material parameters are added.

6.2 Micro-modeling

Research on masonry behavior during earthquake is still an open �eld: other

numerical method can be used in modeling and more aspect can be studied.

One of the most important aspect which is not included in this thesis regards

masonry's fracture. This topic is very important and need special numerical

method aim at modeling failure, fracture and fragmentation.
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The combined �nite-discrete element method (FEM-DEM) is an innovative

technique that allow modeling of failure and collapse of structural system.

The FEM-DEM method combines aspects taken from both �nite elements

and discrete elements. In this innovative hybrid technique, each discrete element

is discretized into �nite elements, that means that there is a �nite element mesh

associated with each discrete element. Moreover, the �nite elements allow to

model the continuum behavior, while through discrete elements, the disconti-

nuum behavior is analyzed.

Figure 6.2: Fracture pattern of the samples failed in experiments (top) and
simulated (bottom)

The contact between the interacting domains is de�ned as in the discrete

element method, but the contact domains are discretized with �nite elements as

the solid domains and discretized contact solutions are used for contact detection

and contact interaction. The contact detection consist of a set of procedures

and algorithms aimed at eliminating domains that are at such distances apart

that there could not be contact between them, listing all domains that are close

to each other and can be in contact. For this reason, the method has a great

computational e�ort.

The FEM/DEM procedure can be summarized as follow:

� the FEM discretization must capture pre-failure behavior;

� after failure and collapse, the same FEM discretization must capture inter-

action between failing and collapsing structural elements.

This new technique has already been used for structural failure [17] and for

modeling of rock dynamics problems [14]. Figure 6.2 compares experimental
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results and FEM/DEM simulations of Dynamic Brazilian Test on Barre Granite,

while �gures 6.3 and 6.4 show the experiment carried out to validate the model

in [17]. For both cases, results are encouraging; this leads to think that the

method could be applied to the masonry, which is a structural material, which

behaves more like granular material than concrete. Currently, the major limiting

factor for FEM/DEM is the computational power required, but it is intended to

develop a version able to overcome this problem.

More detailed descriptions of the methods and experiments done are available

in [17] and [14]

Figure 6.3: Loading arrangements, cross section and reinforcing bats for experi-
mental beams in [17]

Figure 6.4: Comparison between experimental and simulation results [17]
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