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2Histology of the Arterial Wall

 At microscopic level the arterial wall shows a 
layered structure, made of three concentric 
zones: 
– tunica adventitia (A); 
– tunica media (M);
– tunica intima (I); 

            separated by  elastic laminae (IEL, EEL).

 Each layer wall is a composite structure 
containing, in different proportions: 
– elastin; 
– collagen;
– endothelial and smooth muscle cells, 
– and ground matrix.

 Arteries can be subdivided into:  
– muscular artery and elastic artery.
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3Atherosclerosis

 Atherosclerosis is a vascular disease characterized 
by [Virmani et al., 2000]:
– infiltration of lipids, inflammatory cells into the 

intima and formation of the plaque; 
– narrowing of the arterial lumen (stenosis), and 

obstruction of the blood flow.

 The plaque core, separated from the lumen by a 
fibrous cap (collagen and smooth muscle cell), may 
contain:
– a lipid pool (foam cells and debris); 
– calcification. 

 Angiographic studies proved positive correlations 
between spontaneous plaque rupture  and:
– myocardial  infarction;
– unstable angina;
– thrombus formation (atherothrombosis).

I
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4Plaque Rupture

 The risk of plaque rupture [Pasterkamp et 
al., 2000] is related to :
– the vulnerability of individual plaques 

(intrinsic disease); 
– rupture triggers (extrinsic dynamic 

forces).

 Vulnerable plaque, characterized by: 
– non calcified, eccentric plaque;
– a thin fibrous cap (< 65 µm);
– a large lipid pool (> 40% plaque area), 

      are prone to rupture.

 Plaque rupture manifests at the shoulder 
as provided in 64% of cases in an autopsy 
series [Richardson et al., 1989].  

        
elastic fibers

I

[Cheng et al., 1993] 

[Yabushita et al., 2002] 
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5

GOAL: want to setup a realistic numerical tool able to simulate fracture in 
human arteries such as: 
– plaque rupture;
– spontaneous dissection between artery layers.

 Need to use:
– Geometrical model of healthy/diseased arteries, obtained through 

magnetic resonance or ultrasound imaging. 
– Material model, built up by considering the underlying micro-

structural composition of the tissue: two sets of reinforcing collagen 
fibers.

– Damage/deterioration/fracture model able to describe the breaking 
of the plaque and the dissection of a layer.
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6Collagen Fibers in Arterial Layers

 In each arterial layers, the isotropic ground matrix is reinforced by two families of 
collagen fibers [Patel et al., 1969].                 

 Histological evidence [Shekhonin et al. 1985] proves:  
– large dispersion of collagen fibers in the intima and adventitia;
– alignment of the collagen fibers along the circumferential direction with a 

very little dispersion in the media.

I

[Sommer et al., 2008] 
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7Anisotropy in Uniaxial Tests

 Uniaxial tension tests of human iliac strips (axial 
and circumferential samples) provide stiffness 
and resistance data [Holzapfel et al. 2004] .

 Experiments show a different response of the 
material in the circumferential and in the axial 
direction:
– media is stiffer in circumferential (left) than 

in axial (right) direction. [Holzapfel et al., 2004] 
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8Anisotropic Material Model for Arterial Layers

 An elastic material is called hyperelastic when its constitutive law derives from a 
strain energy function Ψ (Helmoltz free energy). 
For anisotropic elastic material, the strain energy function Ψ may be expressed 
in terms of the Cauchy-Green tensor C and of the two structural tensors A0 and 
G0 [Spencer,1984]:

  
 

 Material frame indifference is satisfied if the strain energy function respects the 
condition:

 According to  [Spencer, 1984], the above condition implies that the strain energy 
function Ψ is a function of the three isotropic invariants of C and of the six 
pseudo invariants (anisotropic invariants):
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9Strain Energy Function for Arterial Layer

 Assumption: incompressible materials are modeled as slightly compressible 
materials.
Decoupled near-incompressible elasticity: the strain energy decomposes into the 
sum of a volumetric, an isotropic and an anisotropic parts, each depending on a 
few single parameters:

 According to [Patel et al., 1969] the two families of collagen fibers are equivalent 
in stiffness and strength. 
The uniaxial response of each fiber family is given by an exponential function 
(that excludes compressive behaviors) [Holzapfel et al. 2000] .

 The single terms of the strain energy function Ψ are:
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10Isotropic and Anisotropic Invariants

 Decouple the volumetric and the isochoric deformatin:

 Three isotropic invariants of the modified Cauchy-Green tensor:

 Two most significant pseudo-invariants of the modified Cauchy-Green tensor 
and of the structural tensors A0, G0 (square of the stretch of the material in the 
fiber direction): 

  Higher order invariants [Merodio et al., 2003; 2005]:       
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11Stress Measures

 Given an  hyperelastic materials the stress are given by differentiation with 
respect to the strain measures: [Holzapfel et al. 2000] 

where:

 Stress tensor for the arterial layers:
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12Interface Models

δ c
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 Rupture may be explicitly simulated by the 
adaptive insertion of fracture surfaces 
(alternative to damage models).

 Cohesive models (originally developed for 
isotropic materials):
– existence of a cohesive zone ahead of 

the crack tip;
– the progressive opening of the fracture 

(opening displacement) δ is resisted by 
cohesive traction T acting on the cohesive 
zone;

– tractions are related to the displacement 
jump by a cohesive law T(δ).

[Dugdale, 1960; Barenblatt, 1962]

[Needleman, 1992; Camacho and Ortiz, 1996]
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13Mixed-mode Anisotropic Model

 The mixed-mode isotropic model proposed in [Ortiz and Pandolfi, 1999] 
extended to anisotropy by introducing a dependence of the material properties 
on the direction.

 Anisotropy reflects in:
– insertion criterion (when and where a fracture surface must be inserted);
– cohesive behavior (how the cohesive surface behaves).

 The cohesive free energy density Φ must distinguish between opening (mode I) 
and sliding (mode II and mode III) behavior. Assume:
– Isothermal process;
– cohesive response independent of stretching and shearing of the cohesive 

surface (depends only on the displacement jump);
– explicit dependence on the deformed local main anisotropy directions and

on some internal variable q (maximum displacement jump):
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14Anisotropic Resistance Surface

 Two equivalent families of fibers oriented 
along a0 and g0 identify three principal 
anisotropy directions G1, G2, G3 in the 
reference space:
– G1, G2 (bisectors of the angles formed by 

the fibers); G3 (normal to their plane).

 The resistance changes with the spatial 
orientation in the form of ellipsoidal surface 
[Yu et al. 2002] :
– different tensile resistance are 

associated to each principal directions 
σc1 ≥ σc2 ≥ σc3;

– cohesive energies change proportionally 
Gc1 ≥ Gc2 ≥ Gc3. 
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15Definition of the Normal in the Current Configuration

 Given a potential fracture plane and the normal axis along the direction N, 
compute the intersections of axis and plane with the resistance ellipsoid.

 The axis provides the normal opening values of the local normal cohesive 
resistance σ3(N) = σc(N)  and of the local normal fracture energy G3L= Gc(N);

 The plane provides an ellipsis, whose principal axes define the local principal 
cohesive sliding directions M1L, and M2L; the resistances, σ1L, σ2L; and the 
fracture energies G1L, G2L for the plane itself.

 Under change of configuration due to motion , the three principal axes of 
anisotropy m1, m2, m3= n are calculated by the deformation gradient Fs of the 
cohesive surface :
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16Anisotropic Cohesive Law

 Once a free energy density has been defined, 
the cohesive law follows as:

 Following  [Camacho and Ortiz. 1999], 
introduce effective measure of opening 
displacement and tractions:

      the cohesive law takes the form:

 Use a linearly decreasing loading envelope.
δδ c
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17Experimental versus Numeric Peeling Tests

 Aortic media during peeling in circumferential 
directions [Sommer et al. 2008] .

 FE analysis performed by assuming a full 
anisotropy, induced by fibers, of the bulk 
and of the cohesive surface 
[Ferrara and Pandolfi, 2009] . 

 Deformed configuration of the aorta specimen 
after application of the whole displacement.

[Sommer et al., 2008] 
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18Forces versus Displacements

[Sommer et al., 2008] 

Peeling test in circumferential direction Numerical test results

[Ferrara and Pandolfi., 2009] 
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19Geometry of Human Arteries

 Reconstructed by manual segmentation of 
high-resolution magnetic resonance 
images (MRI) of a human iliac artery 
[Yang et al., 2003].

 Four digitized cross-sections at 1.5mm 
distance showing healthy and diseased 
tissues are identified clearly. 

 The model is characterized by an eccentric 
plaque of fibrous connective tissue, and a 
stenosis of about 40%.

 Lipid pool is a fluid with gel consistence not 
able to sustain shear stresses, [Loree et 
al., 1994]; [Richardson et al., 1989].

IP

A

Inos

M



A. Ferrara

20

MR images
0.3 mm/pixel
1.2 mm 
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21Orientation of collagen fibers in the Layered Model 

 Idealization [Holzapfel et al., 2000, 2004] 
fibers are inclined in two directions a0 and 
g0 with respect to the circumferential 
direction, forming a a constant angle 2γ 
different for each layer: 
– γ = 49° adventitia;
– γ = 7° media; 
– γ = 5° healthy intima;
– γ = 0° diseased intima.

 The two set of fibers are equivalent, and 
their geometrical organization defines an 
orthotropic structure.

 Top view of the fiber distribution in the 
arterial model. 

a0

g0

2γ
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A IPM Lp

1673 elements 1134 elements 1547 elements 351 elements

A

M

Lp

IP

Multi-layer Finite Element Mesh

 Layered (intima, media, adventitia) model 
of a damaged human artery (7437 nodes 
and 4201 tetrahedra). 

 Anisotropic two-fibers material model 
[Holzapfel et al., 2004] .

 Acoustic material for lipid pool
[Mota et al., 2007] .

 Anisotropic cohesive law
[Ferrara e Pandolfi, 2008] .
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23Loads and Boundary Conditions

 Axial displacement imposed to provide the physiological in situ pre-stretch for 
healthy arteries, assumed to be λ = 1.2 [Schulze et al., 2003]. Highly stenotic 
arteries show very little or no axial in situ pre-stretch [Gasser et al. [2007].

 External confinement offered by the surrounding tissues imposed through 
linear elastic spring elements all around the model (stiffness derived from 
available literature data [Veress et al. 2002]).

 Growing internal blood pressure:

– 100 – 110 mmHg (physiological level);
– 100 – 250 mmHg (overpressure); 

 Disregarded in the present calculations:
– recovering of the unloaded configuration (although already implemented in 

the finite element code);
– presence of circumferential residual stresses (experimentally observed).
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24Elastic Parameters
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25Cohesive Parameters

[Carson et al., 1990] 
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26Geometry Variations on the Model

 The geometric variables of the plaque include the degree of stenosis (i.e. the 
percentage of occlusion) and the presence of lipid pool. 

Model 1 – 40% stenosis 
(baseline) 

Model 2 – 80% stenosis  Model 3  – lipid pool 
 (35% plaque area)
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27Peak Stress and Intraluminal Pressure

 Plaque rupture is associated with stress in 
excess of 300 kPa  [Cheng et al.,1993]. 

 The peak stress is often used as predictor 
of plaque rupture

 At 100 mmHg (physiological level) the 
stress distribution is rather uniform. The 
luminal pressure is increased up to the 
formation of the first crack. 

 Results in terms of von Mises stress maps.
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28Propagation of Fracture during Overpressure

 According to in vitro testing [Lendon et al.,1991] and structural analysis [Cheng et 
al.,1993], plaque rupture occurs at the shoulders. Overpressure crushes the 
plaque by radial tears exposing the media to the lumen.
In the calculations interlayer dissection was not modeled for paucity of 
experimental data.

Intraluminal pressure 380 mmHg Intraluminal pressure 210 mmHg 
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29Lumen Shape Change during Overepressure

 Time history of the deformations along the two main directions of the elliptic 
lumen: A-A and B-B. Upon fracture, the mechanical integrity of the vessel is 
broken, as shown by the oscillations of the deformation measures. 
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30Conclusions

 Our aim to contribute to a diagnostic tool based on numerical simulations of 
stress distribution and fracture propagation combined with magnetic resonance 
or ultrasound imaging can be .

 The results obtained during this research represent a first step towards the 
development of a patient-specific computer tool that may help surgeons in the 
prediction of the mechanical evolution of atherosclerotic lesions.

      LIMITATION: an MRI scan describes the shape of an artery, not its
      mechanical properties. These parameters vary from patient to patient,
      depending on the extent of arterial disease. 
      The key thing is to get more experimental data on human tissue. 
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 Histology of the arterial wall
 Atherosclerosis

– histology of the atherosclerotic plaque
– atherogenesis

 Experimental evidence
 Constitutive material models

– orthotropic hyperelastic model for the arterial wall
– transversally isotropic hyperelastic model for the plaque core

 Cohesive material models

– orthotropic model as generalization of Ortiz and Pandolfi’s model [1999]
 Geometrical model
 Numerical simulations

– stress distribution in atherosclerotic lesions at physiological pressure
– propagation of fracture during overexpansion

Summary
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