

Ottimizzazione del dispositivo stent coronarico al trattamento di restenosi intrastent

Carolina Ferrazzano

MALATTIE CARDIOVASCOLARI STENOSI CORONARICA

Occlusione del lume vasale

By-pass aortocornarico

Angioplastica PTCA

RESTENOSI

Elastic Recoil Rimodellamento negativo I perplasia neointimale

STENT CORONARICI

<u>STENT</u>

Elastic Recoil
 Rimodellamento negativo

l perplasia neointimale

 Formazione di neotessuto fra le maglie del dispositivo legata:
 ✓ all'intrinseca trombogeneticità dello stent
 ✓ alla geometria delle maglie

Possibili interventi Miglioramento bio-emocompatibilità

Ottimizzazione della geometria

MIGLIORAMENTO DELLA BIO-EMOCOMPATIBILITÀ

STENT RIVESTITI

bio ed emocompatibilità

Endotelio

Rivestimento

Stent metallico

Caratteristiche

- Ottima biocompatibilità
- Buona resistenza meccanica
- Efficacia di adesione

Limitazioni

- Rischio di restenosi intrastent
- Terapie farmacologiche

STENT A RILASCIO DI FARMACI (Drug Eluting Stent: DES)

Chypher stent

Cordis

Farmaco di rilascio: Sirolimus

Rilascio locale del farmaco

A

Agenti attivi all'interno del rivestimento

Taxus stent

Boston Scientific Farmaco di rilascio:Paclitaxel

PBMA Sirolimus/PEVA-PBMA Stent

Paclitaxel/Translute
 Stent

Rilascio per diffusione di un unico farmaco

RILASCIO MULTIFATTORIALE DI FARMACI

Sistema omogeneo

Uniforme distribuzione del farmaco

IFarmaco sciolto nel polimero

Rilascio controllato dalla diffusione Sistema multi-componenti Rilascio multifattoriale Presenza di microparticelle Rilascio controllato da diffusione/degradazione

<u>Rilascio di più agenti attivi, in</u> <u>simultanea o in sequenza, con</u> <u>cinetiche modulabili</u>

OBIETTIVI

Adesione persistente

Realizzazione di un rivestimento biocompatibile per DES (Drug Eluting stent)

Capace di inglobare microsfere biodegradabili

Nebulizzazione Immersione

MATERIALI

PHEMA
(poliidrossietilmetacrilato)

Rivestimento polimerico

- I drogelo
- Eccellente biocompatibilità
- Buona resistenza meccanica

• ACCIAIO AUSTENITICO 316 L I

Piattaforma metallica

- Ottima resistenza alla corrosione
- Ottime proprietà meccaniche

Sigma-Aldrich cristalli polimerizzati MW: 20,000 Da Soluzione in etanolo al 10% w/v

RISULTATI ADESIONE Prove di Shear

Curva carico-spostamento

Sforzo massimo

Faccia metallica rivestita

Element	Weight%	Atomic%		
Cr K	17.91	18.98		
Fe K	82.09	81.02		

Element	Weight%	Atomic%		
C K	67.35	73.31		
O K	32.65	26.69		

Faccia metallica non rivestita

Element	Weight%	Atomic%
Cr K	16.64	17.65
Fe K	83.36	82.35

Element	Weight%	Atomic%		
C K	77.77	82.33		
O K	22.23	17.67		

RISULTATI ADESIONE Prove di Pull-off

Curva carico-spostamento

Sforzo massimo

Faccia metallica rivestita

Element	Weight%	Atomic%		
Cr K	16.64	17.65		
Fe K	83.36	82.35		

MATERIALI

µ-SFERE di PLGA → 50:50
 (acido polilattico-co-glicolico)

, Acido polilattico

Acido poliglicolico

- Polimero biocompatibile e biodegradabile
- Modulazione-tempo degradazione
- Versatilità formulativa

PHEMA
(poliidrossietilmetacrilato)

Soluzione 10% w/v in etanolo

Soluzione 30% w/v in etanolo

Soluzione 40% w/v in etanolo

• Fili di acciaio austenitico 316L

RISULTATI

Primo rivestimento

Realizzazione layer di µ-sfere

- V: 6rpm
- Evaporazione: lenta
- Concentrazione: 10% w/v

Presenza delle µ-sfere sulla superficie del campione

RISULTATI Secondo rivestimento

Nebulizzazione

- V: 6rpm
- Evaporazione: aria 0
- Concentrazione: 10% w/v

Osservazione ESEM

Superficie liscia ed omogenea

F2340 filo :

Presenza delle µ-sfere all'interno del rivestimento

RISULTATI <u>Ottimizzazione parametri per DIPPING</u>

Concentrazione: 30% w/v

• Evaporazione: aria

Evaporazione: sotto cappa

Evaporazione: lenta

Spessore variabile

Spessore ridotto ~ 1µm

Spessore

variabile

Evaporazione: in rotazione

RISULTATI Secondo rivestimento

DIPPING

- Concentrazione: 30% w/v
- Evaporazione: aria

Superficie liscia ed omogenea

Presenza delle µ-sfere all'interno del rivestimento

RISULTATI <u>Ottimizzazione parametri per DIPPING</u>

Concentrazione: 40% w/v

• Evaporazione: aria

EHT-20.08 kV 100µn ______ LD= 31 nn Photo No.-332 Mags - 309 X Betector= SE1

Spessore variabile

Spessore

ridotto

~ 4µm

Spessore variabile

Evaporazione: sotto cappa

Evaporazione: in rotazione

RISULTATI Secondo rivestimento

DIPPING

- Concentrazione: 40% w/v
- Evaporazione: aria

Superficie liscia ed omogenea

Presenza delle µ-sfere all'interno del rivestimento

CONCLUSIONI RIVESTIMENTO

Realizzazione di un rivestimento polimerico capace di aderire in maniera persistente alla piattaforma sopportando i carichi a cui è sottoposto lo stent

Realizzazione di un rivestimento liscio ed uniforme capace di inglobare microsfere

NEBULIZZAZIONE

DIPPING 30% (40%) w/v

SVILUPPI

 Inglobare microsfere a differente formulazione di PLGA per il rilascio multifattoriale

 Verificare l'efficacia del sistema multicomponente in vivo attraverso l'utilizzo di sistemi computazionali simulando il comportamento in ambienti altamente complessi quali il corpo umano

OTTIMIZZAZIONE DELLA GEOMETRIA

Stent di uso clinico

- Buona resistenza alla compressione
- Ottimo "effetto impalcatura"
- Alta forza radiale dopo l'espansione
- Scarsa flessibilità longitudinale

Cordis Johson & Johnson

- Stesse caratteristiche ottimali del P-S BEIS
- Migliore flessibilità longitudinale
- Privo di articolazione
- Giunzioni ottimali tra le maglie

Coronary Cardiocoil

Cordis Johson & Johnson

- Alta flessibilità
- → Buona forza radiale

 AUTOESPANDIBILE:graduale espansione→ riduzione del danno endoteliale; sovrasottodimensionamenti del diametro finale

Prolasso fra le maglie dello stent

I mpianto di stent

Aggressione(denudazione) del tessuto a contatto con stent Prolasso vasale I perplasia neointimale Fattore predittivo della restenosi

intrastent

Punti di contatto: maglia-tessuto endoteliale

PROLASSO
 Protrusione o
 collasso del
 tessuto
 endoteliale
 tra le maglie dello
 stent

Modello Geometrico

Arteria coronarica modellata come un cilindro di 75168 elementi SOLID45, 86700 nodi tramite il programma di calcolo ANSYS 11.0

3 Cilindri cavi coassiali lunghezza 24 mm

tre layer: Entima, Media e Avventizia

	Raggio esterno	Raggio interno	Spessore (E)	Note
Intima 1.6 mm		1.5 mm	0.1 mm	valore medio
Media	Media 1.6 mm		0.15 mm	valore medio
Avventizia 1.75 mm		2 mm	0.25 mm	valore medio

Materiale

Teoria incrementale

	E _r	$\mathbf{E}_{\mathbf{ heta}}$	Ez	v _{r0}	v _{θz}	v _{rz}	\mathbf{G}_{r}	$\mathbf{G}_{\mathbf{ heta}}$	Gz
Intima	0.04	0.04	0.29	0.49	0.49	0.49	0.1	0.0145	0.0145
	MPa	MPa	MPa					MPa	MPa
Media	0.299	0.299	0.0451	0.49	0.49	0.49	0.1	0.015	0.015
	MPa	MPa	MPa				MPa	MPa	MPa
Avventizia	0.0827	0.0827	0.197	0.49	0.49	0.49	0.15	0.36	0.36
	MPa	MPa	MPa				MPa	MPa	MPa

I valori fanno riferimento a tessuti affetti da patologia aterosclerotica e valgono solo per certi range di tensione media

Vantaggio all'utilizzo dei moduli incrementali: trattare un tessuto come un materiale elastico lineare

Materiale lineare elastico incomprimibile (moduli incrementali)

- Parete vasale eterogenea (Intima, Media e Avventizia)
- Proprietà di trasversa isotropia diverse per ogni layer

1. Numero minimo di divisioni dello spessore di ogni layer = 3, per avere informazioni su ogni layer

2. Rapporto di proporzionalità, affinché siano attendibili le informazioni su ogni elemento

Elemento Solid45

$$\frac{a}{c} = \frac{b}{c} = \frac{b}{a} \le 2.5$$

Caratteristiche possedute da ogni singolo elemento:

Condizioni di carico

Applicazione di uno spostamento radiale di prova sui nodi della parete interna del vaso (8 mm) coincidenti con i punti di applicazione dello stent in riferimento alla sua posizione e geometria

ANALISI A GRANDI DEFORMAZIONI

Analisi effettuate

Prolasso fra le maglie dello stent

up i= distanza fra i punti i-esimi di prolasso e il lume vasale

Spostamento radiale [mm]

Conclusioni

Analisi 1

Al variare del passo della maglia

Conclusioni

Al variare del passo della maglia

Coronary Cardiocoil stent

All'aumentare del passo della maglia la percentuale di prolasso aumenta più del doppio

All'aumentare del passo della maglia la percentuale di prolasso aumenta più del doppio

Mantenendo costante il passo della maglia, facciamo variare lo spostamento radiale dello stent sulla parete vasale

Aumentando lo spostamento dello stent sulla parete del tessuto endoteliale aumenta la percentuale di prolasso

Conclusioni

Analisi 3

Passo 1 mm Spostamento radiale 0.01 mm

Al variare della tipologia di stent

Il NIR è lo stent che evidenzia una percentuale di prolasso più bassa rispetto ai restanti stent Il Coronary Cardiocoil, avente una maglia solenoidale, è lo stent

che presenta un prolasso maggiore rispetto ai restanti stent

Conclusioni finali

Il prolasso vasale varia al variare della geometria dello stent

La percentuale di prolasso aumenta all'aumentare del carico di prova e del passo dello stent (stent a maglia larga)

Una geometria a maglia più stretta è vantaggiosa poichè consente di ottenere (caso DES) una distribuzione più uniforme ed omogenea dell'agente attivo

SVILUPPI FUTURI

 Comparare i risultati ottenuti con quelli ricavati considerando il modello non lineare iperelastico, i cui moduli elastici sono ricavati dalle curve di stress-strain

 Introduzione delle proprietà di viscoelasticità dell'arteria coronarica, al fine di osservare il comportamento del tessuto a lungo termine

Grazie per l'attenzione ...