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Abstract

This thesis presents a geometrically exact theory for elastic beams and its finite
element formulation and implementation. Since there is a growing interest in the
treatment of structural nonlinearities, geometrically exact analysis has increased its
appealing in engineering community basically for its innate capability to fully re-
produce large displacements in three-dimensional space, without the approximations
typical of co-rotational approaches.

In the present study, the original beam formulation based on the Reissner-Simo
geometrically exact approach is investigated and re-examined to provide an organic
and unitary treatment, suitable for FEM implementation. Since the examination of
large rotations is of paramount importance to understand the kinematic of continuum
body in 3D space, the rotation manifold is thoroughly investigated, and the formu-
lation is developed within the mathematical framework of differential geometry on
manifolds. The beam cross-section is assumed to remain rigid, but it can undergoes
any general three-dimensional movement, without conserving normality with beam
axis (i.e. shear deformations are properly taken into account). The relevant engi-
neering strain measures at any material point on the beam cross-section are obtained
through the deformation gradient tensor, whereas the stress resultants and couples
are defined in the classical sense. The governing equations of motion are derived from
linear and angular momentum balance.

This work derives also a weak formulation of the virtual work principle, suitable
to be discretized in space by means of the standard Galerkin finite element approach.
The classical Newmark scheme is included for the step-by-step integration in time.

The study concludes with a suite of numerical simulations, performed with the
aim to illustrate the good accuracy and effectiveness of the FEM code relying on
the presented formulation. Examples include elastic finite deformation responses of
simple structures in both static and dynamic regime.

Keywords: geometrically exact beam theory; nonlinear dynamics; finite rotations;
finite element method; elastic material
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Chapter 1

Introduction

Load-displacement behaviors of
all mechanical systems existing
in nature are not linear both in
geometry and material: linearity
is only a convenient artifice
created by lazy.

A. Mastropasqua

1.1 From linear to nonlinear analysis.

The ability to predict the structural behavior under assigned external loading is a
traditional need in engineering. To this end, a sound theoretical framework, accurate
modeling and suitable analysis strategies need to be available. Great efforts have been
made in this direction, particularly in the last two centuries, leading to the classical
Cauchy theory of elastic three-dimensional bodies, the Saint Venant beam theory,
the plates and shells theories and, more recently, due to the great improvements in
computational tools, such as the finite element method.

The small displacements assumption, allowing reference to relatively simple for-
mulation, has played an important role in this evolution. Many of the results obtained
by the research, in particular the derivation of structures models such as beams and
plates from the three-dimensional continuum, and their description in terms of finite
elements, are strictly related to this assumption. Unfortunately, the linear approxi-
mation is not always applicable for a realistic prediction of the structural response.
This leads the desire to extend the approach to the more general set of nonlinear
problems.

The three-dimensional geometrical nonlinear analysis of beams has captured the
interest of many researchers during the past decades, and it still constitutes an active
branch of research. In the field of earthquake engineering, second-order effects, such as
the so-called P −∆, which occurs due to the changes of configuration of the structure
during the earthquake, frequently affects the seismic design of high-rise buildings or
bridge piers.

c© E. Da Lozzo



20 Introduction

Considering that a great part of the elements are prismatic with one dimension
grater than the other two, reduced or one-dimensional (1D) formulations appears as
solution combining both numerical precision and reasonable computational costs when
compared with fully three-dimensional (3D) descriptions. In fact, even though fully
3D numerical models are more accurate, on the other hand the required computing
time makes their applications unpractical.

In addition, in the past structural analysis for practical purposes was restricted
to small deformations response and elastic case. However, in several areas of engi-
neering the inelastic nonlinear response of the structures is often strictly required, as
in the case of earthquake engineering, where the behavior of structures subjected to
ground motion is significantly characterized by the damage to structural elements.
In this contest, structural damage results in inelastic deformations occurring during
the earthquake, which in turns lead to large displacements and large rotations in the
general three-dimensional space. Traditional analysis methods based on the linear
elastic behavior of the structure can predict such kind of behavior only implicitly,
while nonlinear methods are naturally well suited to provide the direct prediction of
the expected inelastic displacements and deformations. Even though the latter ap-
proach is recognized to be precise and complete than the former, nonlinear modeling
requires significant knowledge from the analyst in order to account properly both the
material and geometrical nonlinearities involves in the practical problems.

1.2 State-of-art of geometrically exact beam the-

ory.

Since Euler [19], a one-dimensional continuum called beam was used as an ade-
quate representation for the class of three-dimensional bodies having one of the three
dimensions significantly grater that two others. Nowadays, beam models have found
applications in civil, mechanical and aero-space engineering. Exact and efficient non-
linear analysis of structures, build up from beam components, using robust numerical
methods, e.g. finite element methods, should be based on proper nonlinear beam
theories.

Since Saint Venant and Kirchhoff, the derivation of a beam model from the three-
dimensional theory has been based on some simplifying kinematic hypotheses. At the
beginning, such an approach allowed to derive effectively the simplest one-dimensional
models. Later, the application of kinematic hypothesis became just the natural ele-
ment of the derivation. It took the form of an automatic adoption of a more or less
advanced imagination about the deflected shape. But a real deformation process is
usually very complicated indeed, and cannot be a priori prescribed. As consequence,
the use of any kinematic hypothesis introduces inevitably some approximations into
such a model already from the very beginning, imposing artificial constraints on the
continuum motion model.

It’s a fact the model which was long considered the stone of a structural engineer
(the Euler-Bernoulli beam theory) is even nowadays introduced within the framework
of geometrically linear theory, limited to small or rather infinitesimal displacements,
rotations and deformations. As mentioned by Makinen [36], it seems it is long for-

c© E. Da Lozzo



1.1.2 State-of-art of geometrically exact beam theory. 21

gotten in part of the mechanics community, that the original developments of beam
model of ”Euler elastica” were indeed presented in a geometrically nonlinear setting.

It was only with work of Reissner (see [52]), on beam theory capable of dealing with
arbitrary large displacements and deformations and moderate rotations, that interest
was spurred again in truly geometrically nonlinear models. Geometrically exact beam
theory is sometimes referred as the Reissner’s beam theory, but strictly speaking,
the latter is geometrically exact only in 2D (see [50]). Treatment of rotations in 3D
becomes nontrivial primarily because of the nonlinear character of 3D rotations in
space. For this reason Reissner [52] proposed a simplification of the rotation matrix,
which enabled the derivation of the required strain-configuration relationship, but
unfortunately, also spoiled the geometric exactness of the theory. However, Reissner’s
finite strain beam theory is one of the most important ones, subsequentially extended
and used by many other authors for 2-D and 3-D cases for both static and dynamic
problems.

In a modern contest, the research on geometrically exact beam theory with finite
element implementation is initiated by Simo and Vu-Quoc, and has been mainly
developed by Simo and Vu-Quoc, Cardona and Gèradin, Ibrahimbegovic et al.

In the early and pioneering work of Simo [56], the author gave a dynamic formu-
lation for Reissner’s beam. In that paper, a spin rotation vector is used as a variable,
and the beam placement is updated with the aid of a rotation tensor and an expo-
nential mapping. The main drawbacks of this formulation are that: (i) the consistent
stiffness tensor is an unsymmetrical tensor away from equilibrium, (ii) the need for
secondary storage variables (quaternions) and their manipulations, (iii) the solution
has a path-dependent property even when a conservative loading is applied. Later,
Simo and Vu-Quoc [59] implemented the numerical integration of the beam equations
of motion in the context of the finite element method, both for static and dynamic
cases. It is also in this work that Simo first introduced the still used terminology
geometrically exact beam to indicate that Reissner’s theory was recasted in a form
which is valid for any magnitude of displacements and rotations 1.

In an important paper, Cardona and Geradin [16] gave another finite element im-
plementation for Reissner beam element with a different updating procedure, based
on an updated Lagrangian formulation with the rotation vector as a dependent vari-
able. This formulation can bypass the singularity problem of the total Lagrangian
formulation, which takes place when the rotation angle approaches the angle 2π, and
its multiples. The updated Lagrangian formulation has additional benefits, such as a
fully symmetrical stiffness tensor when applying a conservative loading. On the other
hand, it requires some secondary storage variables for the curvature and rotation
vector at every spatial integration point.

Ibrahimbegovic et al. [31]proposed a total Lagrangian formulation in a static cases,
with the stiffness tensor consistently derived. The consistent stiffness tensor, which is
a symmetric tensor, has the same form in the total and updated Lagrangian formu-
lation, and is considerably more complicated than the consistent stiffness tensor in
an Eulerian formulation, which leads to an unsymmetrical stiffness tensor away from
the equilibrium.

1Strictly speaking, geometrically exact beam theory doesn’t account large strains as soon as a
linear elastic constitutive law for stress resultants and couples is used.

c© E. Da Lozzo



22 Introduction

Also Makinen [37] provided a total Lagrangian geometrically exact finite element
formulation, where the singularity problem at the rotation angle 2π is bypassed by
adopting the a wise change of parametrization of the rotation manifold.

Even though the three-dimensional nonlinear analysis of beam structures captured
the interest of many researchers during the past decades, as cited by Mata et al. [41]
many contributions have been focused on the formulation of geometrically consistent
models of beams undergoing large displacements and rotations, but considering ma-
terial linear elastic behavior and, therefore, employing simplified linear constitutive
relations in terms of cross-sectional forces and moments. Only few works have been
carried out using fully geometrical and material nonlinear formulations for beams,
but they have mainly focused on plasticity (see e.g. Mata et al. [41]).

More recently, Mata et al. [41] included the general nonlinear constitutive behavior
in the static version of the geometrically exact formulation for beams proposed by
Simo [56], considering an intermediate curved reference configuration between the
straight reference beam and the current configuration.

An important effort has been devoted to develop time-stepping schemes for the
integration of the nonlinear dynamic equations of motion involving finite rotations.
The main difficulty arises in the fact that the deformation map takes values in the
differentiable manifold SO(3) × R3 and not in a linear space, as it is the case in
classical dynamics. An implicit time-stepping algorithm is developed in Simo et al.
[59] extending the classical Newmark’s scheme to SO(3), and obtaining a formula-
tion similar to that of the linear case. A comparison among implicit time stepping
schemes according to different choices of rotational parameters can be reviewed in
Ibrahimbegovic et al. [34].

Even when Newmark’s scheme has been widely applied to the study of the dynamic
response of structures, Makinen [35] stated that it only constitutes an approximated
version of the corrected algorithm, which are given in his work for the spatial and
material description.

Recently, Mata et all. [42] developed a fully geometric and constitutive nonlinear
model for the description of the dynamic behavior of beam element. The proposed
formulation is based on the geometrically exact formulation for beams due to Simo,
but an intermediate reference configuration is considered. A complete treatment of the
constitutive nonlinearity in the context of fiber-like approaches including the corre-
sponding cross-sectional analysis is adopted. Viscosity is included at the constitutive
level by means of a thermodynamically consistent visco-damage model, developed in
terms of the material description of the first Piola-Kirchhoff stress vector. The motion
in time is managed using an appropriated version of Newmark’s scheme in updating
the kinematic variables.

From a more engineering viewpoint, Mata et al. [43] tries to combine simplicity
and sophistication by coupling a reduced models for prismatic elements with full
3D models for the connecting joints. Basically they adopted a two-scale approach
developed for obtaining the nonlinear dynamic response of RC buildings with local
non-prismatic parts. In particular, at global scale level, elements are prismatic rods
based on the geometrically exact formulation due to Simo and Reissner, appropriately
extended to include material nonlinearities. A fully 3D model is introduced to describe
the local scale level, along with a surface-interfaces kinematic hypothesis assumed to
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manage the coupling between two scales. Special attention is also paid to the use of
damage indices able of estimating the remaining load carrying capacity of structures
after a seismic action. According to authors, such an approach appears as a convenient
formulation for studying the dynamic nonlinear behavior of realistic RC structures,
which response is dominated by local irregularities such as in the case of precast
structures.

Figure 1.1: Schematic representation of the two-scale model (Mata et al. [43]).

1.3 Overview

1.3.1 Problem statement

As mentioned in Bozorgna & Bertero [9], a modern numerical approach to the
structural analysis and design of three-dimensional engineering structures (especially
in the field of seismic analysis) should take into account the two major sources of
nonlinear behavior, namely:

(i) Geometric non-linearity due to the change in the configuration experienced by
flexible structures during loading conditions, and the consequent inclusion of
large displacements and large rotations in the compatibility and equilibrium
equations.

(ii) Constitutive non-linearity resulting from the material nonlinear relationship be-
tween force and deformations.

In general, the engineering community agrees with the fact that, although models
which consider both two nonlinearities are more expensive, in terms of computational
cost, they allow to estimate more precisely the response of RC and other kind of
structures.

Focusing on the second type of nonlinearity, the following section presents the
objectives of the present work, which tries to be a contribution to a unified treatment
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of geometrical nonlinearities for beam elements, in the rigorous framework of the
principles of continuum mechanics.

1.3.2 Scope and objectives

The main purpose of this thesis consists in re-examining, in a unified framework,
the fully 3D geometrically exact beam theory, and its finite element implementation
aimed to the development of a formulation able to reproduce geometric nonlinearity
in both static and dynamic range. In this sense, the following list of objectives can
be defined:

(I) Theoretical objectives
(I.1) To carry on a comprehensive study on the mathematical framework in

which finite rotations are naturally collocated.
(I.2) To investigate the nature of rotation group, its main properties (e.g. non-

commutativity) and the parametrization of finite rotations, as well as the
formalization of tangent space of rotation manifold and the fundamental
relations between rotation tensor, rotation vector, total rotation vector,
and their spatial and time derivative.

(I.3) To present in a unitary and consistent treatment of the basic kinematics
governing the geometrically exact beam theory, under the Reissner-Simo
hypothesis.

(I.4) To deduce explicit expressions for the objective strain measures and the
corresponding energetically conjugated stress measures acting on each ma-
terial point of the beam cross-section.

(I.5) To carry out the consistent linearization of the most important kinematical
quantities necessary for expressing the principle of virtual work.

(I.6) To derive the strong and weak form of the balance equations for linear and
angular momentum, and to deduce the principle of virtual work in spatial
and material form.

(II) Numerical objectives
(II.1) To perform the discretization in space of the mechanical problem using

Galerkin finite element interpolation of the displacement variables.
(II.2) To perform the time discretization according to the Newmark’s method of

the mechanical problem.
(II.3) To implement (computationally) a load and displacement control algorithm

for solving the nonlinear algebraic system of equations coming out from
the finite element discretization.

(II.4) To test the described FEM formulation through a set of linear elastic nu-
merical examples in both static and dynamic cases, and compare the results
with those provided in existing literature.

1.3.3 Outline

The present study starts with an introduction of the finite rotation mathematical
framework, proceeds with describing the three-dimensional beam theory and ends up
with the finite element implementation and its application to some test cases. The
organization of the present document is as follows.
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In Chapter 2, for reader’s convenience, a thorough review of relevant mathemati-
cal aspects regarding differential geometry is made, with the purpose to give a solid
introduction to the treatment of finite rotations. Special care is reserved to the defi-
nitions of differential rotation manifold, special orthogonal group and Lie algebra, as
well as the description of the properties of rotation tensor and its parameterizations.
Discussion is also focused on rotation vector, total rotation vector and its relations
with the spatial and time derivatives of rotation tensor.

Chapter 3 is devoted to the presentation of a geometrically exact formulation for
beams capable of undergoing finite deformations based in that originally proposed
by Reissner and Simo. Firstly a section is dedicated to a detailed description of the
kinematic of the model, with special attention paid on the formal definition of the
configuration and placement manifolds as well as their tangent spaces. Subsequently,
after calculating the deformation gradient tensor, the strain and strain rate measures
at both, material point and dimensionally reduced levels, are deduced.

The beam’s equations of motion in both spatial and material description are ob-
tained in Chapter 4, starting from the local form of the linear and angular momentum
balance conditions.

An appropriated (weak) form for numerical implementation is discussed in Chap-
ter 5 for the nonlinear functional corresponding to the virtual work principle. Next,
the hyperelastic cross-sectional constitutive law is discussed in the same Chapter.

Chapter 6 describes the spatial discretization based on the Galerkin isoparametric
finite element approximation of the variational equation of virtual work. The ap-
plied procedure yields to a system of nonlinear algebraic equations well suited to be
solved by numerical iterative method. An entire section is devoted to the derivation of
the so-called force residual equation, and some remarks on the numerical procedures
commonly adopted dot its solution are given.

In Chapter 7 highly geometrical nonlinear plane and spatial problems are inves-
tigated. Results obtained from numerical simulations are in agreement with those
available in literature, showing the ability of the implemented formulations in simu-
lating the full geometric nonlinear response of beam-like structure.

Finally, in Chapter 8 conclusions about the work developed are presented. A de-
tailed survey is given in section 8.1, and an additional section is included for consid-
ering further developments which may take advantage from the present work.

The thesis is complemented with a set of Appendices. They include: (i) some
mathematical recalls useful for the comprehension of the critical derivations of main
equations, (ii) the introduction of a useful family of scalar quantities involving trigono-
metric functions, which yields to a more rational presentation of some nasty equation
regarding rotation tensor, (iii) an alternative expression of compound rotation about
fixed axis by using Cayley-Rodrigues parametrization, (iv) the complete derivation of
relation between spin-like vectors and total rotation vector and (v) the determination
of the balance equation of angular momentum with respect to a spatial pole and its
time derivative.
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1.4 Notation

Along the chapters, intensive use of vector and tensor calculus is made. Through
the document, scalar quantities are denoted using lightfaced letters with italic or cal-
ligraphic style, or lightfaces mathematical symbols, e.g. (a, b, . . .). Tensors are written
in boldfaced letters, for instance (σ, ε, . . .). As a special case, the second order skew-
symmetric tensors are identified in boldface and equipped with an over-head tilde
(̃·) such as (Ã, B̃, . . . , Ω̃, Ψ̃, . . . , ω̃, ψ̃), whereas (A,B, . . . ,Ω,Ψ, . . . ,ω,ψ) indicate
their associated axial vectors. If not otherwise specified, upper or lower case letters
are used for scalars, vectors (first order tensors) or tensors, but subjected to the
previously defined convention. A special notation is adopted to distinguish material
and spatial quantities: upper-case letters are used for material vectors and tensors,
whereas lower-case letters are used to denote spatial vectors and tensors. The super-
script (·)T is used to denote the transpose of a given quantity. The superscript (·)r
is sometimes used for denoting the material (reference) description. Other sub and
superscripts are employed in several quantities through the text, but they are defined
the first time they are used. Summation index convention applies through the text.
Latin indices, such as i, j range over the values: {1, 2, 3}, and Greek indices, such
as α, β range over the values {1, 2}. If it is not the case, specific ranges are given in
the text. The dot (inner), cross, and tensorial products are denoted by means of the
symbols (·), (×) and (⊗), respectively. The overhead dot is used to denote the time
derivative, i.e. (·̇), whereas prime symbol marks the spatial derivative, i.e. (·)′.
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Chapter 2

Introduction to finite rotations

Quelli che s’innamoran di pratica
senza scienza son come ’l nocchiere
ch’entra in naviglio senza timone o
bussola, che mai ha la certezza di
dove vada.

L. Da Vinci

The main aim of the present chapter is to pave the way for the work in the next
chapters concerning to the development of a geometrically exact three-dimensional
beam theory involving finite displacements, where large rotations are coupled with
large translations. In particular, the results here presented impacts on the accurate
description of the rotational motion. The term large or finite rotations is normally
employed in continuous mechanics as opposite to small of infinitesimal rotations.

The chapter opens with a short introduction to manifolds, differentiable manifolds
and Lie groups, with special care to special orthogonal group. Then, a formal presen-
tation of the main properties of rotation group is done, revealing a rich mathematical
structure which corresponds to the Lie group isomorphic to the special orthogonal
group of rotation tensors. With the help of an example, we explain also the non-
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commutative nature of large rotations and their non additivity in vectorial sense.
Subsequently, a rigorous definition of the tangent space to the rotational manifold
is presented in terms of the Lie algebra associated to the rotation group. Then, a
rather detailed discussion about possible parametrization of the rotation manifold is
presented, addressing the practical advantages and limitations of using in particular
the the vectorial representation. Since rotations behave differently in observer trans-
formation and in objective derivatives, there exist the need to distinguish the spaces
from which a rotations are described. To this end a configurational approach for de-
scribing large rotations in three-dimensional space is given, and subsequently the so
called spatial and material updating procedure for compound rotations is explained.
Finally, an intense paragraph is dedicated to introduce Lie derivative, as well as their
physical meaning in the contest of rotations.

As these are complex mathematical topics quite unfamiliar to engineering literature,
only the concepts and formalism strictly necessary for this work will be reviewed.
However, more extensive and detailed works about the mathematical theory of finite
rotations can be found in [1], [2], [4], and on application to beam, shell and flexible
mechanics theories in [33], [31].

2.1 Manifolds

Definition 2.1 (Manifold). Given a n-dimensional Euclidean space 1 En, a set M∈
En is a manifold with dimension d, if there exists a bijection 2 ϕi : Ui → En from
an open domain Ui ⊂ Ed subset of a d-dimensional Euclidean parameter space, onto
some open set in the manifold, ϕi(Ui) ≡ V ⊂M, such that every point P ∈M is an
image under a mapping. A pair (Ui, ϕi) is called a chart or a parametrization chart.

Definition 2.2 (Differentiable manifold). A manifoldM is called differentiable if for
every point P ∈ M there exist images ϕ1(U1) and ϕ2(U2) where the point P ∈ M
belongs to, such that the composite mapping ϕ−1

2 ◦ ϕ1 is a diffeomorphism 3.

The basic idea of differentiable manifold is symbolically depicted in Figure 2.1.
A differentiable manifold can be mapped from a chart in a parameter space into
a chart of manifold in an embedded space. The composite map is called change of
parametrization, and is differentiable for differentiable manifolds.

From a geometrical point of view, a differentiable manifold M can be imagined as
a generalization of a surface in the n-dimensional space, as depicted for instance in
Figure 2.2 for the Calabi-Yau manifolds.

Let Λ(t) be any differentiable curve on the manifoldM parametrized in terms of
the real parameter t ∈ R, that passes through the base point 4 Λ0 ∈ M such that

1The Euclidean space is a real , finite-dimensional, linear, inner-product space with an Euclidean
metric.

2A mapping is a bijection if it is injective and surjective, i.e. one-to-one mapping.
3A diffeomorphism is a bijection with continuously differentiable mapping and its inverse map-

ping.
4A base point is a point of the manifold on which a tangent space is induced.
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Figure 2.1: A geometric interpretation for a parametrization of a manifold when n = 3
and d = 2.

Figure 2.2: The Calabi-Yau manifolds is a complex manifold with important applications
in superstring theory.

c© E. Da Lozzo



32 Introduction to finite rotations

Λ|t=0 = Λ0. Then the derivative with respect to t

dΛ

dt
= lim

t→0

Λ(t)−Λ(0)

t
where Λ(0) = Λ0, Λ(t) ∈M (2.1)

is said to be the tangent vector to M at Λ0. The set of all tangent vectors at Λ0,
denoted by TΛ0M, forms a vector space called tangent space to M at Λ0. More
formally we have the following definition.

Definition 2.3 (Tangent space on manifold). LetM∈ Rn be an open set (manifold),
and let P ∈M. The tangent space toM at P is simply the vector space Rn emanating
from P . This tangent space is denoted as TPM.

Figure 2.3: A geometric representation of the parametrized curve Λ(t) : R1 →M and the
tangent vector Λ̇ and its tangent space TΛ0M on the manifoldM at the point
Λ0.

With the help of Figure 2.3, where a differentiable manifold is depicted in a symbolic
manner, a curve on the manifold is a map of an interval of R1 into a curve on the
manifold, and consequently a tangent vector to a curve on the manifold is, for instance,
the velocity vector of an object which moves along the curve, where the velocity vector
has the usual meaning of time derivative displacement parameter.

Linearization process. Let consider a manifoldM with a generic element x,
its tangent space TM with a generic element u, and a function F = F (x) |F : M→
C, where C is a generic set. We indicate the tangent operator or linearization of F
by the notation δuF (x), and we call x the point of linearization and u the direction
of linearization. We also state that this operation must be linear in the direction of
linearization and we define the following equivalent expressions:

δuF (x) = δF · u = lim
ε→0

F (xε)− F (x)

ε
=

dF (xε)

dε

∣∣∣∣
ε=0

= gradF · u (2.2)
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where xε = x + εu represents a configuration infinitesimally near to x, obtained
perturbing x in the direction of the tangent element u by the quantity ε > 0 ∈ R. The
perturbed configuration xε is an admissible variation from an admissible configuration
which satisfies the conditions xε ∈M and limε→0 xε = x.

2.2 Special orthogonal group

Definition 2.4 (Group). A group G is a set equipped with an internal operation
”× ” that combines any two elements A and B to form another element denoted as
A × B ∈ G. To qualify as a group, the set and operation (G,×) must satisfy four
requirements known as the group axioms

• Closure: a set is closed if the result of the operation A×B is also in G, ∀A,B ∈
G;

• Associativity: an internal operation is associative if the relation A(BC) =
(AB)C holds ∀A,B,C ∈ G;

• Identity element: exists a unique element I ∈ G called identity such that AI =
IA = A ∀A ∈ G;

• Inverse element: For each A ∈ G there exists a unique element of G called the
inverse of A such that A−1A = AA−1 = I holds.

The group is called an Abelian group, or a commutative group, ifAB = BA, ∀A,B ∈
G. Conversely the group is called non-commutative if this property does not hold.

Definition 2.5 (Lie group). A Lie group L is a differentiable n-dimensional manifold
Mn endowed with the following two smooth mappings:

1. An internal operation

Fα : L × L → L
(A,B) 7→ Fα(A,B) = A�B ∀A,B ∈ L

where A,B ∈ L, the symbol × is used to denote pairing between elements, and
the symbol � is used to indicate an abstract operation (multiplication) between
elements of the group L.

2. A smooth mapping which defines the inverse element

FV : L → L
A 7→ FV(A) = (A)−1

Definition 2.6 (Orthogonal group). The orthogonal group of degree n over a field 5

K is written as O(n,K), and represents the group of n-by-n orthogonal matrices Q

5In abstract algebra, a field is an algebraic structure with notions of addition, subtraction, mul-
tiplication, and division, satisfying certain axioms.
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with entries from K. This is a subgroup of the general linear group 6 GL(n,K), and
it is given by

O(n,K) :=
{
Q ∈ GL(n,K) | QTQ = QQT = I

}
(2.3)

where QT is the transpose of Q, and QTQ = I or Q−1 = QT defines the orthogonality
conditions.

More in general, over the field R of real numbers, the orthogonal group O(n,R) is
often simply denoted by O(n) if no confusion is matter. The group of all 3-by-3
orthogonal real matrices is then denoted as O(3), and it consists of all proper and
improper rotations in 3-dimensional space.
Every orthogonal matrix has determinant either +1 or -1. The orthogonal n-by-n
matrices with determinant +1 form a proper subgroup ofO(n,K) known as the special
orthogonal group SO(n,K). Improper matrices correspond to orthogonal matrices
with detQ = −1, and they do not form a group, because the product of two improper
matrices is a proper matrix.

Definition 2.7 (Special orthogonal group). The special non-commutative Lie group
of proper orthogonal linear transformations in the real space R with differentiable
structure, is defined as the set of orthogonal n-by-n matrices Λ such that

SO(n,R) :=
{

Λ : R→ R | ΛTΛ = ΛΛT = I , det Λ = +1
}

(2.4)

Over the field R of real numbers, the special orthogonal group SO(n,R) is often
simply denoted by SO(n) if no confusion is possible. Similarly, in the Euclidean space
R3 the previous becomes

SO(3) :=
{

Λ : R3 → R3 | ΛTΛ = ΛΛT = I , det Λ = +1
}

(2.5)

2.3 Rotation group

Let introduce a rotation operator Λ which transforms linearly and isometrically
an orthonormal basis of R3 to another orthonormal basis in the Euclidean space. Like
any linear transformation of finite-dimensional vector spaces, a rotation can always be
represented by a tensor (say Λ) , or alternatively by a rotation vector (say Ψ ∈ R3),
which contains information on the axis of rotation and on the entity (with sign) of
the rotation itself. In geometry, the group of all rotations about the origin of three-
dimensional Euclidean space R3 is called rotation group.

By definition, a proper rotation about the origin is a linear transformation that
preserves length (isometry), volume (with sign), and the angle between pairs of vectors
(orientation). Formally, given three vectors u,v,w ∈ R3

1. A rotation tensor Λ preserves the length of vectors if it satisfies the conditions
||u|| = ||Λu|| ∀u ∈ R3 ;

6The general linear group is the group of all real matrices with nonzero determinant.
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2. A rotation tensor Λ preserves volume if it satisfies the condition u · v × w =
Λu ·Λv ×Λw;

3. A rotation tensor Λ preserves the inner product if it satisfies the condition
Λu ·Λv = u · v, i.e. whether the angle between u and v is preserved.

Because of these three properties, a proper rotation is termed rigid transformation.
Conversely, a length-preserving transformation which reverses orientation is called an
improper rotation. Physically, every improper rotation of three-dimensional Euclidean
space is a reflection in a plane through the origin.

In particular, an orthogonal tensor preserves or reverses orientation according to
whether the determinant of the tensor is unit positive or negative, respectively. In
fact, assuming Λ being an orthogonal tensor, from definition (2.3) it follows that

det(ΛTΛ) = det I = 1 (2.6)

and from determinant properties

det(ΛTΛ) = det(ΛT ) det Λ = det(Λ)2 (2.7)

which implies det Λ = ±1. It is possible to prove that every proper rotation can be
expressed uniquely by an orthogonal matrix Λ with unit positive determinant, such
that Λ belongs to the set of all orthogonal matrices as follow (see also definition (2.5))

SO(3) :=
{

Λ : R3 → R3 | ΛTΛ = ΛΛT = 1 , det Λ = +1
}

(2.8)

As consequence of that, all the group axioms are satisfied for a set of arbitrary
rotations, namely:

1. Composition of two rotations results in another rotation, i.e. Λc = Λ1 Λ2

∀Λ1,Λ2 ∈ SO(3) with Λc ∈ SO(3);

2. The product of three rotations is associative, i.e. (Λ1Λ2) Λ3 = Λ1 (Λ2Λ3)
∀Λ1,Λ2,Λ3 ∈ SO(3);

3. There exists a neutral element, the identity matrix, such that I ΛI = I Λ =
Λ ∀Λ ∈ SO(3);

4. Every rotation has a unique inverse rotation such that ΛΛ−1 = Λ−1Λ =
I ∀Λ ∈ SO(3).

In addition to these properties, it is of fundamental importance to point out other
two features of rotation group:

A. The rotation product is not commutative in general, i.e. Λ1Λ2 6= Λ2Λ1 with
Λ1,Λ2 ∈ SO(3);

B. Rotations are not additive in general, since the set of rotations is not a linear
space.

These special characteristics of rotations are found only in the three-dimensional case,
while in two spatial dimensions rotations can be added and even commuted, leading
a simpler analysis.

c© E. Da Lozzo



36 Introduction to finite rotations

Focusing on property A., with the help of Figure 2.4 it is easy to see that the result
of applying a set of successive large rotations on a body, depends on the order in which
they are performed. In this example three rotations of magnitude π/2 are arranged as
triplet {φxx, φyy, φzz}, and they are applied to a rigid box in two different orders. The
final configuration of the box in general will be different for each one of the options.
Therefore, one may conclude that rotations do not commute and consequently the
order of application of rotations is crucial for representing uniquely a set of spatial
rotations.

Figure 2.4: Noncommutativity of successive rotations. The symbol ”+” is used to indicate
an abstract operation of composition of rotations.

According to property B., the composition of successive rotations can not be ex-
pressed by simply applying the parallelogram rule, adding the corresponding rotation
vectors, unless they take place around the same axis.
To show this property, let consider a rotation denoted by a rotation vector θA = θAeA
and the corresponding rotation tensor ΛA, that brings triad I = (i1, i2, i3) into triad
J = (j1, j2, j3). This first rotation is followed by a second rotation, characterized
by rotation vector θB = θBeB and rotation tensor ΛB, that brings J into K =
(k1,k2,k3). We have

jk = ΛAik, kk = ΛBjk, k = 1, 2, 3 (2.9)

and hence, eliminating the intermediate configuration J

kk = ΛBΛAik, k = 1, 2, 3 (2.10)

The total rotation from I to K is given by

Λ = ΛBΛA (2.11)

This product of rotation tensors is called compound of rotations, and equation (2.11)
can be used recursively to compose as many successive rotations as necessary. The
word “compound” used when combining rotations, stresses the fact that successive
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Figure 2.5: Rotation of triad I into triad J , followed by rotation of J into K.

rotations cannot be obtained by simply adding their corresponding rotation vectors
as in linear spaces. In fact, if θ = θ e is the rotation vector corresponding to the
composed rotation Λ, then

θ 6= θA + θB (2.12)

This fact can be shown by a self-evident geometric example, as the one depicted in
Figure 2.6), which considers two successive rotations with orthogonal axes.

Figure 2.6: At left, rotation πkA, followed by rotation πkB, with kB orthogonal to kA.
At right, rotation about π(kA + kB).

2.4 Lie Algebra

Definition 2.8 (Lie algebra). A Lie algebra L of the Lie group L is a tangent vector
space at the identity TIL, equipped with a bilinear, skew-symmetric brackets operator
[·, ·] such that [a, b] = −[b,a] ∀a, b ∈ L satisfying Jacobi’s identity [a, [b, c]] +
[b, [c,a]] + [c, [a, b]] = 0 ∀a, b, c ∈ L .
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Recalling Definition 2.3, in the case of rotational manifold the tangent space at
the identity Λ0 = I is given a special name, the Lie algebra 7 of SO(3) and is denoted
by so(3). It defines the fundamental isomorphism between so(3) and R3, particularly
important for linearization process.

Let now focus on a t-parametrized operator Λ(t) ∈ SO(3) belonging to the special
orthogonal group. Suppose that it is given by formula 8 Λ(t) = exp(tΨ̃), with Ψ̃ a
convenient skew-symmetric tensor. Differentiating this expression with respect to the
parameter t at t = 0, one obtains the tangent vector space at the identity I ∈ SO(3),
i.e.

dΛ

dt

∣∣∣∣
t=0

=
d exp(tΨ̃)

dt

∣∣∣∣∣
t=0

= Ψ̃ (2.13)

Thus, the skew-symmetric tensor Ψ̃ belongs to the tangent space of the rotation
manifold SO(3), denoted by TISO(3), where the identity I ∈ SO(3) represents a
base point of the rotation manifold. It is clear that the base point is the identity
I ∈ SO(3) since Λ = exp(tΨ̃) at t = 0 is equal to the identity I. It could be proven
that the skew-symmetric tensor Ψ̃ is also an element of Lie algebra so(3) for the
corresponding Lie group SO(3). Thereby, we could mark so(3) = TISO(3), i.e. Lie
algebra is canonical isomorphic to the tangent space of the rotation manifold at the
identity. In other words, it exists a one-to-one correspondence between elements of
so(3) and elements of TISO(3) ∈ R3. The correspondence can be identified through
the vector product × on R3 by the formula (also referred as axial vector relation)

Ψ̃h = Ψ× h ∀h ∈ R3 (2.14)

with

Ψ̃ = skew[Ψ] =

 0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0

 and Ψ = axial[Ψ̃] =

Ψ1

Ψ2

Ψ3

 (2.15)

where the vector Ψ ∈ R3 is called axial vector of the skew-symmetric tensor Ψ̃ ∈
so(3). Sometimes in literature is used the notation [Ψ×] to indicate the skew tensor
Ψ̃ in order to emphasize its axial vector.

Having established that the skew-symmetric tensor Ψ̃ belongs to the Lie algebra,
the set so(3) may be defined as the set of all skew-symmetric tensors, i.e.

so(3) =
{

Ψ̃ : R3 → R3 | Ψ̃
T

= −Ψ̃
}

(2.16)

where Ψ̃
T

= −Ψ̃ represents the skewness condition. It is worth to remark that, up to
this stage, no assumptions are made on the magnitude of the elements of Lie-algebra
so(3), which therefore are not required to be infinitesimal.

7In mathematics, an algebraic structure consists of one or more sets closed under one or more
operations, satisfying some axioms.

8We anticipate here the form of the so called exponential mapping whose detailed formalism will
be presented in the next section.
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We report below some important relations between the skew-symmetric tensor Ψ̃
and its associated rotation vector Ψ, which are frequently found in the development
of geometrically exact formulation for beams. Given two skew-symmetric tensors Ψ̃
and W̃ and their axial vectors, respectively Ψ and W , the following identities holds

Ψ̃W = Ψ×W = −W ×Ψ = −W̃Ψ = W̃
T
Ψ = ΨTW̃ (2.17)

Ψ̃Ψ = ΨT Ψ̃ = Ψ×Ψ = 0 (2.18)

ΨTW̃ = −W̃Ψ = −W ×Ψ = Ψ×W = Ψ̃W = W T Ψ̃
T

= −W T Ψ̃ (2.19)

[Ψ̃W̃ − W̃ Ψ̃]h = (Ψ×W )× h ∀h ∈ R3 (2.20)

[Ψ̃W̃ ]h = [W ⊗Ψ−Ψ ·WI]h ∀h ∈ R3 (2.21)

Ψ̃
2
h = Ψ̃(Ψ̃h) = [Ψ⊗Ψ−Ψ2I]h ∀h ∈ R3 (2.22)

where Ψ = ||Ψ|| =
√

Ψ ·Ψ. Note, in equation (2.20) the term in squared brackets
denotes the Lie brackets.

2.5 Parametrization of finite rotations

Any form describing a three-dimensional rotation in terms of suitable degrees
of freedom, is called parametrization of rotation matrix, or more properly, rotation
parametrization9.

Over the years, several forms have been proposed in literature to cope with the
description of rotation manifold (an extensive investigation on the rotational vector
representation can be found in [1], [21] and [39]). Basically, they can be subdivided in
two main families: vector-like parametrization, of which Euler-Rodrigues and Cayley-
Rodrigues parametrizations are the most notably representative, and non vector-like
parametrization, such as classical Euler’s angles representation, Cardan’s angles and
quaternions.

In general, some representations involve three parameters, some others require
more (say up to nine parameters employed in the matrix complete representation).
Although, the minimum set of degree of freedom needed to describe a finite rotation
is three (in fact the nine components of the rotation matrix Λ are related each other
by the six orthonormality conditions which characterize a rotation tensor in SO(3),
i.e. ΛTΛ = I, and hence the nine components can be expressed by only three inde-
pendent parameters), it has long been established that a unique global representation
based on only three parameters does not exist. It has also been established (e.g. see
[69]) that for a unique global representation of finite rotations one needs a minimum
of five parameters, in order to establish differentiable 1-1 map (bijection) with the
differentiable inverse for representation of Λ ∈ SO(3). Early work of Argyris [1] has
also shown that a 4-parameter representation of finite rotations, based on the so-
called quaternions, is also potentially useful for practical purposes, regardless of the
fact that it is not strictly 1-1 but rather a 2-1 representation.

9Mathematically, a parametrization is a mapping from an open set of Euclidean space into some
open set of the manifold.
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40 Introduction to finite rotations

Usually, both theoretical and computational issues can play a meaningful role in
the choice of the rotation parametrization, which is also influenced by the possible
specific requirements of its application.

In the following, an intuitive geometrical deduction of an explicit expression for
the rotation tensor in terms of the Cartesian components of a rotation vector through
the well known Euler’s theorem is presented, and then its properties as well as other
possible parameterization are discussed. The subject is extensively treated in [1], [21]
and [39].

2.5.1 Vector-like parametrization

The vector-like parametrizations feature a set of three parameters that defines
the Cartesian components of a rotation vector. The rotation vector is a vector with
direction along the physical axis of rotation, versus defined by the right-hand-rule in
dependence of the clockwise or counter-clockwise sense of rotation, and norm equal
to the angle of rotation. The general form of such a vectors is

p = f e (2.23)

where p is termed the generalized rotation vector (see [8]), while f = f(Ψ) is some
yet unspecified function of the angle of rotation Ψ, termed generating function, and
the unit vector e identifies the axis of rotation. Other than obvious requirement of
regularity, the generating function f must obey certain conditions. First we must have

f(0) = 0 (2.24)

which means that the magnitude of the generalized rotation vector must be null for
a null rotation angle Ψ. This ensures that, if b = Λa and Ψ = 0, then b = a. Taking
now the time derivative of p at the origin

ṗ(0) =
∂f

∂Ψ

∣∣∣∣
Ψ=0

dΨ

dt
e+ f(0)

de

dt
(2.25)

=
∂f

∂Ψ

∣∣∣∣
Ψ=0

Ψ̇ e+ f(0) ė (2.26)

one recognizes that the generating function f must be such that

∂f

∂Ψ

∣∣∣∣
Ψ=0

6= 0 (2.27)

ensuring ṗ(0) to be different from zero when Ψ̇ is different from zero.
This paramentrization has the following features:

i. It has a simple geometric meaning (see Figure 2.7) and for a certain extent
it permits a treatment of rotations similar to what is commonly done with
translations;

ii. It requires a minimal set of parameters, which for the special orthogonal group
in three-dimensional space SO(3) is three;
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2.5.2 Euler-Rodrigues parametrization 41

Table 2.1: Commonly used vector-like parametrizations of three-dimensional rotations,
with their correspondent generating function and range of validity.

Parametrization type f(Ψ) Range

Exponential map Ψ −2π < Ψ < 2π

Linear parameter sin Ψ −π < Ψ < π

Euler-Rodrigues parameter 2 sin(Ψ/2) −π < Ψ < π

Cayley-Gibbs-Rodrigues parameter 2 tan(Ψ/2) −π < Ψ < π

Wiener-Milenkovich parameter 4 sin(Ψ/4) −2π < Ψ < 2π

iii. It has differentiability holes for Ψ = 2kπ, however the drawbacks can be consid-
ered mild if the values of Ψ to consider are always far from the first singularity
value (say 2π), i.e. in the range of moderate rotations;

iv. It provides a 1-1 corresponding to the orthogonal tensor holding up to moderate
rotations within the range of validity of the parametrization itself (see for detail
Table 2.5.1);

v. It requires using trigonometric functions;

2.5.2 Euler-Rodrigues parametrization

The expression of the rotation tensor in terms of the rotation vector can be de-
rived at least in two alternative ways: using purely geometric arguments, or using
a differential approach. While both ways of looking at the problem clearly lead to
the same results, both have interesting peculiarities and highlight different important
properties of rotations. Here, for sake of simplicity, we tackle only the geometric ap-
proach, while for a more complete treatment of this subject the reader should refer
to [8] and references therein.

The Euler’s theorem.

The geometric derivation of the rotation tensor can be based on the fundamental
Euler’s theorem. It states that any arbitrary displacement of a rigid body that leaves
one point fixed is a rotation about the unit vector e ∈ R3 of the axis of rotation,
with magnitude Ψ = (Ψ ·Ψ)1/2 ∈ [0, 2π]. A schematic representation of the theorem
is depicted in Figure 2.7. From a physical point of view, any three-dimensional ro-
tation can be interpreted as a two-dimensional rotation (measured by the angle Ψ)
that takes place in a plane orthogonal to a suitably chosen direction (axis of rotation
RR) identified by the unit rotation vector e. The two quantities (e,Ψ) are sometimes
labeled as the principal axis of rotation and the principal angle pf rotation, respec-
tively. They completely define the rotational displacement represented by the rotation
tensor Λ. By this way, the notion of a rotation vector Ψ = Ψe introduced in equation
(2.23) for describing rotations, is recovered 10.

10The vector Ψ is sometime called pseudo-vector
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42 Introduction to finite rotations

Figure 2.7: Construction of rotation matrix Λ for an arbitrary rotation vector Ψ.

Euler-Rodrigues formula: geometric approach.

With reference to the rotation vector 11

Ψ = Ψe (2.28)

by definition, Ψ has norm equal to Ψ and is directed as the unit rotation axis vector e
about which the rotation occurs. Its orientation is such that they form a right-handed
screw. Indicating with φ, θ, ψ the components 12 of Ψ in a Cartesian reference system
{O,X, Y, Z}, the rotation vector may be expressed as

Ψ =

φθ
ψ

 = φe1 + θe2 + ψe3 = Ψe (2.29)

and its norm Ψ = ||Ψ|| as

Ψ =
√
φ2 + θ2 + ψ2 =

√
ΨTΨ (2.30)

Now, consider a vector x0 which is mapped into x by a rotation of an angle Ψ
around the axis in direction of e, as depicted in Figure 2.7. This mapping takes the
form

x = Λx0 (2.31)

where Λ : E3 → E3 is a rotation tensor, nonlinear function of Ψ, which transforms
linearly and isometrically a vector into another vector in a rotational motion that

11It will also regarded as the cross-section rotational degree of freedom in the forthcoming chapters.
12It’s worth to note that, in contrast with small rotations, finite rotations φ, θ, ψ cannot be inter-

preted as component rotations about the Cartesian axis X,Y, Z.
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is represented with the aid of the rotation vector. Here we want to find an explicit
expression of Λ as a function of Ψ, i.e. to establish the transformation (see [1] for
more details)

x = Λ(Ψ)x0 (2.32)

which relates the rotated vector x to the original vector x0. On the other hand,
looking at the Figure 2.7, the position vector x0 moves to its final position x, and
the relation between these two vectors is

x = x0 + ∆x (2.33)

Since both equations (2.33) and (2.31) hold for the same rotational movement, we
are here interested to find the expression of Λ such that the right-hand side of (2.33)
equals the matrix product (2.32).
To this end, from Figure 2.7 we first introduce the following notation

∆x = PD +DQ (2.34)

where DQ is drawn normal to PC. We also note that the vector DQ stands per-
pendicular to the plane OPC, and points hence in the direction (e × x). To find its
magnitude we observe that

DQ = a sin Ψ (2.35)

On the other hand, we observe that the magnitude of (e× x) is

||e× x|| = 1 · x sinα = x
a

x
= a (2.36)

It follows in conjunction with (2.35), (2.36) and (2.28) that

DQ = (e× x) sin Ψ =
sin Ψ

Ψ
(Ψ× x) (2.37)

We next proceed to the determination of the vector PD. Figure 2.7 demonstrates
immediately that it is not only perpendicular to (e×x), but also to e, since it lies in
the plane PCQ normal to e. Hence it may be assigned the direction of e × (e × x).
Now the absolute value of the last vector is clearly again a since e is a unit vector
and is also normal to (e× x), i.e.

||e× (e× x)|| = ||e× x|| = a (2.38)

At the same time Figure 2.7 yields to 13

PD = a− a cos Ψ = (1− a cos Ψ)a = 2 sin2 Ψ

2
a (2.39)

13We used the half-angle trigonometric formula

sin2 α

2
=

1− cosα

2
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44 Introduction to finite rotations

Hence, using (2.39) in conjunction with the direction of PD and (2.28), we deduce

PD = 2 sin2 Ψ

2
(e× (e× x)) =

1

2

sin2(Ψ/2)

(Ψ/2)2
(Ψ× (Ψ× x)) (2.40)

Applying (2.37) and (2.40) in (2.33) and substituting into (2.34), the vector x takes
the form

x = x0 + ∆x

= x0 + PD +DQ

= x0 +
sin Ψ

Ψ
(Ψ× x) +

1

2

sin2(Ψ/2)

(Ψ/2)2
(Ψ× (Ψ× x)) (2.41)

Now we can rewrite equation (2.41) in matrix form

x = x0 +
sin Ψ

Ψ
Ψ̃x0 +

1

2

sin2(Ψ/2)

(Ψ/2)2
Ψ̃

2
x0 (2.42)

where we have

Ψ̃ =

 0 −ψ θ
ψ 0 −φ
−θ φ 0

 and (2.43)

Ψ̃
2

= Ψ̃Ψ̃ =

−(θ2 + ψ2) θφ φψ
θφ −(ψ2 + φ2) θψ
φψ θψ −(φ2 + θ2)

 (2.44)

The reader will observe that the form of Ψ̃ is identical to the well-known antisym-
metrical matrix representing infinitely small rotations. However, in the present (more
general) context, Ψ̃ contains the Cartesian components of a finite rotational axial
vector Ψ. The equality between equations (2.41) and (2.42) is easily shown recalling
that by definition, the cross product Ψ × x and Ψ × (Ψ × x) can be given in the
matrix form

Ψ× x = Ψ̃x and Ψ× (Ψ× x) = Ψ̃
2
x (2.45)

Equation (2.42) is the transformation we were looking for, i.e.

x = Λ(Ψ)x0 with Λ(Ψ) = I +
sin Ψ

Ψ
Ψ̃ +

1

2

sin2(Ψ/2)

(Ψ/2)2
Ψ̃

2
(2.46)

Substituting the trigonometric identity sin2 α = 1−cos(2α)
2

into the argument of Ψ̃
2

we
obtain an equivalent form of the transformation Λ(Ψ)

Λ(Ψ) = I +
sin Ψ

Ψ
Ψ̃ +

1− cos Ψ

Ψ2
Ψ̃

2
(2.47)

These two equivalent formula establish the relation between the total rotation vector
Ψ and the rotation tensor Λ, and represent the Euler rotation vector parametrization

c© E. Da Lozzo



2.5.2 Euler-Rodrigues parametrization 45

of rotation tensor Λ(Ψ). They are known in literature as Euler-Rodrigues formula. It
is worth to note that the two trigonometric functions which compares into (2.46) are
real and continuous.

Alternative form of Euler-Rodrigues formula.

The equation establish in (2.47) can be recast in alternative, but equivalent forms,
bringing out the unit rotation vector e = Ψ/Ψ. Writing (2.46) using the vector
notation for skew tensor Ψ̃ = [Ψ×], we obtain

Λ(Ψ) = I +
sin Ψ

Ψ
[Ψ×] +

1− cos Ψ

Ψ2
[Ψ× [Ψ×]] (2.48)

which, pointing out e, becomes

Λ(Ψ) = I + sin Ψ[e×] + (1− cos Ψ)[e× [e×]] (2.49)

Alternatively, introducing in (2.47) the identity (2.22) which we recall below

Ψ̃
2
b = Ψ̃(Ψ̃b) = (Ψ⊗Ψ−Ψ2I)b ∀ b ∈ R3 (2.50)

we obtain

Λ(Ψ) = I +
sin Ψ

Ψ
Ψ̃ +

1− cos Ψ

Ψ2
(Ψ⊗Ψ−Ψ2I)

= cos ΨI +
sin Ψ

Ψ
Ψ̃ +

1− cos Ψ

Ψ2
Ψ⊗Ψ (2.51)

Recognizing again e, by substitution into the previous equation, we get another form
of Euler-Rodrigues formula

Λ(Ψ) = cos ΨI + sin Ψ[e×] + (1− cos Ψ)(e⊗ e) (2.52)

This relation makes comprehensible how the rotation operator does not depend on the
multiplies of the rotation revolution counts, i.e. Λ(Ψ) = Λ(Ψ+2iπe) with i = 1, 2, . . ..

Orthogonality conditions.

As previously stated, the rotation tensor is characterized by some important prop-
erties, among which the orthogonality condition is one of the most fundamentals. In
order to show how equation (2.47) satisfies this property, one can note that, since Ψ̃

is a skew-tensor such that Ψ̃
T

= −Ψ̃, the transpose ΛT (Ψ) takes form

ΛT (Ψ) = I − sin Ψ

Ψ
Ψ̃ +

1− cos Ψ

Ψ2
Ψ̃

2
(2.53)

Evaluating equation (2.47) for Ψ = −Ψ, recalling that sin(−Ψ) = − sin(Ψ), and
resuming the cross product anticommutativity property (−Ψ× x) = −(Ψ× x), and
also −Ψ× (−Ψ× x) = Ψ× (Ψ× x), we can state that

ΛT (Ψ) = Λ(−Ψ) (2.54)
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and finally the inverse relation to (2.46) reads

x0 = Λ(−Ψ)x = ΛT (Ψ)x (2.55)

where Λ(−Ψ) clearly maps the rotated vector x back into its original position x0,
since Λ(−Ψ) is the rotation around the inverted rotation vector. Therefore Λ(−Ψ) =
Λ−1(Ψ) and accordingly we have

Λ−1 = Λ(−Ψ) = ΛT (Ψ) (2.56)

which finally confirms that Λ(Ψ) is orthogonal.

2.5.3 Exponential mapping.

Expression (2.46) could be transformed into a theoretically more convenient func-
tion of Ψ̃. It will be show that this representation has remarkable advantage to sim-
plify differentiation of rotation Λ. Because of this favorable property, the exponential
map has become a favorite of implementation where large angles may occur in a
three-dimensional motion.

Theorem 2.9 (Exponential function). Consider the series expansion of exp[Ψ̃]

exp[Ψ̃] = I + Ψ̃ +
1

2!
Ψ̃

2
+

1

3!
Ψ̃

3
+ . . .+

1

n!
Ψ̃
n

+ . . . (2.57)

which is by definition the exponential function of the skew-tensor Ψ̃. It can be proved
(see [27] page 228) that the exponential function of a generic skew-symmetric tensor
is a rotation tensor, i.e. the exponential is the chart which maps a skew-symmetric
tensor in a proper rotation tensor, i.e.

Λ = exp[Ψ̃] (2.58)

Proof. Here we proof 14 that the expression of Λ (2.46) yields to the exponential map
of Ψ̃. We deduce it in two steps: in the first the trigonometric functions (2.46) are ex-
panded in series in Ψ; subsequentually in the second step, by a judicious consideration
of the powers in Ψ̃, we transform the series finally into one in Ψ̃. Lastly, according
to [23] (see [23] page 287) a simple proof of orthogonality conditions and det Λ = +1
is reported.

We start expanding in series with respect to Ψ the trigonometric functions 15 in

14The surprisingly concise and elegant result of (2.58) may also be deduced by arguments based
on Lie’s theory of groups as is done in quantum mechanics [1].

15The Taylor’s series expansion for sine and cosine function holds

sin Ψ = Ψ− Ψ3

3!
+

Ψ5

5!
− . . .

cos Ψ = 1− Ψ2

2!
+

Ψ4

4!
− . . .
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(2.46), which yields to

Λ(Ψ̃) = I +

[
1− Ψ2

3!
+

Ψ4

5!
+ . . .+ (−1)

Ψ2n

(2n+ 1)!
± . . .

]
Ψ̃

+

[
1

2!
− Ψ2

4!
+

Ψ4

6!
+ . . .+ (−1)

Ψ2n

(2n+ 2)!
± . . .

]
Ψ̃

2
(2.59)

Next we consider the skew-symmetric tensor Ψ̃ with axial vector Ψ and relative norm
Ψ = ||Ψ||. By explicit computation, we can observe the interesting relations

Ψ̃
3

= −Ψ2Ψ̃, Ψ̃
5

= +Ψ4Ψ̃

Ψ̃
4

= −Ψ2Ψ̃
2
, Ψ̃

6
= +Ψ4Ψ̃

2
(2.60)

which leads to the recurrence formula

Ψ̃
2n−1

= (−1)n−1Ψ2(n−1)Ψ̃ Ψ̃
2n

= (−1)n−1Ψ2(n−1)Ψ̃
2

(2.61)

Developing the multiplications in equation (2.59), and then substituting into it the
right-hand side of (2.61), we deduce Λ as a series expansion of Ψ̃

Λ(Ψ̃) = I + Ψ̃ +
1

2!
Ψ̃

2
+

1

3!
Ψ̃

3
+ . . .+

1

n!
Ψ̃
n

+ . . . (2.62)

which proves, in fact, the equality (2.58)

Λ = exp[Ψ̃] (2.63)

In terms of the rotational vector Ψ, equations (2.57) and (2.58) give the exact value
of the current rotation matrix. Using truncated MacLaurin’s series of various order
in equation (2.57), approximated values of the rotation matrix are obtained and cor-
responding simplified theories can be derived. For example, a so called first order
theory is obtained if small rotations are assumed, so that the quadratic and higher
order terms in (2.57) may be neglected. However, in this work no simplification are
addressed in order to maintain the geometric exactness in the kinematic description
of body motion.

Orthogonality condition is quickly obtained by noting from (2.58) ΛT = exp[Ψ̃
T

] =

exp[−Ψ̃
T

] = Λ−1.
We recall that for det Λ = +1 we have a proper rotation, while for det Λ = −1

we get a combination of a rotation and a reflection in a coordinate plane. Now, if the
eigenvalues of Ψ̃ are µi, hence by definition Tr[Ψ̃] =

∑n
i=1 µi = 0. From (2.58), the

eigenvalues of ΛeΨ̃ are λ1 = eµ1 , λ2 = eµ2 , ..., λn = eµn , i.e. λi = eµi , thus we have

det Λ =
n∏
i=1

λi

= eµ1eµ2 . . . eµn

= e
∑n

i=1 µi

= e0 = 1 (2.64)

�
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2.5.4 Cayley-Rodrigues parametrization.

Because of trigonometric functions involved, Euler-Rodrigues parametrization could
show an high computational cost. According to [21] it can be possible to reformu-
late expression (2.46) in slightly different forms by means of the so-called Rodrigues
rotation parameters. This parametrization, also known as Cayley-Gibbs-Rodrigues
parametrization, was primarily proposed by Rodrigues.

Instead of using the rotation vector Ψ (2.29), we can establish a pseudo-vector ϖ

as

ϖ = $ e , 2 tan
Ψ

2
e =

tan(Ψ/2)

Ψ/2
Ψ (2.65)

with Cartesian components {$x, $y, $z}, with

$ = 2 tan
Ψ

2
=
√
$2
x +$2

y +$2
z (2.66)

Sometimes these parameters are defined without the factor 2 in equation (2.65). How-
ever, definition as in (2.65) has the advantage to lead $ = Ψ up to second order.

While the Euler-Rodrigues representation Λ = Λ(Ψ) is valid for any value of Ψ,
the use of Rodrigues rotation vectors implies to have an existence domain 0 ≤ Ψ ≤ π
because definition of (2.65). In fact equation (2.65) collapses as Ψ nears π, since
tan 1

2
Ψ→ ±∞ as Ψ→ π, and singularity hold for Ψ = π + 2kπ, k = 1, 2, 3, . . ..

In order to determine the form of the rotation matrix according to the new
parametrization, we start recalling equation (2.41), and substituting the last of (2.65),
the following trigonometric identities hold

i.

sin Ψ

Ψ
· Ψ

2 tan(Ψ/2)
=

sin Ψ

Ψ
· Ψ

2
· 1 + cos Ψ

sin Ψ

=
1 + cos Ψ

2

= cos2 Ψ

2

ii.

Ψ

2 tan(Ψ/2)
· Ψ

2 tan(Ψ/2)
· 1

2

(
sin(Ψ/2)

Ψ/2

)2

=
Ψ

2 tan(Ψ/2)
· Ψ

4
· 1 + cos Ψ

sin Ψ
· sin2(Ψ/2)

(Ψ/2)2

=
Ψ

2 tan(Ψ/2)
· 1

Ψ
· 1 + cos Ψ

sin Ψ
· 1− cos Ψ

2

=
Ψ

2 tan(Ψ/2)
· sin Ψ

2Ψ

=
1 + cos Ψ

2 sin Ψ
· sin Ψ

2

=
1

2
· cos2 Ψ

2

c© E. Da Lozzo



2.5.4 Cayley-Rodrigues parametrization. 49

consequentially equation (2.41) becomes

x = x0 + cos2 Ψ

2
(ϖ× x) +

1

2
cos2 Ψ

2
(ϖ× (ϖ× x)) (2.67)

Using the trigonometric identity cos2 α = (1+tan2 α) and the scalar product ϖT ·ϖ =
4 tan4 Ψ

2
, we note from (2.65) that

cos2 Ψ

2
=

1

1 + tan2(Ψ/2)
=

1

1 + 1
4

ϖT · ϖ
(2.68)

and finally equation (2.67) turns into

x = x0 +
1

1 + 1
4

ϖT · ϖ

[
(ϖ× x) +

1

2
(ϖ× (ϖ× x))

]
(2.69)

We introduce now the auxiliary matrix R̃ = skew(ϖ) which takes the place of Ψ̃ in
(2.43), and write

R̃ =

 0 −$z $y

$z 0 −$x

−$y $x 0

 =
tan(Ψ/2)

Ψ/2

 0 −ψ θ
θ 0 −φ
−θ φ 0

 =
tan(Ψ/2)

Ψ/2
Ψ̃ (2.70)

In analogy to (2.45) we note the vector and matrix rules

ϖ× x = R̃x and ϖ× (ϖ× x) = R̃
2
x (2.71)

which yield in pursuance of (2.69) the matrix expression

x = x0 +
1

1 + 1
4

ϖT · ϖ

[
R̃+

1

2
R̃

2
]
x = Λ(ϖ)x (2.72)

with the rotation matrix

Λ(ϖ) = I +
1

1 + 1
4

ϖT · ϖ

[
R̃+

1

2
R̃

2
]

(2.73)

which is formally the same assumed in [48], i.e.

Λ(ϖ) = I +
4

4 + ϖ2

[
R̃+

1

2
R̃

2
]

(2.74)

and with inverse transformation matrix Λ(−ϖ), being the rotation matrix orthogonal

Λ(−ϖ) = I +
4

4 + ϖ2

[
−R̃+

1

2
R̃

2
]

= ΛT (ϖ) (2.75)
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2.6 Configurational description of compound rota-

tions

2.6.1 Spatial and material description of compound rotations

As it has been introduced, rotations can be defined by means of rotation operators.
It is straightforward to see that the components of a given rotation operator depend
on the reference frame adopted. In fact they could be directly expressed in terms of a
fixed reference frame, usually called material, or alternatively in terms of a movable
reference frame rigidly attached to the rotating body, commonly called spatial.

To explain better the nature of the two descriptions, let suppose a sequence of N
consecutive rotations Λ1, . . . ,Λi, . . . ,ΛN , which are composed together to generate
another rotation Λc applied to an arbitrary vector h ∈ R3. The resulting compound
rotation can be defined by two different, through completely equivalent (dual), ways:

1. Spatial description: In this case the vector hc ∈ R3 obtained by the applica-
tion of the sequence of rotations on vector h can be seen as the result of the
application of a compound rotation Λc ∈ SO(3) obtained by the consecutive
application of the rotation tensor Λi ∈ SO(3) (i = 1, . . . , N) on the previous
rotated vector, i.e.

hc = ΛN(. . . (Λi(. . . (Λ1(h))))) = ΛN . . .Λi . . .Λ1(h) = Λc(h) (2.76)

Therefore, the inverse multiplicative rule for rotation tensors is valid for the
composition of rotations.

2. Material description: In this case the direct multiplicative rule is valid for
the composition of rotations, i.e.

hc = Λ1(. . . (Λi(. . . (ΛN(h))))) = Λ1 . . .Λi . . .ΛN(h) = Λc(h) (2.77)

where the components of the generic rotation tensor Λi+1 representing the (i+
1)-th rotation are expressed in the new rotated, or updated, reference system,
affected by rotation Λi and previous ones.

It is important to note that in both cases, the resulting configuration is the same.
Therefore, the composition of two or more rotations, defined in terms of a spatially
fixed reference frame, is the same as these obtained applying the same sequence of
rotations referred to a rotating frame, but inverting the order of the composition.
Thus, the order of the matrix products that appear in the composition of successive
rotations is crucial, and depends on the bases in which the components of the various
rotation tensors are measured.

2.6.2 Compound rotation

In this section we perform a more formal description of compound rotations in
terms of configurational description of the rotational motion. To this end, let {Ei}
and {ti} be two spatially fixed (inertial) reference coordinate systems, identified as
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the material and spatial coordinate system, respectively. Given two rotation vectors
Ψ = ΨiEi for material frame and the respective ψ = ψiti for spatial frame, it is
possible to obtain Λ ∈ SO(3) by means of applying the exponential mapping as

Λ = exp[Ψ̃] = exp[ψ̃] (2.78)

with Ψ̃ and ψ̃ being the skew-symmetric tensor obtained from Ψ and ψ, respectively.
In this manner, the rotation tensor Λ is parametrized in the material or spatial de-
scription, although the rotation tensor itself can be regarded as a two point operator.
If a rotation increment is applied, it is possible to obtain the new compound rotation
according to equation (2.76) and (2.77), and using equation (2.58) it is possible to
define the material and spatial descriptions of the compound rotations as described
below.

Material description of compound rotation. Given a material incremental
rotation vector Θ̃ = ΘiEi, the new compound rotation tensor Λc is described by the
left translation mapping, defined as an operator with base point in Λ ∈ SO(3) and
described by

leftΛ(·) : SO(3) −→ SO(3)

exp[Θ̃] 7−→ Λc = Λ exp[Θ̃] = ΛΛmat (2.79)

where Λmat ∈ SO(3) is the material form of the incremental rotation operator, while
Θ̃ ∈ so(3) is an incremental material rotation tensor. It is worth to note that the left
translation map is defined as acting on an element of so(3) but the final updating
procedure requires the specification of a base point Λ on the rotational manifold
SO(3). This description is called material since the incremental rotation operator
acts on a material tensor space.

Spatial description of compound rotation. Given a spatial incremental
rotation vector θ = θiti, the description of the new compound rotation tensor Λc can
be obtained by the right translation mapping, defined as an operator with base point
in Λ ∈ SO(3) and described by

rightΛ(·) : SO(3) −→ SO(3)

exp[θ̃] 7−→ Λc = exp[θ̃]Λ = ΛspatΛ (2.80)

where Λspat ∈ SO(3) is the spatial form of the incremental rotation operator, while
θ̃ ∈ so(3) is an incremental spatial rotation tensor. The right translation map is
defined as acting on an element of so(3), but the final updating procedure requires
the specification of a base point Λ on the rotational manifold SO(3). This description
is called spatial since the incremental rotation operator acts on a spatial tensor space.
The duality appearing in the definitions (2.79) and (2.80) results from the fact that
the rotation group is non commutative.

Relations between spatial and material descriptions. The spatial and
material descriptions of the incremental rotation tensor, their incremental rotation
vectors and the skew-symmetric tensors are related by (see [36])
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1. Inner automorphism: Λspat = ΛΛmatΛT ;

2. Lie algebra adjoint transformation on so(3): θ̃ = ΛΘ̃ΛT ;

3. Lie algebra adjoint transformation via cross product as Lie algebra: θ = ΛΘ.

where the third property indicates that the rotation vector θ is unaffected by the
rotation, as in fact expected since the rotation takes place about rotation axis, that
is indeed parallel (coaxial) to θ. This property is closely related to the eigen-analysis
of Λ. In fact, the eigenvalue problem for rotation tensor is written as

(Λ− λiI)xi = 0 i = 1, 2, 3 (2.81)

where λi is the i−th eigenvalue and xi its associated eigenvector. Rearranging Lie
algebra adjoint transformation via cross product as

(Λ− I)θ = 0 (2.82)

and comparing this expression with (2.81), we conclude that the axis of rotation can
be regarded as the eigenvector of the rotation tensor corresponding to the eigenvalue
λ = 1.

Remark 1. As it has be shown, exp[Θ̃] ∈ SO(3), with Θ̃ being the skew-symmetric
tensor obtained from Θ ∈ R3 that belongs to the tangential space of SO(3) at the
identity on SO(3); i.e. Θ̃ ∈ so(3) ≈ TISO(3). �

2.6.3 Tangent spaces of rotation manifold

Material tangent space to SO(3). Taking the directional (Gateaux) deriva-
tive of the compound rotation according to definition (2.77), i.e. differentiating the
perturbed configuration of the material form of the compound rotation Λc = Λ exp[εΘ̃]
with respect to the scalar parameter ε and setting ε = 0, one obtain

Λ exp(εΘ̃)|ε=0 = Λ (2.83)

dΛ exp(εΘ̃)

dε

∣∣∣∣∣
ε=0

= ΛΘ̃ (2.84)

which yields the material tangent space to the rotation manifold SO(3) at the base
point Λ ∈ SO(3) since (2.83) holds. More formally we can define

T matΛ SO(3) = {Θ̃Λ := (Λ, Θ̃) |Λ ∈ SO(3), Θ̃ ∈ so(3)} (2.85)

where an element of the material tangent space Θ̃Λ ∈ T matΛ SO(3) is a skew-symmetric
tensor, i.e. Θ̃ ∈ so(3). The notation (Λ, Θ̃) is used for indicating the pair formed by
the rotation tensor Λ and the skew-symmetric tensor Θ̃, representing the material
tangent tensor, at the base point Λ ∈ SO(3) (see Figure 2.8). For simplicity it is
possible to omit the base point Λ by denoting Θ̃Λ ∈ T matΛ SO(3) if there is no danger
of confusion.
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Figure 2.8: Geometric representation of the material (on the left) and spatial tangent
spaces (on the right) on the rotation manifold SO(3).

Spatial tangent space to SO(3). Likewise above, basing on definition (2.80),
we may write

exp(εθ̃) Λ|ε=0 = Λ (2.86)

dexp(εθ̃) Λ

dε

∣∣∣∣∣
ε=0

= θ̃Λ (2.87)

which define the spatial tangent space of the rotation manifold SO(3) at the base
point Λ ∈ SO(3) since (2.86) holds. More formally we can define

T spatΛ SO(3) = {θ̃Λ := (Λ, θ̃) |Λ ∈ SO(3), θ̃ ∈ so(3)} (2.88)

where, by analogy with the material case, an element of the spatial tangent space
θ̃Λ ∈ T spatΛ SO(3) is a skew-symmetric tensor belonging to so(3). Again, omitting the

base point Λ, it is possible to write θ̃Λ ∈ T spatΛ SO(3).

2.6.4 Incremental rotation vector by total rotation vector

Consider a rotation tensor Λ ∈ SO(3) which can be indistinctly parametrized
(minimally) by using the spatial or material total rotation vector Ψ = ΨiEi and
ψ = ψiti, respectively, i.e. we have Λ = exp[Ψ̃] = exp[ψ̃].

The material total rotation vector Ψ represents the rotation vector associated
to a rotation with respect to the fixed axis, that is axes which remain fixed during
the rotation sequence. Hence, according to Euler’s theorem, rotation vector Ψ is not
affected by rotations, i.e. remains the same when multiplied by the corresponding
orthogonal tensor Λ such that equality ψ = ΛΨ = IΨ holds.

On the other hand, the incremental rotation vector Θ represents the rotation
vector associated to a rotation with respect to the follower axis, that is axis rotated
by the previous rotation. Geometrically Θ represents a superimposed infinitesimal
rotation to an existing finite rotation.
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Material description. A virtual 16 rotation tensor δΘ̃ is an element of the
corresponding tangent space TΛSO(3) for any base point Λ ∈ SO(3) such that it
satisfies all linearized constraint equations, which naturally arise from boundary con-
ditions. A virtual rotation vector δΘ at the base point Λ is the associated axial vector
of the virtual rotation tensor δΘ̃, via equation (2.14).

Let us consider the material description of the compound rotation vector Ψ + δΨ
which parametrizes Λ, with δΨ the additive increment of the rotation vector Ψ. In
general we have

exp[Ψ̃ + δΨ̃] = exp[Ψ̃] exp[δΘ̃] 6= exp[Ψ̃ + δΘ̃] (2.89)

where it is possible to see that δΨ̃ is the linear additive increment of Ψ̃ because they
belong to the same tangent space T matI SO(3), in contrast with δΘ̃ ∈ T matΛ SO(3).
The linearized relation between δΨ and δΘ is obtained starting to construct a per-
turbed configuration of Λ depending on a scalar parameter ε ∈ R3 as

Λε , exp[Ψ̃ + ε δΨ̃] = exp[Ψ̃] exp[ε δΘ̃] (2.90)

For clarity, we give in Figure the geometric representation of different possibilities to
construct a perturbed rotation Λε. With the help of Figure we can note that

• The virtual rotation tensor δΨ̃ belongs to the same tangent space as the rotation
tensor Ψ̃, i.e. such that δΨ̃, Ψ̃ ∈ T matI SO(3) with the identity as the base point;

• The rotation tensor Λ = exp[Ψ̃] and the virtual incremental rotation tensor δΘ̃
belong to the same material tangent space T matΛ SO(3);

• The skew-symmetric tangent tensors Ψ̃ and δΘ̃ do not belong to the same
tangent space of rotation as generally exp[Ψ̃] exp[δΘ̃] 6= exp[Ψ̃ + δΘ̃] (see [38]
for an organic and enlighten proof).

Considering the fact that exp[Ψ̃]−1 = exp[−Ψ̃], equation (2.90) can be rearranged as

exp[ε δΘ̃] = exp[−Ψ̃] exp[Ψ̃ + ε δΨ̃] (2.91)

and taking the derivative of equation (2.91) with respect to parameter ε and setting
ε = 0, using the Rodrigues’ formula, it is possible to obtain the linearized relation be-
tween the incremental rotation vector δΘ and the linearized increment of the rotation
vector δΨ as (see e.g. [37])

δΘ = D[Λ(ε,Θ)] = D[Λε] · δΨ̃

=
d

dε

[
exp[ε δΘ̃]

]∣∣∣∣
ε=0

=
d

dε

[
exp[−Ψ̃] exp[Ψ̃ + ε δΨ̃]

]∣∣∣∣
ε=0

= T T δΨ (2.92)

16Here the symbol δ is used to denote a linearized increment.
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with

T T =
sin Ψ

Ψ
I − 1− cos Ψ

Ψ2
Ψ̃ +

Ψ− sin Ψ

Ψ3
Ψ̃

2
(2.93)

Ψ = ||Ψ||, Λ = exp(Ψ̃), lim
Ψ→0

T T (Ψ) = I (2.94)

where the material tangential transformation tensor T T = T T (Ψ) is a linear map-
ping between the material tangent spaces T T : T matI SO(3) → T matΛ SO(3), i.e. the
transformation T T has an effect on the base point, changing the base point I into
Λ. As a confirmation of the fact that the virtual rotation vector δΘ and the virtual
total rotation vector δΨ belong to different vector spaces on the manifold, one can
note that the tangential transformation T T is equal to the identity only at Ψ = 0,
i.e. Ψ→ 0⇒ T T (Ψ)→ I.

It is worth also noting that the tangential transformation T (Ψ), the corresponding
rotation operator Λ(Ψ) and the skew-symmetric rotation tensor Ψ̃ have the same
eigenvectors. Hence, T (Ψ), Λ(Ψ) and Ψ̃ are commutative (a proof is given in [31]).

Spatial description. Consider the compound spatial rotation vector ψ + δψ
which parametrizes Λ, with δψ the additive increment of the rotation vector ψ. In
general we have

exp[ψ̃ + δψ̃] = exp[εδθ̃] exp[δψ̃] (2.95)

It is possible to see that δψ̃ is the linear additive increment of ψ̃ because they belong
to the same tangent space T spatI SO(3), in contrast with δθ̃ ∈ T spatΛ SO(3). One can

observe that, because of δθ̃ being skew-symmetric, the spatial form of the linearized
increment or admissible variation of the rotation tensor δΛ is no longer orthogonal.
In fact, δθ̃ belongs to the tangential space of the rotation tensor Λ ∈ SO(3).
The linearized relation between δψ and δθ is obtained likewise above as follows:
construct a perturbed configuration of Λ depending on a scalar parameter ε ∈ R3 as

Λε , exp[ψ̃ + ε δψ̃] = exp[ε δθ̃] exp[ψ̃] (2.96)

considering the fact that exp[ψ̃]−1 = exp[−ψ̃] one obtains

exp[ε δθ̃] = exp[ψ̃ + ε δψ̃] exp[−ψ̃] (2.97)

Finally, taking the derivative of equation (2.97) with respect to ε and setting ε = 0, it
is still possible, using the Rodrigues’ formula, to obtain the linearized relation between
the incremental rotation vector δθ and the increment of the total rotation vector δψ
as

δθ = D[Λ(ε,θ)] = D[Λε] · δψ̃

=
d

dε

[
exp[ε δθ̃]

]∣∣∣∣
ε=0

=
d

dε

[
exp[ψ̃ + ε δψ̃] exp[−ψ̃]

]∣∣∣∣
ε=0

= T δψ (2.98)
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with

T =
sinψ

ψ
I +

1− cosψ

ψ2
ψ̃ +

ψ − sinψ

ψ3
ψ̃

2
(2.99)

ψ = ||ψ||, Λ = exp(ψ̃), lim
ψ→0

T (ψ) = I (2.100)

where the spatial tangential transformation tensor T is the same linear operator as
in the material form (2.93), and represents a mapping between vector spaces on the
rotation manifold T : T spatI → T spatΛ .

2.6.5 Tangent vector spaces of rotation manifold

Material vector space. According to the previous results, it is possible to
define the material vector space on the rotation manifold at any base point Λ as

T matΛ = {Θ := (Ψ,Θ) |Λ = exp(Ψ̃) ∈ SO(3),Θ ∈ R3} (2.101)

where an element of the material vector space is Θ ∈ T matΛ , which is an affine space
with the rotation vector Ψ as the base point and the incremental rotation vector δΘ as
a tangent vector. Note that the elements of this material vector space can be added by
the parallelogram rule only if they occupy the same affine space, i.e. if their associated
skew-symmetric tensors belong to the same tangential space of the rotation manifold.
Definition reported in (2.101) for the material vector space should be considered as a
useful and simple notation with equivalence relation with the material tensor space
defined above.

Spatial vector space. By analogy with the material case, the spatial vector
space on the rotation manifold at any base point Λ is defined as

T spatΛ = {θ := (ψ,θ) |Λ = exp(ψ̃) ∈ SO(3),θ ∈ R3} (2.102)

The spatial and the material vector spaces are related by the rotation operator
via θ = ΛΘ. From this follows that with the base point I ∈ SO(3)

ψI = IΨI −→ ψI = ΨI (2.103)

where ′ =′ denotes the canonical isomorphism between the spatial and material vector
spaces. The identity I maps between the vector spaces T matI → T spatI , and the relation
between the spatial and the material vectors can be given as (ψ,θ) = (IΨ,ΛΘ)
where ψ and Ψ represent the base vectors in the spatial and material vector spaces,
respectively. This relation can be rewritten compactly as θ = ΛΘ, called the push-
forward operation of ΘΛ by Λ, where the rotation operator should be considered as a
mapping between the material and spatial vector spaces of rotation, i.e. Λ : T matΛ →
T spatΛ (see 17 Figure 2.9 for a scheme of the connections between spatial and material
configurations). Generally speaking, a push-forward operator 18 maps, by means of
Λ, a material vector space into a spatial vector space (one-to-one and onto). It makes
sense since a rotation operator is a two-point tensor.

17The same diagram applies to admissible variations of rotation parameters, as well as their
increments [58].

18For a rigorous account of push-forward and pull-back mappings, see [40].
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Figure 2.9: Commutative diagram of virtual material and spatial rotation vectors on the
rotation manifold (on the left), and their corresponding vector spaces (on the
right).

The corresponding push-forward operator for rotation tensors is θ̃ = ΛΘ̃ΛT , i.e. a
mapping, performed by means of Λ between the material and spatial tangent spaces
of rotation Λ(·)ΛT : T matΛ → T spatΛ .
Finally, it’s noteworthy the correspondence between equation (2.93) and (2.99) due
to the identity mapping between the vector spaces T matI → T spatI , such that T (Ψ) =
T (ψ). For simplicity, in the forthcoming sections we refer to the second one expression,
since there is no danger of confusion.

2.7 Time derivatives of rotation operator

Derivatives of rotation tensor and their axial vectors, with respect to the time
variable, appear in applications of finite rotations to mechanics, where they play a
crucial role in the development of kinematics. Hence, we introduce here such a topic,
giving definitions in material as well as spatial description.

2.7.1 Angular velocity

Angular velocity in material form. Let consider a rotation Λ = Λ(t)
function of parameter t ∈ R which is taken as the independent variable and has
the specific meaning of time. We indicate by Λ̇ = dΛ/dt the time derivative of Λ
with respect to time coordinate t. Taking derivative of the orthogonality condition
ΛTΛ = I (2.5), we get

Λ̇TΛ + ΛT Λ̇ = 0 (2.104)

which given in the form (skewness condition)

ΛT Λ̇ = −Λ̇TΛ → ΛT Λ̇ = −(ΛT Λ̇)T (2.105)

shows that ΛT Λ̇ is a skew tensor. With this result in hand we define the material
angular velocity tensor Ω̃, and consequently its axial vector Ω = axial(Ω̃), as

Ω̃ = skew [Ω] = [Ω×] , ΛT Λ̇ where Ω̃ ∈ T mat
Λ SO(3), Ω ∈ T mat

Λ ⊂ R3 (2.106)
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In matrix notation we have

Ω̃ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 and Ω =

Ω1

Ω2

Ω3

 (2.107)

where Ω̃
T

= −Ω̃ is a spatial skew-symmetric tensor which defines the spin of the
moving frame. The associated axial vector Ω, which satisfies relation Ω̃Ω = 0, gives
the vorticity of the moving frame.

One can observe that Θ, Θ̇, Ω ∈ T matΛ , i.e. the material incremental rotation
vector, its time derivative and the material angular vector, respectively, belong to the
same tangent material vector space on the rotation manifold.

Angular velocity in spatial form. Similar expression and derivation can be
accomplished for the spatial angular velocity tensor and vector, yielding the definition
of the spatial skew tensor ω̃ and its axial vector ω = axial(ω̃)

ω̃ = skew [ω] = [ω×] , Λ̇ΛT where ω̃ ∈ T spat
Λ SO(3), ω ∈ T spat

Λ ⊂ R3 (2.108)

As before, the material incremental rotation vector θ, its time derivative vector θ̇ and
the spatial angular vector ω belong to the same spatial vector space on the rotation
manifold, i.e. θ, θ̇,ω ∈ T spatΛ .

Pre-multiplying and post-multiplying for Λ equations (2.106) and (2.108), we get
another two forms of derivative Λ̇

Λ̇ = Λ Ω̃ (2.109)

Λ̇ = ω̃Λ (2.110)

Note that Λ̇ /∈ SO(3), i.e. the time derivative of a rotation is not a rotation.
At contrary, recalling from previous section that the skew-tensor space so(3) is the
tangent space to the rotation group, equations (2.109) and (2.110) show that the
derivative is a composition of the current rotation with an element of the rotation
tangent space. Moreover in the case (2.109) the spin tensor Ω̃ precedes the rotation
in the composition product, i.e. it lays in the space that has not been affected by
any rotation. Accordingly, it belongs to the rotation tangent space at the identity I,
namely T mat

I . Conversely, in the case (2.110), the spin tensor ω̃ follows the rotation
in the composition product, i.e. it lays in a space that has been already rotated by Λ.

Comparing equations (2.109) and (2.110) results

Λ̇ = ω̃Λ = Λ Ω̃ ⇒
ω̃ = Λ Ω̃ ΛT and Ω̃ = ΛT ω̃Λ (2.111)

which shows that ω̃ is the rotated-forward expression (to the spatial configuration)
of Ω̃, and Ω̃ is the rotated-back expression (to the material configuration) of ω̃.

An equivalent relation can be obtained for axial vectors ω and Ω. Comparing
again equations (2.109) and (2.110) it follows that

Λ Ω̃h = ω̃Λh ∀h ∈ R3 (2.112)
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Using relation (2.14) it can be recast in terms of ω and Ω as

Λ(Ω× h) = ω ×Λh ∀h ∈ R3 (2.113)

On the left-hand side one can use the distributivity property of cross product with
respect to product with a rotation (see (A.9)), and obtain

ω ×Λh = ΛΩ×Λh ∀h ∈ R3 (2.114)

which entails

ω = ΛΩ (2.115)

and consequentially

Ω = ΛTω (2.116)

Such as for their skew tensors, ω is the rotated-forward expression of Ω, and Ω is the
rotated-back expression of ω.

Angular velocity vectors by total rotation vector. The spin tensor ω̃ =
Λ̇ΛT in spatial coordinates, and its axial vector ω, as well as their rotated-back form
Ω̃ = ΛT ω̃Λ and Ω = ΛTω introduced in section 2.7.1, play a crucial role in the
kinematics and equilibrium of beam model. Here we are interested in study their
relations with the total rotation vector Ψ and ψ, respectively in material and spatial
form. The relations can be found developing the mapping or the equivalent Rodrigues
formula. The computation shows that the angular velocity vectors ω and Ω are related
linearly with the time derivative of the total rotation vectors Ψ̇ and ψ̇ respectively,
through a non-linear function of Ψ and ψ. For ω and its back-rotated counterpart it
results in fact that (see appendix D)

Ω = T T (Ψ) · Ψ̇, Ω ∈ T matΛ , Ψ, Ψ̇ ∈ T matI (2.117)

ω = T (ψ) · ψ̇, ω ∈ T spatΛ , ψ, ψ̇ ∈ T spatI (2.118)

where, we made use of the identity T (Ψ) = T (ψ) with

T = I +
1− cosψ

ψ2
ψ̃ +

ψ − sinψ

ψ3
ψ̃

2
(2.119)

T T = I − 1− cosψ

ψ2
ψ̃ +

ψ − sinψ

ψ3
ψ̃

2
(2.120)

where T T is computed from T changing the sign to the coefficient of ψ̃, since ψ̃ is

skew-symmetric tensor (ψ̃
T

= −ψ̃), and making use of equations (A.2) and (A.5). In
addition, the following relations hold

T (ψ) : T spatI → T spatΛ (2.121)

T T (Ψ) : T matI → T matΛ (2.122)

and clearly for ψ → 0 ⇒ T (ψ) → I, and consequently ω = ψ̇. This result is often
given as definition for the angular velocity vector in elementary books.
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Figure 2.10: A commutative diagram of virtual material and spatial angular velocity vec-
tors on the rotation manifold (on the left), and their corresponding vector
spaces (on the right).

Using identity (2.22), the quadratic skew tensor ψ̃
2

can be given in terms of vector
ψ, hence tensor T can be rearranged easily as

T =
sinψ

ψ
I +

1− cosψ

ψ2
ψ̃ +

ψ − sinψ

ψ3
ψ ⊗ψ (2.123)

It’s worthy of further attention that tensors T and Λ are linear combinations of
the same elementary tensors. Moreover, it can be shown (see [31]) that they share the
same eigenvalues, and hence they commute. To confirm this the following property
holds. In fact, realizing that ω is the spatial counterpart of Ω, from equations (2.118)
and (2.115) one has

ω = T ψ̇

= ΛΩ

= ΛT T Ψ̇ (2.124)

which, in turn, reveals the relationship

T = ΛT T (2.125)

Finally, by inspecting equation (2.119) we notice that T (ψ) is singular for certain
value of ψ. Indeed, calculating the determinant from expression (2.119) we obtain

det(T ) =
2(1− cosψ)

ψ2
(2.126)

which is null for ψ = 0 ± 2kπ, where k = 1, 2, 3, . . . is an integer. That is to say
the parametrization presents a certain number of differentiability holes. This rank
deficiency may lead the tangential stiffness tensor to be deficient too, and iterative
solution procedures of Newton type may not converge or give spurious bifurcation
because the determinant of the tangential stiffness matrix vanishes. In order to avoid
this problem during computations, one can restrict the rotational vector to values in
the range 0 ≤ ψ ≤ π. Alternatively, [31] introduces a special incremental updating
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procedure when solving the nonlinear finite element equations, known as updated
Lagrangian.

Proofs of equations (2.118) and (2.119) are given extensive in appendix D, however
more details explanations are available in [31] and [53].

2.7.2 Angular acceleration

Angular acceleration in material form. For sake of completeness, further
proceeding in derivation, the material angular acceleration tensor and the correspond-
ing vector are defined as the time derivative of the angular velocity

Ã = ˙̃Ω, Ã ∈ T mat
Λ SO(3), ⇐⇒ A = Ω̇, A ∈ T mat

Λ (2.127)

The incremental material rotation vector Θ, the material angular velocity vector Ω
and the material angular acceleration vector A belong to the same material vector
space in the rotation manifold, i.e. Θ,Ω,A ∈ T mat

Λ with the base point Λ = exp[Ψ̃].

Angular acceleration in spatial form. As before, further proceeding in the
derivation, the spatial angular acceleration tensor and the corresponding vector are
defined as the time derivative of the angular velocity, i.e.

α̃ = ˙̃ω, α̃ ∈ T spat
Λ SO(3), ⇐⇒ α = ω̇, α ∈ T spat

Λ (2.128)

The incremental spatial rotation vector θ, the spatial angular velocity vector ω and
the spatial angular acceleration vector α belong to the same spatial vector space in
the rotation manifold, i.e. θ,ω,α ∈ T spat

Λ .

Angular acceleration vectors by total rotation vector. In analogy with
what showed for angular velocity, in turn angular acceleration vectors α and A are
related with the time derivative of the total rotation vectors Ψ̇ and ψ̇, as it can be
shown simply by differentiating equations (2.117) and (2.118)

A = T T · Ψ̈ + Ṫ
T · Ψ̇, A ∈ T matΛ , Ψ, Ψ̇, Ψ̈ ∈ T matI (2.129)

α = T · ψ̈ + Ṫ · ψ̇, α ∈ T spatΛ , ψ, ψ̇, ψ̈ ∈ T spatI (2.130)

Note that the tangential transformations T , Ṫ ∈ (T spat
I , T spat

Λ ) and T T , Ṫ
T ∈ (T mat

I , T mat
Λ )

operate with different base point.

2.8 Spatial derivatives: curvature

Let consider a one-parameter rotation Λ = Λ(S), function of parameter S which is
taken as the independent variable and has the specific meaning of arc-length measure.
We indicate by Λ′ = dΛ/dS the spatial derivative of Λ with respect to the arc-length
parameter S. Taking derivative of the orthogonally condition ΛTΛ = I (2.5), we get

Λ′TΛ + ΛTΛ′ = 0 (2.131)
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which given in the form (skewness condition)

ΛTΛ′ = −Λ′TΛ → ΛTΛ′ = −(ΛTΛ′)T (2.132)

shows that ΛTΛ′ is a skew tensor. With this result in hand we define the material
and spatial curvature tensors K̃ and κ̃ of a parametrized line (beam) respectively as

K̃ = skew [K] = [K×] , ΛTΛ′ where K̃ ∈ T mat
Λ SO(3), K ∈ T mat

Λ ⊂ R3

(2.133)

κ̃ = skew [κ] = [κ×] , Λ′ΛT where κ̃ ∈ T mat
Λ SO(3), κ ∈ T mat

Λ ⊂ R3

(2.134)

Therefore curvature could be regarded as the rate of change of the rotation matrix
Λ with respect to the longitudinal coordinate. Taking advantage of the axial vector
relation (2.14), the axial vectorsK and κ are called the material and spatial curvature
vector, respectively.
Revising (2.133) by post-multiplying for Λ we get

Λ′ = κ̃Λ (2.135)

whereas by pre-multiplying for Λ we get

Λ′ = ΛK̃ (2.136)

Comparing equations (2.135) and (2.136), curvature tensors satisfy the push-forward
relations

Λ′ = κ̃Λ = Λ K̃ ⇒
κ̃ = Λ K̃ ΛT and K̃ = ΛT κ̃Λ (2.137)

Equivalent relations can be obtained for axial vectors κ and K, entirely similar to
those of angular velocities. Still from equations (2.135) and (2.136) it follows that

κ̃Λh = Λ K̃h ∀h ∈ R3 (2.138)

which using the axial vector relation (2.14) can be given in term of κ and K as

κ×Λh = Λ(K × h) ∀h ∈ R3 (2.139)

Using for the right-hand side the distributivity property of cross product under rota-
tion (A.9), we obtain

κ×Λh = ΛK ×Λh ∀h ∈ R3 (2.140)

which entails

κ = ΛK (2.141)
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and consequently

K = ΛTκ (2.142)

Curvature vectors by rotation vector. Following the same procedure as
the one discussed above (see for instance (2.118)), we can get an alternative form of
the curvature strain measure as (see appendix D)

κ = T (θ̃)θ′ (2.143)

K = T T (Θ̃)Θ′ (2.144)

Tensor T relates spin-like variables with the appropriate variation of the rotation
vector. In particular, in expression (2.143) the tensor T maps the spatial variation of
the rotation tensor into a generalized curvature vector, and therefore may be regarded
as the compatibility equations, as they nonlinearly relate generalized strains with
generalized displacement.
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Chapter 3

Geometrically exact beam theory:
kinematics and strain

Come forth into the light of things,
Let nature be your teacher.

W. Wordsworth

This chapter is the first of three devoted to present the geometrically exact for-
mulation for beams capable of reproducing large displacements and rotations. The
present formulation is based on that originally proposed by Simo [56] and extended by
Simo & Vu-Quoc [57], [58], [59] and [64], which generalize to the full three-dimensional
dynamic case the formulation originally developed by Reissner [50] and [51] for the
plane static problem. This approach allows to consider finite shearing, extension,
flexure and torsion. In the present case, an initially straight and unstressed beam is
considered as the reference configuration, as in the analogous approach by Simo [56].
The overall theory is addressed within the framework of classical continuum mechan-
ics, considering the basic definitions of body, configuration space, deformation, etc.
as presented in [40] and [28].

The Chapter is organized as follow. Firstly, the initial and current reference place-
ments for an arbitrary body is introduced, and subsequently its specialization for
beam-like bodies is addressed. The straight and unstrained reference configuration of
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66 Geometrically exact beam theory: kinematics and strain

the beam is then described in detail with the help of a reference frame, assumed for
simplicity coincident to the inertial coordinate system. The kinematic of the classic
geometrically exact beam theory is gradually introduced, starting from the statement
of the basic kinematic assumptions, and continuing with the description of the moving
reference system and its relation with the reference frame. Finally, the configurational
description of current configuration of the beam in the three-dimensional space and
the statement of the configuration space as a nonlinear differentiable manifold, con-
stituted by a parameter family of 3D Eucledian vectors and orthogonal matrices.
Proceeding, the consistent derivation of the deformation gradient tensor is explicitly
obtained, and following the mathematical form of strain measures involved at any
point of the current cross-section of the beam is determined. Their physical mean-
ing is also addressed in the three-dimensional space. Lastly, the linearization of the
most important kinematical quantities is performed basing on the concept of Gateaux
directional derivative.

3.1 Basic kinematics

For an appropriated description of the three-dimensional motion of beam in finite
deformation it is necessary to deal with the finite rotation of a unit triad; there-
fore, the results of Chapter 1 are used repeatedly here to describe the Rissner-Simo
geometrically exact formulation for beams.

3.1.1 Initial and current reference placements

Let χ : B → R3 be a smooth time-dependent embedding of material body B into
Euclidean space R3 defined by a global spatially fixed 1 reference system {e1, e2, e3}.
For each fixed time t ∈ R+, the mapping χ(·, t) is defined as the current placement
of the body B along with the current place vector x of a body-point, namely

Bt ⊂ R3 := χ(X, t), x = χ(X, t), ∀X ∈ B (3.1)

The initial reference placement B0 is defined as the special case of the current
placement Bt by setting t = 0, giving

B0 ⊂ R3 := χ(X, t = 0), X = χ(X, t = 0), ∀X ∈ B (3.2)

where X is an initial reference place vector. Since the initial reference placement B0

is unaffected by observation transformation (see e.g. [47]), it is possible to call vectors
and tensors defined on the initial reference placement B0 as material quantities. For
example, the reference place vector X is called material place vector, and B0 the
material placement of the body. Sometimes the material description is named refer-
ential, global, natural, original or Lagrangian description. Contrary to the material
placement B0, the current placement Bt, along with vectors and tensors defined on it,
are concerned on the observation transformation. Vectors and tensors defined on the
current placement Bt are called spatial quantities, e.g. a current place vector x is also

1By spatial fixed means it is fixed in an arbitrarily chosen orthonormal frame {e1, e2, e3} that
has no acceleration nor rotation in the three-dimensional inertial physical space.
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named as a spatial place vector, and Bt as a spatial placement. A spatial description
is sometimes referred also as present or Eulerian description.

In this work the terms material and spatial will be applied for placements, vectors,
tensors, fields, spaces, and descriptions. A geometric interpretation of the material
body B, the material placement B0 and the spatial placement Bt, as well as for material
and spatial vectors V and v respectively, is given in Figure 3.1 2.

Figure 3.1: Configurational description of the motion.

3.1.2 Beam configurational description

While in the previous section was introduced the configurational description for a
generic body B, here we want to specialize this view to the case of beams.

Beam reference configuration. For sake of simplicity, without losing gen-
erality, let assume that, in the reference configuration, the beam has a straight axis
and uniform cross-sections 3, laying in an unstrained and unstressed state. Adopting
a classical approach, a beam is viewed as a three-dimensional body, whose material
placement can be described by a straight line C0 ⊂ R3, which we refer to as the line
of centroids, that has attached at each point a planar domain Ω0, called cross-section.
The line C0 is assumed normal to the plane of each cross-section, with intersection
point the centroid of Ω0. Accordingly, the reference configuration of the beam could
be specified in terms of a straight line C0 parametrized by a map ϕ0(S) : [0, L]→ R3

2Note that placement, likewise place vectors, should be regarded as mappings, not the image of
these maps.

3It is assumed a prismatic beam, where the cross-section doesn’t change along the axis. From a
practical point of view, this hypothesis ensures the geometrical quantities as cross-section area or
moment of inertia, remain constant along the element.
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and constituted by all the physical pointsX0 which are occupied by material particles
at the initial time, conventionally designed by t0, i.e.

C0 =
{
X0 ∈ R3 |X0 = ϕ0(S) ∀S ∈ [0, L]

}
(3.3)

where L is the total length of the beam, and S the relative position of the centroidal
particle with respect to the curve (arc-length coordinate).

Figure 3.2: Three-dimensional representation of the coordinate system, beam reference
configuration Ω0 and beam current configuration (Ωt): global reference system
{e1, e2, e3} and set of coordinates {X1, X2, X3}; reference frame {E1,E2,E3},
reference axis position vector X0, reference cross-section position vector R and
reference position vector X; moving frame {t1, t2, t3}, current axis position
vector x0, current cross-section position vector r and current position vector
x.

In order to describe this configuration, we conventionally introduce a right-handed
orthonormal frame {O,E1,E2,E3}, called reference frame, with origin O located on
the axis and Ei = {E1,E2,E3} oriented such that E1 and E2 lay parallel to a
generic cross-section and give the directions of the principal axis of inertia, whereas
E3 is tangent to the beam axis (line of centroids C0) in its initial straight configura-
tion. Assuming for simplicity that the reference frame coincides with the global one
{e1, e2, e3} for all stages, as shown in Figure 3.2, the beam reference configuration is
described by the reference position vector field X ∈ R3

X(S, t) = X0(X3) + R(X1, X2) (3.4)
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where

X0(X3) = X3 E3 R = Xα Eα = X1E1(S) +X2E2(S) (3.5)

and t being an evolution time parameter. Being X3 the reference axis coordinate,
X0 describes the position of a point along the beam axis, while being X1 and X2

the reference cross-section coordinates, R represents the relative position of a point
within a cross-section with respect to the axis, also named reference cross-section
position vector. Vector Eα defines accordingly the cross-section plane.

Kinematic assumptions. The definition of a beam deformation map is the
basic step to build a beam theory from a three-dimensional continuum theory using
a principle of virtual work. We start here to introduce a set of restrictions on the
kinematics of the displacement field, which doesn’t affect the adequate reproduction
of finite strains, large displacements and rotations, as well as shear distortion in
bending.
The basic kinematic assumptions are

• The cross-section remain plane in the current (spatial) configuration, i.e. warp-
ing effects are not allowed;

• The cross-sections remain undeformed in their plane during the deformation,
i.e. cross-sections don’t undergo any change of shape or size 4;

• The cross-section may only rotate as a rigid body and it doesn’t remain neces-
sarily normal to the deformed line of centroids C .

The first hypothesis follows from the fact that the deformation map is assumed inde-
pendent of any function of the sectional coordinates X1, X2, i.e. plane cross-sections
remain plane, whereas the second hypothesis precludes any changes in the cross-
sectional area and shape. Lastly, the third hypothesis states that cross-sections are
invariants under any deformation and they do not remain normal to the deformed
longitudinal axis in any possible deformed state of the beam. The deviation from
normality is produced by a transverse shear that is assumed to the constant over
the cross-section. The reader will note the close analogy with the Timoshenko beam
hypothesis for small displacement theory. The geometric significance of kinematical
assumptions just introduced is illustrated for the plane case in Figure 3.3.

Beam current configuration. During the motion the beam deforms from
the undisturbed straight configuration at time t0 to the current beam configuration
at time t. To describe the beam current configuration, we introduce a right-handed
floating orthonormal frame, {o, t1, t2, t3}, called moving or current frame, locally at-
tached to the beam, with origin o located on the current axis and ti := {t1, t2, t3}
oriented such that t1 and t2 lay parallel to a generic cross-section in the current con-
figuration and point to the direction of the principal axis of inertia, while t3 is normal
to each cross-section in the current configuration. We assume that this spatial frame
coincides with the material frame at the initial stage, i.e. ti = Ei.
The introduced moving frame has the following properties

4The rigid cross-section assumption is valid in practice for slender beams, thin beams, or rods.
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Figure 3.3: Kinematic assumptions: reference and current configurations in the plane prob-
lem.

Figure 3.4: Displacements decomposition of Timoshenko beam: vf represents the classi-
cal flexural displacement referred to Euler-Bernoulli beam theory, whereas vs
stands for the shear displacement referred to Timoshenko beam theory. Addi-
tive formula is assumed to be valid.
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i. Normality condition ||ti(S)|| = 1 with i = 1, 2, 3;

ii. Orthogonality condition ti(S) · tj(S) = 0 with i 6= j;

iii. t3(S) ≡ n(S) = t1(S)× t2(S) ∀S ∈ [0, L] ⊂ R;

where the parameter S represents the arc-length of the line of centroids in the reference
unloaded configuration, and n(S) indicates the unit vector normal to the generic
cross-section.

An arbitrary cross-section of the beam, initially laying in a plane normal to E3 is
assumed to experience a finite rotation defined by specifying the current orientation
of the orthonormal basis {ti} attached to the cross sections and initially coincident
with {Ei}. This is equivalent to prescribing a one-parameter family of orthogonal
transformations Λ : S ∈ [0, L] → SO(3) which uniquely define the orientation of the
moving frame. Pointing out that the moving frame is function only of the reference
axis coordinate X3, i.e. ti = ti(X3), and observing that the moving frame and the
reference frame are both orthonormal, we may introduce a one-parameter rotation
tensor Λ ∈ SO(3), relating the reference and the moving frame at time t ∈ R+ as

ti(S, t) = Λ(S, t)Ei (3.6)

i.e. the rotation operator Λ maps the Cartesian reference frame {O,E1,E2,E3} into
the orthonormal moving frame {o, t1, t2, t3}. Physically, we may define the moving
frame as the rotated reference frame.

Figure 3.5: Incremental rotation frame.

Rearranging equation (3.6) we can obtain the following expression for Λ

Λ(X3) = ti(X3)⊗Ei (3.7)

which shows that Λ is a two-point orthogonal tensor field. Here we used ⊗ to denote
the standard tensor product of vectors. From a computational point of view, it is
interesting to note that taking Ei as the standard basis in R3, the column vectors
constituting Λ are respectively t1, t2, t3 in the standard basis.
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With the help of the introduced quantities, following [56], we assume to describe
the placement of a material point in the deformed configuration by the position vector
field x ∈ R3

x(S, t) = x0(X3) + r(Xα, X3) (3.8)

where

x0(X3) = X3 t3 r = Xα tα(X3) (3.9)

Vector x0 = x0(X3) represents the position of the cross-section centroid in the current
configuration, that is the position of the moving frame’s origin o (see Figure 3.2). From
Figure 3.2 it can be concluded also that the position vectors of the material point X0

moves to the spatial location x0 through a translational displacement vector of the
centroidal axis, such that x0 = X0 + u. The components of the displacement vector
u are regarded as the cross-section translational degrees of freedom.
On the other side, vector r represents the position of a point within a cross-section in
the current configuration, reason why we call it current cross-section position vector.
According to equation (3.6) we have

r = Λ(X3)R(Xα) (3.10)

that is, r is obtained by the rotation of the reference cross-section position vector and,
since any R of a same cross-section rotates of the same quantity Λ(X3), it follows
that the cross-section rigidly moves from the reference to the current configuration
and that Λ represents the so called cross-section rigid rotation.
With the help of the introduced quantities, we may now rewrite the deformation map
(3.8) as

x(X3) = x0(X3) + r(X3)

= [X0(X3) + u(X3)] + Λ(X3)R(Xα) (3.11)

which clearly shows how the current configuration of the beam is uniquely defined by
the spatial position of the centroidal line x0(X3) and the orientation of the moving
frame Λ(X3). As a consequence of that, the three-dimensional kinematics is reduced
to a one-dimensional kinematics with parameter X3.
Since a three-dimensional configuration is uniquely determined by prescribing the
function η = (x0,Λ) on the domain [0, L] (taking values on R3 × SO(3)), it becomes
natural to refer to the set

C =
{
η = (u(s, t),Λ(s, t)) : [0, L]× R+ −→ R3 × SO(3)

}
(3.12){

u : [0, L]× R+ −→ R3

Λ : [0, L]× R+ −→ SO(3)
(3.13)

as the current configuration state of the beam at time t ∈ R+.
According to equation (3.11), in the current configuration the beam can be physi-

cally seen as a line, i.e. the axis individuated by x0, and a set of attached cross-sections
obtained by a rigid rotation of the cross-section itself in the reference configuration.
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According to that, the current placement of the beam resulting from 3D motion is
completely characterized through the position of the centroidal line and the local ori-
entation of the moving floating frame, as the result of a composition of a translational
motion and a rotational motion. The former governs the change of position vector via
displacement u, whereas the latter governs the change of orientation via orthogonal
rotation tensor Λ. Hence, the current placement is completely determined by the pair
(u,Λ) ∈ R3×SO(3) at any point of the beam, where R3 refers to the translational dis-
placement field u and SO(3) to the rotational displacement field Ψ. Respectively, the
element of R3 is the cross-section centroid displacement vector, whereas the element
of SO(3) is the rotation operator Λ parametrized by the rotation vector Ψ.
We also note that equation (3.11) states esplicitly the kinematic assumption for which
the displacement and rotation fields are independent variables.

Figure 3.6: Deformation process.

3.2 Deformation gradient and strain measures

Before proceeding with the computation of deformation gradient, we recall from
(2.106) that the time derivative of a general one-parameter rotation matrix is Λ̇(t) =
ω̃(t)Λ(t), where ω̃(t) is the skew-symmetric spin tensor (material angular tensor).
Considering that also here we are dealing with a one-parameter rotation, the cross-
section rotation Λ(X3), we can naturally write

dΛ

dX3

= Λ′ = κ̃Λ with κ̃ = κ̃(X3) κ̃ ∈ so(3) (3.14)

From the three-dimensional theory of non-linear continuum mechanics, the de-
formation gradient F is defined as the gradient of the deformation map x (3.11)
as

F =
∂x

∂X
(3.15)

where the symbol ∂(·) stands for a partial derivative. It determines the strain measures
at any point of the beam cross-section.
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Expressing a component of the reference position vector field X as Xi = X ·Ei,
we get

F =
∂x

∂Xi

⊗Ei (3.16)

where the notation ⊗ stands for the tensor product of vectors. Now, noting that in
equation (3.11) x0 and tα depends on axial-length parameter X3, and remind equation
(3.6), we obtain

F =
∂x

∂Xα

⊗Eα +
∂x

∂X3

⊗E3

= tα ⊗Eα +

(
∂x0

∂X3

+Xα
∂tα
∂X3

)
⊗E3

= tα ⊗Eα +

(
∂x0

∂X3

+Xα
∂Λ

∂X3

Eα

)
⊗E3 (3.17)

Using the spin tensor κ̃ to express the cross-section rotation derivative dΛ
dX3

(see equa-

tion (3.14)), and recalling equation (3.6), the term Xα
∂Λ
∂X3
Eα can be rearranged as

Xα
∂Λ

∂X3

Eα = Xακ̃ΛEα = Xακ̃tα (3.18)

By substitution of this term, the deformation gradient becomes

F = tα ⊗Eα +

(
∂x0

∂X3

+Xα κ̃ tα

)
⊗E3 (3.19)

Adding and subtracting the tensor t3 ⊗ E3 to the right-hand side, and recognizing
that ti ⊗ Ei = Λ when Ei is the standard basis of R, and making use of property
(A),the Lie algebra (2.14) and equation (3.10), we may compactly rewrite equation
(3.19) as

F = Λ +

[(
∂x0

∂X3

− t3
)

+Xα κ̃ tα

]
⊗E3

= Λ

{
I +

[
ΛT

(
∂x0

∂X3

− t3
)

+ ΛTXα κ̃ tα

]
⊗E3

}
= Λ

[
I + (ΛTγ + ΛT κ̃ r)⊗E3

]
= Λ

[
I + (Γ + K̃R)⊗E3

]
= Λ [I + (Γ +K ×R)⊗E3] (3.20)

= ΛF r

where 5 F r represents the deformation gradient in material (back-rotated) coordi-
nates, and

5Note the upper case convention for material quantities and lower case for spatial quantities. The
material and spatial strain components are connected by the relation Γiti = γiEi, how depicted in
Figure 3.7.
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Γ = ΛTγ with γ =
∂x0

∂X3

− t3 (3.21)

K = ΛT κ with κ = TΨ′ (3.22)

It’s worth to note that equation (3.20) clearly express the decomposition of the de-
formation gradient into one term corresponding to the deformation normal to the
cross-section plus a second term giving the rotation of the moving frame.
We remark also that even when the deformation gradient is intrinsically two point
tensor, mathematically it is possible to obtain its spatial counterpart by means of
push-forward operation by Λ its material leg to the spatial configuration.

From these relations, using distributivity of cross product with respect to a rota-
tion tensor (see equation (A.9)), we observe that

Γ = ΛTγ

= ΛT

(
∂x0

∂X3

− t3
)

= ΛT

(
∂x0

∂X3

−ΛE3

)
= ΛT ∂x0

∂X3

−E3 (3.23)

K = ΛT κ

= ΛTTΨ′

= T TΨ′ (3.24)

where (3.24) is formally equivalent to equation (2.144).
Note that parameters Γ and K can be regarded as translational and rotational

generalized strains, respectively. In fact we recognized in (3.24) the curvature strain
vector (bending and torsional strain measure), whereas equation (3.23) aggregate
together the transverse shear and axial strain measure.

Table 3.1: Strain measures in spatial and material form.

Strain measure Spatial form Material form

Translational strain γ = x′0 − t3 Γ = ΛT (x′0 −E3)

Rotational strains κ = TΨ′ K = T TΨ′

In particular, consider first vector γ = ∂x0/∂X3 − t3, we recognize in γ as the
difference between the vector tangent to the current line of centroids ∂x0/∂X3 and the
unit vector orthogonal to the cross-section in the current configuration (see Figure 3.8)
It is clear that the components of γ with respect to the current moving frame
{o, t1, t2, t3} can be interpreted as follow

• The components in directions t1 and t2, γ1 and γ2 respectively, represent the
centroidal shear flow between sections;
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Figure 3.7: A geometric interpretation of the shear strain components of a beam in the
finite strain plane case. γ measures the difference between the slope of the
deformed axis of the beam and the normal to the cross-section defined by t1.

Figure 3.8: Beam strain measure γ in three-dimensional space: physical meaning and com-
ponents in the current configuration.
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• The component in direction t3, i.e. γ3, represents the centroidal elongation, or
shrinkage, of an infinitesimal fiber in the direction normal to the cross-section.

It means that these components are the physical true shear and axial strain measures.

Consider now κα = κ× tα. Assuming κ as a spin vector parallel to the direction
t3, we expect that it controls the variation of rotation in this direction. In fact, let
consider the case when κ lines up with t3 as depicted in Figure 3.9. The cross products
κ× t1 and κ× t2 are vectors laying in plane t1− t2 and turning around t3. It means
that they represent the physical variation of rotation around t3, i.e. the cross-section
torsion. Similar observation can be done in the case when κ lines up with t1 or t2. In
these cases the respectively cross products represent the variation of rotation around
t1 and t2, i.e. the physical cross-section bending around t1 and t2. For the exposed
reasons we can say that the components of κ represent the true bending and torsional
strain measures. More in general, vector κ is a combination of all these variations of
rotations, i.e. it represents the global curvature of the beam.

Figure 3.9: Beam strain measure κ: physical meaning and components in the current
configuration.

The generalized spatial strains γ and κ are affected by superposed rigid body
motions, hence for constitutive description are preferred the rotated-back material
strains Γ and K. Figure 3.10 shows a schematic and compact representation of the
strain measurements expressing their components in the material reference frame by
simplicity.

Now, since spin vector K governs the bending and torsional (rotational) strain mea-
sures, we focus here on the strain pair (Γ,K). Moreover, since for this parametrization
the beam configuration is completely defined by knowing, for each cross-section, u
and Ψ, both belonging to vector spaces, for convenience they are grouped together.
In analogy with definition (3.12), let hence introduce the cross-section generalized
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Figure 3.10: Geometric representation of the reduced strain quantities in material coordi-
nates.

displacement vector η = η(S, t) given by

η =

[
u
Ψ

]
(3.25)

which collects the kinematic variables u and Ψ, where the former denotes the dis-
placements experienced by the material point X0 : [0, L] and the latter describes the
rotation of floating frame attached at that point.

Recalling equation (3.11), we note that the spatial derivative of the axis position
vector in spatial coordinates is

x′
0 = (X0 + u)′

= (X3E3)′ + u′

= E3 + u′ (3.26)

we can place Γ and K within a generalized strain vector ε = ε(η) given by

ε =

[
Γ
K

]
=

[
ΛTx′

0 −E3

T TΨ′

]
=

[
ΛT (E3 + u′(X3, t))−E3

T TΨ′

]
(3.27)

3.2.1 Time derivative of deformation gradient

In this section we calculate the material time derivative of deformation gradient
F , that will be used in the next sections for the presentation of the balance laws for
beam-like bodies.

Let hence equation (2.108), which provides Λ̇ = ω̃Λ, and noting that the time
derivative of cross-section position vector in material coordinates vanishes Ṙ = 0, we
can take the material time derivative of deformation gradient expressed by equation
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(3.20), so-called velocity gradient

Ḟ = Λ̇[I + (Γ +K ×R)⊗E3] + Λ[(Γ̇ + K̇ ×R)⊗E3]

= ω̃Λ[I + (Γ +K ×R)⊗E3] + Λ[(Γ̇ + K̇ ×R)⊗E3]

= ω̃F + Λ[(Γ̇ + K̇ ×R)⊗E3] (3.28)

where the differentiation with respect to time is indicated, as usual, by a superposed
dot. Time differentiation of the strain measures provides the generalized strain rate
vectors. Calculating separately each term we obtain

Γ̇ =
d

dt
(ΛT ∂x0

∂X3

)− dE3

dt

= Λ̇
T
x′

0 + ΛT ẋ′
0

= −ΛT ω̃ x′
0 + ΛT ẋ′

0

= ΛT (ẋ′
0 − ω̃x

′
0)

= ΛT (ẋ′
0 − ω × x

′
0)

= ΛT (ẋ′
0 + x′

0 × ω) (3.29)

where the notation (·)′ stands for the differentiation with respect to axial-length
parameter X3. The term K̇ is obtained by means of equations (2.108) and (2.134),
in fact one can observe

ω̃ = Λ̇ΛT −→ Λ̇ = ω̃Λ

Λ̇′ = ω̃′Λ + ω̃Λ′ (3.30)

κ̃ = Λ′ΛT −→ Λ′ = κ̃Λ

Λ̇′ = ˙̃κΛ + κ̃Λ̇ (3.31)

and equation (3.30) and (3.31)

ω̃′Λ + ω̃Λ′ = ˙̃κΛ + κ̃Λ̇

ω̃′Λ = ˙̃κΛ + κ̃Λ̇− ω̃Λ′

ω̃′ = ˙̃κ+ κ̃Λ̇ΛT − ω̃Λ′ΛT

ω̃′ = ˙̃κ+ κ̃ω̃ − ω̃κ̃ (3.32)

now, focusing on the last two terms, the parallel use of Lie algebra (2.14) and Lie
brackets (A.16) to the generic skew-symmetric tensors Ã, B̃, C̃ and their relative
axial vectors a, b, c provides the following correspondences

Lie algebra: C̃ h = c× h
Lie brackets: (ÃB̃ − B̃Ã)h = (a× b)× h
C̃ = ÃB̃ − B̃Ã ←→ c = a× b = Ã b (3.33)

such that

C̃ = κ̃ω̃ − ω̃κ̃ ←→ c = κ× ω (3.34)
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hence the raletive axial vector becomes

ω′ = axial[ω̃′] = κ̇− ω × κ =⇒ κ̇ = ω′ + ω × κ (3.35)

which together with equation (2.142) provides

K = ΛTκ −→ K̇ = Λ̇
T
κ+ ΛT κ̇

= ΛT κ̇+ ΛT ω̃Tκ

= ΛT κ̇−ΛT ω̃κ

= ΛT (κ̇− ω̃κ)

= ΛT (ω′ + ω × κ− ω̃κ)

= ΛT (ω′ + ω × κ− ωκ)

= ΛTω′ (3.36)

where we the skewness property ω̃T = −ω̃.

Alternative expression for (3.29) and (3.36) are obtained using equations (2.118) and
(2.143) (see appendix D for further details), and recasting the terms involving time
variations as function of the generalized displacements one get

Γ̇ = ΛT (ẋ′
0 + x′

0 × T (Ψ)Ψ̇)

= ΛT (u̇′ + x′
0 × T Ψ̇) (3.37)

K̇ = ΛT (T (Ψ)Ψ̇)′

= ΛT (T ′Ψ̇ + T Ψ̇
′
) (3.38)

where by direct derivation of equation (2.119) with respect to X3 one get the tensor

T ′ =
1− cos Ψ

Ψ2
Ψ̃
′
+

Ψ− sin Ψ

Ψ3
(Ψ̃Ψ̃

′
+ Ψ̃

′
Ψ̃)

+
Ψ sin Ψ− 2 + 2 cos Ψ

Ψ4
(Ψ ·Ψ′)Ψ̃

+
3 sin Ψ− 2Ψ−Ψ cos Ψ

Ψ5
(Ψ ·Ψ′)Ψ̃2

(3.39)

Further details are available in [49].

3.2.2 Time derivative of strain rate

With the aid of (3.37) and (3.38), as well as apposition (3.25) for generalized
displacement vector, the generalized material strain rate back-rotated ε̇r may be
written by means of the vector

ε̇r =

[
Γ̇

K̇

]
=

[
ΛT (ẋ′

0 + x′
0 × T Ψ̇)

ΛT (T ′Ψ̇ + T ψ̇
′
)

]
= S∆η̇ (3.40)
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where ∆ is the differential operator

∆ =

I ∂
∂X3

0

0 I
0 I ∂

∂X3

 (3.41)

and S is the matrix given by

S = ΛTΦ =

[
ΛT 0
0 ΛT

] [
I x̃′

0T 0
0 T ′ T

]
(3.42)

where 0 is the the null tensor and x̃0
′ is the skew-symmetric tensor whose axial vector

is x0
′, i.e. more compactly x̃′

0 = skew[x′
0].

3.3 Linearizations of kinematical quantities

The strain quantities defined in the previous section are nonlinear expressions
in terms of the generalized motion vector η, and will lead to a nonlinear governing
equations. In this section we deal with the linearization procedures of the fundamental
kinematic measures, in order to provide quantities afterwards needed to develop the
beam principle of virtual work.

3.3.1 Admissible variations

The current configuration of beam at time t is specified by the position vector of
its line of centroids and the orientation of the moving frame by

Ct =
{

(x0(s, t),Λ(s, t)) : [0, L]× [0, T ] =⇒ R3 × SO(3)
}

(3.43)

which is a nonlinear differentiable manifold. Let now introduce the notation δ(·) for
a virtual variation 6. with this on hand, it is possible to construct a perturbed (or
varied) configuration relative to C, denoted by Cε as follow

Cε =
{

(x0,ε(s, t),Λε(s, t)) : [0, L]× [0, T ] =⇒ R3 × SO(3)
}

(3.44)

obtained by setting

x0,ε = x0 + ε δx0 (3.45)

Λε = exp[ε δθ̃] Λ (3.46)

where ε ∈ R, δx0 ∈ R3 could be viewed as a superimposed infinitesimal displacement
onto the line of centroids defined by x0, and δθ̃ ∈ T spatΛ SO(3) ≈ so(3) with the corre-
sponding axial vector δθ ∈ T spatΛ . Similarly, exp[ε δθ̃] for ε > 0 represents a superim-
posed infinitesimal rotation onto the moving frame defined by Λ. It should be recalled
that finite rotations are defined by orthogonal transformations, whereas infinitesimal
rotations are obtained through skew-symmetric transformations. By exponentiation

6It should be noted that the virtual displacement could be any size, infinitesimal or finite.
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of a skew-symmetric matrix (infinitesimal rotation) one obtains an orthogonal matrix
(finite rotation). Thus, equation (3.46) is constructed so that Λε remains orthogonal
and thus defines a possible orientation of the moving frame. Hence, by construction,
Cε constitutes a possible current configuration of the beam.

Alternatively, it is possible to work with the field δη = (δx0, δθ̃) ∈ T spat which
defines the field of kinematically admissible variations. Accordingly, the set of kine-
matically admissible variations, denoted by T Ct, is given by

T Ct = {δη = (δx0, δθ̃) ∈ R3 × R3| δx0|∂Ωu = δθ|∂Ωu = 0} (3.47)

where ∂Ωu is the part of the boundary where displacements and/or rotations are
prescribed.

3.3.2 Linearization of displacement field

One can note that we can operate on variations as commonly used with differen-
tials, despite the fact that both quantities have different meaning: variation is some-
thing more general then differential, but it can reduces to it in particular cases. It
is important to mention that, if variations and derivatives are assumed to commute,
this implies that all the manifold constraints are holomorphic (more details can be
consulted in [36]).
The centroidal position vector x0 and its displacement vector u live in the same vector
space, and the additive rule applies to them (see (3.11)). Noting that, by definition,
the reference position vector remains unchanged during the deformation process, the
classical variation of the material centroidal position vector reads

x0 = X0 + u −→ δx0 = δ(X0 + u)

= δX0 + δu

= δu (3.48)

With this result in hand, recalling equation (3.54), we can calculate the variation of
general position vector of a material point as x = x0 + r

δx = δ(x0 + r)

= δu+ δ(ΛR)

= δu+ δΛR

= δu+ δθ̃ΛR

= δu+ δθ̃ r

= δu+ δθ × r (3.49)

Alternatively, by making use of equation (3.53), we can derive a slight different
expression

δx = δu+ ΛδΘ̃R

= δu+ ΛδΘ̃×R (3.50)
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3.3.3 Linearizations of rotation tensor

Let consider the rotation tensor Λ ∈ SO(3) and introducing a parameter ε ∈ R3,
we indicate the perturbed infinitesimal rotation by Λε ∈ SO(3). The tangent operator
of a generic function F = F (Λ) at the base point Λ, δF (Λ), can be constructed in
two different ways. They depend on the structure of Λε, which is strictly related with
the choice to perform the linearization directly on the manifold, or indirectly into the
linear space of rotation vectors. Therefore these two ways or forms of linearization
are called

• Direct linearization form, where Λε is constructed via an infinitesimal vari-
ation of the manifold element Λ, on the rotation manifold SO(3), i.e. where the
linearization is done directly on the manifold ;

• Indirect linearization form, where Λε is constructed via an infinitesimal
variation of the rotational vector space element Ψ, into the rotational vector
linear space, i.e. the linearization is done on the linear space of vectors which
parametrize the rotation tensor.

Figure 3.11: Geometrical interpretation of SO(3) manifold, its tangent spaces in material
description and finite rotation decomposition.

3.3.3.1 Direct linearization

Following standard usage for the direct linearization, the perturbed rotation tensor
Λε can be defined in two ways, according to which description is adopted

Material description: Λε , Λ exp[εδΘ̃] (3.51)

with εδΘ̃ ∈ T matΛ SO(3)

Spatial description: Λε , exp[εδθ̃]Λ (3.52)

with εδθ̃ ∈ T spatΛ SO(3)
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Note that these perturbed rotations respect the definition of the direct linearization
form. It is also an admissible variation because limε→0 Λε = Λ holds.

Material form. Equation (3.51) provides the quantity Λε used in the material
form of direct linearization. The order of product matrices into the expression of the
perturbed rotation indicates that the new infinitesimal rotation exp[εδΘ̃] precedes in
the sequence of rotations the actual one Λ. The incremental rotation vector δΘ could
be seen as a rotation applied to the material frame {Ei}, and for this reason the
linearization form arisen is called material. This kind of rotation sequence, where the
rotation vectors do not suffer of previous rotations, is called a compound rotations
around fixed axes 7 (see [1]).

The direct material variation of the rotation tensor δΛ is computed as stated in
equation (2.2) by means of Gateaux derivative by making use of exponential mapping
(see equation (2.57)) and its series expansion, obtaining

δΛ = lim
ε→0

Λε −Λ

ε

= lim
ε→0

Λ exp(εδΘ̃)−Λ

ε

= lim
ε→0

Λ[exp(εδΘ̃)− I]

ε

= lim
ε→0

Λ(Ĩ + εδΘ̃ + ε2δΘ̃
2
/2 + ε3δΘ̃

3
/3! + . . .− I)

ε

= Λ δΘ̃ (3.53)

Finally, observe what we have anticipated: the direct linearization depends on two
measures, Λ and δΘ̃ which do not belong to the same space.

Spatial form. Equation (3.52) provides the infinitesimal perturbed configura-
tion Λε used in the spatial form of direct linearization. The order of product matrices
into the expression of the perturbed rotation indicates that the new infinitesimal ro-
tation exp[εδθ̃] is superimposed on the current rotation Λ. The incremental rotation
vector δθ could be seen as a rotation applied to the spatial frame {ti}, and for this
reason the linearization form arisen is called spatial. This kind of rotation sequence,
where each rotation is affected by preceding rotation, is called a compound of ro-
tations around follower axes, i.e. axes rigidly attached to the body itself and hence
rotated by the previous rotations in the sequence (see [1]).

Argyris (see [1]) proved that a sequence of two rotations around follower axes is equal
to the inverted sequence around fixed axes and viceversa (see equation (3.51) and
(3.52)). This confirms that the spatial and material direct perturbed rotations Λε are
indeed equivalent.

The direct spatial variation of the rotation tensor δΛ is computed once again
as stated in equation (2.2) by means of Gateaux derivative, by making use of the

7According to the enlighten paper [2], a fixed axes do not deviate from their original direction
with respect to a fixed coordinate system in the course of a rotation.
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exponential mapping (see equation (2.57)) and its series expansion, obtaining

δΛ = lim
ε→0

Λε −Λ

ε

= lim
ε→0

exp(εδθ̃)Λ−Λ

ε

= lim
ε→0

[exp(εδθ̃)− I]Λ

ε

= lim
ε→0

(Ĩ + εδθ̃ + ε2δθ̃
2
/2 + ε3δθ̃

3
/3! + . . .− I)Λ

ε

= δθ̃Λ (3.54)

where δΛ can be interpreted as a perturbation of Λ by an infinitesimal rotation δθ̃.
Here we note again that the direct linearization depends on two measures, Λ and
δθ̃ which do not belong to the same space. Indeed, it is an element of the tangent
space of SO(3) at point Λ, or in other words, it is a tensor of infinitesimal rotation
superposed on the existing rotation Λ.
Finally, the variation operator δΛT can be obtained from δΛ since δΛT = (δΛ)T ,
hence just changing sign to the skew-symmetric tensor such as

(δΛ)T = (δθ̃Λ)T

= ΛT
δθ̃

T

= −ΛT
δθ̃ (3.55)

Figure 3.12: Rotation vector for fixed and follower axes: a pair of rotations are supposed
to be applied to the body with the order Ψ, Θ forming a compound rotation.
The second rotation vector applies to a fixed axis independent on the previous
rotation (case (a)), whereas in case (b) the rotation vector Θf applies to the
follower axis.

3.3.3.2 Indirect (Lagrangian) linearization

Within the framework of indirect linearization performed with reference to the
linear space, the quantity Λε is defined as

Λε = exp[Ψ̃ + εδΨ̃] (3.56)

with Ψ̃, δΨ̃ ∈ TISO(3)
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and represents an admissible infinitesimal perturbed configuration of Λ because re-
spects the condition limε→0 Λε = Λ. In this case, the perturbed rotation is not any-
more a rotation sequence, since the linearization is not carried out into the group
of rotation SO(3). On the contrary, it is carried out into the linear space which
parametrizes the rotation, i.e. the space of rotation vectors (or equivalently, the space
of skew-symmetric tensor associated to rotation vectors), via the chart which links
so(3) with SO(3), that is the exponential mapping 8. As the space of variation is lin-
ear, variations are carried out by means of usual additive operations, so the condition
(3.56) turns into

Ψ̃ε = Ψ̃ + εδΨ̃ where Ψ̃ε ∈ SO(3) (3.57)

where the condition limε→0 Ψ̃ε = Ψ̃ is ensured.

The indirect linearization of the rotation tensor δΛ is again calculated by the
directional derivative

δΛ =
dΛε

dε

∣∣∣∣
ε=0

=
d

dε
exp[Ψ̃ + εδΨ̃]

∣∣∣∣
ε=0

(3.58)

where in this case we cannot use anymore the property of exponential map derivative,
since it refers to the case d

dε
exp[εδΨ̃]. Instead we must substitute the perturbed

rotation Ψ̃ε into the explicit expression of the exponential map (2.47), and carry out
derivation.

3.3.4 Linearization of angular velocity (spin)

Let recall the definition of spatial spin tensor ω̃ = Λ̇ΛT given in equation (2.108),
and on its axial vector ω. Its direct spatial linearization can be computed taking the
directional derivative of the infinitesimal perturbed spin tensor ω̃ε = Λ̇εΛ

T
ε , where

Λε is the spatial perturbed rotation tensor defined by (3.52), exactly how was done
for linearization of rotation tensor.

Alternatively, with an only formal difference, we can base our calculation taking
advantage of properties of variation operator (i.e. linearity and chain rule), and using
the previous results of variation of rotation tensor. Hence, using the skew-symmetry
condition (3.55), the orthogonality conditions (2.3) for rotation matrix, and the com-

8We recall that since so(3) is isomorphic in R3, we can refer either to the skew-symmetric tensor
or its axial vector.
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mutativity property of variation operator 9, the variation of spin tensor is

δω̃ = δ(Λ̇ΛT )

= δΛ̇ΛT + Λ̇ δΛT

= (δθ̃Λ)•ΛT + Λ′(−ΛT
δθ̃)

= (δ ˙̃
θΛ + δθ̃Λ̇)ΛT − Λ̇ΛT

δθ̃

= δ
˙̃
θΛΛT + δθ̃Λ̇ΛT −Λ′ΛT

δθ̃

= δ
˙̃θ + δθ̃ ω̃ − ω̃ δθ̃ (3.59)

Equation (3.59) can be rewritten in terms of axial vector. In fact, focusing on the last
two terms, the parallel use of Lie algebra (2.14) and Lie brackets (2.20) to the generic
skew-symmetric tensors Ã, B̃, C̃ and their relative axial vectors a, b, c, provides the
following correspondences

Lie algebra: C̃ h = c× h
Lie brackets: (ÃB̃ − B̃Ã)h = (a× b)× h
C̃ = ÃB̃ − B̃Ã ←→ c = a× b = Ã b (3.60)

such that

C̃ = δθ̃ ω̃ − ω̃ δθ̃ ←→ c = δθ × ω = δθ̃ω (3.61)

and consequently the axial vector associated to tensor (3.59) results

δω = δθ̇ + δθ̃ω (3.62)

Now, with this result in hand and with the help of (2.116), we can derive the material
counterpart as

δΩ = δ(ΛTω)

= δΛTω + ΛT
δω

= (δθ̃Λ)Tω + ΛT (δθ̇ + δθ̃ω)

= −ΛT
δθ̃ω + ΛT

δθ̇ + ΛT
δθ̃ω

= ΛT
δθ̇ (3.63)

Alternatively from equation (2.117), the variation of material angular velocity vector
becomes

δΩ = δ(T T Ψ̇)

= δT T Ψ̇ + T T
δΨ̇ (3.64)

9Although before was noted that variation and differentiation lead to different mathematical
results, however we point out how variation symbol δ and differential symbol d swap. In other words
one can proof that d/dx δy(x) = δ dy(x)/dx. Even though this constitutes a common assumption in
continuum mechanics, however, it implies that all the considered restrictions are holonomic. More
details can be consulted in [36].
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An interesting analogy between spin vector and its variation. By re-
versing equation (3.54) we obtain

δΛ = δθ̃Λ −→ δθ̃ = δΛΛT (3.65)

which is exactly the same expression one can obtain formally linearizing the orthog-
onality condition ΛΛT = I. We recall that also the definition of the angular velocity
tensor

ω̃ = Λ̇ΛT (3.66)

has been obtained formally time differentiating the same orthogonality condition with
respect to the arbitrary parameter t from which Λ depends. Setting an analogy be-
tween the operation of linearization and of time derivation, we can see the perfect
analogy between the spatial spin tensor ω̃ and the spatial variation δθ̃. Thereby, the
angular velocity vector given by (2.118)

ω = T ψ̇ (3.67)

because of the analogy just introduced, we can heuristically state that the same
relation holds between the variation of rotation vector δθ and the variation of total
rotation vector δψ, i.e.

δθ = T δψ (3.68)

3.3.5 Linearization of shear strain (translational strain)

The linearization of translational strain parameter can be obtained basing on the
variation of rotation tensor just introduced, and applying the chain rule for partial
derivatives.

Let recall the strain measures given in table 3.1. Considering γ = x′0−t3 and noticing
equation (3.54) and equation (3.6), one has the usual variation operation

δγ = δ(x′0 − t3)

= δ(x′0 −ΛE3)

= δx′0 − δ(ΛE3)

= δx′0 − δθ̃ΛE3

= δx′0 − δθ̃t3 (3.69)

and finally making use of the first equation (3.23) which relates the shear strain in
spatial and material form, the skew-symmetry condition (3.55), and displacement
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variation (3.48), one get

δΓ = δ(ΛTγ)

= δΛTγ + ΛT
δγ

= −ΛT
δθ̃γ + ΛT [δx′0 − δθ̃ t3]

= ΛT [−δθ̃(x′0 − t3) + δx′0 − δθ̃ t3]

= ΛT (δx′0 − δθ̃x′0)

= ΛT [(δx0)′ − δθ̃x′0]

= ΛT [(δu)′ − δθ̃x′0]

= ΛT [(δu)′ + x′0 × δθ] (3.70)

3.3.6 Linearization of curvature

The linearization of rotational strain parameter can be obtained basing once again
on the variation of rotation tensor, and applying the chain rule for partial derivatives.
Let recall the definition of curvature tensor κ̃ = Λ′ΛT given in equation (2.134).
Using the skew-symmetry condition (3.55), the orthogonality conditions (2.3) for ro-
tation matrix, and the commutativity property of variation operator, the variation of
curvature tensor is

δK̃ = δ(Λ′ΛT )

= δΛ′ΛT + Λ′ δΛT

= (δΛ)′ΛT + Λ′(−ΛT
δθ̃)

= (δθ̃Λ)′ΛT −Λ′ΛT
δθ̃

= (δθ̃
′
Λ + δθ̃Λ′)ΛT −Λ′ΛT

δθ̃

= δθ̃
′
ΛΛT + δθ̃Λ′ΛT −Λ′ΛT

δθ̃

= δθ̃
′
+ δθ̃ κ̃− κ̃ δθ̃ (3.71)

where focusing on the last two terms, the parallel use of Lie algebra (2.14) and Lie
brackets (2.20) to the generic skew-symmetric tensors Ã, B̃, C̃ and their relative axial
vectors a, b, c, provides the following correspondences

Lie algebra: C̃ h = c× h
Lie brackets: (ÃB̃ − B̃Ã)h = (a× b)× h
C̃ = ÃB̃ − B̃Ã ←→ c = a× b = Ã b (3.72)

such that

C̃ = δθ̃ κ̃− κ̃ δθ̃ ←→ c = δθ × κ = δθ̃κ (3.73)

and consequently the axial vector associated to tensor (3.71) results

δκ = δθ′ + δθ̃κ (3.74)
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Now, with this result in hand and with the help of the first of (3.24)

δK = δ(ΛTκ)

= δΛTκ+ ΛT
δκ

= (δθ̃Λ)Tκ+ ΛT (δθ′ + δθ̃κ)

= −ΛT
δθ̃κ+ ΛT

δθ′ + ΛT
δθ̃κ

= ΛT
δθ′ (3.75)

Alternatively from equation (2.144), the variation of material curvature vector be-
comes

δK = δ(T TΨ′)

= δT TΨ′ + T T
δΨ′ (3.76)

3.3.7 Linearization of strain

Summarizing the above results in matrix form, we can compactly rewrite equations
(3.69), (3.70), (3.74) and (3.75) respectively as (see [44])[

δΓ
δK

]
=

[
ΛTI ∂

∂X3
ΛT x̃′0

0 ΛTI ∂
∂X3

] [
δu
δθ

]
(3.77)

and [
δγ
δκ

]
=

[
I ∂
∂X3

t̃3
0 (I ∂

∂X3
− κ̃)

] [
δu
δθ

]
(3.78)

Equation (3.77) could be recasted in a more compact form, and pointing out the
dependence on total rotation vector Ψ by means of equation (2.98), one get

δεr = S∆δη (3.79)

which is in perfect accordance with equation (3.40) having introduced the virtual
generalized displacement vector δη.

3.3.8 Linearization of deformation gradient

To write the forthcoming principle of virtual work using as internal work the first
Piola-Kirchhoff stress tensor P , we need to compute the work conjugate virtual defor-
mation δF r. It can be obtained with the help of the aforementioned variations. With
reference to (3.20) and making use of distributivity property of variation operator,
the deformation gradient back-rotated assumes the form

δF r = δ[(Γ +K ×R)⊗E3]

= (δΓ + δK ×R)⊗E3 (3.80)

where the variation of fixed basis is assumed null for hypothesis.
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Chapter 4

Geometrically exact beam theory:
balance equations

We cannot command nature except
by obeying her.

F. Bacon

This chapter contains a summary of the continuum mechanics background which is
needed for the finite element formulation of solid mechanics and structural problems.
The chapter opens with a brief recall to Cauchy’s Theorem and then balance laws are
introduced in spatial and material description. Finally the strong form of equilibrium
equations is derived along with the equation of motion written in terms of resultants.

4.1 Balance equations

Within the classical continuum mechanics, three universal conservation principles
should be satisfied in any motion. The principle of conservation of mass is identically
fulfilled by an assignment of the mass density to the body itself and not to the volume
occupied by this body in any configuration. Moving on, the fundamental relations
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92 Geometrically exact beam theory: balance equations

which govern global balances of linear and angular momenta lead to the known local
Cauchy equations of motion.

4.1.1 Cauchy’s Theorem

Consider a general deformable continuum body B occupying currently, at time t,
an arbitrary region Ω of physical space with boundary surface ∂Ω and, at time t = 0,
the region Ω0 with boundary surface ∂Ω0, as shown in Figure 4.1. We refer to Ω as
current (spatial) configuration and to Ω0 as reference (material) configuration.

Figure 4.1: An interpretation of the traction vectors acting on infinitesimal surface ele-
ments with outward normals. Note that tN ∈ Ω, although it is drawn in the
material placement.

The position of body material points with respect to a fixed reference system are
denoted by the vector field x in the current configuration Ω and by the vector field
X in the reference configuration Ω0. In the framework of Newtonian mechanics, we
postulate that arbitrary forces act on parts or the whole of the boundary surface ∂Ω
(called external forces), and on an (imaginary) surface within the interior of the body
(called internal forces) in some distribute manner.

Let the body now be cut by a plane surface which passes any given point P ≡ x ⊂
Ω at time t. As illustrated in Figure 4.1, the plane surface separates the deformable
body into two portions. Since we consider interaction of the two portions, forces and
couples are transmitted across the internal plane surface. We denote an infinitesi-
mal resultant (actual) force acting on a surface element ∆S as df, and infinitesimal
resultant couple dm, respectively

tP,n = df = lim
∆S→0

∆f

∆S
(4.1)
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mP,n = dm = lim
∆S→0

∆m

∆S
, 0 (4.2)

For sake of simplicity, we omit distributed resultant couples, not occurring in the
classical formulation of continuum mechanics. Consequently equation (4.2) is iden-
tically null. Consider the actual infinitesimal force, df, acting in the current config-
uration Ω on an infinitesimal surface plane element, ds, internal to the body with
normal unit vector n, and located at point x , see Figure 4.1. When considered in the
reference configuration Ω0, the spatial objects ds, n and x are denoted respectively
by dS, N and X. According to Figure 4.1, we claim that for every surface element

df = tn ds = tN dS (4.3)

where the Cauchy’s stress theorem, with a slight abuse in notation

tn(x,n, t) = σ(x, t) · n (4.4)

tN(X,N, t) = P(X, t) ·N (4.5)

with σ denoting a symmetric spatial tensor field called the Cauchy stress tensor, and
P characterizing a tensor field called the first Piola-Kirchhoff stress tensor. It is worth
noting that σ is defined in the current configuration and therefore it is also called
true stress since it is the physical stress of the true-current configuration. Whereas P
is a two-point tensor since maps a vector defined in the reference configuration into a
vector defined in the current configuration. In addition, one can show that the former
linearly maps the current unit area vector n ds into the current infinitesimal force df,
while the latter linearly maps the reference unit area vector N dS into the current
infinitesimal force df. Alternatively, one can say that Cauchy’s theorem relates the
stress vector tn to the surface normal n via the linear mapping σ in spatial description,
whereas relates the traction vector tN to the surface normal N via the linear mapping
P in material description. Finally, substituting the Cauchy’s theorem into equation
(4.3) we get

df = σ(x, t) · n ds = P(X, t) ·N dS (4.6)

4.1.2 Weak (integral) form of equilibrium equations

In this section we present translational and rotational integral equilibrium equa-
tions for the three-dimensional continuum body B in the dynamic regime. These
equations are directly derived from momentum balance principles (linear and angu-
lar), which are valid for the whole or arbitrary parts of a continuum body B. These
equations are clearly valued on the real current configuration Ω and involve df, but
since the differential infinitesimal current force df can be expressed in term of both
the true Cauchy’s tensor σ and the two-point first Piola-Kirchhoff tensor P, they can
be formulated in two ways, one for each stress measure adopted.

4.1.2.1 Balance of linear and angular momentum

The momentum principle for a collection of particles states that the time rate of
change of the total momentum of a given set of particles equals the vector sum of all
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94 Geometrically exact beam theory: balance equations

the external forces acting on the particles of the set, provided Newton’s Third Law of
action and reaction governs the internal forces. The continuum form of this principle
is a basic postulate of continuum mechanics.

Spatial description. Consider a continuum body B with a set of particles
occupying an arbitrary region Ω bounded by surface ∂Ω at time t. We consider a
region P , subset of the reference region Ω with boundary surface ∂P . In addition,
assume a closed system with a given motion x = ϕ(X, t), spatial mass density ρ =
ρ(x, t), and spatial velocity field v = v(x, t). We define the total linear momentum
Q (translational momentum) by the vector-valued function

Q(t) =

∫
P
ρ(x, t)v(x, t) dv =

∫
P0

ρ0(X)V (X, t) dV (4.7)

and the total angular momentum L (also referred as rotational momentum) relative
to a fixed point (characterized by the position vector x0) as

L(t) =

∫
P
r × ρ(x, t)v(x, t) dv =

∫
P0

r × ρ0(X)V (X, t) dV (4.8)

where r = x−x0 is the position vector, computed with respect to a generic momentum
pole o localized by x0. Momentum equations (4.7) and (4.8) are formulated with
respect to the current (spatial) and reference (material) configurations with associated
quantities ρ,v, dv and ρ0,V , dx, respectively.

The rate of change of the linear and angular momentum (4.7) and (4.8) of the
particles which fill an arbitrary region P results in fundamental axiom called momen-
tum balance principles of a continuum body. In particular the postulate of balance of
linear momentum state

dQ

dt
=

d

dt

∫
P
ρv dv =

d

dt

∫
P0

ρ0 V dV = f(t) (4.9)

and the balance of angular momentum (or balance of rotational momentum) holds

dL

dt
=

d

dt

∫
P

r× ρv dv =
d

dt

∫
P0

r× ρ0 V dV = m(t) (4.10)

which are given in both the spatial and material description.
In relation to (4.9) and (4.10), f(t) and m(t) characterize respectively the resultant

force and the resultant moment, i.e. the moment of f about x0. The momentum
balance principles are generalizations of Newton’s first and second principle of motion
to the context of continuum mechanics, as introduced by Cauchy and Euler. In fact,
the classical Euler laws of motion assert that the total external force f and the total
external moment m respectively equal the time rate of change in the total linear and
angular momentum in the system. If the external sources vanish, linear and angular
momentum of the body are said to be conserved.

By virtue of differentiation under the integral sign rule, we may rewrite the balance
principles (4.9) and (4.10) as

Q̇(t) =

∫
P
ρ v̇ dv =

∫
P0

ρ0 V̇ dV = f(t) (4.11)
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L̇(t) =

∫
P

r× ρ v̇ dv =

∫
P0

r× ρ0 V̇ dV = m(t) (4.12)

In the following we define the structure of forces acting on a continuum body.
Consider a boundary surface ∂P of a generical part P of the current region Ω, which
is subjected to the oriented Cauchy traction vector1 t = t(x,n, t), where the unit
vector n is the outward normal to an infinitesimal surface element ds of ∂P . In
addition, let b = b(x, t) denote a spatial vector field called the body force2, defined
per unit current volume of region P acting on a particle, as illustrated in Figure 4.2. A
body force is, for instance, self-weight or gravity loading per unit volume, i.e. b = ρg
with the spatial mass density ρ and the gravitational acceleration g.

Figure 4.2: Structure of forces acting on the current configuration.

Hence, the resultant force f and the resultant moment m about a point x0 on the
body in the current configuration have the additive forms

f(t) =

∫
P

b dv +

∫
∂P

tn ds (4.13)

m(t) =

∫
P

r× b dv +

∫
∂P

r× tn ds (4.14)

where

• b = b(x) is the vector field of body force per unit of current volume;

• r = x−x0 is the position vector computed with respect to a generic momentum
pole o localized by x0;

• tn is the traction vector introduced in the previous section (4.4);

• dv ⊂ P is the current infinitesimal volume;

1Force measured per unit current surface area of ∂P.
2Note that the symbol b should not be confused with the left Cauchy-Green strain tensor.
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• ds ⊂ ∂P is the current infinitesimal area.

Finally, by virtue of (4.9) and (4.10) the global forms of balance of linear momentum
and balance of angular momentum may be given in the spatial description as

dQ

dt
=

d

dt

∫
P
ρv dv

=

∫
P

b dv +

∫
∂P

tn ds ∀P ⊂ Ω (4.15)

dL

dt
=

d

dt

∫
P

r× ρv dv

=

∫
P

r× b dv +

∫
∂P

r× tn ds ∀P ⊂ Ω (4.16)

where for the balance of angular momentum we have assumed the restriction that dis-
tributed resultant couples are neglected. The dynamic equilibrium axiom postulates
that a deformable body is in equilibrium if and only if the external force resultant and
the external momentum resultant equalize the rate of change of the linear and angular
momentum, respectively, on each portion P of the body. The specialization of linear
and angular momentum balance laws to the static regime are known respectively as
translational equilibrium and rotational equilibrium equations.

Material description. For solid bodies, it is sometimes more convenient to
work with the material description. In order to express the momentum balance prin-
ciples in terms of material coordinates, we introduce the pseudo-body force called the
reference body force B = B(X, t), which denotes the spatial body force parametrized
in the material configuration. Hence, it acts on the region P0, subset of the reference
region Ω0 with boundary surface ∂P0. From the relation between the current and
reference volume3, dv = J · dV , the transformation of the body force in reference
form becomes ∫

P
b(x, t) dv =

∫
P0

B(X, t) dV (4.17)

where B = J b are called reference body forces and J = det F. From the equivalence
of infinitesimal force df (4.3), the surface integral of the traction forces can be given
as ∫

∂P
tn(x) ds =

∫
∂P0

tN(X) dS (4.18)

Using the first Piola-Kirchhoff traction vector tN = t(X,N, t) introduced in (4.5),
in analogy with (4.15) and (4.16), the global forms of balance of linear and angular
momentum in the material description respectively are

dQ

dt
=

d

dt

∫
P0

ρ0 V dV =

∫
P0

B dV +

∫
∂P0

tN dS (4.19)

3See [28] page 74
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dL

dt
=

d

dt

∫
P0

r× ρ0 V dV =

∫
P0

r×B dV +

∫
∂P0

r× tN dS (4.20)

and finally rearranging by recalling (4.9) and (4.10) we get

f(t) =

∫
P0

B dV +

∫
∂P0

tN dS ∀P0 ⊂ Ω0 (4.21)

m(t) =

∫
P0

r×B dV +

∫
∂P0

r× tN dS ∀P0 ⊂ Ω0 (4.22)

It must be emphasized that force and moment resultants, even though described with
respect to the reference coordinate system, are still valued for the current configura-
tion. Also note that the position vector r has not been affected by any transformation.

4.1.3 Strong (differential) form of equilibrium equations

In this section we derive the differential form of equations of motion describing the
dynamic equilibrium of elastic body. These equations are directly derived specializing
the momentum balance principles to the local (infinitesimal) point.

4.1.3.1 Equation of motion

Spatial description. Here we want to derive the equation of motion in spatial
description referring to the true Cauchy’s stress σ. By computing the integral form
of Cauchy’s stress theorem (4.4) and by applying the divergence theorem, the surface
integral in the translational balance is converted into a volume integral, we get∫

∂P
t(x, t,n) ds =

∫
∂P
σ(x, t) · n ds =

∫
P

divσ(x, t) dv (4.23)

where σ is the symmetric Cauchy stress tensor and the operator div(·) is the spatial
divergence operator. Knowing that the spatial velocity field v may be expressed as
the time rate of change of the displacement field u, by substituting this result into the
balance linear momentum (4.15), and using (4.11) we get the Cauchy’s first equation
of motion as follow

d

dt

∫
P
ρv dv =

∫
P
ρ v̇dv =

∫
P
ρü dv

=

∫
P

b dv +

∫
∂P

t ds

=

∫
P

b dv +

∫
P

divσ dv

=

∫
P

(divσ + b) dv (4.24)

∫
P

(divσ + b− ρ ü) dv = 0 ∀P ⊂ Ω (4.25)
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where (4.25) is represented in the integral (weak) form.
Because this relation is supposed to hold for any part P of the region Ω, and since

the integral function is continuous, we may deduce Cauchy’s first equation in the local
form

divσ + b = ρ ü (4.26)

for each point x of volume v and for all time instants t. Notice that the differential
equation of motion is here presented with respect to the current (spatial) configura-
tion, and governs the elastodynamic behavior of deformable body. Rearranging (4.26)
in index notation we get

∂σx
∂x

+
∂τxy

∂y
+
∂τxz

∂z
+ bx = ρüx

∂τyx

∂x
+
∂σy
∂y

+
∂τyz

∂z
+ by = ρüy (4.27)

∂τzx

∂x
+
∂τzy

∂y
+
∂σz
∂z

+ bz = ρüz

Generally, relation (4.26) is nonlinear with respect to the displacement field u.
The nonlinearities are implicitly present due to geometric sources, i.e. the kinematics
of motion of the body, and material sources, i.e. the material itself, since the Cauchy
stress σ may, in general, depend on u. In the present work, only geometrical non-
linearities are addressed, and thereby balance equations for the beam are established
with reference to the deformed configuration.
Term ρ ü characterizes the inertial force per unit of current volume. If the acceleration,
i.e. the second derivative of displacement u, is assumed to be zero for all x ⊂ Ω,
equation (4.26) becomes

divσ + b = 0 (4.28)

which is referred to as Cauchy’s equation of equilibrium in purely static investigation
(elastostatic).

From the rotational equilibrium (4.16), manipulations using the Cauchy’s theorem
and the divergence theorem shows that

σ = σT (4.29)

Material description. Using the integral form of Cauchy’s stress theorem
(4.5) and applying the divergence theorem, the surface integral is converted into a
volume integral, we get∫

∂P0

tN dS =

∫
∂P0

P ·N dS =

∫
P0

DIVP dV (4.30)

where the operator DIV(·) is the material divergence operator. In analogy with (4.25),
by substituting this result into the balance linear momentum in material description
(4.19) we obtain ∫

P0

(DIVP + B− ρ0 Ü) dV = 0 ∀P0 ⊂ Ω0 (4.31)
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which, holding for any part P0 of the region Ω0, yields the reference form of Cauchy’s
equation of equilibrium

DIVP + B = ρ0 Ü (4.32)

From the rotational equilibrium (4.16), manipulations using the Cauchy’s theorem
and the divergence theorem, show that

PF T = FP T (4.33)

4.1.3.2 Equation of motion in terms of resultant

Spatial description. Consider a cross-section st = ϕ(s, t) in the current con-
figuration, and let4 P (x) = P (s, r) denote the first Piola-Kirchhoff stress tensor at
the point detected by the cross-section position vector r. By recalling (4.5) we may
express the two-point tensor P (s, r) in terms of its column-vectors by

P (s, r)
.
= T1(s, r)⊗E1 + T2(s, r)⊗E2 + T3(s, r)⊗E3

= T i ⊗Ei (4.34)

where clearly, T3(s, r) = P (s, r)E3 represents the stress vector (per unit of reference
area) acting on a point of the beam cross-section in the reference configuration. Since
the cross-sections remains plane and undistorted, and being E3 the normal vector
to the undeformed cross-section, we notice that T3 corresponds to the cross-section
stress vector (arbitrarily orientated). The stress resultant of distributed internal force
per unit of reference length f(s, t) over the cross-section a in the current coordinates
is then given by integration over the cross-sectional reference area a ⊂ R2

f(s, t)
.
=

∫
a

P (s, r)E3 dξ =

∫
a

T3(s, r) dξ (4.35)

Similarly, the stress resultant internal torque per unit of reference arc-length m(s, t)
over the cross-section s in the current configuration is given by

m(s, t)
.
=

∫
a

(x− x0)× T3(s, r) dξ (4.36)

One may note the small difference in font of (4.35), (4.36) and (4.11), (4.12). The
resultant quantities (4.35) and (4.36) represent the exact static one-dimensional equiv-
alents of the three-dimensional problem.

Focusing to the nonlinear beam model, to develop equations of motion expressed
in terms of the resultant force f(s, t) and the resultant momentum m(s, t), we pro-
ceed from the material form of the balance of linear momentum principle of the
3-dimensional theory, which recalling (4.32) may be expressed as

DIVP + B = ρ0 Ü (4.37)

4See equation (3.8).
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Figure 4.3: Reduction of the three-dimensional statics of the beam-like body to the one-
dimensional 2-nodes resultant model.

where the divergence operator, in the present case, involves derivatives with respect
to the coordinates of the undeformed configuration, because it follows from

DIVP = lim
Ω0→0

1

Ω0

∫
∂Ω0

tN dS

= lim
Ω0→0

1

Ω0

∫
∂Ω0

P ·N dS (4.38)

where ∂Ω0 is the boundary of the region Ω0 and has unit normal vector field N. Recall-
ing (4.5), it is straightforward to demonstrate that the expression for the divergence
of P in Cartesian coordinates is given by the formula

DIVP =
3∑
i=1

∂P (x)

∂xi
Ei

=
3∑
i=1

∂T i

∂xi
(4.39)

and substituting this into (4.37) we get

DIVP + B = ρ0 Ü
3∑
i=1

∂T i

∂xi
+ B = ρ0 Ü[

∂T1

∂x1

+
∂T2

∂x2

+
∂T3

∂x3

]
+ B = ρ0 Ü (4.40)

and rearranging

∂T3

∂x3

= ρ0 Ü−
[
∂T1

∂x1

+
∂T2

∂x2

+ B

]
(4.41)

Deriving with respect to arc-length curvilinear ordinate s equation (4.35), making use
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of (4.41) we have

∂

∂s
f(s, t) =

∂

∂s

∫
Ω0

T3 dx

=

∫
Ω0

∂

∂s
T3 dx

=

∫
Ω0

ρ0 Ü dx−
∫

Ω0

[
2∑

α=1

∂Tα
∂xα

+ B

]
dx (4.42)

Applying the divergence theorem to the first term under the integral sign∫
Ω0

2∑
α=1

∂Tα
∂xα

dx =
2∑

α=1

∫
Ω0

∂Tα
∂xα

dx

=
2∑

Γ=1

∫
∂Ω0

TΓ ·NΓ dΓ (4.43)

where NΓ is the vector field normal to the lateral contour ∂Ω0 of the body. Let Aρ
be the mass density per unit of length of the undeformed straight beam, i.e.

Aρ =

∫
Ω0

ρ0 dx (4.44)

and assume that the origin of the x coordinate coincides with the center of mass of a
cross-section, i.e. the first mass moment density per unit of length of the undeformed
straight beam vanishes

Sρ =

∫
Ω0

ρ0ξ dx = 0 (4.45)

hence, the inertial part can be written as∫
Ω0

ρ0Ü dx = Aρ Ü (4.46)

Next, defining the applied external forces acting on a part of the boundary of the
beam, by unit length in the reference configuration as

f̄(s, t) =
2∑

Γ=1

∫
∂Ω0

TΓ ·NΓ dΓ +

∫
Ω0

B dx (4.47)

we obtain the balance equation in integral form

∂

∂s
f(s, t) + f̄(s, t) = Aρ Ü =

dQ

dt
(4.48)

Now, focusing on equation (4.36) we get

m(s, t) =

∫
Ω0

(x− x0)× T3(S, r) dx

=

∫
Ω0

x× T3 dx−
∫

Ω0

x0 × T3 dx (4.49)
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and deriving with respect to arc-length curvilinear ordinate s

∂m

∂s
=

∫
Ω0

[
∂x

∂s
× T3 + x× ∂T3

∂s

]
dx−

∫
Ω0

[
∂x0

∂s
× T3 + x0 ×

∂T3

∂s

]
dx

=

∫
Ω0

∂x

∂s
× T3 dx+

∫
Ω0

(x− x0)× ∂T3

∂s
dx−

∫
Ω0

∂x0

∂s
× T3 dx

=

∫
Ω0

∂x

∂s
× T3 dx+

∫
Ω0

(x− x0)× ∂T3

∂s
dx− ∂x0

∂s
× f (4.50)

where use has been made of (4.35). Now, the second term can be rewritten by means
of equation (4.41)∫

Ω0

(x− x0)× ∂T3

∂s
dx =

∫
Ω0

(x− x0)×

[
ρ0 Ü−

2∑
α=1

∂Tα
∂xα

+ B

]
dx

=

∫
Ω0

(x− x0)× ρ0 Ü dx−
∫

Ω0

(x− x0)×B dx−
∫

Ω0

(x− x0)×
2∑

α=1

∂Tα
∂xα

dx

=
dL

dt
−
∫

Ω0

(x− x0)×B dx−
2∑

Γ=1

∫
∂Ω0

(x− x0)× (TΓ ·NΓ) dΓ (4.51)

where we used relation (4.12) and applied the divergence theorem as above. Intro-
ducing the following notation for the applied external moment field, acting on a part
of the boundary of the beam (by unit length of the current configuration)

m̄(s, t) =
2∑

Γ=1

∫
∂Ω0

(x− x0)× (TΓ ·NΓ) dΓ +

∫
Ω0

(x− x0)×B dx (4.52)

finally we obtain

∂

∂s
m(s, t) =

dL

dt
+

∫
Ω0

∂x

∂xi
× Ti dx− ∂x0

∂s
× f −m(s, t)

=
dL

dt
− ∂x0

∂s
× f −m(s, t) (4.53)

where should be noted that ∂x/∂xi × Ti = 0, and rearranging

∂

∂s
m(s, t) +

∂x0

∂s
× f + m̄(s, t) =

∂L

dt
.
= IO ω̇ + ω × IO ω (4.54)

Summarizing, the linear and angular momentum balance equations then take the
differential form

∂

∂s
f + f̄ =

dQ

dt
= AρÜ

∂

∂s
m+

∂x0

∂S
× f + m̄ =

∂L

dt
.
= IO ω̇ + ω × IO ω

(4.55)
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where f̄ and m̄ are the applied external force per unit of current arc-length. This set
of equations simply express the equilibrium on the domain and on the static boundary
between the applied external generalized force (quantity with bar superscript) and the
internal generalized forces (quantity without bar superscript). These are the usual set
of equation imposed in a strong sense in the traditional FEM (besides the pointwise
imposition of essential boundary values).
Basically, the construction of the dynamic weak formulation of the set of differential
equations to be solved by the finite element method, is obtained by considering 4
steps: (i) take the dot product of differential equation (4.55) with a test function 5,
(ii) integrate the result over the length of the reference beam [0, L], (iii) use the diver-
gence theorem (integration by parts) to reduce derivatives to their minimum order,
and finally replace the boundary conditions. Results are reported in the forthcoming
sections.

Material description. In applications, the material form of the aforemen-
tioned equations is often more convenient. The vector fields f(s, t) and m(s, t) are
parametrized by the current axial-length s, take values on the current (spatial) con-
figuration, with basis say or {ti}. These resultants are affected by superposed rigid
body motions and are, for this sake, not convenient for constitutive description. As
an alternative, we define the material vector fields N and M by the rotate-back form
of the vector fields f(s, t) and m(s, t) to the reference material configuration (basis
{Ei}) by means of the orthogonal transformation Λ(s, t). Accordingly we have the
relations:

N (S) = ΛT (s, t)f(s, t) (4.56)

M (S) = ΛT (s, t)m(s, t) (4.57)

The geometrical meaning of N (S, t) and M(S, t) follows from the observation that

f = ΛN = ΛNiEi = Ni ΛEi = Niti (4.58)

m = ΛM = ΛMiEi = Mi ΛEi = Miti (4.59)

Thus, the components of the force and moment vectors f and m relative to the
moving frame {ti} equal those of N and M relative to the reference frame {Ei}, i.e.
they remain invariant under superposed rigid body motions.
The component form of the equations in the material description are obtained by
substitution into (4.55).

5The more convenient test function corresponds to the kinematically admissible variation δη =
(δu, δΨ) ∈ R3 × T mat

Λ of the pair (u,Λ)
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Chapter 5

Geometrically exact beam theory:
virtual works principle

The pure and simple truth is rarely
pure and never simple.

O. Wilde

The purpose of this section is to formulate properly the three-dimensional prin-
ciple of virtual works for the Reissner-Simo beam theory introduced in the previous
Chapters. As noted by Makinen [36], the virtual work may be viewed as a linear form
on the tangent field-bundle, which in turn is a tangent bundle of the placement man-
ifold at fixed time. Basing on the framework introduced in Chapter 2, firstly a formal
definition of virtual work on manifolds basing on the concepts of virtual displace-
ment on manifold is given. Then is presented a detailed derivation of the nonlinear
functional corresponding to the virtual work principle, both in spatial and material
description. Finally, a simple constitutive law steaming from the existence of a strain
energy density function is derived in the same fashion of Pimenta & Yojo [49].

5.1 Principle of virtual works

In order to develop a organic path toward the definition of the principle of virtual
works, we introduce step by step the needed quantities.
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106 Geometrically exact beam theory: virtual works principle

Definition 5.1 (Virtual displacement). Let introduce the spatial position field defined
by means of the position vector field x, which individuates each point in the current
region Ω, and the material position field X, which individuates each point in the
reference region Ω
The virtual displacement δx at any generalized place vector x ∈ En and a fixed time
instant t = t0, is defined as any possible change of the displacement field x

δx = xε − x (5.1)

where xε stands for an infinitesimal perturbed position field.

The attribute possible refers to the kinematical requirement to be respectful of the
geometric constraints on the manifold, and in particular δx is such that it assumes a
prescribed value on the boundary region where displacements are assigned.

Definition 5.2 (Virtual work on point-manifold). Virtual work on the tangent point-
bundle Tx0Mt0 at the fixed time instant t = t0 and the place vector x(t0) = x0 ∈Mt0

is defined as a linear form by

δW , f · δx (5.2)

where the virtual displacement δx ∈ Tx0Mt0, and the force vector f = f(t0,x0) ∈
T ∗x0
Mt0 which belongs to the dual point-space1.

Forces may be classified into external, internal and additionally into inertial forces.
Last group may be regarded as an effective force, because if an external active force is
acting on a particle, which is otherwise free, then the inertial force may be regarded as
the reaction force which take place to maintain force equilibrium in dynamical sense.

Definition 5.3 (Virtual work on field-manifold). The virtual work on the tangent
field bundle at a fixed time instant t = t0 and the place vector x0 = x(t0) ∈ Tx0Mt0

is defined as an integral over the domain of the body B

δW ,
∫

B

f · δx dV (5.3)

where the virtual displacement filed δx ∈ Tx0Mt0 and the force filed f = f(t0,x0) ∈
T ∗x0
Mt0.

Definition 5.4 (Principle of virtual works). The principle of virtual works states
that at a dynamical equilibrium, the total virtual work with respect to any virtual
displacement, at the fixed time instant t = t0 and the place vector x0, vanishes, i.e.

δW = 0 ∀δx ∈ Tx0Mt0 (5.4)

1For the fixed time t = t0, the place vector x0 = x(t0) defines a tangent point-space at the
point x0 ∈ Mt0 such as Tx0Mt0 = δx ∈ En|(x0, δx) ∈ Tx0Mt0 . Therefore we may denote for any
virtual displacement vector δx ∈ Tx0Mt0 , where the base point x0 is included in the notation as a
subscript.
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5.1.1 Principle of virtual works in spatial description 107

Figure 5.1: A geometric representation of the virtual work on the generic manifold.

5.1.1 Principle of virtual works in spatial description

In this section, we derive the dynamic balance equations of the linear and rota-
tional momentum in a weak form for Reissner’s beam. We will rather closely follow
the paper [16] for showing that Reissner’s beam formulation is also a stress resultant
formulation, consistent with continuum mechanics at a resultant level.

Also this kind of equilibrium equations can be given in two forms, depending on
which is the domain of integration: the current spatial configuration Ω or the material
reference configuration Ω0.

Initial boundary-value problem (IBVP). The finite element method re-
quires the formulation of the balance laws in the form of variational principles. One
of the most fundamental balance laws is the Cauchy’s first equation of motion (i.e.
balance of mechanical energy) (4.26)

divσ + b = ρ ü (5.5)

valid for every point x ∈ Ω and for all times t.
We assume also that the boundary surface ∂Ω of a continuum body B occupying

region Ω, is decomposed into disjoint parts so that:

∂Ω = ∂Ωu ∪ ∂Ωσ with ∂Ωu ∩ ∂Ωσ = ∅ (5.6)

We distinguish two classes of boundary conditions, namely the Dirichlet boundary
conditions (or essential boundary conditions), which correspond to a prescribed dis-
placement field (geometric restraints) u = u(x, t) on the kinematic boundary, and the
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108 Geometrically exact beam theory: virtual works principle

Figure 5.2: Partition of boundary surface ∂Ω in two-dimensional space at time t.

Neumann boundary conditions (or natural boundary condition), which are identified
physically with the surface traction tn = tn(x, n,t) on the loaded boundary (force
restraints).
We write

u = ū on ∂Ωu

tn = σ · n = t̄n on ∂Ωσ (5.7)

where the (̄·) denotes prescribed (given) functions on the boundaries ∂Ω(·) ⊂ ∂Ω of
a continuum body occupying the region Ω. The unit exterior vector normal to the
boundary surface ∂Ωσ is characterized by n. The prescribed displacement field ū and
the prescribed Cauchy traction vector t̄n (force measured for unit current surface
area) are specified respectively on a portion ∂Ωu ⊂ ∂Ω, called kinematic boundary,
and on the remainder ∂Ωσ called static boundary.
Because the traction boundary conditions tn = t̄n on ∂Ωσ arise directly from the
weak equilibrium, they are often called natural boundary conditions. Instead, the
displacements boundary conditions u = ū on ∂Ωu are called essential boundary
conditions, since they have to be imposed out of the weak form.

The second-order differential equation (4.26) itself requires additional data in the
form of initial conditions. For instance, the generalized displacement field η|t=0 and
the velocity field η̇|t=0 at the initial time t = 0 are specified as

η(x, y)|t=0 = η0(X) η̇(x, y)|t=0 = η̇0(X) (5.8)

where (·)0 denotes a prescribed function in Ω0. Since we agreed to consider a stress-
free reference configuration at t = 0, the initial values (·)0 are assumed to be zero in
our case.

In order to achieve compatibility of the kinematic boundary and initial condi-
tions we require additionally on ∂Ωu that

η̄ = η0(X) ¯̇η = η̇0(X) (5.9)

Now, the problem is to find a motion that satisfies equation (4.26) with the pre-
scribed boundary and initial conditions, and compatibility conditions. This leads to
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the formulation of the strong form (or differential form) of the initial boundary-value
problem (IBVP). Given the body forces, and both boundary and initial conditions,
find the generalized displacement field η = {u;θ} so that

divσ + b = ρ ü in Ω

σ = σT in Ω

tn = σ · n = t̄n on ∂Ωσ

u = ū on ∂Ωu

η(x, y)|t=0 = η0(x)

η̇(x, y)|t=0 = η̇0(x)

(5.10)

Note that the set of equations (5.10) generally defines a nonlinear initial boundary-
value problem for the unknown displacement field u. In addition, we need a con-
stitutive equation for the stress σ which is, in general, a nonlinear function of the
displacement field u.

Principle of virtual works. Let consider here the weak (integral) form of the
Cauchy’s equilibrium equation (4.25), which leads to the formulation of principle of
virtual works written with respect to the current configuration Ω. Also consider the
virtual displacement δu(x) an arbitrary weighting vector function. Multiplying the
differential Cauchy’s equilibrium equations (4.26) by the weighting function δx and
integrating over the current domain, we obtain

f(u, δu) =

∫
Ω

[(divσ + b− ρ ü) · δx] dv = 0 ∀ δu ∈ δU (5.11)

which is the integral (weak) form of the equation of motion written with respect to
the current (spatial) configuration. The fundamental lemma of calculus of variations
guaranties this weak equation to be equal to the strong one (for further details see
[72]). Splitting the integral, the previous equation is rewritten as∫

Ω

divσ · δx dv +

∫
Ω

b · δx dv −
∫

Ω

ρ ü · δx dv = 0 ∀ δx ∈ δU (5.12)

Consider the first integral
∫

Ω
divσ · δxdv. The scalar product between the divergence

of a tensor and a vector can be expressed in term of the vector gradient by the rule
(A.18). Hence we can rewrite the equality

divσ · δx = div(σT δx)− σ : gradδx

and because σ is a symmetric tensor (σ = σT , see (4.29)), trivially we have

divσ · δx = div(σδx)− σ : gradδx

and thus the considered integral becomes∫
Ω

divσ · δx dv =

∫
Ω

div(σδx) dv −
∫

Ω

σ : gradδx dv (5.13)
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In order to rearrange this expression, we examine first the second term
∫

Ω
σ : gradδxdv.

Since σ is symmetric, we can use the rule of double contraction between a tensor and
a symmetric tensor (A.19) to write∫

Ω

σ : gradδx dv =

∫
Ω

σ : sym[gradδx] dv =

∫
Ω

σ : δe dv (5.14)

where we recognized in sym[gradδx] the Euler-Almansi strain tensor’s virtual varia-
tion 2 δe.
Consider now the other term

∫
Ω

div(σδx)dv. Applying first the divergence theorem
and then the symmetry of σ, this integral can be given as∫

Ω

div(σδx)dv =

∫
∂Ω

n · σδx ds =

∫
∂Ω

σn · δx ds

Since δx vanishes on the part of the boundary surface ∂Ωu where displacements are
prescribed, the integral over the whole boundary region reduces to an integral over
only ∂Ωσ, i.e. the region where traction are assigned∫

∂Ω

σn · δx ds =

∫
∂Ωσ

tn · δx ds

Therefore, by substitution into previous equation we get∫
Ω

div(σδx)dv =

∫
∂Ωσ

tn · δx ds (5.15)

Recollecting results of equations (5.14) and (5.15) and substituting them into (5.13),
the expression of the term

∫
Ω

divσ · δx dv takes the form∫
Ω

divσ · δx dv =

∫
∂Ωσ

tn · δx ds−
∫

Ω

σ : δe dv (5.16)

Substituting backwards this expression into equation (5.12) we obtain∫
∂Ωσ

tn · δx ds−
∫

Ω

σ : δe dv +

∫
Ω

b · δx dv

−
∫

Ω

ρ ü · δx dv = 0 ∀ δx ∈ δU
(5.17)

which changing sign and reordering terms finally provides the principle of virtual
works written in current configuration∫

Ω

σ : δe dv −
∫

Ω

b · δx dv −
∫
∂Ωσ

t̄n · δx ds

+

∫
Ω

ρ ü · δx dv = 0 ∀ δx ∈ δU (5.18)

2For demonstration that sym[gradδx] = δe see [28] page 376.
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with boundary conditions

u = ū ∂Ωu ⊂ ∂Ω (5.19)

The principle of virtual works states that at the equilibrium configuration the
virtual work σ : δe done by fixed σ with the virtual variation δe on the whole
volume, equals the sum of work done with virtual displacement 3 δu by the body
forces b, the inertia forces ρ ü per unit of current volume, and surface tractions t̄n on
the boundary area ∂Ωσ. Usually the terms in which the total virtual work is divided
are three parts: external, inertial and inertial as indicated by the notation

δWtot = δWint − δWext + δWinert = 0 (5.20)

where the terms above are given by the following expressions

δWint =

∫
Ω

σ : δe dv (5.21)

δWext =

∫
Ω

b · δx dv +

∫
∂Ωσ

t̄n · δx ds (5.22)

δWinert =

∫
Ω

ρ ü · δx dv (5.23)

where the first integral, δWint, is called internal (mechanical) virtual work, the second
one δWext, external (mechanical) virtual work, whereas the third term is called inertial
virtual work. It’s worth to note that stress, body forces, and traction vectors are all
defined on current region Ω, which clearly is also the integral domain.

The equality, along with the initial conditions, stated by the principle of virtual
works, characterizes the weak form (or variational form) of the initial boundary-value
problem, natural counterpart of the strong form (5.10)

f(u, δx) =

∫
Ω

[σ : δe− (b− ρ ü) · δx] dv −
∫
∂Ωσ

tn · δx ds = 0 (5.24)∫
Ω

u(x, y)|t=0 · δx dv =

∫
Ω

u0(X) · δx dv (5.25)∫
Ω

u̇(x, y)|t=0 · δx dv =

∫
Ω

u̇0(X) · δx dv (5.26)

It is important to emphasize that the principle of virtual works does not necessitate
the existence of a potential. Indeed, no statement in regard to a particular material
is invoked. Therefore the principle of virtual works is general, in the sense that it is
applicable to any material, including inelastic material.

3A virtual displacement is defined as a kinematical admissible perturbation (variation) of gen-
eralized displacement field, i.e. satisfying the kinematic boundary conditions. Strictly speaking an
admissible configuration is a concept that embodies all others as particular case, indeed a perturbed
configuration is an admissible variation from an admissible configuration, whereas an ensemble of
perturbed configurations is used to establish incremental variations.
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5.1.2 Principle of virtual works in material description

Initial boundary-value problem (IBVP). The equations of motion of con-
tinuum with boundary conditions, in terms of the first Piola-Kirchhoff stress tensor,
can be written as 

DIVP + B = ρ0 Ü in Ω0

PF T = FP T in Ω0

tN = P ·N = t̄N on ∂Ωσ,0

U = Ū on ∂Ωu,0

U(X,Y )|t=0 = U 0(X)

U̇(X,Y )|t=0 = U̇ 0(X)

(5.27)

where B is the body force vector, ρ0 the density of the material body, N the normal
vector of the traction boundary, t̄N the given traction vector, and U the given dis-
placement vector. Note that the base points are given in the material coordinate, but
they occupy the tangent spaces of the spatial configuration.

Principle of virtual works. We consider here the principle of virtual work
wherein the integral domain is the reference region Ω0 of the continuum body, bounded
by a reference boundary surface ∂Ω0. The computation is developed starting again
from the equation of motion, but written in material reference

DIVP + B = ρ0 Ü (5.28)

corresponding to (4.32). Here, P, B and ρ0Ü denote the first Piola-Kirchhoff stress
tensor, the reference body force and the inertia force per unit reference volume, re-
spectively. For the Dirichlet and Neumann boundary conditions, i.e U = U(X, t) and
T = T (X,N , t) we may write, by analogy with (5.7)

U = Ū on ∂Ω0,u (5.29)

TN = P ·N = T̄N on ∂Ω0,σ (5.30)

where the unit outwards vector normal to the boundary surface ∂Ω0,σ is characterized
by N. The prescribed displacement field Ū and the prescribed Piola-Kirchhoff traction
vector T̄N (force measured per unit of reference surface area) are specified on the
disjoint parts ∂Ω0,u and ∂Ω0,σ, respectively. The second-order differential equation
(5.28) must be supplemented by initial conditions for the displacement field and the
velocity field at the instant of time t = 0.
Using the aforementioned concepts, one may show 4 the principle of virtual works in
the material description expressed in terms of the virtual displacement, i.e.∫

Ω0

P : Gradδu dV −
∫

Ω0

B · δu dV −
∫
∂Ω0,σ

T̄N · δu dS

+

∫
Ω0

ρ0 Ü · δu dV = 0 ∀ δu ∈ δU (5.31)

4For further details see Appendix B
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with the virtual displacement field δu (here defined on the reference configuration)
satisfying implicitly the essential boundary condition δu = 0 on the part of the
boundary surface ∂Ω0,u, where the displacement field Ū is prescribed.

As before, the principle of virtual works states that at the equilibrium configura-
tion the virtual work P : Gradδu done by fixed P with the virtual variation Gradδu
on the whole volume, equals the sum of work done with virtual displacement δu by
the body forces B, the inertia forces ρ0 Ü per unit of reference volume, and surface
tractions T̄N on the boundary area ∂Ωσ,0. Grouping the terms in (5.31) we obtain
again the same expression of (5.20), where the terms are expressed in material form
as

δWint =

∫
Ω0

P : δF dV (5.32)

δWext =

∫
Ω0

B · δx dV +

∫
∂Ωσ,0

T̄N · δx dS (5.33)

δWinert =

∫
Ω0

ρ0 Ü · δx dv (5.34)

Alternatively, the material form of the principle of virtual works sought, can be
obtained simply by pull-back operation of relation (5.18) to the reference configura-
tion. To do that, one can start to express the internal and external virtual work δWint

and δWext in equations (5.21) and (5.22) and the contribution
∫

Ω
ρ ü · δx dv in terms

of material variables.

Internal virtual work. The internal virtual work δWint can be expressed in
two equivalent forms, using the first Piola-Kirchhoff stress tensor P or the second
Piola-Kirchhoff stress tensor S. Here only the first approach is developed.

Let consider the internal virtual work in the current configuration δWint (5.21)
and rewrite it using σ : δe = σ : grad δx. Recalling the relations between current
and reference differential volume, respectively dv and dV , and between spatial and
material gradient 5 of δx, respectively grad δx(x) and GRAD δx(X)

dv = J dV and grad δx = GRAD δx · F−1 (5.35)

where J = detF , the internal virtual work takes the form

δWint =

∫
Ω

σ : δe dv

=

∫
Ω

σ : grad δx dv

=

∫
Ω0

[
σ : GRAD δxF−1J

]
dV (5.36)

where the symmetry of the Cauchy stress tensor σ is to be used (see equation (4.29)).
The equation states that the internal virtual work, integrated on the current config-
uration domain, can be given as an integral on the reference domain of the function
in brackets.

5For further details see [20].
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Using the property of double contraction between a tensor and a product of tensors
(A.17), and then the relations between σ and the first Piola-Kirchhoff stress tensor
P (JσF−T = P ) and between δu and the back-rotated variation δF r (GRAD δx =
δF r) 6 the function in brackets can be rearranged in the form

σ : GRAD δxF−1J = JσF−T : GRAD δx = P : δF r (5.37)

Finally, by substitution of this expression into (5.36), we obtain the internal virtual
work written on reference configuration in terms of Piola-Kirchhoff stress tensor P

δWint =

∫
Ω0

P : δF r dV (5.38)

It’s worth to note how the stress tensor P turns out to be work conjugate with the
virtual variation of deformation gradient δF r. Let now substitute equation (3.80) into
the integrand of (5.38)

P : δF r = P : [(δΓ + δK ×R)⊗E3] (5.39)

and recalling equation (4.34) the previous delivers

P : δF r = (T i ⊗Ei) : [(δΓ + δK ×R)⊗E3] (5.40)

where sum is intended on repeated indices (Einstein’s notation). With the help of (A)
we may rewrite

P : δF r = [(T i ⊗Ei)E3] · (δΓ + δK ×R) (5.41)

and again, applying the tensor product definition

P : δF r = T i(Ei ·E3) · (δΓ + δK ×R)

= T 3 · (δΓ + δK ×R) (5.42)

From (5.38), decomposing the triple integral over the beam volume into the integral
along the beam axis (linear domain [0, L]) and the integral over the generic cross-
section (surface domain A), the internal virtual work follows as

δWint =

∫
Ω0

P : δF r dV

=

∫
Ω0

T 3 · (δΓ + δK ×R) dV

=

∫
Ω0

T 3 · δΓ dV +

∫
Ω0

T 3 · (δK ×R) dV

=

∫ L

0

∫
A

T 3(S, ξ) · δΓ(S) dξ dS +

∫ L

0

∫
A

δK · [R× T 3(S, ξ)] dξ dS

=

∫ L

0

N δΓ dS +

∫ L

0

M δK dS (5.43)

6See [28] page 374 for this proof.
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where the following cross-sectional stress resultants per unit length (4.35) and (4.36)
were introduced, according to back-rotated expressions (4.56) and (4.57)

N (S)
.
=

∫
A

T3(S, ξ) dξ (5.44)

M (S)
.
=

∫
A

R× T3(S, ξ) dξ (5.45)

Collecting these generalized forces in the cross-section vector of material (back-rotated)
stress resultants σr, and with the help of the generalized strain measure δε, the ma-
terial internal virtual work assumes the compact form

δWint =

∫ L

0

(N · δΓ +M · δK) dS

=

∫ L

0

σr · δεr dS (5.46)

which is a functional of the fields σr and δε. It’s noteworthy that the derived beam
internal virtual work expression (5.46) is fully consistent with the beam kinematic
hypothesis and the finite elasticity theory conceived.

Figure 5.3: Geometric representation of static and kinematic quantities for beams. (a):
reduced strains components. (b): stress resultant components.

Finally one may note how derivations (5.43) are obtained basically substituting a
prescription of the three-dimensional deformation, enclosed in the kinematic assump-
tions, into the three-dimensional deformation gradient. This in turn leads to a natural
separation of kinematics of the chosen reference curve (mostly the line of centroids)
and the points lying in cross-sections (see [68]). Then, the three-dimensional principle
of virtual works changes the integral order from three to one if the over-cross-section
integration is applied (see [57]). Naturally, the stress quantities resulting from the
cross section integrals, supply the one-dimensional statics.
recapitulating, in such an approach, the kinematics is constrained to comply with
the assumed hypothesis and the conjugate statics from the assumed hypothesis via
the principle of virtual works. Thereby the one-dimensional principle of virtual works
inherently contains approximations due to the primary assumptions.
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Figure 5.4: Derivation of the geometrically exact beam theory: classical approach with
kinematic hypothesis according to [56] and [16].

External virtual work. Suppose that surface and body loadings are applied
along the rod. The surface loading per unit of reference area is mapped from lateral
contour Γ is denoted by T̄N , while the body loading per unit reference volume is
mapped from Ω0 and identified by B.

Let consider the external virtual work written in current configuration, δWext

(see equation (5.22)). The term associated with the body force,
∫

Ω
b · δu dv, can be

expressed in term of an integral over the reference domain Ω0 using again the relation
(dv = J dV ) between current and reference differential volume∫

Ω

b · δx dv =

∫
Ω0

B · δx dV with B = J b (5.47)

where δx is the perturbed displacement.

To express the boundary work
∫
∂Ωσ

t̄n · δx ds as an integral over the reference
domain, we recall that by definition of differential force df and making use of the
Cauchy’s theorem, we have

df = tn ds = TN dS with tn = σ · n and TN = P ·N (5.48)

Specializing these relations for the boundary region where tractions are assigned, we
get

t̄nds = T̄NdS

and consequentially ∫
∂Ωt̄n

t̄n · δx ds =

∫
∂ΩT̄N

T̄N · δx dS (5.49)
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Finally, substituting the results (5.47) and (5.49) into the expression of the external
work (5.22), we finally get the external virtual work written on reference configuration

δWext =

∫
Ω0

B · δx dV +

∫
∂ΩT̄N

T̄N · δx dS (5.50)

With the help of equation (3.49), and splitting the surface integral between the base
surface Ab and the lateral surface Al, the previous can be recast into

δWext =

∫
V

B · δx dV +

∫
Al

T̄N · δx dS +

∫
Ab

T̄N · δx dS

=

∫
V

B · δx dV +

∫
Al

T̄N · δx dS +
[
T̄N · δx

]L
0

=

∫ L

0

∫
A

B · (δu+ δθ × r) dA dS+

+

∫ L

0

∫
Γ

T̄N · (δu+ δθ × r) dΓ dS+

+
[
T̄N · (δu+ δθ × r)

]L
0

=

∫ L

0

[(∫
A

B dA+

∫
Γ

T̄N dΓ

)
· δu+

+

(∫
A

r ×B dA+

∫
Γ

r × T̄N dΓ

)
· δθ

]
dS+

+
[
T̄N · δu+ r × T̄N · δθ

]L
0

=

∫ L

0

[
N̄ · δu+ M̄ · δθ

]
dS +

[
N̂ · δu+ M̂ · δθ

]L
0

(5.51)

where was introduced equations (4.47) and (4.52) using f̄ = N̄ and m̄ = M̄ only
for fake of clearness in the formalism. We recall that N̄ denotes the applied external
forces acting on a part of the boundary of the beam, by unit length in the reference
configuration, whereas M̄ represents the applied external moments acting on the
beam by unit length of the reference configuration. similarly we have introduced

N̂
.
= T̄N (5.52)

M̂
.
= r × T̄N (5.53)

which can be interpreted as the external applied loads acting on the beam’s ends (in
the sense of the static boundary conditions). In fact, we note that in (5.51) the natural
boundary conditions at the rod ends were directly accounted.
Introducing now equation (2.98) into equation (5.51), one has

δWext =

∫ L

0

[
N̄ · δu+ µ̄r · δψ

]
dS +

[
N̂ · δu+ µ̂r · δψ

]L
0

(5.54)

where the vectors emerging

µ̄r = T TM̄ (5.55)

µ̂r = T TM̂ (5.56)
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are the distributed external pseudo-moments which are energetically conjugated with
ψ. Notice that the true work conjugate of ψ is not simply the moment resultants as
usually happens on geometrically linear theories.

Introducing now the vector of external loading per unit of reference length, and the
vector of external loading on the bases defined by

q̄r =

[
N̄
µ̄r

]
q̂r =

[
N̂
µ̂r

]
(5.57)

with the help of (3.25) the external virtual work can be written as

δWext =

∫ L

0

q̄r · δη dS + [q̂r · δη]L0 (5.58)

where δη stands for an infinitesimal perturbation of generalized displacement field.

Inertial virtual work. Inertia forces can be expressed either in spatial or
material components, where the latter give their expression in the inertial frame
oriented according to the direction of material axes at the time instant considered.
Mutatis mutandis for the former. We remark that the denomination ”spatial” or
”material” are employed only to indicate the way in which quantities are handled.

However, we choose the material representation as it seems more ”natural” and ”con-
venient” to express the virtual work of inertia forces for dynamic problems.

To express the inertial virtual work we need for instance the time derivative of
the spatial place vector x with respect to the inertial frame. This approach allows to
bypass completely the use of a floating reference frame and avoid complications arising
from accounting Coriolis’ and centrifugal effects. Making use of equations (2.106) and
(2.127) one obtains

x = x0 + r = x0 + ΛR (5.59)

ẋ = ẋ0 + ΛΩ̃R (5.60)

ẍ = ẍ0 + ΛΩ̃Ω̃R+ ΛÃR (5.61)

where Ω̃, Ã ∈ T spat
Λ SO(3). It’s easy to proof that ẋ, ẍ ∈ T spat

Λ .

Now, from equation (5.23), deciding to describe the acceleration with respect to the
inertial fixed frame {e1, e2, e3} such as the formal equivalence ü = ẍ holds, the virtual
work done by inertia forces becomes

δWinert =

∫
Ω0

ρ0 ẍ · δx dV (5.62)

and substituting the virtual displacement vector δx given in (3.50), and the accel-
eration vector ẍ from equation (5.61), into the virtual work of inertia forces, and
decomposing the volume integral into the line integral along the beam axes (domain
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[0, L]) and the surface integral over the generic cross-section (domain A), we obtain

δWinert =

∫
V

ρ0 ẍ · δx dV

=

∫
V

ρ0 (ẍ0 + ΛΩ̃Ω̃R+ ΛÃR) · (δu+ ΛδΘ̃R) dV

=

∫
V

δu · ρ0 (ẍ0 + ΛΩ̃Ω̃R+ ΛÃR)+

+ ρ0(ẍ0 + ΛΩ̃Ω̃R+ ΛÃR) · (ΛδΘ̃R) dV

=

∫ L

0

δu · Aρẍ0 dS +

∫ L

0

δΘ · (JρA+ Ω̃JΩ) dS (5.63)

where we have been used the center line condition, for which the static moment
vanishes if the beam reference curve is chosen as the geometric centroid line of the
beam cross-section, that is∫

A

R̃ dA =

∫
A

(X1R̃1 +X2R̃2) dA = 0̃ (5.64)

in the first term and the identity (A.14). Moreover we have denoted the scalar mass
density per unit length of the reference beam

Aρ =

∫
A

ρ0 dA (5.65)

and the inertial tensor Jρ of the cross-section, also defined as the second mass moment
density (second-order tensor) per unit length of the reference configuration given by
(see appendix E)

Jρ = [Jij]Ei ⊗Ej (5.66)

where

[Jij] =

∫
A

X2
1 0 0

0 X2
2 0

0 0 X2
1 +X2

2

 ρ0 dA (5.67)

in the case in which the principal axes of the inertial tensor Jρ are parallel to the
basis vectors E1 and E2. It can be viewed as the rotational mass (second order mass
moment density) per unit length of the beam.

We note the correspondence between the virtual work expressed by equation (5.63),
and the equations of motion for a rigid body. The formula (5.63) can be viewed as
the lengthwise parametrized equations for the rigid body without external forces.

Finally, we derive the inertial virtual work form in terms of the total material rotation
Ψ and its virtual variation δΨ in order to achieve the total Lagrangian formulation.
We need to express spin vectors such as the virtual incremental rotation vector δΘ
(see equation (2.92)), the angular velocity vector Ω (see equation (2.117)), the angular
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acceleration vectorA (see equation (2.129)), and the curvature vectorK (see equation
(2.144)) in terms of the total rotation vector, giving

δΘ = T T · δΨ Ω = T T · Ψ̇

A = T T · Ψ̈ + Ṫ
T · Ψ̇ K = T TΨ′

We note that δΨ,Ψ, Ψ̇, Ψ̈ ∈ T mat
I , whereas spin vectors δΘ,Ω,A ∈ T mat

Λ .
Now, we can write the virtual work of inertia forces δWinert (5.63) in terms of the
total material vector, yielding (details can be consulted in [36] and reference therein)

δWinert =

∫ L

0

δu · Aρẍ0 dS+

+

∫ L

0

δΨ · (TJT T Ψ̈ + TJṪ
T
Ψ̇ + T (T T Ψ̇)∼JT T Ψ̇) dS

=

∫ L

0

Ginert · δη dS (5.68)

where terms are grouped in the inertia force vector Ginert and the virtual generalized
displacement vector δη. The notation (̃·) = (·)∼ has been used for the skew-symmetric
tensor obtained from certain ”large” arguments.

The summation of the virtual works (5.46), (5.58) and (5.63) according to the vir-
tual work theorem (5.20) gives the final weak form δWtot = δWint+δWext+δWinert = 0,
∀δη (in particular for δη = 0 on the kinematic boundary points ∂Ωu). It coincides
with the variational form of the internal power written in terms of reduced strains
and stress resultants (see [56]). Note that the final form of the principle of virtual
works is, up to now absolutely general, free from any restrictions or assumptions.

5.2 Constitutive equations

Having the equilibrium conditions expressed in a weak form, the stress strain
constitutive relations should now be supplied. Constitutive equations provides an
additional information about the material and geometrical properties of the body
under consideration, and completes the formulation of the boundary value problem
for the reduced three-dimensional beam theory.

One has to recognize that a constitutive law is, from its own nature, an experimen-
tal concept. It is based on material properties, which are measured in some specific
conditions and are always approximate. In the case of present derived theory, not only
material properties are involved in the relations, but also some geometrical features
7. For example, note how the popular assumption about cross-sections of the beam
remain plane during the deformation affects the constitutive law.

Not entering deeply into the complicated problem of the reduction of constitutive
relations, but anyhow enabling the numerical calculations, let us confine our atten-

7The presence of geometry in constitutive relations is expressed via the area and various inertia
moments.
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tion to the hyperelastic 8, isotropic and homogeneous material that may undergoes
arbitrarily large strains. We postulate the existence of a stored energy function called
specific strain energy function per unit volume of the reference configuration depend-
ing on Ψ = Ψ(εr). In particular, an elastic material is said to be a hyperelastic or a
Green–elastic material if exists a scalar valued function Ψint = Ψint(ε

r) such that

σr ,
∂Ψint

∂εr
(5.69)

which in turn can be recast in [
N
M

]
=

[
∂Ψ/∂Γ
∂Ψ/∂K

]
(5.70)

Here (·)r represents the rotated-back quantity. The gradient of σr defines an operator
Dr called material elasticity tensor, given by

Dr ,
∂σr

∂εr
=

[
∂N/∂Γ ∂N/∂K
∂M/∂Γ ∂M/∂K

]
(5.71)

i.e. Dr contains the cross-section elastic tangent moduli. Recalling equation (5.69),
Dr is also given by

Dr =
∂2Ψint

∂εr2
=

[
∂2Ψ
∂Γ2

∂2Ψ
∂Γ∂K

∂2Ψ
∂K∂Γ

∂2Ψ
∂K2

]
(5.72)

Thus, Dr is symmetric. For linear elastic beams Dr is diagonal with constant coef-
ficients, hence, for such rods, the quadratic (uncoupled) functional in the material
variables Ψint = 1/2(εr ·Drεr) reduces to

σr = Drεr (5.73)

Assuming the rod axis coincides with the line of the cross-sectional centroids, and the
cross-section axis lies parallel to the principal axis of inertia, the matrix Dr may be
given in the beams’s local system by

Dr =


EA 0 0 0 0 0
0 GA∗1 0 0 0 0
0 0 GA∗2 0 0 0
0 0 0 EJ1 0 0
0 0 0 0 EJ2 0
0 0 0 0 0 GJT

 (5.74)

in which A, A∗1, A∗2, J1, J2, JT are the cross-sectional geometric properties. In par-
ticular, the cross-sectional geometric area A∗1 and A∗2 include shear factor χ, and the
torsional moment JSV refers to the classical De Saint-Venant torsion theory, instead

8When the work done by the stresses during a deformation process is dependent only on the
initial state and the final configuration, the behavior of the material is said to be path-independent,
and the material is termed hyperelastic.
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of the polar moment Jp = I1 + I2. Consequently, we can recognize in EA the axial
stiffness, GA∗1 and GA∗2 the shear stiffness with respect to the cross-section in princi-
pal directions, GJT the torsional stiffness, and EJ1 and EJ2 are the principal bending
stiffness. Coefficients E and G are the material elastic moduli, Young’s elastic mod-
ulus and shear modulus, respectively. It’s worth to note these kind of constitutive
equation, which is standard for an elastic beam in small displacements, completely
neglects the effects of strain Dij in directions i 6= j, i.e. the stress tensor components
depend only on the strain components in the same direction and the Poisson coef-
ficient ν doesn’t appear in the law. All of this is in agreement with the kinematic
hypothesis of lack of section deformability.

If an elastoplastic material law is to be considered, an incremental solution is
required to handle the path-dependent evolution laws of the internal variables. More-
over, to account for the spread of yielding, numerical integration over the cross-section
is also required. Nevertheless, plastic behavior in beams is often restricted to localized
areas (e.g. plastic hinge zones in frame structures), which means that the cross-section
integration only needs to be performed in those areas.

According to [53], since Reissner-Simo beam theory does not take into account the
cross-section in-plane deformation, the integration of the elastoplastic constitutive
equation requires the use of mixed stress-strain control, in which the out-of-plane
strains imposed to the cross-section are complemented with null in-plane stresses.
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Equilibrium equations (Balance equations)

• Strong form (differential)
i. Material: DIVP +B = ρ0 Ü and PF T = FP T

ii. Spatial: divσ + b = ρ ü and σ = σT

• Strong form (differential) in terms of resultants
i. Spatial: 

f ′ + f̄ = Aρü in Ω
m′ + x′

0 × f + m̄ = µ̇ in Ω
f = f̄Γ on ∂Ωσ ≡ Γσ
m = m̄Γ on ∂Ωσ ≡ Γσ
u = ūΓ on ∂Ωu ≡ Γu

– Force resultant of internal forces over the cross-section:

f(s, t) =

∫
S

T3(s, r) dx

– Torque resultant of internal forces over the cross-section:

m(s, t)
.
=

∫
S

r × T3(s, r) d

– External force resultant over the boundary:

f̄(s, t) =
2∑

Γ=1

∫
∂Ω0

TΓ ·NΓ dΓ +

∫
Ω0

B dx

– External moment resultant over the boundary:

m̄(s, t) =
2∑

Γ=1

∫
∂Ω0

r × (TΓ ·NΓ) dΓ +

∫
Ω0

r ×B dx

• Weak form (integral)
i. Material:∫

Ω0

P : δF dV −
∫

Ω0

B · δx dV −
∫
∂Ω0,σ

T̄N · δx dS +

+

∫
Ω

ρ0 Ü · δx dV = 0 ∀ δx ∈ δU

ii. Spatial:∫
Ω

σ : δe dv −
∫

Ω

b · δx dv −
∫
∂Ωσ

t̄n · δx ds+

+

∫
Ω

ρ ü · δx dv = 0 ∀ δu ∈ δU
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Finite Element Method
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Chapter 6

Spatial discretization: Finite
Element Method

Come forth into the light of things,
Let nature be your teacher.

W. Wordsworth

The main purpose of this part of the work is to present a Galerkin discretization
of the virtual work functional described in previous Chapter. To this end, a brief
introduction to the classical FEM spatial discretization is firstly made, along with an
extensive discussion devoted to the isoparametric Galerkin approximation. Hence, the
direct derivation of the finite element approximation of the out-of-balance forces is also
presented for dynamic problems, starting from the principle of virtual works. Finally,
a section devoted to the solution methods is included, providing a general overview of
the common approach for solving the non-linear system of algebraic equations which
gives rise form the discretization with FEM.

6.1 Finite element Galerkin spatial discretization

The description of the dynamics of a geometrically exact beam generates an ini-
tial boundary value problem (e.g. see (5.27)) whose weak form (see equation (5.31))
can be solved by several numerical approximation techniques, with the help of a
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proper constitutive equation. The displacement-based finite element incremental so-
lution procedure is often the only one capable of solving such a problem. Basically, a
finite element solution is advantageous since, if we select a discrete number of nodes
on the beam to compute the displacements (problem’s unknowns), the nonlinear 1

differential equations which govern the dynamics of problem turn into a nonlinear
algebraic system of equations, solvable applying a incremental/iterative numerical
approach. The attribute algebraic here means that this system contains a finite num-
ber of equations and unknowns. Physically the algebraic system represents equilibrium
of forces at the discrete level, more specifically, for discrete model coming from finite
element method, the equilibrium of nodal forces. These are collectively known as force
residual equations.

The manner in which the finite element method is treated within the context of
classical Galerkin approach is described hereafter.

6.1.1 Spatial discretization

Following the classical approach, integrals over a given domain which arise from
the application of finite element method can be regarded as a sum of integrals over a
set of subdomain called element. Accordingly, we let the continuous body subdivided
into Nel finite elements

Ω ≈ Ωh =

Nel⋃
e=1

Ωe (6.1)

where Ωh is the approximation to the domain created by the set of elements, Ωe is the
domain of a typical element, and Nel is the total number of elements. Overlapping of
finite elements is not allowed. The boundary of the region ∂Bh consist of curves or
areas ∂Ωe of the element Ωe such as (see Figure 6.1)

∂Ω ≈ ∂Ωh =

Nel⋃
e=1

∂Ωe (6.2)

Integrals may now be summed over each elements and written as

∫
Ω

(·) dΩ ≈
∫

Ωh

(·) dΩh =

Nel⋃
e=1

∫
Ωe

(·) dΩ (6.3)

In this way calculations are performed on the element basis, and the final solution is
assembled according to equation (6.3). The operator ∪ is chosen here instead of the

∑
symbol in order to denote that an assembly process takes place in which all element
contributions have not only to be added up, but also the kinematical compatibility
between the elements has to be fulfilled.

1The attribute nonlinear stands to recall the nonlinear nature of rotation manifold, which ”con-
taminates” also the way in which balance equations are established with reference to the deformed
configuration of beam. This effectively amounts to using a nonlinear theory.
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Figure 6.1: General discretization of domain Ω.

In the context of beam element, the domain [0, L] is divided into Nel = N − 1 subin-
tervals as

[0, L] =

Nel⋃
e=1

ILe
e with ILe

i ∩ I
Le
j = ∅, ∀i, j ∈ {1, . . . , Nel} (6.4)

where ILe
e ⊂ [0, Le] denotes a typical element with length Le > 0, and Nel is the total

number of elements.

6.1.2 Local parametrization of beam axes

Let consider a finite element discretization of the reference line of centroids C0(ξ) :
[0, Le] consisting of N nodal points with position vector Xn, where n = 1, 2, . . . , N .
For a given time instant t, the parametrization of C0 could be done with the mapping

ξ ∈ [0, L] 7−→X(ξ, t) =
N∑
i=1

Ni(ξ) X̂ i(t)

= Ni(ξ) X̂ i(t) (6.5)

where Einstein’s summation convention extending over nodes 1 to N was used. Here
Ni(ξ) denotes the standard global finite shape function, ξ is the natural coordinate,
whereas X̂ i is the cartesian coordinates of i−th node.

It should be emphasized that during the motion, nodes and elements are permanently
attached to the material particles with which they were initially associated. Conse-
quently, the subsequent motion is fully described in terms of the current position x(t)
of the nodal particles as

x(ξ, t) =
N∑
i=1

Ni(ξ) x̂i(t) (6.6)
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Let Nel be the total number of elements in the discretization, each of them possessing
ne nodes, and let ID(a, e) be the (ne×Nel) array that relates global and local element
node numbers according to the usual mapping

A = ID(a, e) for a = 1, . . . , ne and e = 1, . . . , Nel (6.7)

Denoting by N e
a(ξ) the ne element shape functions with ξ ∈ [0, Le], the global shape

functions are defined over each element by the relation

NA(ξ)|Ωe = N e
a(ξ) for A = ID(a, e) (6.8)

which ensures C0 continuity of the discretization. The element shape functions are
subjected to the usual completeness conditions

N e
a(ξb) = δba and

ne∑
i=1

N e
i (ξ) = 1 (6.9)

where ξb ∈ [0, Le], b = 1, . . . , ne are the isoparametric coordinates of the nodes within
the element.

6.1.3 Isoparametric Galerkin approximation

In this work we adopt an isoparametric interpolation by adopting the same shape
functions used to describe the element geometry and the displacement field, which
allows one to construct very easily any deformed configuration. Hence, in a pure
displacement finite element model, the generalized displacement field solution η =
(u,Ψ), which is regarded as the primary field variable in the problem, is interpolated
(approximated) within one finite element e = 1, . . . , Ne basing on the nodal quantities

ηexact ≈ ηe(ξ, t) = N (ξ) · η̂e(t) (6.10)

=
ne∑
i=1

Ni(ξ)η̂
e
i (t) (6.11)

= N i(ξ)η̂
e
i (t) (6.12)

where ξ denotes the independent variable in natural coordinate corresponding to the
beam arc-length parameter, t is a generic time instant, ne is still the number of nodes
of the element, η̂e is the vector of unknown element nodal values which collects the
vectors ûe and Ψ̂

e
of the nodal values of the independent variables (three translational

degrees of freedom {ûx, ûy, ûz} and three rotational degree of freedom {Ψ̂x, Ψ̂y, Ψ̂z}
for each node), and N is the interpolation matrix of element shape functions, with
Ni(ξ) the shape function associated to node i.

Equation (6.10) basically states how the independent model function is approximated
by a linear combination of the corresponding nodal values ηei (t) via the shape functions
Ni(ξ).
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Equation (6.10) can be spell out emphasizing the dependent variables ue and Ψe and
their isoparametric interpolation

Displacement filed: ue(ξ, t) =
ne∑
i=1

Ni(ξ)û
e
i (t) (6.13)

Rotation field: Ψe(ξ, t) =
ne∑
i=1

Ni(ξ)Ψ̂
e
i (t) (6.14)

The interpolation (6.14) for the total rotation field is clearly acceptable because the
nodal rotation vectors Ψ̂e

i belong to the same rotational vector space. Following the
same spatial discretization, the variation of generalized displacement field reads

δηe = N (ξ) δη̂e(t) −→

{
δue(ξ, t) =

∑ne

i=1Ni(ξ)δûei (t)

δΨe(ξ, t) =
∑ne

i=1Ni(ξ)δΨ̂
e

i (t)
(6.15)

In the finite element implementation of the presented beam model, we select the
simplest set of linear interpolation schemes: the element reference configuration is
approximated with an assembly of 2-node elements (ne = 2), and a standard local
element shape functions reads

N e
1 (ξ) = 1− ξ

Le
N e

2 (ξ) =
ξ

Le
ξ ∈ [0, Le] (6.16)

i.e. linear with respect to the element natural coordinate ξ. Note that the shape
function N e

1 (ξ) has the value 1 at node 1 and 0 at node 2; conversely, shape function
N e

2 (ξ) has the value 0 at node 1 and 1 at node 2 as depicted in Figure 6.2. It follows
from the fact that element displacement interpolations are based on physical node
values. Thereby, the interpolation formula (6.10) can be expressed as

ηe(ξ) = N e(ξ) · η̂e (6.17)

= N e
1(ξ)η̂e1 +N e

2(ξ)η̂e2 (6.18)

=
[
N e

1 N
e
2

] [η̂e1
η̂e2

]
(6.19)

An advantage of the developed formulation is that all interpolation operations can
be performed in the local element system, while the global response is constructed
by means of assemblage operations. This is done using a connectivity matrix which
relates the local nodal degrees-of-freedom with the global nodal degrees-of-freedom.

Computation of derivatives. To obtain strains, and associated variations,
the derivatives of the displacement field have to be computed with respect to the coor-
dinates of the initial or current configuration. Within an element Ωe for a formulation
with respect to the initial configuration by

∂ηe

∂η
=

ne∑
i=1

∂Ni(ξ)

∂ξ
η̂ei (6.20)

c© E. Da Lozzo



132 Spatial discretization: Finite Element Method

Figure 6.2: Two-node beam element with linear shape functions.

6.1.4 Uniformly reduced integration

Generally the computation of integrals for the finite element arrays is performed
using numerical integration (i.e. quadrature). It is known that exactly integrated stan-
dard Galerkin finite element models, like the one introduced, presents some difficulties
in integrations involving stress resultants. The source of these difficulties is well known
and can be traced back to an overconstrained approximation for the transverse shear
field. For this reason the phenomenon is called shear locking.

In the context of linear isoparametric interpolation function, in order to alleviate
locking problems, integrations along the coordinate ξ of the pure displacement weak
form are performed numerically by means of uniformly reduced numerical quadra-
ture, adopting only one Gauss point. This is a commonly used procedure in shear
deformable beam elements.

Although at first sight this seems a rather numerical trick, however, it can be justi-
fied by certain class of convergent mixed models 2 well established in literature and
successfully applied in practice.

6.2 FE approximation of the out-of-balance forces

The discrete approximation to the weak form of momentum balance gives rise
to the so-called force residual equation, or residual equation for short. Its explicit
derivation is presented below starting from the expressions of virtual works principle.

Internal force vector. The finite element approximation of the internal com-
ponent of the virtual work principle δWint(η), with η = (η1, . . . ,ηN)T = [(u1,Ψ1), . . . , (uN ,ΨN)]T

the vector containing nodal values of the configuration variables (u,Ψ)(e), could be
obtained starting to substitute the virtual strain (3.79) into the equation (5.46)

2Mixed finite element methods are characterized by simultaneous interpolation of displacement,
strains and stress fields.
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δWint =

∫ L

0

δεrTσr dS

=

∫ L

0

(S∆δη)Tσr dS (6.21)

and in turn, substituting equation (6.15) in its global form

δWint =

∫ L

0

δηT∆TSTσr dS

=

∫ L

0

(Nδη̂)T∆TSTσr dS

= δη̂T
∫ L

0

NT∆TSTσr dS (6.22)

where the stress vector σr is easily obtained by means of equation (5.73) is a linear
elastic constitutive law is adopted. Since the principle of virtual work is valid for any
virtual displacement field, the term δη̂ could be dropped giving rise the final form of
the internal force vector

f int =

∫ L

0

NT∆TSTσr dS

=
Ne∑
i=1

∫ Le

0

NT∆TSTσr dS

=
Ne∑
i=1

f
(e)
int,i (6.23)

where f
(e)
int denotes the internal force vector related to the typical element Ihe . From

a numerical standpoint, for a 2-node three-dimensional beam element vector f
(e)
int has

dimension 12 × 1, as 6 degrees of freedom are assumed at each node. The relative
integral is calculated by means of a reduced 1-node quadrature rule such as the
following

f
(e)
int =

∫ Le

0

NT∆TSTσr dS

= NT (G) ∆T (G)ST (G)σr(G)Le (6.24)

where all the quantities inside the integral are evaluated at the unique quadrature
point G.

External force vector. In the same way as for the internal force vector, the
finite element approximation of the external component of the virtual work principle,
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given in equation (5.58), once substituting equation (6.15) in its global form, reads

δWext =

∫ L

0

q̄r · δη dS + [q̂r · δη]L0

=

∫ L

0

q̄r · (Nδη̂) dS + [q̂r · (Nδη̂)]L0

= δη̂T
∫ L

0

NT q̄r dS + δη̂T
[
NT q̂r

]L
0

(6.25)

As before, since the principle of virtual work is valid for any virtual displacement
field, the term δη̂ could be dropped giving rise the final form of the external force
vector

f ext =

∫ L

0

NT q̄r dS +
[
NT q̂r

]L
0

=
Ne∑
i=1

∫ Le

0

NT q̄r dS +
[
NT q̂r

]Le

0

=
Ne∑
i=1

f
(e)
ext,i (6.26)

where f
(e)
ext denotes the external force vector related to the typical element Ihe . Con-

sistently to what done for the internal force vector, for a 2-node three-dimensional
beam element vector f

(e)
ext has dimension 12× 1, as 6 degrees of freedom are assumed

at each node.

Inertial force vector. The FE discretization of the inertial contribution to the
out of balance force vector can be calculated starting from equation (5.68) reported
for convenience below

δWinert =

∫ L

0

Ginert · δη dS (6.27)

The virtual generalized displacement vector δη can be substituted by equation (6.15)
in its global form, whereas variables ẍ0, Ψ̇, Ψ̈ which appear in the term Ginert can
be isoparametrically discretized as

ẍ0 = N i
ˆ̈xi (6.28)

Ψ̇ = N i
ˆ̇Ψi (6.29)

Ψ̈ = N i
ˆ̈Ψi (6.30)

because relation (6.12) holds also at the global level. Applying the same consideration
of above, substited equation (6.15), equation (6.27) becomes

δWinert =

∫ L

0

(Nδη̂)TGinert dS

= δη̂T
∫ L

0

NTGinert dS

(6.31)
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and finally, the inertial force vector reads

f inert =

∫ L

0

NTGinert dS

=
Ne∑
i=1

∫ Le

0

NTGinert dS

=
Ne∑
i=1

f
(e)
inert,i (6.32)

where term Ginert was not explicited for sake of simplicity.

Force residual equation. Substituting equations (6.23), (6.26) and (6.32)
into the expression (5.20) of the principle of virtual works, we obtain the compact
force residual equation

r(η(t)) = r[u(t),Ψ(t)] = f int − f ext + f inert = 0 (6.33)

where η is the generalized displacement vector, u is the displacement vector contain-
ing the degrees of freedom that characterize the configuration of the structures, Ψ
similarly denotes the total rotation vector and r is the residual vector that collects
the out-of-balance forces conjugated to u and Ψ. It is worth to note that all quantities
in equation (6.33) are time-dependent with parameter t.

An alternative version of equation (6.33) that displays more physical meaning, is
the force balance form

f int(u,Ψ) + f inert(u,Ψ) = f ext (6.34)

where f int denotes the configuration-dependent internal forces exerted by the struc-
ture, whereas f inert represents the time-dependent inertial forces generated by the
spatial movement of the structure, and f ext are the control-dependent external (or
applied) forces, which in general may also be configuration-dependent.
The two versions (6.33) and (6.34) are equivalent such that read if (6.33) is verified,
i.e. residual forces vector vanishes, the sum of the internal forces f int and inertial
forces f inert balance the applied forces f ext, i.e.

r = 0 =⇒ f int + f inert = f ext (6.35)

which can be iteratively solved by any numerical methods.
We remark that the residual equation derived above for nonlinear dynamical sys-

tems can be restricted to static problems simply by eliminating the inertial force
term.

6.3 Solution methods

In previous Chapters we have covered the governing equations of geometrically
nonlinear structural analysis, and in the last sections the discretization of those equa-
tions by finite element methods. The result is a set of parametrized nonlinear algebraic
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equations called residual force equations, which solution provides the equilibrium re-
sponse (static or dynamic) of the structure. Here we want to give some insight on the
solution methods suitable for digital computation.

Basically, all solution procedures of practical importance are strongly rooted in
the idea of ”advancing the solution” by continuation. The basic approach is to follow
the equilibrium response as the control state parameters vary by small amounts.
The process involves a hierarchical breakdown into stages, incremental steps and
iterative steps as depicted in Figure 6.3. The middle level, incrementation, is always
present, while staging may be missing if there is only one control parameter, and
finally iteration may be missing if there is no correction process.

Figure 6.3: Nasty hierarchy in nonlinear solution methods: stages, increments and itera-
tions.

Therefore, processing a complex nonlinear problem generally involves performing a
series of analysis stages. Multiple control parameters are not varied independently in
each stage, and may therefore be characterized by a single stage control parameter.
To advance the solution, the stage is broken down into incremental steps, or incre-
ments for short. Incremental steps are identified by the subscript n: for example, the
state vector after the n−th increment is ηn, and the state vector before any increment
(at stage start) is η0. Over each incremental step the state vector η undergoes finite
changes denoted by ∆ηn.

In nonlinear problems we are interesting in ”tracing the response”. For a typical
stage this reads to perform a sequence of incremental steps with control parameter
λ, to find the equilibrium states {ηn, λn} is sufficient number to provide the response
η = η(λ) of the structure. If the control parameter is associated with a loading
amplitude, the response path is known as the fundamental equilibrium path, and the
incremental procedure is called load control. The physical analogy would be a test
machine in which the operator increases the load to specific values. On the other
hand, if the analysis is concerned with values of loading parameter λ close to zero,
such as the case of buckling analysis, a more computationally efficient way to perform
the incremental procedure consists to use a displacement control stepping, where the
control parameter assumes now the role of governing displacement. This approach is
widely adopted when the structural behavior is not uniquely determined for a given
range of loading, e.g. in the case of snap-through response.

The purpose of the iteration level is to eliminate, or reduce, the so called drifting
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error, which plagues incremental step at the beginning. Iteration steps are identified
by the superscript k: for example {ηkn, λkn} may denote the solution after k−th itera-
tion of the n−th step, whereas {η0

n, λ
0
n} is the predicted solution before starting the

iteration process. Solutions accepted after each increment following completion of the
corrective process, are often of interest to users because they represent approxima-
tions to equilibrium states. They are therefore saved as they are computed. On the
other hand, intermediate results of iterative process are rarely of interest, unless one
is studying the convergence process.
The most popular class of iterative methods pertains to the Newton-Raphson method,
and its numerous variants. These are collectively called newton-like methods, and
only require access to the past converged solution. In the present work, only the
incremental procedure (load control) is implemented, while the whole iteration routine
is performed using the Matlab built in function fsolve. This choice seems to be efficient
and robust for computations and convenient for quick coding.

6.3.1 Implicit time-stepping schemes

In computational dynamics, besides computation of displacements and rotations,
one also needs to obtain the values of velocities and accelerations at the chosen instants
in the time interval of interest. The standard Newmark family algorithms for nonlinear
elastodynamics is used to that end. It is important to note that any method in this
family leads to one-step scheme.

Newmark scheme for finite rotation. For a nonlinear dynamics problem
with translational degrees of freedom only (e.g. the present case with all rotations
constrained), the standard implementation of the Newmark algorithm can be used.
Namely, velocities and accelerations at time tn+1 are computed as

u̇n+1 =
γ

β∆t
(un+1 − un) +

β − γ
β

u̇n +
β − 0.5γ

β
ün (6.36)

ün+1 =
1

β∆t2
(un+1 − un)− 1

β∆t
u̇n −

0.5− β
β

ün (6.37)

where ∆t = tn+1−tn is a typical time step, and β ∈ [0, 1/2], γ ∈ [0, 1] are the classical
(scalar) Newmark parameters. Replacing these approximations into the residual forces
equation (8.1), we obtain a system of nonlinear equations in incremental displacements
as

r(u(t+ 1)) = 0 (6.38)

Typical choice for β = 1/4 and γ = 1/2 leads to a second-order accuracy uncondi-
tionally stable scheme. The corresponding algorithm is yet referred to as trapezoidal
rule, or average acceleration method, the reason for which becomes clear analyzing
the alternative form (called acceleration form of the Newmark approximations)

u(n+ 1) = ∆tu̇(n) + ∆t2[(0.5− β)ü(n) + βü(n+ 1)] (6.39)

u̇(n+ 1) = u̇(n) + ∆t[(1− γ)ü(n) + γü(n+ 1)] (6.40)
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The just described standard implementation of the Newmark scheme can directly
be used for problems dealing with finite rotations, only if the total rotation vector
is chosen for parametrizing the finite rotations (see e.g. [34]). In that case, from the
known values of rotation vector and its time derivative at time tn, Ψn = Ψ(tn),
Ψ̇n = Ψ̇(tn), Ψ̈n = Ψ̈(tn), via Newmark approximations we obtain

Ψ̇n+1 =
γ

β∆t
(Ψn+1 −Ψn) +

β − γ
β

Ψ̇n +
β − 0.5γ

β
Ψ̈n (6.41)

Ψ̈n+1 =
1

β∆t2
(Ψn+1 −Ψn)− 1

β∆t
Ψ̇n −

0.5− β
β

Ψ̈n (6.42)

Hence, we can condense the previous two time-stepping algorithm into the following
using the generalized displacement vector η

η̇n+1 =
γ

β∆t
(ηn+1 − ηn) +

β − γ
β

η̇n +
β − 0.5γ

β
η̈n (6.43)

η̈n+1 =
1

β∆t2
(ηn+1 − ηn)− 1

β∆t
η̇n −

0.5− β
β

η̈n (6.44)

with the residual forces equations which reads

r(η(t+ 1)) = r(u(t+ 1),Ψ(t+ 1)) = 0 (6.45)

Unfortunately, there are three serious drawbacks to this simple application of
the Newmark scheme to finite rotations. Firstly, a fundamental deficiency of this
parametrization inherits the ill-conditioning problem which arises for rotations in the
neighborhood of 2π and its multiples, as already established occuring in statics. In
second place, even though Newmark’s scheme has been widely applied to the study
of the dynamic response of structures, Makinen [35] states that it only constitutes an
approximated version of the corrected formula, which are given in his work for the
spatial and material descriptions. The main reasons are that material descriptions of
the angular velocity and angular acceleration vectors involved in the updating proce-
dures belong to different tangent spaces at different times. Lastly, Newmark’s family of
implicit schemes fails to preserve certain conservation laws of the motion, such as the
total energy and momentum of nonlinear Hamiltonian systems, introducing numerical
(fictitious) dissipation (see e.g. [15]). A further improvement in the development of
robust time-stepping schemes is provided by the energy-momentum conserving algo-
rithms (see [54], [3] and [48]), successfully applied to the nonlinear dynamic problems
of beams, shells and rigid bodies. As pointed out in [44], for solving structures which
dissipate most of the energy throughout inelastic mechanisms (as likely the case for
seismic resistant structures), no great advantages are obtained by means of using so-
phisticated formulations for time-stepping algorithms, and hence the approximated
version of the Newmark algorithm on rotational manifold (as originally proposed in
[59]) seems to be accurate enough for practical purposes.
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Chapter 7

Numerical results

Any fool can write code that a
computer can understand. Good
programmers write code that
humans can understand.

M. Fowler

In this chapter we consider a series of numerical simulations that illustrate the
performance of the displacement-based formulation described in the previous Chapter.
In the first two examples attention is focused on the plane problem, i.e. where the
rotation field is easily described by means of a single rotation angle. Even though
the three-dimensional rotations are not yet fully involved, these examples permit to
test the capability of reproducing large displacements in both static and dynamic
case. The last example, on the other hand, is concerned with fully three-dimensional
dynamic deformation. Throughout all the examples discussed below, the analysis is
limited to the linear elastic constitutive model defined in (5.74).

7.1 Analysis of plane problems

7.1.1 Pure bending of a cantilever beam subject to end mo-
ment

A cantilevered straight beam subjected to a concentrated free end moment M is
usually the first problem tackle to test the accuracy of the described element under
extreme inextensional bending and large deformation (see Figure 7.1). This problem
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has been analyzed by a number of researchers including Bathe and Bolourchi (1979)
[6], Simo and Vu-Quoc (1986) [57] among others. The finite element mesh here used
consists of 12 elements with linear interpolation shape functions Ni and a one-point
(uniformly reduced) quadrature is employed to integrate the internal force vector. The
selected properties of the cantilever are: length L = 10 mm, axial stiffness EA = 104,
shear stiffness GA1 = GA2 = 104, bending stiffness EJ1 = EJ2 = 102 and torsional
stiffness GJT = 102, which corresponds to a circular cross-section of the beam with
radius R = 0.2 mm, and the beam material properties with Young’s modulus E =
79577 MPa and Poisson’s ratio ν = 0.

Figure 7.1: Pure bending of a cantilever beam subjected to end moment.

It is straightforward to see that for a prismatic elastic beam subjected to a tip
moment, the only non-trivial deformation component is the flexural one on the plane
Y Z. Moreover, according to the classical Euler formula, this bending deformation is
constant along the beam. Thus follow that the exact solution of the deformed shape
must be a part of a circular curve, and following Figure 7.2, the analytic solution for
the free-end displacement components can be obtained as 1

θx =
ML

EJ
(7.1)

uz = L− r sin θ = L− L

θ
sin θ = L− L

θ
tan

θ

2
(1 + cos θ) (7.2)

uy = r − r cos θ = r(1− cos θ) =
L

θ

1− cos θ

sin θ
sin θ =

L

θ
tan

θ

2
sin θ (7.3)

where we have taken advantage of expressing angles in radiants in such a way that
simply L = r · θrad holds.

In the study, the bending moment applied at the end is increased from 0 to 20π,
which forces the beam to deform into a full closed circle such as depicted in Figure 7.3.
In the same picture is shown the shape of the deflected beam through solution incre-
ments.

Figure 7.4 presents a comparisons between the analytic solution and that obtained
with finite element (12 elements) in terms of load-displacement curve at tip. Curves
coming from the classical solution of Euler can be traced with reasonable accuracy up
to the deformation corresponding to a full circle, and no significant discrepancies are

1We recall the trigonometric identity

tan
θ

2
=

sin θ

1 + cos θ
=

1− cos θ

sin θ
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Figure 7.2: Roll up of a beam: analytical displacement filed.

Figure 7.3: Shape of the beam throughout the deflection sequence.
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distinguishable through displacement components. It is worthwhile to mention that
the same equilibrium path is obtained even with just 3 elements.

Figure 7.4: Cantilever beam subjected to end moment: end node beam displacement in Z
direction versus end applied moment MX (top left); end node beam displace-
ment in Y direction versus end applied moment MX (top right); end node
beam rotation RX versus end applied moment MX (bottom).

7.1.2 Cantilever beam subject to triangular end force pulse

This example aims at studying the nonlinear transient dynamics of a narrow rect-
angular cantilever beam subjected to a transverse concentrated force applied at the
free end. This force is assumed time-variant according to the pattern shown in Fig-
ure 7.5.
The finite element uniform mesh consists of 4 elements with linear interpolation func-
tions Ni, with one-point quadrature scheme for computing internal forces, whereas
3 Gauss points numerical quadrature is adopted for calculating inertial forces. The
selected properties of the cantilever are: length L = 2400, section width and section
height, respectively b = 11.64 and h = 100, material density, Young modulus and
shear modulus respectively ρ = 10−3, E = 210 · 103 and G = 80 · 103. The computa-
tions are carried out using Newmark scheme with parameters β = 1/2 and γ = 1/2
and with the constant time step ∆t = 0.1s. The cross-sectional constitutive law is
based on the gross shear areas, and the Saint-Venant torsional constant.

In Figure 7.6 are depicted the time histories of the loading force as well as dis-
placement, velocity and acceleration of the tip. We may note how undamped free
oscillations take place after a short transient interval, in which external loading is
applied to the structure.
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Figure 7.5: Cantilever beam under vertical load.

Figure 7.6: Cantilever beam under triangular end force pulse: the tip loading, displace-
ment, velocity and acceleration time history.
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Figure 7.7 focus on the interval [0 2]sec of the time history. We may note the
nervous behavior of acceleration plot, mostly induced by the inertial effects of the
left-end-side of the beam. Same ”swing” effects are present in the displacement plot
of Figure 7.6, basically related to the asyncronous free oscillations of parts of the
beams which influence each other. This phenomenon, perfectly compatible with real-
ity, becomes more evident for more flexible beams as expected.

Figure 7.7: Cantilever beam under triangular end force pulse: detail of interval [0 2]sec.

7.2 Analysis of spatial problems

The complete verification of the finite rotation theory developed is possible just
for problems in 3-D space. The example presented here exhibit an overall good per-
formance in the dynamical case.

7.2.1 L-shape cantilever beam under triangular end force
pulse

The right-angle cantilever beam depicted in Figure 7.8 is dynamically loaded by
an out-of-plane concentrated force Fx = 50N at the elbow. The shape and duration
of the applied load is shown in the same figure. The total duration of the analysis is
tu = 18 s, which includes the period of time when the load is being applied and the
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following undamped free vibration of the system. The computations are carried out
using Newmark scheme with parameters β = 1/4 and γ = 1/2, whereas the constant
time step is assumed equal to ∆t = 0.1 s. The mechanical properties of the cantilever
are: arm length L = 10, translational stiffness EA = GA∗1 = GA∗2 = 106, rotational
stiffness EJ1 = EJ2 = GJt = 103, mass density per unit length Aρ = 1, and inertial
tensor Jρ = diag[10 10 20].

Figure 7.8: L-shape cantilever beam: perspective view. Geometry and loading data.

In Figure 7.9 and the following Figure 7.10 are depicted the time histories of
the loading force as well as displacement, velocity and acceleration of the tip and
elbow. We may note how undamped free oscillations take place after a short transient
interval, in which external loading is applied to the structure. It is interesting to
note in Figure 7.11 that the motion of the system involves large displacements with
magnitude of the same order as the dimensions of the initial geometry.
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Figure 7.9: Right-angle cantilever beam subject to out-of-plane triangular end force pulse:
loading, displacement, velocity and acceleration time history at the elbow
point.

Figure 7.10: Right-angle cantilever beam subject to out-of-plane triangular end force
pulse: time history of elbow loading; displacement, velocity and acceleration
time histories at the tip point.
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Figure 7.11: Right-angle cantilever beam subject to out-of-plane triangular end force
pulse: tip displacement time history in the X − Y plane.

c© E. Da Lozzo





Chapter 8

Conclusions and further research

Everything that is really great and
inspiring is created by the
individual who can labor in
freedom.

A. Einstein

In this chapter conclusions about the results obtained in the formulation and
the numerical implementation of a beam model able to consider the fully geometric
nonlinearity are discussed. Last section is dedicated to the statement of new line of
research related to the different topics covered in this thesis.

8.1 Conclusions

In this section we summarize the results achieved.

(I) Theoretical objectives
(I.1) In Chapter 2 a thorough theoretical study of finite rotation has been ex-

posed. Special care was reserved to consolidate the concepts of differen-
tiable manifold and its specialization or the rotation group, as well as the
description of manifold tangent space and its utility in the contest of rota-
tions.

(I.2) A detailed (though not exhaustive) introduction on the possible parametriza-
tion of the rotation manifold is delivered, emphasizing the Euler-Rodrigues
vector parametrization. In addition, a configurational approach for describ-
ing large rotations in three-dimensional space is given, and finally an entire
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section was dedicated to derivatives (both spatial and time) of rotation
tensor.

(I.3) In Chapter 3 the continuum based theory of beams capable of undergoing
arbitrarily large displacements and rotations under the Reissner-Simo hy-
pothesis has been presented. In the present work an initially straight and
unstressed beam is considered as the reference configuration. A detailed
description of the kinematic assumptions is carried out in the framework
of the configurational description of the mechanics, along with the math-
ematical expression of the beam kinematics.

(I.4) From the expression of the deformation gradient tensor the explicit forms
of the translational and rotational strain measure acting on each mate-
rial point of the cross-section are derived, both in material and spatial
coordinates.

(I.5) The linearization of the kinematical quantities necessary for expressing the
principle of virtual work, is carried out basing on the concept of Gateaux
directional derivative.

(I.6) In Chapter 4 the equations of motion are deduced from the local form of
the linear and angular balance momentum and integrating over the beam’s
volume. An appropriated (weak) form for the numerical implementations
is obtained for the nonlinear functional corresponding to virtual work prin-
ciple. A discussion about the deduction of reduced constitutive relations
considering hyperlastic materials was fully covered.

(II) Numerical objectives
(II.1) Chapter 6 describes the spatial discretization used in the Galerkin finite

element approximation of the virtual work equation. The resulting FE
approach yields a system of nonlinear algebraic equations well suited for the
application of an iterative solution method. The developed displacement-
based finite element is based on isoparametric interpolations of both the
displacement and total rotation field.

(II.2) In Chapter 6 the time discretization of the residual force equation is per-
formed according to the Newmark’s method.

(II.3-4) The resulting displacement-based FE model is implemented using Matlab.
The numerical validation of the presented formulation, in the static and
dynamic cases, is performed throughout a set of examples considering the
classical linear elastic constitutive laws. In the plots reported it is possible
to appreciate a good agreement with results existing in literature.

8.2 Further lines of research

Several lines of research opens from the results of the present work. A list of
possible directions are discussed in the following:

(i) Finite deformation models with enhanced kinematical assumptions. Several works
have been devoted to the development of richer kinematics assumptions incorpo-
rated in geometrically exact beam models. See e.g. [64] and [18] for the inclusion
of warping phenomena in elastic materials, [24] for anisotropic materials, [55],
[25] and [26] for the case of plasticity with warping, among others. A possible
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contribution in further works can be given by the extension of the reviewed
works for including more refined kinematics in a consistent mechanical frame-
work.

(ii) Improvement of constitutive law. The basic equations of the geometrically ex-
act beam theory here derived, contain no assumptions about the magnitude of
deformations (even though initial assumptions about the kinematics are made),
which could be arbitrarily large. Instead, limitations are introduced when us-
ing a linear elastic constitutive law. Hence, future efforts could be directed
towards the deduction of 1D elastic constitutive relations from the 3D material
and geometric properties, which permits to better conjugate the exactness of
kinematics. Improvements are seeded to solve specific problems, e.g. multi-layer
beams, strength-degradation materials, and so on.

(iii) The extension of the present result to shell elements. Another type of structural
element widely applied in several areas of engineering, and also in earthquake
engineering, is the shell element. Geometrically exact models for shells (see
e.g. [11], [60], [61], [62] for the general theory; [10], [12], [63] for the case of
variable thickness; the inclusion of inelasticity can be reviewed in [65]; a shell’s
formulation using drilling degrees of freedom can be consulted in [29], [30], [66];
the development of time-stepping schemes in [13], [14], [67], among a really large
list of works) share with the present beam model the fact that both formulations
produce a nonlinear configuration manifold involving the rotation manifold (or
the two-sphere in the case of shells). Particularly, the so called shell formulation
with drilling rotations has the same number of degrees of freedom as the beam
model and, therefore, are well suited to be combined in a computer code able to
simulate the behavior of one and two dimensional structural elements. A typical
examples of such structures are the shear wall buildings and web stiffeners in
steel bridges among many others. An interesting possibility is given by the
fact of extending the formulation for composite materials to shell elements,
and combine them with beams for studying structural problems. This extension
could be useful even for introducing the effects of local failures (such as e.g. FRP
delamination) in the global mechanical response of composite layered structures.
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Appendix A

Mathematical recall

There is no formula that can
deliver all truth, all harmony, all
simplicity.

J. Barrow

In this brief appendix we give some mathematical recall that are essential for a
plenty comprehension of the theoretical derivations obtained along the chapters.

Some properties of vector operations. The following properties of cross and
scalar product are often used. Given vectors a, b, c ∈ R3 and scalars α, β ∈ R

• cross product between parallel vectors: a× (αa) = 0;

• cross product anticommutativity: a× b = −b× a;

• mixed product identities: a · (b× c) = c · (a× b) = b · (c× a);

• double cross product identity: a× (b× c) = (a · c)b− (a · b)c;
• tensor product definition: (a⊗ b)c = a(b · c) = (b · c)a
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Some properties of tensor operations.

• In general the dot product of second-order tensors is not commutative

AB 6= BA and Au 6= uA (A.1)

• The transpose of a sum is the sum of the transposes

(αA+ βB)T = αAT + βBT (A.2)

• The transpose of a product is the product of the transposes in the opposite
order

(AB)T = BTAT (A.3)

• The inverse of a product is the product of the inverses in the opposite order

(AB)−1 = B−1A−1 (A.4)

• The transpose of a tensor product is the tensor product of the vectors in the
opposite order

(u⊗ v)T = v ⊗ u (A.5)

• The associative property over tensor product is not valid

A(u⊗ v) = (Au)⊗ v (A.6)

• The property of double contraction holds as

A : (u⊗ v) = (Av) · u (A.7)

• Given a rotation tensor Λ ∈ SO(3), the invariance of scalar product holds:

a · b = Λa ·Λb (A.8)

• Given a rotation tensor Λ ∈ SO(3), the distributivity of cross product 1 with
respect to product with Λ holds

Λ(a× b) = Λa×Λb (A.9)

• The Lie algebra operating on the axial vector Ψ and its skew-symmetric tensor
Ψ̃ ∈ so(3) can be identified with the vector product × on R3 by the formula

Ψ̃h = Ψ× h ∀h ∈ R3 (A.10)

• Given axial vectors Ψ,h ∈ R3 and their skew-symmetric tensors Ψ̃, h̃ ∈ so(3),
according to (A.10), the following relations holds for them

Ψ̃h = Ψ× h = −h×Ψ = −h̃Ψ = h̃
T
Ψ (A.11)

1In general the cross product obeys to this identity: (Aa) × (Ab) = (detA)A−T (a × b). If the
tensor A is characterized by AAT = I and detA = +1, equation (A.9) holds as consequence.
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• Given axial vectors A,B,h ∈ R3 and their skew-symmetric tensors Ã, B̃ ∈
so(3), according to (A.10) and using the double cross product identity for vec-
tors, the following relations holds

ÃB̃h = Ã(B × h) = A× (B × h) = (A · h)B − (A ·B)h (A.12)

• The Lie brackets for a given set of two skew-symmetric tensors Ψ̃, W̃ ∈ so(3)
and their axial vectors respectively Ψ,W ∈ (R)3 holds

[Ψ̃W̃ − W̃ Ψ̃]h = (Ψ×W )× h ∀h ∈ R3 (A.13)

• The generalized Lie brackets reads

(ÃB̃ − B̃Ã)ÃB = (Ãb)× (ÃB) = 0 (A.14)

such as

ÃB̃ÃB = B̃ÃÃB (A.15)

• Given a skew tensor Ψ̃ and its axial vector Ψ, the following identity holds

Ψ̃
2
h = Ψ̃(Ψ̃h) = [Ψ⊗Ψ−Ψ2I]h ∀h ∈ R3 (A.16)

where Ψ = ||Ψ|| =
√

Ψ ·Ψ.

• Given three arbitrary tensor A, B and C, the following property holds

A : (BC) = (BTA) : C = (ACT ) : B (A.17)

• Given an arbitrary tensor A and a vector u, the following property holds

div(ATu) = A : gradu+ u · divB (A.18)

• Given an arbitrary tensor A and a symmetric tensor S, the following property
holds

S : A = S : sym[A] (A.19)

Fréchet derivative. Let assume H1 and H2 two two Hilbert spaces equipped
with a norm || · ||, and let F a functional F : H1 → H2 defined on an open set
E ⊂ H1. Such functional is Fréchet differentiable at a point x ∈ H1 in the direction
u if exists a linear and limited functional δF(x) : H1 → H2 such that

∀ε > 0, ∃ δ > 0 : ||F(x+ u)−F(x)− δF(x) · u||Y ≤ ε||u||H1

∀u ∈ H1 with ||u||H1 ≤ δ

One refers to δF(x) · u as the Fréchet (strong) derivative of the functional F at x
in the direction u.

c© E. Da Lozzo



156 Mathematical recall

Gateaux derivative. Given the functional F : H1 → H2 continuously differen-
tiable, one defines the Gateaux (weak) derivative of F at a point x in the direction
of vector u as the following limits

DF(x,u) = D[F(x)] · u , lim
t→0

F(x+ tu)−F(x)

t
=

d

dt
F(x, tu)

∣∣∣∣
t=0

(A.20)

with the scalar parameter t ∈ R used as limiting parameter in the derivative. It’s
worth to note that this definition generalizes the notion of the directional derivative
of functions in Euclidean space. We recall that if a functional admits strong (Fréchet)
derivative δF(x) · u, it coincides with weak (Gateaux) derivative DF(x) · u.

Variation operators. The variation operator δ is defined as the special case of
Fréchet differential. Let introduce the concept with an example. Assume the func-
tional F and being the fixed parameter (time) t = t0. The variation operator can be
expressed as

δF(t0,x,v) = DxF(t0,x,v) · δx+DvF(t0,x,v) · δv (A.21)

where x is place field, δx is a virtual displacement field, v is a velocity field, and δv is
a virtual velocity field. Moreover, Dx, Dv are Fréchet partial derivatives with respect
to displacement and velocity, respectively.
The variation operator δ depends linearly on the virtual displacement and the virtual
velocity. Note a minor notational difference between the virtual quantity δ and vari-
ation operators δ. That is to distinguish the geometrical nature of virtual quantity,
and the operational meaning of variation. In general, the variation of ”something”
and the virtual ”something” are not equal, e.g. a virtual work may exists although
there does not exist a work function at all, and neither the work variation.

Generally, the variation operator and the time derivative operator do not commute.
In fact, let consider the constraint equation ẋ + tẏ = 0, where t represents time
variable. Its variation is δẋ + tδẏ = 0. On the other hand, the virtual displacement
of the constraint equation is δx+ tδy = 0⇐⇒ δx+ tδy = 0, whose time derivative
is respectively

dδx

dt
+

dδy

dt
+ δy = 0 (A.22)

This is clearly different from δẋ + tδẏ = 0, which is the variation of the original
constraint equation (see [36]).
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Appendix B

A family of trigonometric functions

Make everything as simple as
possible, but not simpler.

A. Einstein

In order to alleviate the notation of Λ(Ψ) and T (Ψ) and their derivative quan-
tities, it is useful to introduce a family of scalar quantities involving trigonometric
functions for the Euler parameterization, which stem from a single power series ex-
pansion (see [53]). In this way, a more clear and rational presentation of the whole
procedure is achieved. Let introduce the trigonometric functions

a0(Ψ) = cos Ψ

a1(Ψ) =
sin Ψ

Ψ

a2(Ψ) =
1− cos Ψ

Ψ2
=

1− a0(Ψ)

Ψ2

a3(Ψ) =
Ψ− sin Ψ

Ψ3
=

1− a1(Ψ)

Ψ2

where Ψ = ||Ψ||. With this notation in hand, it results very useful to give the lin-
earization of trigonometric functions ai(Ψ) with respect to δΨ, which formally is
written as

δ(ai(Ψ)) =
dai(Ψ)

dΨ
δΨ (B.1)
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with no matter of ambiguity since vector Ψ belongs to a linear space. Now, observing
that by definition Ψ2 = Ψ ·Ψ, linearizing both right-hand and left-hand sides we get

2ΨδΨ = Ψ · δΨ + δΨ ·Ψ −→ δΨ =
Ψ · δΨ

Ψ
(B.2)

which substituted into (B.1) leads to

δ(ai(Ψ)) = bi(Ψ)(Ψ · δΨ)

bi(Ψ) =
1

Ψ

dai(Ψ)

dΨ

Each function bi(Ψ) is given explicitly by

b0(Ψ) = −sin Ψ

Ψ

b1(Ψ) =
Ψ cos Ψ− sin Ψ

Ψ3

b2(Ψ) =
Ψ sin Ψ− 2 + 2 cos Ψ

Ψ4
=
a1 − 2a2

Ψ

b3(Ψ) =
3 sin Ψ− 2Ψ−Ψ cos Ψ

Ψ5
=
a2 − 3a3

Ψ2

in a fully analogous way to what done above, ci(Ψ) functions can be defined as

δ(bi(Ψ)) = ci(Ψ)(Ψ · δΨ)

ci(Ψ) =
1

Ψ

dbi(Ψ)

dΨ

and are explicitly given by

c0(Ψ) =
sin Ψ−Ψ cos Ψ

Ψ3

c1(Ψ) =
3 sin Ψ−Ψ2 sin Ψ− 3Ψ cos Ψ

Ψ5

c2(Ψ) =
8− 8 cos Ψ− 5Ψ sin Ψ + Ψ2 cos Ψ

Ψ6

c3(Ψ) =
8Ψ + 7Ψ cos Ψ + Ψ2 sin Ψ− 15 sin Ψ

Ψ7

An extensive treatment of this subject can be found in [53].
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Appendix C

Compound rotation about fixed
axis

‘Per me si va ne la città dolente,
per me si va ne l’etterno dolore,
per me si va tra la perduta gente.
Giustizia mosse il mio alto fattore;
fecemi la divina podestate,
la somma sap̈ıenza e ’l primo amore.
Dinanzi a me non fuor cose create
se non etterne, e io etterno duro.
Lasciate ogni speranza, voi
ch’intrate’.

D. Alighieri, Inferno – Canto
III

Here we provide a demonstration (see e.g. [1]) of the updated formula for rota-
tion field parametrized according Rodrigues (see (2.65)), useful to characterize the
sequential application of multiple rotations in Cayley-Rodrigues parametrization.

Let a compound rotation consisting of two consecutive individual rotations, indicate
with subscript (1) and (2), and consider the rotation of a rigid body motion as depicted

in Figure C.1. Noting that M is the midpoint of
−−→
PP1 = p∆ we have

−−→
AM =

p+ p1

2
→ p+ p1 = 2

−−→
AM (C.1)

where p∆ is the incremental position vector, defined according to the additional for-
mula

p+ p∆ = p1 → p1 − p = p∆ (C.2)

Since
−−→
CM is perpendicular to

−−→
PP1, we have

PM =
1

2
p∆ = CM tan θ/2 (C.3)
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Figure C.1: On the vectorial-geometrical proof of p1 − p = ω × (p + p1) or p1 − p =
R[p+ p1].

Furthermore, we observe in Figure C.1 that p∆ stands contemporaneously normal on

ω and 2
−−→
AM = p + p1 and is hence concurrent with ω × (p + p1). Noting (C.3) and

the angle α between ω and
−−→
AM , its magnitude is

|ω × (p+ p1)| = sinα · 2 tan
θ

2
· 2AM

=
CM

AM
· 2 tan

θ

2
· 2AM

= 2CM · 2 tan
θ

2
= |p∆| (C.4)

Thus we obtain the simple relation

2p∆ = ω × (p+ p1) = 2(p1 − p) (C.5)

Bearing in mind the definition of R (see (2.70)), equation (C.5) can also be rewritten
in the more convenient matrix form

2p1 − p = R [p+ p1] (C.6)

The reader should note again the vectorial equivalence of the operators ω × p and
R× p (see also (2.71). In the subsequent analysis we also require the relation

ωT · p1 = ωT · p (C.7)
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which follows immediately from the observation that the angles enclosed by ω, p and
ω, p1 are equal and that furthermore |p1| = |p|.

We are now in the position to examine a compound rotation exerting over two
parameter vectors ω1, ω and assume first that the axis are fixed in space. Applying
first a rotation ω1, equation (C.6) becomes

2(p1 − p) = R1 [p+ p1] (C.8)

The subsequent rotation ω2 transports p1 to p2 for which we have

2(p2 − p1) = R2 [p1 + p2] (C.9)

Being our aim to establish a single compound rotation vector ωI and its associated
matrix RI , which transfers the vector p in one go to p2. Following (C.5) and (C.6)
the necessary condition reads

2(p2 − p) = ωrI × [p2 + p] or 2(p2 − p) = Rr
I [p2 + p] (C.10)

where the superscript ”r” refers to axis fixed in space. We adopt in the analysis the
more convenient matrix notation and obtain by addition of (C.8) and (C.9)

2(p2 − p) = R1[p+ p1] +R2[p1 + p2]

adding and subtracting R1p2 and R2p, it may be rearranged into

2(p2 − p) = [R1 +R2][p2 + p]−R1[p2 − p1] +R2[p1 − p]

Using now (C.8) and (C.9) in the last two terms we obtain

2(p2 − p) = [R1 +R2][p2 + p]−R1
R2

2
[p2 + p1] +R2

R1

2
[p1 + p]

=

[
R1 +R2 − [R1

R2

2
−R2

R1

2
]

]
[p2 + p]

−R1
R2

2
[p1 − p]−R2

R1

2
[p2 − p1] (C.11)

By means of equivalence (2.71) and recalling the double cross product identity, for
the last two terms we can observe

−R1
R2

2
(p1 − p) = −R1

[ω2

2
× (p1 − p)

]
= −ω1 ×

[ω2

2
× (p1 − p)

]
= −[ωT1 (p1 − p)]

ω2

2
+
(
ωT1 ·

ω2

2

)
(p1 − p)

=
(
ωT1 ·

ω2

2

)
(p1 − p) (C.12)

−R2
R1

2
(p2 − p1) = −R2

[ω1

2
× (p2 − p1)

]
= −ω2 ×

[ω1

2
× (p2 − p1)

]
= −[ωT2 (p2 − p1)]

ω1

2
+
(
ωT2 ·

ω1

2

)
(p2 − p1)

=

(
ω1

T

2
· ω2

)
(p2 − p1) (C.13)
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where we used the result (C.7) as

ωT1 · p1 = ωT2 · p and ωT2 · p2 = ωT2 · p1 (C.14)

Substituting (C.12) and (C.13) into (C.11) we find

2(p2 − p) =

[
R1 +R2 −

(
R1
R2

2
−R2

R1

2

)]
[p2 + p] +

1

2
(ωT1 · ω2)(p2 − p)

=
4

4− ωT1 · ω2

[
R1 +R2 −

(
R1
R2

2
−R2

R1

2

)]
[p2 + p] (C.15)

Comparison with the second equation in (C.10) yields the desired expression for the
equivalent auxiliary matrix

Rr
I =

4

4− ωT1 · ω2

[
R1 +R2 −

(
R1
R2

2
−R2

R1

2

)]
(C.16)

Finally, remembering the equivalence of R and [ω×] operations and their extension
which turns in [R1

R2

2
− R2

R1

2
]p = 1

2
(ω1 × ω2) × p we also deduce the compound

rotation vector ωrI in the form

ωrI =
4

4− ωT1 · ω2

[
ω1 + ω2 −

1

2
ω1 × ω2

]
(C.17)

which using the cross product anticommutativity becomes

ωrI =
4

4− ωT1 · ω2

[
ω1 + ω2 +

1

2
ω2 × ω1

]
(C.18)
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Appendix D

Spin-like vectors by total rotation
vector

A mathematician is a machine for
turning coffee into theorems.

P. Erdös

In this appendix we report the entire algebraic deduction of the angular velocity
vector ω expressed in terms of total rotation vector time derivative, and by analogy
the expression of curvature vector in terms of total rotation vector spatial derivative.

Angular velocity vectors by total rotation vector. The spatial skew-
symmetric tensor ω̃ associated with the arbitrary rotational motion Λ is defined by
ω̃ = Λ̇ΛT , with its axial vector ω = axial[ω̃] being called the angular velocity vector
or spin vector. Here we want to relate spin-like variables with the appropriate variation
of the rotation vector.

In order to alleviate the notation, here we exploit the families of trigonometric func-
tions introduced in Appendix B (according e.g. to what presented in [53]). Therefore
(2.47) easily becomes

Λ = I + a1(Ψ)Ψ̃ + a2(Ψ)Ψ̃
2

(D.1)

ΛT = I − a1(Ψ)Ψ̃ + a2(Ψ)Ψ̃
2

(D.2)
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whereas its time derivative

Λ̇ = (a1Ψ̃)· + (a2Ψ̃
2
)·

= ȧ1Ψ̃ + a1
˙̃Ψ + ȧ2Ψ̃

2
+ a2( ˙̃ΨΨ̃ + Ψ̃ ˙̃Ψ) (D.3)

where, for sake of simplicity, we neglect the dependence on rotation of trigonometric
functions. Hence, by substitution, the material angular velocity tensor takes form

ω̃ = Λ̇ ·ΛT

=
[
ȧ1Ψ̃ + a1

˙̃Ψ + ȧ2Ψ̃
2

+ a2

(
˙̃ΨΨ̃ + Ψ̃ ˙̃Ψ

)]
· (I − a1Ψ̃ + a2Ψ̃

2
)

= ȧ1Ψ̃ + a1
˙̃Ψ + ȧ2Ψ̃

2
+ a2

(
˙̃ΨΨ̃ + Ψ̃ ˙̃Ψ

)
+

− ȧ1a1Ψ̃
2 − a2

1
˙̃ΨΨ̃− a1ȧ2Ψ̃

3 − a1a2

(
˙̃ΨΨ̃

2
+ Ψ̃ ˙̃ΨΨ̃

)
+

+ ȧ1a2Ψ̃
3

+ a1a2
˙̃ΨΨ̃

2
+ ȧ2a2Ψ̃

4
+ a2

2

(
˙̃ΨΨ̃

3
+ Ψ̃ ˙̃ΨΨ̃

2
)

+

= ȧ1Ψ̃− ȧ1a1Ψ̃
2

+ ȧ1a2Ψ̃
3

+ a1
˙̃Ψ− a2

1
˙̃ΨΨ̃ + a1a2

˙̃ΨΨ̃
2
+

+ ȧ2Ψ̃
2 − a1ȧ2Ψ̃

3
+ ȧ2a2Ψ̃

4
+ a2

(
˙̃ΨΨ̃ + Ψ̃ ˙̃Ψ

)
+

− a1a2

(
˙̃ΨΨ̃ + Ψ̃ ˙̃Ψ

)
Ψ̃ + a2

2

(
˙̃ΨΨ̃ + Ψ̃ ˙̃Ψ

)
Ψ̃

2
(D.4)

Noting that

−a1a2

(
˙̃ΨΨ̃ + Ψ̃ ˙̃Ψ

)
Ψ̃ = −a1a2

˙̃ΨΨ̃
2 − a1a2Ψ̃

˙̃ΨΨ̃ (D.5)

a2
2

(
˙̃ΨΨ̃ + Ψ̃ ˙̃Ψ

)
Ψ̃

2
= a2

2
˙̃ΨΨ̃

3
+ a2

2Ψ̃
˙̃ΨΨ̃

2
(D.6)

and recalling properties (2.60)

Ψ̃
3

= −ψ2 Ψ̃

Ψ̃
4

= −ψ2 Ψ̃
2

(D.7)

one obtain

ω̃ = ȧ1Ψ̃− ȧ1a1Ψ̃
2 −Ψ2ȧ1a1Ψ̃+

+ a1
˙̃Ψ− a2

1
˙̃ΨΨ̃ + a1a2

˙̃ΨΨ̃
2
+

+ ȧ2Ψ̃
2

+ Ψ2a1ȧ2Ψ̃−Ψ2a2ȧ2Ψ̃
2
+

+ a2( ˙̃ΨΨ̃ + Ψ̃ ˙̃Ψ)− a1a2
˙̃ΨΨ̃

2 − a1a2Ψ̃
˙̃ΨΨ̃+

−Ψ2a2
2

˙̃ΨΨ̃ + a2
2Ψ̃

˙̃ΨΨ̃
2

(D.8)

Putting out some term one get

ω̃ = a1Ψ̃ + a2Ψ̃
˙̃Ψ + (a2 − a2

1 −Ψ2a2
2) ˙̃ΨΨ̃+

+ (ȧ1 − a1a2Ψ̃
˙̃Ψ + Ψ2a1ȧ2 −Ψ2ȧ1a2)Ψ̃+

+ (ȧ2 − ȧ1a1 −Ψ2ȧ2a2 + a2
2Ψ̃

˙̃Ψ)Ψ̃
2

(D.9)
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Now using property (2.20) for two skew-symmetric tensors Ã and B̃ with their relative
axial vectors a and b, such that Ã B̃ = b⊗ a− (a · b)I, we recognize the following
identity

(Ψ̃ ˙̃Ψ)Ψ̃ =
[
Ψ̇⊗Ψ− (Ψ · Ψ̇)I

]
Ψ̃

= (Ψ̇⊗Ψ)Ψ̃− (Ψ̇ · Ψ̇)Ψ̃

= Ψ̇⊗ (Ψ̃
T
Ψ)− (ΨΨ̇)Ψ̃

= −Ψ̇⊗ (Ψ̃Ψ)− (ΨΨ̇)Ψ̃

= −Ψ̇⊗ (Ψ×Ψ)− (ΨΨ̇)Ψ̃

= −(ΨΨ̇)Ψ̃ (D.10)

where the property of cross product between parallel vectors is used. Sticking equation
(D.10) into equation (D.9) we get

ω̃ = a1Ψ̃ + a2Ψ̃
˙̃Ψ + (a2 − a2

1 −Ψ2a2
2) ˙̃ΨΨ̃+

+
[
ȧ1 + a1a2(Ψ · Ψ̇) + Ψ2a1ȧ2 −Ψ2ȧ1a2

]
Ψ̃+

+
[
ȧ2 − ȧ1a1 −Ψ2ȧ2a2 − a2

2(Ψ · Ψ̇)
]

Ψ̃
2

(D.11)

After some manipulations, the following identities are proved

a2 − a2
1 −Ψ2a2

2 =
1− cos Ψ

Ψ2
− sin2 Ψ

Ψ2
−Ψ2 (1− cos Ψ)2

Ψ4

=
Ψ2(1− cos Ψ)−Ψ2 sin2 Ψ−Ψ2(1− cos Ψ)2

Ψ4

=
(1− cos Ψ)− sin2 Ψ− (1− cos Ψ)2

Ψ2

=
1− cos Ψ− sin2 Ψ− 1− cos Ψ2 + 2 cos Ψ

Ψ2

=
−1− cos Ψ + 2 cos Ψ

Ψ2

=
−1 + cos Ψ

Ψ2

= −1− cos Ψ

Ψ2
= −a2 (D.12)

Further useful identity comes from

Ψ = ||Ψ|| =
√

Ψ ·Ψ ⇒ Ψ̇ =
2 Ψ · Ψ̇

2
√

Ψ ·Ψ
=

Ψ

Ψ
· Ψ̇ (D.13)
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such that the following identities holds

ȧ1+ a1a2(Ψ · Ψ̇) + Ψ2a1ȧ2 −Ψ2ȧ1a2 =

=
cos Ψ− a1

Ψ
Ψ̇ +

sin Ψ

Ψ

1− cos Ψ

Ψ2
ΨΨ̇ + Ψ2 sin Ψ

Ψ

a1 − 2a2

Ψ
Ψ̇+

−Ψ2 cos Ψ− a1

Ψ
Ψ̇

1− cos Ψ

Ψ2

=
Ψ̇

Ψ
[cos Ψ− a1 + a1(1− cos Ψ) + a1Ψ sin Ψ− 2a2Ψ sin Ψ

− (cos Ψ− a1)(1− cos Ψ)]

=
Ψ̇

Ψ
[cos Ψ− a1 + a1 − a1 cos Ψ + sin2 Ψ− 2

1− cos Ψ

Ψ2
Ψ sin Ψ+

− (cos Ψ− cos2 Ψ− a1 + a1 cos Ψ)]

=
Ψ̇

Ψ
[a1 − a1 cos Ψ + sin2 Ψ− 2a2 + 2a1 cos Ψ + cos2 Ψ− a1 cos Ψ]

=
Ψ̇

Ψ
(−a1 + 1)

= Ψ̇Ψ
1− a1

Ψ2

= Ψ̇ ·Ψ a3 (D.14)

and also

ȧ2− ȧ1a1 −Ψ2ȧ2a2 − a2
2(Ψ · Ψ̇) =

= ȧ2 − ȧ1a1 −Ψ2ȧ2a2 − a2
2(Ψ · Ψ̇)

=
a1 − 2a2

Ψ
Ψ̇− a1

cos Ψ− a1

Ψ
Ψ̇−Ψ2a1 − 2a2

Ψ
Ψ̇a2 − a2

2ΨΨ̇

=
a1 − 2a2 − a1 cos Ψ + a2

1 −Ψ2a1a2 + 2a2
2Ψ2 − a2

2Ψ2

Ψ
Ψ̇

=

[
sin Ψ

Ψ
− 2

1− cos Ψ

Ψ2
− sin Ψ

Ψ
cos Ψ +

sin2 Ψ

Ψ2
+

−Ψ2 sin Ψ

Ψ

1− cos Ψ

Ψ2
+ 2

(1− cos Ψ)2

Ψ2
− (1− cos Ψ)2

Ψ2

]
Ψ̇

Ψ

=
Ψ sin Ψ− 2 + 2 cos Ψ−Ψ sin Ψ cos Ψ + sin2 Ψ−Ψ sin Ψ(1− cos Ψ) + (1− cos Ψ)2

Ψ2

Ψ̇

Ψ
= 0 (D.15)

and finally equation (D.12) simplifies in

ω̃ = a1
˙̃Ψ + a2(Ψ̃ ˙̃Ψ− ˙̃ΨΨ̃) + a3(Ψ̇ ·Ψ)Ψ̃ (D.16)

Now, recalling that ω = axial[ω̃] equation (D.16) turns into

ω = axial
[
a1

˙̃Ψ + a2(Ψ̃ ˙̃Ψ− ˙̃ΨΨ̃) + a3(Ψ̇ ·Ψ)Ψ̃
]

(D.17)
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where focusing on the second term, the parallel use of Lie algebra (2.14) and Lie
brackets (2.20) to the generic skew-symmetric tensors Ã, B̃, C̃ and their relative
axial vectors a, b, c provides the following correspondences

Lie algebra: C̃ h = c× h
Lie brackets: (ÃB̃ − B̃Ã)h = (a× b)× h
C̃ = ÃB̃ − B̃Ã ←→ c = a× b = Ã b (D.18)

such that

C̃ = Ψ̃ ˙̃Ψ− ˙̃ΨΨ̃ ←→ c = Ψ× Ψ̇ = Ψ̃ Ψ̇ (D.19)

In addition, bearing in mind tensor product definition (a ⊗ b)c = (b ·C)a, and the

identity Ψ ⊗ Ψ = Ψ̃
2

+ (Ψ · Ψ)I (see (2.22)), after some manipulations equation
(D.17) becomes

ω = axial[ω̃] = a1Ψ̇ + a2Ψ̃Ψ̇ + a3(Ψ̇ ·Ψ)Ψ

= a1Ψ̇ + a2Ψ̃Ψ̇ + a3(Ψ⊗Ψ)Ψ̇

= a1Ψ̇ + a2Ψ̃Ψ̇ + a3

[
Ψ̃

2
+ (Ψ ·Ψ) I

]
Ψ̇

=
{
a1 + a2Ψ̃ + a3

[
Ψ̃

2
+ (Ψ ·Ψ)I

]}
Ψ̇

=
{

[a1 + a3(Ψ ·Ψ)] I + a2Ψ̃ + a3Ψ̃
2
}

Ψ̇

=
[
I + a2Ψ̃ + a3Ψ̃

2
]

Ψ̇ (D.20)

and therefore the final expression of angular velocity vector ω is

ω = T Ψ̇ (D.21)

where is setting

T = I + a2Ψ̃ + a3Ψ̃
2

(D.22)

Curvature vector by total rotation vector. The spatial skew-symmetric
tensor κ̃ associated with the arbitrary rotational motion Λ is defined by κ̃ = Λ′ΛT ,
with its axial vector κ = axial [κ̃] being called the curvature vector. Since no concep-
tual differences appear in this relation with respect to what presented above, one can
proof that this spin-like variable can be related to the variation of rotation vector via
an expression analogous to equation (D.21)

κ = T Ψ′ (D.23)

where T is still given by equation (D.22).

Derivative of transformation tensor. It’s useful to note that by direct
differentiation of equation (D.22) one get the the following spatial derivative

T ′ = a′2Ψ̃ + a2Ψ̃
′ + a′3Ψ̃

2
+ a3(Ψ̃

2
)′

= b2(Ψ ·Ψ′)Ψ̃ + a2Ψ̃
′ + b3(Ψ ·Ψ′)Ψ̃

2
+ a3(Ψ̃′Ψ̃ + Ψ̃Ψ̃′) (D.24)
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Using the expansions in Taylor’s series of the trigonometric coefficient up to the second
order and making the necessary simplifications, we can easily calculate the limit value
of the tensor T ′ as

lim
Ψ→0

T ′(Ψ,Ψ′) = −1

2
Ψ̃
′

(D.25)

Analogous expression could be find for the time derivative of the same tensor

Ṫ = ȧ2Ψ̃ + a2
˙̃Ψ + ȧ3Ψ̃

2
+ a3( ˙̃Ψ)2

= b2(Ψ · Ψ̇)Ψ̃ + a2
˙̃Ψ + b3(Ψ · Ψ̇)Ψ̃

2
+ a3( ˙̃ΨΨ̃ + Ψ̃ ˙̃Ψ) (D.26)

and as mentioned before, using Taylor’s series we can compute the limit

lim
Ψ→0

Ṫ (Ψ, Ψ̇) = −1

2
˙̃Ψ (D.27)
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Appendix E

Alternative expression of angular
momentum

I investigated the contours of an
island, but what I discovered were
the boundaries of the ocean.

L. Wittgenstein

In this appendix we recall some concepts derived from mechanics which regard the
derivation of angular momentum and its time derivative in terms of inertial moment
and spin vector ω.

Kinematics of rigid body. We introduce a reference frame of right-ended,
rectangular coordinate axis, at a fixed origin O with orthonormal basis X1, X2, X3,
and a moving frame attached to a rigid body with origin G and orthonormal basis
vector e1, e2, e3. The generic point P of the body is defined by the vector

−→
OP =

−→
OG+

−→
GP =

−→
OG+ ξ1e1 + ξ2e2 + ξ3e3 (E.1)

where, in general, during the body motion the positions of point P and Q and the
moving reference system are function of time, whereas are time-independent the spa-
tial coordinates ξ1, ξ2, ξ3, of point P. Taking the time derivative on both sides we
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170 Alternative expression of angular momentum

get

vP = vG + ξ1
de1

dt
+ ξ2

de2

dt
+ ξ3

de3

dt
(E.2)

and expressing the derivative of spatial vector basis by means of Poisson formula we
finally obtain

vP = vG + ω × (ξ1e1 + ξ2e2 + ξ3e3)

= vG + ω ×
−→
GP (E.3)

which is called fundamental equation of rigid motion. It represents the relation, at
time t, between the velocities of two arbitrary points, P and G, of a moving rigid
body.

Angular momentum of a rigid body. Let assume O a given point of the
rigid body B assumed as a pole for the calculation of the angular momentum resul-
tant. Assuming ρ the body density in the reference configuration. Recalling the (E.3)
we have

LO =

∫
Ω

ρ
−→
OP × vP dV

=

∫
Ω

ρ
−→
OP × (vO + ω ×

−→
OP ) dV

=

∫
Ω

ρ
−→
OP × vO dV +

∫
Ω

ρ
−→
OP × (ω ×

−→
OP )dV

= m
−→
OG× vO + IO ω (E.4)

where we used the relation

−→
OP × (ω ×

−→
OP ) = (

−→
OP )2ω − (

−→
OP · ω) ·

−→
OP

= ((
−→
OP )2I −

−→
OP ⊗

−→
OP ) · ω (E.5)

and defining the inertia tensor I0 relative to the point O as

IO
.
=

∫
Ω

ρ ((
−→
OP )2I −

−→
OP ⊗

−→
OP ) dV (E.6)

For a rigid body, the balance equation of angular momentum with respect to a
spatial pole O assumes an interesting form. By means of (E.4), the time derivative
of angular momentum becomes

dL

dt
=

d

dt
(IO · ω) +m

d
−→
OG

dt
× vO +m

−→
OG× dvO

dt

=
d

dt
(IO · ω) +m (vG − vO)× vO +m

−→
OG× aO (E.7)

To determine the value of first contribution d(IO ω)/dt one can observe that inertial
operator is time-dependent with respect to inertial absolute reference system, there-
fore it is convenient express the absolute time derivative relative to the moving frame
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such that the inertial operator do not depend on time. Noting that vO × vO = 0 we
have

dL

dt
=
dr(IO ω)

dt
+ ω × IO ω +mvG × vO +m

−→
OG× aO

= IO ω̇ + ω × IO ω +mvG × vO +m
−→
OG× aO (E.8)

which easily reduces if we choose a fixed pole O (case aO = 0) and the pole coincide
with the center of mass G (case vG = vO), obtaining

dL

dt
= IO ω̇ + ω × IO ω

= IO α+ ω ×L (E.9)

where α = dω/dt is the angular acceleration.
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