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Abstract

ABSTRACT

Accurate constitutive models for cyclic soil plasticity are an important requirement in many engineer-
ing applications. Models based on the Modified Cam-Clay yield criterion, an associative flow rule, a
nonlinear hyperelastic stress–strain law and an appropriate hardening equation, are effective for cases of
monotonic loading, but inaccurate for cyclic loading conditions.

In this dissertation, a Modified Cam-Clay model is presented, followed by two separate approaches ex-
tending the model’s effectiveness to cyclic loading histories. In the first approach, an anisotropic Bound-
ing Surface model with a vanishing elastic region and a discrete relocation of the back stress tensor
is implemented. Secondly, the Modified Cam-Clay model is reformulated in a Generalised Plasticity
framework, in which a yield function defines the boundary between elastic and inelastic states, and a
limit function defines admissible and inadmissible states.

For each approach, a time discrete version of the model is presented, and a solution algorithm based on
a return mapping algorithm is derived. The models are tested in a finite element setting, and behaviour
under different loading histories is compared. It is found that both the Bounding Surface and Generalised
Plasticity models provide some advantages over the original model, but suffer from several flaws which
need to be addressed in future formulations.
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Chapter 1. Soil Plasticity

1. SOIL PLASTICITY

1.1 INTRODUCTION

As computational modelling techniques are being increasingly used in the solution of engineering prob-

lems, the need for accurate and efficient constitutive models is becoming greater. Material models which

accurately describe the cyclic behaviour of soil are essential in many applications, and of particular im-

portance in the field of Earthquake Engineering.

A large number of models for the plasticity of soils have been proposed in the literature. In this chapter,

some of the developments in soil plasticity relevant to this work are presented. Several different his-

torical yield criteria are summarised, with particular focus on the commonly used Cam-Clay [Roscoe

and Schofield, 1963] and Modified Cam-Clay [Roscoe and Burland, 1968] yield functions. Elastic

stress–strain relations and hardening equations are also presented, for use within the Modified Cam-Clay

framework. Finally, some aspects of the cyclic response of soils are addressed, and the Bounding Surface

Plasticity [Dafalias and Herrmann, 1982] and Generalised Plasticity [Lubliner et al., 1993] frameworks

are introduced.

In subsequent chapters, these concepts are developed further, and converted to a discrete time regime.

Return map algorithms are presented for each model, and tangent moduli consistent with the algorithms

are obtained. Finally, a series of numerical simulations is carried out, and a comparison of the models

made, allowing some conclusions to be drawn about their applicability to cyclic soil plasticity.

Notation

In the following, 1 and I represent the second and fourth order identity tensors, respectively, and a

boldface notation is used for all other second and fourth order tensors. Moreover, I may be decomposed

1



Chapter 1. Soil Plasticity

into volumetric, Ivol, and deviatoric, Idev, parts, defined as:

Ivol =
1

3
1 ⊗ 1 Idev = I − 1

3
1 ⊗ 1 (1.1)

such that I = Ivol + Idev.

The Euclidean norm of a second order tensor, a, is indicated by ‖a‖ (i.e. ‖a‖2 = aijaij , where summa-

tion is implied over repeated indices), while the trace is denoted by tr(a). The symbol ‘:’ is used for the

double contraction of tensor adjacent indices (e.g. a : b = aijbij and C : d = Cijkldkl).

It is assumed that the strain tensor, εεε, can be additively decomposed into elastic and plastic parts, denoted

by e and p superscripts, respectively:

εεε = εεε
e + εεε

p (1.2)

It will also be useful to decompose the strain and stress (σ) tensors into volumetric and deviatoric parts:

εεε = e +
θ

3
1

σ = s + p1
(1.3)

where:
θ = tr(εεε) e =εεε−1

3
tr(εεε)

p =
1

3
tr(σ) s =σ−1

3
tr(σ)

(1.4)

The geotechnical sign convention will be used in this work, in which compressive stresses and strains are

considered positive. Furthermore, the stress tensor, σ, will actually represent the effective stress of the

soil, subtracting the effects of pore water pressure.

All other notations will be explained in the text.

1.2 YIELD CRITERIA

Several different yield criteria have been proposed for geomaterials in the past. The main feature of soil

behaviour that must be captured by a yield criterion is the dependence of the yield strength on the mean

pressure. In ‘drained’ loading conditions, in which water pressure is allowed to dissipate, and at low

levels of confining stress, increasing the compressive pressure will generally increase the shear strength

of a soil.

The first attempt to describe such a behaviour can be found in Coulomb’s early work on the strength of

soil and other engineering materials [Coulomb, 1776], where the strength of geomaterials is attributed to

a combination of cohesion (c) and friction (φ):

τ = c + σ tan φ (1.5)

2



Chapter 1. Soil Plasticity

where τ and σ are the shear and effective normal stress on the failure (yield) surface, respectively.

The implication of (1.5) is that increasing the mean pressure on the soil will increase the yield strength.

This was made more explicit by the work of Drucker and Prager [1952], who added mean stress-

dependence to von Mises’ yield criterion [von Mises, 1913]:

q − βp = k (1.6)

in which q is the deviatoric stress, with q =
√

3/2 ‖s‖, p is the volumetric stress, with p = tr(σ), and β

and k are material constants of the soil. Plotting volumetric vs. deviatoric stress (‘the p–q plane’), (1.6)

describes a straight line of slope β, crossing the p–axis at −k/β. This implies that if the mean stress is

increased, keeping the deviatoric stress constant, yielding cannot occur — an unrealistic description of

soil response .

Due to the fact that (1.6) does not give a very accurate representation of soil behaviour, several modifi-

cations have been proposed to the Drucker-Prager criterion since its formulation. Many of these lead to

a more accurate yield surface for low levels of mean pressure, but still suffer from the limitation of an

infinite pressure capacity, under constant deviatoric stress. Although yield criteria based on the Drucker-

Prager criterion are still used in some applications, they have largely been superseded by the Cam-Clay

and Modified Cam-Clay models introduced in the next section.

1.3 CAM-CLAY PLASTICITY

The Cam-Clay model (CC) of Roscoe and Schofield [1963] was an early attempt to make use of a

‘capped’ yield surface, in which a limit is placed on the yield strength of the soil under increasing pres-

sure. The CC yield criterion takes the following form:

f(σ, pc) = q + Mp ln
p

pc
= 0 (1.7)

where pc is a stress-like hardening parameter, and M is a material constant. In the p–q plane, pc gives

the intercept of the yield surface with the p–axis, while M defines the aspect ratio.

In the context of geomechanics, pc represents the preconsolidation pressure of the soil. Indicating with

p0 the initial value of p, we may distinguish between normally consolidated soils (p0 = pc), and overcon-

solidated soils (p0 < pc). The parameter, M , gives the slope of the Critical State Line (CSL) in the p–q

plane, which defines a locus of stress states for which the soil will continue to yield at constant volume

under constant effective stress [Roscoe et al., 1958].

To improve the model effectiveness, Roscoe and Burland [1968] modified the original yield criterion to

an ellipse in the p–q plane:

f(σ, pc) =
q2

M2
+ p(p − pc) = 0 (1.8)

3



Chapter 1. Soil Plasticity

The CC and MCC yield surfaces, Equations (1.7) and (1.8) respectively, are compared in Fig. 1.1.

p

q

M

← CSL

p
c

CC 

MCC

Figure 1.1: Cam-Clay (CC) and Modified Cam-Clay (MCC) yield surfaces in p–q plane.

A major strength of both Cam-Clay yield surfaces is in the modelling of plastic strain. Making use of an

associative flow rule, the plastic strain rate vector is normal to the yield surface at the current stress point.

From Fig. 1.1, if p < pc/2, the volumetric plastic strain rate is negative, and the soil volume increases

(‘dilation’), while if p > pc/2, the soil decreases in volume (‘compaction’). Finally, if p = pc/2, the

volumetric plastic strain rate is zero, a condition described as ‘critical state’. Conceptually, this provides

an accurate model of soil behaviour at the onset of yielding.

As evident from Fig. 1.1, associative flow at high pressure will result in a higher deviatoric strain rate

for the original CC surface compared with the MCC surface, as the slope of the normal to the curve

has a larger component in the q–direction. The latter has been shown to give a more accurate model

of soil behaviour [Roscoe and Burland, 1968]. Furthermore, the CC surface may present computational

difficulties, as the derivative of (1.7) is not defined for q = 0. For these reasons, the MCC surface of

(1.8) is used in the remainder of this work.

In addition to a yield criterion, a complete MCC model will require an elastic stress–strain law, and

an evolutionary equation for the preconsolidation pressure, pc. These components of the model are

introduced in the next three sections, starting from considerations based on the isotropic compression

response of soil.

1.4 ISOTROPIC COMPRESSION RESPONSE

Insight into both the elastic and inelastic components of an appropriate plasticity model for soils can be

obtained from the response to isotropic compression loading. In the original Cam-Clay formulations, a

bilinear relation between the specific volume, v and the natural logarithm of the pressure, p was consid-

4



Chapter 1. Soil Plasticity

ered. Specific volume is defined as:

v =
V

Vs
(1.9)

where V is the total soil volume, and Vs is the volume of solid particles. In geotechnical engineering, v

is commonly related to θ through the following expression:

θ = ln
v

v0
(1.10)

where v0 is a reference value of v, for θ = 0.

The bilinear relation between v and ln p is shown in Fig 1.2(a). The slopes of the two linear portions of

the graph are indicated as λ′ and k′.

(a) ln p

v

k′

λ′

p
0

p
c0

p
c

v
0

(b) ln p

ln v

k

λ

p
0

p
c0

p
c

v
0

Figure 1.2: (a) Bilinear relation between v and ln p, and (b) bilinear relation between ln v and ln p.

Fig. 1.2(a) is consistent with common geotechnical engineering practice, and it gives a good fit of labora-

tory data. However, it can also be shown to lead to unrealistic behaviour [Hashiguchi, 1995], particularly

at high pressure levels for which negative v is predicted.

Because of these limitations, it has become common practice in Cam-Clay plasticity to adopt a bilinear

relation between ln v and ln p [e.g. Hashiguchi and Ueno, 1977; Wroth and Houlsby, 1980; Hashiguchi,

1995]. Fig. 1.2(b) shows this relationship graphically, with the slopes of the two linear portions λ and k,

as indicated.

The ln v–ln p relationship can now used to develop an elastic–stress strain law, and a hardening equa-

tion for pc, to describe the complete three-dimensional response of the soil under more general loading

conditions.

5



Chapter 1. Soil Plasticity

1.5 ELASTIC STRESS-STRAIN LAW

Several different assumptions have been used in the formulation of elastic stress–strain laws for use

with the MCC yield surface. Figures 1.2(a) and (b) only describe response under isotropic compression,

and additional information is required to define the complete three dimensional behaviour. Typically, a

hypoelastic stress–strain relationship is given in rate form:

σ̇ = [K1 ⊗ 1 + 2µIdev] ε̇εε
e (1.11)

where K and µ are the bulk modulus and the shear modulus, respectively. The assumed relationship

between v and p, from either Figures 1.2(a) or (b), defines a nonlinear expression for the elastic bulk

modulus, while a further assumption is required to evaluate the shear modulus.

In the original presentations of the CC [Roscoe and Schofield, 1963] and MCC [Roscoe and Burland,

1968] models, it was assumed that elastic shear strains were zero. This is equivalent to the assumption

of an infinite shear modulus in (1.11), which leads to difficulties in both the conceptual understanding

and the computational modelling. Later developments have assumed a fixed value for either the elastic

shear modulus [e.g. Wroth and Houlsby, 1985] or Poisson’s ratio [e.g. Borja and Lee, 1990]. The for-

mer assumption is not realistic for soils, for which the shear stiffness tends to increase with increasing

pressure, while the latter assumption has been shown to lead to a non-energy conserving stress–strain

relation [Zytinsky et al., 1978]. This implies that for closed strain cycles, energy may be accumulated or

dissipated by the model.

Conservation of energy can be guaranteed by postulating a free energy, and obtaining the stress–strain

law by differentiating with respect to the strain. Houlsby [1985] proposed the following free energy:

W (εεεe) = p0k exp

(

θe

k

)

(

1 +
α

k
‖ee‖2

)

(1.12)

where p0, α and k are model constants, representing the initial pressure (p0) and some measure of the

elastic shear and volumetric stiffnesses (α and k).

Differentiation of (1.12) with respect to the elastic strain leads to a hyperelastic relation between stress

and elastic strain:

σ =
∂W

∂εεε
e

= p0 exp

(

θe

k

)

[(

1 +
α

k
‖ee‖2

)

1 + 2αee
]

(1.13)

Under isotropic compression(‖ee‖ = ‖s‖ = 0) Eq. (1.13) gives the ln v–ln p bilinear relationship dis-

cussed above. Furthermore, the accuracy of Eq. (1.13) under more general loading paths has been evalu-

ated experimentally by Borja et al. [1997], and shown to give a good response.

6



Chapter 1. Soil Plasticity

1.6 HARDENING

The evolution of the hardening parameter, pc, consistent with Fig. 1.2(b), may be described by the fol-

lowing expression:

pc = pc0 exp

(

θp

λ − k

)

(1.14)

where pc0 is the initial value of pc. This is a non-associative hardening equation, since:

ṗc =
pc

λ − k
θ̇p 6= ∂f

∂pc
(1.15)

where f is the MCC yield function defined by Eq. (1.8).

With an associative plastic flow rule, for which the plastic strain increment is in the direction of the

gradient to the yield surface, Eq. (1.14) leads to hardening (expansion of the yield surface) for p > pc/2,

and softening (contraction of the yield surface) for p < pc/2. If we consider a stress trajectory for which

p > pc/2 is kept constant and ‖e‖ increased, the yield surface will continue to increase in size until the

CSL is reached. At this point, the normal to the yield surface will be vertical in the p–q plane, and the

volumetric component of the plastic strain rate will be zero. Similarly, for constant p < pc/2, the yield

surface will shrink until the stress point lies on the CSL, and volume change is zero. Conceptually, this

provides a good model of the ‘critical state concept’ of geomechanics [Roscoe et al., 1958].

1.7 CYCLIC LOADING RESPONSE

Combined with the elastic stress–strain relationship, isotropic hardening laws, and associative flow dis-

cussed above, the MCC yield function, Eq. (1.8) has been employed very successfully in the modelling

of saturated clays, under monotonic loading.

Cyclic loading, however, presents further difficulties. The hysteretic behaviour of soil is not properly

described by the MCC model, and several possible modifications have been suggested. One of the most

successful is the Bounding Surface model (BS) proposed by Dafalias and Herrmann [1982]. The BS

framework considers a ‘bounding surface’ enclosing all admissible stress states, with a radial projection

rule defining a mapping of the current stress state onto this surface. The plastic modulus at any point

within the surface is a function of the distance of the point from the bounding surface; generally, as the

stress state approaches the bounding surface, the soil goes through a transition from completely elastic to

completely plastic response. A recent BS formulation, with several additional features to those described

here, will be discussed further in Chapter 3.

The BS Model is very similar conceptually to the ‘Generalised Plasticity Model’ (GP) presented by Au-

ricchio et al. [1992] and Lubliner et al. [1993]. In this framework, a yield function defines the boundary

between elastic and inelastic states, while a separate ‘limit function’ defines admissible and inadmissible

states.

7



Chapter 1. Soil Plasticity

With the choice of an appropriate limit function, a smooth transition from elastic to inelastic behaviour,

as described for the BS model, may be obtained. However, the GP framework may also offer more

flexibility, and different forms of the limit function could be used to give a more suitable response for

soils. A first attempt to apply the GP model to soils is presented in Chapter 4. Comparisons are made

between the monotonic and cyclic response of the three models, and the applicability to soil plasticity

problems discussed.

8



Chapter 2. Modified Cam-Clay Plasticity

2. MODIFIED CAM-CLAY PLASTICITY

2.1 INTRODUCTION

The Modified Cam-Clay (MCC) model presented in this section is a small-strain adaptation of the finite-

strain model presented by Callari et al. [1998]. The time continuous version of the model is developed

directly from the considerations presented in Chapter 1, and includes an elliptical MCC yield surface with

associative flow, a hardening equation based on linear ln v–ln p relations, and a nonlinear hyperelastic

stress–strain law.

A time discrete version of the MCC model is also developed, for use in a finite element setting. A

return map algorithm is employed, and a consistent tangent obtained for both elastic and inelastic time

steps. The solution algorithm is tested with several numerical examples, including monotonic and cyclic

loading conditions.

In [Callari et al., 1998], objections to the use of small-strain MCC models with linear ln v–ln p relations

are raised, based on theoretical considerations and observations of the real behaviour of clays. However,

it is suggested in the following that these objections may be insignificant for a range of strain levels

generally considered within a small-strain hypothesis. Although small strains have been assumed here,

the extension to finite strains can be obtained in a multiplicative elasto-plastic framework, following

Callari et al. [1998].

9



Chapter 2. Modified Cam-Clay Plasticity

2.2 MODEL DESCRIPTION

2.2.1 Elastic stress-strain law

The stress–strain relation of Houlsby [1985], Eq. (1.12), is used here. This may be decomposed into

volumetric and deviatoric parts, giving:

p = p0 exp

(

θe

k

)

(

1 +
α

k
‖ee‖2

)

(2.1)

and

s = 2αp0 exp

(

θe

k

)

ee (2.2)

respectively.

2.2.2 Yield surface and flow rule

The MCC yield surface (1.8) is used, i.e.:

f(σ, pc) =
3‖s‖2

2M2
+ p(p − pc) = 0 (2.3)

Eq. (2.3) is used in conjunction with an associative plastic flow rule; accordingly, we obtain:

ε̇εε
p = γ̇

∂f(σ, pc)

∂σ

= γ̇

[

1

3
(2p − pc)1 +

3

M2
s

]

(2.4)

where γ̇ is the continuous consistency parameter, which must satisfy the Kuhn-Tucker conditions:

γ̇ ≥ 0 f(σ, pc) ≤ 0 γ̇f(σ, pc) = 0 (2.5)

The decomposition of (2.4) into deviatoric and volumetric components gives:

ėp = γ̇

(

3

M2
s

)

θ̇p = γ̇ (2p − pc)

(2.6)

2.2.3 Hardening law and plastic modulus

As discussed in Chapter 1, an evolutionary equation for the hardening parameter, pc, equivalent to the

bilogarithmic isotropic compression behaviour, is:

pc = pc0 exp

(

1

λ − k
θp

)

(2.7)

10
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Although it will not be used directly in the following, it will be insightful to evaluate the plastic hardening

modulus, H, for the current model. The following expression is used [Lubliner, 1990]:

H = −1

γ̇

∂f

∂pc
ṗc (2.8)

The partial derivative in (2.8) can be determined by differentiating (2.3), giving:

∂f

∂pc
= −p (2.9)

Substituting (1.15) and (2.9) into (2.8) gives an expression for the plastic modulus:

H =
ppc(2p − pc)

λ − k
(2.10)

Eq. (2.10) shows that hardening (H > 0) will occur when p > pc/2, while softening (H < 0) is

predicted for p < pc/2. As discussed in Section 1.6, this is compatible with the critical state concept of

geomechanics, in which the volumetric strain rate tends to zero under the application of deviatoric strain.

2.3 DISCRETE FORM OF MODEL

For use in the finite element method, the model must be cast into a time discrete setting. A backward

Euler implicit scheme is adopted to integrate the strain evolutionary equations (2.6) to give:

ep = ep
n + ∆γ

3

M2
s

θp = θp
n + ∆γ(2p − pc)

(2.11)

with

∆γ =

∫ tn+1

tn

γ̇dt

where the subscript n refers to a value at time tn, while no subscript refers to time tn+1.

The discrete consistency parameter, ∆γ, must satisfy the discrete form of the Kuhn-Tucker conditions:

∆γ ≥ 0 f(σ, pc) ≤ 0 ∆γf(σ, pc) = 0 (2.12)

which are used as the basis of the return mapping algorithm discussed in Section 2.4.

Substituting (2.11) into (2.1) and (2.2) gives:

p = p0 exp

(

θ − θp
n − ∆γ(2p − pc)

k

)[

1 +
α

k
‖e − ep

n − ∆γ
3

M2
s‖2

]

(2.13)

and

s = 2αp0 exp

(

θ − θp
n − ∆γ(2p − pc)

k

)[

e − ep
n − ∆γ

3

M2
s

]

(2.14)
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Collecting s terms in (2.14) leads to:

s =
2αp0 exp

(

θ−θp
n

k

)

exp
(

−∆γ(2p−pc)
k

)

1 + 6αp0

M2 ∆γ exp
(

θ−θp
n

k

)

exp
(

−∆γ(2p−pc)
k

) [e − ep
n] (2.15)

2.4 RETURN MAP ALGORITHM

The time discrete formulation of the previous section can be conveniently solved using a return map

algorithm. The methodology is summarised below, while details are presented in the following sections.

1. A trial elastic state is determined, with the discrete consistency parameter set to zero.

2. The yield function, (2.3) is evaluated for the trial values.

3. If the discrete Kuhn-Tucker conditions are satisfied, then the trial values are correct, and the time

step is elastic as assumed; otherwise a plastic correction is made to the trial state.

2.4.1 Trial state

An elastic trial state is obtained by setting the discrete consistency parameter to zero, equivalent to

freezing plastic flow over the time step. From Equations (2.7), (2.11), (2.13) and (2.14), the following

trial state values are obtained:






































































∆γtr = 0

ee,tr = e − ep
n

θe,tr = θ − θp
n

str = 2αp0 exp

(

θe,tr

k

)

ee,tr

ptr = p0 exp

(

θe,tr

k

)

(

1 +
α

k
‖ee,tr‖2

)

ptr
c = pc0 exp

(

θp
n

λ − k

)

(2.16)

where the superscript ‘tr’ indicates a trial state value.

The trial values are substituted into (2.3) to give the trial yield function:

f tr(σtr, ptr
c ) =

3‖str‖2

2M2
+ ptr(ptr − ptr

c ) (2.17)

This is compared to the second Kuhn-Tucker condition, (2.12)2. If f tr ≤ 0 then the trial state is the

correct solution, and the time step is elastic, as assumed. Otherwise, if f tr > 0, the Kuhn-Tucker

condition is violated, and a plastic correction must be made to obtain the correct stress state.
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2.4.2 Plastic Correction

The trial state values (2.16) are substituted into the general time discrete equations (2.11), (2.13) and

(2.14) from which we obtain the following plastic corrections:


















































































ep = ep,tr +
3∆γ

M2
s

θp = θp,tr + ∆γ(2p − pc)

s = str exp

(−∆γ

k
(2p − pc)

)

[

1 +
6αp0

M2
∆γ exp

(

θ − θp
n

k

)

exp

(−∆γ

k
(2p − pc)

)]−1

p = p0 exp

(

θe,tr

k

)

exp

(−∆γ

k
(2p − pc)

)

[

1 +
α

k

(

‖ee,tr‖2 − 6

M2
∆γs : ee,tr +

9

M4
∆γ2‖s‖2

)]

(2.18)

The yield condition (2.3) and the hardening equation (2.7) must also be satisfied. From the latter we

obtain:

pc = ptr
c exp

(

2p − pc

λ − k
∆γ

)

(2.19)

The above equations can be simplified by introducing some constants:














































































A1 = exp

(−∆γ

k
(2p − pc)

)

A2 = exp

(

θe,tr

k

)

A3 =
6αp0

M2
A2

A4 = 1 + ∆γA1A3

A5 =
A1

A4

A6 =

{

1 +
α

k

(

‖ee,tr‖2 − 6

M2
∆γs : ee,tr +

9

M4
∆γ2‖s‖2

)}

(2.20)

Equations (2.18)3 and (2.18)4 then simplify to:

p = p0A1A2A6 (2.21)

s = A5s
tr (2.22)

Equations (2.3), (2.19), (2.21) and (2.22) must be solved simultaneously, to determine the plastically-

correct stress state. We can minimise the problem dimension by substituting s from (2.22) into the other

three equations, reducing the unknowns to three independent variables. In particular, we may define the

13
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vector of unknowns, x , and vector of residuals, g(x ):

x =







p
pc

∆γ







; g(x ) =







g1

g2

g3







=











3‖s‖2

2M2 + p(p − pc)

ptr
c exp

(

2p−pc

λ−k ∆γ
)

− pc

p0A1A2A6 − p











(2.23)

Taking trial state (2.16) as the initial value of x , we iterate using a Newton algorithm, such that the value

from the (k + 1)th iteration is found from:

x
(k+1) = x

(k) −
[

∂g

∂x

]−1

g
(

x(k)
)

(2.24)

and convergence is achieved when the normalised residual vector is less than machine tolerance:

‖g‖∗ =

√

(

g1

p2
0

)2

+

(

g2

p0

)2

+

(

g3

pc0

)2

< TOL (2.25)

To make use of the Newton algorithm (2.24), the residual gradient ∂g/∂x must be calculated. This

calculation is presented in Appendix A. Note also that the residual gradient must be inverted numerically

for use in (2.24), although the reduction of the problem dimension from the elimination of s significantly

reduces the computational effort in the inversion.

2.4.3 Consistent tangent

If the model is to be used in a finite element setting, a consistent tangent tensor must be calculated,

by linearising the time discrete forms of the equations presented previously. Use of a tangent tensor

consistent with the discretisation preserves the quadratic convergence of the model.

Elastic Step

If the trial values are correct, and the step is elastic, calculation of the consistent tangent is relatively

straightforward. Linearising the expressions for p and s ((2.21) and (2.22), respectively) gives:

dp = p0

[

1

k
exp

(

θe

k

)

(

1 +
α

k
‖ee‖2

)

1 +
2α

k
exp

(

θe

k

)

ee

]

dεεε (2.26)

ds = 2αp0

[

1

k
exp

(

θe

k

)

ee ⊗ 1 + exp

(

θe

k

)

Idev

]

dεεε (2.27)

From the combination of (2.27) and (2.26), we obtain :

C
e =

∂σ

∂εεε

= 1 ⊗ ∂p

∂εεε

+
∂s

∂εεε

=
p0

k
exp

(

θe

k

)[

2αkIdev + 3
(

1 +
α

k
‖ee‖2

)

Ivol + 2α (1 ⊗ ee + ee ⊗ 1)

]

(2.28)
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Plastic Step

The plastic consistent tangent must be obtained by linearising the plastically-corrected model variables.

We obtain the tangent from:

C
p =

∂σ

∂εεε

= 1 ⊗ ∂p

∂εεε

+
∂s

∂εεε

(2.29)

Noting that ∂εεε
e,tr/∂εεε = I, (2.29) becomes:

C
p = 1 ⊗ ∂p

∂εεε
e,tr

+
∂s

∂εεε
e,tr

(2.30)

Equations (2.19), (2.21) and (2.22) are differentiated with respect to the trial elastic strain tensor, εεε
e,tr,

giving three equations in four unknown differentials. The remaining unknown differential, ∂∆γ/∂εεε
e,tr,

is obtained by enforcing the consistency condition on the yield surface. The complete calculation of the

consistent tangent is given in Appendix B, in which the following expression is obtained:

C
p = E11 ⊗ s + E21 ⊗ 1 + E3s ⊗ 1 + E4s ⊗ s + E5Idev (2.31)

where the values of E1–E5 are given in Appendix B.

Remark 2.1. Note that (2.31) is derived in terms of the deviatoric stress tensor, s. It may be preferable

to express the tangent tensor directly as a function of the elastic trial strain, εεεe,tr; in this case (2.16)4 and

(2.22) may be used in the conversion.

2.4.4 Converting to ‘mechanical’ sign convention

Solid mechanics generally operates under the convention that tensile stresses and strains are positive.

For soils, compression is of more interest, and this is usually taken as positive. Accordingly, it may be

convenient, or necessary in some cases, to convert an expression from a geotechnical sign convention to

a solid mechanics convention.

It is trivial to change the sign of the appropriate components of the stress and strain tensors. However, the

tangent matrix must also be altered to remain consistent with the discretisation. The appropriate expres-

sion can be obtained from the chain rule; within either the geotechnical or mechanical sign conventions,

we have:

εεε
m/g = em/g +

θm/g

3
1

σ
m/g = sm/g + pm/g1

(2.32)

where m and g superscripts refer to ‘mechanical’ and ‘geotechnical’ sign convention respectively. From

the definitions of the sign conventions, we also have:

θm = −θg em = eg

pm = −pg sm = sg
(2.33)
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Therefore, (2.32) and (2.33) give:

εεε
m = eg − θg

3
1

σ
m = sg − pg1

(2.34)

Finally, we can evaluate the elastic and plastic consistent tangents from the chain rule:

C
p,m =

∂σ
m

∂εεε
m

=
∂σ

m

∂εεε
g

:
∂εεε

g

∂εεε
m

=

[

∂sg

∂εεε
g
− 1 ⊗ ∂pg

∂εεε
g

]

: [Idev − Ivol] (2.35)

Reevaluating (2.28) and (2.31) using the above expression gives the tangent tensors to be used with the

mechanical (tension positive) sign convention:

C
e,m =

p0

k
exp

(

θe

k

)[

2αkIdev + 3
(

1 +
α

k
‖ee‖2

)

Ivol − 2α (1 ⊗ ee + ee ⊗ 1)

]

(2.36)

and

C
p,m = −E11 ⊗ s + E21 ⊗ 1 − E3s ⊗ 1 + E4s ⊗ s + E5Idev (2.37)

where the constant terms are defined as before, (B.39).

2.5 NUMERICAL TESTS

The MCC model was implemented in the Finite Element Analysis Program (FEAP) [Taylor, 2000],

and several numerical simulations were carried out. The work of Callari et al. [1998] was used as a

reference for some laboratory test simulations, and stress and strain controlled cyclic shear tests were

also considered.

A three-dimensional isoparametric eight node element was used in each of the simulations. The material

properties that were used in each test are as indicated in Table 2.1, except where stated in the description

of the test.

The remaining material parameter, p0, varies for each simulation, and is set equal to the initial mean

pressure imposed on the element. Note that p0 cannot equal zero, as this would lead to zero stress from

(1.13). That is, the reference strain εεε = 0, must correspond to a non-zero reference pressure, p0.

Table 2.1: Modified Cam-Clay model parameters
Parameter α M λ k pc0

Value 100 0.9 0.09 0.02 100 kPa

All tests are considered to take place under drained loading conditions, such that excess pore water

pressure does not develop.
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2.5.1 Isotropic compression test

An isotropic compression test was modelled under full stress control. From an initial state of normal

consolidation (p0 = pc0 = 100 kPa), the sample was loaded monotonically, by increasing axial stress

components σ11 = σ22 = σ33. This was followed by an unloading stage, and finally reloading into the

plastic range.

Fig. 2.1(a) shows the loading, unloading and reloading behaviour of the model under isotropic com-

pression. Results are shown for six, 100 and 1000 stress increments, and the accuracy of the solution

algorithm can be observed, even for relatively large steps.

Fig. 2.1(b) confirms the bilinear ln v–ln p relationship used in the development of the model. Comparing

with Fig. 1.4(b) and Table 2.1, it is clear that the correct gradients, λ and k, have been obtained. A

reference value of v0 = 2.5 was assumed here, although this affects only the position on the axes, and

not the shape of the curve.

(a)
0 2 4 6 8 10 12 14 16

0

100

200

300

400

500

600

θ  [%]

p 
 [k

Pa
]

(b)
2.5 3 3.5 4 4.5 5 5.5 6 6.5

0.74
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0.8

0.82

0.84

0.86

0.88

0.9

0.92

ln p

ln
 v

0.090

0.020

1000 steps        
100 steps         
6 steps           
E

v
 ≈ θ

Figure 2.1: Isotropic compression test. (a) Volumetric stress, p, vs. volumetric strain, θ, and (b) bilinear
ln v vs. ln p relationship.

Convergence profiles were also plotted for the 100-step and 6-step analyses. In Fig. 2.2(a), the logarithm

of the normalised residual (log Ri) is plotted versus the iteration number for the first, last and ‘worst’ time

steps. The ‘worst’ step is defined as that with the maximum number of iterations required to converge,

and with the slowest final rate of convergence. With 100 time steps, all steps converged within six

iterations, while with 6 time steps, one time step required ten iterations to converge to the required

tolerance, TOL = 1 × 10−16.

Fig. 2.2(b) shows the ratio of successive log Ri values, for the worst time step only. This ratio tends to a

value of two in both cases, confirming the quadratic convergence of the model.

Remark 2.2. Callari et al. [1998] show that making use of the infinitesimal-strain hypothesis with a

bilinear ln v–ln p relation is an inconsistent approach. An implicit assumption in such a model is that the
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Figure 2.2: Isotropic compression test. Convergence profiles of (a) normalised residual, Ri, and (b) ratio
of successive logarithms, log Ri.

volumetric strain defined according to:

Ev = −v − v0

v0
(2.38)

is approximately equal to the logarithmic volumetric strain, θ = ln(v/v0), as defined in (1.10).

In the present model v has not been used as a variable, and the values in Fig. 2.1(b) have been calculated

from (1.10). However, it is interesting to compare the values we obtain if (2.38), and the assumption that

Ev ≈ θ, is used to calculate v. This is shown as a dotted line on Fig. 2.1(b), which shows slight deviation

from the bilinear ln v–ln p relationship. However, the maximum deviation of ln v is less than two per

cent, which corresponds to approximately one per cent error in v.

Clearly, this error will increase with increasing θ, although use of the small-strain hypothesis beyond

θ = 15% is not common practice. This suggests that the small-strain approach is adequate for the

applications presented here, despite an apparent inconsistency in its definition.

2.5.2 Triaxial compression of lightly overconsolidated sample

A triaxial compression test was simulated. Initially, the element was loaded isotropically from p0 = 10

kPa to p = 80 kPa, with pc0 = 100 kPa, as reported in Table 2.1. At this stage, the soil sample could be

considered lightly overconsolidated, with an overconsolidation ratio (OCR = pc0/p) of 1.25. Following

isotropic loading, stress components σ22 = σ33 were held constant at 80 kPa, while axial strain ε11 was

increased until the CSL was reached.

Fig. 2.3(a) shows the overall loading history in p–q space, together with the initial (f0 = 0) and final

(f1 = 0) yield surfaces. The yield surface continues to grow with increasing p and q, until the CSL is

reached. At this point, no further stress increment can be sustained (Figures 2.3(b) and 2.3(c)), and the
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volumetric strain increment is zero (Fig. 2.3(d)). In Figures 2.3(c) and 2.3(d), εq is a measure of the

deviatoric strain, defined as:

εq =

√

2

3
‖e‖ (2.39)
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Figure 2.3: Triaxial compression of lightly overconsolidated sample. (a) Stress path on p–q diagram, (b)
volumetric stress, p, vs. volumetric strain, θ, (c) deviatoric stress, q, vs. deviatoric strain, εq, and (d) θ
vs. εq.

Three different stress increments were used in the analyses, corresponding to 1000, 100 and 12 integra-

tion steps. Assuming 1000 steps gives an accurate solution, Figures 2.3(c) and 2.3(d) show nearly exact

correlation for 100 steps and a slight deviation from exact for 12 steps.

Convergence profiles are compared for 100 and 12 integration steps in Figures 2.4(a) and (b). As before,

the solution algorithm leads to asymptotic quadratic convergence, as shown for the ‘worst’ time step for

each case, in Fig. 2.4(b).
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Figure 2.4: Triaxial compression of lightly overconsolidated sample. Convergence profiles of (a) nor-
malised residual, Ri, and (b) ratio of successive logarithms, log Ri.

2.5.3 Triaxial compression of heavily overconsolidated sample

The same procedure as above was repeated, with the initial stage of isotropic compression from p0 = 10

kPa to p = 20 kPa. This could be considered a heavily consolidated sample, with OCR = 5.

As noted by Callari et al. [1998], the MCC model presented here is intended for normally consolidated

and lightly overconsolidated clays only. Therefore, the numerical test in this section is intended only to

check the solution algorithm in the case of softening.

Test results are presented in Fig. 2.5. In Fig. 2.5(a), p and q continue to increase until the initial yield

surface is reached, at which point softening takes place. In terms of volumetric strain (Fig. 2.5(b)), the

sample dilates (θ̇ > 0) in the elastic range, and contracts (θ̇ < 0) after yield. As before, when the CSL is

reached, stress and volumetric strain remains unchanged with increasing deviatoric strain (Figures 2.5(c)

and 2.5(d)).

Again, three different stress increments were used in the analyses, corresponding to 1000, 100 and 18

integration steps. Assuming 1000 steps gives an accurate solution, Figures 2.5(c) and 2.5(d) show nearly

exact correlation for 100 steps and a slight deviation from exact for 18 steps.

Convergence profiles are again compared for 100 and 18 integration steps in Figures 2.6(a) and (b).

Again, Fig. 2.6(b) shows quadratic convergence for both 100 and 18 steps.

2.5.4 Strain controlled cyclic shear loading

In the strain and stress-controlled cyclic tests considered here, volume is held constant, which corre-

sponds to ‘undrained’ loading conditions, in which excess pore water pressure is not allowed to dissipate.
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Figure 2.5: Triaxial compression of heavily overconsolidated sample. (a) Stress path on p–q diagram, (b)
volumetric stress, p vs. volumetric strain, θ, (c) deviatoric stress, q vs. deviatoric strain, εq, and (d) θ vs.
εq.
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Figure 2.6: Triaxial compression of heavily overconsolidated sample. Convergence profiles of (a) nor-
malised residual, Ri, and (b) ratio of successive logarithms, log Ri.

Furthermore, deviatoric stress (q) and strain (εq) will be assumed to carry the sign of the controlled stress

or strain component, so that the cyclic behaviour of the model can be more easily visualised.
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The first cyclic shear test was carried out under full strain control. Axial strain components (ε1, ε2 and ε3)

were fixed at zero, and an initial pressure of p0 = 100 kPa (OCR = 1) was assigned. Finally, two adjacent

faces of the cubic element were subjected to cyclic shear loading, corresponding to ε12 = ±0.8%.

Fig. 2.7(a) shows the stress path in p–q space. The stress history was characterised by inelastic loading

and expansion of the yield surface initially, with the stress state tending towards the CSL. Unloading is

elastic, with the coupling between volumetric and deviatoric stress components evident in Fig. 2.7(a).

Subsequent cycles of reloading exhibit less hardening, as p tends to pc/2, and the plastic modulus tends

to zero (Eq. (2.10)).

Fig. 2.7(b) shows the hysteretic response of the sample, with deviatoric stress plotted against deviatoric

strain. The figure shows more clearly the gradual reduction in plastic modulus as the sample moves

towards the critical state. Also evident in Fig. 2.7(b) is the increase in stress carried by the sample

under constant amplitude strain cycles. This result is contrary to observed soil response, for which shear

strength degradation is expected under cycling loading.
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Figure 2.7: Strain controlled cyclic shear test. (a) Stress path on p–q diagram, and (b) deviatoric stress, q
vs. deviatoric strain, εq

As with the previous cases, the adopted algorithm gives very stable solutions, even for relatively few (16)

time steps.

2.5.5 Stress controlled cyclic shear loading

A second cyclic loading test was carried out under shear stress control, with axial strain components

again fixed at zero. Initial stress, p0, was again taken as 100 kPa. One shear component of the stress

tensor was cycled with amplitude σ12 = ±25 kPa.

Figures 2.8(a) and 2.8(b) show a similar loading response to the strain controlled test. However, as the

maximum stress amplitude is kept constant, no further plastic strains develop beyond the first cycle, and
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the unloading–reloading stress paths are coincident. No hysteresis loops are exhibited by the model, as

no yielding takes place within the yield surface. This is contrary to the observed behaviour or real clays,

for which energy is dissipated over successive cycles in hysteretic action.
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Figure 2.8: Stress controlled cyclic shear test. (a) Stress path on p–q diagram, and (b) deviatoric stress, q
vs. deviatoric strain, εq

Fig. 2.8(b) shows that under stress control with fixed volume, relatively inaccurate results are obtained,

even for a relatively large number of steps (100). The final slope in Fig. 2.8(b) is relatively low, and under

stress control, a small change in the gradient can lead to a large overshoot in the converged strain values.

Furthermore, in incompressible plasticity, problems are often experienced, and the penalty method [e.g.

Hughes, 2000] is commonly used to ensure accuracy of the results. However, this is beyond the scope of

the present work, and an additional test with 10000 steps verified the accuracy of the 1000-step solution

above.
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3. BOUNDING SURFACE PLASTICITY

3.1 INTRODUCTION

The Modified Cam-Clay model summarised in the previous chapter is effective in the modelling of clays

under monotonic loading conditions, giving accurate predictions of the plastic volumetric and devia-

toric strains developed. However, under cyclic loading the hysteretic behaviour is poorly predicted. As

demonstrated in Section 2.5, no strength degradation is exhibited under cyclic shear loading of constant

amplitude, and unloading and reloading within the yield surface is always elastic.

A widely adopted formulation for cyclic soil plasticity is the Bounding Surface (BS) model proposed by

Dafalias and Herrmann [1982]. In this framework, a ‘bounding surface’ is defined, which delimits the

boundary of admissible stress points in p–q space. Stress states on the bounding surface represent fully

plastic response, while a specific point in stress space, the ‘homology centre’, represents the instanta-

neous elastic response. Within the bounding surface, hardening equations are defined as a function of

the distance from the stress point to the bounding surface, projected radially from the homology centre.

In this manner, a smooth transition from elastic behaviour to fully plastic behaviour is observed, as the

stress point passes from the homology centre to the bounding surface.

The work of Borja et al. [2001] is a recent application of the Bounding Surface framework to soil plas-

ticity. In this work, an elliptical bounding surface in the p–q plane is used, identical to the MCC yield

surface of Chapter 2. The hyperelastic stress–strain law of Eq. (1.13) is used, and the hardening equation,

(1.14), describes the evolution of the bounding surface. In addition to the isotropic hardening parameter,

a kinematic back stress is also defined, based on the location of the homology centre.

The model of Borja et al. [2001] is used as a basis for the following developments, converted into the ter-

minology and framework of Chapter 2 where appropriate. A few changes to the solution approach result

in a slightly more efficient algorithm. By decomposing the stress tensor into volumetric and deviatoric

parts, the number of scalar dimensions in the plastic correction step can be reduced from eight to four.
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Furthermore, adopting the same procedure as in Appendix B, the consistent inelastic tangent matrix is

calculated without the requirement of matrix inversion.

3.2 MODEL DEVELOPMENT

3.2.1 Elastic stress-strain law

The hyperelastic stress–strain law used in this section is identical to that used in Chapter 2. Decomposed

into volumetric and deviatoric components, we have:

p = p0 exp

(

θe

k

)

(

1 +
α

k
‖ee‖2

)

(3.1)

and

s = 2αp0 exp

(

θe

k

)

ee (3.2)

respectively.

3.2.2 Bounding surface and loading surface

Instead of a yield surface, the BS model uses a bounding surface, F (σ̂, pc) = 0, to define admissible

stress states. The bounding surface is defined by:

F (σ̂, pc) =
3‖ŝ‖2

2M2
+ p̂(p̂ − pc) = 0 (3.3)

where pc is a hardening parameter, representing the intercept of the elliptical surface with the p–axis in

p–q space.

The tensor σ̂ is a mapping of the current stress value, σ, onto the bounding surface, and ŝ and p̂ are its

deviatoric and volumetric parts. This mapping is one of the main constituents of the BS formulation,

and the first point of departure from the MCC model. Commonly, a radial mapping is considered from a

projection point called the ‘homology centre’, σh:

σ̂ = σ + κ(σ − σh) (3.4)

The variable κ is a measure of the distance of the current stress point from the bounding surface. It may

take values between 0, for a stress value located on the bounding surface, and an infinite value, for a

stress value at the homology centre. Substituting this expression for σ̂ into (3.3) gives:

3

2M2

∥

∥

∥
s(1 + κ) − κsh

∥

∥

∥

2
+
[

p (1 + κ) − κph

][

p (1 + κ) − κph − pc

]

= 0 (3.5)

where sh and ph are the deviatoric and volumetric parts of the homology centre, σh, respectively. The

initial value of σh must be defined by the user as another model parameter, and may be taken as σ0,i = 0

for an initially isotropic soil. Evolution of σh from the initial position is discussed in Section 3.2.6.
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Dividing this expression by (1 + κ)2 defines a new surface, f(σ̃, pl) = 0, called the ‘loading surface’:

f =
F

(1 + κ)2
=

3

2M2
‖s̃‖2 + p̃ (p̃ − pl) = 0 (3.6)

In (3.6), s̃ and p̃ are the deviatoric and volumetric parts of σ̃, defined as:

σ̃ = σ − α (3.7)

where

α = σh
κ

1 + κ
(3.8)

and pl is a hardening parameter, analogous to pc, representing the size of the loading surface. It is defined

as:

pl =
pc

1 + κ
(3.9)

Equation (3.6) defines another elliptical surface in the p–q plane, with α representing the back stress.

Because f has been defined by dividing F by (1 + κ)2 > 1, it is clear that the loading surface is

completely inscribed by the bounding surface. Note also that M is unchanged in (3.6), so the axis ratios

of the ellipses are the same. This is to be expected from the geotechnical interpretation of M as the slope

of the critical state line, which is a property of the soil, and independent of loading history.

The loading surface, bounding surface and radial mapping rule used here are shown schematically in Fig-

ures 3.1(a) and (b). Fig. 3.1(a) shows the definition of hardening parameters pc and pl, while Fig. 3.1(b)

demonstrates the relationship between σh, σ and σ̂, through the radial mapping rule.

(a)

← LS ← BS

p
l

p
c

p

q

← CSL

(b)

α
σ

h

σ σ̂

← LS ← BS

p

q

Figure 3.1: Loading surface (LS) and bounding surface (BS) in p–q plane, showing (a) definition of pc

and pl, and (b) radial mapping of current stress point, σ, onto a value on the bounding surface, σ̂

The loading surface gives a locus of all points with the same value of κ. The nature of its definition

allows several results to be obtained, which simplify the application of a return map to the BS model

[Borja et al., 2001].

26



Chapter 3. Bounding Surface Plasticity

Result 1. If F = Ḟ = 0, then f = ḟ = 0

Proof. From (3.6), F = 0 ⇒ f = 0. Differentiating gives:

Ḟ = (1 + κ)2ḟ + 2(1 + κ)κ̇f

And with f = 0, Ḟ = 0 ⇒ ḟ = 0. This allows us to enforce the Kuhn-Tucker conditions, (2.12) on the

loading surface instead of the bounding surface. �

Result 2. The following relation holds:

∂f

∂σ

=
1

1 + κ

∂F

∂σ̂

(3.11)

Proof. Taking the right-hand side of (3.11), we differentiate (3.3) to obtain:

1

1 + κ

∂F

∂σ̂

=
1

1 + κ

[

1

3
(2p̂ − pc)1 +

3

M2
ŝ

]

=
1

3

(

2p − α
p − pl

)

1 +
3

M2

(

σ − α
s
)

=
1

3
(2p̃ − pl)1 +

3

M2
s̃ =

∂f

∂σ

This shows the equivalence of an ‘associative’ flow rule, defined on the bounding surface with respect to

the mapped stress, and one defined on the loading surface with respect to the current stress tensor. The

two gradients are in the same direction, differing only by a constant factor. �

3.2.3 Flow rule

The bounding surface represents the asymptotic inelastic behaviour for the model, and it is sensible

to define the associative flow rule with respect to the bounding surface and mapped stress. Result 2,

however, allows us to formulate an equivalent flow rule on the loading surface with respect to the current

stress; the development is identical to that of the MCC model:

ε̇εε
p = γ̇

∂f(σ̃, pl)

∂σ

= γ̇

[

1

3
(2p̃ − pl)1 +

3

M2
s̃

]

(3.12)

As before, we decompose (3.12) into deviatoric and volumetric components:

ėp = γ̇

(

3

M2
s̃

)

θ̇p = γ̇ (2p̃ − pl)

(3.13)
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3.2.4 Hardening laws

The BS model has two stress-like hardening parameters, pc and pl, related through (3.9). For the harden-

ing parameter defining the size of the bounding surface, pc, the same evolutionary equation as in the MCC

model will be considered. Expressed in rate form (1.15), for consistency with a subsequent expression

for ṗl, we have:

ṗc =
θ̇p

λ − k
pc (3.14)

The choice of a hardening law for pl is the primary difference between different Cam-Clay bounding

surface models proposed in the literature. Typically, an equation relating the plastic hardening modulus

on the bounding surface to that on the loading surface is given. As a simple example, Zienkiewicz et al.

[1985] proposed to express the plastic modulus at the current stress point, H, as a function of the plastic

modulus, Ĥ, at the projected stress point, as follows:

H = Ĥ(1 + κ)γ (3.15)

where the exponent, γ, is a material parameter.

Eq. (3.15) predicts an infinite plastic modulus when the stress point is located at the homology centre,

decreasing exponentially as the stress point approaches the bounding surface.

In contrast, Borja et al. [2001] use a direct evolutionary equation for the hardening parameter, pl. Ar-

guably, this is a more transparent formulation, and easier to convert to computer code. However, it is more

difficult to determine the physical meaning of the extra model parameters. Nevertheless, an adaptation

of the rate equation of Borja et al. [2001] has been used here:

ṗl =
θ̇p

λ − k
(pl + hκm) (3.16)

where two new model parameters have been introduced, h and m.

3.2.5 Plastic moduli

For comparison with (3.15), and other similar models, an expression for the plastic modulus consistent

with the hardening equations used here, (3.14) and (3.16), can be calculated.

The plastic modulus for the bounding surface is obtained as discussed in Chapter 2:

Ĥ = −1

γ̇

∂F

∂pc
ṗc =

p̂pc(2p̃ − pl)

λ − k
(3.17)

Eq. (3.17) is given as a function of both the actual stress, σ, and the mapped stress, σ̂. Making use of

(3.4) and (3.9), Eq. (3.17) can be expressed only in terms of the current stress state, and parameter κ:

Ĥ = (1 + κ)2
p̃pl(2p̃ − pl)

λ − k
(3.18)
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Similarly, the plastic modulus of the current stress point, based on the evolutionary equation for pl, (3.16),

can be determined:

H = −1

γ̇

∂f

∂pl
ṗl =

p̃(pl + hκm)(2p̃ − pl)

λ − k
(3.19)

Substituting from (3.18), Eq. (3.19) can be expressed as:

H = Ĥ (pl + hκm)

pl(1 + κ)2
(3.20)

Remark 3.1. It is important that the plastic modulus approaches the correct limits as κ → 0 and κ → ∞.

In the former limit, corresponding to a stress point on the bounding surface, (3.20) gives H = Ĥ, as

required. The latter limit can be evaluated by rearranging (3.20):

lim
κ→∞

H = lim
κ→∞

[

1

(1 + κ)2
+

hκm

pc(1 + κ)

]

= ∞ for h 6= 0 , m > 1 (3.21)

Therefore, we obtain the required instantaneously elastic response when κ → ∞, and the stress point is

located at the homology centre, provided the two conditions in (3.21) are satisfied.

3.2.6 Evolution of homology centre and back stress

In addition to the two isotropic hardening parameters, pc and pl discussed above, the model also makes

use of a kinematic back stress-like hardening parameter, α. This parameter is defined explicitly by (3.8),

and is a function of the homology centre, σh.

In the model presented by Borja et al. [2001], the homology centre does not remain in a constant position

during loading. As the bounding surface increases in size (pc increases) the homology centre keeps the

same relative position within the ellipse. Immediately upon unloading, the instantaneous response is

elastic, and σh is relocated to the current value of σ.

Following Borja et al. [2001], it will be useful to redefine σh based on the last position of unloading:

σh = Σpc (3.22)

where Σ is defined as:

Σ =
σ
∗
h

p∗c
(3.23)

and σ
∗
h and p∗c are the values of σh and pc at which unloading was last detected. The condition:

∂f

∂σ

: σ̇ < 0 (3.24)

represents unloading in a time continuous setting, at which point, the current values of σh and pc replace

the old values of σ
∗
h and p∗c , respectively.
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Eq. (3.22) can also be substituted into (3.8) to give the following expression:

α =
κ

1 + κ
Σpc = κplΣ (3.25)

This gives a rate form for the back stress:

α̇ = Σ(κṗl + κ̇pl) (3.26)

which is not evaluated explicitly here.

Remark 3.2. A discrete relocation of the homology centre is used to model inelastic unloading in the

model, such that an unloading state is replaced by loading with respect to a new origin. Model behaviour

may also be considered ‘anisotropic’ in the sense that subsequent cycles ‘load’ with respect to a non-zero

origin, and behaviour is therefore load direction-dependent.

Note, however, that a regular kinematic hardening model may also be considered anisotropic in this

sense. In such a model, yielding of the material results in a continuous translation of the back stress

tensor, and direction-dependence in subsequent loading cycles. However, in its usual formulation, a

kinematic hardening model does not allow plasticity on unloading and reloading within the current yield

surface, which is a useful feature of the current model.

The discontinuity in the evolution of the homology centre is a valuable concept in the modelling of

regular cycles of loading. However, it can also lead to conceptual problems for certain load histories. The

model as presented by Borja et al. [2001], and revisited here, is sensitive to small perturbations in the

loading history, through round-off error in computations, or testing machine inaccuracies in experimental

simulation. For example, a small reduction in load in an otherwise monotonic loading history will lead

to relocation of the homology centre, and stiffening of subsequent response.

This drawback of the model will be further explored with some numerical simulations in Section 3.5.

Remark 3.3. Further problems may arise with the current model for cases of unloading. In particular,

for cases where (2p̃ − pl) < 0, (3.13)2 and (3.16) show that θ̇p and therefore ṗl are negative. However,

upon detection of the unloading condition, the homology centre is relocated, and pl is instantaneously

set to zero, which is incompatible with ṗl = 0. The computational aspects of this problem in a time

discrete setting are further investigated in Section 3.5, where several loading histories which include

stress reversals are modelled.

3.3 DISCRETE FORM OF MODEL

As with the MCC model, implicit backward Euler integration is used to determine time discrete versions

of the model equations. These expressions are similar to those obtained in Section 2.3, with extra terms

introduced for the back stress parameter, α.
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Implicit integration of (3.13) yields:

ep = ep
n + ∆γ

3

M2
s̃

θp = θp
n + ∆γ(2p̃ − pl)

(3.27)

with

∆γ =

∫ tn+1

tn

γ̇dt

Substituting (3.27) into (3.1) gives:

p = p0 exp

(

θ − θp
n − ∆γ(2p̃ − pl)

k

)[

1 +
α

k
‖e − ep

n − ∆γ
3

M2
s̃‖2

]

(3.28)

Similarly, substituting (3.27) into (3.2), and collecting s terms results in:

s =
2αp0 exp

(

θ−θp
n

k

)

exp
(

−∆γ(2p̃−pl)
k

)

1 + 6αp0

M2 ∆γ exp
(

θ−θp
n

k

)

exp
(

−∆γ(2p̃−pl)
k

)

[

e − ep
n + ∆γ

3

M2
α

s

]

(3.29)

Unlike the MCC model, we now have the hardening equations, (3.14) and (3.16), in rate form. The former

can be integrated explicitly (as in Chapter 2) while the latter can only be integrated implicitly. Here,

implicit integration will be used for both hardening equations, for numerical consistency. Therefore,

using backward Euler integration on (3.14) and (3.16), then substituting for ∆θp from (3.27)1 leads to

the discrete forms:

pc =
pcn

1 − 1
λ−k∆γ(2p̃ − pl)

(3.30)

pl =
pln + 1

λ−khκm∆γ(2p̃ − pl)

1 − 1
λ−k∆γ(2p̃ − pl)

(3.31)

3.4 RETURN MAP ALGORITHM

There have been difficulties in the past in applying a return mapping algorithm to the BS model. The

consistency condition is defined on the bounding surface, but it is difficult to apply the return map to the

mapped stress tensor. In this formulation, however, Result 1 from Section 3.2.2 allows the consistency

condition to be applied directly to the loading function, f , in terms of the current stress tensor.

In fact, the loading function has many properties of a yield function. The principal difference between

the two is that the former is always equal to zero, while a yield function can be less than or equal to zero.

The loading surface moves with the stress point, even upon unloading, while a yield surface represents

the maximum extent of previous yielding.

In the BS formulation, instantaneous elastic response only occurs instantaneously upon detection of the

unloading condition, and inelastic behaviour occurs at all other times. In a time discrete setting, the usual
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condition for an elastic time step, f tr < 0, now results in a discrete relocation of the homology centre,

with plastic response now occurring with respect to the new loading function.

As discussed above, this can lead to some convergence difficulties immediately upon unloading. We will

allow an elastic time step when pl < pen
l , the elastic nucleus condition given in Section 3.2.6. However,

this will require calculation of an appropriate value of pl consistent with εεε, σ
tr and pc. Details of this

calculation are given in Section 3.4.2, below.

Otherwise, the return mapping follows exactly the same procedure as in Chapter 2. A trial state is calcu-

lated by freezing plastic flow. A condition for an elastic time step is checked, in this case representing

the elastic nucleus. If satisfied, an elastic tangent tensor is evaluated; otherwise a plastic correction is

made, and an inelastic tangent consistent with the discretisation is determined.

3.4.1 Trial state

As before, we set the trial discrete consistency parameter equal to zero; from (3.13), (3.28), (3.29), (3.30)

and (3.31), we obtain the following trial values:











































































∆γtr = 0

ee,tr = e − ep
n

θe,tr = θ − θp
n

ptr = p0 exp

(

θe,tr

k

)

(

1 +
α

k
‖ee,tr‖2

)

str = 2αp0 exp

(

θe,tr

k

)

ee,tr

ptr
c = pcn

ptr
l = pln

(3.32)

Furthermore, κtr can be obtained from (3.9):

κtr =
ptr

c

ptr
l

− 1 = κn (3.33)

3.4.2 Check unloading condition

In a time discrete setting, the unloading condition is replaced by a trial loading function, as in classical

plasticity. Making use of (3.6), we define:

f tr =
3

2M2
‖s̃tr‖2 + p̃tr(p̃tr − pl) < 0 (3.34)
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This condition may not be sufficient for convergence of plastic time steps soon after unloading is detected.

In this case, κ is large, while (2p̃ − pl) is small, and (3.31) may be ill-conditioned for solution. Borja

et al. [2001] suggest the use of a small elastic nucleus for low values of pl. We allow elastic behaviour

for pl < pen
l , where pen

l is a size parameter for the nucleus.

The choice of pen
l is a tradeoff between stability and accuracy. For high values of pen

l , the problem of ill-

conditioning does not occur, but significant plastic strain development is ignored. A small elastic nucleus

is desirable for accuracy of solution, but convergence problems may be experienced. Parametric studies

by Borja et al. [2001] suggest a value of 0.10 pc is appropriate.

If the unloading condition (3.34) is satisfied, then the homology centre is relocated to the stress state

at time tn, and the time step may be considered ‘loading’ relative to a new centre of projection. This

requires six further internal variables to store the stress state at time tn. Alternatively, the normalised

projection state, Σn = σ/pc may be stored, and on detection of unloading:

Σ =
σ

pc
= Σn (3.35)

To be consistent with (3.35), the value of pl at the start of the time step must also be set to zero if the

unloading condition is satisfied. That is:

pln = 0 (3.36)

In a time continuous setting, pl will instantaneously assume a value of zero, and κ will tend to an infinite

value. However, in a time discrete setting, this will only present a problem if the stress state remains at

the homology centre for the duration of the time step, ∆t = tn+1 − tn. However, this would lead to

f tr = 0, which does not satisfy the unloading condition, so no singularities should occur.

Given the new trial values for pln and Σ, the relative stress tensor, σ̃
tr, is reevaluated from (3.7) and

(3.32).

3.4.3 Check elastic nucleus

For time steps immediately following unloading, values of σ̃ and pl are expected to be small, while κ is

large. From (3.27), plastic strain increments are small, and do not contribute a large amount to the total

strain.

As discussed previously, an elastic nucleus can be assumed for small values of pl. However, pln can no

longer be used for the trial value of pl. If the trial values of pl and κ were used as given by (3.32) and

(3.33), then a stress point would never leave the elastic nucleus, as ptr
l would remain equal to pln, and

thus never exceed pen
l .
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We obtain the appropriate trial value of pl by requiring the trial stress state and current homology centre

to satisfy the bounding surface equation, (3.3). The radial mapping equation for σ̂, (3.4), is substituted

into the expression for the bounding surface, (3.3), giving the following expression:

F =
3

M2

∥

∥

∥
(1 + κ)str − κσ

s,tr
h

∥

∥

∥

2
+
[

(1 + κ)ptr − κσp,tr
0

][

(1 + κ)ptr − κσp,tr
0 − ptr

c

]

= 0 (3.37)

which is a function of the trial stress state, hardening parameter pc, and the trial homology centre. The

latter is defined in terms of the normalised homology centre:

σ
tr
h = Σptr

c (3.38)

Eq. (3.37) can therefore be solved for κ:

κ =
−b +

√
b2 − 4ac

2a
(3.39)

where
a =

3

2M2
‖str − σ

s,tr
h ‖2 + (ptr − σp,tr

0 )2

b =
3

M2
str:
(

str − σ
s,tr
h

)

+
(

ptr − σp,tr
0

)

(

2ptr − ptr
c

)

c =
3

2M2
‖str‖2 + ptr

(

ptr − ptr
c

)

Finally, the value of κ calculated in (3.39) is used to calculate a new trial value for pl, using ptr
c and (3.9).

This value of ptr
l is compared with the elastic nucleus condition:

ptr
l < pen

l (3.40)

If this condition is satisfied, the time step is elastic, and the plastic correction stage is omitted. If pl lies

outside the elastic nucleus, then a Newton algorithm must again be used to determine the plastically-

corrected state.

Remark 3.4. Using the above calculation to determine a trial elastic value of pl is inconsistent with the

hardening equation, (3.31). The other trial values defined in (3.32) correspond to the case where ∆γ = 0,

whereas substituting ∆γ = 0 into (3.31) gives ptr
l = pn, as in (3.32)7.

However, as stressed by Borja et al. [2001], the elastic nucleus is merely intended as a computational

tool, and the size of the nucleus, governed by the constant ratio pen
l /pc, should be determined such that

the error resulting from the above inconsistency is minimised.

3.4.4 Plastic Correction

The same procedure as in Chapter 2 is used here. The back stress has been expressed above in terms of a

normalised homology centre, Σ, which remains constant during a loading cycle. Therefore, the inclusion

of this kinematic hardening term does not add extra independent variables to the Newton algorithm.
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The addition of an extra isotropic hardening parameter pl adds one extra degree of freedom, for a total

of four unknowns in the plastic correction step. This represents a significant computational improvement

over the solution algorithm of Borja et al. [2001], which uses the same procedure with eight unknowns.

However, the complexity of the residual gradient calculation is increased accordingly, and is presented

in Appendix C.

As before, the appropriate plastic correction for each variable is found by substituting the trial state

values, (3.32), into (3.27), (3.28) and (3.29):


















































































ep = ep,tr +
3∆γ

M2
s̃

θp = θp,tr + ∆γ(2p̃ − pl)

s = exp

(−∆γ

k
(2p̃ − pl)

)(

str + 2αp0 exp

(

θ − θp

k

)

3∆γ

M2
α

s

)

[

1 +
6αp0

M2
∆γ exp

(

θ − θp
n

k

)

exp

(−∆γ

k
(2p̃ − pl)

)]−1

p = p0 exp

(

θe,tr

k

)

exp

(−∆γ

k
(2p̃ − pl)

)

[

1 +
α

k

(

‖ee,tr‖2 − 6

M2
∆γs̃ : ee,tr +

9

M4
∆γ2‖s̃‖2

)]

The hardening parameters may be obtained directly from (3.30) and (3.31).

These equations are simplified by introducing constants analogous to those used in Chapter 2, with the

addition of one further constant for the new hardening equations:






























































































A1 = exp

(−∆γ

k
(2p̃ − pl)

)

A2 = exp

(

θe,tr

k

)

A3 =
6αp0

M2
A2

A4 = 1 + ∆γA1A3

A5 =
A1

A4

A6 =

{

1 +
α

k

(

‖ee,tr‖2 − 6

M2
∆γs̃ : ee,tr +

9

M4
∆γ2‖s̃‖2

)}

A7 =
1

λ − k
∆γ(2p̃ − pl)

(3.42)
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Equations (3.41)3, (3.41)4, (3.30) and (3.31) then simplify to:

s = A5

(

str + A3∆γα
s
)

(3.43)

p = p0A1A2A6 (3.44)

pc =
pcn

1 − A7
(3.45)

pl =
pln + A7hκm

1 − A7
(3.46)

Combining (3.7) and (3.43) leads to a useful expression for s̃:

s̃ = s − α
s = A5s

tr − 1

A4
α

s (3.47)

We solve these equations using the same procedure as in Chapter 2, with one additional unknown — the

extra hardening parameter, pl. Equations (3.6), (3.9), (3.44) and (3.46) are solved, substituting for s, s̃

and pc from (3.43), (3.47) and (3.45), respectively.

We introduce the vector of unknowns, x = {p̃, pl, ∆γ, κ}, and vector of residuals:

g(x ) =















g1

g2

g3

g4















=



















3‖s̃‖2

2M2 + p̃(p̃ − pl)
p0A1A2A6 − p̃ − αp

(pln + A7hκm) [1 − A7]
−1 − pl

(1 + κ)pl − pcn [1 − A7]
−1



















(3.48)

As before, we use a Newton algorithm, such that the value from the (k + 1)th iteration is found from:

x
(k+1) = x

(k) −
[

∂g

∂x

]−1

g
(

x
(k)
)

(3.49)

Convergence can be considered achieved when the normalised vector of residuals is less than machine

tolerance:

‖g‖∗ =

√

(

g1

p2
0

)2

+

(

g2

p0

)2

+

(

g3

pl0

)2

+

(

g4

pl0

)2

< TOL (3.50)

Calculation of the residual gradient for use in (3.49) is presented in Appendix C.

Remark 3.5. The problem dimension could be further reduced by solving g4 for κ, and substituting this

expression into αp, g2 and g3. This would reduce the number of unknowns to three, equivalent to the

MCC model of Chapter 2, and to the GP model presented in the next chapter. However, this has not been

attempted here.
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3.4.5 Consistent tangent

Elastic step

Comparing the trial states for the MCC and BS models, (2.16) and (3.32), it is evident that the elastic

tangent tensor will be the same as in Chapter 2:

C
e =

p0

k
exp

(

θe

k

)[

2αkIdev + 3
(

1 +
α

k
‖ee‖2

)

Ivol + 2α (1 ⊗ ee + ee ⊗ 1)

]

(3.51)

Plastic step

As in Chapter 2, we obtain the inelastic tangent tensor by differentiating stress and hardening variables

with respect to the trial elastic strain, εεεe,tr, then enforcing the consistency condition to find ∂∆γ/∂εεε
e,tr.

The complete calculation is given in Appendix D, where the following expression is obtained:

C
p = (H11 + G3s + H4Σdev) ⊗ 1 + (H21 + G5s + H5Σdev) ⊗ s

+ (H31 + G7s + H6Σdev) ⊗ Σdev + C13Idev (3.52)

where the values of G3, G5, G7 and H1–H7 are obtained in Appendix D.

Remark 3.6. The procedure used in Appendix D results in an expression for C
p in closed-form. The cal-

culation requires no matrix inversion, which results in an efficient procedure, computationally. Contrast

the solution algorithm of Borja et al. [2001], which requires the inversion of a 4 × 4 and a 6 × 6 matrix.

3.4.6 Converting to ‘mechanical’ sign convention

For tension-positive sign convention, the tangent tensor must be converted in the same manner as Chapter

2. Eq. (2.35) remains valid here, from which we obtain:

C
p = (H11 − G3s − H4Σdev) ⊗ 1 + (−H21 + G5s + H5Σdev) ⊗ s

+ (−H31 + G7s + H6Σdev) ⊗ Σdev + C13Idev (3.53)

for the inelastic time step, where the constant terms are the same as for the compression-positive case.

The elastic tangent is as given in (2.36).

3.5 NUMERICAL TESTS

The numerical tests of Section 3.5 are repeated here for the BS models, with material parameters indi-

cated in Table 3.1. As before, p0 is defined separately for each test, based on the non-zero initial value of
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pressure defined by the loading history. In addition, pl0 is defined equal to p0 for each test, which follows

from the definition of the loading surface (3.6), and an initial deviatoric stress, s0 = 0. Finally, we take

pen
l = 0.10 pc, as suggested in Section 3.3.

Table 3.1: Bounding Surface model parameters
Parameter α M λ k pc0 h m σh

Value 100 0.9 0.09 0.02 100 kPa 5000 kPa 2 0

In the following figures, the initial and final position of the loading surface are indicated by f0 and f1,

and the initial and final positions of the bounding surface are indicated by F0 and F1.

3.5.1 Isotropic compression test

Initially, the isotropic compression test from Section 2.5.1 was attempted with the current model. How-

ever, as predicted in Remark 3.3, the unloading portion of the loading history resulted in some difficulties,

both conceptual and computational. On initial unloading, the homology centre and loading surface are

relocated, and elastic behaviour continues until the boundary of the elastic nucleus is reached. When

ptr
l exceeds pl, inelastic behaviour is expected, and the plastic correction described in Section 3.4.4 is

carried out. However, given that pl > 0, ∆γ > 0, and that for the isotropic loading history described

here, p̃ = 0, Eq. (3.31) gives pl < pln. This implies that the loading surface decreases in size, a result

that is inconsistent with the loading history described, in which p decreases and the loading surface must

grow accordingly.

The results of the simulation are shown in Fig. 3.2, for 1000 time steps. Convergence problems did not

develop immediately upon unloading as could have been expected from the above discussion, and a sig-

nificant amount of unloading continued until a level of mean stress, p ≈ 100 kPa, was reached. However,

for the entire inelastic loading branch of Fig. 3.2(b), the discrete consistency parameter, ∆γ, converged

to a value less than zero, a result which violates the Kuhn-Tucker condition, Eq. (2.12)1. Therefore,

the unloading portion of Figure 3.2 should not be considered as an appropriate representation of the be-

haviour of the model, and under general loading conditions involving stress reversals, the adequacy of

the model is questionable.

In order to investigate the reloading behaviour of the model, the original loading history was modified,

by limiting the unloading portion to a value of p = 150 kPa. The results of this simulation are shown in

Fig. 3.3, for 1000, 100 and 48 time steps — due to the unloading difficulties discussed above, fewer time

steps led to convergence problems in the unloading portion of the loading history.

The initial loading branch of Fig. 3.3(b) is identical to the results obtained for the MCC model, as for

pc0 = pl0, and σh = 0, the models are identical. On detection of the unloading condition, σh is
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Figure 3.2: Isotropic compression test with loading history from Section 2.5.1. (a) Stress path on p–q
diagram and (b) volumetric stress, p, vs. volumetric strain, θ.

relocated, and subsequent unloading and reloading behaviour is different to the MCC model. If we

ignore the unloading branch of Fig. 3.3(b), for the reasons discussed in Section 3.5.1, we see that inelastic

behaviour commences immediately on stress reversal. The concave downward behaviour of the model

for pc > pl, evident in Fig. 3.3(b), is cited by Borja et al. [2001] as an improvement of the BS model

over the MCC model in the description of the behaviour of real overconsolidated clays.
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Figure 3.3: Isotropic compression test with modified loading history. (a) Stress path on p–q diagram and
(b) volumetric stress, p, vs. volumetric strain, θ.

The convergence of the model is analysed in Fig. 3.4, for the 100-time step and 48-time step simula-

tions. Convergence to the required tolerance is obtained within five iterations in each case, and at an

asymptotically quadratic rate (Fig. 3.4(b)).
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Figure 3.4: Isotropic compression test. Convergence profiles of (a) normalised residual, Ri, and (b) ratio
of successive logarithms, log Ri.

3.5.2 Monotonic isotropic compression with small perturbation in loading history

Although the discrete relocation of the homology centre leads to realistic reloading behaviour for the

previous loading history, Remark 3.2 suggested that this may not be the case in general. In particular, a

small perturbation in the loading history has as much effect on the relocation of the homology centre as

the complete unloading path described in the previous simulation.

The effect of such a perturbation was analysed in a further isotropic compression simulation. The loading

history is the same as described above, but with the unloading portion reduced in size to ∆p = −5 kPa.

This increment lies within the elastic nucleus, so the unloading problems discussed above do not arise,

although the unloading condition is met, and the homology centre is relocated.

Initially, the material parameters in Table 3.1 were used. However, some convergence problems were

experienced on reloading, when the stress point was too close to the bounding surface. In particular,

when the trial stress value lay outside the bounding surface, the analysis failed to converge. It is not

immediately clear if this is a problem which also applies to the solution algorithm proposed by Borja

et al. [2001].

To remove this problem, a value of pc0 = 200 kPa was used, along with p0 = pl0 = 100 kPa, as before.

In addition, two different values of h were considered: 5000 kPa as in Table 3.1, and 50 kPa.

The results from this simulation are presented in Fig. 3.5. For h = 5000 kPa, used throughout this

section, the effect of the relocation of the homology centre does not significantly alter the subsequent

stress–strain behaviour. However for the lower h value, the effect is much more significant, and leads to

a sharp discontinuity in the otherwise monotonic p–θ response shown in Fig. 3.5.
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Figure 3.5: Monotonic isotropic compression with small perturbation in loading history. Volumetric
stress, p, vs. volumetric strain, θ.

3.5.3 Triaxial compression of lightly overconsolidated sample

The triaxial test described in Section 2.5.2 was repeated for the current model, with results for 1000, 100

and 24 time steps summarised in Fig. 3.6. The results obtained here are nearly identical to those obtained

for the MCC model (Fig. 2.3). This could be expected for monotonic loading of lightly overconsolidated

soils, for which the loading surface lies close to the bounding surface.

The convergence of the model is assessed in Fig. 3.7, in the same manner as previously. Convergence is

achieved within five and seven iterations for the 100-time step and 24-time step analyses, respectively,

and at an asymptotically quadratic rate.

3.5.4 Triaxial compression of heavily overconsolidated sample

Results for the triaxial compression test of a heavily consolidated sample are presented in Fig. 3.8, for

1000, 100 and 18 time steps. The BS model is unable to describe the softening response obtained in

Chapter 2, and converges to a critical state through purely dilative behaviour. Although p < pc/2, as

in the MCC simulation, here we have p̃ > pl/2, and the associative flow rule defined in (3.12) gives

θ̇p > 0. Compaction behaviour (θ̇p < 0) will require p̃ < pl/2, a condition that has been shown to lead

to problems for the isotropic compression test.

The inability to model compaction and softening response of heavily consolidated soils could be consid-

ered a shortcoming of the present model. However, as stated in Chapter 2, the MCC yield condition used

as the basis of all the models presented in this work is intended for normally consolidated and lightly

consolidated clays only. The results presented here, although significantly different to those obtained for

the MCC model, are used to test the robustness of the solution algorithm for general load cases and initial
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Figure 3.6: Triaxial compression of lightly overconsolidated sample. (a) Stress path on p–q diagram, (b)
volumetric stress, p, vs. volumetric strain, θ, (c) deviatoric stress, q, vs. deviatoric strain, εq, and (d) θ
vs. εq.
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Figure 3.7: Triaxial compression of lightly overconsolidated sample. Convergence profiles of (a) nor-
malised residual, Ri, and (b) ratio of successive logarithms, log Ri.

conditions. As shown in Fig. 3.9, convergence is again obtained quadratically in these analyses.
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Figure 3.8: Triaxial compression of heavily overconsolidated sample. (a) Stress path on p–q diagram, (b)
volumetric stress, p vs. volumetric strain, θ, (c) deviatoric stress, q vs. deviatoric strain, εq, and (d) θ vs.
εq.
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Figure 3.9: Triaxial compression of heavily overconsolidated sample. Convergence profiles of (a) nor-
malised residual, Ri, and (b) ratio of successive logarithms, log Ri.
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3.5.5 Strain controlled cyclic shear loading

The numerical examples described above present an interesting comparison with the equivalent tests in

Chapter 2, and also highlight some potential problems in the model. However, the main objective of the

bounding surface formulation is to improve the behaviour of the MCC model for cyclic loading histories.

The response of the model to the strain-controlled cyclic shear test is shown in Fig. 3.10. As is evident

from the figures, the BS model exhibits smoother hysteretic behaviour, with inelastic loading, unloading

and reloading. Furthermore, stress carried on successive loading cycles is decreased in both the vol-

umetric and deviatoric components, more representative of real soil behaviour. In contrast, successive

reloading cycles in the MCC model of Section 2.5.4 led to increased levels of deviatoric stress, as the

model behaviour converged to the critical state.
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Figure 3.10: Strain controlled cyclic shear test. (a) Stress path on p–q diagram, and (b) deviatoric stress,
q vs. deviatoric strain, εq

Provided the total number of time steps was 52 or greater, no problems were experienced on unloading in

the strain-controlled test. In this loading history, unloading leads to a decrease in κ, and the back stress α

moves closer to the origin. For this reason, although p is decreasing with unloading, p̃ is always greater

than pl/2. This is evident from Fig. 3.10(a), where the final stress point lies in the right-hand half of the

loading surface, f1 = 0.

For fewer than 52 time steps, trial stress values were located in the left-hand half of the loading surface

(ptr < ptr
l /2), and convergence problems were experienced. Similarly, problems arose if the magnitude

of the strain cycle was increased to ε12 = ±1.5%, even for 1000 time steps.
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3.5.6 Stress controlled cyclic shear loading

Initially, the stress-controlled cyclic shear test described in Section 2.5.5, with σ12 = ±25 kPa was

attempted for this model. This value was chosen to be similar to the simulations presented by Borja et al.

[2001], while using material properties equivalent to those used in the MCC tests.

Under this loading history, however, the same unloading problems discussed previously were experienced

here, and the stress cycle magnitude was reduced to σ12 = ±15 kPa. In this case, the entire loading

history was completed for 1000 time steps, and partially completed for 100 time steps, with the results

shown in Fig. 3.11. Note that in Fig. 3.11(a), the final loading surface labelled ‘f1 = 0’ applies to the

1000-time step case, for which the entire test was completed.
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Figure 3.11: Stress controlled cyclic shear test. (a) Stress path on p–q diagram, and (b) deviatoric stress,
q vs. deviatoric strain, εq

It is interesting to note the sensitivity of the stability of the test to relatively small changes in material

parameters. For example, if the parameter M is increased to a value of 1.2, the entire load history with

σ12 = ±25 kPa converges successfully for 100 time steps. Although some of the other parameters are

slightly different than those used here, this roughly corresponds to the stress-controlled cyclic simple

shearing test presented in Borja et al. [2001].

It is also worth noting that Borja et al. [2001] utilise the same free energy and hyperelastic stress–strain

law used here, but with the addition of an extra term representing a constant shear modulus. However, in

all of the tests presented in the paper, the hyperelastic parameter, α, is taken as zero, and a constant shear

modulus is used. For the loading history described here, this results in a vertical stress path in the p–q

plane, within the elastic nucleus, and it is less likely that the problems experienced here will arise.

In addition, the strain-controlled test simulated above is similar to the strain-controlled cyclic simple

shearing test of [Borja et al., 2001], and the stability of the model for this test was shown here to be

sensitive to relatively small changes in the loading history.
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These considerations suggest that the tests presented by Borja et al. [2001] are sensitive to material

parameters and to the loading history, and are not sufficiently rigourous to test the solution algorithm

therein.
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4. GENERALISED PLASTICITY

4.1 INTRODUCTION

The Generalised Plasticity (GP) model, presented by Auricchio et al. [1992] and Lubliner et al. [1993], is

an alternative representation of the cyclic behaviour of materials. In the GP framework, a yield function

defines the boundary between elastic and inelastic states, while a separate limit function defines admis-

sible and inadmissible states. The limit function and hardening laws can be selected to give a smooth,

nonlinear transition from elastic to inelastic response, characteristic of most materials.

In this chapter, a model for soil plasticity is developed in the GP framework, making use of the MCC

yield function used in the previous chapters. A limit function is adapted from the original papers, to be

compatible with the yield function and hardening rule used here. Finally, the same numerical examples

as in Chapter 2 and Chapter 3 are carried out, and results compared with the earlier models.

4.2 MODEL DESCRIPTION

4.2.1 Elastic stress–strain law

A hyperelastic stress–strain law identical to (1.13) is used with this model:

p = p0 exp

(

θe

k

)

(

1 +
α

k
‖ee‖2

)

(4.1)

s = 2αp0 exp

(

θe

k

)

ee (4.2)
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4.2.2 Yield and limit functions

Again, the yield function used here is the MCC surface of (1.8).

f(σ, pc) =
3‖s‖2

2M2
+ p(p − pc) (4.3)

where pc again refers to the preconsolidation pressure of the soil.

As with the BS model of Chapter 3, the role of (4.3) is slightly different in a GP framework. The yield

surface, f = 0, is used to define the boundary between elastic and inelastic stress points, while a separate

surface, defined by the limit function, F , is used to distinguish admissible from inadmissible states. This

means that, unlike in classical plasticity, the yield function is not restricted to zero or negative values.

The limit function now takes this role, and the Kuhn-Tucker conditions apply:

γ̇ ≥ 0 F (σ, pc) ≤ 0 γ̇F (σ, pc) = 0 (4.4)

The GP model is presented conceptually in Fig. 4.1. In the inelastic range (defined by f > 0), the

model gradually approaches an asymptote at a distance of β from the yield surface, where β is a material

constant. Subsequent cycles of loading begin to yield when f > 0, before the previous maximum stress

has been reached.

f = 0

f − β = 0

ε

σ

F = 0

F < 0

Figure 4.1: Generalised plasticity conceptual representation.

Obviously, the choice of limit function will have a significant effect on the behaviour of the model. In the

original presentations of the GP model, with a J2 yield function, [Auricchio et al., 1992; Lubliner et al.,

1993], the following limit function is assumed:

F = h(f)[n : σ̇] − γ̇ (4.5)
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with

h(f) =
f

δ(β − f) + Hβ
, n =

∂f

∂σ

(4.6)

where β and δ are material constants, having units of stress in the original model. The parameter δ

gives the speed at which the model converges to an inelastic asymptote, at a distance β from the J2 yield

surface. The parameter H represents the asymptotic plastic modulus of the model, obtained in the limit

as f → β.

To be consistent with (4.3), δ and H have units of stress cubed and stress squared, respectively, in the

present model. Furthermore, the values of β and H cannot be taken as constant, unlike in J2 plasticity,

where use of constant values followed naturally from the form of the yield surface and hardening law.

Finally, in the equation for the yield surface, the hardening parameter, pc, is not simply additive, and

appears in Eq. (4.3) multiplied by p. If the limit surface is to be homologous to the yield surface, this

requires an expression for β of the following form:

β = β1p (4.7)

where β1 is a material constant, with dimensions of stress.

Similarly, the value of H is no longer constant in the MCC version of generalised plasticity. If H is

to represent the plastic modulus for β = f , then it must be obtained in the same manner as the plastic

modulus for the MCC model of Chapter 2.

Recalling (2.10), we take:

H =
ppc(2p − pc)

λ − k
(4.8)

Note that no new material parameters are introduced in (4.8), as the expression for the asymptotic plastic

modulus follows directly from the hardening law and yield surface of the material.

4.2.3 Flow rule

The same associative flow rule as in Chapter 2 is used here. Decomposed into deviatoric and volumetric

components, we have:

ėp = γ̇

(

3

M2
s

)

θ̇p = γ̇ (2p − pc)

(4.9)

4.2.4 Hardening law

The same hardening law is used as in the MCC model:

pc = pc0 exp

(

1

λ − k
θp

)

(4.10)
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As with the BS formulation, (4.10) does not contain all information about hardening in the model. With

BS plasticity, the evolutionary equation for pc described hardening of the bounding surface, while a

separate equation was required for evolution of the loading surface hardening parameter, pl. In the

GP formulation, (4.10) describes hardening of the yield surface, while (4.5) and (4.8) implicitly define

hardening of a surface given by f = β.

Remark 4.1. In combination with the Kuhn-Tucker conditions (4.4), Eq. (4.5) effectively provides a

direct expression for the consistency parameter, γ̇. In the inelastic region, with F = 0 and γ̇ > 0, we

have:

γ̇ = h(f)[n : σ̇] (4.11)

This can be compared with the expression for the consistency parameter for yielding from classical

plasticity:

γ̇ =
1

H [n : σ̇] (4.12)

in which H is the plastic modulus.

Therefore, the combination of (4.11) and (4.12) gives the following expression for the plastic modulus:

H =
1

h(f)
=

δ(β − f) + Hβ

f
(4.13)

which tends to the asymptotic plastic modulus, H , as f tends to β.

Remark 4.2. The similarities between the GP model and the BS model described in Chapter 3 should

be evident. Eq. (4.13) gives an expression for the plastic modulus of the GP formulation that depends on

β/f , δ and H , roughly corresponding to (1 + κ), hardening parameters h and m, and Ĥ from Chapter

3, respectively. Similarly, (3.20) gives an expression for the plastic modulus of the BS model in terms of

these parameters, although not in the same format.

Comparing the GP and BS models, the following comments can be made:

1. The GP model assumes the existence of an elastic region for which f < 0, and plastic strain rates

are zero. The BS model includes a small ‘elastic nucleus’ in the time discrete version of the model

for computational purposes only, and plastic strain increments are in general non-zero.

2. In the BS model, the distance between the loading and bounding surfaces is not fixed, and hard-

ening equations governing the size of each surface are separate, although not independent. The

hardening equation given for the size of the loading surface is such that it is confined by the

bounding surface.

In the GP model, admissible stress states are bounded by a surface f − β1p = 0 — an ellipse in

the p–q plane homologous to the yield surface, which intercepts the p–axis at pc + β1. The model

parameter β1 is taken as constant, so that the difference between the yield surface and the limiting
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surface is fixed. However, the consistency condition is not applied to the yield equation, so the

stress point is allowed to approach the asymptote, as in the BS model.

3. Unloading is elastic in the GP model, while for the BS model, detection of the unloading condition

results in a discrete relocation of the homology centre, and inelastic loading continues from this

new point. That is, ‘unloading’ never occurs.

Note, however, that kinematic hardening can be readily incorporated into the GP framework, as in

the original papers [Auricchio et al., 1992; Lubliner et al., 1993].

Finally, it should be noted that with appropriate manipulation of the expressions for plastic moduli, (3.20)

and (4.13), the BS model could be reformulated within the framework of GP plasticity, and vice versa.

For example, Eq. (4.5) could be used with:

h(f, κ, pl) =
1

H (4.14)

where H is obtained directly from (3.20), with parameters κ and pl defined as in Chapter 3.

Clearly, reformulating the anisotropic BS model in the GP framework would require additional evolution-

ary equations for the homology centre, as in Chapter 3. However, as stated above, generalised plasticity

is fully compatible with kinematic hardening, and this should not present any difficulties.

4.3 DISCRETE FORM OF MODEL

As in the previous models, we use backward Euler integration to obtain a time discrete form of the model.

As before, we have:

ep = ep
n + ∆γ

3

M2
s

θp = θp
n + ∆γ(2p − pc)

(4.15)

with

∆γ =

∫ tn+1

tn

γ̇dt

and the same expressions for p and s:

p = p0 exp

(

θ − θp
n − ∆γ(2p − pc)

k

)[

1 +
α

k
‖e − ep

n − ∆γ
3

M2
s‖2

]

(4.16)

s =
2αp0 exp

(

θ−θp
n

k

)

exp
(

−∆γ(2p−pc)
k

)

1 + 6αp0

M2 ∆γ exp
(

θ−θp
n

k

)

exp
(

−∆γ(2p−pc)
k

) [e − ep
n] (4.17)

Because of the form being used for the limit function, this must also be integrated to obtain an appropriate

time discrete form. If (4.5) is integrated in its current form, the value of σ at the previous time step, σn

will need to be stored for the next time step, adding six internal variables to the model. It will be more

efficient to make a manipulation of (4.5) before integrating.
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Note that the implied definition of n from (4.6)2 is:

n =
∂f

∂σ

∣

∣

∣

pc=constant
=

df̂

dσ

(4.18)

where

f̂(σ) = f(σ, pc)
∣

∣

pc=constant (4.19)

Substituting (4.18) into (4.5), we obtain:

F = h(f)
˙̂
f − γ̇ = 0 (4.20)

Implicit integration gives the discrete equivalent of the limit function:

Fdisc = h[f̂ − f̂n] − ∆γ (4.21)

The term in brackets, [f̂ − f̂n], requires further clarification. This is the discrete change in the function

f̂ over the time step. Noting the definition of f̂ , this requires that pc is kept constant over the time step.

Therefore, the following expressions apply:

f̂n = f(σn, pcn) = fn f̂ = f(σ, pcn) (4.22)

from which we see that the only stored variables required from time tn are fn and pcn.

4.4 RETURN MAP ALGORITHM

Because most of the equations here are identical to those used in Chapter 2, the return map algorithm is

very similar to that used before. However, now the consistency condition, (4.4)2 is enforced on the limit

function, F .

4.4.1 Trial state

The trial values used here are identical to Chapter 2, as defined in (2.16).

In the present model, the role of the limit function is to define the boundary between admissible and

inadmissible states. Therefore, it is the trial limit function which must be used to determine if the time

step is accurately described by the elastic trial state. Substituting trial state values from (2.16), the trial

limit function is given by:

F tr
disc = h(f tr)[f̂ tr − f̂n] (4.23)
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Note that from (4.22)2, we can take:

f̂ tr = f(σtr, pcn) = f(σtr, ptr
c ) = f tr (4.24)

and, substituting from (4.22)1 and (4.24) into (4.23) gives:

F tr
disc = h(f tr)[f tr − fn] (4.25)

Again, we must compare this value with the second Kuhn-Tucker condition, (4.4)2. If F tr
disc ≤ 0, then

the trial state given by (2.16) is the correct solution. Otherwise, if F tr
disc > 0 the Kuhn-Tucker condition

is violated, and a plastic correction must be made to obtain the correct stress state.

There is, however, additional complication in using the above condition for acceptance of the trial state.

It is important to consider the physical meanings of the two components of (4.25), h(f tr) and [f tr − fn].

Provided that the denominator of h in (4.6) remains positive (see Remark below), h(f tr) < 0 implies

that the trial stress state is in the elastic region.

Meanwhile, if [f tr−fn] < 0, the stress point is becoming closer to the origin, which implies an unloading

stress path. This is a generalisation of the unloading condition used in classical plasticity, and in the MCC

and BS models of Chapters 2 and 3. In classical plasticity, fn = 0, which gives a condition f tr < 0 for

unloading. In generalised plasticity, the consistency condition is no longer enforced on f , and fn will be

greater than zero in the plastic range.

If we desire elastic unloading, the condition F tr
disc ≤ 0 should apply in all cases when [f̂ tr − f̂n] < 0

applies. However, if we take:

[f̂ tr − f̂n] < 0, and h(f tr) < 0,

a condition of unloading in the elastic region, (4.25) gives a positive value of F tr
disc.

The implication of the above discussion is that we must check both the trial yield function and the

direction of loading in our evaluation of the trial state. An appropriate pair of expressions to use for this

purpose are:

f tr > 0 and [f̂ tr − f̂n] > 0 (4.26)

If both (4.26) equations are satisfied, then we must make the plastic correction. In words, if the stress

state is in the inelastic region, and it is a loading stress path, then we have a plastic time step. Otherwise,

the trial state is correct.

Remark 4.3. The generalised plasticity framework requires that the function h is greater than zero when

f is greater than zero. If n : σ̇ > 0 in a time continuous setting, or (4.26) is satisfied in a time discrete

setting, the Kuhn-Tucker conditions (4.4) require that F = 0 and the continuous or discrete consistency

53



Chapter 4. Generalised Plasticity

parameter is greater than zero. From the appropriate expression for F , (4.5) or (4.21), and the definition

of h, Eq. (4.6), we require that the denominator of h is greater than zero.

From (4.6), we have:

δ(β − f) + Hβ > 0 (4.27)

which can be rearranged to give the following inequality for H:

H > δ

(

f

β
− 1

)

(4.28)

Eq. (4.28) presents no difficulties for cases of hardening in a time continuous setting. In this case H > 0

and f/β < 1, which satisfies the inequality. In fact, negative values of H may also be permitted,

particularly for low values of f and high values of δ.

Theoretically, the same argument applies to a time discrete setting. However, if H is replaced by the trial

asymptotic modulus, H tr = H
(

ptr, ptr
c

)

, we have:

Htr > δ

(

f tr

βtr
− 1

)

(4.29)

where βtr = β1p
tr, and f tr is defined as before.

For stress states near the CSL, H tr can take a negative value, even when the converged value of H is

positive. Similarly, f tr could be overpredicted, and may exceed βtr. This situation could lead to the

violation of (4.29), and convergence problems may be encountered.

If htr > 0 is used in place of (4.26)1 as a condition for a plastic time step, an elastic time step will be

assumed, and the trial state will be erroneously accepted. If (4.26)1 is used, a plastic time step will be

correctly predicted. However, convergence problems may be experienced in the plastic correction stage.

These problems will be further explored in Section 4.5.

4.4.2 Plastic Correction

The plastic correction step is developed in exactly the same manner as in previous chapters. As before,

pc, p and s must satisfy (4.10), (4.16) and (4.17), respectively, while the second Kuhn-Tucker condition

(4.4)2 is now enforced on the limit function.

Therefore, we introduce the same vector of unknowns, x , and a modified vector of residuals, g(x ):

x =







p
pc

∆γ







; g(x ) =







g1

gMCC
2

gMCC
3







=











h(f̂ − f̂n) − ∆γ
p0A1A2A6 − p

ptr
c exp

(

2p−pc

λ−k ∆γ
)

− pc











(4.30)
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where the MCC superscripts emphasise that these components of g are unchanged from Chapter 2. As

before we iterate using:

x
(k+1) = x

(k) −
[

∂g

∂x

]−1

g
(

x(k)
)

(4.31)

until the convergence condition:

‖g‖∗ =

√

(g1)
2 +

(

g2

p0

)2

+

(

g3

pc0

)2

< TOL (4.32)

is satisfied.

Again, residual gradient calculations are confined to Appendix E. It is worth noting that only the first

row of ∂g/∂x is changed from the MCC model, as g2 and g3 are the same as in Chapter 2.

Remark 4.4. In the original presentations of the model for J2 Plasticity, [Auricchio et al., 1992; Lubliner

et al., 1993], a quadratic expression for ∆γ was developed in closed form, and it was shown that the

smallest positive root of this equation corresponded to the physically correct root.

As with the models in previous chapters, a Newton algorithm will be required here to determine appro-

priate plastically-corrected values of ∆γ, σ and pc. No check is available to determine if the correct root

of ∆γ has been calculated. In fact, Remark 4.3 suggests that negative values of ∆γ may be obtained for

certain loading histories, which contradicts the Kuhn-Tucker conditions (4.4).

This presents a possible shortcoming of the proposed model, although further investigation into the extent

of the problem is required. In particular, alternative initial conditions for the Newton algorithm, other

than the trial state, could be explored.

4.4.3 Consistent tangent

Elastic step

The elastic behaviour of the GP model is identical to the MCC model of Chapter 2, as the yield surface

is the same. Repeating the expression obtained in Section 2.4.3, we have:

C
e =

p0

k
exp

(

θe

k

)[

2αkIdev + 3
(

1 +
α

k
‖ee‖2

)

Ivol + 2α (1 ⊗ ee + ee ⊗ 1)

]

(4.33)

Plastic step

As before, the following expression applies:

C
p = 1 ⊗ ∂p

∂εεε
e,tr

+
∂s

∂εεε
e,tr

(4.34)
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The procedure is exactly the same as before, and most equations are unchanged. The only difference is

in the enforcement of the consistency condition, which is now defined on the limit function, F . The final

expression:

C
p = Ê11 ⊗ s + Ê21 ⊗ 1 + Ê3s ⊗ 1 + Ê4s ⊗ s + Ê5Idev (4.35)

is derived in Appendix F. The constants Ê1–Ê5 are very similar to their MCC counterparts.

4.4.4 Converting to ‘mechanical’ sign convention

As before, we have:

C
e,m =

p0

k
exp

(

θe

k

)[

2αkIdev + 3
(

1 +
α

k
‖ee‖2

)

Ivol − 2α (1 ⊗ ee + ee ⊗ 1)

]

(4.36)

and

C
p,m = −Ê11 ⊗ s + Ê21 ⊗ 1 − Ê3s ⊗ 1 + Ê4s ⊗ s + Ê5Idev (4.37)

where the constant terms are the same as for the compression positive case, with negative signs as shown.

4.5 NUMERICAL TESTS

The same finite element simulations as in previous chapters were conducted using the GP model, using

the material parameters summarised in Table 4.1. As before, the parameter p0 varies for each test, and

the form of the stress–strain law prohibits an initial pressure of zero.

Table 4.1: Generalised Plasticity model parameters
Parameter α M λ k pc0 δ β1

Value 100 0.9 0.09 0.02 200 kPa 1 × 107(kPa)3 100 kPa

4.5.1 Isotropic compression test

Fig. 4.2 shows the loading, unloading and reloading behaviour of the model under isotropic compression.

Results are shown for six, 100 and 1000 stress increments, and the accuracy of the solution algorithm,

can be observed.

An interesting feature of Fig. 4.2(a) is the onset of yielding before the previous maximum stress level is

obtained. Comparing with Fig. 2.1(a), the elastic behaviour, experienced on unloading and reloading of

the sample, is identical. The plastic behaviour exhibits an initially convex stress–strain response, which

evolves into the concave response characteristic of the MCC model as f increases.
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In Fig. 4.2(b) the ln v–ln p relationship deviates slightly from the bilinear form used as the basis of

the model, with a more gradual transition from the elastic to the inelastic branches of the graph. The

parameter k is correctly obtained for the elastic straight line portion of the graph, while λ is found in the

limit for the inelastic portion, as shown in Fig. 4.2(b).
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Figure 4.2: Isotropic compression test. (a) Volumetric stress, p, vs. volumetric strain, θ, and (b) bilinear
ln v vs. ln p relationship.

The convergence profiles are again compared for first, ‘worst’ and last integration steps, in Fig. 4.3. In all

cases, convergence is achieved quadratically, within five iterations with 100 time steps, and six iterations

with six time steps (Fig. 4.3(a)). It is interesting to note that ten iterations were required in the latter case,

using the MCC model (Fig. 2.2).
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Figure 4.3: Isotropic compression test. Convergence profiles of (a) normalised residual, Ri, and (b) ratio
of successive logarithms, log Ri.

4.5.2 Triaxial compression of lightly consolidated sample

Results from the triaxial compression test simulation are presented in Fig. 4.4. The model exhibited

convergence problems, even for the case of 100 time steps, and the last data point plotted for 100 and

57



Chapter 4. Generalised Plasticity

18 time steps runs in Fig. 4.4 represent the last convergent step. In each case, the number of time steps

reported (1000, 100 and 18 steps) represents the number of steps that would have been completed if the

full loading history described in Section 2.5.2 had been completed, and not the actual number of conver-

gent time steps. This corresponds to an increment in the controlled strain component of approximately

0.07%, 0.7% and 4%, respectively.
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Figure 4.4: Triaxial compression of lightly overconsolidated sample. (a) Stress path on p–q diagram, (b)
volumetric stress, p, vs. volumetric strain, θ, (c) deviatoric stress, q, vs. deviatoric strain, εq, and (d) θ
vs. εq.

The convergence difficulties exhibited in this simulation highlight a significant problem with the current

version of the GP model. The output files from each of the analyses revealed that the problem predicted

in Remark 4.3 is responsible, with Eq. (4.29) violated in each of the non-convergent time steps. As

suggested in the remark, a small or negative asymptotic plastic modulus, H , results in a negative value

for the function h, which is not compatible with the Kuhn-Tucker requirement, (4.4)1. For the analyses

that experienced problems here, the final non-convergent time step corresponds to a trial stress state for

which ptr < ptr
c /2, leading to H tr < 0 from (4.8), and violation of (4.29).

Fig. 4.4(a) also highlights an unfavourable aspect of the current model related to the modelling of the

‘critical state concept’ introduced in Section 1.6. With 1000 time steps, Figures 4.4(b) and (c) indicate
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that the critical state has been effectively reached when convergence problems occur, with no further

increase in stress or volumetric stain occurring. However, Fig. 4.4(a) shows that the final stress state does

not lie on the CSL in the p–q plane, and the geotechnical interpretation of the CSL (and the slope, given

by the parameter M ) is no longer valid.

The reinterpretation of the critical state concept is a result of the use of a flow rule associated with the

yield surface, which, in the present model, is not restricted to zero or negative values. For the MCC

and BS models discussed in the previous chapters, plastic flow was associated with a surface that passed

through the current stress state — the yield surface or the loading surface respectively — and the direction

of plastic flow could be found from the gradient to the surface at that stress state. In the GP formulation

discussed here, the gradient of the yield surface for the current stress state will not necessarily correspond

to an appropriate flow direction. In this case, we have a final stress state corresponding to p ≈ pc/2, for

which (4.9)2 gives a volumetric strain rate of zero — a ‘critical state’ not lying on the CSL.

Fig. 4.5 shows the implications of using flow associated with the yield surface, f = 0. A surface defined

by F = 0 is plotted as a dotted line passing through the current stress state, and the surface f = β

is also shown. The gradient of F = 0 at the current stress point is decomposed into volumetric and

deviatoric parts, and is indicated by the ‘1’ subscript in Fig. 4.5. The direction of flow given by these two

components is representative of the associative flow rules used for the MCC and BS models.

f=0    F=0    f=β

θp
1

θp
2

θp
3

ε
q
p

1
ε

q
p

3

ε
q
p

2

p

q

p
c p

c
+β

Figure 4.5: Generalised plasticity with flow rules associated with (1) F = 0, (2) f = 0 and (3) f = β.

For the GP model, (4.9) is used to evaluate the deviatoric and volumetric strain rates, and the former

rate is converted to ε̇p
q using (2.39). These two components of flow are indicated by the ‘2’ subscript in

Fig. 4.5. Note that for the case shown, θ̇p
2 is equivalent to the volumetric component of the gradient of

f = 0 with the current value of p. The current value of q does not correspond to a stress state on f = 0
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— the deviatoric plastic strain rate, ε̇p
q2 is still calculated from (4.9) and (2.39), although the physical

significance of being a gradient to a surface is lost.

The resultant strain rate ε̇εε
p
2 assumed in the GP model, from the vector addition of θ̇p

2 and ε̇p
q2, is clearly

different from that used in the previous models (equivalent to ε̇εε
p
1 in Fig. 4.5), and, as shown above,

leads to an incorrect interpretation of the critical state. A second model in the GP framework was also

developed, using a flow rule associated with the surface defined by f = β. However, as suggested by

the strain rate components with subscript ‘3’ in Fig. 4.5, the behaviour of this model was also contrary to

experimental evidence, and the ‘critical state concept’ of soil mechanics.

Fig. 4.5 and the above discussion suggest two possible solutions to the problem. Firstly, a flow rule

associated with the surface F = 0 could be used. However, the evaluation of:

ε̇εε
p = γ̇

∂F

∂σ

could present some difficulty, given that the expression for F , Eq. (4.5), contains the consistency param-

eter γ̇.

A second possible solution is the adoption of a mapping rule, similar to that used in Chapter 3, which

defines a stress state corresponding to the current stress state mapped onto either f = 0 or f = β. As

with the BS model, either of these alternatives would be equivalent to a flow rule associated with F = 0,

as the surfaces are defined homologously. Although the GP model would retain some independence

from the model discussed in Chapter 3 — Eq. (4.5) would still be used to provide a smooth transition

between elastic and inelastic states rather than hardening rules based on the aspect ratios of the surfaces

— the distinction between the two would be less significant, and the relative simplicity of the original

GP formulation would be sacrificed.

The principal difficulty here lies in adopting the GP framework to a non-J2 plasticity model. In J2

plasticity, the surfaces defined by f = 0, F = 0 and f = β form concentric circles in the Π–plane

(deviatoric stress space), and the vectors defined by the following gradients:

n1 =
∂f

∂σ

; n2 =
∂F

∂σ

; n3 =
∂(f − β)

∂σ

(4.38)

are parallel. This allows a simple scalar equation like (4.5) to be defined, which scales the magnitude of

the flow rate to provide a smooth transition from elasticity to inelasticity.

With a Cam-Clay yield surface, the three vectors defined in (4.38) will in general point in different

directions, as shown in Fig. 4.5, and a scalar multiplier of n2 will not be sufficient to effectively model

the transition region.

Notwithstanding the problems discussed above, the convergence of the solution algorithm was assessed

for the 1000-time step and 100-time step test runs. In the case of 18-time steps, only the isotropic

60



Chapter 4. Generalised Plasticity

hardening portion of the loading history converged, and the behaviour of the model under isotropic

hardening has already been assessed in the previous section. In the 100-time step test run presented in

Figures 4.6(a) and (b), ‘last’ time step refers to the last convergent step, and ‘worst’ is defined as before.

Both test runs exhibit quadratic convergence, within 5 iterations for all time steps.
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Figure 4.6: Triaxial compression of lightly overconsolidated sample. Convergence profiles of (a) nor-
malised residual, Ri, and (b) ratio of successive logarithms, log Ri.

4.5.3 Triaxial compression of heavily overconsolidated sample

In Section 2.5.3, a triaxial compression test of a heavily consolidated sample was simulated with a MCC

model, and quadratic convergence was reported for softening behaviour with a negative plastic modulus.

As discussed in Remark 4.3, a negative asymptotic plastic modulus, H , may be admissible, provided that

(4.28) is not violated. The results of the simulation presented in this section are therefore of some interest

to assess the importance of the conditions presented in Remark 4.3.

The results are shown in Fig. 4.7. In all test runs, the model failed to converge for the complete load

history — for 100 and 18 total time steps, only the isotropic portion of the load path was completed,

while for 1000 time steps, the model continued to converge for several steps beyond yield. In all cases,

convergence failed at the final step shown in Fig. 4.7 due to the violation of (4.28).

For the 1000-time step case, some yielding is admitted for p < pc/2 and H < 0. However, although

some compaction (∆θp < 0) is indicated by Fig. 4.7(d), softening, or reduction of the stress carried

by the soil, does not occur (Figures 4.7(b) and (c)). The form of the instantaneous plastic modulus in

(4.13) indicates H < 0 only when h(f) < 0, and because h(f) is restricted to positive values by the

considerations discussed in Remark 4.3, no softening behaviour can be described by the GP model. In

the analysis described here, convergence is achieved while (4.28) is satisfied, but as f increases, the

denominator of h in (4.6) decreases. Eventually, the denominator becomes negative, and the model fails

to converge.
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Figure 4.7: Triaxial compression of heavily overconsolidated sample. (a) Stress path on p–q diagram, (b)
volumetric stress, p vs. volumetric strain, θ, (c) deviatoric stress, q vs. deviatoric strain, εq, and (d) θ vs.
εq.

For the convergent steps in the 1000-time step analysis, convergence profiles are given in Fig. 4.8. Where

the model converges successfully, it does so quadratically, as shown for the first, worst and last convergent

time steps in the analysis.

4.5.4 Strain controlled cyclic shear loading

Fig. 4.9 show the behaviour of the GP model under the strain-controlled cyclic loading history, for 1000,

100 and 16 time steps. Comparing with Fig. 2.7, the GP formulation results in a smoother transition

from elastic to inelastic behaviour, and a slightly smaller increase in maximum deviatoric stress over

successive load cycles. However, overall the behaviour is very similar to the MCC model, and the

hysteretic response of a real soil is not described accurately.
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Figure 4.8: Triaxial compression of heavily overconsolidated sample. Convergence profiles of (a) nor-
malised residual, Ri, and (b) ratio of successive logarithms, log Ri.
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Figure 4.9: Strain controlled cyclic shear test. (a) Stress path on p–q diagram, and (b) deviatoric stress, q
vs. deviatoric strain, εq

4.5.5 Stress controlled cyclic shear loading

The stress-controlled analysis is presented for 1000, 100 and 16 time steps in Fig. 4.10. The hysteretic

response shown here represents a slight improvement over the MCC model, with a decrease in pressure

carried by the soil over successive cycles of shear loading. However, maximum deviatoric strain is

constant over successive cycles, which is not representative of real soil response.
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Figure 4.10: Stress controlled cyclic shear test. (a) Stress path on p–q diagram, and (b) deviatoric stress,
q vs. deviatoric strain, εq
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5. CONCLUSIONS

In this dissertation, three constitutive models have been presented for the modelling of cyclic soil plastic-

ity. Each model was based upon the Modified Cam-Clay (MCC) yield criterion of Roscoe and Burland

[1968], with different approaches taken for the modelling of inelastic behaviour.

Modified Cam-Clay Model

The first model considered was in the framework of classical plasticity, with a MCC yield condition, as-

sociative flow, a nonlinear hyperelastic stress–strain law, and nonlinear isotropic hardening. This model

has been shown in the literature to model the monotonic behaviour of lightly overconsolidated and nor-

mally consolidated clays effectively. Furthermore, with the return mapping solution algorithm presented

here, the model was robust and converged quadratically with relatively few time steps.

In cyclic loading histories, the MCC model was less effective at modelling real soil response. Cyclic shear

loading tests under both stress and strain control were simulated here, while the volumetric strain was

maintained at zero. Under cyclic strain-controlled loading with constant amplitude, the deviatoric stress

component increased over successive cycles, as the size of the yield surface increased and the volumetric

stress component decreased. With stress-controlled cyclic loading, only the first cycle resulted in yielding

of the soil, and subsequent loading at the same amplitude was completely elastic. These results are not

typical of the cyclic behaviour of real clays, which are dominated by degradation of stress capacity, and

hysteretic response.

Anisotropic Bounding Surface Model

Because of the shortcomings in the MCC model for cyclic loading, several modifications to the original

model have been proposed in the literature. One of these modifications is the widely used Bounding
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Surface (BS) model, which was the second model considered in this dissertation. In particular, the

Anisotropic BS model of Borja et al. [2001] was used, which involves a loading surface defined homol-

ogously to the bounding surface, and a combination of isotropic and kinematic hardening. An improved

solution algorithm was presented here, with a reduction in the number of model dimensions in the plas-

tic correction phase, and an explicit solution for the inelastic consistent tangent tensor, eliminating the

requirement for matrix inversion.

The BS formulation resulted in a significant improvement in the modelling of soil response. In particular,

the effective modelling of monotonic loading tests was maintained, while the two main shortcomings of

the MCC model were rectified.

However, the BS model also suffered from several flaws which limit its applicability in engineering

applications in its current form. Several problems related to the discrete relocation of the homology

centre, and subsequent collapse of the loading surface were experienced. In summary:

• The discrete relocation of the homology centre on detection of the unloading condition results

in sensitivity of model response to small perturbations in the loading history. This effect was

particularly pronounced for low values of the model parameter, h.

• For cases where (2p̃− pl) < 0, the model equations dictate that the loading surface must decrease

in size. In some unloading histories, this is conceptually problematic. Computationally, the result

of this problem was either a loss of convergence, or convergence to non-physical solutions.

• Several numerical examples presented by Borja et al. [2001] could be successfully recreated here.

However, if relatively small modifications were made to model parameters or loading history,

convergence problems developed. This suggests that the solution algorithm of Borja et al. [2001]

may also experience the problems discussed here in more general application.

It was suggested here that a continuous evolution of the homology centre and back stress tensor may be

a less problematic approach to describing the kinematic hardening of the model. However, to maintain

the effectiveness of the Anisotropic BS approach, inelastic unloading should be incorporated, as this a

particularly important feature of the model.

Generalised Plasticity Model

The final model considered in this dissertation was an adaption of the Generalised Plasticity (GP) frame-

work of Auricchio et al. [1992] and Lubliner et al. [1993] to the MCC yield criterion. Several modifica-

tions to the original works were made, and several of the parameters of the model required redefinition.
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The main attributes of the GP framework exploited here were a gradual transition from elastic to inelastic

behaviour, and the onset of yielding at a stress level below the maximum previously reached. In these

features, the GP framework is similar to the BS model discussed previously, but with the addition of a

finite elastic region. However, in this first attempt to make use of the GP concepts for soil plasticity,

only isotropic hardening was used, and unloading was elastic. If the results of the BS model were to

be matched, inelastic unloading and kinematic hardening — discrete or continuous — would need to be

added.

As presented, the GP model only slightly improved the modelling of cyclic response. In the strain-

controlled cyclic loading test, the response was smoothed, but deviatoric stress levels continued to in-

crease as the model converged to the critical state. The stress-controlled test exhibited some hysteretic

behaviour, as some yielding was allowed to occur in each cycle, but not to the same extent as the BS

model. Furthermore, deviatoric strain over successive cycles did not increase, a characteristic of real soil

response.

Although some improvements were observed in the GP model, some conceptual and computational dif-

ficulties existed. In summary:

• In the original presentation of GP plasticity for a J2 yield function, a quadratic equation was solved

analytically, and the correct root obtained by physical considerations. In this case, the plastic

correction step of the return mapping was more complex, and it was not possible to determine the

correct root. This led to convergence problems in the model, particularly when the stress state was

near the critical state.

• Associative flow based on either the loading surface (f = 0) or limiting surface (f = β) did not

result in an appropriate direction or magnitude of plastic flow. Because of this, the model converges

to a critical state which does not lie on the critical state line.

These problems would need to be addressed in any future formulations of the GP model with MCC yield

criterion. For the first problem, starting conditions other than the trial state could be investigated for the

plastic correction stage of the return mapping. In particular, for stress states near critical the function h

must remain positive, and the condition defined by (4.29) must be maintained.

For the second problem, associative flow should be defined based on the limit function, F . Differentiation

of F could lead to some difficulties due to the inclusion of the consistency parameter in (4.5). If this is

the case, a mapping of the current stress state onto either f = 0 or f = β could be considered, although

this approach may suggest that a bounding surface formulation is more appropriate.
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A. CALCULATION OF RESIDUAL GRADIENT FOR
CAM-CLAY MODEL

Calculation of ∂g1

∂x

Differentiating (2.23)1 with respect to the vector of unknowns gives:

∂g1

∂x
=

3

M2
‖s‖∂‖s‖

∂x
+







2p − pc

−p
0







(A.1)

where ∂‖s‖/∂x is obtained by differentiating (2.22):

∂‖s‖
∂x

= 2αp0

∥

∥ee,tr
∥

∥A2.
1

A2
4

[

A4
∂A1

∂x
− A1

∂A4

∂x

]

=

∥

∥str
∥

∥

A2
4





A1A4

k







−2∆γ
∆γ

−(2p − pc)







− A2
1A3∆γ

k







−2∆γ
∆γ

−(2p − pc)







− A3A
2
1







0
0
1











(A.2)

Taking into account equations (2.20)4 and (2.22) gives:

∂‖s‖
∂x

=
‖s‖
A4





1

k







−2∆γ
∆γ

−(2p − pc)







− A1A3







0
0
1









 (A.3)

It will be useful to define some vectors to simplify the above equations:

Π =







2p − pc

−p
0







Γ =







−2∆γ
∆γ

−(2p − pc)







(∆I)i =

{

1 if i = I
0 if i 6= I

(A.4)

This leads to the simplified expression:

∂g1

∂x
=

3

M2

‖s‖2

A4

[

1

k
Γ − A1A3∆3

]

+ Π (A.5)
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Calculation of ∂g2

∂x

Differentiating (2.23)2 with respect to the vector of unknowns gives:

∂g2

∂x
=

p0A1A2

k

[

6α

M2

(

− ∆γ
∂s : ee,tr

∂x
+

3

M2
∆γ2‖s‖∂‖s‖

∂x

+

(

3∆γ

M2
‖s‖2 − s : ee,tr

)







0
0
1

})

+ A6







−2∆γ
∆γ

−(2p − pc)









−







1
0
0







(A.6)

Noting that s = 2αp0A2A5e
e,tr (from (2.16) and (2.22)) gives us:

s : ee,tr =
‖s‖2

2αp0A2A5
(A.7)

∂s : ee,tr

∂x
=

‖s‖
2αp0A2A5

∂‖s‖
∂x

(A.8)

We can then simplify (A.6) to:

∂g2

∂x
= − 3‖s‖2

A4kM2

(

∆γ

k
Γ + ∆3

)

+
p0A1A2A6

k
Γ − ∆1 (A.9)

Calculation of ∂g3

∂x

Differentiating (2.23)3 with respect to the vector of unknowns gives:

∂g3

∂x
= − pc0

λ − k
exp

(

θp
n

λ − k

)

exp

(

∆γ(2p − pc)

λ − k

)

Γ − ∆2

= − pc

λ − k
Γ − ∆2 (A.10)
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B. CALCULATION OF CONSISTENT TANGENT FOR
CAM-CLAY MODEL

To obtain the inelastic consistent tangent tensor, each of the stress and hardening variables must be differ-

entiated with respect to the trial elastic strain tensor, εεεe,tr. Each of these equations can be solved for the

derivative as a function of ∂∆γ/∂εεε
e,tr. Finally, enforcing the consistency condition allows ∂∆γ/∂εεε

e,tr

to be determined, and the tangent tensor evaluated.

Differentiate expression for pc, Eq. (1.14):

∂pc

∂εεε
e,tr

=
pc0

λ − k
exp

(

θp
n

λ − k

)

exp

(

∆γ(2p − pc)

λ − k

)

[

(2p − pc)
∂∆γ

∂εεε
e,tr

+ 2∆γ
∂p

∂εεε
e,tr

]

= B1

[

(2p − pc)
∂∆γ

∂εεε
e,tr

+ 2∆γ
∂p

∂εεε
e,tr

]

(B.1)

where

B1 =
pc

λ − k

[

1 +
∆γ

λ − k
pc

]−1

(B.2)

To differentiate volumetric and deviatoric parts of stress, it will be useful to evaluate the derivatives of

each of the constants defined in Section 2.4.2:
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∂A1

∂εεε
e,tr

= −1

k
A1

[

(2p − pc)
∂∆γ

∂εεε
e,tr

+ ∆γ

(

2
∂p

∂εεε
e,tr

− ∂pc

∂εεε
e,tr

)]

(B.3)

∂A2

∂εεε
e,tr

=
A2

k
1 (B.4)

∂A3

∂εεε
e,tr

=
A3

k
1 (B.5)

∂A4

∂εεε
e,tr

=
A1A3∆γ

k

[

1 − (2p − pc)
∂∆γ

∂εεε
e,tr

− ∆γ

(

2
∂p

∂εεε
e,tr

− ∂pc

∂εεε
e,tr

)]

+ A1A3
∂∆γ

∂εεε
e,tr

= B21 + B3
∂∆γ

∂εεε
e,tr

− B2∆γ

(

2
∂p

∂εεε
e,tr

− ∂pc

∂εεε
e,tr

)

(B.6)

∂A5

∂εεε
e,tr

= −A5

k
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(2p − pc)
∂∆γ

∂εεε
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∂p

∂εεε
e,tr
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∂εεε
e,tr

)]

− A5

A2
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B21 + B3
∂∆γ

∂εεε
e,tr

− B2∆γ

(

2
∂p

∂εεε
e,tr

− ∂pc

∂εεε
e,tr

)]

= A5

[

B4
∂∆γ

∂εεε
e,tr

+ B5

(

2
∂p

∂εεε
e,tr

− ∂pc

∂εεε
e,tr

)

− B2

A4
1
]

(B.7)

∂A6

∂εεε
e,tr

=
2α

k

[

ee,tr − 3∆γ

M2

(

ee,tr :
∂s

∂εεε
e,tr

+ s

)

− 3

M2

(

s : ee,tr
) ∂∆γ

∂εεε
e,tr
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(

3∆γ

M2

)2

s :
∂s

∂εεε
e,tr

+

(

3

M2

)2

∆γ‖s‖2 :
∂∆γ

∂εεε
e,tr

]

(B.8)

= B6

(

−s +
3∆γ

M2
s :

∂s

∂εεε
e,tr

+
3

M2
‖s‖2 ∂∆γ

∂εεε
e,tr
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A1A3∆γ

k
B3 = −B2(2p − pc) + A1A3

B4 = −
(

1

k
(2p − pc) +

B3

A4
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B5 = −∆γ
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1
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− B2

A4

)
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1

k

(

2α

(

3∆γ

M2

)

− 1

p0A2A5
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(B.10)

Next, we differentiate str and s from (2.16) and (2.22) respectively:

∂str

∂εεε
e,tr

= 2αp0A2

[

Idev +
1

k
ee,tr ⊗ 1

]

(B.11)

∂s

∂εεε
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= A5s
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∂∆γ

∂εεε
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+ B5

(

2
∂p
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e,tr

− ∂pc

∂εεε
e,tr

)

− B2

A4
1
]

+ 2αp0A2A5Idev +
1

k
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= s ⊗
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B4
∂∆γ

∂εεε
e,tr

+ B5

(

2
∂p

∂εεε
e,tr

− ∂pc

∂εεε
e,tr

)

+ B71
]

+ 2αp0A2A5Idev (B.12)

where

B7 =
1

k
− B2

A4
(B.13)
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Substituting (B.1) into (B.12) gives:

∂s

∂εεε
e,tr

= s ⊗
[

B8
∂∆γ

∂εεε
e,tr

+ B9
∂p

∂εεε
e,tr

+ B71
]

+ 2αp0A2A5Idev (B.14)

where
{

B8 = B4 − B1B5(2p − pc)

B9 = 2B5(1 − ∆γB1)
(B.15)

Differentiate expression for p, (2.21) :

∂p

∂εεε
e,tr

= p0A1A2
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−s +
3∆γ

M2
s :

∂s

∂εεε
e,tr

+
3

M2
‖s‖2 ∂∆γ

∂εεε
e,tr

}

− A6

k

{

(2p − pc)
∂∆γ

∂εεε
e,tr

+ ∆γ

(

2
∂p

∂εεε
e,tr

− ∂pc

∂εεε
e,tr

− 1
)}]

(B.16)

Substitute for ∂pc/∂εεε
e,tr from (B.1), and solve for ∂p/∂εεε

e,tr:

∂p

∂εεε
e,tr

= −C2s +

(

3∆γ

M2

)

C2s :
∂s

∂εεε
e,tr

+ C3
∂∆γ

∂εεε
e,tr

+ C41 (B.17)

(B.18)

where










































C1 =

[

1 + 2∆γ
p0A1A2A6

k
(1 − B1∆γ)

]−1

C2 = p0A1A2B6C1

C3 = C2
3

M2
‖s‖2 +

p0A1A2A6C1

k
(2p − pc)(B1∆γ)

C4 =
p0A1A2A6C1

k

(B.19)

Substitute (B.12) into (B.17), and solve for ∂p/∂εεε
e,tr:

∂p

∂εεε
e,tr

= C5s + C6
∂∆γ

∂εεε
e,tr

+ C71 (B.20)

(B.21)

where






































C5 = −C2

A4

[

1 −
(

3∆γ

M2

)

B9C2‖s‖2

]−1

C6 =

(

B8C2‖s‖2

(

3∆γ

M2

)

+ C3

)[

1 −
(

3∆γ

M2

)

B9C2‖s‖2

]−1

C7 =

(

B7C2‖s‖2

(

3∆γ

M2

)

+ C4

)[

1 −
(

3∆γ

M2

)

B9C2‖s‖2

]−1

(B.22)

Differentiate the discrete form of the consistency condition:

f(σ, pc) = 0 (B.23)

df(σ, pc) =
∂f

∂σ

: dσ +
∂f

∂pc
dpc = 0 (B.24)
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Differentiate (2.3) with respect to both σ and pc:

∂f

∂σ

=
3

M2
s +

1

3
(2p − pc)1 (B.25)

∂f

∂pc
= −p (B.26)

By definition, the total derivative of σ is given by:

dσ =
∂σ

∂εεε
e,tr

: dεεεe,tr

=

[

1 ⊗ ∂p

∂εεε
e,tr

+
∂s

∂εεε
e,tr

]

: dεεεe,tr (B.27)

and we can substitute from (B.20) and (B.14) into (B.27) to give:

dσ =

[

C51 ⊗ s + C61 ⊗ ∂∆γ

∂εεε
e,tr

+ C71 ⊗ 1 + (B8 + B9C6)s ⊗
∂∆γ

∂εεε
e,tr

+ (B7 + B9C7)s ⊗ 1 + B9C5s ⊗ s + 2αp0A2A5Idev

]

: dεεεe,tr (B.28)

Similarly, the total derivative of pc, substituting from (B.1) and (B.20), is given by:

dpc = B1

[

(2p − pc + 2∆γC6)
∂∆γ

∂εεε
e,tr

+ 2∆γC5s + 2∆γC71
]

: dεεεe,tr (B.29)

Consider both terms on the right hand side of (B.24) separately, substituting from (B.25), (B.26), (B.28)

and (B.29):

∂f

∂σ

: dσ =

[

3

M2
‖s‖2

{

(B8 + B9C6)
∂∆γ

∂εεε
e,tr

+ (B7 + B9C7)1 + B9C5s

}

+ A5A3s + (2p − pc)

{

C5s + C6
∂∆γ

∂εεε
e,tr

+ C71
}

]

: dεεεe,tr

=

[

D1
∂∆γ

∂εεε
e,tr

+ D21 + D3s

]

: dεεεe,tr (B.30)

∂f

∂pc
dpc =

[

D4
∂∆γ

∂εεε
e,tr

+ D51 + D6s

]

: dεεεe,tr (B.31)

(B.32)

where






























































D1 =
3

M2
‖s‖2(B8 + B9C6) + C6(2p − pc)

D2 =
3

M2
‖s‖2(B7 + B9C7) + C7(2p − pc)

D3 =
3

M2
‖s‖2(B9C5) + C5(2p − pc) + A5A3

D4 = −pB1(2p − pc + 2∆γC6)

D5 = −pB1(2∆γC7)

D6 = −pB1(2∆γC5)

(B.33)
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Combining (B.30) and (B.31) in (B.24), and solving for ∂∆γ/∂εεε
e,tr gives:

∂∆γ

∂εεε
e,tr

= D7s + D81 (B.34)

(B.35)

where














D7 = −D3 + D6

D1 + D4

D8 = −D2 + D5

D1 + D4

(B.36)

Finally, substituting (B.1), (B.14), (B.20) and (B.34) into (2.30) gives:

C
p = E11 ⊗ s + E21 ⊗ 1 + E3s ⊗ 1 + E4s ⊗ s + E5Idev (B.37)

(B.38)

where










































E1 = C5 + C6D7

E2 = C7 + C6D8

E3 = (B7 + B9C7) + (B8 + B9C6)D8

E4 = B9C5 + (B8 + B9C6)D7

E5 = 2αp0A2A5

(B.39)
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Appendix C. Calculation of residual gradient for bounding surface model

C. CALCULATION OF RESIDUAL GRADIENT FOR
BOUNDING SURFACE MODEL

Define Π, Γ and ∆I vectors, analogously with Appendix A:

Π =















2p̃ − pl

−p̃
0
0















Γ =















−2∆γ
∆γ

−(2p̃ − pl)
0















(∆I)i =

{

1 if i = I
0 if i 6= I

(C.1)

Calculation of ∂g1

∂x

Differentiating (3.48)1 with respect to the vector of unknowns gives:

∂g1

∂x
=

3

M2
s̃ :

∂s̃

∂x
+ Π (C.2)

The constants defined in (3.42) must be differentiated to evaluate ∂ s̃/∂x .

∂A1

∂x
=

A1

k
Γ (C.3)

∂A4

∂x
=

∆γA1A3

k
Γ + A1A3∆3 (C.4)

∂A5

∂x
=

A5

A4k
Γ − A2

5A3∆3 (C.5)

∂A7

∂x
= − 1

λ − k
Γ (C.6)

To differentiate α, we must make use of the earlier manipulation of σh. Recalling (3.22) the derivative

of σh is evaluated:

∂σh

∂x
=

pcn

(1 − A7)2
Σ ⊗

(

∂A7

∂x

)

= − pc

(λ − k)(1 − A7)
Σ ⊗ Γ (C.7)
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where the last step follows from (C.6) and (3.45).

Now the derivative of α can be evaluated, by differentiating (3.8):

∂α

∂x
=

∂σh

∂x

κ

1 + κ
+

1

(1 + κ)2
σh ⊗ ∆4

= Σ ⊗
[

pc

(λ − k)(1 − A7)
Γ +

pl

(1 + κ)
∆4

]

(C.8)

Note that the derivatives of α
s and αp can now be found from (C.8) by taking the deviatoric and volu-

metric parts of Σ, respectively. These will be referred to as Σdev and Σvol in the following. The term in

square brackets is unchanged.

The derivative of s̃ is also required; differentiating equation (3.47) gives:

∂s̃

∂x
= str ⊗ ∂A5

∂x
− 1

A2
4

[

A4
∂α

s

∂x
− α

s ⊗ ∂A4

∂x

]

=

[

s

A5
− A3∆γα

s

]

⊗
[

A5

kA4
Γ − A3A

2
5∆3

]

− 1

A4
Σdev ⊗

[

− pc

(λ − k)(1 − A7)
Γ +

pl

1 + κ
∆4

]

+
A1A3α

s

A2
4

⊗
[

∆γ

k
Γ + ∆3

]

(C.9)

We substitute from (3.25), to give:

∂s̃

∂x
=

[

1

kA4
s +

pc

A4(λ − k)(1 − A7)
Σdev

]

⊗ Γ − A3A5s̃ ⊗ ∆3 −
pl

A4(1 + κ)
Σdev ⊗ ∆4 (C.10)

By substituting (C.10) into (C.2), ∂g1/∂x can be determined.

Calculation of ∂g2

∂x

Differentiating (3.48)2 with respect to the vector of unknowns, x , gives:

∂g2

∂x
=

[

p0A1A2A6

k
+

pc

κpl(λ − k)(1 − A7)
Σvol

]

Γ − 3

kM2
s :

[

∆γ
∂s̃

∂x
+ s̃ ⊗ ∆3

]

− ∆1 −
pl

κ(1 + κ)
Σvol∆4 (C.11)

Calculation of ∂g3

∂x

Differentiating (3.48)3 with respect to x :

∂g3

∂x
=

1

(1 − A7)2

[

(1 − A7)

(

hκm ∂A7

∂x
+ A7hmκm−1∆4

)

+ (pln + A7hκm)
∂A7

∂x

]

− ∆2

= − 1

(1 − A7)(λ − k)
(hκm + pl)Γ − ∆2 +

A7hmκm−1

1 − A7
∆4 (C.12)
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Calculation of ∂g4

∂x

Differentiating (3.48)4 with respect to x :

∂g4

∂x
=















0
1 + κ

0
pl















+
pc

(1 − A7)(λ − k)
Γ (C.13)
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D. CALCULATION OF CONSISTENT TANGENT FOR
BOUNDING SURFACE MODEL

Determination of the consistent tangent follows exactly the same procedure as for the MCC model, with

one extra model unknown (additional parameters, κ and pl, related to pc through (3.9)).

First, it will be useful to obtain the derivative of A7. From (3.42):
∂A7

∂εεε
e,tr

=
1

λ − k

[

∂∆γ

∂εεε
e,tr

(2p̃ − pl) + ∆γ

(

2
∂p̃

∂εεε
e,tr

− ∂pl

∂εεε
e,tr

)]

(D.1)

Two separate expressions can be obtained for the derivative of pc. Differentiating (3.45), and using (D.1)

gives:
∂pc

∂εεε
e,tr

=
pcn

(1 − A7)2(λ − k)

[

∂∆γ

∂εεε
e,tr

(2p̃ − pl) + ∆γ

(

2
∂p̃

∂εεε
e,tr

− ∂pl

∂εεε
e,tr

)]

(D.2)

Differentiating (3.9) gives the second expression:
∂pc

∂εεε
e,tr

= (1 + κ)
∂pl

∂εεε
e,tr

+ pl
∂κ

∂εεε
e,tr

(D.3)

Equating (D.2) and (D.3), and solving for ∂pl/∂εεε
e,tr gives:

∂pl

∂εεε
e,tr

= 2∆γB2
∂p̃

∂εεε
e,tr

+ (2p̃ − pl)B2
∂∆γ

∂εεε
e,tr

− plB1
∂κ

∂εεε
e,tr

(D.4)

where














B1 =

[

1 + κ +
pc∆γ

(1 − A7)(λ − k)

]−1

B2 =
pc

(1 − A7)(λ − k)
B1

(D.5)

We can also differentiate (3.46) directly to obtain a second expression for the derivative of pl:

∂pl

∂εεε
e,tr

=
1

(1 − A7)2

[

h (1 − A7)

(

A7mκm−1 ∂κ

∂εεε
e,tr

+ κm ∂A7

∂εεε
e,tr

)

+ (pln + A7hκm)
∂A7

∂εεε
e,tr

]

=
hmκm−1A7

1 − A7

∂κ

∂εεε
e,tr

+
1

1 − A7
(hκm + pl)

∂A7

∂εεε
e,tr

(D.6)
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Substituting from (D.1) into (D.6), and solving for ∂pl/∂εεε
e,tr gives:

∂pl

∂εεε
e,tr

= B4
∂κ

∂εεε
e,tr

+ B5

[

(2p̃ − pl)
∂∆γ

∂εεε
e,tr

+ 2∆γ
∂p̃

∂εεε
e,tr

]

(D.7)

where


































B3 =

[

1 +
hκm + pl

(1 − A7)(λ − k)
∆γ

]−1

B4 =

[

hmκm−1A7

1 − A7

]

B3

B5 =

[

hκm + pl

(1 − A7)(λ − k)

]

B3

(D.8)

Now the two expressions for ∂pl/∂εεε
e,tr, (D) and (D.7), can be equated, and solved for ∂κ/∂εεε

e,tr:

∂κ

∂εεε
e,tr

= B6
∂p̃

∂εεε
e,tr

+ B7
∂∆γ

∂εεε
e,tr

(D.9)

where
{

B6 = 2∆γ(B2 − B5)[B4 + plB1]
−1

B7 = (2p̃ − pl)(B2 − B5)[B4 + plB1]
−1

(D.10)

We substitute (D.9) back into (D.7):

∂pl

∂εεε
e,tr

= B8
∂p̃

∂εεε
e,tr

+ B9
∂∆γ

∂εεε
e,tr

(D.11)

where
{

B8 = B4B6 + 2∆γB5

B9 = B4B7 + (2p̃ − pl)B5

(D.12)

We can now calculate the derivative of the back stress tensor, α, by differentiating (3.25), and substituting

from (D.11) and (D.9) where necessary. This gives:

∂α

∂εεε
e,tr

= Σ ⊗
[

B10
∂p̃

∂εεε
e,tr

+ B11
∂∆γ

∂εεε
e,tr

]

(D.13)

where
{

B10 = κB8 + plB6

B11 = κB9 + plB7

(D.14)

To differentiate the deviatoric and volumetric stress components, it will first be necessary to obtain the

79



Appendix D. Calculation of consistent tangent for bounding surface model

derivatives of A1–A6. Differentiating (3.42) gives the following expressions:

∂A1

∂εεε
e,tr

= C1
∂p̃

∂εεε
e,tr

+ C2
∂∆γ

∂εεε
e,tr

(D.15)

∂A2

∂εεε
e,tr

=
A2

k
1 (D.16)

∂A3

∂εεε
e,tr

=
A3

k
1 (D.17)

∂A4

∂εεε
e,tr

= C31 + C4
∂p̃

∂εεε
e,tr

+ C5
∂∆γ

∂εεε
e,tr

(D.18)

∂A5

∂εεε
e,tr

= C6
∂p̃

∂εεε
e,tr

+ C7
∂∆γ

∂εεε
e,tr

+ C81 (D.19)

∂A6

∂εεε
e,tr

=
2α

k

(

ee,tr − 3∆γ

M2
s̃

)

:

[

Idev − 3

M2
s̃ ⊗ ∂∆γ

∂εεε
e,tr

− 3∆γ

M2

∂s̃

∂εεε
e,tr

]

=
1

p0kA1A2

[

s − 3

M2
(s : s̃)

∂∆γ

∂εεε
e,tr

− 3∆γ

M2
s :

∂s̃

∂εεε
e,tr

]

(D.20)

where










































































































C1 = −A1∆γ

k
(2 − B8)

C2 = −A1

k
[(2p̃ − pl) − ∆γB9]

C3 =
A1A3∆γ

k
C4 = C1A3∆γ

C5 = A1A3 + C2A3∆γ

C6 =
C1

A2
4

C7 =
1

A2
4

(C2 − A2
1A3)

C8 = −A1C3

A2
4

(D.21)

Next, we differentiate str and s̃ from (3.32)4 and (3.47) respectively:

∂str

∂εεε
e,tr

= 2αp0A2Idev +
1

k
str ⊗ 1 (D.22)

∂s̃

∂εεε
e,tr

= 2αp0A2A5Idev +
A5

k
str ⊗ 1 + str ⊗

(

C6
∂p̃

∂εεε
e,tr

+ C7
∂∆γ

∂εεε
e,tr

+ C81
)

− 1

A4
Σdev ⊗

(

B10
∂p̃

∂εεε
e,tr

+ B11
∂∆γ

∂εεε
e,tr

)

+
α

s

A2
4

⊗
(

C31 + C4
∂p̃

∂εεε
e,tr

+ C5
∂∆γ

∂εεε
e,tr

)

(D.23)

Substituting from (3.25) for α
s:

∂s̃

∂εεε
e,tr

=
1

kA4
s ⊗ 1 + (C9s + C10Σdev) ⊗

∂p̃

∂εεε
e,tr

+ (C11s + C12Σdev) ⊗
∂∆γ

∂εεε
e,tr

+ C13Idev (D.24)
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where


























































C9 =
C1

A1A4

C10 = −B10

A4

C11 =
C7

A5

C12 =
κplA1A3 − B11

A4

C13 = 2αp0A2A5

(D.25)

We differentiate the volumetric part of (3.7) to obtain:

∂p̃

∂εεε
e,tr

= p0A2A6

(

C1
∂p̃

∂εεε
e,tr

+ C2
∂∆γ

∂εεε
e,tr

)

+
p0A1A2A6

k
1 +

1

k
s

− 3

kM2
(s : s̃)

∂∆γ

∂εεε
e,tr

− 3∆γ

kM2
s :

∂s̃

∂εεε
e,tr

− Σvol

(

B10
∂p̃

∂εεε
e,tr

+ B11
∂∆γ

∂εεε
e,tr

)

(D.26)

Solving for ∂p̃/∂εεε
e,tr gives:

∂p̃

∂εεε
e,tr

=
D1

k
s + D21 − 3∆γ

D 1
kM2s :

∂s̃

∂εεε
e,tr

+ D3
∂∆γ

∂εεε
e,tr

(D.27)

where


























D1 = [1 − p0A2A6C1 + ΣvolB10]
−1

D2 =
p0A1A2A6D1

k

D3 = D1

(

p0A2A6C2 − B11Σvol −
3

kM2
(s : s̃)

)

(D.28)

We can substitute from (D.24) into (D.27), and solve for ∂p̃/∂εεε
e,tr. This gives:

∂p̃

∂εεε
e,tr

= D51 + D6s + D7
∂∆γ

∂εεε
e,tr

(D.29)

where






















































D4 =

[

1 + D1

(

3∆γ

kM2

)

s : (C9s + C10sh)

]−1

D5 = D4

(

D2 − D1

(

3∆γ

kM2

) ‖s‖2

kA4

)

D6 = D4

(

D1

k
− D1

(

3∆γ

kM2

)

C13

)

=
D1D4

A4k

D7 = D4

(

D3 − D1

(

3∆γ

kM2

)

s : (C11s + C12sh)

)

(D.30)

As before, we obtain the discrete consistency condition by differentiating the yield function:

f(σ̃, pl) = 0 (D.31)

df(σ̃, pl) =
∂f

∂σ̃

: dσ̃ +
∂f

∂pl
dpl = 0 (D.32)
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Differentiate (3.6) with respect to both σ̃ and pl:

∂f

∂σ̃

=
3

M2
s̃ +

1

3
(2p̃ − pl)1 (D.33)

∂f

∂pl
= −p̃ (D.34)

As with the CC model, the total derivative of σ̃ is given by:

dσ̃ =

[

1 ⊗ ∂p̃

∂εεε
e,tr

+
∂s̃

∂εεε
e,tr

]

: dεεεe,tr (D.35)

and substituting from (D.29) and (D.24) into (D.35) gives:

dσ̃ =

[

C13 + (D51 + E1s + E2Σdev) ⊗ 1 + (D61 + E3s + E4Σdev) ⊗ s

+ (D71 + E5s + E6Σdev) ⊗
∂∆γ

∂εεε
e,tr

]

: dεεεe,tr (D.36)

Similarly, the total derivative of pl is given by:

dpl =
∂pl

∂εεε
e,tr

: dεεεe,tr

and substituting from (D.7) and (D.29), we obtain:

dpl =

[

D5B81 + D6B8s + E7
∂∆γ

∂εεε
e,tr

]

: dεεεe,tr (D.38)

where

E7 = B9 + B8D7 (D.39)

Considering both terms on the right hand side of (D.32) separately, we substitute from (D.33), (D.34),

(D.36) and (D.38), giving:

∂f

∂σ̃

: dσ̃ =

[

A3A5s̃ +

(

3

M2

)

s̃ :

(

E1s ⊗ 1 + E3s ⊗ s + E5s ⊗
∂∆γ

∂εεε
e,tr

)

+

(

3

M2

)

s̃ :

(

E2Σdev ⊗ 1 + E4Σdev ⊗ s + E6Σdev ⊗
∂∆γ

∂εεε
e,tr

)

+ (2p̃ − pl)

(

D51 + D6s + D7
∂∆γ

∂εεε
e,tr

)

]

: dεεεe,tr

=

[

A3A5s̃ + F11 + F2s + F3
∂∆γ

∂εεε
e,tr

]

: dεεεe,tr (D.40)

for the first term, and

∂f

∂pl
dpl = −p̃

[

D5B81 + D6B8s + E7
∂∆γ

∂εεε
e,tr

]

: dεεεe,tr (D.41)
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for the second term, where:














































F1 = (2p̃ − pl)D5 +

(

3

M2

)

s̃ : (E1s + E2Σdev)

F2 = (2p̃ − pl)D6 +

(

3

M2

)

s̃ : (E3s + E4Σdev)

F3 = (2p̃ − pl)D7 +

(

3

M2

)

s̃ : (E5s + E6Σdev)

F4 = [E7p̃ − F3]
−1

(D.42)

Combining (D.40) and (D.41) in (D.32), and solving for ∂∆γ/∂εεε
e,tr gives:

∂∆γ

∂εεε
e,tr

= F51 + F6s + F7Σdev (D.43)

where














F5 = F4(F1 − D5B8p̃

F6 = F4(F2 − D6B8p̃ + A3A5

F7 = −A3A5F4κpl

(D.44)

This expression is substituted into (D.29) and (D.24), giving:

∂p̃

∂εεε
e,tr

= G11 + G2s + D7F7Σdev (D.45)

and

∂s̃

∂εεε
e,tr

= C13Idev + (G3s + G4Σdev) ⊗ 1 + (G5s + G6Σdev) ⊗ s + (G7s + G8Σdev] ⊗ Σdev (D.46)

where














































































G1 = D5 + D7F5

G2 = D6 + D7F6

G3 = E1 + E5F5

G4 = E2 + E6F5

G5 = E3 + E5F6

G6 = E4 + E6F6

G7 = E5F7

G8 = E6F7

(D.47)

We now have the derivatives of p̃ and s̃, in (D.45) and (D.46) respectively, but we must convert to

derivatives of s and p before the consistent tangent can be calculated. Differentiating the volumetric and

deviatoric parts of (3.7) gives the following expressions:

∂p

∂εεε
e,tr

=
∂p̃

∂εεε
e,tr

+
∂αp

∂εεε
e,tr

= H11 + H2s + H3Σdev (D.48)

(D.49)
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and

∂s

∂εεε
e,tr

=
∂s̃

∂εεε
e,tr

+
∂α

s

∂εεε
e,tr

= C13Idev + (G3s + H4Σdev) ⊗ 1 + (G5s + H5Σdev) ⊗ s + (G7s + H6Σdev) ⊗ Σdev (D.50)

where






















































H1 = (1 + B10Σvol)G1 + B11F5Σvol

H2 = (1 + B10Σvol)G2 + B11F6Σvol

H3 = (1 + B10Σvol)D7F7 + B11F7Σvol

H4 = G4 + B10G1 + B11F5

H5 = G6 + B10G2 + B11F6

H6 = G8 + B10D7F7 + B11F7

(D.51)

Finally, we recall the expression for the consistent tangent from Chapter 2, (2.30). Substituting for

∂p/∂εεε
e,tr and ∂s/∂εεε

e,tr from (D.48) and (D.50) respectively, we obtain the final expression:

C
p = (H11 + G3s + H4Σdev) ⊗ 1 + (H21 + G5s + H5Σdev) ⊗ s

+ (H31 + G7s + H6Σdev) ⊗ Σdev + C13Idev (D.52)
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E. CALCULATION OF RESIDUAL GRADIENT FOR
GENERALISED PLASTICITY MODEL

As noted in the text, g2 and g3 for the GP model are identical to their MCC counterparts. Refer to

Appendix A for the calculation of ∂g2/∂x and ∂g3/∂x .

Calculation of ∂g1

∂x

The yield function, f , used here is also identical to that used in the MCC model, so from (A.5), we have:

∂f

∂x
=

3

M2

‖s‖2

A4

[

1

k
Γ − A1A3∆3

]

+ Π (E.1)

The derivative of f̂ with respect to x can be obtained directly from (E.1), by removing the dependence

of f on pc, and replacing pc with pcn. Therefore, setting the second component of ∂f̂/∂x to zero, we

obtain:
∂f̂

∂x
=

3

M2

‖s‖2

A4

[

1

k
Γ̂ − A1A3∆3

]

+ (2p − pcn)∆1 (E.2)

where

Γ̂ =







−2∆γ
0

−(2p − pcn)







(E.3)

and the ∆1 term has been obtained by setting the second component of Π to zero.

Differentiating (4.6) gives:

∂h

∂x
=

1

(δ(β − f) + Hβ)2

[

(δ(β − f) + Hβ)
∂f

∂x
− f

(

−δ
∂f

∂x
+ (δ + H)

∂β

∂x
+ β

∂H

∂x

)]

(E.4)

which can be simplified by recalling the definition of h in (4.6), giving the following expression:

∂h

∂x
=

1

δ(β − f) + Hβ

{

∂f

∂x
(1 + hδ) − h

(

(δ + H)
∂β

∂x
+ β

∂H

∂x

)}

(E.5)
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The derivatives in (E.5) are obtained by differentiating (4.8) and (4.7):

∂H

∂x
=

1

λ − k







pc(4p − pc)
2p(p − pc)

0







;
∂β

∂x
= β1∆1 (E.6)

Finally, we can differentiate g1 directly, from (4.30)1, giving:

∂g1

∂x
=

∂h

∂x
(f̂ − f̂n) + h

(

∂f̂

∂x

)

− ∆3 (E.7)

By substituting from (E.1), (E.2) and (E.5), ∂g1/∂x can be found.
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F. CALCULATION OF CONSISTENT TANGENT FOR
GENERALISED PLASTICITY MODEL

Derivatives of pc, s and p are the same as those evaluated in Appendix B, and can be obtained from

equations (B.1), (B.14) and (B.20), respectively. In this case, however, the consistency condition is

enforced on the limit equation:

Fdisc(σ, pc, ∆γ) = 0 (F.1)

Differentiating this gives:

dFdisc(σ, pc, ∆γ) =
∂F

∂σ

: dσ +
∂F

∂pc
dpc +

∂F

∂∆γ
d∆γ (F.2)

Given that ∂f/∂σ and ∂f/∂pc are the same as before, and ∂f/∂∆γ = 0, we can differentiate (4.30) with

respect to each of the variables. In contrast to the MCC and BS models, (F.2) also involves derivatives

with respect to ∆γ, and derivatives of σ and pc are now evaluated keeping ∆γ constant. These derivatives

are identical to those used in calculation of the residual gradient in Appendix E, except that only the

volumetric part of the stress, p, was included in the vector of unknowns, x . However, considering that:

∂H

∂s
= 0 ,

∂β

∂s
= 0 (F.3)

and
∂p

∂σ

=
1

3
1, (F.4)

Equation (E.5) can be used for the partial derivative of h with respect to σ . This gives:

∂h

∂σ

=
1

δ(β − f) + Hβ

{

(1 + hδ)
∂f

∂σ

− 1

3
hβ1

[

(H + δ) + p
∂H

∂p

]

1
}

= H1
∂f

∂σ

+
1

3
H21 (F.5)

where














H1 =
1 + hδ

δ(β − f) + Hβ

H2 =
−hβ1

δ(β − f) + Hβ

[

(H + δ] + p
∂H

∂p

] (F.6)
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Similarly, the partial derivative with respect to pc can also be obtained from (E.5):

∂h

∂pc
=

1

δ(β − f) + Hβ

{

(1 + hδ)
∂f

∂pc
− hβ

∂H

∂pc

}

= H1
∂f

∂pc
+ H3 (F.7)

where

H3 =
−hβ

δ(β − f) + Hβ

∂H

∂pc
(F.8)

Finally, the partial derivative of h with respect to ∆γ is evaluated:

∂h

∂∆γ
= 0 (F.9)

Note that the third component of (E.5), also representing the derivative of h with respect to ∆γ, was

non-zero. This apparent inconsistency arises due to the different variables held fixed in the evaluation of

each partial derivative. In the ∆γ–component of (E.5), p and pc are held constant, while s is allowed to

vary. The derivative in (F.9), however, has been evaluated keeping both volumetric and deviatoric parts

of the stress tensor fixed.

Equations (F.5)–(F.7) allow the calculation of the partial derivatives of F . Differentiating with respect to

σ gives:
∂F

∂σ

=
∂h

∂σ

(f̂ − f̂n) + h
∂f̂

∂σ

(F.10)

Recalling the expression for f̂ , (4.22)2, we can obtain the derivative with respect to σ.

∂f̂

∂σ

=
3

M2
s +

1

3
(2p − pcn)1 =

∂f

∂σ

+
1

3
(pc − pcn)1 (F.11)

Substituting from (F.5) and (F.11) into (F.10) gives:

∂F

∂σ

= H4
∂f

∂σ

+
1

3
H51 (F.12)

where
{

H4 = (f̂ − f̂n)H1 + h

H5 = (f̂ − f̂n)H2 + h(pc − pcn)
(F.13)

Similarly, ∂F/∂pc can be expressed as:

∂F

∂pc
= H6

∂f

∂pc
+ H7 (F.14)

where
{

H6 = (f̂ − f̂n)H1

H7 = (f̂ − f̂n)H3

(F.15)
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Finally, the partial derivative of F with respect to ∆γ follows simply from (4.5):

∂F

∂∆γ
= −1 (F.16)

To substitute into (F.2), the total derivatives must also be evaluated. Only d∆γ has changed from Ap-

pendix B, and is given by:

d∆γ =
∂∆γ

∂εεε
e,tr

: dεεεe,tr (F.17)

Substituting the above expressions into (F.2) gives:

∂∆γ

∂εεε
e,tr

= D̂7s + D̂81 (F.18)

with














D̂7 = D̂9 [D3H4 + C5H5 + D6H6 + 2∆γB1C5H7]

D̂8 = D̂9 [D2H4 + C7H5 + D5H6 + 2∆γB1C7H7]

D̂9 = [1 − D1H4 − C6H5 − D4H6 − B1H7(2p − pc + 2∆γC6)]
−1

(F.19)

where the constants terms B1, C5–C7 and D1–D6 are defined in exactly the same manner as Appendix

B.

Finally, C
p can be obtained:

C
p = Ê11 ⊗ s + Ê21 ⊗ 1 + Ê3s ⊗ 1 + Ê4s ⊗ s + Ê5Idev (F.20)

where the only differences from Appendix B are due to the use of D̂7 and D̂8 in place of D7 and D8,

respectively. That is: with










































Ê1 = C5 + C6D̂7

Ê2 = C7 + C6D̂8

Ê3 = (B7 + B9C7) + (B8 + B9C6)D̂8

Ê4 = B9C5 + (B8 + B9C6)D̂7

Ê5 = 2αp0A2A5

(F.21)
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