
Università degli Studi di Pavia
Facoltà di Ingegneria

Dipartimento di Ingegneria Civile e Architettura

Master degree in Civil Engineering

FDM - 3D Printing: From Mesostructure to
Equivalent Homogeneous Solid Through
Sintering Process. Applications and

Numerical Simulations

3D Printing: Dal Reticolo Cristallino al Solido
Omogeneo Equivalente Attraverso il Processo di

Sinterizzazione. Applicazioni e Simulazioni Numeriche.

Supervisor: Professor

Ferdinando Auricchio

Co - supervisor: Author:

Gianluca Alaimo Claudio Della Cagnoletta

UIN 423610

Academic year 2014/2015



. . . a mia nonna Erminia



Parrebbe che lo stato delle scienze dovesse esser più costante che della letteratura, e la fama degli

scienziati più durevole dei letterati. Pure accade tutto l’opposto. Un secolo distrugge la scienza del

secolo passato: la letteratura resta immobile, o se si muta, si riconosce ben tosto per corrotta, e si

torna indietro.

Giacomo Leopardi



Abstract

The earliest 3D printing technologies first became visible in the late 1980’s. This tech-

nology, initially also called Rapid Prototyping (RP), was originally conceived as a quick and

convenient method for creating prototypes aimed to improving a product.

Throughout the 1990’s and early 2000’s a host of new technologies continued to be intro-

duced, still focused wholly on industrial applications and while they were still largely processes

for prototyping applications. Nowadays, 3D printing is used in many different areas, such as

the biomedical sector, mechanical, industrial and civil.

The present work is focused on a specific technique: Fused Deposition Modeling (FDM).

This is an additive manufacturing technology commonly used for modeling applications, proto-

typing and manufacturing. The filament deposed, binds with the previous by high temperatures

and by the physical-chemical properties of the polymer. Depending on how the printed material

is deposited, we can give to the final product different characteristics and different mechanical

properties.

The purpose of this thesis is to predict the mechanical behavior of the final product,

according to the intrinsic characteristics of the polymer and the micro-mechanics approach,

simulating the sintering process of two particles, in order to calculate, by the density of voids

of the final solid obtained by the superimposition of the layers, the elastic parameters of

the material. The world of 3D printing seems to be little inherent in structural engineering,

however, one of the most important goals of this thesis is to predict the mechanical behavior in

order to exploit its potential. In this way, the evolution of this technology, may also contribute

to the improvement of structures, guaranteeing improved efficiency during the project and

efficacy during exercise.



Sommario

Il primo concetto di stampa 3D si è diffuso negli anni ’80. Questa tecnologia, inizialmente

chiamata anche Rapid Prototyping (RP), è stata originariamente concepita come un metodo

più rapido e conveniente per la creazione di prototipi volti al miglioramento di un prodotto.

Successivamente, nel corso degli anni ’90 e nei primi anni 2000, sono state introdotte, nel

campo industriale, un numero sempre maggiore di tecniche; Al giorno d’oggi, la stampa 3D è

utilizzata in molti ambiti differenti, ad esempio il settore biomedico, meccanico, industriale e

civile. Il presente lavoro è focalizzato su una specifica tecnica: Fused Deposition Modeling, in

breve FDM; questa è una tecnologia di produzione additiva usata comunemente per applicazioni

di modellazione, prototipazione e produzione.

Il filamento deposto, si lega con i precedenti grazie alle alte temperature ed alle proprietà

chimico-fisiche del polimero. In base alla modalità con cui il materiale stampato viene deposto,

si conferiscono al prodotto finale differenti caratteristiche e diverse proprietà meccaniche. Lo

scopo di questa tesi è di prevedere il comportamento meccanico del prodotto finale, in base

alle caratteristiche intrinseche del polimero e alla micro-meccanica del reticolo cristallino, si-

mulando il processo di fusione di due particelle, al fine di calcolare, in base alla densità dei vuoti

del solido finale, ottenuto con la sovrapposizione degli strati, i parametri elastici del materiale.

Il mondo della stampa 3D trova oggi poco spazio nell’ambito dell’ingegneria strutturale; tut-

tavia è proposito di questa tesi, prevederne il comportamento meccanico al fine di sfruttarne

il potenziale. In tal modo, l’evoluzione di questa tecnologia, può contribuire al miglioramen-

to anche delle strutture, garantendo maggiore efficienza durante la fase di progettazione ed

efficacia durante l’esercizio.
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Chapter 1

Introduction

1.1 3D Printing

Invented by Chuck Hull back in 1986, 3D printing is a process of taking a digital 3D model

and turning such digital file into a physical object. While Hull went on to launch one of

the world’s largest 3D printer manufacturers, 3D Systems, his invention concentrated solely

on a fabrication process called Stereolithography (SLA). Since that time numerous other 3D

printing technologies have been developed, such as Fused Deposition Modeling (FDM)/Fused

Filament Fabrication (FFF), Selective Laser Sintering (SLS), PolyJetting and others, all of

which rely on layer-by-layer fabrication and are based on a computer code fed to the printer.

While there are numerous technologies which can be used in 3D printing phenomenon,

the majority of 3D printers one will find within a home or an office setting are based on

the FDM/FFF or SLA processes, as these technologies are currently cheaper and easier to

implement within a machine. ‘3D printing’ can also be referred to as ‘additive manufacturing,’

especially when referring to its use within a manufacturing setting, and many individuals will

used both phrases interchangeably.

How Do 3D Printers Work? This is a broad question, which was partially explained in the

section above. With that said, the best way to really understand how 3D printing works is

to understand the various technologies involved. Similarly to the way that engines function

based on some of the same principles as one another, but don’t all use gasoline or solar power,

all 3D printers don’t use the same base technology, but still manage to accomplish the same

basic tasks. Before we get into each of these individual technologies, however, one should
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understand the basic principles of transferring a 3D model on a computer screen to a 3D

printer.

Computers are not like humans. Lot’s of 1s and 0s are involved, meaning lots and lots of

computer code. Once a 3D model is designed, the file (these usually have extensions such

as 3MF, STL, OBJ, PLY, etc.) must be converted into something called G-code. G-code is

a numerical control computer language used mainly for computer aided manufacturing (both

subtractive and additive manufacturing). It is a language which tells a machine how to move.

Without G-code there would be no way for the computer to communicate where to deposit,

cure or sinter a material during the fabrication process. Once the G-code is created it can be

sent to the 3D printer, providing a blueprint as to what its next several thousand moves will

consist of. These steps all add up to the complete fabrication of a physical object. There are

other computer languages out there and perhaps many will eventually gain popularity, but for

now G-code is by far the most important.

Now let’s take a look at some of the more popular technologies behind 3D printing:

• Fused Deposition Modeling (FDM): was invented by a man named S. Scott Crump a few

years after Chuck Hull initially invented 3D printing. Crump went on to commercialize

the technology in 1990 via Stratasys, which actually has a trademark on the term.

Basically the way in which this technology works is rather simple, and this is the rea-

son why 95% of all desktop 3D printers found within homes and garages today utilize

FDM/FFF. A thermoplastic polymer such as PLA or ABS is fed into an extruder and

through a hotend. The hotend then melts the plastic, turning it into a gooey liquid.

The printer then acquires its instructions from the computer via G-code and deposits

the molten plastic layer by layer until an entire object is fabricated. The plastic melts

rather rapidly, providing a solid surface for each additional layer’s deposition. Depending

on the maximum temperature of the hotend as well as other variables, numerous other

materials besides ABS and PLA may be used, including composites of both materials,

nylon, and more.

• Stereolithography (SLA): as we’ve mentioned above, this was the very first 3D printing

technology to be invented in 1986. With 3D Systems holding many of the patents

involving this technology, which are in the process of 33 expiring over the next few years,

there has not been a tremendous amount of competition within the market. This means
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that the technology has been overpriced and used less often than the FDM alternative

has. Instead of extruding a material out of a hot end, the SLA process works with a

laser or DLP projector combined with a photosensitive resin. Objects are printed in a

vat of resin as a laser or other lighting source like a projector slowly cures (hardens) the

resin layer-by-layer as the object is formed. Typically SLA machines are able to achieve

minor layer height.

• Selective Laser Sintering (SLS)/Selective Laser Melting (SLM)/Direct Metal Laser Sin-

tering (DMLS): all three of these technologies are very similar, yet have marked differ-

ences. We’ve found that many individuals use the terms interchangeably when, in fact,

there are reasons to use one method over the others. Both Selective Laser Sintering

(SLS) and Direct Metal Laser Sintering (DMLS) are in fact the same technology. The

34difference in terminology is based on the materials used. DMLS specifically refers to

the layer-by-layer sintering of metal powders using a laser beam, while SLS is simply the

same process but with non-metal materials such as plastics, ceramics, glass, etc. Both

DMLS and SLS do not fully melt the materials, instead sintering them or fusing them

together at the molecular level. When dealing with metals, DMLS is ideal for metal

alloys, as the molecules have varying melting points, meaning a full melt can sometimes

be difficult to achieve. On the other hand, when dealing with metals consisting of one

material, for instance titanium, Selective Laser Melting (SLM) is the way to go as a

laser is able to completely melt the molecules together. All three processes are currently

expensive, and out of the budgets of most individuals and even small businesses because

of the high powered laser beams that are required. Additionally safety precautions must

be taken, meaning additional expenses on the part of the user.

• Others: Every week it seems as though new approaches are presented for 3D printing.

There are new technologies which have recently been unveiled like that of HP’s Multi

Jet Fusion, as well as Carbon3D’s CLIP technology or PolyJetting.

What Is 3D Printing Used for and by Whom?

While initially 3D printing was primarily a technology for prototyping, this is quickly chang-

ing. Now numerous manufacturers are producing end-use components and entire products via

additive manufacturing. From the aerospace industry, to medical modeling and implantation,
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to prototyping of all kinds, 3D printing is being used by virtually every major industry on the

planet in one way or another.

• Medicine: 3D printed models of human organs have been a frequent tool for surgeons

over the last two to three years, as they provide a more intricate view of the issues at

hand. Instead of relying on 2D and 3D images on a computer screen or a printout,

surgeons can actually touch and feel physical replicas of the patient’s organs, bone

structures, or whatever else they are about to work on. Additionally, there is research

underway by companies like Organovo to 3D print partial human organs such as the liver

and kidney. Organovo is already 3D printing live human liver tissue for pharmaceutical

toxicology testing. They do so by using a process similar to an FDM desktop 3D printer

that you might find in a home, but instead of thermoplastics and heat, they use hydrogels

infused with living cells. Over the next decade, this research should really begin to pay

dividends, and within 15 to 20 years it’s very possible that we will be 3D printing entire

human organs for transplantation.

Organizations such as Enabling The Future are printing prosthetic hands on sub-2, 000

3D printers by the hundreds, offering those with upper limb amputations something to

cheer about. Besides 3D printing hands and arms, as well as legs, we have also seen 3D

printed prosthetics for animals of all kinds, including a titanium jaw for a turtle, a shell

for a tortoise, and legs for ducks, geese and even canines.

• Aerospace: because of the unique geometries offered by additive manufacturing, mil-

itaries around the world, as well as agencies such as NASA and the ESA, along with

numerous aircraft manufacturers are turning to 3D printing in order to reduce the over-

all weight of their aircraft. Complex geometries and new materials offer superior strength

with less mass, potentially saving organizations like NASA boatloads of fuel, and thus

money, during the launching of spacecraft and/or rockets out of our atmosphere. At

the same time, companies like Boeing and Airbus are using 3D printing to reduce the

weight of their aircraft, allowing them to cut fuel costs for each flight.

• Prototyping: manufacturing facilities across the globe are using 3D printing as a way to

reduce costs, save time, and produce better products. By no longer needing to outsource

the prototyping of parts, companies are able to quickly iterate upon designs on the fly,

oftentimes saving weeks of waiting for third parties to return molds or prototypes. From
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automobile manufacturers to electronics companies and anyone in between, 3D printing

is an invaluable technology.

• Art/Education: 3D printing is able to bring the imagination to life. Artists are not only

able to jot their ideas down on a computer screen, they are able to physically bring

those ideas into reality via digital models. What this technology does is it unleashes a

whole new medium for creativity, not only for artists but for children and young adults

who are now able to better visualize concepts, create functional products, and learn via

hands-on experience.37 Over the next several years we will see an incredible expansion of

the number of elementary, middle and high schools incorporating 3D printing into their

curricula. This will in effect set these students up for careers which will almost certainly

require 3D printing in one way, shape or form over the next decade or two.

1.2 Fused Deposition Modeling

Fused Deposition Modeling (FDM) is a basic Rapid Prototyping (RP) technologies used in

technical practice. It’s a process that consists of extruding and depositing semi-molten fil-

aments on to a platform. FDM is an additive manufacturing technology commonly used

for modeling, prototyping, and production applications. It is one of the techniques used for

3D printing and it is often used to build complex geometries and functional parts, including

low-volume production pieces, manufacturing aids, jigs and fixtures.

The fused deposition modeling (FDM) machine is a computer-numerical-controlled (CNC)

gantry machine carrying one or more miniature extruders with headed nozzles. The machine

fabricates prototypes by extruding a semi-molten filament through a heated nozzle in a pre-

scribed pattern onto a platform. As the material is deposited, it cools, solidifies, and bonds

with the surrounding material. The formation of the bonding in the FDM process is driven

by the thermal energy of the semi-molten material. The FDM prototypes are non-isotropic

composites of polymer filaments, partial bonding between filaments, and voids.

In figura 1.1 is shown a simplified scheme of Fused Deposition Modeling process.

With this technique is possible to fabricate prototypes with locally controlled properties.

Changing the deposition density and deposition orientation, referring to the direction in which

the force is applied, it’s possible to ensure the material more resistance in a desired point and

greater flexibility in another, as in 1 figure 1.2:
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Figure 1.1: Schematic FDM process.

Figure 1.2: Parts with graded mechanical properties.

1.3 Rheology

Rheology is the science of the flow and deformation of matter (liquid or ’soft’ solid) under the

effect of an applied force.
16



Figure 1.3: Rheology framing

It is the study of the flow of matter, primarily in a liquid state, but also as ’soft solids’ or

solids under conditions in which they respond with plastic flow rather than deforming elastically

in response to an applied force. It applies to substances which have a complex microstructure,

such as muds, sludges, suspensions, polymers and other glass formers (e.g., silicates), as well

as many foods and additives, bodily fluids (e.g., blood) and other biological materials or other

materials which belong to the class of soft matter.

Newtonian fluids can be characterized by a single coefficient of viscosity for a specific

temperature. Although this viscosity will change with temperature, it does not change with

the strain rate. Only a small group of fluids exhibit such constant viscosity. The large class

of fluids whose viscosity changes with the strain rate (the relative flow velocity) are called

non-Newtonian fluids.

Rheology generally accounts for the behavior of non-Newtonian fluids, by characterizing the

minimum number of functions that are needed to relate stresses with rate of change of strain

or strain rates. For example, ketchup can have its viscosity reduced by shaking (or other forms

of mechanical agitation, where the relative movement of different layers in the material actually

causes the reduction in viscosity) but water cannot. Ketchup is a shear thinning material, like

yoghurt and emulsion paint (US terminology latex paint or acrylic paint), exhibiting thixotropy,
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where an increase in relative flow velocity will cause a reduction in viscosity, for example, by

stirring. Some other non-Newtonian materials show the opposite behavior, rheopecty: viscosity

going up with relative deformation, and are called shear thickening or dilatant materials. Since

Sir Isaac Newton originated the concept of viscosity, the study of liquids with strain rate

dependent viscosity is also often called Non-Newtonian fluid mechanics.

The term rheology was coined by Eugene C. Bingham, a professor at Lafayette College,

in 1920, from a suggestion by a colleague, Markus Reiner. The term was inspired by the

aphorism of Simplicius (often attributed to Heraclitus), panta rhei, ’everything flows’ [5].

The experimental characterization of a material’s rheological behaviour is known as rheom-

etry, although the term rheology is frequently used synonymously with rheometry, particularly

by experimentalists. Theoretical aspects of rheology are the relation of the flow/deformation

behaviour of material and its internal structure (e.g., the orientation and elongation of poly-

mer molecules), and the flow/deformation behaviour of materials that cannot be described by

classical fluid mechanics or elasticity.

What is the scope of Rheology?

In practice, rheology is principally concerned with extending continuum mechanics to char-

acterize flow of materials, that exhibits a combination of elastic, viscous and plastic behavior

by properly combining elasticity and (Newtonian) fluid mechanics. It is also concerned with

establishing predictions for mechanical behavior (on the continuum mechanical scale) based

on the micro- or nanostructure of the material, e.g. the molecular size and architecture of

polymers in solution or the particle size distribution in a solid suspension. Materials with the

characteristics of a fluid will flow when subjected to a stress which is defined as the force

per area. There are different sorts of stress (e.g. shear, torsional, etc.) and materials can

respond differently for different stresses. Much of theoretical rheology is concerned with as-

sociating external forces and torques with internal stresses and internal strain gradients and

flow velocities. [68]

Rheology unites the seemingly unrelated fields of plasticity and non-Newtonian fluid dy-

namics by recognizing that materials undergoing these types of deformation are unable to

support a stress (particularly a shear stress, since it is easier to analyze shear deformation) in

static equilibrium. In this sense, a solid undergoing plastic deformation is a fluid, although no

viscosity coefficient is associated with this flow. Granular rheology refers to the continuum

mechanical description of granular materials.
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One of the major tasks of rheology is to empirically establish the relationships between

deformations (or rates of deformation) and stresses, by adequate measurements, although

a number of theoretical developments (such as assuring frame invariants) are also required

before using the empirical data. These experimental techniques are known as rheometry and

are concerned with the determination with well-defined rheological material functions. Such

relationships are then amenable to mathematical treatment by the established methods of

continuum mechanics.

1.4 ABS Material

Acrylonitrile butadiene styrene (ABS) (chemical formula (C8H8 ·C4H6 ·C3H3N )n) is a common

thermoplastic polymer. Its glass transition temperature is approximately 178 K .ABS is amor-

phous and therefore has no true melting point. ABS is a terpolymer made by polymerizing

styrene and acrylonitrile in the presence of polybutadiene. The proportions can vary from 15

to 35% acrylonitrile, 5 to 30% butadiene and 40 to 60% styrene. The result is a long chain

of polybutadiene criss-crossed with shorter chains of poly(styrene-co-acrylonitrile). The nitrile

groups from neighboring chains, being polar, attract each other and bind the chains together,

making ABS stronger than pure polystyrene. The styrene gives the plastic a shiny, impervious

surface. The polybutadiene, a rubbery substance, provides toughness even at low temper-

atures. For the majority of applications, ABS can be used between 253.15 K and 353.15

K as its mechanical properties vary with temperature. The properties are created by rubber

toughening, where fine particles of elastomer are distributed throughout the rigid matrix.
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1.5 ABS Material Properties

In the following table 1.1, are presented some of its characteristics, necessary to the following

work:

ABS MATERIAL PROPERTIES

Young Modulus Poisson Ratio Bulk Modulus Shear Modulus

E [Mpa] ν [−] K [Mpa] G [Mpa]

2000 ÷ 2300 0.25 1333.33 800

Lame Constant Filament Radius Extrusion Speed Density

λ [Mpa] R [mm] v [mm/s] ρ [Kg/m3]

800 0.2 20÷60 1050

T Critica t Critico Viscosity Melt Viscosity

Tcr [K ] t [s] η0 [P a · s] η [P a · s]

573.15 1.7504 5100 300

Atomic Volume Diffusivity Surface Tension H. Trans. Coeff.

Ω [m3/mol ] D [mm2/s] Γ [N /mm] h [W /m2K ]

5.53024E-07 1.0E-12 2.90E-05 50

Thermal Conductivity Specific Heat T Room

k [W /mK ] c [J/k gK ] Ti nf [K ]

0.177 2080 343.15

Table 1.1: ABS properties [43], [44], [45], [42], [36], [37], [38]
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1.6 Levels of Analysis

The solidification process of a polymer layer on the others (layer-to-layer) is called Bonding

formation.

This process is examined at micro level: analyzing the adhesion between the adjacent

filaments and adhesion of a layer on the other, and at it macro level: analyzing the behavior

of the layer forming the homogeneous solid as orthotropic plates.

Figure 1.4: Levels of analysis

Thus, at macro level, the properties are referred to laminated sheets glued. On a micro

level, the properties of each lamina are functions of the filaments properties, the bonds quality

between the filaments, and the density of voids.

Io order to study the polymer layers deposited as a equivalent laminae, it’s necessary to

obtain parameters that characterize the material in a homogeneous manner, thus taking into
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account of the voids generated by the failure of the complete fusion, and of the non-perfect

adherence of one filament with each other.

The adhesion between filaments is controlled by the thermal energy exchange of the semi-

molten material. The temperature evolution of interfaces plays an important role in determin-

ing the bonding quality and thus, the properties of final prototype.

As shown in figure 1.4, there are 3 big steps to analyze in this work:

1. Sintering Process;

2. Lamination Analysis;

3. Characterization of the Homogeneous Equivalent Material.
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Part I

Thermal Analysis
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Chapter 2

Thermal Analysis

The formation of the bonding in FDM process is driven by the thermal energy of the semi-

molten material.

The required heat transfer is a function of the thermal properties of the liquefier, tip, and

modeling materials, as well as the diameter of the filament and volumetric flow rate.

When the filament is deposited and is in contact with surrounding material, the interface’s

temperature is well above the material’s glass transition temperature1.

The heat transfer modeling of the FDM process can provide the temperature profile during

the cooling process, which is useful for analyzing the bonding phenomenon.

It can provide thermal compatibility between the various layers.

The bonding quality, is assessed by the degree of wetting or the size of the neck formed

between adjacent filaments. This chapter is aimed at modeling the dynamics of bond formation

among polymer filaments during the FDM extrusion process and evaluating the effects of

different manufacturing parameters on the bond formation.

2.1 Modelling the cooling process

To analyze the phenomenon, we use the global energy balance equation, by applying the

appropriate boundary conditions [43] .

The assumptions made are the following:

1Usually indicated by the symbol Tg , it rapresents the temperature value below which an amorphous material

behaves as a glassy solid
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• uniform temperature distribution across the cross-sectional area of the filament;

• the cooling process of a single filament is thus simplified into a one-dimensional transient

heat transfer model;

• lumped-capacity analysis applicable: it reduces a thermal system to a number of discrete

“lumps” and assumes that the temperature difference inside each lump is negligible. This

approximation is useful to simplify otherwise complex differential heat equations (Biot

number Bi«1);

• the head moves at a constant speed of v along the x-axis when extruding;

• semi-infinite filament length (Length > Diameter);

• constant heat transfer/convection coefficients.

Figure 2.1: Schematic of Deposition and Cooling of A filament in the FDM process

In 2.1 a schematic diagram of FDM extrusion process is shown. A single deposition road is

modeled as one-dimensional block. The head moves at a constant speed of v along the X axis

when extruding. The origin of the reference coordinate is set at the beginning of the extruded

filament. The cross-sectional shape of the filament is an ellipse with area A and perimeter P .

At time t , the tip is at position l = v t .

P = π(a + b)

(
64 − 3λ4

64 − 16λ2

)
wi th λ =

a − b

a + b
(2.1)
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A = πab (2.2)

The thermal energy analysis for the differential element of thickness dx , is studied as

follows:

• Energy out left face:

−kA
∂T

∂x

• Change in the internal energy:

ρCA
∂T

∂t
dx

• Energy in the right face:

−kA
∂T

∂x

�����x+dx
= −A


k
∂T

∂x
+
∂

�
k ∂T∂x

�

∂x
dx



• Convection heat transfer with air:

h ′(P − S )(T −T∞)dx

• Conduction heat transfer with foundation:

h ′′S (T −T∞)dx

where:

• T∞, T0 andT are envelope, liquefier temperature and averaged cross-section temperature

respectively;

• k
[
W
m2 ·K

]
is the thermal conductivity;

• ρ
[
k g

m3

]
is the density of material;

• C
[

J
k g ·K

]
represent the specific heat;
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• h ′ and h ′′
[
W
m2 ·K

]
are convective coefficients of the system;

• S is the cross-sectional contact length between the filament and the foundation.

Since the mass of the foundation is much higher than that of the filament, the conduction

at the interface would not appreciably change the temperature of foundation. The conduc-

tion heat transfer with the foundation can be considered in the form of convection, with a

convection coefficient h ′′.

For an infinitesimal element, the energy balance is made:

ρCA
∂T

∂t
= A

∂
�
k ∂T∂x

�

∂x
− hP (T −T∞) (2.3)

with

T = T0 at x = 0, t ≥ 0 T = T∞ at x = ∞, t ≥ 0 (2.4)

The time-dependence term ∂T
∂t is transformed to ∂T

∂t =
∂T
∂x

∂x
∂t =

∂T
∂t v .

The governing equation is reduced to an ordinary differential equation:

ρCAv
∂T

∂t
= A

∂
�
k ∂T∂x

�

∂x
− hP (T −T∞) (2.5)

The analytical solution of 2.5, with the boundary conditions defined by 2.4 is follows:

T = T∞ + (T0 −T∞)e
−mx (2.6)

with

m =

√
1 + 4αβ − 1

2α
α =

k

ρCv
β =

hP

ρCAv

It’s shown that, as expected, the temperature profile, depends mostly on materials char-

acteristics. The parameters that can be modified are the temperature Ti nf , T0, v , a and

b.
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2.2 Temperature Profile

Setting parameters in Mathematica, based on experimental values in [43], the temperature

profile is obtained. It’s important to remember that the aforesaid profile is reported to a

one-dimensional filament that is deposited along the x-direction. the parameter values are

summarized in table 2.1:

Table 2.1: Parameters for the temperature profile

T∞ T0 a b v C h ρ k

[K ] [K ] [mm] [mm] [m/s] [J/k gK ] [W /m2K ] [k g/m3] [W /mK ]

343.15 543.15 0.254 0.127 0.024 2080 50 1050 0.177

Through equations 2.1 and 2.2, it’s possible to calculate perimeter and area of filaments.

Once calcualted all parameters, the temperature profile, function of x, is as follows:

Figure 2.2: Temperature profile function of space

Making explicit the space as velocity v multiplied t , and substituting in equation 2.6, you
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get the temperature profile function of time, as shown in figure 2.3.

Figure 2.3: Temperature profile function of time

It’s important to have an idea of temperature evolution over time because, as will be

subsequently shown, the sintering process, is negligible below 473.15 K . For convenience, the

aformentioned temperature, will be called Tsi nt . It can be seen that, the temperature window

over Tsi nt in which sintering happens, is very small and this is the cause of the non-perfect

bonding between filaments.
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Part II

Sintering Process
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Chapter 3

Continuum Approach to Sintering

3.1 Description of Sintering Process at Grain Scale

From a physical point of view, sintering is a thermally activated phenomenon driven by the

excess of free energy of the system and which allows the passage from a consolidated particles

to a coherent material. From a practical point of view, this process can be described as an

operation where a lattice compact changes its structure to obtain a solid density-controlled

body with some specific mechanical properties.

Figure 3.1: Sintering stages

Referring to figure 3.1, it can be possible to identify three sequential stages during sintering

process:

1. In the first stafe, the neck bridging the particles is rapidly created and the particles of

the system are still distinguishable. This stage is supposed to last until the radius of the
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neck between the particles has reached a value about 0.4 − 0.5 of the particle radius.

(equivalent to a packing density of about 0.65).

2. At the beginning of this intermediate stage, the porosity is still open, which means that

pores are interconnected and their shape is roughly cylindrical. As the different diffusion

paths take place, the porosity shrinks, some isolated pores appear and the packing density

continues raising up to a value of about 0.92. It is important to highlight that this stage

covers the major part of the sintering process.

3. This final stage leads to the final microstructure of the material. The pores, which are

isolated and spherical, are supposed to continue shrinking to finally end up by almost

disappearing. The final relative density of the material can raise up to 0.999.

It is possible to distinguish at least six mechanisms leading to the neck growth and/or the

densification of the solid, collected in the following table, and shown in figure 3.2:

Diffusion Path Source Sink

1 Surface diffusion Surface Neck

2 Volume diffusion Surface Neck

3 Vapour transport Surface Neck

4 Grain boundary diffusion Grain boundary Neck

5 Volume diffusion Grain boundary Neck

6 Surface diffusion Dislocation Neck

Table 3.1: Diffusion routes

As the diffusion phenomena take place, the total free surface is reduced, but at the same

time, the surface of the solid-solid interfaces (the grain boundary surface) increases. The

grain boundary energies usually are lower than surface energies. However the mass transport

can stop because of the establishment of local equilibrium between grain boundary and surface

energy. Only some of above mentioned routes lead to a densification of structure, respectively

the last three. At the particle scale, the densification is defined as the rate at which the

particle centres approach each other.

Sintering is not considered as a chemical diffusion process studied in term of chemical

potential. In this work, it’s adopted a different point of view, that is more general. The
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Figure 3.2: Diffusion routes

momentum and energy balances and the entropy imbalance are the starting point of the

theory. Following this approach, chemical potentials are introduced at a basic level in the

energy balance equation as characterizing the energy carried by chemical species transport.

The advantage of this approach is that it leads to the automatic formulation ofterms of

coupling between the continuum mechanics scale (described by a strain tensor or a stress

tensor) and the diffusion phenomena (described by the chemical species densities and chemical

potentials).

As shown in the next section (Figure 3.4), only a certain fraction of atoms will have

sufficient energy to be able to move from one position to another.

It took note of this, the diffusion coefficient D is expected to depend on the temperature

as follows:

D = D0 exp−
(
Q

kT

)
(3.1)

where Q is the activation energy, k is the Boltzmann’s constant and T > 0 is the absolute

temperature. For further details about diffusion coefficient see A.4.
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3.2 Mechanical Problem: Continuum Thermodynamics for Lat-

tice Diffusion

The aim of this section is to find the set of equations that describes the phenomenon of

sintering from a mechanical point of view.

3.2.1 Equilibrium Equations

Consider the equilibrium of a body of volumeV and surface S subject to the following actions:

(a) Body force field f of components bi in V ;

(b) Acceleration field a = d 2u
d t 2

of components ai in V ;

(c) Stress vectors t of components t i on S .

Dynamic equilibrium along any direction xi requires

∫
S
t i dS +

∫
V
bi dV =

∫
V
ρai dV (3.2)

where ρ is the body density. Substituting t i = σi j n j in surface integral:

∫
S
σi j n j dS +

∫
V
bi dV =

∫
V
ρai dV (3.3)

To transform the surface integral to a volume integral we use Divergence Theorem. For

any vector field a:

∫
S
aj n j dS =

∫
V

∂aj

∂xj
dV (3.4)

Consequently the equilibrium integral may be reduced to

∫
V

�
σi j ,j + bi − ρai

�
dV = 0 (3.5)

for an arbitrary volume. Because the volume is arbitrary we must have

σi j ,j + bi − ρai = 0 (3.6)

If the medium is at rest or moving uniformly with respect to an inertial frame, such as in

sintering process, the accelerations vanish and we obtain the equations of static equilibrium:
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σi j ,j + bi = 0 (3.7)

3.2.2 Atom Population Balance Law

To have an idea of what "Atom Population" means, figure 3.3 show a simple example of the

problem.

Figure 3.3: A simple example of atom population of two identical representative volumes. The

three figures are, respectively, atom population at t = 0, at t = t and t = tend

Treatment of solids is, in this work, more complicated than descriptions usually encountered

in continuum mechanics as the theory, although macroscopic, allows for microstructure by

associating with each x ∈ B a lattice (or network) through which atoms diffuse.

N species of atoms are consided, labelled α = 1, 2, ...,N and let ρα (x , t ) denote the atomic

density of species α , which is the density measured in atoms per unit volume. If P is a part

of B, then
∫
P
ραdV represents the number of atoms of α in P. Changes in the number of

α-atoms in P are generally brought about by the diffusion of species α across the boundary

∂P. This diffusion is characterized by an atomic flux (vector) j a (x , t ), measured in atoms per

unit area, per unit time, so that −
∫
∂P
j α · νdA the number of α-atoms entering P across ∂P,
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per unit time. The balance law for atoms therefore is:

d

d t

∫
P

ραdV = −

∫
∂P
j α · νdA (3.8)

for all species α and every part of P. Using divergence theorem in the integral over ∂P,

equation 3.8 become:

∫
P

(ρ̇α + d iv j α )dV (3.9)

Consequently, the local atom balance is:

ρ̇α + ∇ · j α = 0 (3.10)

and, for notation simplicity, in the rest of present work, we’ll use:

ρ̇ + ∇ · j = 0 (3.11)

3.2.3 Constitutive Equation

Let Θ(x , t ) denote the internal energy per unit of volume. The internal energy of any part of

control volume ω is the same defined in Eq. B.1. The first law of thermodynamics implies that

changes in the internal energy of ω are balanced by energy carried into ω by atomic transport,

heat transferred through ∂ω and power expended by tractions on ∂ω.

Chemical potentials is viewed as primitive quantities that enter the theory through the

manner in which they appear in the basic law expressing balance of energy. As shown in [23],

we use considers balance of energy as basic, and in a continuum theory that involves a flow

of atoms through the material it is necessary to account for energy carried with the flowing

atoms. To characterize the energy carried into ω by atomic transport, chemical potentials

µα (x , t ) of the individual species α it’s introduced; specifically, the flow of atoms of species α ,

as represented by j α (number of atoms per unit area per unit time), is presumed to carry with

it a flux of energy described by µα j α . Assuming, for the moment, that N species are diffusing

into the solid body, the net rate at which energy is carried into ω by the atom diffusive fluxes

is expressed by
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−

N∑
α=1

∫
∂ω
µα j α · ndA (3.12)

Finally, by expressing the heat transferred to ω with the heat flux q , the energy can be

written as:

d

d t

∫
ω
ΘdV =

∫
∂ω
(σn) · u̇dA −

∫
∂ω
q · ndA −

N∑
α=1

∫
∂ω
µα j α · ndA (3.13)

for any ω ⊂ Ω.

First thermodynamics law, expressed by Eq. 3.13, is completed with the second thermo-

dynamics law which says that the entropy of any domain ω changes at a rate not less than

the entropy flow into ω. Let recall Eq. B.13:

d

dT

∫
ω
SdV ≥ −

∫
∂ω

q

T
· ndA (3.14)

to be satisfied any ω ⊂ Ω.

Isothermal conditions are now assumed prevailing in Ω, let recall Eq. B.18 (Helmotz free

energy). Multiplying Eq. 3.14 by T , and subtracting the result to Eq. 3.13, leads to the

Helmotz free energy imbalance:

d

d t

∫
ω
ϕdV ≤

∫
∂Ω
(σn) · u̇dA −

N∑
α=1

∫
∂ω
µα j α · ndA (3.15)

By the Divergence theorem and Eq. 3.15, the imbalance can be rewritten as:

∫
ω

*
,
ρ
dϕ

d t
− σ : ε̇ +

N∑
α=1

∇ · (µα j α )+
-
dV ≤ 0 (3.16)

where ε̇ is the strain rate tensor.

We conclude to the dissipation inequality:

δ
def
= −

N∑
α=1

(µα∇ · j α + ∇µα · j α ) + σ : ε − ρϕ̇ (3.17)

where δ represents the dissipation per volume unit.

The theory exposed up to this point is pretty general. Next, this theory is used to obtain

constitutive laws coupling stress and diffusion. However, developments will be restricted to

the sintering framework, and consequently, will be made the following assumptions:

37



• Solid body is considered as a binary of mixture of atoms (one species) and vacancies,

which is mechanically simple;

• Solid body presents cubic symmetries.

Further details of this assumption will be defined later. Figure 3.4 shows how free energy

leads to a redistribution of atoms.

Figure 3.4: Schematic diagram showing the configuration of a set of atoms when one of them

changes its position (a. b. and c.) and the corresponding free energy of the lattice (d.).

Since the diffusion is seen as an exchange between an atom and a vacancy, atom and

vacancy fluxes have to satisfy:

j a + j v = 0 (3.18)

and dissipation δ can be rewritten as:

δ = −(µav∇ · j a + ∇µav · j a ) + σ : ε − ρϕ̇ ≥ 0 (3.19)

where the relative chemical potential µav is the difference between atom and vacancy

chemical potentials.

Difining ρa the atom density and ρv the vacancy density (number of atoms or vacancies

per unit of volume) and recalling the popolation balance law (Eq. 3.10), implies that:

ρ̇a + ρ̇v = 0 and leads to lattice constraint ρa + ρv = ρsi t es (3.20)

where ρsi t es represents the density of substitutional sites, per unit volume, available for

occupation by atoms.

Following quantities are setted:
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ϕ = ϕ(ρa , ε) σ = σ(ρa , ε) µav = µav (ρa , ε) (3.21)

and by Fick’s law mentioned in Appendix A.1, the flux has been defined as:

j a = −ma (ρa )∇µav (3.22)

where ma is the atomic mobility which is assumed to be scalar (cubic symmetry) indepen-

dent of the strain (material mechanically simple).

Substituting equations Eq. 3.22 in Eq. 3.19, leads to:

ma (∇µav )2 +

(
σ − ρ

∂ϕ

∂ε

)
: ε̇ + (

∂vϕ

∂ρa
− µav )ρ̇a ≥ 0 (3.23)

Dissipation inequality has to be fullfilled for any strain and atomic density rates, modility

must be non-negative (ma ≥ 0), stress and chemical potential can be defined as follow:

σ = ρ
∂ϕ

∂ε
=
∂Ψ

∂ε
µav = ρ

∂vϕ

∂ρa
=
∂vΨ

∂ρa
(3.24)

It’s simple to find now the Maxwell’s relation:

ρ = σ
∂ε

∂ϕ
= µav

∂ρa

∂vϕ
−→

∂vσ

∂ρa
=
∂µav

∂ε
(3.25)

and the Gibbs relation:

Ψ̇ = σ : ε̇ + µav ρ̇a (3.26)

Now, it’s time to define the following important tensors:

C ≡ C =
∂σ

∂ε
=
∂2Ψ

∂ε∂ε
and A =

∂µav

∂ε
=

∂2Ψ

∂ρa∂ε
(3.27)

where C is the fourth-order elasticity tensor, and A is referred to as a stress-composition

tensor.

The two assumptions made before, can now be clarified. By mechanical simplicity and

the cubic simmetry it can be possible say that mobility is independent of strain, C and A are

independent of strain and composition. Mobility and stress-composition tensors are isotropic

and thus characterized by a scalar, while C is known through two parameters:
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C i j k l = 2Gδi k δj l + λδi j δk l and Aα = α a I (3.28)

where G and λ are the Lame’s parameters. It’s also possible say that:

dσv = C : dε + α adρaI or dσa = C : dε + αvdρv I (3.29)

By summing up both expressions:

σ = C : ε +
1

2
[α a (ρa − ρa0 ) + α

v (ρv − ρv0 )]I (3.30)

Expressing the coupling between stress and composition.

3.2.4 Flux Equations

Recalling Eq. 3.24, it’s possibile to find and expression of Ψ simply integrating, getting:

Ψ(ε, ρa ) =
1

2
ε : Cε +

1

2
[α a (ρa − ρa0 ) + α

v (ρv − ρv0 )]t r ε + F
v (ρa ) (3.31)

It’s now possible to find an expression of chemical potential, derived as a derivative of the

potential Ψ (function of ρa):

αv = −α a −→ µav (ε, ρa ) = α a t r (ε) +
∂vF (ρa )

∂ρa
(3.32)

Let us make a digression. Consider the free energy Ψ0(ε, ρ
a ) and the chemical potentials

µav0 (ρ
a ), at zero stress, and making the assumption that F v (ρa ) = Ψ0(ε, ρ

a ), equation 3.33

can also be written in the following manner:

Ψ(ε, ρa ) −Ψ0(ε, ρ
a ) =

1

2
ε : C : ε +

1

2
[α a (ρa − ρa0 ) + α

v (ρv − ρv0 )]t r ε (3.33)

As shown in [23], to derive the Gibbs–Duhem equation at zero stress, atomic density,

atomic volume and concentrations are used. With nontrivial algebra, the equation obtained is:

Ψ0(ε, ρ
a ) =

N∑
α=1

ραµα0 (ε, ρ
a ) (3.34)

And the term F v (ρa ), can now be written as:

F v (ρa ) =
N∑
α=1

ραµα0 (ε, ρ
a ) (3.35)
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In order to express the chemical potential as a function of stress instead of strain, consider

the identity σ(x , t ) = σ̂(ε̃(σ, ρa ), ρa ) , where hat and tilde symbols are used to highlight the

difference between, on one side, σ and ε which depend on position and time, and on the

other side, the same physical quantities but considered as functions of strain and atomic

density for σ̂, or of stress and atomic density for ε̃. By differentiating this identity with

respect to ρa we obtain A = −C : N a , where N a = ∂ ε̃/∂ρa = naI (cubic symmetry). Since

C : I = (2G + 3λ)I = 3K I , with K the bulk modulus, we conclude that α a = −3Kna .

Reminding that the hydrostatic pressure is defined by

p = −K t r (ε) (3.36)

and using Eq. (7.41) of [23] in the case of a binary mixture subjected to the lattice

constraint, leads to:

µav (p, ρa ) = µav0 (ρ
a ) + 3nap (3.37)

here µav is the relative chemical potential at zero stress. Finally, by Fick’s law leads to the

atomic flux expression:

j a = −ma (ρa )

(
∂vµav0 (ρ

a )

∂ρa
∇ρa + 3na∇p

)
(3.38)

The atomic mobility ma is given by well-known expression (Eistein relation):

ma (ρa ) =
Dvρ

a

kT
(3.39)

where Dv is the lattice diffusion coefficient.

It was made the following assumption: at the lattice level, the exchange of an atom with

a vacancy implies a change of volume (contraction) of the neighbourhood. Last thing to do

is pecifying the mechanism relating strain and diffusion, that is by specifying na . The strain

variation associated with this mechanism is then assumed to be described by

nv I =
∂ ε̃

∂ρv
= −

1

3
(1 − f )Ωa0I = −n

aI (3.40)

where Ωa0 is the stress-free atomin volume, and (1 − f )Ωa0 with 0 < f < 1, the change of

volume due to the exchange of an atom by a vacancy.
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Finally, to summarize, the continuum formulation for stress-driven lattice diffusion in poly-

crystalline solids considered as atom - vacancy mixtures, is described by the set of balance and

constitutive equations:

∇ · σ = 0 Momentum Balance (3.41a)

dρa

d t
+ ∇ · j a = 0 Atom Population Balance (3.41b)

σ = C : ε − (1 − f )Ωa0K (ρ
a − ρ0)I (3.41c)

j = −
Dvρ

a

kT

(
∂vµav0 (ρ

a )

∂ρa
∇ρa + (1 − f )Ωa0∇p

)
(3.41d)
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Chapter 4

Sintering Elastic Model - FEM

Formulation

4.1 Bilinear quadrilateral element (QUAD-4)

The law 4.39a, refers to an isotropic, elastic, linear material. The polymers behavior differs

much from the one just described. However, it will still be a test in order to have a comparison

with models probably more reliable.

For FEM simulation a QUAD-4 element it’s computed. We wrote a matlab code that

calculates displacements, pressure and density of each node.

Let recall some important characteristic of this element. This is the axisymmetric solid ver-

sion of the well known isoparametric quadrilateral with bilinear shape functions. The element

has 4 nodes and 8 displacement degrees of freedom arranged. The standard 4-node isopara-

metric quadrilateral is usually processed with a 2 × 2 Gauss integration rule for displacements

and a 1x1 Gauss integration rule for density.

4.1.1 Shape Function

It’s necessary to introduce a ’parent element’ to link the real coordinates of the element in a

more congenial space. This element is introduced to compute shape functions more easily.

Now, a Mapping sistem is necessary to switch from real element to parent element and

viceversa. For simplicity, only displacement field math steps will be shown [26].
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2D QUAD isoparametric element I

Bilinear quadrilateral element

To construct shape functions, convenient to introduce a parent element
◦ Parent element: fixed known geometry
◦ Current element: variable geometry (nodal coordinates depend on specific element)

◦ ξ: coordinates for parent element (often called natural coordinates)

◦ x: coordinates for current element

ξ =

{
ξ
η

}
, x =

{
x
y

}

◦ Clearly, we can introduce a map from current to parent element and viceversa

ξ = ξ(x) , x = x(ξ)

F.Auricchio (UNIPV) Elasticity & FEM August 31, 2012 48 / 114

Figure 4.1: Mapping [26]

ξ = ξ(x ) x = x (ξ) (4.1)

In this formulation:

• ξ are the natural coordinates (parent element coordinates);

• x are the real element coordiantes.

ξ



ξ

η



; x




x

y




(4.2)

Using the same interpolating functions both for u field of the unknowns to interpolate the

field of geometric functions. The approximations are:

u



u

v




⇒

u ≈ uh =
4∑
i=1

N i ûi

v ≈ v h =
4∑
i=1

N i v̂i

(4.3)

x



x

y




⇒

x =
4∑
i=1

N i x̄i

y =
4∑
i=1

N i ȳi

(4.4)

Where x̄i e ȳi are the nodes (x,y) coordinates..

The shape functions are now defined in the virtual space
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N i = N i (ξ, η) = N i (ξ) (4.5)

Once defined on parent element, N i functions can be mapped to current element if or

whenever necessary:

ξ = ξ(x ) ⇒ N i = N i (ξ) = N i (ξ(x )) = N i (x ) (4.6)

The added convenience is that it’s easier to define N in the parent element compared to

the one with the real geometry.

One possibility is:

N i =
1

4

�
1 + ξ̄i ξ

�
(1 + η̄iη) (4.7)

with ξ̄i e η̄i natural nodes coordinates.

ξ̄1 = −1 ξ̄2 = 1 ξ̄3 = 1 ξ̄4 = −1

η̄1 = −1 η̄2 = 1 η̄3 = 1 η̄4 = −1
(4.8)

Finally, there will be 4 explicit expression for shape function, replacing ξ̄i and η̄i of nodes

N i :

N1 =
1

4
(1 − ξ)(1 − η)

N2 =
1

4
(1 + ξ)(1 − η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1 − ξ)(1 + η)

(4.9)

Shape functions depends on ξ.

N i (ξ) (4.10)

The derivatives of the shape functions are calculated from the current coordinates x, ∂Ni∂x .

This leads to a problem: to derive x something that depends on ξ. By the link between

the virtual and real field I can write that:
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u = u(ξ) = u(ξ(x )) (4.11)

Then, the derivatives of u can be written as:

u,x =
∂u

∂x
=
∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x

u,y =
∂u

∂y
=
∂u

∂ξ

∂ξ

∂y
+
∂u

∂η

∂η

∂y

(4.12)

In matrix form:




u,x

u,y



=



∂ξ

∂x

∂η

∂x
∂ξ

∂y

∂η

∂y






∂u

∂ξ

∂u

∂η




(4.13)

Introducing now the approximations derived by calculating the natural coordinates:

∂u

∂ξ
=
∂

∂ξ
*
,

4∑
i=1

N i ûi +
-
=

4∑
i=1

(
∂N i
∂ξ

)
ûi =

4∑
i=1

N i ,ξûi

∂u

∂η
=
∂

∂η
*
,

4∑
i=1

N i ûi +
-
=

4∑
i=1

(
∂N i
∂η

)
ûi =

4∑
i=1

N i ,ηûi

(4.14)

Then:

N i =
1

4

�
1 + ξ̄i ξ

�
(1 + η̄iη)

N i ,ξ =
1

4
ξ̄i (1 + η̄iη)

N i ,η =
1

4
η̄i

�
1 + ξ̄i ξ

�
(4.15)

Let define F :

F =



∂ξ

∂x

∂η

∂x
∂ξ

∂y

∂η

∂y



(4.16)

If it is the transposed of the Jacobian related to the change of coordinates. So to calculate

it, it’s can be possible to calculate the em Jacobian referring to real coordinates x = x (ξ),

transpose it and then the inverse.

To summarize
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• Step from ξ = ξ(x ) to x = x (ξ);

• Compute more easily the Jacobian G referred to x = x (ξ):

G =



∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η



(4.17)

• Then, compute F = G−T .

Gauss integration

General Stiffness integrate formulation:

∫
Ωe

f (x ) =

∫
[]
f [x (ξ)]Jd [] (4.18)

J is the determinant of Jacobian matrix referred to the mapping x = x (ξ), in formula:

J = det
(
∂x

∂ξ

)
= det(G) (4.19)

For a 2D problem:

G =



∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η



(4.20)

Let rewrite the general term of the element stiffness as:

∫
[]
g (ξ)d [] (4.21)

The function g is usually complex and nonlinear. It’s possible and convenient to calculate

the integrals in closed form only for specific cases (linear triangles). It is not convenient or

possible to calculate it in closed form for the general case. A numerical integration (quadrature)

is then adopted.

∫
[]
g (ξ)d [] ≈

ng∑
i=1

g (ξ̃)wi (4.22)

where:
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• ξ̃ it’s a point in which the function can be computed;

• wi is the weight.

This type of integration is also called integration Gauss (the most used among the various

quadrature formulas).

For example, the standard stiffness formulation for a linear elastic isotropic material is

defined as:

K =

∫
F
(Bu )TCBudA =

∫
F
(Bu )TCBu JdAp =

ng∑
i=1

ng∑
j=1

(Bu )T (ξ, η)CBu (ξ, η)Ji jwiwj (4.23)

The Gauss quadrature is generally defined in −1 < G .Q . < 1.

A Gaussian integration formula integrates exactly a 2n − 1 order polynomial. In 2 dimen-

sions, the Gauss quadrature becomes:

∫ 1

−1

∫ 1

−1
f (ξ, η)dξdη ≈

n∑
j=1

n∑
k=1

f (ξj , ηk )wjwk (4.24)

For further informations, see Appendix C, section 1.

Shape functions are:

{N i }, N [1x4] = [N1,N2,N3,N4] (4.25)

and their derivative are:

[
∂N

∂ξ

]

i j

=
∂N i
∂ξi
,

[
∂N

∂ξ

]

[2x4]

=



∂N1
∂ξ

∂N2
∂ξ

∂N3
∂ξ

∂N4
∂ξ

∂N1
∂η

∂N2
∂η

∂N3
∂η

∂N4
∂η



(4.26)

[
∂N

∂x

]

i j

=
∂N i
∂xi
,

[
∂N

∂x

]

[2x4]

=



∂N1
∂x

∂N2
∂x

∂N3
∂x

∂N4
∂x

∂N1
∂y

∂N2
∂y

∂N3
∂y

∂N4
∂y



(4.27)

where:

N i =
1

4
(1 + ξ̄i ξ)(1 + η̄iη)

N i ,ξ =
1

4
ξ̄i (1 + η̄iη)

N i ,η =
1

4
η̄i (1 + ξ̄i ξ)

(4.28)
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with:

ξ̄ = {−1 1 11} η̄ = {−1 − 1 1 1} (4.29)

Now, coordinates of N i are calculated, to do that it’s necesary a formulato to switch from

one to another:

∂N i
∂x

=
∂N i
∂ξ

∂ξ

∂x
+
∂N i
∂η

∂η

∂x
=

[
∂η

∂x

∂η

∂x

] 


∂N i
∂ξ

∂N i
∂η




(4.30)

Rewrote as:




∂N i
∂x
∂N i
∂y




=



∂ξ

∂x

∂η

∂x
∂ξ

∂y

∂η

∂y






∂N i
∂ξ

∂N i
∂η




(4.31)

[
∂N

∂x

]

[2x4]

=

[
∂ξ

∂x

]T

[2x2]

[
∂N

∂ξ

]

[2x4]

(4.32)

Jacobian tranformation. (To compute it, the inverse of the transposed is necessary):



∂ξ

∂x

∂η

∂x

∂ξ

∂y

∂η

∂y



=

[
∂ξ

∂x

]T
= *

,

[
∂x

∂ξ

]T
+
-

−1

con
[
∂x

∂ξ

]T
=



∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η



(4.33)

Geometric map:

x = x (ξ) ⇒ x =
4∑
i=1

N i x̂i , y =
4∑
i=1

N i ŷi (4.34)

[
∂x

∂ξ

]T

11

=
∂x

∂ξ
=

4∑
i=1

∂N i
∂ξ

x̂i

[
∂x

∂ξ

]T

12

=
∂y

∂ξ
=

4∑
i=1

∂N i
∂ξ

ŷi

[
∂x

∂ξ

]T

21

=
∂x

∂η
=

4∑
i=1

∂N i
∂η

x̂i

[
∂x

∂ξ

]T

22

=
∂y

∂η
=

4∑
i=1

∂N i
∂η

ŷi

(4.35)

J = det

(
∂x

∂ξ

)
= det (G) (4.36)
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Finally, the load and stiffness matrix, are:

A =



N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4


(4.37)

B =



∂N1
∂x

0
∂N2
∂x

0
∂N3
∂x

0
∂N4
∂x

0

0
∂N1
∂y

0
∂N2
∂y

0
∂N3
∂y

0
∂N4
∂y

∂N1
∂x

∂N1
∂y

∂N2
∂x

∂N2
∂y

∂N3
∂x

∂N3
∂y

∂N4
∂x

∂N4
∂y



(4.38)

4.2 Mixed Variational Method

The purpose of this chapter is to solve the continuum formulation for stress-driven lattice

diffusion in polycrystalline solids considered as atom - vacancy mixtures. Obtaining general

closed-form solutions it’s too difficult and for this reason, must resort to a numerical approxi-

mation: finite element method.

The Finite element method (FEM) is a general approach to compute approximate solution

for any general differential equation (ODE).

There are three main steps to contruct a finite element method from a differential equation:

1. switch from strong to weak form (convert differential to integral form);

2. switch form integral to algebraic form (introduce approximation fields;

3. solution of the algebric problem (generally easy to solve).

The weak form is often associated to variational principles and the approximation implies

problem discretization.

4.2.1 Governing Equations

Let now recall the governing equations, the strong (differential) form is:

∇ · σ = 0 (4.39a)

dρa

d t
+ ∇ · j a = 0 (4.39b)
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and let’s make some manipulations. Eq. 4.39a will be associated with Eq. 4.40a:

∇ · σ = 0 (4.40a)

σ = C : ε − (1 − f )Ωa0K (ρ
a − ρ0)I (4.40b)

and Eq. 4.66b will be associated with Eq. 4.41b:

dρa

d t
+ ∇ · j a = 0 (4.41a)

j = −
Dvρ

a

kT

(
∂vµav0 (ρ

a )

∂ρa
∇ρa + (1 − f )Ωa0∇p

)
(4.41b)

Focusing on the above equations, you may notice that:

• To solve the system, it’s necessary a mixed (u, ρ) formulation;

• there is a time dependence (density);

• there is two non linear terms.

For now, since the nonlinear term has little influence on the overall solution, it will be kept

equal to one. This simplification will be justified then later.

Considering the mixed formulation used, it’ s logical to expect two residual equations:

R(u, ρ) = 0

In a more extended formula:

dRu =
∂Ru

∂ û
d û +

∂Ru

∂ ρ̂
d ρ̂

dR ρ =
∂Rρ

∂ û
d û +

∂Rρ

∂ ρ̂
d ρ̂

(4.42)
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4.2.2 Weak Form And Approximation

Toward a weak formulation (integral form), following steps will be done:

1. multiply the differential equations by generic ’weight’ functions: δu, δρ;

2. integrate product over problem domain;

3. observe that integral is equal to zero;

4. integrate by parts.

In formula:

Ru = δu ·

{∫
Ω
[d iv (σ)]dΩ

}
= 0 (4.43a)

Rρ = δρ ·

{∫
Ω
[ρ̇ + ∇ · j ] dΩ

}
= 0 (4.43b)

(4.43c)

Now, new field approximation will be introduced. The approximation are based on domain

discretization (mesh) with elements of finite dimensions (finite elements). Field discretization

are:

u ≈ N u û δu ≈ N uδû ρ ≈ N ρ ρ̂ δρ ≈ N ρδ ρ̂ (4.44)

Field discretization derivative are:

∇u ≈ Bu û δ∇u ≈ Buδû ∇ρ ≈ B ρ ρ̂ δ∇ρ ≈ B ρδ ρ̂ (4.45)

where:

• û, ρ̂ are nodal unknown parameters;

• δû, δ ρ̂ are nodal arbitrary parameters;

• N u , N ρ, ... , are shape function matrices.

More informations about shape function matrix type and dimension will be done afterwards.
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4.2.3 Weak Form of Equilibrium Equation

We have to recall Eq. 4.40.

δu ·

[∫
Ω
[d iv (σ)]dΩ

]
=

∫
Ω
δu · [d iv (σ)]dΩ =

∫
Ω
∇u : σ −

∫
∂Ω
δu · σn = 0 (4.46)

Setting σn = t on ∂Ω and replacing Eq. 4.40a into Eq. 4.39a, Eq. 6.45 becomes:

∫
Ω
∇u :

�
Cε − (1 − f )Ωa0K (ρ

a − ρ0)I
�
−

∫
∂Ω
δu · t = 0 (4.47)

For simplicity, the quantity (1 − f )Ωa0K , from now, will be called k1 and ρa will be called

simply ρ.

∫
Ω
∇u : Cε −

∫
Ω
∇uI k1ρ +

∫
Ω
∇uI k1ρ0 −

∫
∂Ω
δu · t = 0 (4.48)

Before continuing, some remarks. For a Ω ⊂ R2:

• u is a 2 component vector;

• ∇u ≡ ε is a 3 component vector;

• C is a 3x3 matrix.

Substituting Eq. 4.45 in Eq. 6.47:

∫
Ω
(Bu )T δûCBu û −

∫
Ω
(Bu )T δûI k1N ρ ρ̂ +

∫
Ω
(Bu )T δûI k1ρ0 −

∫
∂Ω
(N u )T δû · t = 0 (4.49)

Since δû and δ ρ̂ are arbitrary, whatever is their value, Eq. 4.49 must be always valid, thus:

∫
Ω
(Bu )TCBu û −

∫
Ω
(Bu )T I k1N

ρ ρ̂ +

∫
Ω
(Bu )T I k1ρ0 −

∫
∂Ω
(N u )T · t = 0 (4.50)

For a two dimensional general problem, each node has two coordinates, horizontal and

vertical displacement respectively.

Ru =

∫
Ω
(Bu )TCBu û −

∫
Ω
(Bu )T IN ρk1ρ̂ +

∫
Ω
(Bu )T I k1ρ0 −

∫
∂Ω
(N u )T t = 0 (4.51)
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In a more compact manner, Eq. 4.51, can be rewritten as:

K uu û − K uρ ρ̂ = f u (4.52)

where:

K uu =

∫
Ω
(Bu )TCBu

K uρ =

∫
Ω
(Bu )T IN ρk1

f =

∫
Ω
(Bu )T I k1ρ0 −

∫
∂Ω
(N u )T t

(4.53)

4.2.4 Weak Form of Mass Balance

The other terms will be find by Eq. 4.41. Steps are exactly the same, recall equations in a

strong form, multiplying by a weight function and integrate problem over the problem domain.

The time dependence is treated as follow:

ρ̇ + ∇ · j =
ρ − ρn

∆t
+ d iv (j ) = 0 (4.54)

1

∆t

[∫
Ω
δρρ

]
+

∫
Ω
∇δρ · j −

∫
∂Ω
δρ · j =

1

∆t

[∫
Ω
δρρn

]
(4.55)

Let’s step back on Eq. 4.41b:

j = −
Dvρ

a

kT

(
∂vµav0 (ρ

a )

∂ρa
∇ρa + (1 − f )Ωa0∇p

)
(4.56)

Following quantities are setted:

k2 = −
Dv
kT

k3 = −
Dv
kT

(1 − f )Ωa0 (4.57)

Eq. 4.56 becomes:

j = k2ρµ(ρ)∇ρ + k3ρ∇p (4.58)

The non linear terms ρµ(ρ) and ρ are setted to be one. Eq. 4.58 becomes:

j = k2∇ρ + k3∇p (4.59)
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Replacing Eq. 4.59 in Eq. 4.55:

1

∆t

[∫
Ω
δρρ

]
+

∫
Ω
∇δρ · [k2∇ρ + k3∇p] −

∫
∂Ω
δρ · [k2∇ρ + k3∇p] =

1

∆t

[∫
Ω
δρρn

]
(4.60)

The pressure term p can be written as a displacement function:

p = Kθ =
K

3
IT∇u =

K

3
IT Bu û =

K

3
IT Bu û (4.61)

The derivative of p is more complicated and can be written as:

∇p =




p,x

p,y



û =

K

3



(IT Bu ),x

(IT Bu ),y


û (4.62)

∇p
2x1

= F u û
2x8 8x1

(4.63)

The F u matrix presents many difficulties. The displacement Laplacian cause problems

with the shape functions. As seen in previous chapter, the choosen element is the bilinear

quadrilatera element. To construct shape functions, it’s convenient to introduce a parent

element with a fixed known geometry. Contrariwise, our element, has a variable geometry (

nodal coordinates depend on specific element). We’ll introduce a map from current to parent

element and viceversa:

ξ = ξ(x )

To map coordinates, we use the mapping matrix:

F =



∂ξ

∂x

∂η

∂x
∂ξ

∂y

∂η

∂y


This matrix is obtained doing the inverse of the transpose of the Jacobian matrix.

If we have to calculate a second derivateve of a shape function, it means we have to

calculate the second order mapping matrix. We can’t invert an Hessian matrix such as the

Jacobian.
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This time, we want to isolate the G matrix from others calculations. In this manner, it’s

not necessary to compute the Hessian inverse but we can invert only the G and correlate to

its all the others components.

Given the excessive complication due to the displacement Laplacian and the simplifying

assumptions made before, we diceded to opt for a three field mixed formulation, so as to

bypass the problem.

4.3 Three Fields Mixed Variational Method

4.3.1 Governing Equations

Let now recall the governing equations, the strong (differential) form is:

∇ · σ = 0 (4.64a)

dρa

d t
+ ∇ · j a = 0 (4.64b)

Focusing on the above equations, and recalling the constitutive and flux equations (3.41c

and 3.41d) you may notice that:

• To solve the system, it’s necessary a mixed (u, ρ) formulation;

• there is a time dependence (density);

• there is two non linear terms.

As said before, for now, since the nonlinear term has little influence on the overall solution,

it will be kept equal to one. This simplification will be justified then later.

As seen before, a 2 fields formulation, leads to some mathematical difficulties. Since, our

aim is to simulate the sintering process, we can do it using a 3 fields mixed formulation. For

a three fields formulation, another weak equations is needed. Since the pressure field is a

hydrostatic pressure field, we can write:

p = Kθ =
K

3
IT∇u (4.65a)
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In this manner, equations 4.64, becomes:

∇ · σ = 0 (4.66a)

dρa

d t
+ ∇ · j a = 0 (4.66b)

p − Kθ = 0 (4.66c)

Considering the mixed formulation used, it’ s logical to expect that residual equation

becomes:

R(u, ρ) = 0 ⇒ R(u, ρ, p) = 0 (4.67)

4.3.2 Weak Form And Approximation

Toward a weak formulation (integral form), following steps will be done:

1. multiply the differential equations by generic ’weight’ functions: δu, δρ and δp;

2. integrate product over problem domain;

3. observe that integral is equal to zero;

4. integrate by parts.

In formula:

Ru = δu ·

{∫
Ω
[d iv (σ)]dΩ

}
= 0 (4.68a)

Rρ = δρ ·

{∫
Ω
[ρ̇ + ∇ · j ] dΩ

}
= 0 (4.68b)

Rp = δp ·

{∫
Ω
[p − Kθ] dΩ

}
= 0 (4.68c)
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Now, new field approximation will be introduced. The approximation are based on domain

discretization (mesh) with elements of finite dimensions (finite elements). Field discretization

are:

u ≈ N u û δu ≈ N uδû ρ ≈ N ρ ρ̂ δρ ≈ N ρδ ρ̂ p ≈ N p p̂ δp ≈ N pδ p̂ (4.69)

Field discretization derivative are:

∇u ≈ Bu û δ∇u ≈ Buδû ∇ρ ≈ B ρ ρ̂ δ∇ρ ≈ B ρδ ρ̂ ∇p ≈ B p p̂ δ∇p ≈ B pδ p̂ (4.70)

where:

• û, ρ̂ and p̂ are nodal unknown parameters;

• δû, δ ρ̂ and δ p̂ are nodal arbitrary parameters;

• N u , N ρ, ... , are shape function matrices.

More informations about shape function matrix type and dimension will be done afterwards.

4.3.3 Weak Form of Equilibrium Equation

For a linear elastic isotropic material, constitutive equations can specializes as follows:

σ = Cε = λt r (ε) + 2µε (4.71)

where λ and µ are lamè constants. And

t r (ε) = ε : I = ε11 + ε22 + ε33 C = λ(I ⊗ I ) + 2µI (4.72)

It’s important that, for this type of material, constitutive equations written also in different

forms, splitting stress and strain into volumetric and deviatoric components:

σ = σvol + σdev = pI + s

ε =
θ

3
I + e

(4.73)

with
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p =
1

3
t r (σ) =

1

3
σ : I =

1

3
(σ11 + σ22 + σ33) θ = t r (ε) = ε : I = ε11 + ε22 + ε33 (4.74)

manipulating Eq. 4.73, we can write

s = σ − pI

e = ε −
θ

3
I

(4.75)

and constitutive equation simplifies as follows:

p = Kθ

s = 2µe
(4.76)

Let us rewriting Eq. 3.41c as follow:

σ = C : ε − (1 − f )Ωa0K (ρ
a − ρ0)I = σ̃ − (1 − f )Ω

a
0K (ρ

a − ρ0)I (4.77)

We have to check if the sum of deviatoric stress plus the volumetric stress is equal to total

stress tensor, in formula:

σ̃dev + σ̃vol = σ̃ (4.78)

For simplicity, following steps will be done for a 2D problem.

σ̃ =




σ̃11

σ̃22

σ̃12




(4.79)

• Volumetric stress:

We know that:

σ̃vol =




(
σ̃11 + σ̃22

2

)
(
σ̃11 + σ̃22

2

)
0




=
1

2
t r (σ̃)I = I vol σ̃ (4.80)

We have to find the vol component.
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σ̃vol =




(
σ̃11 + σ̃22

2

)
(
σ̃11 + σ̃22

2

)
0




=



a b c

d e f

g h i






σ̃11

σ̃22

σ̃12




(4.81)

Rewriting in a more extended form:




σ̃11 + σ̃22
2

= aσ̃11 + bσ̃22 + cσ̃12

σ̃11 + σ̃22
2

= d σ̃11 + eσ̃22 + f σ̃12

0 = g σ̃11 + hσ̃22 + i σ̃12

(4.82)

Solving the sistem, we obtain:

I vol =



1
2

1
2 0

1
2

1
2 0

0 0 0



(4.83)

• Deviatoric part:

For deviatoric stress, math steps are the same. The resulting system is a little bit more

complicated, in formula:

σ̃ − σ̃I vol = σ̃I dev (4.84)

In matrix form:




σ̃11

σ̃22

σ̃12




−




σ̃11

σ̃22

σ̃12






1
2

1
2 0

1
2

1
2 0

0 0 0



=



a b c

d e f

g h i






σ̃11

σ̃22

σ̃12




(4.85)

Solvign the system, we obtain the I dev :

I dev =



1
2 − 12 0

− 12
1
2 0

0 0 1



(4.86)
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Now, we have to check if the sum is I :

I = I vol + I dev =



1
2

1
2 0

1
2

1
2 0

0 0 0



+



1
2 −12 0

− 12
1
2 0

0 0 1



=



1 0 0

0 1 0

0 0 1



(4.87)

Taking into account above relations, let us recall Eq. 4.68a

δu ·

[∫
Ω
[d iv (σ)]dΩ

]
= 0 (4.88)

δu ·

[∫
Ω
[d iv (σ)]dΩ

]
=

∫
Ω
δu · [d iv (σ)]dΩ =

∫
Ω
∇u : σdΩ −

∫
∂Ω
δu · σndΩ = 0 (4.89)

Recalling Eq. 4.78, setting σn = t on ∂Ω and replacing Eq. 3.41c into Eq. 4.66a, Eq.

4.89 becomes:

∫
Ω
∇u :

[
(σ̃dev + σ̃vol ) − (1 − f )Ωa0K (ρ

a − ρ0)I
]
−

∫
∂Ω
δu · t = 0 (4.90)

For simplicity, the quantity (1 − f )Ωa0K , from now, will be called k1 and ρa will be called

simply ρ.

∫
Ω
∇u : (pI + 2µI devε) −

∫
Ω
∇u : I k1ρ +

∫
Ω
∇u : I k1ρ0 −

∫
∂Ω
δu · t = 0 (4.91)

and thus:

∫
Ω
∇u : pI +

∫
Ω
∇u : 2µI devε −

∫
Ω
∇u : I k1ρ +

∫
Ω
∇u : I k1ρ0 −

∫
∂Ω
δu · t = 0 (4.92)

Now, we can proceed substituting approximations.

Substituting Eq. 4.70 in Eq. 4.91:

∫
Ω
(Bu )T δûIN p p̂ +

∫
Ω
(Bu )T δû2GI devBu û −

∫
Ω
(Bu )T δûI k1N ρ ρ̂ +

∫
Ω
(Bu )T δûI k1ρ0+

−

∫
∂Ω
(N u )T δû · t = 0

(4.93)

Since δû and δ ρ̂ are arbitrary, whatever is their value, Eq. 4.93 must be always valid, thus:
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∫
Ω
(Bu )T IN p p̂ +

∫
Ω
(Bu )T 2GI devBu û −

∫
Ω
(Bu )T I k1N

ρ ρ̂ +

∫
Ω
(Bu )T I k1ρ0+

−

∫
∂Ω
(N u )T · t = 0

(4.94)

For a two dimensional general problem, each node has two coordinates, horizontal and

vertical displacement respectively.

Ru =

∫
Ω
(Bu )T IN p︸       ︷︷       ︸
8x3 3x11x4

p̂ +

∫
Ω
(Bu )T 2GI devBu︸               ︷︷               ︸

8x3 3x3 3x8

û −
∫
Ω
(Bu )T IN ρ︸       ︷︷       ︸
8x3 3x1 1x4

k1ρ̂ +

∫
Ω
(Bu )T I︸  ︷︷  ︸
8x3 3x1

k1ρ0+

−

∫
∂Ω
(N u )T t︸  ︷︷  ︸
8x2 8x1

= 0

(4.95)

In a more compact manner, Eq. 4.95, can be rewritten as:

K uu û − K uρ ρ̂ + K up p̂ = f u (4.96)

where:

K uu =

∫
Ω
(Bu )T 2GI devBu

K uρ =

∫
Ω
(Bu )T IN ρk1

K up =

∫
Ω
(Bu )T IN p

f u =

∫
Ω
(Bu )T I k1ρ0 −

∫
∂Ω
(N u )T t

(4.97)

4.3.4 Weak Form of Mass Balance

Recalling Eq. 4.68b, steps are exactly the same, find equations in a strong form, multiplying

by a weight function and integrate problem over the problem domain. The time dependence

is treated as follow.

ρ̇ + ∇ · j =
ρ − ρn

∆t
+ d iv (j ) = 0 (4.98)

1

∆t

[∫
Ω
δρρdΩ

]
+

∫
Ω
∇δρ · j dΩ −

∫
∂Ω
δρ · j dΩ =

1

∆t

[∫
Ω
δρρndΩ

]
(4.99)
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Let’s step back on Eq. 3.41d:

j = −
Dvρ

a

kT

(
∂vµav0 (ρ

a )

∂ρa
∇ρa + (1 − f )Ωa0∇p

)
(4.100)

Following quantities are setted:

k2 = −
Dv
kT

k3 = −
Dv
kT

(1 − f )Ωa0 (4.101)

Eq. 4.100 becomes:

j = k2ρµ(ρ)∇ρ + k3ρ∇p (4.102)

The non linear terms ρµ(ρ) and ρ are setted to be one. Eq. 4.102 becomes:

j = k2∇ρ + k3∇p (4.103)

Replacing Eq. 4.103 in Eq. 4.99:

1

∆t

[∫
Ω
∇δρρ

]
+

∫
Ω
δρ · [k2∇ρ + k3∇p] −

∫
∂Ω
δρ · [k2∇ρ + k3∇p] =

1

∆t

[∫
Ω
δρρn

]
(4.104)

Substituting all approximations:

1

∆t

[∫
Ω
(N ρ)T δ ρ̂N ρ ρ̂

]
+

∫
Ω
(B ρ)T δ ρ̂k2B

ρ ρ̂ −

∫
Ω
(B ρ)T δ ρ̂k3B

p p̂+

−

∫
∂Ω
(N ρ)T δ ρ̂k2B

ρ ρ̂ −

∫
∂Ω
(B ρ)T δ ρ̂k3B

p p̂ =
1

∆t

[∫
Ω
(N ρ)T δ ρ̂ρn

] (4.105)

Since δ p̂ and δ ρ̂ are arbitrary, whatever is their value, Eq. 4.105 must be always valid,

thus:

1

∆t



∫
Ω
(N ρ)TN ρ︸     ︷︷     ︸
4x1 1x4

ρ̂


+

∫
Ω
(B ρ)T k2B

ρ︸       ︷︷       ︸
4x2 2x4

ρ̂ −

∫
Ω
(B ρ)T k3B

p︸        ︷︷        ︸
4x2 2x4

p̂ −

∫
∂Ω
(N ρ)T k2B

ρ︸        ︷︷        ︸
4x1 1x4

ρ̂

−

∫
∂Ω
(B ρ)T k3B

p︸        ︷︷        ︸
4x2 1x4

p̂ =
1

∆t



∫
Ω
(N ρ)T ρn︸    ︷︷    ︸

4x1



(4.106)

In a more compact manner:
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1

∆t
[M ρρ] ρ̂ +

∫
Ω
K ρρ ρ̂ −

∫
Ω
K ρp p̂ =

1

∆t
[f ρ] (4.107)

where:

M ρρ =
1

∆t

[∫
Ω
(N ρ)TN ρ

]

K ρρ =

∫
Ω
(B ρ)T k2B

ρ −

∫
∂Ω
(N ρ)T k2B

ρ

K ρp =

∫
Ω
(B ρ)T k3B

p −

∫
∂Ω
(B ρ)T k3B

p

f ρ =
1

∆t

[∫
Ω
(N ρ)T ρn

]

(4.108)

4.3.5 Weak Form of Pressure Balance

The pressure balance combines pressure field with displacement field.

Recalling

p = Kθ =
1

3
K t r (ε) =

K

3
IT∇u (4.109a)

Rewriting Eq. 4.109a as

p = k θ =
1

3
t r (ε) =

1

3
IT∇u (4.110)

The steps are the same saw before. We have to use an appropriate weight function δp:

∫
Ω
δp (p − Kθ) dΩ =

∫
Ω
δp

(
p −

1

3
K IT t r (ε)

)
dΩ =

∫
Ω
δp

(
p − K IT∇u

)
dΩ = 0 (4.111)

Recalling Eqs. 4.70, Eq. 4.111 becomes:

∫
Ω
(N p )T δ p̂

(
N p p̂ − K IT Bu û

)
= δ p̂

{∫
Ω
(N p )T

(
N p p̂ − K IT Bu û

)}
= 0 (4.112)

and thus
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Rp =

∫
Ω
(N p )TN p︸     ︷︷     ︸
4x1 1x4

p̂ −

∫
Ω
(N p )T K IT Bu︸            ︷︷            ︸
4x1 1x3 3x8

û = 0 (4.113)

In a more compact manner:

K pp + K pu = 0 (4.114)

where:

K pp =

∫
Ω
(N p )TN p

K pu =

∫
Ω
(N p )T K IT Bu

(4.115)

4.4 Global Residual

Finally, the solving sistem is:

1

∆t



0 0 0

M ρu 0 0

0 0 0






û

ρ̂

p̂




+



K uu K uρ K up

K ρu K ρρ K ρp

K pu K pρ K pp






û

ρ̂

p̂




=




f u

f ρ

f p




(4.116)

where:

• The M contribute is:

M ρρ =
1

∆t



∫
Ω
(N ρ)TN ρ︸     ︷︷     ︸

4x4

ρ̂


(4.117)

• The K contributes are :
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K ρρ =

∫
Ω
(B ρ)T k2B

ρ︸       ︷︷       ︸
4x4

−

∫
∂Ω
(N ρ)T k2B

ρ︸        ︷︷        ︸
4x4

(4.118a)

K pp =

∫
Ω
(N p )TN p︸     ︷︷     ︸

4x4

(4.118b)

K ρp =

∫
Ω
(B ρ)T k3B

p︸        ︷︷        ︸
4x4

−

∫
∂Ω
(B ρ)T k3B

p︸        ︷︷        ︸
4x4

(4.118c)

K uu =

∫
Ω
(Bu )T 2GI devBu︸               ︷︷               ︸

8x8

(4.118d)

K pu =

∫
Ω
(N p )T K IT Bu︸            ︷︷            ︸

4x8

(4.118e)

K uρ =

∫
Ω
(Bu )T IN ρk1︸          ︷︷          ︸

8x4

(4.118f)

K up =

∫
Ω
(Bu )T IN p︸       ︷︷       ︸

8x4

(4.118g)

• The f contributes are:

f ρ =
1

∆t



∫
Ω
(N ρ)T ρn︸    ︷︷    ︸

4x1


(4.119a)

f u =

∫
Ω
(Bu )T I k1ρ0︸         ︷︷         ︸

8x1

−

∫
∂Ω
(N u )T t︸  ︷︷  ︸

8x1

(4.119b)

Now, we can have an idea of elementary stiffness matrix (K el ), Mass matrix (M el ) and

force vector (f el ) dimension, i.e.

• Elementary stiffness matrix:

K el =



K uu [8x8] K uρ [8x4] K pu [8x4]

0 [4x8] K ρρ [4x4] K ρp [4x4]

K pu [4x8] 0 [4x4] K pp [4x4]



(4.120)
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• elementary mass matrix:

M el =



0 [8x8] 0 [8x4] 0 [4x4]

M ρu [4x4] 0 [4x4] 0 [4x4]

0 [4x8] 0 [4x4] 0 [4x4]



(4.121)

• elementary forces vector:

f el =




F u [8x1]

F ρ [4x1]

0 [4x1]




(4.122)

4.5 Mapping

Recalling section 4.1, we want to transform the general quad-4 formulation into a specific

formulation, referred to our case.

4.5.1 Implementation

The bilinear quadrilateral shape functions are:

N i =
1

4

�
1 + ξ̄i ξ

�
(1 + η̄iη) (4.123)

with ξ̄i e η̄i natural nodes coordinates, i.e.

ξ̄1 = −1 ξ̄2 = 1 ξ̄3 = 1 ξ̄4 = −1

η̄1 = −1 η̄2 = 1 η̄3 = 1 η̄4 = −1
(4.124)

Finally, there will be 4 explicit expression for shape function, replacing ξ̄i and η̄i of nodes

N i :

N1 =
1

4
(1 − ξ)(1 − η)

N2 =
1

4
(1 + ξ)(1 − η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1 − ξ)(1 + η)

(4.125)
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Shape function derivative are:

N i =
1

4

�
1 + ξ̄i ξ

�
(1 + η̄iη)

N i ,ξ =
1

4
ξ̄i (1 + η̄iη)

N i ,η =
1

4
η̄i

�
1 + ξ̄i ξ

�
(4.126)

Shape functions derivative are:

Bu =



∂N1
∂x

0
∂N2
∂x

0
∂N3
∂x

0
∂N4
∂x

0

0
∂N1
∂y

0
∂N2
∂y

0
∂N3
∂y

0
∂N4
∂y

∂N1
∂x

∂N1
∂y

∂N2
∂x

∂N2
∂y

∂N3
∂x

∂N3
∂y

∂N4
∂x

∂N4
∂y



(4.127)

and

B ρ = B p =



∂N1
∂x

∂N2
∂x

∂N3
∂x

∂N4
∂x

∂N1
∂y

∂N2
∂y

∂N3
∂y

∂N4
∂y



(4.128)

The unknown quantities are setted on the quad element as shown in figure 4.2.

Figure 4.2: Quad quantities distributions

A 2x2 Gaussian Integration is used to calculate the shape functions integral. For further

details see C.1.
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4.6 Algorithm and Results

It’s important to emphasize that, the present program has been developed with a significant

amount of simplifications. We create a Matlab code to simulate the sintering process. For

simplicity, only the major algorithm structure will be shown in present work.

Load material mechanical and chemical characteristics

Set t = 0

Choose ∆t and tollerance t t ol l = tmax

Do while t ≤ t t ol l

Loop over the elements

Compute stiffness matrix

Compute force vector

Assembly global stiffness matrix and force vector

End loop

Store displacement, density and pressure

Set t = t + ∆t

End do while

Plot displacement, density and pressure versus time

After running code, we can say that the major nodal displacement of the external nodes

is about 2.2 e−4 mm. Recalling filament dimensions, we can calcualte the percentage of

displacement. By relating the two quantities can be seen that the relative displacement is

about 1h. This value corresponds to a sintering angle of practically zero. As expected,

numerical results of numerical analysis described above, in the present work, have no physical

meaning. As we shall see in the next chapters, eliminating non-linearity, assume an elastic

behavior and imposing geometry, make results not significant.
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Chapter 5

Sintering Elastic Model - Analytical

Model

5.1 Modeling different routes of sintering phenomena

Recalling chapter 3, now the particle system is assumed to be at chemical equilibrium at any

time. Characteristic time of chemical diffusion is much more smaller than the characteristic

time associated at the mechanical strin rate [10]. This fact, simplifying, leads to a quasi-static

equilibrium. In formula:

∂ρa

∂t
= 0 −→ ρa = ρa0 =

a

(1 − f )Ωa0
(5.1)

Considerations made before, lead to assuming that the matter can not be accumulated,

to a normal motion of these interfaces. This motion is then characterized by a displacement

rate, referred to as diffusion velocity, but which does not correspond necessarily to the velocity

of particles. Now, all assumptions have to be applied to the diffusion routes described in table

3.1.

Let set some notation. It’s possible to split well-known boundary of set of grains, denoted

by ∂Ω, in two distinct parts:

1. Γsf , the set of free boundaries, that is the set of the interfaces between solid bodies and

the surrounding medium (considered as a fluid medium);

2. Γgb , the set of the grain boundaries, that is the set of the interfaces between two adjacent
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solid grains;

It’s now obvious that ∂Ω = Γsf ∪ Γgb . Let γsf and γgb be the constant surface tension

parameter defined over the two before mentioned boundaries.

By Eq. 3.36, Eq. 3.41, Eq. 5.1 and since C : I = (2G +3λ)I = 3K I , it’s possible to write:

∇ · (2Gε + λt r (ε)I ) = 2∇ · ε −

(
1 −

2G

3K

)
∇p = 0 (5.2)

and then:

2G∇ · ε(u) −

(
1 −

2G

3K

)
∇p = 0 in Ω (5.3a)

∇ · u +
p

K
= 0 in Ω (5.3b)

[σn]Γsf = γsf κn over Γsf (5.3c)

[σn]Γgb = γgbκn over Γgb (5.3d)

where κ is the surface curvature and the last two eqs. express the Laplace Law of surface

tension.

Let f be a funcion possibly to discontinuous across a surface S ; for any point x ∈ S , f +(x )

and f −(x ) the value of f on each side of S are defined by the limits:

f ±(x ) = lim
ε→0

f (x ± εn) con ε > 0 (5.4)

The symbols [·]Γsf and [·]Γgb are the operators of jump across the two surfaces. They are

defined as follow:

[f ]S (x ) = f
+(x ) − f −(x ) for any x ∈ S (5.5)

5.1.1 Surface Diffusion

Consider a pure solid substance in which vacancies are the only defect present. If the local

equilibrium between vacancies and atom is assumed, the Gibbs-Duhem relation is satisfied:
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G = µaNa + µvNv (5.6)

where µa is the chemical potential of the atoms, µv is the chemical potential of the

vacancies, Na si the number of atoms, Nv is the number of vacancies and G is the Gibbs free

energy which is defined as a function of temperature T , pressure p and internal energy U as

follow:

G = U + pV −T S (5.7)

where V is the volume and S is the entropy. The chemical potential which represent

the energy brought by and atom, µa , and by a vacancy, µv can be derived from the previous

equations:

µa =

(
∂G

∂Na

)
Nv ,T ,p

µv =

(
∂G

∂Nv

)
Na ,T ,p

(5.8)

The internal energy U can be written as a function of the change of the extensive quantities

S , V , Na , Nv :

dU = T dS − pdV + µadNa + µvdNv (5.9)

as well-known, temperature T , pressure P , chemical potential of the atoms µa and vacan-

cies µv , are the intensive quantities of the system (do not depend on the amount of material).

Eq. 5.9 means that the free energy of a system can change in different ways: by changing

its entropy, its volume, the amount of atoms or the amount of vacancies. The intensive

quantity (T , p, µa , µv ) determine the magnitude of the energy change related to the change

of corresponding extensive quantities (S , V , Na , Nv ).

Now, a set of thermodynamical expressions are presented:
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(
∂µa
∂p

)
Nv ,T

=

(
∂G

∂p∂Na

)
Nv ,T

= Ω

(
∂µv
∂p

)
Nv ,T

=

(
∂G

∂p∂Nv

)
Nv ,T

= f Ω

(5.10)

where the volume of a vacancy is supposed to be the fraction of the atomic volume Ω.

Because of the presence of vacancies, the lattice is distorted as shown in figure 5.1.

Figure 5.1: Rearrangement of the lattice around a vacancy

The change in chemical potentials with respect to the change in vacancies concentration

Cv is mainly due to the entropy mixing of the atoms and vacancies. Vacancies concentration

is defined as a function of the number of atoms Na and the number of lattice sites NL in a

given volume: Cv = (NL − Na )/NL and, since Cv � 1 it’s possible to write:

(
∂µv
∂Cv

)
p,T

=
kT

Cv
+ O(1)

(
∂µa
∂Cv

)
p,T

= −kT + O(Cv )

(5.11)

The diffusional transport can take place only by migration of interstitial atoms or lattice

vacancies and neither of these process changes the number of lattice sites in the region. In

other words the number of atoms and the number of vacancies change by equal and opposite

amounts. Under those conditions, the change of free energy of a region is therefore equal to
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the number of atoms entering or leaving it multiplied by the difference of chemical potential

involved in the atom vacancies switching (µa − µv ). The diffusional flux is given by:

j d i f f = −
D

kT Ω
(∇µa − ∇µv ) (5.12)

Previous expressions will be used in the following sections in order to find the surface and

ground boundary diffusion.

The specific surface free energy (γsf ) of a crystalline solid is defined as the increase of

energy when the area of the free surface ∂ω of the crystal is increased by a unit amount. It

comes that the surface free energy Es of the sistem is given by:

Es =

∫
∂ω
γsf dA (5.13)

where γsf is constant along the free surface. Considering this equation and referring to

figure 5.2, it’s possible say that the first solid has more free energy that the second. It

follows that a way to reduce energy is to reduce the surface of the solid. This is possible by

transporting matter from the convex surface to the concave surface to tend a surface of lower

curvature. An expression of the chemical potential can be found by establishing that the free

energy is a minimum with respect to any infinitesimal virtual change in which the local shape

of the surface is altered by removing atoms from the interior and placing them on the surface,

or vice versa.

Figure 5.2: Concave and convex surface (in ω0 and in ω)

Referring to figure 5.3, considering a smoothly curved surface, the change of the surface

free energy is given by:
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δ

(∫
∂ω
γsf dA

)
=

∫
∂ω0

δ(γsf )dA0 +

∫
∂ω
γsf δ(dA) (5.14)

where δ represent the small change of the quantity. dA0 is the area of an element of the

original surface and dA0 + δdA the area of the element of the final surface. The term δγsf is

equal to zero beacuse γsf = const .

Figure 5.3: Infinitesimal hump formed building up a curved surface

Quantity δ(dA) is given by:

δ(dA) =

(
1

cosΨ
− 1

)
dA0 + δZ

(
1

R1
+
1

R2

)
dA0 (5.15)

in which R1 and R2 are the two principal radii of curvature at dA0. If ∆y is small, the radii

can be considered constant in the hump and (1/ cosΨ− 1) ' 0. Eq. 5.14 can be simplified as:

δ

(∫
∂ω
γsf dA

)
= γsf

(
1

R1
+
1

R2

)
δV (5.16)

with δV =
∫
∂ω
δZ dA0 that is the volume of the hump.

From Eq. 5.9, and considering an isothermal process where only a vacancy is brought (no

change of number of atoms), the change of the volume term of free energy due to the hump

is:
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δU = −pδV + µv
δV

Ω
(5.17)

where quantity δV
Ω represent the number of atoms which must be brought into this portion

of the crystal to build up the hump.

To ensure that this phenomenon occurs, the internal and external variation must vanish,

substituting Eq. 5.17 in Eq. 5.14, i.e.

−pδV + µv
δV

Ω
+ γsf

(
1

R1
+
1

R2

)
δV = 0 (5.18)

From this equation, vacancies chemical potential can be write as:

µv = pΩ − γsf

(
1

R1
+
1

R2

)
Ω = pΩ − γsf κΩ (5.19)

The aim of this section is to find an expression of the diffusional flux on the surface j s .

It’s necessary infact, to compute the atoms chemical potential.

The second equation of 5.11 shows the variations in µa due to variations of Cv will be

negligible compared to the corresponding variation of µv . By Eq. 5.10, it’s possible to write:

µa = µa0 + pΩ (5.20)

where µa0 is the atoms chemical potential under no stress.

Finally, the atoms flux j s is given by:

j s = −
Dsγsf
kT

∇κ (5.21)

Surface diffusion is assumed to occur in a layer of width δs . Surface motion can occur by

atoms moving along the surface. The diffusive flux j s is proportional to the gradients of the

curvature:

j s = −
δDs
kT

1

Ω
∇sµ =

γsδDs
kT

∇sκ (5.22)

5.1.2 Grain Boundary Diffusion

Graind boundary diffusion is a very important path of sintering and the theory related to the

matter transport by this mechanism is presented.
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Free energy of the system is given by the sum of two contribution, the change of internal

energy δU and the change of the surface free energy. The main difference is related to

the internal enrgy that can be lowered by the migration of matter from one particle to its

neighbor. If the internal energy of one of the particle forming the grain boundary in higher

than the internal energy of its neighbor, matter migrate and the particle of lower energy will

grow at the expense of the other particle.

Making developments similar to those made in the previous section, it’s possible to show

that chemical potential at the grain boundary between the particles can be written as a function

of the normal stress σnn :

j gb = −
Dgb

kT
∇gbσnn (5.23)

where Dgb is the grain boundary diffusion coefficient. Like in surface diffusion, ∇gb corre-

sponds to a gradient computed along the grain boundary.

5.1.3 Volume Diffusion

Considering a solide where the lattice is deformed because of the presence of a vacancy.

The deformation of the lattice due to the presence of lattice is supposed to be isotropic. The

presence of new vacancies induce a virtual change of the volume δV . The number of vacancies

require to generate that volume change of the internal energy δU/f Ω.

If the system should be in equilibrium with respect to this virtual volume change, the change

of the internal energy δU must equal to zero:

δU = −dδV + µv
δV

f Ω
−→ µv = f pΩ (5.24)

Chemical potential µa is considered not to depend on the vacancies concentration Cv as

Cv � 1. The atoms chemical potential is given by Eq. 5.20. According to Eq. 3.41 and Eq.

5.1, the atomic flux for volume diffusione is:

j v = −(1 − f )
Dv
kT
∇p (5.25)

where Dv is the volume diffusion coefficient.
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5.1.4 Diffusion Induced Velocity

According to the path chosen, there are different way to compute induced velocity. The

surface and grain boundary diffusions, matter is transported along the interfaces. For surface

diffusion, the flux follows the free surface and do the flux along the grain boundary and the flux

on the grain boundary, the flux appears along the grain boundary between the particles. Those

transport paths result in a deposition or removal of material over correspondending interface,

which gives raise to a displacement rate assumed to be normal to the interface: v n = vn .

jgb = −Dgb

kT
∇gbσnn

Dgb ∇gb

vn = vnn

S j = js

j = js jv

vn

j S ⊂ ∂ω

vn vn/Ω

Figure 5.4: Surface or grain boundary diffusion and volume diffusion

Referring to figure 5.4, as the density of the material is constant, then it’s possible to

say that the matter transported by the induced velocity v n is equal to v nΩ . Since matter is

transported along the surface, the balance of matteri is given by:

∫
∂S
j · n l dL = −

∫
S

1

Ω
v n · ndS −→

∫
S

(
∇s · j +

1

Ω
v n · n

)
dS = 0

∫
∂S
j · n l dL = −

∫
S

v n
Ω
dS −→

∫
S

(
∇s · j +

v n
Ω
n · n

)
dS = 0

(5.26)

By the Divergence theorem and by the equation 5.26 holds for any S ⊂ ∂Ω, it’s possible

to fine some expressions for the diffusion velocity for surface diffusion v s and grain boundary

diffusion v gb :

vs = −Ω∇s · j
s

vgb = −Ω∇gb · j
gb

(5.27)
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In contrast with the two previous velocities, matter flux due to volume diffusion is not

transported along the interfaces. In fact, this matter comes from the lattice, and therefore

the balance of matter has to be established in different way:

∫
S
j v · n =

∫
S

1

Ω
v c · ndS −→ v v = Ωj v · n (5.28)

Surface Diffusion Velocity - Developments

Figure 5.4, where n l is the normal to ∂ω, shows the surface flux.

Flux in Eq. (5.22) results in a deposition or removal of matter on the surface S . Because

the mass can not be accumulated, this gives rise to a normal displacement of the surface.The

displacement rate is velocity vs , which verifies:

−

∫
∂S
(Ωa0j

a
s · n l + f Ω

a
0j
v
s · n l )d l =

∫
S
v s · ndA = −

∫
S
Ωa0(1 − f )∇s · j sdA (5.29)

where it’s applied the Divergence theorem. Since v s , it will be:

−(1 − f )Ωa0(∇s · j s )n = (1 − f )Ω
a
0

δsDs
kT
∇2(γsf κ)n (5.30)

Note that the transport of Γsf with this velocity keeps the volume of Ω unchanged. Indeed,

since the surface Γsf is closed, divergence theorem gives:

d `Ωs `

d t
=

∫
Γsf

v s · ndA = (1 − f )Ω
a
0

δsDsγsf

kT

∫
Γsf

∇2κdA = 0 (5.31)

Grain Boundary Diffusion Velocity - Developments

Doing the same popolation balance as for surface diffusion provides, when applied over Γgb :

vgb = −(1 − f )Ω
a
0(∇s · j gb )n = (1 − f )Ω

a
0

Dgbδgb

kT
(∇2σnn )n (5.32)

Volume Diffusion Velocity - Developments

Population balance in Eq. 3.41, combined with the assumption that mass can not be accumu-

lated, says that the volume of species passing “through” S during a time interval δt is equal

to the local change of volume induced by the normal displacement of ω. In formula:
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δt

∫
S
(Ωa0j

a
v · n + f Ω

a
0j
v
v · n)dA = δt

∫
S
vv · ndA (5.33)

where the volume vacancy flux is such that j vv = −j
a
v . The above equation holds for any

surface S ⊂ Γsf , the rate of displacement of Γsf associated with the flux is given by:

vv = (1 − f )Ω
a
0(j v · n)n = −

(1 − f )Ωa0Dv

kT
(∇p · n)n (5.34)

It’s important to say that from Eq. 5.1, atom population balance of Eq. 3.41 should imply

∇ · j v = 0 which means that the volume of grains is preserved by lattice diffusion. Observing

Eq. 5.25 that it’s also true, we note that ∇2p = 0 which has no reason to be satisfied (it

depends on the mechanical state of this system). For this reason, bulk atomic balance of Eq.

(3.41) is replaced by the population balance Eq. (5.33). The grain volume has no reason to

remain unchanged during the diffusion process, but global volume has to be constant. For this

reason, an additional ’correction’ velocity is considered in order to preserve global volume in

solid phase:

v c = v cn n (5.35)

where v cn is a constant. By serveral consideration shown in [10], the correction velocity

that ensures the volume conservation can be written as:

v c = −
`Ω` − `Ω`0
Sδt

n (5.36)

Relation between grain boundary diffusion and surface diffusion

The total surface motion in sintering is the sum of the surface motion, and the rigid body

motion:

v = vnn ±
1

2
vgbe (5.37)

where e is the grain boundary normal vector. The diffusive flux along the grain boundary

Jgb and that along the surface Js must be continuous at the triple junction:

Jgb = 2Js (5.38)
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5.2 Sintering of Two Elastic Spheres

The aim of this section is to validate numerical models arising from continuum formulation.

In order to find an analytical model for the phenomenon of sintering, it is necessary to make

certain assumptions, above all to simplify the geometry of the problem. Usually, analytical

models of sintering are referred a two spheres with the same radius. And those models are

developed to study the diffusion phenomena by just one diffusion path for time. Firstly, the

geometry of the bodies considered is assumed to remain unchanged and the real shape of the

contact area is replaced by a geometry were the curvature of the neck is constant. All those

geometrical approaches are complemented with some hypoteses related to the diffusion path

that is being modeled. This simplifications are generally accepted ??, ??, ??.

In present work it’s analyzed the sintering of two spheres, as shown in figure 5.5:

Figure 5.5: Geometrical model of two particles.

5.2.1 Grain Boundary diffusion

Now, the grain boundary is analyzed. It’s important to note that grain boundary diffusion is

a densifying path, and is assumed to occur over a constant thickness δgb . A general, form of

the diffusion flux equations is:
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j gb = −D∇C (5.39)

Making some hypothesis that the matter flux is parallel to the normal at the triple junction.

The volume of matter transported by unit of time into the neck, is given by:

dVneck
d t

= D ``∇C ``AgbΩ (5.40)

where Ω is the molar volume and Agb is the area of the grain boundary surface at the triple

point and can be calculated as Agb = 2πX δgb . Assuming that the system is axisymmetric

with respect to the axis formed by the centers of the two particles. Eq. 5.40 becomes one-

dimensional and becomes:

dVneck
d t

= 2πX δgbΩDgb
dC

dr
(5.41)

It’s important to say that at this point, an important hypothesis should be made. This

simplification concern the concentration gradient dC/dr . The derative of the concentration

(C ) with respect to the radius (r ) is considered to be constant [32], [49], therefore:

dC

dr
=
∆C

∆r
=
C − C0
X

= −
γsf
kT X

(
1

r1
+
1

r2

)
(5.42)

where C0 is a reference concentration value, usually correspondending to the concentra-

tion under flat surface. γsf is the surface tension, k is the Boltzmann’s constant, T is the

temperature, r1 and r2 are the two principal radii of curvature which are, respectively, r1 = −r

and r2 = X (5.5), and it’s assumed that X � r .

It’s important to highlight that parameters expression are different if the diffusion path

load whether or not densification. Next table shows the expression for Vneck , Aneck , r , h in

the two chases:

The expressions in table 5.1, are accurate up to X ∼ R/3. Since, it can be shown that for

higher values of X , those expressions lead to serious deviation from the real value.

For simplicity, it will be done an example of rate of variation of the neck volume. The aim

is to find a relation between volume variation and evolution of parameter X .
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Parameter No Densifying Densifying

h 0 X 2/4R

r X 2/2R X 2/4R

Vneck πX 3/R πX 3/2R

Aneck πX 4/2R πX 4/8R

Table 5.1: Expression of Vneck , Aneck , r , h referring to figure 5.5

dVneck
d t

=
d

d t

(
πX 4

8R

)
= 2πX δgbΩDgb

dC

dr
=

=
dX

d t

(
π4X 3

8R

)
= −2πX δgbΩDgb

γsf
kT X

(
1

r1
+
1

r2

) (5.43)

and, since r1 = −r , r2 = X and X � r −→ 1/X ≈ 0, Eq. 5.43 become:

dX

d t

(
πX 3

2R

)
= 2πδgbΩDgb

γsf
kT

(
1

r

)
= 2πδgbΩDgb

γsf
kT

(
4R

X 2

)
=

= 8πRδgbΩDgb
γsf

kT X 2
−→ X 5dX = 16R 2δgbΩDgb

γsf
kT

d t

(5.44)

Integrating the above equation:

X 6 = *
,

96R 2δgbΩDgbγsf

kT
+
-
t (5.45)

Since the aim is to relate X to a fixed parameter, like R , Eq. 5.45 can be rewritten as:

(
X

R

)6
= *

,

96R 2δgbΩDgbγsf

kT
+
-
R−4t (5.46)

Generally, using the same procedure, it’s possible to find expressions for the neck growth

as a function of time for all the others diffusion path. In this work, only the 3 cases analyzed

in previous sections was been calculated. The other values are from [34]. However, those

models are almost always a power-lay type:

(
X

R

)n
= BR−m t (5.47)
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where R is the radius of the particles, t is the time, n,m and B are constants. In table 5.2

are summarized some of plausible values of the mentioned constants.

DIFFUSION PATH
RANGE (VALUES)

n m B

Surface diffusion 3-7 (7) 2-4 (4)
23δsΩDsγsf

kT

Volume diffusion from surface 4-5 (4) (4)
20ΩDsγsf

kT

Vapor transport 3-7 (3) 2-4 (2) 3

√
2

π

vγsf pgΩ
3/2ρ1/2

(kT )3/2

Grain boundary diffusion 3-7 (7) 2-4 (4)
96δgbΩDgbγsf

kT

Volume diffusion from grain boundary 4-5 (5) (3)
16ΩDvγsf

kT

Volume diffusion from dislocation (2) (1)
3γsf
2η

Table 5.2: Paths and a set of plausible values of n, m and B . (pg is the gas pressure, ρ is the

specific density and η is the viscosity.)

Previous equations are based on some strong simplifications. Their validity is limited to

reck radii: X < 0.33R and limited to the study of the sintering of two particles. Then, these

assumptions are well suited to study first stage of polymer sintering on Fused Deposition

Modeling. Because of this, in future comparisons, the values of X obtained by other methods,

will be calculated by considering a time less than that required for the complete fusion of the

particles, in particular, in all computations, it will be placed a condition on the increase of X ,

so that is always less than X /3.
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5.2.2 Analytical Models Resuls

In table 5.6 are shown results of grain boundary diffusion obtained with a rigosous continuum

elastic approach:

Time Radius Diffusivity δgb Atomic Volume Ω X/R θ

[s] [m] [m2/s] [m] [M 3/mol ] [−] [Deg ]

0.01 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.09 5.41

0.05 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.12 7.09

0.1 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.14 7.96

0.2 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.16 8.94

0.3 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.17 9.57

0.4 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.17 10.05

0.5 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.18 10.43

0.6 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.19 10.76

0.7 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.19 11.04

0.8 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.20 11.29

0.9 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.20 11.52

1 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.20 11.73

1.1 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.21 11.92

1.2 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.21 12.09

1.3 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.21 12.26

1.4 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.21 12.41

1.5 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.22 12.56

1.6 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.22 12.70

1.7 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.22 12.83

1.7504 2.00E-05 1.00E-08 5.56E-07 5.53E-07 0.22 12.84

Table 5.3: Dimensionless radius and sintering angle θ [Deg ]:

Continuum elastic approach
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In figure 5.6 is shown the grain boundary diffusion sintering angle versus time:

Figure 5.6: Continuum approach: grain boundary diffusion
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Chapter 6

Sintering Viscous Model - Frenkel

Approach

Until the 1930’s, sintering was defined as a technological process of obtaining sintered ma-

terials from powder systems, now, in the present work, it can be described as formation of

a homogeneous melt from the coalescence of solid particles under the action of surface ten-

sion. [48].

The figure 6.1 show the 3 steps, explained below, of Frenkel Sintering:

Figure 6.1: Sintering steps

The sintering phenomenon describes the bond formation process between two filaments,
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it consists in 3 phases [48], [53]:

1. surface contacting;

2. neck growth;

3. diffusion and randomization.

Particularly, the sintering quality, depends on the second step.

6.1 Sintering Model for Viscous Flows

Let us consider a Newtonian fluid. The stress tensor can be decomposed into spherical and

deviatoric parts:

σ = τ − pI or σi j = τi j − pδi j (6.1)

where p = − 13σi i is the (mechanical) pressure and τ is the sress deviator (shear stress

tensor).

Consitutive relation for Newtonian fluid is:

σ = η
(
∇v + (∇v )T

)
− pI = 2ηε̇ − pI (6.2)

where:

ε̇ =
1

2

(
∇v + (∇v )T

)
(6.3)

is the volumetric strain rates. The above relations are valid for incompressive fluid (∇ ·v =

0).

Let us now consider the mechanism of viscous flow. We will recall for this mechanism, the

energy balance concept, which can be stated as:

Rate of energy dissipation by viscous flow = rate of energy gained by reduction in

surface area

In formula:

dWσ = dWτ − dWp = 0 (6.4)
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Referring to dWτ as work of viscous forces, to dWp as mechanical work and thanks to eq

6.12, we can write:

Ẇv = Ẇs −→ Γ
dS

d t
= τ : DdV (6.5)

The above mentioned formula aims to ensure that the global equilibrium at the interface

is observed, i.e. surface forces equal to viscous forces.

6.1.1 Work of Viscous Forces

The work of viscous forces can be expressed in both of the following relations:

Ẇv = −

∫
A
τ · vdA =

∫
V
τ : DdV =

∫
V
η∇v :

(
∇v + ∇vT

)
dV (6.6)

where V is the volume of the sintering sistem and D is the strain tensor:

D =
1

2

(
∇v + (∇v )T

)
(6.7)

The flow field is assumed to be only extensional, thus:

∇u =

*.....
,

ε̇ 0 0

0 −2ε̇ 0

0 0 ε̇

+/////
-

(6.8)

Frenkel hypothesizes that the strain rate ε̇ is assumed to be constant throughout the

complete domain and was approximated by:

−2ε̇ =
∂uy (A)

∂y
≈
uy (A) − uy (0)

a
−→ τ = −2ηε̇ (6.9)

Once made assumptions, the viscous work can be expressed as:

Ẇv = −

∫
V
2ηε̇2dV = −2ηε̇2V (6.10)

6.1.2 Work of Surface Tension

Increasing the area of an interface with energy density, by a tiny amount dS requires an amount

of work equal to the surface energy contained in the extra piece of interface:
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dW = αdS (6.11)

Except for the sign, this is quite analocous to the mechanical work dW = −pdV performed

agains bulk pressure when the volume of the system is expanded by dV , i.e.:

dW = αdA + ∆pdV = 0 −→ αdA = −∆pdV (6.12)

The resistance against extension of a free surface shows that the surface has an internal

surface tension which we shall now see equals the surface energy density α , then we can rewrite

eq 6.11 as:

dW = ΓdS (6.13)

where Γ is the surface tension.

The rate of change of energy due to the reduction in surface area (or surface tension

work), can be written as:

˙dW = −Γ
dS

d t
(6.14)

6.1.3 Frenkel Model for Sintering - Coalescence Between Two Spheres

Hypothesizing analyze sintering process between two spheres with the same radius, referring

to figure 6.2:

neck growth y is:

y = a sin θ (6.15)

where a is the radius of the spherical part of the drop, which is determined by the starting

value a0 from the constant volume condition:

π

3
a3(2 + cos θ − cos3 θ) =

4π

3
a30 (6.16)

and thus

S − S0 = 8πa
2(1 + cos θ) (6.17)
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Figure 6.2: Coalescence of two spheres - Frenkel model

For small values of θ, i.e. for small neck radius, cos θ ≈ 1 − θ2

2 , so that, eq 6.17 becomes:

S − S0 = 2πa0θ
2 (6.18)

The rate of chanfe of energy due to the reduction in surface area becomes:

Ẇs = −Γ
dS

d t
= 4Γπa3

d

d t

(
θ2

2

)
(6.19)

Mentioning eq 6.9, and replacing general volume V with the sphere volume, eq 6.10

becomes:

Ẇv =
16

3
πa3ηv̇ 2 (6.20)

where v̇ is the velocity of motion for viscous flow given by:

v̇ =
1

a

d

d t

(
aθ2

2

)
=
d

d t

(
θ2

2

)
(6.21)

and then

Ẇv = Ẇs −→
16

3
πa3ηv̇ 2 = 4Γπa3

d

d t

(
θ2

2

)
(6.22)

and semplifying

v̇ =
3

4

Γ

ηa
(6.23)
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and integrating subject to the boundary condition , we obtain:

θ2 =
3

2

(
Γt

ηa

)
(6.24)

and, remembering that y = a sin θ, we obtain:

y

a
=

(
3Γt

2ηa

) 1
2

(6.25)

6.1.4 Modification of Frenkel Model for Sintering

Frenkel’s model (1945), which is based on Newtonian viscous flow under the action of surface

tension, was corrected by Elsheby (1949) to satisfy the continuity equation and will subse-

quently be referred to as the Frenkel-Eshelby model.

We want to develop a sintering model which describes the complete sintering process of

two spherical particles [53]. The approach is similar to that of Frenkel and Eshelby but goes

beyond the description of initial stages. In order to reduce the number of parameters, the flow

is approximated to be viscous extensional and the evolution of the particle shape is restricted.

However, unlike Frenkel, the variation of the particle radius with time in the coalescence1

process is considered.

The model is based on the balance of work of surface tension and the viscous dissipation.

All other forces, including gravity, are negleted. We assume that the shape of two spheres

evolves as shown in 6.2. At time t = 0, two equale sized spheres of radius a0, centered at

points A and B , have only one contact point O . At time t = t , both centers have moved

towards point O and a shape of two intersecting spheres of radius a(t ) has been created.

The angle of the intersection and the radius of the neck are denoted by θ(t ) and x (t ),

respectively. In the final stage, only one sphere of radius af remains and all three points A, B ,

and O coincide. The following relation for a(t ) vs. θ(t ) is obtained form the conservation of

mass with the assumption of a constant density:

a(t ) = a0

(
4

[1 + cos[θ(t )]]2 [2 − cos[θ(t )]]

) 1
3

(6.26)

For simplicity, the functions θ(t ), a(t ) and x (t ) will be subsequently denoted θ, a and x .

1Coalescence is the process by which two or more droplets, bubbles or particles merge during contact to

form a single daughter droplet, bubble or particle.
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Unlike Frenkel, that assumed the particle radius to be constant [that is, a(t ) = a0] and

made an approximation for small angles [that is, cos(θ) = 1− θ
2

2 ], the totale surface of particles

varies with the angle θ, i.e.

S = 4πa2[1 + cos(θ)] =
8πa202

1
3

[1 + cos(θ)]
1
3 [2 − cos(θ)]

2
3

(6.27)

Remembering eq. 6.9, the term uy (O ) is the velocity of the fluid at the plane of contact

of the two particles and is equal to zero. The term uy (A) is defined as follows:

uy (A) =
d

d t
[a cos(θ)] = −

2
5
3 a0 sin(θ)

[1 + cos(θ)]
5
3 [2 − cos(θ)]

4
3

dθ

d t
(6.28)

for semplicity, dθd t will be denote θ ′.

Consequently:

ε̇ =
uy (A)

a
= −

2 sin(θ)
[1 + cos(θ)][2 − cos(θ)]

θ ′ (6.29)

For a Newtonian fluid, the viscous model is:

Wv = 32πa
3ηε̇2 (6.30)

which leads to the formula for dissipated energy

Wv = 32πa
3
0η

1 − cos(θ)
[1 + cos(θ)][2 − cos(θ)]2

(θ ′)2 (6.31)

The work of surface tensioneWs is defined as

Ws = −Γ
dS

d t
(6.32)

where Γ is the coefficient of surface tensione and S is the surface of the sintering system.

Applying the chain rule on (6.27), the term dS
d t can be derived and the expression for the work

of surface tension becomes

Ws = Γ
8πa202

1
3 cos(θ) sin(θ)

[1 + cos(θ)]
4
3 [2 − cos(θ)]

5
3

θ ′ (6.33)

Under the assumption that θ ′ is always positive, by equating the work of surface tension

to the viscous dissipation, we obtain
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θ ′ =
Γ

a0θ

2−
5
3 cos(θ) sin(θ)[2 − cos(θ)]

1
3

[1 − cos(θ)][1 + cos(θ)]
1
3

(6.34)

with the initial condition

θ(0) = θ0 = 0 (6.35)

Equation (6.34) is singular near zero and a special numerical treatment is necessary to

solve it. For θ → 0, the following approximation are made: sin(θ) = θ and 1 − cos(θ) = θ2

2 ,

respectively. Hence, the asymptotic behavior of (6.34) is

θ ′ =
1

2

Γ

ηa0θ
(6.36)

Considering that θ > 0 and applying the initial condition (6.35), the solution of (6.36) is

θ(t ) =

(
tΓ

ηa0

) 1
2

(6.37)

which corrispond to the Frenkel-Eshelby model. Once a solution for the evolution of the

sintering angle with time is obtained, the evolution of the neck radius with time can easily be

derived, replacing θ(t ) in

y

a
= sin(θ) (6.38)
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6.2 Isothermal - Non Isothermal Comparison

Equations 6.34 and consequently 6.36 and 6.38 refer to an isothermal condition, i.e. the

surface tension and viscosity are fixed and their value is referred to a exact temperature. In the

next sections it will be shown how in reality, the surface tension and viscosity, strongly depend

on temperature and will be proposed a model of sintering angle variation in non-isothermal

conditions. It will be also made a comparison between the two models.

6.2.1 Temperature Influence on Surface Tension

The value of the surface tension depends on the temperature. The first empirical equation for

the surface tension dependence on temperature was given by Eotvos in 1886. Observing that

the surface tension goes to zero when the temperature tends to the critical temperature TC .

Eotvos proposed a semi-empirical relation:

Γ =

(
1

νL

)
(T −TC ) (6.39)

where νL is the molar volume. Later, Katayama (1915) and Guggenheim (1945) proposed

have improved Eotvos relation, obtain:

Γ(T ) = Γ∗
(
1 −

T

TC

)n
(6.40)

where Γ∗ is a constant for each liquid, n is an empirical factor that depends on liquid (11/9

for organic liquid), TC is the imaginary critical temperature of polymer.

Surface tension vanishes at the critical point:

−
dΓ

dT
=
11

9

Γ∗

Tcr

(
1 −

T

Tcr

) 2
9

(6.41)

for low values of T /Tcr , dΓ/dT will be constant.

Katayama (1915) and Guggenheim (1945) model will be used in present work.

6.2.2 Temperature Influence on Viscosity

For the temperature dependence of viscosity, many important authors proposed reasonable

models, as Reynolds and Arrhenius. Nevertheless, in this work, it will be used the Williams-

Landel-Ferry model, that better approximates polymer melts behavior or other fluids that have
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a glass transition temperature. Equation 6.42 show the the temperature dependence given by

WLF:

µ(T ) = µ0e

*.
,

−C1(T −Tr )

C2 +T −Tr
+/
- (6.42)

where T is the temperature, C1, C2, Tr and µ0 are patameters(only three of them are

independent from each other).

6.2.3 Non-Isothermal Model

To take stock of the situation, 4 equations were obtained:

T = T∞ + (T0 −T∞)e
−mvt (6.43a)

Γ(T ) = Γ∗
(
1 −

T

TC

)n
(6.43b)

µ(T ) = µ0 · Exp

(
−C1(T −Tr )

C2 +T −Tr

)
(6.43c)

θ ′ =
1

2

Γ

ηa0θ
(6.43d)

The aim is to find a way to take into account the temperature dependence of viscosity and

surface tension and conseguently, to find the temperature dependence of sintering angle:

Γ, µ −→ Γ(T ), µ(T ) −→ θ → θ(T )

As shown in previous chapter, since the velocity is constant, the temperature can be

expressed as function of time. Substituting eq. 6.43a in eqs. 6.43b and 6.43c we can obtain

the viscosity and surface tension as function of time. Subsequently, we can also obtain, the

variation of sintering angle as function of time:

dθ

d t
=
1

2

Γ(t )

η(t )a0θ
(6.44)

Through some algebric tricks, a closed-form solution is possible to obtain:

θ ′θ =
1

2

Γ(t )

η(t )a0
d t −→

∫ t

t0

θ
dθ

d t
d t =

∫ t

t0

1

2

Γ(t )

η(t )a0
d t (6.45)
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It can be demonstrated that:

∫ t

t0

θdθ =

∫ θ

θ0

θdθ =
θ2

2
(6.46)

Thus:

θ(t ) =

√
2 ·

∫ t

t0

1

2

Γ(t )

η(t )a0
d t (6.47)

This can be confirmed by the fact that, hypothesizing Γ and η as constants, equation 6.47

returns equation 6.37.

Referring to [43], parameters were set up. Table 6.1 swow their values.

Table 6.1: Necessary parameters for sintering model

C1 C2 Tr µ0 γ0 Tcr n

[−] [K ] [K ] [P a · s] [N /m] [K ] [−]

8.86 101.6 410.15 5500 0.055 573.15 1.2

The experiments conducted by Bellehumeur et al. in [43] show that the sintering process,

for the considered material, is negligible below 473.15 K . Despite the isothermal curve already

takes into account that after a certain temperature the angle θ no longer growing, it’s possible

to calculate a critical time τ which corresponds to the temperature of 473.15 K :

473.15 −T∞
T0 −T∞

= e−mvτ −→ τ = −
1

mv
ln

[
473.15 −T∞
T0 −T∞

]
(6.48)

Using a Heaviside function, it’s possible to set that at time τ, θ(t ) continue as a constant.

θ(t ) = θ(t )H (τ − t ) + θ(τ)H (t − τ) (6.49)

Solving numerically equations 6.47 and 6.49 in mathematica, evolution of θ(t ) is shown in

the following figure:

It was also made a comparison between isothermal and non-isothermal curves, as shown

in the following pictures:
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Figure 6.3: Non-isothermal evolution of θ

Figure 6.4: Isothermal - Non-isothermal comparison

Figures 6.4 and 6.5 show that the differences between isothermal and non-isothermal model

are negligible up to the achievement of 473.15 K. Subsequently, the differences begin to be
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marked, but anyway, the process of sintering does not occur, then the equations describing

the phenomenon, lose physical meaning.

Figure 6.5: Isothermal - Non-isothermal comparison

Despite in our case, the non-isothermal and isothermal comparison are equal, changing

parameters, curves take differents form. Given the numerous uncertainties related to non-

isothermal parameters, in this work, it will always refer to isotherms situations.
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6.3 Frenkel Sintering Resuls

Modeling ABS polymer as a pure viscous material leads to results shown in table 6.3. Frenkel

Approach is the most diffused method to study polymer sintering process.

Time Radius γ η X /a θ

[s] [m] [N /mm] [MP a · s] [−] [Deg ]

0.01 0.2 0.02709 0.0005 0.05 3.09

0.05 0.2 0.02709 0.0005 0.12 6.90

0.1 0.2 0.02709 0.0005 0.17 9.76

0.2 0.2 0.02709 0.0005 0.24 13.80

0.3 0.2 0.02709 0.0005 0.29 16.90

0.4 0.2 0.02709 0.0005 0.33 19.51

0.5 0.2 0.02709 0.0005 0.37 21.82

0.6 0.2 0.02709 0.0005 0.41 23.90

0.7 0.2 0.02709 0.0005 0.44 25.81

0.8 0.2 0.02709 0.0005 0.46 27.60

0.9 0.2 0.02709 0.0005 0.49 29.27

1 0.2 0.02709 0.0005 0.51 30.85

1.1 0.2 0.02709 0.0005 0.54 32.36

1.2 0.2 0.02709 0.0005 0.56 33.80

1.3 0.2 0.02709 0.0005 0.58 35.18

1.4 0.2 0.02709 0.0005 0.59 36.51

1.5 0.2 0.02709 0.0005 0.61 37.79

1.6 0.2 0.02709 0.0005 0.63 39.03

1.7 0.2 0.02709 0.0005 0.65 40.23

1.7504 0.2 0.02709 0.0005 0.65 40.82

Table 6.2: Frenkel Model results: dimensionless radius and

sintering angle θ [Deg ]
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Figure 6.6: Frenkel sintering angle values as a function of time

In figure 6.6, is shown the sintering angle evolution for the Frenkel modified Model.
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Chapter 7

Sintering Viscoelastic Model -

Maxwell Approach

Before introducing the Maxwell Model used in this section, it’s necessary to recall some notes

about Viscoelasticy. Although polymers have their distinct transitions and may be considered

liquid when above the glass transition or melting temperatures, or solid when below those

temperatures, in reality they are neither liquid nor solid, but viscoelastic. In fact, at any

temperature, a polymer can be either a liquid or a solid, depending on the time scale or the

speed at which its molecules are being deformed.

7.1 Solids - Fluids Comparison

In solid bodies, the stress state, is always accompanied by a strain deformation [30]. Further-

more, when the causes of the stress state end, the solid body turn back to its undeformed

shape. A body defined ’solid body’, has its own form.

For a homogeneous, isotropic, elastic solid, the relation between stress and strain is a linear

relation and constitutive equations are:

102



σx =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εx + ν(εy + εz )]

σy =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εy + ν(εx + εz )]

σz =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εz + ν(εx + εy )]

τx y =
E

2(1 + ν)
γx y

τxz =
E

2(1 + ν)
γxz

τy z =
E

2(1 + ν)
γy z

(7.1)

Considering a uniaxial strain, it’s possibile to write:

σ = Eε (7.2)

Regarding fluids, they haven’t an own shape and, when they are subject to a state of rest,

at each point, only normal stresses are present, in particular, the stress is the same in each

principal direction. When a varation of strain is applied, some shear stresses raise. If the fluid

is a Newtonian fluid, the shear stresses are proportional to strain velocity. General constitutive

equations are:

σx = p − 2µε̇x +
2

3
µ(ε̇x + ε̇y + ε̇z )

σy = p − 2µε̇y +
2

3
µ(ε̇x + ε̇y + ε̇z )

σz = p − 2µε̇z +
2

3
µ(ε̇x + ε̇y + ε̇z )

τx y = µγ̇x y

τxz = µγ̇xz

τy z = µγ̇y z

(7.3)

The simplest model is:

σ = µε̇ (7.4)
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7.1.1 Different Resposes to Stress and Strain Input

In linear elasticity, to a finite load step with initial time t = t0 and end time t = t1, follows an

instantaneous proportional strain. When load ends, the strain return to its initial state.

Assuming a viscous material, the system response to an instant load σ0 increases linearly in

accordance with the consitutive law until the laod is applied. When stress ceases, elongation

remains constant.

Figure 7.1 shows the difference mentioned above:

Figure 7.1: Pure Elastic - Pure Viscous Behavior

7.2 Linear Viscoelasticity

In many engineering applications, materials can be considered in linear-elastic regime, because

they obey to Hooke’s Law, thus, stress is proportional to the applied strain. Fluids, as it’s

know, don’t present a proportionality between the applied stress and strain. Their constitutive

behaviour can be described through a relationship between stress and strain rate by viscosity

parameter.

Real behaviour of materials, in many times, deflect from Hookean and present both elastic

and fluid characteristics. Immagine, for example, to hang a weight at the end of a thin lead

wire. After the first instantaneous strain, if the observation lasts for a sufficiently long time,
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elongation will no stop untile the wire get to rupture. Materials that obey to this behaviour

are called viscoelastic materials.

Visco-elastic materials characteristic depends on time and load application (or strain ap-

plication) velocity.

This behaviour lead to important phenomena:

• Creep: when, with a constant load applied, strain growth with time:

Figure 7.2: Creep phenomenon

• Relaxation: when, with a constant strain applied, stress decreases with time;

Figure 7.3: Stress Relaxation

• Stiffness depends on load application velocity;

Figure 7.4: Stiffness Dependence of load application speed
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The concept of linear viscosity is applied to the stress-strain response obtained at a fixed

time t = t0, for different applied stresses. Infact, if the strain is ε(t0), for different values of

σ = σ1, σ2, σ3 and denoting:

ε1 = [ε(t0)]σ=σ1 ε2 = [ε(t0)]σ=σ2 ε3 = [ε(t0)]σ=σ3

the corresponding strains, if the material behaviour is viscoelastic, following equation must

be valid :

ε1
σ1

=
ε2
σ2

=
ε3
σ3

(7.5)

In a more efficient manner (figure 7.5):

Figure 7.5: Linear Viscoelasticity

The most common, linear viscoelastic model is the Maxwell model. A Maxwell material

is a viscoelastic material having the properties both of elasticity and viscosity. The Maxwell

model can be represented by a purely viscous damper and a purely elastic spring connected in

series, as shown in figure 7.6.

In this configuration, under an applied axial stress, the total stress, σTotal and the total

strain, εTotal can be defined as follows [30]:

σTotal = σD = σS εtotal = εD + εS

where the subscript D indicates the stress/strain in the damper and the subscript S indicates

the stress/strain in the spring. Taking the derivative of strain with respect to time, we obtain:
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Figure 7.6: Maxwell Model

dεTotal

d t
=
dεD
d t

+
dεS
d t

=
σ

η
+
1

E

dσ

d t

where E is the elastic modulus and η is the material coefficient of viscosity. This model

describes the damper as a Newtonian fluid and models the spring with Hooke’s law.

If we connect these two elements in parallel, we get a generalized model of Kelvin–Voigt

material.

In a Maxwell material, stress σ, strain ε and their rates of change with respect to time t

are governed by equations of the form:

σ̇

E
+
σ

η
= ε̇

Or by:

τx y + λ
dτx y

d t
= −η0 ˙γx y (7.6)

Linear viscoelasticty refers to small strains.
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7.3 Stress Relaxation

In materials science, stress relaxation is the observed decrease in stress in response to the same

amount of strain generated in the structure. This is primarily due to keeping the structure in

a strained condition for some finite interval of time and hence causing some amount of plastic

strain. This should not be confused with creep, which is a constant state of stress with an

increasing amount of strain.

Since relaxation relieves the state of stress, it has the effect of also relieving the equipment

reactions. Thus, relaxation has the same effect as cold springing, except it occurs over a longer

period of time. The amount of relaxation which takes place is a function of time, temperature

and stress level, thus the actual effect it has on the system is not precisely known, but can be

bounded.

Stress relaxation describes how polymers relieve stress under constant strain. Because

they are viscoelastic, polymers behave in a nonlinear, non-Hookean fashion. This nonlinearity

is described by both stress relaxation and a phenomenon known as creep, which describes how

polymers strain under constant stress.

Viscoelastic materials have the properties of both viscous and elastic materials and can be

modeled by combining elements that represent these characteristics. Maxwell model is good

at predicting stress relaxation, it is fairly poor at predicting creep.

Figure 7.7: Stress Relaxation
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7.4 Relaxation Time

In the physical sciences, relaxation usually means the return of a perturbed system into equi-

librium. Each relaxation process can be characterized by a relaxation time τ. The simplest

theoretical description of relaxation as function of time t is an exponential law exp(−t/τ).

7.4.1 Weissemberg Number

TheWi is a dimensionless number used in the study of viscoelastic flows. The dimensionless

number compares the viscous forces to the elastic forces. It can be variously defined, but it is

usually given by the relation of stress relaxation time of the fluid and a specific process time.

In simple steady shear, the Weissenberg number, often abbreviated , is defined as the shear

rate γ̇ times the relaxation time λ. In formula:

Wi =
Viscous Forces
Elastic Forces

=
ηγ̇

E ε
= λγ̇ (7.7)

It’s then clear that, the relaxation time it’s related to stress a kind of parameter that

defines the important of viscosity compared to elastic forces.

7.4.2 Deborah Number

The Deborah number (De) is a dimensionless number, often used in rheology to characterize

the fluidity of materials under specific flow conditions. It is based on the premise that given

enough time even a solid-like material will flow. The flow characteristics are not inherent

properties of the material alone, but a relative property which depends on two fundamentally

different characteristic times. Formally, the Deborah number is defined as the ratio of the

relaxation time characterizing the time it takes for a material to adjust to applied stresses or

strains, and the characteristic time scale of an experiment (or a computer simulation) probing

the response of the material:

De =
Stress Relaxation Time

Observation Time
=
λ

t p
= λω (7.8)

Technically, this incorporates both the elasticity and viscosity of the material. At lower

Deborah numbers, the material behaves in a more fluidlike manner, with an associated Newto-
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nian viscous flow. At higher Deborah numbers, the material behavior enters the non-Newtonian

regime, increasingly dominated by elasticity and demonstrating solidlike behavior.

This hypothesis will be confermed with the results comparison developed in next sections.

7.5 Non-Linear Viscoelasticity

A non-linear viscoelastic response in a polymer occurs when the strain or the rate of strain is

large. In the course of polymer processing operations, large strains are always imposed on the

material, requiring the use of non-linear viscoelastic models. In figure ??, compared to linear

case, is shown the non linear behaviour:

Figure 7.8: Linear Viscoelasticity

There are two types of general, non-linear, viscoelastic flow models: the differential type

and the integral type. The one used in the present work is a differential model. Differential

models have traditionally been the tool of choice to describe the viscoelastic behavior of

polymers when simulating complex flow systems. Many differential viscoelastic models can be

described in the general form:

Y τ + λ0τ0 + λ1τ1 + λ2 [γ̇ · τ + τ · γ̇] + λ3 [τ · τ] = η0 [γ̇ + λ4γ̇0 + λ5γ̇1] (7.9)

where τ0 is the corotational or Jaumann derivative of the stress tensor defined as:

τ0 =
D

Dt
τ =

D

Dt
τ −

1

2
[ω · τ − τ · ω] (7.10)

and Dτ/Dt is the substantial derivative and ω is the vorticity tensor given by:
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ω = ∇u − (∇u)T (7.11)

where ∇u is the velocity gradient. τ1 is the first controvariant convected time derivative

of the deviatoric stress tensor and represent rates of change with respect to a convected

coordinate system that moves and deforms with the fluid. The convected derivative of the

deviatoric stress tensor is defined as:

τ1 =
Dτ

Dt
−

[
(∇u)T · τ + τ · (∇u)

]
(7.12)

and similarly, γ̇0 is the Jaumann derivative of the rate of strain tensor and γ̇1 is the first

contravariant convected time derivative of the rate of strain tensor.

The constants in Eq. 7.9 are defined in Table 7.1 for various common viscoelastic models

commonly used to simulate polymer flows [64].

Constitutive Models Y λ0 λ1 λ2 λ3 λ4 λ5

Generalized Newtonian 1 0 0 0 0 0 0

Upper Convected Maxwell 1 0 λ1 0 0 0 0

Corotation Maxwell 1 λ0 0 0 0 0 0

Convected Jeffrey’s 1 0 λ1 0 0 0 λ5

Corotation Jeffrey’s 1 λ0 0 0 0 λ4 0

White-Metzner 1 0 λ1(γ̇) 0 0 0 0

Phan-Thien-Thanner-1 e [ε(λ/η0)t r τ] 0 λ λξ/2 0 0 0

Phan-Thien-Thanner-2 1 − ε(λ/η0)t r τ 0 λ λξ/2 0 0 0

Giesekus 1 0 λ1 0 0 −αλ1/η0 0

Table 7.1: Definition of constant presented in Eq. 7.9

Although, in next section, will be analyzed only the Upper Convected Model, value of all

models are only for generalize this work.

7.6 Upper Convected Maxwell Model

For the large strains, the simplest way to combine time-dependent phenomena and rheological

nonlinearity is to incorporate nonlinearity into the simple Maxwell equation. This modified
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model is the Upper Convected Model (UCM).

This can be done by replacing the substantial time derivative in a tensor version, with the

upper-convected time derivative of τ, in formula:

λτ̃ + τ = 2ηD (7.13)

where λ is the relaxation time and τ̃ represents a general form of the invariant derivate of

the extra-stress-tensor (upper-convected derivative):

τ̃ =
Dτ

Dt
−ω · τ + τ ·ω − a(D · τ + τ · D ) (7.14)

where Dτ
Dt is the substantial derivative of extra-stress-tensor and ω is the rotational tensor.

It’s important to say that for elastic material and small strain amplitudes,the non-linear

terms disappear and the upper-convected time derivative reduces to the substantial time deriva-

tive.

Assuming quasi-steady state flow as a first approximation:

τ + λa(D · τ + τ · D ) = 2ηD (7.15)

By Eq. 6.7 and Eq. 6.8, it’s possible to write:

*.....
,

τ11 0 0

0 τ22 0

0 0 τ33

+/////
-

+ 2λa

*.....
,

ε̇11τ11 0 0

0 −2ε̇22τ22 0

0 0 ε̇33τ33

+/////
-

= 2η

*.....
,

ε̇11 0 0

0 −2ε̇22 0

0 0 ε̇33

+/////
-

(7.16)

the principal components of extra-stress-tensor can be deteminated as:

τy y =
−4ηε̇

1 − 4aλε̇
(7.17)

τxx = τzz =
2ηε̇

1 − 2aλε̇
(7.18)

For viscoelastic model, eq. 6.30, the stresses are now replaced by above expressions to

give:
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Wv =

∫
V
τ : DdV =

*......
,

2ηε̇

1 − 2aλε̇
0 0

0
−4ηε̇

1 − 4aλε̇
0

0 0
2ηε̇

1 − 2aλε̇

+//////
-

:

*.....
,

ε̇11 0 0

0 −2ε̇22 0

0 0 ε̇33

+/////
-

(7.19)

Wv =

∫
V
τ : DdV =

32πa3ηε̇2

(1 − 4aλε̇(1 + 2aλε̇)
(7.20)

Now, by equating visco-elastic force work and surface work (Eq.6.14), as shown:

Ws = Γ
8πa202

1
3 cos(θ) sin(θ)

[1 + cos(θ)]
4
3 [2 − cos(θ)]

5
3

θ ′ =
32πa3ηε̇2

(1 − 4aλε̇(1 + 2aλε̇)
=Wv (7.21)

and after some manipulations, a non-linear differential equation is obtained:

8(aλK1θ
′)2 + *

,
2aλK1 +

ηa0
Γ

K 2
1

K 2
2

+
-
θ ′ − 1 = 0 (7.22)

where:

K1 =
sin θ

(1 + cos θ)(2 − cos θ)
(7.23)

K2 =
2−

5
3 cos θ sin θ

(1 + cos θ)
4
3 (2 − cos θ)

5
3

(7.24)

Once a solution for the sintering angle is obtained, the evolution of the neck radius with

time can easily be derived from eq. 6.38.

It is interesting to note that for the initial stage of sintering, assuming a = a0, the term

θ2 can be approximated as (x/a)2 and after some manipulations eq. 7.22 simplifies to the

following expression:

d (x/a)2

d t
=
−aλ − 2ηa0Γ +

[
(3aλ)2 + 4aλ ηa0Γ + 4

�ηa0
Γ

�2] 1
2

2(aλ)2
(7.25)

where d (x/a)2

d t represent an initial sintering rate.
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7.7 Maxwell Model Results

Before continuing with the results of the Maxwell model, it’s necessary to step back. Let recall

Eq. 7.13.

The λ term is the relaxation time mentioned in 7.4. The meaning of this parameter is very

complex and it’s important to weigh the model results.

In Eq. 7.25, the value of λ has an importan influence and in this section, a comparison

between some values of such parameter will be evaluated. As will be shown, the value of the

dimensionless radius, and conseguently, of the sintering angle, changes so far from negligible.

Values of parameters λ used in the analysis are 4: λ = 0.1, λ = 10, λ = 20 and λ = 50.

In table 8.4, there will be shown the dimensionless radius and sintering angle values as

function of time and of different λ values:

Tempo [s]
λ = 0.1 λ = 10 λ = 20 λ = 50

X /a θ X /a θ X /a θ X /a θ

0.01 0.05 3.08 0.05 2.60 0.04 2.22 0.03 1.62

0.05 0.12 6.91 0.10 5.82 0.09 4.97 0.06 3.63

0.1 0.17 9.79 0.14 8.25 0.12 7.04 0.09 5.14

0.2 0.24 13.91 0.20 11.70 0.17 9.99 0.13 7.28

0.3 0.29 17.13 0.25 14.39 0.21 12.26 0.16 8.93

0.4 0.34 19.88 0.29 16.67 0.25 14.20 0.18 10.32

0.5 0.38 22.35 0.32 18.71 0.27 15.91 0.20 11.56

0.6 0.42 24.62 0.35 20.57 0.30 17.48 0.22 12.68

0.7 0.45 26.74 0.38 22.30 0.32 18.93 0.24 13.71

0.8 0.48 28.75 0.41 23.94 0.35 20.29 0.25 14.68

0.9 0.51 30.67 0.43 25.49 0.37 21.58 0.27 15.59

1 0.54 32.53 0.45 26.98 0.39 22.81 0.28 16.46

1.1 0.56 34.33 0.48 28.41 0.41 24.00 0.30 17.28

1.2 0.59 36.09 0.50 29.80 0.42 25.14 0.31 18.08

1.3 0.61 37.81 0.52 31.14 0.44 26.24 0.32 18.84

1.4 0.64 39.51 0.54 32.46 0.46 27.31 0.34 19.58

1.5 0.66 41.19 0.56 33.75 0.47 28.35 0.35 20.30

Table 7.2: continued on next page
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Table 7.2: continued from previous page

Tempo [s]
λ = 0.1 λ = 10 λ = 20 λ = 50

X /a θ X /a θ X /a θ X /a θ

1.6 0.68 42.86 0.57 35.01 0.49 29.37 0.36 21.00

1.7 0.70 44.52 0.59 36.26 0.51 30.37 0.37 21.68

1.7504 0.71 45.35 0.60 36.88 0.51 30.86 0.37 22.01

Table 7.2: Maxwell Model results: sintering angle θ [Deg ]

function of λ

It can be noted that the λ paraemter, as already mentioned above, it affects the value of

sintering angle. Image 8.10 shows the values of sintering angle in the form of curves versus

time.

Figure 7.9: Maxwell Model results: sintering angle θ [Deg ] function of time t at different

values of λ
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Image 8.11 shows the values of dimensionless radius in the form of curves versus time.

Figure 7.10: Maxwell Model results: Dimensionless radius X /a function of time t at different

values of λ
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Chapter 8

Sperimental Test: Relaxation Time

Estimation

In previous section, it’s shown how sintering angle is heavily influenced by the λ parameter. To

get an idea of what is the relaxation time of the ABS 400 an experiment test has been done.

8.1 Testing Machine: MTS Insight Electromechanical Testing

Systems

The MTS Insight Electromechanical Testing Systems (figure 8.1) is designed to provide test

laboratories with capabilities to meet a full spectrum of static testing needs, easily and afford-

ably. The MTS model is a twin-column table-top models for medium-force applications. The

software used to perform tests is TestWorks (figure 8.2). For further informations, see [51].

8.2 Test Procedure

Generally, polymer tensile tests, measure the force required to break a plastic sample specimen

and the extent to which the specimen stretches or elongates to that breaking point. Tensile

tests produce stress-strain diagrams used to determine tensile modulus. The resulting tensile

test data can help specify optimal materials, design parts to withstand application forces, and

provide key quality control checks for materials.

In this work, tensile test, it’s used to estimate the stress relaxation time and, more impor-
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Figure 8.1: MTS testing machine

tant, the test is made with a polymer filaments used for 3D printing. The filament is a white

ABS polymer piece with the following characteristics:

• diameter of 2.85 mm;

• length of 500 mm;

The specimen is wound on the supports and fixed with compressed air clamps (figure 8.1).

The temperature chamber is about 20 Celsius degrees. The distance between the two grips

is about 400 mm. Two markers were put at the distance of 30 mm from each others (figure

8.3). Markers must be of a color that contrasts with that of the filament and they serve to

define the measurement area, which will be defined thanks to an optical sensor that detects

the color contrast (8.3).
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Figure 8.2: Test Software: TestWorks

Figure 8.3: Test Software: TestWorks

After setting TestWorks for testing and setting the optical sensor to the limit of the

markers we can proceed with the experiment. The test took place imposing at the sample a
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dislacement story and thus, deformation history, equal to 1 %. The deformation speed increase

was set 100 mm/min so as to emulate in the best possible way the response a solicitation to

theoretical instantaneous step (figure 8.6). At the end of tests, data are saved in a txt file and

can be exported. The sampling frequency is setted to 5 H z and 1000 points for the ascent

portion, and to 5 H z and 40000 points for the descending portion.

We did a total of 8 tests. The first two, of which are not reported results, have been done

to get a clearer idea of what were the timing of the relaxation and what was the model that

best describe the phenomenon. Once learned that a 80-minute time was sufficient to describe

at least the part of more rapid relaxation, we proceeded. The subsequent five tests, with

duration of 80 minutes, have the aim to validate our data, so as not to incur any randomness.

In fact, as it will be shown after, the curves have the same trend and reflect the relaxation

of the material in a very good manner. Once validated the experiment, and based on the

experience of the first seven tests, we proceeded to the final experiment.

Based on the information available in the literature and on the assumption that in reality,

the relaxation time of a viscoelastic material, exceeds 80 minutes, the eighth test was prolonged

to 16 hours. Based on the results obtained in the latter, the relaxation time λ will be calculated.

8.3 Test Results

In figures 8.5, 8.6 and 8.7 are shown the tests results. The trend of the curves describes

with good approximation the material behaviour. The vertical jump from one curve to another

is due to the initial load peak required to obtain the required deformation value. Setting in

slightly different manner the air clamps, a different load is needed to obtain a deformation of

1%.

As shown in figure 8.5, curves are affected by noise. The load noise is probably due to

some disorder around the test room. For further informations, by the TestWorks software, we

plotted the load and deformation trend, in a smaller timeframe.

As shown in figure 8.4, the load noise is clearly evident. Looking at the top left figure,

we see that the strain traverse is not afflicted by noise problem, while the speciment strain,

yes. The linearity of the first means that the test machine is correctly setted. The noise in

strain curve is probably due the distance between grips and markers while the initial decrease

of strain is due local deformations in union with material viscoelasticity.
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Figure 8.4: TestWorks plotted graphics: strain traversa, load, small timeframe strain, strain

Figure 8.5: Comparison between all tests: total time

In figure 8.7, is shown the final test. As we predict, the relaxation phenomenon really end

only after about 15 hours and the load remains stable at 80 N.

We focused on physical meaning of the curve and we found that the real behaviout material

at the room temperature, doesn’t follow that the Maxwell model. From the first sisignificant

six tests, we see that load factor didn’t decrease more, while theoretically, in Maxwell model,

the relaxation phenomenon leads to a zero stress situation. A model that better reflects our
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Figure 8.6: Comparison between all tests: first three minutes

Figure 8.7: Comparison between all tests: first three minutes

speciment behaviour is the Zener model, also known as standard linear solid (SLS) model.

8.3.1 Zener Model

The Zener Model (standard linear solid model), shown in figure 8.8, is a commonly used model

to simulate the short-term behavior of solid polymer components. The momentum balance of
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the standard linear solid model is expressed with two equations as

Figure 8.8: Schematic diagram of the standard linear solid model

continuity and deformation are represented by

γx y = γx y1 + γx y3 γx y = γx y2 (8.1)

Combining Eqs. 8.1 and use the constitutive equations for the spring and dashpot elements,

we get the governing equation for the standard linear solid model:

ητ̇x y +G1τx y = η(G1 +G2)γ̇x y +G1G2γx y (8.2)

Using Eq. 8.2 , the strain in a creep test in the standard linear solid model can be solved

for as

γx y =
τ0
G2

(
τ0

G1 +G2
−
τ0
G2

)
e−[G1G2/η(G1+G2)]t (8.3)

which is plotted in figure 8.9. The stress relaxation in the standard linear solid model can

be derived by integrating Eq. 8.2 and is represented by
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τx y = γ0(G2 +G1)e
−(G1/η)t (8.4)

Figure 8.9: Creep, relaxation, and recovery response in the standard linear solid model

8.3.2 Relaxation Time Calculation

In our tests, referring to figure 8.9 and 8.7, we can define:

• Time t1 = 3/10 s ;

• Time t2 = 100 s ;

• Load G1 = 80.5 N

• Load G1 +G2 = 140.8 N

Relaxion time is calculated when the load decreases by 50% compared to the total pressure

drop. The total pressure drop is:

G 1
max −G

1
1 = ∆G

1 = 140.8 − 80.5 = 60.3 N (8.5)

Then, the 50% of the total drop is:

∆G 1

2
= 30.15 N (8.6)
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From txt data, we can find the time when G 1
1 + ∆G

1 = 110.65 N is reached. The time is

22.3 s

Assuming that the initial portion of curves presented in figure8.6 are exponential curves,

we can write the following equation:

σ = σ0e
−
t ∗

λ (8.7)

where t ∗ is the time when it reaches the fixed stress. Setting σ = 0.5σ0, we obtain:

σ =
σ0
2
= σ0e

−
t ∗

λ ⇒ 0.5 = e
−
t ∗

λ (8.8)

σ =
σ0
2
= σ0e

−
t ∗

λ ⇒ 0.5 = e
−
t ∗

λ ⇒ −
t ∗

λ
= l n(0.5) ⇒

t ∗

λ
= l n(2) (8.9)

and we can find the value of relaxation time as:

λ =
t∗

l n(2)
=
22.3

l n(2)
= 32.2s (8.10)

The relaxation time is λ = 32.2 s at temperature Tr oom = 20◦C . Recalling Time-

Temperature Superposition:

log(aT ) =
η0
η
=
λ0
λ

(8.11)

where η0 and λ0 are the viscosity and time relaxation values at T = Tr oom . As seen before,

the visosity at melt temperature is 5100 P a · s and visosity at room temperature is 300 P a · s .

Now, we can find the λ values at melt temperature:

λ =
λ0

log
(
η0
η

) ≈ 32.2
2.83

= 11.4 s (8.12)

Finally, the λ parameter is equal to 11.4 s .

8.4 Sintering Angle: UCM with Calculated Relaxation Time

Recalling Eq. 7.25, we can calculate the values of sintering angle using the effective calculated

relaxation time. In the following table is shown sintering angle evolution with a λ = 11.4.
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Tempo [s]
λ = 0.1 λ = 10 λ = 20 λ = 50 λ = 11.4

X /a θ X /a θ X /a θ X /a θ X /a θ

0.01 0.05 3.08 0.05 2.60 0.04 2.22 0.03 1.62 0.04 2.54

0.05 0.12 6.91 0.10 5.82 0.09 4.97 0.06 3.63 0.10 5.68

0.1 0.17 9.79 0.14 8.25 0.12 7.04 0.09 5.14 0.14 8.05

0.2 0.24 13.91 0.20 11.70 0.17 9.99 0.13 7.28 0.20 11.42

0.3 0.29 17.13 0.25 14.39 0.21 12.26 0.16 8.93 0.24 14.04

0.4 0.34 19.88 0.29 16.67 0.25 14.20 0.18 10.32 0.28 16.27

0.5 0.38 22.35 0.32 18.71 0.27 15.91 0.20 11.56 0.31 18.25

0.6 0.42 24.62 0.35 20.57 0.30 17.48 0.22 12.68 0.34 20.06

0.7 0.45 26.74 0.38 22.30 0.32 18.93 0.24 13.71 0.37 21.75

0.8 0.48 28.75 0.41 23.94 0.35 20.29 0.25 14.68 0.40 23.34

0.9 0.51 30.67 0.43 25.49 0.37 21.58 0.27 15.59 0.42 24.84

1 0.54 32.53 0.45 26.98 0.39 22.81 0.28 16.46 0.44 26.29

1.1 0.56 34.33 0.48 28.41 0.41 24.00 0.30 17.28 0.46 27.68

1.2 0.59 36.09 0.50 29.80 0.42 25.14 0.31 18.08 0.49 29.02

1.3 0.61 37.81 0.52 31.14 0.44 26.24 0.32 18.84 0.50 30.33

1.4 0.64 39.51 0.54 32.46 0.46 27.31 0.34 19.58 0.52 31.60

1.5 0.66 41.19 0.56 33.75 0.47 28.35 0.35 20.30 0.54 32.85

1.6 0.68 42.86 0.57 35.01 0.49 29.37 0.36 21.00 0.56 34.07

1.7 0.70 44.52 0.59 36.26 0.51 30.37 0.37 21.68 0.58 35.27

1.7504 0.71 45.35 0.60 36.88 0.51 30.86 0.37 22.01 0.59 35.87

Table 8.1: Maxwell Model results with the λ parameter ob-

tained by sperimental tests. Angle θ in Degrees
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Figure 8.10: Maxwell Model results: sintering angle θ [Deg ] function of time t at different

values of λ

Figure 8.11: Maxwell Model results: Dimensionless radius X /a function of time t at different

values of λ
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Chapter 9

Elastic, Viscous and Visco-elastic

Model Comparison

Deformation γ0, and Deborah number, can be used to summarize how the system can be most

accurately modeled. The magnitude of De defines the difference between solids and fluids.

At small Deborah numbers, the polymer can be modeled as a Newtonian fluid, and at very

high Deborah numbers, the material can be modeled as a Hookean solid [64]. Figure 9.1 helps

visualize relation between time scale, deformation, and applicable material behavior.

In order to compare results in an efficient way, it’s necessary to have an idea of what to

expect by each model. In the present work, three models have been used:

1. Elastic Diffusion Model;

2. Pure Viscous Model;

3. Viscoelastic Upper Convected Maxwell Model.

It’s logical to expect that the model developed assuming that the polymer is an elastic

material will be less accurate. Simplifying ABS polymer as an elastic material, lots of infor-

mations of its real behavior will be lost. Furthermore, it’s expected that the sintering angle

developed, will increase more gradually than that developed with other models. If material

viscosity is not taked into account, creep and stress relaxation effects are negleted.

Although the purely viscous model (Frenkel Model) describes the sintering phenomenon in

a more accurate way, it not takes into account that the material, before reaching his transition
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Figure 9.1: Schematic of Newtonian, elastic, linear, and non-linear viscoelastic regimes as a

function of deformation and relaxation time during deformation of polymeric materials

temperature (≈ 353.15 K ) behaves as a solid. It’s therefore suitable if analysis are referred to

high temperatures and just after fusion occurred.

The Maxwell model takes into account the importance of both components: elastic and

viscous, mostly, through creep and stress relaxation phenomenon via the λ parameter. There-

fore, it’s suppose to be the model that describes in a most accurate way the ABS behaviour.

The following table and in the following figures are shown sinter angle.

Tempo Elastic λ = 0.1 λ = 10 λ = 20 λ = 50 λ = 11.4 Frenkel

[s] [Deg ] [Deg ] [Deg ] [Deg ] [Deg ] [Deg ] [Deg ]

0.01 5.41 3.08 2.60 2.22 1.62 2.54 3.09

0.05 7.09 6.91 5.82 4.97 3.63 5.68 6.90

0.10 7.96 9.79 8.25 7.04 5.14 8.05 9.76

0.20 8.94 13.91 11.70 9.99 7.28 11.42 13.80

0.30 9.57 17.13 14.39 12.26 8.93 14.04 16.90

0.40 10.05 19.88 16.67 14.20 10.32 16.27 19.51

Table 9.1: continued on next page
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Table 9.1: continued from previous page

Tempo Elastic λ = 0.1 λ = 10 λ = 20 λ = 50 λ = 11.4 Frenkel

[s] [Deg ] [Deg ] [Deg ] [Deg ] [Deg ] [Deg ] [Deg ]

0.50 10.43 22.35 18.71 15.91 11.56 18.25 21.82

0.60 10.76 24.62 20.57 17.48 12.68 20.06 23.90

0.70 11.04 26.74 22.30 18.93 13.71 21.75 25.81

0.80 11.29 28.75 23.94 20.29 14.68 23.34 27.60

0.90 11.52 30.67 25.49 21.58 15.59 24.84 29.27

1.00 11.73 32.53 26.98 22.81 16.46 26.29 30.85

1.10 11.92 34.33 28.41 24.00 17.28 27.68 32.36

1.20 12.09 36.09 29.80 25.14 18.08 29.02 33.80

1.30 12.26 37.81 31.14 26.24 18.84 30.33 35.18

1.40 12.41 39.51 32.46 27.31 19.58 31.60 36.51

1.50 12.56 41.19 33.75 28.35 20.30 32.85 37.79

1.60 12.70 42.86 35.01 29.37 21.00 34.07 39.03

1.70 12.83 44.52 36.26 30.37 21.68 35.27 40.23

1.75 12.84 45.35 36.88 30.86 22.01 35.87 40.82

Table 9.1: Sintering angle comparison between all models.
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Figure 9.2: All models comparison: Frenkel - Maxwell - Elastic Models

As we expected, the elastic and frenkel models can be viewed as the lower and upper limits

of the graph. In other words, viscoelastic material has a viscous component and a elastic

component. The parameter that rules the material behaviour is the relaxation time.

In the next chapter, sintering angle obtained with different models will be used to have an

idea of what will be the void density of printed speciment.

131



Part III

Moduli Calculation
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Chapter 10

Lamination Analysis

As already mentioned in first chapters, the obtained solid is characterized by voids. It therefore

tends to evaluate a characteristic volume (representative volume) and subsequently use the

theories od homogeneization to merge the characteristic parameters of a compound heteroge-

neous in a single homogeneous compound equivalent. After the bonding process, the material

is studied as a laminate.

Figure 10.1: Void calculation
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10.1 Lamination Theory

The equations describing the model are the classic solid mechanics’s and Lamination Theory’s

equations.

The laminae composite are never used alone, but in the form of laminates, ie on the plates

obtained by superimposing several layers, generally identical. The mechanical characteristics of

rigidity and strength of the layers commonly used, make it impossible to use individual plates,

and this mainly due to:

• a too strong anisotropy of the elastic response, at least for the laminae unidirectional

reinforcement;

• a too small resistance in the transverse direction;

• a too small thickness, which makes the stiffness, especially that in bending, too small

and a powerful danger of instability compression, in the two directions.

The plates are then used to create laminates, superimposing a sufficient number of layers,

according to the project needs. This operation allows to create the plates whose mechanical

characteristics, stiffness and strength, can be the subject of design. In fact, while for a plate

in homogeneous material, the only design parameter is the thickness, once you have chosen

the material, a laminate has finale mechanical characteristics that depend both from those of

the layers that compose it, both by the number of these layers and especially on their relative

orientation.

The use of a laminate therefore requires a planning stage, and verification. The design

phase should include the normally design of strength and stiffness. You have to specify that

this involves not only the determination of minimum requirements strength and stiffness,

according to project needs, but also the type of elastic response (orthotropic, isotropic etc.).

A laminate is ultimately a complex material completely by design. The classical theory of

laminates responds to this; his objective is indeed to provide a mathematical model capable

of synthesize the elastic response of a laminate as if this was simply constituted by a single

equivalent layer. Ultimately, it is a process of homogenization of the mechanical characteristics

of stiffness, on the thickness of the plate.

The results of the classical theory are condensed into a law, which formalizes the elas-

tic response of the plate equivalent monolayer of the laminate, and having the same total
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Figure 10.2: Void calculation

thickness. It should be stated from the outset that the classical theory of laminates is only

a mathematical model, which is based on classical theory of plates under bending, and that

as this is subject to the right critical, even more important in the case of laminates for many

factors, as anysotrpy and especially heterogeneity (Overlay layers). Although the theory of

lamination does not provide all the mechanical results of relief (especially the stress and defor-

mation out of plane), it is useful in the design phase, and it is indispensable in the prediction

of the global elastic characteristics of the laminate. It was said that the classical lamination

theory finds its best application in the phase of the project. To date, the laminates design is

still research argument, since it does not yet have a single method able to meet all project

needs.

For further details, see [42], [44].

10.2 Modules Calculation

The plates will be treated as equivalet orthotropic material. It thus requires four constants for

the bonding equations.

Referring to figure 10.3 the parameters to be determined are:

• the longitudinal Young’s modulus: E11;

• the transverse modulus: E22;

• the in-plane shear modulus: G12;
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Figure 10.3: FDM - angle of deposition

• the in-plane Poisson ratio: ν12

Since the material with voids can not be considerated as a fiber-renforced material because

of the non-perfect bonding among filaments, the classical equation are not considered suitable

for material with cavities. Researchers have dimostrated [38] that, the bonding, can never

reach the perfect state in FDM state, therefore a new set of equations is proposed to calculate

the elastic constant, which can be used to determine the constitutive properies of FDM parts.

The elastic moduli will be calculated as a portion of the total ones, that is [38]

• longitudinal Young’s modulus:

E11 = (1 − ρ1)E (10.1)

where E is the Young’s modulus of polymer;

• transverse modulus:

E22 = (1 −
√
ρ1)E (10.2)

• in-plane shear modulus:

136



G12 = (1 −
√
ρ1)G (10.3)

• in-plane Poisson ratio:

ν12 = (1 −
√
ρ1)ν (10.4)

where ν is the polymer Poisson ratio and ρ1 is the void density.

For Further informations see B.4.

10.3 Analysis of Void Density

Several parameters affect the resistance of the final material. One of the most important

is the void density. Referring to figure 10.2, theorical calculations of strength, modulus and

other properties of a composite are based on the volume fraction of its continents.

The methodology employed in this work for parameters starts assuming the possibility

of defining a representative volume element (RVE) for the material, represented in figure

10.4. In [62], RVE is defined as ’A material volume which is statistically representative of

the infinitesimal material neighborhood of that material point.’ Once the RVE is defined,

a mathematical homogenization theory is used to transform the constitutive characteristics

of a heterogeneous composite material to that of a homogeneous material with ’effective’

properties that results in equivalent “average” macroscopic response.

Let recall sintering angle values shown in the previous part. By sintering models it’s

possible to know the rate of fusion of two polymer filaments, and consequently, by geometric

consideration, RVE, void and void area are defined. Void index ρ1 is calculated as:

ρ1 =
ARV E − Af i l l ed

ARV E
(10.5)

In present work, two cases are studied:

1. Circular Shape: the voids are calculated hypothesizing two spheres inscribed in a rect-

angle;

2. Elliptical shape: the voids are calculate hypothesizing two ellipsis inscribed in a rectangle.
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Figure 10.4: RVE calculation procedure

In the first case, using trigonometry and circle formulas, it can be possible to calcolate

ρ. For the elliptical shape, it’s more complicated to find the void area. Infact, in this case,

since it can’t be rely on trigonometry, it’s necessary to refer to the dimensionless radius (a

step before the angle calculation). To calculate the void area, it is needful to use the integral

calculus.

The choice of the two models has a precise meaning. According to the authors, the circular

pattern, at equal sintering angle achieved, better reflects the size of the voids present. While

the elliptical model better reflects the actual shape of the filament. Despite the extruder

is circular, during deposition, it is noted that, to reach layers height smaller of the extruder

diameter, the filament is often crushed, thus achieving the elliptical shape. Doing experimental

tests, it will be selected the model best approximates the real behaviour.

All values of parameters calculated are presented in the following tables:
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Model θ Af RVE Ae ρ1 E11 E22 G12 ν12

[Deg ] [mm2] [mm2] [mm2] [%] [Mpa] [Mpa] [Mpa] [−]

Frenkel 40.82 0.0541 0.060 0.006 10.6 1967 1484 593 0.17

λ = 0.1 45.35 0.051 0.056 0.005 10 2002 1541 616 0.18

λ = 10 36.88 0.056 0.064 0.008 12 1935 1437 575 0.16

λ = 20 30.86 0.059 0.069 0.010 14.2 1887 1370 548 0.16

λ = 50 22.01 0.061 0.074 0.013 17.3 1820 1286 514 0.15

λ = 11.4 35.87 0.057 0.065 0.008 12.4 1927 1425 570 0.16

Elastic 12.84 0.063 0.078 0.016 19.8 1764 1220 488 0.14

Table 10.1: Elastic Moduli: sintering between two spheres (radius = 0.2 mm)

Model X /a Af RVE Ae ρ1 E11 E22 G12 ν12

[Deg ] [mm2] [mm2] [mm2] [%] [Mpa] [Mpa] [Mpa] [−]

Frenkel 0.65 0.012 0.013 0.001 7.7 2031 1591 636 0.18

λ = 0.1 0.71 0.013 0.014 0.001 9.2 1997 1532 613 0.17

λ = 10 0.60 0.011 0.012 0.001 6.4 2060 1644 658 0.19

λ = 20 0.51 0.010 0.010 0.000 4.6 2099 1729 692 0.20

λ = 50 0.37 0.007 0.007 0.000 2.4 2147 1860 744 0.21

λ = 11.4 0.59 0.010 0.012 0.002 5.0 1916 1410 564 0.16

Elastic 0.22 0.004 0.004 0.000 0.8 2182 2000 800 0.23

Table 10.2: Elastic Moduli: sintering between two Ellipsis (a = 0.2 mm, b = 0.1 mm)
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10.4 Circular - Elliptical Comparison

As already mentioned, the circular pattern, at equal sintering angle achieved, better reflects

the size of the voids present. While the elliptical model better reflects the actual shape of

the filament. In this section, we present a comparison between moduli obtained with the

hypothesis of circular shape and that with the elliptical shape. The aim is to study which

shape better reflect the real behaviour of material in order to compare it with that obtained

with sperimental tests. The following table shows the different (%) of all parameters.

Model X /a ρE ρC Er r E11E E11C Er r

[Deg ] [%] [%] [%] [Mpa] [Mpa] [%]

Frenkel 0.65 7.7 10.6 27.68 2031 1967 3.28

λ = 0.1 0.71 9.2 9.0 2.76 1997 2002 0.27

λ = 10 0.60 6.4 12.0 47.03 2060 1935 6.44

λ = 20 0.51 4.6 14.2 67.83 2100 1887 11.25

λ = 50 0.37 2.4 17.3 86.14 2147 1820. 17.97

λ = 16.8 0.54 5.0 13.6 62.98 2089 1900 9.94

Elastic 0.22 0.8 19.8 95.82 2182 1764 23.70

Table 10.3: Circular(C) - elliptical(E) comparison (%) - ρ and ρ linearly dependent parameters

Model X /a E22E E22E G12E G12E ν12E ν12E Er r

[Deg ] [Mpa] [Mpa] [Mpa] [Mpa] [−] [−] [%]

Frenkel 0.65 1591 1484 636 593 0.18 0.17 7.22

λ = 0.1 0.71 1532 1541 613 616 0.17 0.18 0.59

λ = 10 0.60 1644 1437 658 575 0.19 0.16 14.46

λ = 20 0.51 1729 1370 692 548 0.20 0.16 26.22

λ = 50 0.37 1860 1286 744 514 0.21 0.15 44.62

λ = 16.8 0.54 1706 1388 682 555 0.19 0.16 22.92

Elastic 0.22 2000 1220 800 488 0.23 0.14 63.86

Table 10.4: Circular(C) - elliptical(E) comparison (%) - ρ square root dependent parameters
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Chapter 11

Experimental Tests

In this section, numerical moduli obtained by lamination theory will be compared to exper-

imental moduli obtained by traction tests. For experimental procedure we refer to ASTM

D 3039/D 3039M standard: ’Standard Test Method for Tensile Properties of Polymer Matrix

Composite Materials’ . Tensile tests aim is to evaluate the stress-strain curves and conse-

quently to calculate, by procedure described in the ASTM standard, the elastic modulus of

the specimens.

11.1 Test Procedure

We printed 15 specimens: 5 with filaments oriented to 90 degrees (in reference to the longi-

tudinal axis), 5 with filaments to 45 degrees and 5 to 0 degrees. For simplicity, from now, 90

degrees oriented specimens will be call transversal specimens, and 0 degrees oriented will be

call longitudinal specimens. Then, we did a total of 15 tensile tests.

Specimens used are represented in figure 11.2

The provine typology is described in the ASTM standard. In figure 11.1 is shown a 45

degrees specimen just printed.

Before proceeding, it was necessary to measure the printed specimens, in order to ef-

fectively evaluate the measurement uncertainties and, in case, print defects. We performed

six measurements for each chosen section, respectively: width, thickness, distance between

markers and the distance between tabs. In table 11.1 are summarized all measurements.

Testing machine and testing software are the same saw in section 8.1. Unlike the relaxation

test, now, we used manual grips. We expected a test duration much lower, In fact, the average
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Figure 11.1: 45 Degrees fibers Specimens

Figure 11.2: Transversal (90 Degrees) fibers Specimens
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Specimen Type Width Thickness Markers Distance Tabs Distance

Transversal Specimens

A0F100_1 15.28 1.73 29.95 137.01

A0F100_2 15.14 1.71 30.56 137.07

A0F100_3 15.13 1.72 29.94 137.85

A0F100_4 15.10 1.71 31.99 137.19

A0F100_5 15.17 1.72 29.91 137.21

45 Degrees Specimens

A90F100_1 25.45 2.34 51.60 124.60

A90F100_2 25.42 2.27 51.10 123.84

A90F100_3 25.37 2.26 51.47 124.26

A90F100_4 25.41 2.28 49.42 124.19

A90F100_5 25.46 2.31 52.56 124.92

Longitudinal Specimens

A45F100_1 15.48 2.29 29.80 137.45

A45F100_2 15.38 2.29 30.94 137.07

A45F100_3 15.48 2.27 31.09 137.13

A45F100_4 15.45 2.28 32.19 137.01

A45F100_5 15.46 2.27 29.61 137.17

Table 11.1: Tensile Test Specimens Measures [mm]

duration of test is about 15-20 minutes each (including time spent to setting machine and

exporting data).
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11.2 Results

In figures 11.3, 11.5 and 11.4 we can see how the specimens break. It’s important to note

that, by experimental evidence, that the tabs length influences the failure point along the

specimen profile. Infact, in the case of transversal fibers, tabs length is shorter than the grips

length, and the sample, breaks in a middle position between tabs. In the others two case,

tabs length is greater than than of grips. Infact, the failure point is nearby the tabs starting

point. Despite the length of tabs is recommended by the tensile test standard, it would be

appropriate to reduce it, in order make it lower than the grips length.

Figure 11.3: Longitudinal Fibers Specimens Failure Point

Tests results are plotted in a txt file. We implemented the results in a MATLAB code. In

this manner, we can plot the stress-strain curves. In figures 11.6, 11.7 and 11.8 are shown

the obtained curves.

As we expected, the longitudinal specimens, have a pick resistence value higher than the

others two. We also can see that, according to the orientation values of fibers, in addition

to strength, also failure behaviour is different. In the 90 degrees case, we observe a fragile

behaviour; once the maximum tolerable stress is reached, the specimen breaks. In the lon-

gitudinal case, after the pick values, probably, some materials fibers break and consequently,
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Figure 11.4: 45 Degrees Fibers Specimens Failure Point

Figure 11.5: Transversal Specimens Failure Point

the stress deacreases in steps. In one case, we reached an elongation of about 1.5 cm. In the

case of 45 degress fibers, 3d printed solid shows a perfect plastic behaviour.
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Figure 11.6: Longitudinal Fibers Specimens Stress-Strain Curve

Figure 11.7: 45 Degrees Fibers Specimens Stress-Strain Curve
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Figure 11.8: Transversal Specimens Stress-Strain Curve

Figure 11.9: Comparison - Stress-Strain Curve
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In figure 11.9, we can see the comparison between three different fibers-oriented speci-

mens. It’s immediately evident that, Young’s modulus decreases with the increasing of fiber

orientation, starting from 0 degrees, up to 90 degrees.

Now, we want to check if the 3D printed solids behave actually as an orthotropic trans-

versely isotropic material. In figure 11.10 is shown the moduli values with their probability

dispersion. Referring to theese results, and since the moduli values of 0 degrees specimens

and 90 degrees specimens, don’t overlap, we can say, with good probability that material is an

orthotropic transversely isotropic material.

In this manner, we can enhance the lamination theory used for the moduli calculation.

Figure 11.10: Moduli Values Dispersion
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Chapter 12

Experimental - Numerical Moduli

Comparison

By method shown in ASTM standard we can calculate Young’s modulus.

In table 12.1, are shown the obtained moduli.

Specimen Young Modulus 90° Young Modulus 45° Young Modulus 0°

Spec 1 1751 1687 1834

Spec 2 1681 1667 1818

Spec 3 1712 1657 2071

Spec 4 1606 1609 1956

Spec 5 818 1632 2006

Average 1687 1650 1937

Table 12.1: Young’s Moduli Calculated by Tensile Tests [Mpa]

Since the tensile tests have been done in the longitudinale direction, only the longitudinal

and transversal Young moduli will be compared. Furthermore, we see that the specimen 5

with fibers at 90 degrees, has localized weaknesses, in fact the test results, in terms of elastic

modulus are much different from the others. For These Reasons, this test will be neglected

in the moduli calculus.

In the table 12.2 we can see the matching of our data with the real data obtained with

experimental tests.
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Model
E11EXP E11ELL E11CIRC Error (E11ELL ) Error (E11CIRC )

[Mpa] [Mpa] [Mpa] [%] [%]

Frenkel - Eshelby 1937 2031 1967 4.6 1.5

Maxwell λ = 11.4 1937 1916 1927 1.1 0.5

Elastic 1937 2182 1764 11.2 9.8

Model
E22EXP E22ELL E22CIRC Error (E22ELL ) Error (E22CIRC )

[Mpa] [Mpa] [Mpa] [%] [%]

Frenkel - Eshelby 1687 1590.79 1483.62 6.1 13.7

Maxwell λ = 11.4 1687 1409.59 1424.99 19.7 18.4

Elastic 1687 1999.73 1436.62 15.6 17.4

Table 12.2: Young’s Moduli Comparison

Firstly, we can say that the matching is very good, especially for the longitudinal Young

modulus. The Model that better reflects the real material behaviour is the viscoelastic Model.

The error is near 1%.

In the case of Transversal Modulus, the matching is slightly less good. The error is near

6% for the elliptical shape and near 14% for the circular shape. The important thing is that,

for E22 the model that bettere reflects the material real behaviour is Frenkel Model, that is a

pure Viscous Model.

Finally, we can say that, our model predict in a specific manner, the longitudinal modulus.

Infact, in our work, we haven’t taken into account other parameters that influence the solid

obtained by 3D printing, particularly, the angle of deposition and the orientation of the fibers.

Probably, introducing in our analytical model, a factor which evaluates the influence of the

aforementioned parameters, it would be possible to correct results and get a better matching

even in the case of transversal Modulus.

In figures 12.1, 12.2 are compared the different moduli values and in figures 12.4, ?? are

compared the relative errors.
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Figure 12.1: Longitudinal Young Modulus Comparison

Figure 12.2: Transversal Young Modulus Comparison
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Figure 12.3: Longitudinal Young Modulus Error Comparison

Figure 12.4: Longitudinal Young Modulus Error Comparison
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Chapter 13

Conclusions and Future

Developements

In this thesis, thermal process during the FDM extrusion was analyzed and the cooling temper-

ature profile of the extruded filament was obtained. We can conclude that the filament will not

be maintained above glass transition Tg long enough for perfect bonding to occur. Because of

imperfect bonding, the existing methods of calculating the elastic constants of solid with voids

are not adequate. We can also conclude that, the critical time in which bonding stops, can be

modified changing filament dimensions or changing distance between deposited filaments. If

we depose a filament with larger dimensions, closer to the previous, bonding phenomenon will

probably totally occours.

Once found the temperature profile, we could go into details analysing how bonding really

happens. Sintering is a very complex process involving several multiphysics phenomena. From a

practical point of view there are many variables we have to control in order to obtain the desired

properties of the final product. Because of these many variables and their interdependency, it’s

difficult to extract useful information from analytical data. Therefore numerical simulations

represent a powerful tool that can provide meaningful information about this phenomena.

Considering the numerical tools available aiming at the simulation of the sintering process

at the particle scale, a lack of a numerical approach able to handle the different diffusion mech-

anisms, complex geometries, and strong topological changes in 2D and even more drastically

in 3D became evident.

In order to comprend how the made simplifications, lead to results that loose physical
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meaning, In the present thesis, a simple numerical strategy, based on stabilized mixed finite

elements, was developed for simulating sintering both by surface and volume diffusions. A

characteristic of the proposed approach for volume diffusion, is to express the mass flux with

respect to the gradient of pressure. Hence, contrary to the literature, where grains are consid-

ered as rigid bodies, grains were assumed to behave as elastic bodies. We can conclude that,

modeling the fused polymer as a linear elastic simplified material, displacement, pressure and

density obtained are not comparable to real displacements and real matarial properties.

We also present three analytical sintering models: viscous, viscoelastic and elastic. As we

have already discussed, the real polymer behaviour depends on λ value, and thus, the material,

can be modeled with good approximation. An experimental test has been done in order to

evaluate λ and, with good approximation, we reached the sintering angle correct value.

Once obtined sintering angles, we proceded to evaluate the void density. We simulate the

density obtained with sintering of two spheres and with sintering of two ellipsis. The elliptical

shape hypothesis aims to simulate the deposited filament, with a dimension that is much

greater than other two dimensions. In this manner, the filament is cutted and only studied in

the two similar dimensions, i.e. the two radius.

The bonding is just one of many factors that influence the final product; different deposi-

tion densities, orientations and theis combinations can be employed in producing the required

stiffness properties of manufactured parts. Considering different combinations of raster angles

in succesive layers, it’s obvious that a large variety of laminates may be crated. This work

represent the first step to predict the final material behaviour.

Sperimental tests on different layered specimens show how material behaviour is affected

by the deposition angle.

From data obtained by tensile tests, we can affirm, with good approximation that 3D

printed material behave as an orthotropic transversely isotropic material.

In future, there are many possible developements. Referring to experimental tests, it could

be considered in a more correct way the transverse Young modulus and perform other tests for

calculation of Poisson Ratio and conseguently, the shear modulus. One other important step

we can think to do is to develop a more accurate FEM simulation, in order to allows to cope

with the severe topological changes and complex geometries that characterize the sintering

process.

As regards the choice finite element (Quad-4), using a bilinear quadrilater finite element
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with 9 nodes with quadratic shape functions, we can get a higher precision and definitely better

numerical stability . In this way, it would be possible to give to the second derivatives of the

shape functions, more physical meaning (it would remain constant in the quadratic case, while

in QUAD-4 results 0 due the linear form); and the problem encountered in the two-field-mixed

FEM formulation, will thus partly eliminated.

Furthermore, we can simulate the real material behaviour including non linear terms, but

it’s important to highlight that this kind of simulations are computationally very expensive,

especially in 3D.

It’s possible to extend present work to all other issues that affect the mechanical proper-

ties of the final solid, as raster angle, non-isothermal conditions, . . . . However, our results

represent an optimal start point to future improvements in this research field.
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Appendix A

Basic Equations

A.1 Fick’s Law

Fick’s laws of diffusion describe diffusion, it relates the diffusive flux to the concentration

under the assumption of steady state. It postulate that the flux goes from region of high

concentration to regions of low concetration with a magnitude that is proportional to the

concentration gradient (spatial derivative), or in simplistic terms the concept that a solute

will move from a region of high concentration to a region of low concentration across a

concentration gradient. In one (spatial) dimension, the law is:

J = −D∇φ (A.1)

where J is the diffusion flux
[
mol
m2s

]
, D is the diffurion coefficent or diffusivity

[
m2

s

]
, φ is the

concentration
[
mol
m3

]
.

The driving force for the one dimensional diffusion is the quantity − ∂φ∂x which for ideal

mixtures is the concentration gradient. In chemical systems other than ideal solutions or

mixtures, the driving force for diffusion of each species is the gradient of chemical potential

of this species. Then Fick’s first law (one-dimensional case) can be written as:

Ji = −
Dci
RT

∂µi
∂x

where the index i denotes the i t h species, c is the concentration (mol /m3), R is the

universal gas constant (J/(Kmol )), T is the absolute temperature (K ), and µ is the chemical

potential (J/mol ).
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A.2 Substantial derivate

The substantial derivate of a generic (scalar or vector) quantity Φ is defined as follow:

DΦ
Dt

=
∂Φ

∂t
+ v

∂Φ

∂x
(A.2)

A.3 Time-derivative of volume integral in Euler formulation

Let us consider a scalar field φ(y , t ) and a volume integral over the current deformed domain

Ω:

I =

∫
Ω
φ(y , t )dV (A.3)

Changes in I (t ) are due to two different phenomena:

1. change of Φ(..., t ) inside of the fixed domain Ω over time d t :

dI1 =

∫
Ω

∂φ(y , t )

∂d t
d t dV = d t

∫
Ω

∂φ(y , t )

∂d t
dy (A.4)

2. Time flow (in-out flow) of continuum through ∂Ω:

dI2 =

∫
∂Ω
Φn · vd t dΓ = d t

∫
∂Ω
Φn iv

i dΓ (A.5)

By the Divergence theorem:

dI2 =

∫
Ω

∂

∂y i
(Φv i )dV (A.6)

Then, by Eq. A.2, we obtain:

DI

Dt
=
d

d t
(I1 + I2) =

∫
Ω

[
∂Φ

∂t
+

∂

∂y i
(Φv i )

]
dV =

=

∫
Ω

[
∂Φ

∂t
+ v i

∂

∂y i
(Φ) + Φ

∂

∂y i
(v i )

]
dV =

∫
Ω

[
DΦ
Dt

+ Φ
∂v i

∂y i

]
dV

(A.7)
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A.4 Diffusion Coefficient

Diffusivity or diffusion coefficient is a proportionality constant between the molar flux due to

molecular diffusion and the gradient in the concentration of the species (or the driving force for

diffusion). Diffusivity is encountered in Fick’s law and numerous other equations of physical

chemistry.

The diffusivity is generally prescribed for a given pair of species and pairwise for a multi-

species system. The higher the diffusivity (of one substance with respect to another), the

faster they diffuse into each other. Typically, a compound’s diffusion coefficient is 10, 000

times as great in air as in water.

Diffusivity has an SI unit of [m2/s ] (l eng th2/t ime).

The diffusion coefficient in solids at different temperatures is generally found to be well

predicted by the Arrhenius equation:

D = D0e
−EA/(kT ) (A.8)

where:

• D is the diffusion coefficient (m2/s);

• D0 is the maximum diffusion coefficient (at infinite temperature, m2/s);

• EA is the activation energy for diffusion in dimensions of (J at om−1);

• T is the temperature (K );

• k is the Boltzmann constant.
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Appendix B

Mechanics Recalls

Let us recall some important concepts of thermodynamic of continuum.

B.1 First Law of Thermodynamics: Conservation of Energy

Let us remark some basic state variable, which physical nature is linked to statistical mechanics

beyond the scope of this lecture. We can consider them as certain averaged characteristics of

the particle nature of the continuum:

• Temperature T : intensive quantity, ie. there is no ’specific temperature’ or ’temperature

per unit mass’;

• Internal energy U and thermodynamical entropy S: extensive quantities, one defines

specific internal energy ε and specific entropy η so that:

U =

∫
Ω
ρεdV S =

∫
Ω
ρηdV (B.1)

The change of the kinetic and internal energy δ(K +U ) of a body ω is equal to the work

δW of mechanical forces and heat δQ , in formula:

K̇ + U̇ = Ẇ + Q̇ (B.2)

Now we have to apply the time derivate formula described in Eq. A.7, then:
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• Time derivate of K :

K =
1

2

∫
Ω
ρ`v `2dV =

1

2

∫
Ω
ρv ivi dV (B.3)

DK

Dt
=
1

2

∫
Ω

D (ρv 2)

D t
dV +

1

2

∫
Ω
ρv 2

∂v i

∂yi
dV =

1

2

∫
Ω
ρ
D (v 2)

Dt
dV+

1

2

∫
Ω
v 2

(
Dρ

D t
+ ρ

∂v i

∂yi

)
︸            ︷︷            ︸

= 0 by continuity eqsigma.

dV =
1

2

∫
Ω
ρ
D (v 2)

Dt
dV

(B.4)

• Time derivate of U :

U =

∫
Ω
ρεdV (B.5)

DU

Dt
=

∫
Ω
ρ
Dε

Dt
dV (B.6)

• Time derivate of heat Q :

DQ

Dt
= −

∫
Ω

∂q i

∂y i
dV +

∫
Ω
ρhdV (B.7)

Here, q i is the heat flux [Jm−2s−1] and h is the specific heat source intensity [Jk g−1s−1].

The minus sign appears because n is the external normal.

• Time derivate of mechanical workW (power):

DW

Dt
= −

∫
Ω

∂(σ i jvi )

∂y j
dV +

∫
Ω
ρf ivi dV (B.8)

Finally, for any ω ⊂ Ω, subdomain of continuum, the conservation of energy can be written

as:

∫
ω

(
ρ

2

D (v 2)

Dt
+ ρ

Dε

Dt

)
dV =

∫
ω

(
ρh −

∂q i

∂y i
+
σ i jvi

∂y j
+ ρf ivi

)
dV (B.9)

Hence:
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ρ
Dε

Dt
= ρh + −

∂q i

∂y i
+ σ i j

∂vi

∂y j
+ vi

(
−ρ
Dv i

Dt
+
∂σ i j

∂y j
+ ρf i

)
︸                            ︷︷                            ︸

= 0 by force equilibrium.

(B.10)

And, we obtain the energy equation:

ρ
Dε

Dt
= ρh − ∇i q

j + σ i j · ∇jvi (B.11)

B.2 Second Law of Thermodynamics: Entropy

The change of total entropy in the body Ω over time is greater or equal to the sum of entropy

flow over the boundary ∂Ω from the exterior and the entropy produced by internal heat sources

on Ω.

Total entropy [J/K ], defined up to a constant by:

dS =
dQ

T
(B.12)

B.3 Mathematical form of the 2nd law of thermodynamics - Clausius-

Duhem inequality

DS

Dt
≥

∫
Ω

ρh

T
dV −

∫
∂Ω

1

T
q · ndΓ (B.13)

where, the sign ’=’ is for reversible processes, while the sign ’>’ is for irreversible ones.

Derivation

Using the specific entropy η:

D

Dt

(∫
Ω
ρηdV

)
≥

∫
Ω

ρh

T
dV −

∫
∂Ω

1

T
q · ndΓ (B.14)

Time-derivative of an integral formula and the Divergence theorem:

∫
Ω
ρ
Dη

Dt
dV +

∫
Ω
η
Dρ

Dt
+

∫
Ω
ρη
∂v i

∂y i
dV︸                           ︷︷                           ︸

= 0 by continuity equation.

−

∫
Ω

ρh

T
dV +

∫
Ω

∂

∂y i

(
q i

T

)
dV ≥ 0 (B.15)
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and we obtain the Clausius-Duhem inequality in the integral form:

∫
Ω
ρ
Dη

Dt
dV −

∫
Ω

ρh

T
dV +

∫
Ω

∂

∂y i

(
q i

T

)
dV ≥ 0 (B.16)

Local (pointwise) form of Clausius-Duhem inequality:

ρη̇ −
ρh

T
+

∂

∂y i

(
q i

T

)
≥ 0 or ρT η̇ − ρh + ∇i q

i −
q i

T
∇iT ≥ 0 (B.17)

Clausius-Duhem inequality with Helmholz free-energy

By itself S does not have any meaning. However, dST is the increase of the portion of internal

energy which cannot be used to do work.

We can define the Specific Helmholz free energy ϕ: the density of mechanically exploitable

internal energy:

ϕ = ε −T η (B.18)

Deriving ϕ in time:

ϕ̇ = ε̇ − Ṫ η −T η̇ (B.19)

and substitute into the Clausius-Duhem inequality. Express ∇i q i from the energy equation:

∇i q
i = −ρε̇ + ρh + σ i j∇jvi (B.20)

And now, plug it into Clausius-Duhem inequality:

0 ≥ ρT η̇ + ρh − ∇i q
i +

q i

T
∇iT =

− ρT η̇ + ρh − ρε̇ − ρh − σ i j∇jvi +
q i

T
∇iT =

ρϕ̇ + ρṪ η − σ i j∇jvi +
q i

T
∇iT

(B.21)

And we obtain the dissipation inequality:
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ρϕ̇ + ρṪ η − σ i j∇jvi︸                    ︷︷                    ︸
≡ −δ, internal dissipation.

+
q i

T
∇iT ≥ 0 (B.22)

Remarking that:

ε̇(t ) =
dε

d t
=
d

d t

(
L(t ) − L0

L0

)
=
1

L0

dL

d t
(t ) =

v (t )

L0
(B.23)

we can write the dissipation inequality as:

ρϕ̇ + ρṪ η − σ i j : ε̇i j +
q i

T
∇iT ≥ 0 (B.24)

B.4 Elastic Moduli Modeling. Mechanics of Materials Approach

In the following definitions, these assumption are made:

• Extruded ABS fibers are linear-elastic and isotropic;

• perfect bonding between fibers.

Referring on figure 10.2, the void area on a plane normal to the fibers, Av , can be written

as:

A1v =
∑

cl 2i (B.25)

where l is a characteristic length, and c is a shape factor depending on void tipology [38].

Now, ones defined the RVE as seen in chapter 10, the areal void density in the plane normal

to the fiber is given by:

A1v = ρ1Ā = ρ1L
2 (B.26)

Equating eqts B.25 and B.26, we can write:

l =

√
ρ1
c
L (B.27)

Now, as did before, we can also define the void area in orthogonal plane 2. In formula:

A2v =

√
ρ1
c
Ā =

√
ρ1
c
L2 (B.28)
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Recalling that: Ai = Ā − Aiv , we obtain:

A1 = (1 − ρ1)A A2 = (1 −
√
ρ1)A (B.29)

To obtain the effective shear modulus in the two principal directions, identical bubes of

actual and effective materials of side length dx are considered. Applying an uniform load F

along principal direction 1 and 2, elongation along the direction of load F , for both materials,

are given by

δhet =
F dx

AiE
δhom =

F dx

Āi Ē
(B.30)

where E is Young’s modulus of material, Ā, is the cross sectional area of the RV E (dx2),

and Ai is the material cross section in the heterogenous material.

Equating elungations, and by Eq. B.30, we obtain

Ē1 = (1 − ρ1)E Ē2 = (1 −
√
ρ1)E (B.31)

The effective shear moduli, Gi j , are determined by considering equal magnitude forces, F ,

applied to each face of the RVE, inducing a homogeneous shear strain γ in the material. The

shear deformation in the heterogeneous and homogeneous material are:

eheti j =
1

2

(
F /Ai
G

+
F /Aj

G

)
ehomi j = f r acF /ĀḠ (B.32)

where G is the effective material shear modulus. By Eq. B.29 and equating shear stresses

defined above, we obtain:

Ḡ12 = (1 −
√
ρ1)G (B.33)

For the effective Poisson’s ratio formulation, a constant stress s is applied along the i − t h

direction, while keeping all others equal to zero. The elongations in the j − t h direction for

the actual and effective material are given by:

δhetj = ν
σ

E
δhomj = ν̄i j

σ

Ēi
(B.34)

where ν is the effective material Poisson’s ratio. As done before, results obtained are:

ix



ν̄12 = (1 −
√
ρ1)ν (B.35)
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Appendix C

Finite Element Formulation

C.1 Gauss - Legendre Quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function,

usually stated as a weighted sum of function values at specified points within the domain of

integration.

Following figure, shows the integration points used in the Gaussian integration.

An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature

rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable

choice of the points xi and weights wi for i = 1, ..., n. The domain of integration for such a

xi



rule is conventionally taken as [−1, 1], so the rule is stated as

∫ 1

−1
f (x ) dx =

n∑
i=1

wi f (xi ). (C.1)

Gaussian quadrature as above will only produce good results if the function f (x ) is well ap-

proximated by a polynomial function within the range [−1, 1].

Some low-order rules for solving the integration problem are listed in table C.1.

Number of Points Gauss Point Gauss Weights

1 0 2

2 ±

√
1

3
1

3
0

8

9

±

√
3

5

5

9

4
±

√
3

7
−
2

7

√
6

5

18 +
√
30

36

±

√
3

7
+
2

7

√
6

5

18 −
√
30

36

5

0
128

225

±
1

3

√
5 − 2

√
10

7

322 + 13
√
70

900

±
1

3

√
5 + 2

√
10

7

322 − 13
√
70

900

Table C.1: Gauss-Legendre Quadrature
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