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Phase-field modeling

Isogeometric Analysis of phase-field models

— Navier-Stokes-Korteweg equations
— Tumor growth equations

Provably unconditionally stable methods

Conclusions



Phase-field modeling

* |nitiated for phase evolution/transition problems

— Vaporization and condensation (van der Waals)
— Phase separation of immiscible fluids (Cahn, Hilliard)
— Solidification (Kobayashi, Karma, Caginalp)

« Sound mathematics and thermodynamics

« Successfully applied to other phenomena

— Crack propagation
— Thin liquid films

— Porous media flow
— Cancer growth



Sharp interface Phase field



Phase-field for phase transition

« Sharp-interface models

— Partial differential equations of the individual phases
are coupled through interface boundary conditions

— Very difficult numerically

 Phase-field models

— Sharp interfaces approximated by thin layers
described by higher-order differential operators

— All variables are continuous across the interface

— Examples:
« Navier-Stokes-Korteweg equations
« Cahn-Hilliard equation



Navier-Stokes-Korteweg equations

* A phase-field model for water/water-vapor two
phase flow

* Density is the phase-field parameter
« Simplest model is the isothermal version
« Spatial derivatives of order three

* Very few numerical solutions (see D. Diehl,
PhD thesis)



Applications of the NSK equations

Simulation of cavitating flows
Simulation of implosion
Simulation of renal calculi removal by ultrasound

Simulation of penetrating head injury



Isothermal Navier-Stokes-Korteweg Equations
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Isothermal Navier-Stokes-Korteweg Equations

van der Waals equation, 1979

Interface

0 = temperature
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« Spatial discretization

— Spatial derivatives of higher-order
— Need H?-conforming elements or mixed methods

— Mostly finite differences or spectral methods

— SOQEO“@ tric a'rainis



oageometric Analvsis
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Based on technologies (e.g., NURBS) from computational
geometry used In:

— Design

— Animation

— Graphic art
— Visualization

Includes standard FEA as a special case, but offers other
possibilities:

— Precise and efficient geometric modeling

— Simplified mesh refinement

— Superior approximation properties

— Smooth basis functions with compact support

— Ultimately, integration of design and analysis



Isothermal Navier-Stokes-Korteweg Equations

Variational Formulation

Find U ={p,u} eV suchthat VW ={q,w} eV,
B(W,U)=0 where
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Unstable equilibrium (2562)
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Spinodal decomposition (2562)




Unstable equilibrium (1283)







Refinement methodology

L->0

> Sharp interface




Refinement methodology

L->0

L ~h Mesh

Diffuse Interface refinement

Length scale h



Refinement methodology

Classical
approach
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Tumor growth simulation

Motivation:

« Second cause of death in the developed world

* It is believed that it will be the first in the 21st century

Potential:

* Prediction of the tumor response for a given therapy
 Design of patient-specific therapies

« Paradigm shift: From diagnosis to prediction



Tumor growth simulation

« Several continuum theories of avascular tumor growth
« Based on Continuum Mechanics and Mixture Theory
* Nonlinear system of fourth-order PDE’s

* V. Cristini et al, J. Math. Biol. 58:723-763, 2009



Fingered growth

Images obtained from an in vitro experiment (Pennacchetti et al.)



Continuum theories: V. Cristini et al.
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* Avascular growth
* Reproduces fingered growth
* Nonlinear system of fourth-order PDE’s

« For 2D problems 20482 meshes are required



Continuum theories: V. Cristini et al.

Simulation performed using Isogeometric Analysis (20482)



Provably Unconditionally
Stable, Second-order Time-
Accurate, Mixed Variational

Methods for Phase-field

Models



Cahn-Hilliard Equation (1957)

* Applications:
— Phase segregation of binary alloys
— Image processing
— Planet formation
— Growth of tumors

— Etc.
« Spatial derivatives of order four
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Phase segregation on a torus

4 Concentration

9.241e-001
7.059e-001
4.876e-001

2.694e-001
5.108e-002



Ginzburg-Landau free-energy (1950)

E = i(w(c)+%wc\2j dx

7 S

Chemical energy Surface energy

w(c)=NKT(clogc+(1-c)log(1—-c))+Nawc(1-c)

Double well potential

7 Binodal points




Cahn_Hilliard E
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Ginzburg-Landau free energy:

E = E[(w(c)Jr%\Vc\zj dx

Conservation of mass:

a—C+V J=0
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Dissipation of the free energy:
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Dynamics driven by variational derivative of energy:

—-AAC,  u. =y'(C)
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Cahn-Hilliard equation:
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Notion of Stability

Cahn-Hilliard equation:

oc
E =V .(Mcv(luc _ﬂ“AC))’

Ginzburg-Landau free energy:

E = E[(z//(c)Jr%\Vc\zj dx

Stability
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Time integration of Cahn-Hilliard

— Explicit methods necessitate At = O(Ax*)

— Standard implicit methods normally require At = O(Ax?)
— Unconditionally stable methods are desired

— Accuracy can require At vary 10 orders of magnitude

— Time step adaptivity is absolutely necessary
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— Provably unconditionally stable
— First-order time accurate

— State of the art in computational phase-field



Eyre’'s Method (1997)

Cahn-Hilliard equation (Primal strong form):
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Cahn-Hilliard equation (Mixed strong form):

oC
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V =pu —AAC
Cahn-Hilliard equation (Mixed weak form):
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Eyre’'s Method (1997)

Semidiscrete formulation:

h oc” h h h
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(a"Vv")-(va",Ave")—(q" u.(c")) =0
Splitting of the chemical potential:

/Uc(Ch): ﬂD(Ch)+ﬂP(Ch)
p'n(€)>0; u'n(c)<0



Eyre’'s Method (1997)

At
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— Provably unconditionally stable
— First-order time accurate



New Method

Semidiscrete formulation:

(wh aaitj (VW",M,(c")Vv") =0

(a"v" - (c"))—-(Va",Avc") =0
Splitting of the chemical potential:

ﬂc(ch): /U1(Ch)+,u2(ch)
,1113)(C) > 0; ,ug)(C) <0



New Method
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— Provably unconditionally stable
— Second-order time accurate



Theorem

The fully discrete formulation of the new method
(1) Verifies mass conservation erTdX ZICQdX v
(2) Verifies the stability condition E(c;,) <E(c;) ¥n
(3) Gives rise to a local truncation error bounded as

7(t, )| < KAt? vt, €[0,T]



Proof (1)

(1) Verifies mass conservation J'Cr']dx =J'cgdx vn

Take w" =1 in the weak form



Proof (2)

(2) Verifies the stability condition E(c!.,)<E(c!) v¥n
Take w" =v" _, qh=|[cf]‘]]/Atn
Introduce the quadrature formulas
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Proof (2) cont'd

(2) Verifies the stability condition E(c!.,)<E(c!) v¥n
Apply the quadrature formulas to the RHS of
Lchn+1 W .k (t )dt :J‘Cchn+1 mn (t )dt

to get
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Proof (2) cont'd

(2) Verifies the stability condition E(c!.,)<E(c!) v¥n

Simple manipulation yields
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Proof (3)

(3) Gives rise to a LTE bounded as |z(t,)| < KAt;

We compare our method with the midpoint rule
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Proof (3) cont'd

(3) Gives rise to a LTE bounded as |z(t,)| < KAt;

The exact solution does not satisfy the discrete
equations, giving rise to the local truncation error

h
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Proof (3) cont'd

(3) Gives rise to a LTE bounded as |z(t,)| < KAt;

We conclude that

(a" V") =(q".Vnq )+ O(AL?)
(Wh,z'):(w ,z'mid)+O(Atn)



Time-step adaptivity
Let C. and V_ be the global vectors of dof

Given C_,V. and At,
1: Compute C°%, using the BE method and At,

n+1

2 :Compute C__, using our method and At_
3:Calculate e, ,, =|C’5 -C, .|/ |C..

4:if e, >tol then

5:  Recalculate the time step At, < F(e, ,, At )
6: goto1

7 else

8:  Update the time step At ., =F(e, ., At,)

9: continue
10: end if



Example 1: Generalized-a
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Example 1: Eyre’s method
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Example 1: New method
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Repeat Example 1: Adaptivity
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Repeat Example 1: Adaptivity
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Conclusions

Phase-field modeling is a powerful theory
Potential for engineering problems
Numerical solution is challenging
Isogeometric analysis

Adaptive time stepping

Refinement methodology

Provably unconditionally stable methods

The efficient approximation of phase-field models
may permit addressing problems intractable
heretofore



