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History

Introduced by Peskin
o Flow patterns around heart valves: a digital computer
method for solving the equations of motion
<PhD Thesis, 1972>
e Numerical analysis of blood flow in the heart
<J. Comput. Phys., 1977>
Extended by Peskin and McQueen since '83 to simulate
the blood flow in a three dimensional model of heart and
great vessels

Review article by Peskin
The immersed boundary method
<Acta Numerica, 2002>

Several applications in biology, when a fluid interacts with
a flexible structure.
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Immersed
boundary
method

The structure is a part of the fluid with additional forces
and mass.

The Navier-Stokes equations are solved everywhere.

The interaction with the structure is obtained by means of
a singular force term defined by a Dirac delta function.

The immersed material is modeled as a collection of fibers.

Discretization based on finite differences.
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FE discretization of IBM

N <Boffi-G., C&S 2003>
Sy < Boffi-G.—Heltai 2004, M3AS 2007>
<Boffi-G.—Heltai—Peskin CMAME 2008>

<Boffi—-Cavallini-G. 2010>

Lucia Gastaldi

e Variational formulation of the FSI force
e No approximation of the Dirac delta function

e Better interface approximation (less diffusion, sharp
pressure jump)

o Effective mixed finite elements for the approximation of
the fluid equations.

e Submerged elastic solid occupying volume may also be
considered.
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Immersed elastic bodies

Q Elastic body

Fluid

Immersed body of
codimension 0

the fluid domain and the
immersed body have the
same dimension
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Immersed elastic bodies

Q Elastic body

Fluid

Immersed body of
codimension 0

the fluid domain and the
immersed body have the
same dimension

@ Elastic boundary
B
<= Fluid

Immersed body of
codimension 1

the immersed body is either a
curve in 2D or a surface in 3D
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QCcRY d=2,3

Notation

B; deformable structure domain
B:CR™ m=d,d—-1
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Notation

Q fluid + solid B;: deformable structure domain
QCcRY d=2,3 BiCR™ m=d,d—1
x Euler. var. in Q s Lagrangian var. in B

B reference domain



FE Immersed
Boundary
Method

Lucia Gastaldi

Basic model

Codimension 0
Codimension 1

Q fluid + solid
QCcRI, d=23

x Euler. var. in Q
u(x, t) fluid velocity
p(x, t) fluid pressure

Notation

B;: deformable structure domain
B:CR™ m=d,d—-1

s Lagrangian var. in B

B reference domain

X(-,t) : B — B; position of the solid

X
F= 885 deformation grad. (detF > 0)
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X(t)
w Q \
Basic model
Codimension 0
Codimens; jion 1
Q fluid + solid B;: deformable structure domain
QCcRY d=2,3 BiCR™ m=d,d—1
x Euler. var. in Q s Lagrangian var. in B

B reference domain
u(x, t) fluid velocity | X(-, t): B — B position of the solid

X
p(x, t) fluid pressure | F = 885 deformation grad. (detF > 0)

u(x,t) = aa)t((s, t) where x = X(s, t)
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From conservation of momenta, in absence of external forces, it
holds
) Ou )
pu=p|—4+u-vVu|=V-oc inQ
Catfiwensien © ot
Codimension 1 .
In our case the Cauchy stress tensor has the following form
of in Q \ Bt

ofr+os inB;



FE Immersed
Boundary
Method

Lucia Gastaldi

Codimension 0
Codimension 1

Case: m=d

From conservation of momenta, in absence of external forces, it
holds

ot
In our case the Cauchy stress tensor has the following form

U:{Uf |nQ\Bt

ofr+os inB;

. (8u ) .
pu=p|—4+u-vVu|=V-oc inQ

e Incompressible fluid: o = ¢ = —pl+ p(Vu+ (Vu)')
e Visco-elastic material: o = o5 4+ o5 with o5 elastic part
of the stress
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From conservation of momenta, in absence of external forces, it
holds
) Ou )
pu=p|—4+u-vVu|=V-oc inQ
Catfiwensien © ot

Codimension 1

In our case the Cauchy stress tensor has the following form

U:{Uf |nQ\Bt

ofr+os inB;

e Incompressible fluid: o = ¢ = —pl+ p(Vu+ (Vu)')
e Visco-elastic material: o = o5 4+ o5 with o5 elastic part
of the stress

Moreover, if the structural material has a density ps different
from the fluid density pr, we have

{pf in Q\ B;
p:

ps in B;
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pf/l:l‘VdX+/0'f:Vde—/ ofn-vda
Q Q o0

cones = (o) [ vax— [ ouiTvan
Bt Bt
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Lt Castal Virtual work principle
pf/il‘VdX+/UfZVde—/ ofn-vda
Q Q a0
e — — (e pr) [ avax- [ ooivudx
Bt Bt

The elastic stress o5 can be expressed in Lagrangian variables
by means of the Piola-Kirchhoff stress tensor by:

P(s, t) = |F(s, t)|os(X(s, t), t)F~ T (s,t), seB

so that

pf/u~vdx—|—/0'f:Vvdx—/ on-vda
Q Q 0N

:_(ps—pf)/B L'l-vdx—/B]fD:st(X(s, t))ds Vv
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Codimension 0
Codimension 1

Using the Lagrangian description in the solid domain, the
material derivative is the same as the time derivative, hence
u = 9%2X/ot%.

pf/t'lvdx—i—/af:Vvdx:
Q Q
9?X .
(e —pr) | S (X(s, t)ds - / B v.v(X(s, 1)) ds
B Ot B
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Codimension 0
Codimension 1

Using the Lagrangian description in the solid domain, the
material derivative is the same as the time derivative, hence
u = 9%2X/ot%.

pf/t'lvdx—i—/af:Vvdx:
Q Q
9?X .
(e —pr) | S (X(s, t)ds - / B v.v(X(s, 1)) ds
B Ot B

At the end, after integration by parts,

. 82X
/(pu— Veorvdx=—(ps —pr) | S5 v(X(s t)ds
Q B 0t

+ /B (Vs -B) - v(X(s, £)) ds — /8 BN -v(X(s,1) 04
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Luia el FrOM Lagrangian to Eulerian variables

Implicit change of variables using the Dirac delta function

v(X(s,t)) = / v(x)o(x — X(s, t)) dx

Q

Codimension 0
Codimension 1
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Luia el FrOM Lagrangian to Eulerian variables

Implicit change of variables using the Dirac delta function

v(X(s,t)) = /Qv(x)é(x — X(s, t)) dx

/Q(pin—v-af)-vdx:— ﬂf)/ 8t2'v s, t)ds
+ /B(vs B) - v(X(s, £)) ds — /83 BN - v(X(s, £)) dA

Codimension 0
Codimension 1
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Luia el FrOM Lagrangian to Eulerian variables

Implicit change of variables using the Dirac delta function

v(X(s,t)) = /Qv(x)é(x — X(s, t)) dx

/Q(pt'l—v-af)-vdx:— pf)/ atz-v t)ds
+ /(vs B) - v(X(s, t)) ds — /63 BN - (X (s, t)) dA

U substitute v(X(s, t))

o= r0) [ G+ ([ wtste—X(s. ) ax) as
n /B (V. -P) - < /Q v(x)5(x — X(s, 1)) dx> ds
_ /88 PN (/Q v()3(x — X(s, £)) dx> dA
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Codimension 0
Codimension 1

/(Pl"—V ‘of) - vdx

o= r0) [ G+ ([ wt0ste—X(s. ) ax) as
+ /8 (V. -B)- < /Q v(x)5(x — X(s, £)) dx) ds
_ /88 BN (/Q v(x)3(x — X(s, £)) dx) dA
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0?X
=) [ 5 (] vo0itx— x(5.) )
N / (Vs B)- < / v(x)5(x — X(s, 1)) dx> ds
B Q

_ /88 BN (/Q v(x)3(x — X(s, £)) dx) dA

{ and change the order of the integrals

—(ps — pf)//a;t)z( s,t))ds - vdx
+/Q/B(vs B)S(x — X(s, £)) ds - v dx

—/Q/%INP’N(S(x — X(s,t)) dA - vdx
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Boundar;
l.\/lethody . . azx
Lucia Gastaldi pu — v Of = —(ps — pf) W{;(X — X(S7 t)) ds
B

. /3 s Bo(x — X(s, £)) ds — /a ENG(x— X(s. 1)) 0

Codimension 0
Codimension 1
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Codimension 0
Codimension 1

Since v is arbitrary, we get
92X
B Ot2

. /B s Bo(x — X(s, £)) ds — /a ENG(x— X(s. 1)) 0

pu =V -or=—(ps — pr) 6(x — X(s, ) ds

The source term can be split into three contributions:
excess Lagrangian mass density

92X
d(x,t) = —(ps — pr) W&X — X(s, t))ds
B Ot
inner force density

g(x,t) = /B Ve (s, )5(X(s, t) — x) ds

and transmission force density

tx, £) = — /8 B ON()IX(s. 1) — x) s
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Navier—Stokes

0
p(u—i—u-Vu)—uAu—i—Vp:d—i-g—i—t in Qx]0, T[

ot
o divu =0 in Qx10, T[
Excess of Lagrangian mass and force densities in 2x]0, T|[
0?X

d(x,t) = —(ps — pr) g W(S(x — X(s,t)) ds

g(x,t) = /B Vs P(s, £)5(x — X(s, £))ds

tx,t) = — /d Pl NS5~ X(s. 1))ds

Immersed structure motion

) :
5p(5:1) =u(X(s,1).1) in Bx]0, T[

Initial and boundary condition



FE Immersed
Boundary
Method

Lucia Gastaldi Case: m=d —1
The domain occupied by the struc-
ture is By x| — t5/2, ts/2].

e The physical quantities depend only
on the variables which represent a

middle section and are constant in

the direction orthogonal to it.

/p,cu vdx+/0f Vvdx—/ ofn-vda
ts/2 ts/2
/ / u- VdXdT—/ / o5 Vvdxdr
t5/2 t ts/2 t
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Case: m=d—1

Lucia Gastaldi

The domain occupied by the struc-
ture is By x| — t5/2, ts/2].

e The physical quantities depend only
on the variables which represent a
middle section and are constant in
the direction orthogonal to it.

/p,cu vdx+/0f Vvdx—/ ofn-vda
ts/2 ts/2
/ / u- VdXdT—/ / o5 Vvdxdr
t5/2 t ts/2 t

:—(ps—pf)ts/ u-vdf(—ts/ os: VvdX,
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Codimension 0

Codimension 1

Working as before, we arrive at
) 9?X
pru —V-0r = —(ps — pf)ts Wfs(x—X(O',t))dS
B Ot
b / V. Bo(x — X(o, t))ds
B

—ts /azs PNé(x — X(o, t))dA.
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pru—V-or=—(ps — pf)ts | —56(x—X(o,1))ds

92X
B Ot?
+ ts/ Vs Po(x — X(o, t))ds
B
S ¢, / BN3(x — X(o, t))dA.
oB

Excess of Lagrangian mass and force densities in 2x]0, T|

d(x,t) = —(ps — pr)ts %2)2(6(x — X(s,t))ds

/Vs S, t X—X(S t))d
t(x,t) = —ts /%P(s t)N(s)d(x — X(s, t))dA

NB: if B is a closed curve in 2D or a closed surface in 3D then
OB is empty and the transmission force density T vanishes.
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Navier—Stokes
0
p<al;+u~Vu> —pAu+Vp=d+g+t inQx]0,T[
Codimension 0 divu=0 in Q x ]0, T[

Codimension 1

Excess of Lagrangian mass and force densities in 2x]0, T|
d(x,t) = —0 az—xd( — X(s, t)) d
X, t) = —dp i X s, s
g(x,t) = / Vs (s, £)5(x — X(s, ))ds
B
tx, ) = — / B(s, N(s)5(x — X(s, £))dA
o8

5p={ pe—r if m=d P P ifm=d
(ps — pflts ifm=d—1 tP ifm=d-1.

Immersed structure motion

qx(s. Y=ulX(s.t).t) in Bx10.TI
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e Navier—Stokes

Pf%(u(t)7 v) + a(u(t),v) + b(u(t), u(t), v)—(divv, p(t))

ariationa 2X
X)rmulatioln = —(Sp 8at2\/(x(5, t))ds+ < F(t), Vv >
B
Vv € H}(Q)9
(divu(t),q) =0 Vg € L3(9)

o (F(t),v) = — /BIP(F(S, t)) : Vsv(X(s,t))ds Vv € H&(Q)d
o (?9 (s,t) =u(X(s,t),t) VseB
u(x,0) = ug(x) ¥x € Q, X(s,0) = Xo(s) Vs € B.
a(u,v) = u(Vu,vv)

b(u,v,w) = & ((u- Vv, w) — (u- Vw,v))
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m=d
The definition of g and t implies that

Variational g(x7 t) = O for X # Bt7 t(X, t) = O fOr X # 88[-

formulation

2%
Recall that u(X(s, t), t) = 88t Then the given Navier-Stokes

equations are equivalent to:

<8€9ut+u vuf)—af—o in (Q\ B:) x]0, T
Ps (88”1“ +u5.vus> —o7—0:=0 inB:x]0,T|
uf :us on OBt X]Ov T[

ofn + otn® =t (= [F|'PN) on OB; x 10, T|
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L casar EQUIValence with standard formulation

m=d-1
Q+
B
Variational
formulation
Ou , T _
Pf a—i—u-Vu —pAu+Vp=0 in(Q"UQ)x]0, T[
Vu=0 in (QTUQ7)x]o, T[.
oX
u= It = U+ = Ugo- on B:

ou 9?*X
(2] o) b onZE e s
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Luia caetats INCOMpressible and viscous hyper-elastic
materials
B . : .
Trajectory of a material point
B X(t) X:Bx[0,T] — B
Deformation gradient
oX
Stability F(Sa t) = g(s, t)

Wide class of elastic materials are characterized by:

potential energy density W (F(s,t))
total elastic potential energy

E(X(t)) = /B W(F(s, t))ds

~ 4%
Piola-Kirchoff stress tensor P(s, t) = %—F(s, t)

inner force density V, -P(s, t) = V- (?I/E‘V(F(S’ t))>
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<Boffi—Cavallini-G. '10>
Recalling that

oxX

E(s, t) =u(X(s,t),t) VseB

Stability

it holds

X ||?
ot

o M)+l w(e) B+ S ECX() + 00

where E is the total elastic potential energy

:/ W(F(s, t)) ds
B
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Let Q; = Qf U QS be a time dependent region, with Qf fluid
region, €27 solid region
in Qf:
FSI problems incompressible Navier-Stokes equations with Eulerian or ALE
formulation
unknowns: velocity u and pressure p
in QF:

elastodynamics equation with Lagrangian formulation
unknown: structure displacement 7

coupled through transmission condition on ¥, = 9Q§ N 9Q1:
continuity of velocities and stresses between fluid and structure
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L s NUMerical strategies for coupled problems

<Matthies-Niekamp '03>
<Matthies-Niekamp-Steindorf '06>

Two approaches:

FSI problems . .
e Strongly coupled or monolithical

Direct solution of the coupled problem.
Stable but requires the solution of a big nonlinear problem.

e Weakly coupled or partitioned
Separate solution of fluid and solid equations iteratively.
Considerable reduction of computational cost, but
undesirable instability effects.
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Lucia casaa Added-mass and partitioned procedure

FSI problems

In coupled FSI problems, the fluid acts over the structure as an
added-mass at the interface.

When ps > pr (ps and pr solid and fluid density) the
added-mass effect is negligible and standard partitioned
procedures converge in few iterations.

The method fails to converge when ps/pr =~ 1.
<Nobile '01, Causin-Gerbeau-Nobile '05>

Different strategies have been proposed based on fully coupled
implicit algorithms solved via iterative solvers using domain
decomposition or algebraic splitting:
<Le Tallec-Mouro '01, Deparis-Fernandez-Formaggia '03>
<Badia-Nobile-Vergara '08, Giorda-Nobile-Vergara '09>
<Badia-Quaini-Quarteroni '08-'09>
or based on time-discretization via operator splitting:
< Guidoboni-Glowinski-Cavallini-Canic '09>
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FE model

Finite element approximation

e Uniform background grid
Ty, for the domain Q

(meshsize hy)
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FE model

Finite element approximation

e Uniform background grid
7}, for the domain €

(meshsize hy)

e Inf-sup stable finite
element pair

Vi ={veH Q) : veQ2}

Qy=1{qe2(Q):qe P}
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FE model

Finite element approximation

e Uniform background grid
Ty, for the domain Q2 A

(meshsize hy)

e Inf-sup stable finite
element pair /

Vi ={veH Q) : veQ2}

Qn=1{qgeL3(Q):qe P1}
e Grid S for B (meshsize hs)
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FE model

Finite element approximation

Uniform background grid
Ty, for the domain Q2 A

(meshsize hy)

Inf-sup stable finite
element pair /

Vi ={veH Q) : veQ2}

Qy=1{qe2(Q):qe P}

Grid Sp, for B (meshsize h)
Piecewise linear finite element space for X
Sh={Y e C'B;Q):Y c P1}
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e Uniform background grid
7, for the domain Q AT
(meshsize hy)
e Inf-sup stable finite 7
element pair /
FE model Vi ={veH Q) : veQ2}

Qy=1{qe2(Q):qe P}

e Grid S for B (meshsize hs)
e Piecewise linear finite element space for X
Sh={Y e C'B;Q):Y c P1}

Notation

e Ty, k=1,..., M. elements of S,
es;, j=1,..., M vertices of 5
e & set of the edges e of Sy,
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FE model

Discrete source term

Source term:

(F(t),v) = —/BIP’(Fh(s, t)) : Vsv(Xp(s, t))ds W eV,
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FE model

Discrete source term

Source term:
(F(t),v) = —/BIP’(Fh(s, t)) : Vsv(Xp(s, t))ds W eV,

Xy p.w. linear = Fy, Py p.w. constant
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Source term:
(F(t),v) = — / P(Fp(s,t)) : Vsv(Xp(s, t))ds Vv e V,
B
Xy p.w. linear = Fy, Py p.w. constant
By integration by parts
Me
FE model (Fp(t),v)n = —Z/ Py : Vsv(X(s,t)) ds
k=1" Tk
Me

=— Z/B PrNv(X(s, t)) dA
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Source term:
(F(t),v) = —/BIP’(Fh(s, t)) : Vsv(Xp(s, t))ds W eV,

Xy p.w. linear = Fy, Py p.w. constant
By integration by parts

FE model (Fp Z/r Py : Vsv(X(s,t)) ds
= —Z/ PyNv(X(s, t)) dA
oT,

that is

Fo(©)v)n == 3 [ [Pl v(X(s. 1)) A

eeéy

[P] = P*NT + P~N~ jump of P across e for internal edges
[P] = PN jump when e C OB
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Lucia Gastaldi (uhaph) : ]0’ T[ — Vh X Qh and Xh . [0, T] — Sh SUCh that

"

pfé%(Uh(t)7V)%-a(Uh(t)7V)-+-b(Uh(t),Uh(t)7V)

2
~(divv. (1)) = —6p / T v (Xa(s. 1)ds

- Z /ﬂph]] v(Xp(s, t))dA Yv € V,
FE model eegh
(divus(t),q) =0 Vg € Qp
dXh,( t) = up(Xpi(t),t) Vi=1,....M

dt
up(0) = ugp in Q
Xh,'(O) == Xo(S,') Vi = 1, PN M
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Immersed
boundary
method

Basic model

Variational

formulation <BOffI—Cava||lnl—G ’10>
Stability

FSI problems

d d
FE mode L2 (0113 + ul| V un(0)]13 + - E(Xi(t))
2dt dt
CFL condition 2
1 0Xp
Numerical — _ | — —
results + 2 p dt 8t B 0

Conclusions
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FE model

Find (u

Fully discrete problem
Backward Euler — BE

ZH,pZH) eV, xQpe XZH € S;, such that
(Fptovn=—=> [[Pa]" - vw(X] ' (s))dA W eV,
ecéy €
u™t
oy L —— Az Do | +a(ulttv) 4 b(uftt ultt v)

—(divv, pptt) =

Xn+1 o 2XZ + Xn—l o
NSV =i [ T (X ()
+ < FIttv >, Y eV,
L (div uz+1 q)=0 Vq € Qp;
n+1 n
Xh?L _xhi

At

=ul (X} vi=1,...,M.
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Modified bckward Euler - MBE
Step 1. (Fj,v)h=— 3 /[[IP’;,]]” (XI(s,t))dA W e Vj
ee&y
Step 2. find (u ”+1,p,’,’+1) € Vi, x Qp such that
((wu
n+1 n+1 n+1
FE model pf A v + a(uh ’ ) + b( h ’V)
—(divv, pptt) =
+1 n n—1
NS Xy~ = 2Xp+ X} .
~bp [ P (X))
+<FZ7V>h Yv € V
[ (divu]tt q) =0 Vg € Qp;
Xn—'l-l _ Xn'
Step 3. —h___Thi — " HI(XP) Vi=1,...,M.

At
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S Using Step 3 in Step 2 we arrive at:
Lucia Gastaldi
Step 1. (Fjv)p=— > /[[IP’;,]]”-V(XZ(S, H)dA W eV,
ecé&, €
Step 2. find (uf™, pptt) € Vi x Qp such that
n+1 N
pr | v | 4 a(up ™ v) + b(up T urt )
At
FE model leV Pn+1)
n+1 . Xn 1
NS - / ) tuh( (S)) 'V( Z(s))ds
FZ, > Yv € V,
(divuf™, q) =0 Vq € Qp;
n+1 n
thr _Xhi — "l

Step 3. (Xp) Vi=1,...,M.

At — YUn
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CFL condition

Discrete Energy Estimate
<Boffi—Cavallini-G. '10>
Assumption Set
PwW
e = aF,-aaFjﬁ(
There exist kmip > 0 and Kpax > 0 s.t. for all tensors E

bminB2 <E:H: E < kmaxE>

H F)

Artificial Viscosity Theorem

Let u}, pp and X} be a solution to the FE-IBM.
Let 2, be the sum of the kinetic and elastic energy:

2
of ) 6P Xn_xnfl
Zn:? |u"||079—|— > HAt OB—G—E[XZ].
Then Tni1— Zn+ (1 + )| VUi 2 <0

CFL Condition: g+ us >0
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BE is unconditionally stable, while MBE requires the term i,
to be not too large

W2 At
Ha = —HKmax CW L"

CFL condition

space dim. | solid dim. | CFL condition
2 1 L"At < Chyhs
2 2 L"At < Chy
3 2 L"At < Ch)z(
3 3 LAt < Chi/hs
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results

Numerical experiments

e Q=1]0,1[x]0,1[, B=[0, ]

N
P=x—
* E@s

Numerical parameters

Q partitioned into 16 by 16 subsquares

Immersed boundary discretized by 618 uniformly spaced nodes
At = .01

V}, continuous piecewise biquadratics = @
Qp discontinuous piecewise linears = P
Sy, continuous piecewise linears

Programs written in C4++ with the support of deal.II
libraries.
Pictures and movies obtained with Matlab and IBM Opendx.
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results

Ellipse immersed in a static fluid

Aim: to examine the influence of the elastic force of the
immersed boundary on the whole system.

Fluid initially at rest: ugy, =0

~ ( 0.2cos(2ms) + 0.45
Xols) = < 0.1sin(2ws) + 0.45

Immersed boundary: time=0dt

-

)

Immrsad boundary: tme-= 100dt
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results

Percentage of area loss at t=2.

M 16 32 64 128 256 512

N =4 35.944  37.166 37.988 38.413 38.635
N=8 | 15951 [14.000| 13.057 12.809 12.809 12.843
N=16 | 20.182  9.015 7011 7105 7.191
N=32| 45293 9763  2.788] 2303  2.325
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Inflated baloon in a fluid at rest
Structure model:

L 92 S
(FO.) = [ 5D uixs ) a5, w1

Initial condition:

_( Rcos(s/R)+0.5

Xo(s) = < Rsin(s/R) + 0.5 ) , se[0,27R] R =0.4.

Analytical solution:

u(x,t) =0 VxeQ, Vte]o, T[

_ K’(]'/R - ﬂ-R)a |X| <R
p(x, t) = { wnR, x| > R vt €]0, T|.
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Q2/P1¢ solution

Uniform grid: 64 x 64 squares, At = 0.005, T = 3s

cats
[
|
Cas
o
Sz
[Loom

-2z

e

k=2, hx = 1/64, hs = 11128, dt = 005

Figure: Pressure

ressure on the cullne y=.5

Figure: Pressure cutline
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Immersed
boundary
method

Basic model

e Uniform grid: 64 x 64 squares squares divided into two triangles
formulation At — 0000]” T — O].S

Stability

FSI problems
FE model
CFL condition

Numerical
results

Conclusions

Pressure PlisoP2/P1¢ Pressure PlisoP2/P1°+P0
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A PlisoP2/P1¢ versus
immersed PlisoP2/P1¢+P0 cutline

e Uniform grid: 64 x 64 squares divided into two triangles

Basic model

Variational
formulation

25
Stability
FSI problems 2r b
FE model 15 : i
CFL condition ool iy
1F 4
Numerical
results
2 osr g
Conclusions g
a Or i
-0.5F . 4
1+ j —+—qe P1+P0O 4
—+—qe P1
-1.5¢ —— analytical E
-2 L L L I

e} no na 0A N 4
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Uniform grid: 64 x 64 squares divided into two triangles
-3
12210
—w—qe P1
—e—qe (P1+P0)
1r 4
0.8f 4
so
Numerical <|( 0.61 i
results And
0.41 4
0.2f 4

0.0001 0.04 0.08
time
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Variational
formulation

Stability
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FE model
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Numerical
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Conclusions

Examples of instability
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Numerical
results

Plot: —pu, VS X, for different v and At

pr =1, ps =2, kK =1, N=64, M=1024,

10'

Stability analysis

pa = —kC

At
hshy

Ln

-,
| —Energy

At =101

o,
| —Energy
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Stability analysis for different pg

pr =1, u=0.1 k=1, N=64, M=1024,

10' 10!
o, B BN
— Energy —Energy —Energy
10° 10°
05 1 i5 2 25 o 05 1 5 2 25 ° 05 T i5 2 25
time time time
ps =11 ps =1.1 ps =0.9
10' 10'
B B =T,
"""""""""""""" — Energy | —Energy | — Energy
10° 10°
05 1 i5 2 25 1 05 1 15 2 25 1o 05 T i5 2 25
time time time
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e @ Some numerical experiments
Equal densities
Immersed
boundary Original 2D code in Fortran 77, ported to DEAL.II (c++)

(www.dealii.org) by L. Heltai

Basic model

Variational d
for:w‘:u\‘atn\;n ReCtangUIar meSh’ Q2/P1
S 2D - Codimension 1

FSI problems

FE model C —
CFL condition s e

Numerical

results 2D - Codimension 0

Conclusions
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Basic model

Variational
formulation

Stability

FSI problems
FE model
CFL condition

Numerical
results

Conclusions

Some numerical experiments

Different densities

Original 2D code in Fortran 90 by N. Cavallini
Triangular mesh PlisoP2/P1¢

Inflated balloon falling down in a liquid

Densities: ps =21 and pr =1

k=1 x=0.1 k=0.1
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e The Immersed Boundary Method is extended to the
treatment of thick materials modeled by
viscous-hyper-elastic constitutive laws.

e The case of fluid and structure with different densities has
been also considered.

e The finite element approach is efficient and can easily
handle the case of thick materials.

Conaiins e Stability analysis of the partitioned space-time
discretization is provided.

e The CFL condition does not depend on the values of pf
and of ps.
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