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Design, Analysis, Optimization 
Design processes often involve or require some 
optimization of the geometry (CAD). 

•  Shape Optimization:  
find the optimal shape of a body;   

•  Topology Optimization:  
find the optimal distribution of the material in a domain or        
component. 

GEOMETRY ANALYSIS + 
OPTIMIZATION 



Design, Analysis, Optimization 

Current Engineering procedures based on the Finite 
Element Analysis do not allow a straightforward use of 
optimization tools. 

This is principally due to the CAD geometry-mesh mapping. 

GEOMETRY MESH 
ANALYSIS + 

OPTIMIZATION 



Design, Analysis, Optimization 

Shape  
Optimization 

  

find ∂Ω s.t. J (u;∂Ω) is miminum, with:
L(u)u =  f  in Ω  & BCs.

Difficulties: 
•  nonlinearities/differentiation/optimization tech. 
•  re-meshing 
•  geometrical information 

[ Jamenson, Mohammadi, Pironneau, Sokolowski, Svanberg, Zolesio, …] 

? 

Example: Shape Optimization 



Design, Analysis, Optimization 

  Computational geometry and analysis are separate fields 
  Finite Element Method (FEM), started in 1950’s 
  Computer Aided Design (CAD) and Computational 

Geometry (CG), started in 1970’s 

  Geometry is a foundation of CAD 

  Geometry is a foundation of computational analysis 

  CAD and FEM use different representations of geometry 

  Mesh generation is a bottleneck in Design through Analysis. 

Difficulties in geometry optimization are inherited by 
drawbacks in Finite Element Analysis: 



Design, Analysis, Optimization 

Encapsulate the exact CAD geometry in: 
  Analysis  
  Design 
  Optimization: 

•  Shape Optimization 
•  Topology Optimization 

Isogeometric Analysis 

 [Hughes, Cottrell, Bazilevs, 2005] 



Isogeometric Analysis 
  Analysis framework built on the primitives (basis functions) 

of CAD and Computational Geometry 
  Original instantiation based on Non-Uniform Rational B-

Splines (NURBS) 
  Framework extended to more advanced discretizations 

(e.g., T-splines, Subdivision) 

  Generalizes and improves on Finite Element Analysis 
  Encapsulates “exact geometry” and its 

parameterization at the coarsest level of discretization 
  Allows for smooth basis functions 
  Allows for h-, p- and k-refinement 
  Geometry and its parameterization unchanged during 

refinement 



Objects of B-spline geometry 

  

Linear combination of the spline basis in Ω̂=(0,1)α  α = 1,…,d  
and objects in d

Ω = F(ξ) = C,N ξ( ) = CiNi ξ( )
i=1

n

∑  ∀ξ ∈Ω̂ = (0,1)α

α =1 gives rise to a B-spline curve in       
α =2 gives rise to a B-spline surface in        
α =3 gives rise to a B-spline solid in 

 
d

 
d

 
d

Control points. 
Their multi-linear  

interpolation forms 
Control mesh 

Cannot represent conic sections (i.e. circles, ellipses) exactly.  
Need NURBS. 



Univariate (1-D) splines 
Knot vector on       and p-order 

B-spline basis on       by recursion: 

Ni,0 (ξ) =
1 if ξi ≤ ξ < ξi+1,
0 otherwise

⎧
⎨
⎩

Ni, p (ξ) =
ξ − ξi

ξi+ p − ξi
Ni, p−1(ξ) +

ξ i+ p+1−ξ
ξi+ p+1 − ξi+1

Ni+1, p−1(ξ)

Start with piece-wise 
 constants 

Bootstrap 
recursively 

 to p 

Knots ξi with 
multiplicity mi 

Ξ = ξ1,ξ2 , ξ3, ..., ξn+ p+1{ } n = number of  
      basis functions 

Ω̂

Ω̂



Univariate (1-D) splines 

- control points 

- knots 

Knot vector on       and order 2 Ω̂



Cw (ξ)

C(ξ)

Objects of NURBS geometry 

   

Linear combination of the spline basis in Ω̂=(0,1)α  α = 1,…,d  and objects in d+1

projected back into d  by a projective transformation :

Ω = F(ξ) = Π {Ci ,wi}Ni ξ( )
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

= 

Ci / wi( ) wiNi ξ( ) / wjN j ξ( )
j=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∑ =

Ĉi
i=1

n

∑ wiNi ξ( )
w

= Ĉi
i=1

n

∑ Ri ξ( ) ∀ξ ∈Ω̂ = (0,1)α

Ci,wi 
Part of geometrical map.  

NURBS basis is  
geometry-specific. 

Conic sections  
represented exactly. 



Objects of NURBS geometry 



From NURBS to  
Isogeometric Analysis 

 
Ω = x ∈d , x = F(ξ) = Ci

i=1

n

∑ Ri ξ( ), ∀ξ ∈Ω̂ = (0,1)α⎧
⎨
⎩

⎫
⎬
⎭

Physical domain 

Basis 
(Isoparametric   
 construction)   

uh ∈Vh = span Ri F
−1{ }i=1,…,n ⊂ V

NURBS approximation space over physical domain 

Parametric domain 

u ∈V   solution of PDE

 uh = ûh F
−1 ûh (ξ) = ui Ri

i=1

n

∑ (ξ)    in Ω̂

Isogeometric Analysis 



Optimization with  
Isogeometric Analysis 

Topology Optimization 

Shape Optimization 

Geometry generation 
CAD (NURBS or T-splines) 

[J.Zhang] 

Optimal CAD Geometry 

 t

Initial CAD Geometry 



Topology Optimization 
Applications:  
•  Beams/Trusses/Bridges [Bendsoe, Kikuchi, Sigmund, …] 

•  Aeronautical structures [Bendsoe] 

•  Crashworthiness design [Pedersen] 

•  MEMS devices / Piezoelectric micro-tools   
   [Buhl, Carbonari, Sigmund, Silva, Paulino,…] 

•  Dynamical systems [Jensen] 

•  Acoustics / Photonic / Thermal / Fluid problems    
  [Bendsoe, Gersborg-Hansen, Jensen, Sigmund, …] 

  2D/3D problems 
  Single or multi-material 



   

find ρ = {0,1} in Ω⊂ Rd s.t. JE (ρ,u) minimum, with :

−div σ (u) = f in {ρ = 1}⊆ Ω
u = 0  on  ΓD ,
σ (u) ⋅ n = t  on ΓN ,
σ (u) ⋅ n = 0 on ∂Ω \ (ΓD  ΓN )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  &  inequality constraints

Topology Optimization 

  ( u = u(ρ) and σ (u)=σ (u(ρ)) )

[ Bendsoe, Kikuchi, Sigmund, Stolpe, Svanberg, …] 

Structural  
Topology Optimization: 

Linear Elasticity 



Minimum Compliance 
[Bendsoe, Kikuchi, Sigmund, Pedersen]  

   

JE (ρ) = f ⋅u(ρ)
Ω∫ + t ⋅u(ρ)

ΓN
∫

ρ ≤V < Ω
Ω∫

Find the optimal distribution of      in the domain     
in order to minimize the compliance             of the system 

under a volume constraint      (equality or inequality) 

ρ Ω

V

Alternative criterion:  
minimize weight of the structure  

under stress constraints 

JE (ρ)



•                                                (with inequality constraints) 

•  Solid Isotropic Materal with Penalization (SIMP) 

•  Finite Element approximation; Low Order 
        piecewise constant over mesh elements   

•  Constrained Optimization procedure;  
   e.g.: MMA (Method of Moving Asymptotes), [Svanberg] 

SIMP Approach 

ρ

 ρ = {0,1} → 0 ≤ ρ ≤ 1

(Young modulus depends on density) 



Drawbacks: 
•  instabilities & check-board phenomenon  
    Required: regularization techniques,  
        filters, sensitivity filters, perimeter limitation 

•  high number of inequality constraints 
•  non-convex optimization 

•  ability to provide geometric information 
•  manufacturability - integration with CAD 

SIMP Approach 
Advantages: 
•  simplicity & flexibility 
•  low number of DOFs 

? 



Multiphase Approach 
[Bourdin, Burger, Chambolle, Stainko, Wang, Zhou]  

Sharp interfaces approximated by thin layers 

Add to cost functional a  
total free energy term  

(Cahn-Hilliard type): 

  

J (ρ) = JE (ρ) + 1
ε

JBLK (ρ) + εJINT (ρ)

JBLK (ρ) = ρ(1− ρ) dΩ
Ω
∫

JINT (ρ) = 1
2

|∇ρ |2 dΩ
Ω
∫

ε > 0

“Filtering” &  
perimeter limitation 

Finite Element approximation: order ≥ 1 



Drawbacks: 
•  non-convex optimization  
     strong dependence on the optimization solver used 
•  dependence on parameters 

Multiphase Approach 

Advantages: 
•  sharp & smooth interfaces 
•  geometrical information  
•  filtering and perimeter limitation embedded in  
•  possibility to remove inequality constraints  
   by choosing                   

 0 ≤ ρ ≤ 1
JBLK (ρ)

JINT (ρ)



Multiphase Approach  
Continuation method 

  

Linear Elasticity, Plane Stress
E0 = 1, ν = 0.3, f = 0, t = −0.5 ŷ

Ω = (0,2) × (0,1),
ρ

Ω∫
Ω

≤ 0.35

E(ρ) = ρP E0 , P = 5
ε0 = 1.5, χ = 0.25
# d.o.f. = 3960 (IsoG.)

•  Quasi-Newton optimization method  

•  Continuation method (progressive reduction of                  ); 
   the final solution is obtained as a sequence of optimal states  
   for increasing values of L 

•  Isogeometric Analysis,  
  order 3 

  
J (ρ) = JE (ρ) + 1

ε
JBLK (ρ) + εJINT (ρ)



Multiphase Approach  

L=0 

L=2 

L=3 

L=1 

L=4 



Topology Optimization &  
Cahn-Hilliard Equation 

The Multiphase approach in Topology Optimization shows 
analogies with Multiphase problems, in particular with the: 

Cahn-Hilliard equation (1957) 

which describe the transition of two phases from a mixed 
status to a fully separated configuration. 

 The CH eq. is a 4th order nonlinear parabolic PDE  



Cahn - Hilliard Equation 

 

∂ρ
∂t

= ∇i M (ρ)∇µ CH (ρ)( ) in Ω× (0,T )

∇ρin = 0
M (ρ)∇µCH (ρ)in = 0
ρ = ρ0

  on ∂Ω × (0,T )
on ∂Ω × (0,T )
in Ω× {t = 0}

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 

JCH (ρ) = F(ρ)dΩ +
1
2
λ

Ω∫ ∇ρi∇ρdΩ
Ω∫ λ > 0

µCH (ρ) : < µCH (ρ),ϕ >=
dJCH
dρ

ρ( )[ϕ ] ∀ϕ test function

µCH (ρ) = dF
dρ

(ρ) − λΔρ

V = ρ0 dΩ ≡
Ω∫ ρ(t)dΩ

Ω∫ ∀t ∈(0,T )

M(ρ) = Dρ(1− ρ) mobility

F(ρ)

ρ0 1

or periodic 
conditions 



Cahn - Hilliard Equation 

  

F(ρ) logarithmic, θ = 1.5,     M = Dρ(1− ρ), D = 1,   
Initial random distribution: Volume ± 0.50 %
IGA :   order p,q = 2, Gauss pt.s = 3,    h = L0 / 45

[Gomez, Calo, Bazilevs, Hughes, 2007] 

Interface thickness  
Depending on resolution  λ = τ h2

Time approximation:  
•  generalized α-method (fully implicit, second order accurate) 
•  adaptive time-scheme (based on comparison of Backward  
                                        Euler and α-method) 

Spatial approximation: 
•  IsoGeometric Analysis, order ≥ 2 



Cahn - Hilliard Equation 
Volume = 0.50, Periodic BCs 

t 

dt 

t = 4e-4 
Steady 
 state 

t 

JCH



Cahn - Hilliard Equation 
Volume = 0.37, Periodic BCs 

t 

dt 

t = 9e-5 
Steady 
 state 

t 

JCH



Cahn - Hilliard Equation 

Volume = 0.50 Volume = 0.37 



Topology Opt. with Phase Field 

 

µ(ρ,u(ρ)) = µ(ρ) : < µ(ρ),ϕ >=
dJ
dρ

ρ( )[ϕ ] ∀ϕ test function

µ(ρ) = µCH (ρ) + µE (ρ,u(ρ)) = dF
dρ

(ρ) − λΔρ − γ PρP−1 σ (u(ρ)) :ε(u(ρ))

σ (ρ,u) = ρP σ (u)

V = ρ0 dΩ ≡
Ω∫ ρ(t)dΩ

Ω∫ ∀t ∈(0,T )

M(ρ) = Dρ(1− ρ) mobility

 
JCH (ρ) = F(ρ)dΩ +

1
2
λ

Ω∫ ∇ρi∇ρdΩ
Ω∫ λ > 0

 
JE (u(ρ)) = t

ΓN
∫ iu(ρ) dΓN

J(ρ) = JCH (ρ) + γ JE (u(ρ))
Generalized Cahn-Hilliard equations 



Topology Opt. with Phase Field 

 

∂ρ
∂t

= ∇i M (ρ)∇µ(ρ,u)( ) in Ω× (0,T )

∇ρin = 0
M (ρ)∇µ(ρ,u)in = 0
ρ = ρ0

  on ∂Ω × (0,T )
  on ∂Ω × (0,T )
  in Ω× {t = 0}

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

   

−div σ (ρ,u) = f       in Ω× (0,T )                        
u = 0                         on  ΓD × (0,T )
σ (ρ,u) ⋅ n = t             on ΓN × (0,T )
σ (ρ,u) ⋅ n = 0           on ∂Ω \ (ΓD  ΓN ) × (0,T )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

+ 

Generalized Cahn-Hilliard equations 



Topology Opt. with Phase Field 
Generalized Cahn-Hilliard equations 

•  Mass/volume conservative  topology optimization is  
                                                   volume constrained  

•  The cost functional         corresponds to the energy of the  
   generalized CH eqs. and it is a Liapunov functional 

•  The steady state of the generalized CH eqs. corresponds to  
   the minimum of the energy and hence to the minimum of  
   the cost functional 

ρ
Ω∫ = ρ0Ω∫ = V ∀t ≥ 0

J(ρ)

dJ
dt
(ρ) = − M (ρ) ∇µ(ρ) 2

Ω∫ ≤ 0 ∀t ≥ 0



Topology Opt. with Phase Field 

Advantages:  
•  optimal topology is obtained as steady state of CH eqs. 
•  no optimization procedure 
•  provide geometrical information 
•  no use of “filtering” techniques 

Drawbacks: 
•  set of 4th order nonlinear parabolic PDEs 
•  ability to capture sharp interfaces  resolution 
•  computational expensive 

Generalized Cahn-Hilliard equations 



Topology Opt. with Phase Field 

Isogeometric Analysis   

•                             continuous basis 

•  adaptive time stepping method + implicit solver, α-method 

•  accurate and stable results capturing thin layers 

•  NO geometrical approximation of CAD geometries 

•  perform topology opt. in regions and components of 
  existing structures  

[Wang, Zhou, 2006-2007]: topology optimization with CH eq. 
Low order FE approximation, multigrid method, fixed time step 



Topology Opt. with Phase Field 

 
JCH (ρ) = F(ρ)dΩ +

1
2
λ

Ω∫ ∇ρi∇ρdΩ
Ω∫ λ > 0

 
JE (u(ρ)) = t

ΓN
∫ iu(ρ) dΓN

J(ρ) = JCH (ρ) + γ JE (u(ρ))

 λ = λ h2 , γ = γ γ E

 
λ , γ = dimensionless, chosen by user (depend on each other, 

load case, volume fraction, penalization P, …) 

•  To balance the compliance and the CH parts of the energy,    
  we choose: 

γ E = JCH (ρ0 ) / JE (ρ0 )

The choice of the parameters λ  and γ



Topology Opt. with Phase Field 
 t

Order p=q=2, # DOF = 840 

Steady state 

dt vs. time 

 
λ = 2.5 γ = 5.0

Ω = (0, 2.0m) × (0, 1.0 m), V = 0.50 Ω , ρ0 = 0.5
plane stress,   E0 = 200GPa, ν = 0.3, t = 200MPa
P = 5,     Gauss points:  5 × 5



Topology Opt. with Phase Field 

Steady state 



Topology Opt. with Phase Field 

J(ρ)

JINT (ρ)

JCH (ρ)

JE (ρ)

JBLK (ρ)

             Energy vs. time  
                  (dimensionless) 



Topology Opt. with Phase Field 
 t

Steady state 

dt vs. time 

   Order p=q=2, # DOF = 680 

 
λ = 2.5 γ = 5.0

Ω = (0, 2.0m) × (0, 1.0 m), V = 0.50 Ω , ρ0 = 0.5
plane stress,   E0 = 200GPa, ν = 0.3, t = 200MPa
P = 5,     Gauss points:  5 × 5



Topology Opt. with Phase Field 

Steady state 



Topology Opt. with Phase Field 

 t

dt vs. time 

Energy vs. time 
 
λ = 2.5 γ = 5.0

J(ρ)
JE (ρ)

JCH (ρ)

Order p=q=2, # DOF = 840 

Ω = (0, 2.0m) × (0, 1.0 m), V = 0.50 Ω , ρ0 = 0.5
plane stress,   E0 = 200GPa, ν = 0.3, t = 200MPa
P = 5,     Gauss points:  5 × 5



Topology Opt. with Phase Field 

 λ = 2.5

 λ = 1.375

dt vs. time 

(limit value) 



Topology Opt. with Phase Field 

 
λ = 1.5 γ = 1.0

Order p=q=2, # DOF = 840 

  only u1 = 0

 t

1m
2 m

Ω = (0, 2.0m) × (0, 1.0 m), V = 0.50 Ω , ρ0 = 0.5
plane stress,   E0 = 200GPa, ν = 0.3, t = 200MPa
P = 5,     Gauss points:  5 × 5

dt vs. time J(ρ)

JE (ρ)

JCH (ρ)



Topology Opt. with Phase Field 

Exact  
geometry 

Steady  
state 



•  The NURBS  map turns the infinite dimensional problem: 

 into a finite dimensional one: 

Shape Optimization 

Isogeometric Analysis          Exact CAD geometries 



  J = 2.6148 ⋅10−4
  J = 2.1473 ⋅10−4

Shape Optimization 

       Topology optimization                   NURBS geometry 
                                                      (sweeping technique, J.Zhang)                                                                 

Shape Optimization 



Conclusions &  
Future Developments 

•  We developed a pipeline for geometry optimization with  
  Isogeometric  Analysis encapsulating exact CAD  
  geometries. 

•  We solved topology optimization problems in a phase field 
 approach based on the generalized Cahn-Hilliard equations 

•  Improve resolution for 2D problems (sharp interfaces) 

•  3D problems 


