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Objectives

Principal objective:

The principal objective is to develop robust numerical methods to
compute the statistical response of mechanical systems with
uncertain state parameters and uncertain loading



Objectives

Specific objectives:

I Determination of the efficiency versus the numerical trade off
between different methods, and with this in mind to elaborate
a guideline to choose a numerical method taking into
consideration the different dimensions of the problem.

I Develop different Covariance functions that represent in a
realistical way the stochastic properties of the sate parameters
of different mechanical systems, as well as the external
loading parameters.

I Given the numerical method to be used, to develop
straightforward reliability methods to compute probability
failures of any type of systems modeled by differential
equations.



Probability spaces and measures

I trial

I outcome, ωi

I sample space, Ω = {ω1, . . . , ωN}

Remark
It must be pointed out that since ωi are just elements that belong
to the sample space, ωi ∈ Ω, then ωi ∩ ωj = ∅ ∀i 6= j , where ∅ is
the empty set.

There is also the possibility of obtaining more than 1 outcome for
each trial that is performed, so it is necessary to define
mathematically this possilbility in order to group all of these
outcomes into a single set.



Definition
An event A is defined as a subset of the sample space, A ⊂ Ω.

An event is allowed to have more than one statement, but in any
case it always must satisfy that the statements must be connected
at all times with logical statements such as and, or, etc.

Example

Let us observe the random phenomena of coin flipping. There can
either be 2 outcomes, heads (H) or tails (T ). So with no loss of
generality, we can define ω1 as H and ω2 as T, then Ω = {H,T},
which is the sample space.



Example

For a given year, the world cup will only host 3 teams; Italia, Brazil
and France. The sample space of the possible champion is
Ω = {I ,B,F}. The sample space for the finalists will be
Ω = {IB,BF , IF}. If the sample space of the first and second
place of the world cup is needed, the sample space increases its
cardinality and will become Ω = {IB,BI ,BF ,FB, IF ,FI}
Since there is many options to assemble an event A with a given
sample space Ω, the it is interesting to define a set that contains
all of the possible events.



Definition
A power set of Ω is defined as a set that contains as elements all
possible subsets of Ω, and it can be written formally as P(Ω). Any
subset of P(Ω) is called a family of sets of Ω.

Example

If Ω = {A,B}, then P(Ω) = {{}, {A}, {B}, {A,B}}
So basically, power set can be viewed as an operation over a
certain set, and it operates in such a way that it creates a set that
contains all the possible combinations of the original set.



Definition
A σ − algebra of a given set Ω is a collection Σ of subsets of Ω,

that is Ai ⊂ Ω, such that Σ =
N⋃
i

Ai , that is closed under

complementation and satisfies that it’s members are countable
unions. More formally, a subset Σ ⊂ P(Ω) is a σ − algebra with
the following properties:

1. Σ is nonempty, such that ∅,Ω ∈ Σ

2. If A ∈ Σ, then AC ∈ Σ is also satisfied, where AC is the
complement of A, that can also be viewed as Σ A.

3. The union of countably many sets in Σ is also in Σ, as well as
the intersection.

∞⋃
j=1

Aj ,

∞⋂
j=1

Aj ∈ Σ



Having in mind the general concepts of power set and σ − algebra,
it is possible to return to the primary interest of measuring certain
events.

Definition
Given any set Ω of that represents a sample space, and a
σ − algebra Σ on Ω, then P is a probability measure if:

1. P is non negative

2. P(∅) = 0

3. P(Ω) = 1

Now what rests to do is to define for certain events of interest, the
probability measure, taking into account the sample space.



Definition
The probability of an event A ∈ Ω, such that A ∈ Σ is defined as:

P(A) =
∑
ω∈A

P({ω}) (1)

where P is a measure that needs to be defined a priori taking into
account the previous definition and Σ is any of the possible
σ − algebra that can be formed from the original sample space Ω.



When it comes to quantify the variability of random phenomena a
priori of the realization of the experiment, then this type of
variability is usually referred to as aleatory variability, which has
to be treated separately from epistemic variability. Epistemic
variability is the attempt to quantify the variability of a trial that
has already taken place, but the results of the trial are unknown.
In other words it can be viewed as variability due to the lack of
information or knowledge of the system in study.

Example

A very simply yet enlightening example is to roll die in a cup.
Before the die are rolled, it would be the case of aleatory
uncertainty, but once the die are rolled, the uncertainty turns into
epistemic, which can be reduced if you are a cheat, taking little
peeks as to gain more knowledge of your hand.



Example

A real engineering example to understand epistemic uncertainty
can be the mechanical properties of a 1D soil column. If there is
no type of prospection, then nothing can be said about the
mechanical properties and as the amount of prospection methods
is increased, then it can be said that the uncertainty is reduced.

Figure: Possible cases of compression and shear wave velocities along a
1D soil profile using the dispersion curve aken from the f-k transform of
the surface waves and performing an inversion.

Because of the inherent noise in the measuring of the dynamical
properties of the 1D soil column, the performed inversion is
satisfied by many possible solutions, with each possible solution
having a specific misfit value.



Continuous random variables and random vectors

It is interesting to construct mappings from the sample space Ω to
R, given a probability space (Ω,Σ,P), because probability spaces
are not directly observable as opposed to the quantifiable values of
an experiment.

Definition
A random variable η, is a function that maps a sample space into
the real numbers and it can be written as follows:

η : Ω→ R (2)



Since the random variable already has a assigned probability
measure P, then it is rather easy to compute the probability of
certain simple events, and from there, to define elementary
concepts to understand better the behavior of generical random
variables.

Definition
The cumulative distribution function (CDF) Fη(z), is defined as
the probability of the event in which the random variable is less or
equal than a certain threshold that is in the real numbers, this can
be read more formally as:

Fη(z) = P({ω : η(ω) ≤ z}) = P(η ≤ z) (3)

with z ∈ R and it can be easily checked that this function increases
monotonically in the interval of [0, 1] as variable z increases.



From the CDF, another function can be defined, which resembles a
”weight” function or mass function, that physically tells where is
the value of the random variable more likely to be before the trial
is performed.

Definition
The probability density function function (PDF) is defined as
the derivative of the CDF

pη(z) = F ′η(z) (4)

provided that Fη is differentiable at least 1 time.

It can be noted that the PDF is non-negative, and that∫
R pη(z)dz = 1, which comes from the previous definition of the P

measure.



The expected value of a random variable is:

E [η] = µ1 =

∫
R

zdFη(z) =

∫
R

zpη(z)dz (5)

and a generalization of the moments is given by:

µp = E [ηp], p = 1, 2, . . . (6)

the first centered moment, also known as the variance is:

V [η] = µ′2 = E [(η − E [η])2] (7)

and the higher centered moments will be:

µ′p = E [(η − E [η])p], p = 1, 2, . . . (8)

finally, the standard deviation is defined as follows:

σ =
√

V [η] (9)

with these properties, it is not possible to posses the CDF or PDF
of a random variable, but it is possible to have an approximation of
the latter functions



Example

A collection of some of the most important distributions is
presented.

I Gaussian → η ∼ N(µ, σ2)

pη(z) = ϕ(z) =
1√

2πσ2
e−

(z−µ)2

2σ2 (10)

E [η] = µ and V [η] = σ2

I Uniform → η ∼ U(a, b)

pη(z) =

{
1

b−a for a ≤ z ≤ b

0 otherwise
(11)

I Exponential → η ∼ Exp(λ)

pη(z) =

{
λe−λz for 0 ≤ z ≤ ∞

0 otherwise
(12)



Figure: This figure corresponds to Gaussian distribution.



Functions of random variables

Clearly, a function g : R→ R that has as an argument a random
variable η such that ζ = g(η), then ζ is also a random variable.
The CDF is given by:

Fζ = P(g(η) ≤ y) =

∫
R

dFζ(y) =

∫
R

I[η : g(η)≤y ]dFη(z) (13)

where IA is the indicator function of a set A ⊂ R such that:

IA =

{
1 if η ∈ A
0 otherwise

(14)

from this, the expected value and the variance are respectively:

E [g(η)] =
∫

R g(z)dFη(z)

V [g(η)] =
∫

R (g(z)− E [g(η)])2 dFη(z)

(15)



Random vectors

A random vector of dimension N, is function
η : [Ω1 × Ω2 . . .× ΩN ]→ RN is defined as a collection of N real
valued random variables, such that:

η(ω) = [η1(ω1), . . . , ηN(ωN)]T (16)

Each component of the random vector has a sample space that
can be different from each other and to this generic random
vector, it is possible to define the joint cumulative distribution
function (JCDF) as

Fη(z) = P(η1 ≤ z1, . . . , ηN ≤ zN) (17)



The joint probability distribution function (JPDF) naturally
becomes:

pη(z) =
∂NFη(z)

∂z1 · · · ∂zN
(18)

provided that Fη is differentiable. From the previous definitions, it
is possible to define the expected value of a random vector.

E [η] =

∫
RN

ηdFη(z) ∈ RN (19)

A useful concept in multivariate analysis is the covariance matrix,
which is simply:

C [η] = E [(η − E [η])(η − E [η])T ] ∈ RN×N (20)

this matrix can give information related to two random variables
that belong to a random vector. A particular case of this matrix is
the variance of each random variable belonging to the random
vector, which is basically the diagonal of the covariance matrix.

V [η] = diag(C [η]) ∈ RN (21)



In multivariate analysis it is very interesting to obtain the CDF or
PDF of any component of the random vector, this is referred to as
the marginal distribution function Fηi : R→ R, which can be
computed simply as:

Fηi = Fη(∞, . . . ,∞, zi ,∞, . . . ,∞) (22)

It is quite clear that pηi = F ′ηi
provided that Fηi is differentiable.

The conditional probability density function,
ηj = [η1, . . . , ηi−1, ηi+1, . . . , ηN ] can be computed as:

pηj|ηi
(zj|zi ) =

pη(z)

pηi (zi )
(23)



Remark
The random variables η1, . . . , ηN are said to be independent if the
distribution Fη can be expressed as:

Fη(z1, . . . , zN) =
N∏

i=1

Fηi (zi ) (24)

and also the PDF

pη(z1, . . . , zN) =
N∏

i=1

pηi (zi ) (25)



Change of Variables
Any random vector η, with a distribution function Fη(z) can be
expressed as a deterministic function of N independent random
variables ζi , i = 1, 2, . . . ,N, each with absolutely continuous
distribution function Fζ(y) i.e. there exists G : RN → RN such that
η = G (ζ1, . . . , ζN) A possible way to construct such a mapping G
is by using the Rosenblatt transformation [Rosenblatt(1952)]:

Fζ1(y1) = Fη1(z1)
Fζ2(y2) = Fη2(z2|η1 = z1)
Fζ3(y3) = Fη3(z3|η1 = z1, η2 = z2)
...
FζN

(yN) = FηN
(zN |η1 = z1, . . . , ηN−1 = zN−1)

(26)

From equation (80), if the right side is multiplied, as well as the
left side and then equated, yields the following result:

N∏
i=1

Fζi
(yi ) =

N∏
i=1

FηN
(zN |η1 = z1, . . . , ηi−1 = zi−1) (27)

Thus it is possible to show that ζ has independent components.



Diagonalization of the covariance matrix
The covariance matrix C [η] is a symmetric and positive
semi-definite. Hence, it has real eigenvalues λ1, . . . , λN ≥ 0 and a
complete set of orthonormal eigenvectors [v1, . . . , vN ] :

C [η] = VDV T =
N∑

i=1

λi vi (vi )
T (28)

with D diagonal and V orthogonal. Assuming that all the
eigenvalues λi are strictly positive, then it is possible to define the
random vector ζ = [ζ1, . . . , ζN ]

ζ = D−
1
2 V T (η − E [η]) =⇒ ζi =

1√
λi

vi · (η − E [η]) (29)

It is easy to show that the random variables ζ i have zero mean,
unit variance and are uncorrelated, but this does not imply that
they are independent. A more compact notation of equation (29)

=⇒ η = E [η] + VDζ (30)



Stochastic processes and random fields

A Random process or also known as Random fields emerged as
a necessety to extend the concept of random variables, because in
certain trials, the outcome is not a number, but a function of one
or more parameters that posses a certain level of continuity. With
this in mind, the definition of a random process is a family of
random variables and it can be stated in a more formal way as

Definition
Let D ⊂ Rd be a domain. A random field κ(x, ω) : D × Ω −→ R
is a collection of infinite random variables κ(x, ω), for each point
x ∈ D.



Remark
The sample space is considered the same for each random variable
assigned to a point in the physical domain, simply for convenience,
but in reality, this can clearly change. Another point that can be
made out is that the domain is not reserved only to a space
domain, it can be any type of domain, such as a time domain, in
which the this particular random field is usually denoted as a
stochastic process, κ(t, ω).



It is clearly quite cumbersome to characterize the infinite collection
of random variables that belong to the physical space D, that is
why a discrete approach might be more interesting. A random field
can be viewed finite dimensional distribution of order n,with n
points in the physical domain D x1, . . . , xn or in simple words as a
random vector where each component of the vector is associated
to a random variable that belongs to the random field. From (17)
the JCDF is simply

Fn(z1, . . . , zn; x1, . . . , xn) = P(κ(x1, ω1) ≤ z1, . . . , κ(xn, ωn) ≤ zn)
(31)

The random process is fully characterized by the distribution
functions of any order n = 1, 2, . . . and any set of points
x1, . . . , xn, provided that they satisfy some consistency and
symmetry conditions.



The covariance function for two points x and y that belong to D is:

C [κ(x), κ(y)] = E [(κ(x, ω)−E [κ(x)])(κ(y, ω)−E [κ(y)])] = Cκκ(x, y)
(32)

from (116), the variance is simply:

V [κ(x)] = C [κ(x), κ(x)] (33)

Definition
κ(x, ω) is said to be a second order random field if

V [κ(x)] <∞ (34)

for all x ∈ D



Example

In this example, a realization of a random field is performed, given
a correlation field function, and considering that the random field
is gaussian.

Figure: This figure corresponds to the realization of a gaussian random
field that possessed a certain correlation field in a two dimensional field.



Stationary stochastic processes

Stationary stochastic models of the gaussian type was first
introduced by [Housner(1947)]. Since then, they have been used
by a great number of authors [Bycroft(1960)], [Tajimi(1960)],
[Housner & Jennings(1964)] and [Brady(1966)]). Even though
these models do not represent accurately what is really happening,
they are a good first approximation to estimate the probabilistic
response of linear structural systems given that the used frequency
content is the predominant of the time history [Tajimi(1960)].



Non stationary separable stochastic processes
Since stationary stochastic processes present limitations, some
authors introduced gaussian non stationary stochastic processes,
among the ones that can be mentioned are [Bolotin(1960)],
[Bogdanoff & Kosin(1961)],
[Goldberg et al.(1964)Goldberg, Bogdanoff & Sharpe],
[Amin & Ang(1966)], [Shinozuka & Sato(1967)],
[Jennings & Housner(1968)] and [Iyengar & Iyengar(1969)]. It
must be noted that these models are just a empirical way to
capture the behavior of strong ground motion, based on the
observation of real accelerograms. These models are made with a
stationary stochastic process, that provides the frequency content,
modulated by a deterministic function that multiplies the
stationary process to give the amplitude evolution in time.

f (t) = ψ(t)s(t) (35)

where ψ(t) is the modulating function that provides the variations
of amplitude in time, and s(t) is the gaussian stochastic process
that provides the frequency content.



Some of the basic properties of these processes are as follow:

E [s(t)] = µs(t) = 0 (36)

E [s2(t)] = σ2
s (t) = 1 (37)

The latter yields a non stationary stochastic process f (t), which in
this particular case, is seen as the ground acceleration. Using
equations (36) and (37), the mean of the process can be
computed for any moment in time.

E [f (t)] = E [ψ(t)s(t)] = ψ(t)µs(t) = 0 (38)



The mean square of the process, that is equal to the variance for
each moment is given by:

E [f 2(t)] = E [ψ2(t)s2(t)] = ψ2(t)σ2
s (t) = ψ2(t) (39)

This is so because σ2
x (t) = E [x2(t)]− µ2

x (t) for any process x(t)
and last but not least, the generalized autocorrelation function can
be computed as:

Rff (t1, t2) = E [f (t1)f (t2)] (40)

and rearranging the terms yields:

Rff (t1, t2) = ψ(t1)ψ(t2)Rss(t1, t2) (41)

where Rss(t1, t2) is the autocorrelation function of the stationary
process s(t).



Taking the generalized autocorrelation function to the frequency
domain, by means of the bivariate Fourier transform, the following
can be obtained:

Φff (ω1, ω2) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
ψ(t1)ψ(t2)Rss(t1, t2)e−i(ω2t2−ω1t1)dt1dt2

(42)
and using the Wiener-Kchinchine relationship, the following can be
written:

Φff (ω1, ω2) =

∫ +∞

−∞
Φss(ω)Ψ(ω2 − ω)Ψ∗(ω1 − ω)dω (43)

where

Ψ(ω) =
1

2π

∫ +∞

−∞
ψ(t)e−iωtdt (44)

Φff (ω1, ω2), determined by equation (43) is denoted as the
generalized power spectral density function.



Modulation functions

Many modulation functions have been proposed in the literature,
and the way to adjust their parameters is also solved differently,
depending on the availability and type of the seismological data.
[Bolotin(1984)] and [Shinozuka(1970)], proposed a function that is
composed by the difference of two exponential functions.

ψ(t) =
√
β(e−αt − e−γt) (45)

where α < γ. This function is very inconvenient due to the
difficulty to assign the parameters α, β and γ, given any type of
seismological data, specifically free field accelerograms.



A model function that is adjustable to accelerograms is gamma
function, proposed by [Saragoni & Hart(1974)]. This method
supposes that the propagation medium can be modeled as a series
of linear oscillators acting in cascade, where each oscillator
properties are normally distributed. This model also supposes that
the source can be represented by a white noise excitation. Using all
of these assumptions, it is possible to arrive to the following
expression for the mean square of the accelerations:

E [f 2(t)] = ψ2(t) = βe−αttγ (46)

where α, β and γ are constants that can be determined by different
ways.



Taking into consideration this model,
[Arias et al.(1976)Arias, Holzapfel & Saragoni], developed a similar
modulating function as the latter, but forcing the condition that
the function reaches zero once the earthquake duration time is
over (in the free field). This is why the beta function was selected.

ψ(t) =

{ √
β
(

t
tf

)α
2
(

1− t
tf

) γ
2

si t ≤ tf

0 si t > tf

(47)

Given an accelerogram, the parameters of the gamma and beta
method can easily be obtained using the temporal moments of the
record.

m2k =

∫ tf

0
tk f 2(t)dt =

∫ tf

0
ψ2(t)tk dt (48)

for k = 0, 1, . . . , n.



Simulation of separable processes
A separable stochastic process can be simulated numerically with
the following equation:

f (t) = ψ(t)
m∑

k=1

σk [Uk cos(ωk t) + Vk sin(ωk t)] (49)

where ψ(t) is the modulating function, σk is the variance of the
process at time step k , which is and can be approximated to:

σ2
k =

∫ ωk +
∆ωk

2

ωk−
∆ωk

2

G (ω)dω ≈ G (ωk )∆ωk (50)

Uk and Vk are independent random variables, that distribute
normally, i.e.

Uk ∼ N(0, 1)

Vk ∼ N(0, 1)

G (ω) = 2Φ(ω) is the one sided power spectral density for ω in the
positive reals and G (ω) = 0 elsewhere



Evolutionary stochastic processes
Different techniques have been used to solve this problem, such is
the case of [Liu(1972)], who used the instantaneous power spectral
density to incorporate both the frequency and the time domain at
the same time in the following way:

P =

∫ tf

0
f 2(t) =

∫ tf

0

∫ +∞

−∞
ϕ(t, ω)dωdt (51)

[Saragoni & Hart(1974)] used different spectral functions for
different intervals of time, but this did not come out right because
the sudden changes in the spectral content affected completely the
response of simple SDOF’s.

f (t) = ψ(t)
n∑

i=1

(Ht(ti−1 − t)− Ht(ti − t))si (t) (52)

where ψ(t) is the modulating function, Ht(t) is the heavy side step
function, and si (t) are the stationary stochastic processes.



[Hammond(1968)], [Shinozuka(1970)] and [Kameda(1980)] used a
evolutionary spectral function in time, to calculate ground
response, using the Fourier-Stiljes transform.

f (t) =

∫ +∞

−∞
A(t, ω)e−iωtdZ (ω) (53)

where Z (ω) corresponds to stationary processes with orthogonal
increments amongst themselves and A(t, ω) is a sigma oscillatory
function, that has a spectral density that varies in the time
domain. On the other hand, we have the models proposed by
[Crempien Laborie & Der Kiureghian(1988)], that characterizes
ground acceleration with non stationary amplitude and frequency
content, using the theory sigma oscillatory processes, that is the
characterization of non stationary processes as a sum of
independent stochastic processes.

f (t) =
m∑

k=1

ψk (t)sk (t) (54)



where the evolutionary power spectral density in time is given by:

Φff (t, ω) =
m∑

i=1

ψ2
k (t)Φss(ω) (55)

Amongst these type of models, [Conte & Peng(1997)] can be
pointed out as an improved and natural consequence or
development of [Crempien Laborie(1988)]. It must be pointed out
that both these models are very complicated, and that there is no
study in the literature trying to relate the parameters of these
models to the parameters of the physical process of rupture, such
as stress drops, area of rupture, etc. These methods enlighten the
natural phenomena observed in ground motion, but it is very
difficult to reproduce with real conditions.



Approximation and quadrature of functions
Let us consider a deterministic function g : RN → R that holds as
argument a random vector η : (Ω,F ,P)→ RN that has a JCDF
Fη(z), and a density pη(z). It is clear that g is a random variable
with

E [g ] =

∫
RN

g(z)dFη(z) and V [g ] = E
[
(g(η)− E [g ])2

]
(56)

Definition
The space of square integrable functions in RN is defined as

L2
pη(RN) =

{
g : RN → R such that

∫
RN

g(z)2dFη(z) <∞
}
(57)

and it is a Hilbert space with

I Inner product: 〈f , g〉 = E [fg ] =
∫

R f (z)g(z)dFη(z)

I Norm: ‖g‖L2
pη

=
√

E [g 2]



L2
pη(RN) admits an orthonormal basis ψi , i = 0, 1, . . . such that

E [ψiψj ] = δij for all i , j ≥ 0. Another feature of the functions that
belong to this space is that they can be expanded on this basis in
the following manner

g(η) =
∞∑

i=1

giψi (η) with gi = E [gψi ] (58)

and this expansion satisfies that

lim
n→∞

‖g −
n∑

i=0

giψi (η)‖L2
pη

= 0 (59)



Approximation of square integrable functions

Orthogonality is defined with respect to an inner product, which in
turn involves a measure of integration, dFη. These measures can
be absolutely continuous and it can take the following form

dFη(z) = pη(z)dz on Ω (60)

where pη(z) is a positive function in Ω which in turn is referred to
as the support of dFη. From now on only support functions that
are as well PDF functions will be considered. The moments were
previously defined as:

µp = E [ηp], p = 1, 2, . . . (61)

and the assumption for the future is that all of these moments
exist and they are of finite value.



The inner product of two polynomials p and q relative to the
measure dFη is then well defined as:

〈p, q〉dFη =

∫
R

p(z)q(z)dFη = E [p(z)q(z)] (62)

There are classical weight functions dFη(z) = pη(z)dz where some
representative ones are summarized in the following table:

Table: Classical weight functions.

name pη(z) support comment

Jacobi (1− z)α(1 + z)β [-1,1] α > −1 and β > −1
Laguerre zαe−z [0,∞] α > −1

Hermite |z |2αe−z2
[−∞,∞] α > −1

2
Legendre 1 [-1,1]



Now as it can be noticed, these weight functions are not PDF
functions, thus it is necessary to redefine them such that
orthonormal polynomials can be obtained from them.

Table: Modified weight functions.

name pη(z) support comment

Modified Jacobi zα−1(1−z)β−1R 1
0 yα−1(1−y)β−1dy

[0,1] α > 0 and β > 0

Modified Laguerre λe−λz [0,∞] λ > 0

Modified Hermite 1√
2πσ

e−
(z−µ)2

2σ2 [−∞,∞] σ > 0

Modified Legendre 1 [0,1]



The orthonormal polynomials can be computed with the following
three term recurrence:

Hk+1(η) = (η − αk )Hk (η)− βk Hk−1(η) (63)

, with H0(η) = 1 and H−1(η) = 0 where

αk =
E [ηH2

k ]

E [H2
k ]

βk =
E [H2

k ]

E [H2
k−1]

(64)



Figure: This figure corresponds to
Hermite polynomials.

Figure: This figure corresponds
Jacobi polynomials.



It can be seen in the three-term recurrence relation expressed in
equation (64), the term that defines the series of βk is not defined
for k = 0. In the case when the weights are not representing the
PDF of a random variable, then the first term of the recurrence
relation will be H0 =

∫
R dpη(z)dz = β0. it must be noted that in

the case of a PDF weight function, H0 = 1 as it was stated before.
Placing the coefficients αk on the diagonal and

√
βk on the two

side diagonals of a matrix produces what is called the Jacobi
matrix of the measure dFη,

J(dFη) =


α0

√
β1 0 . . . 0√

β1 α1
√
β2

0
√
β2 α2

. . .
...

. . .
. . .

0 0

 (65)



The Jacobi matrix is clearly tri-diagonal, real, symmetric of infinite
order. With this in mind, then the three term recurrence relation
can also be written as:√

βk+1Hk+1(η) = (η − αk )Hk (η)−
√
βk Hk−1(η) (66)

, with H0(η) = 1√
β0

and H−1(η) = 0 and it can also be written as:

ηH(η) = Jn(dFη) +
√
βnHn(η)en (67)

with H(η) = [H0(η), . . . ,Hn−1(η)]T and Jn are the eigenvalues of
the Jacobi which are at the zeros of H(η), and H(η) are the
corresponding eigenvectors where η are the points of the zeros of
H(η).



Example

In the following example, well known orthogonal polynomials will
be presented

I Uniform random variables, i.e. η ∼ U(−1, 1), which are
referred to as Legendre polynomials

Hk+1(η) =
2k + 1

k + 1
ηHk (η)− k

k + 1
Hk−1(η)

E [Hi Hk ] =
1

2(k + 1
2 )
δik

(68)



Example

I Gaussian random variables, i.e. η ∼ N (0, 1), referred to as
Hermite polynomials.

Hk+1(η) = ηHk (η)− kHk−1(η)

E [Hi Hk ] = k!δik

(69)

I Exponential random variable, i.e. η ∼ Exp(1), called Laguerre
polynomials

Hk+1(η) =
2k + 1− η

k + 1
ηHk (η)− k

k + 1
Hk−1(η)

E [Hi Hk ] = δik

(70)



Lagrange polynomial approximation

Let us consider the recent problem where the n couple values
(zi , yi ), with i ∈ [1, . . . ,m]. We are searching for a polynomial
Lm ∈ Pm, referred to as a interpolatory polynomial, such that

Lm(zi ) = amzm
i + . . .+ a1zi + a0 = yi , i = 0, . . . , n (71)

If n 6= m, then the problem will be either overdetermined or
underdetermined. If n + 1 = m, then it can be demonstrated that
the problem the following theorem.

Theorem
If there is n + 1 points with its corresponding values such that
(zi , yi ), then there is a unique polynomial Ln ∈ Pn that satisfies
Ln(zi ) = yi for i = 0, . . . , n



There is a specific way to find the polynomial that is given by
theorem (17.1), and it is a the sum of polynomials making up a
base that can the whole space where the interpolation takes place.
This polynomial base is referred to in the literature as the
Lagrange interpolation polynomial.

Definition
The Lagrange polynomial can be defined as:

Ln(z) =
n∑

i=0

yi li (z) (72)

where li (z) ∈ Pn is a family of polynomials of order n, such that
they form a base in the space of Pn, and it can be written as:

li (z) =
∏

j

z − zj

zi − zj
(73)

for i = 0, . . . , n and j = 0, 1, . . . , i − 1, i + 1, . . . , n



It is important to compute the error associated with the use of the
interpolating polynomial Lnf (z), a polynomial that is interpolating
the values {yi} at the nodes {zi}, that are related to the succesive
evaluations of the function f (z) in the nodes.

Theorem
Let us assume the nodes z0, . . . , zn, that are going to be used to
interpolate the function f (z) ∈ C n+1(Iz ), where Iz is the smallest
interval length associated with the nodal points z1, . . . , zn+1, then
the error at any point z of the domain in which the function f (z)
is defined will be given by the following expression:

En(z) = f (z)− Lnf (z) =
f (n+1)(ξ)

(n + 1)!
ωn+1(z) (74)

with ξ ∈ Iz and ωn+1(z) =
n∏

i=0

(z − zi ) is the nodal polynomial of

degree n + 1



Remark
It can be shown that the Lagrange polynomials can be written as:

Ln(z) =
n∑

i=0

ωn+1(z)

(z − zi )ω′n+1(zi )
yi (75)

Figure: This figure corresponds to the plots of some Lagrange
polynomials.



Gauss formula

Given a positive measure dFη, the n-point Gaussian quadrature
formula associated with the measure dFη is:∫

R
f (z)dFη(z) =

n∑
i=1

γi f (τi ) + Rn(f ) (76)

which has a maximum algebraic exactness of 2n − 1

Rn(f ) = 0 if f ∈ P2n−1 (77)

It is well known that that the nodes τi are the zeros of H(η; dFη).



Gauss-Radau formula

If there is an interval [a,∞], −∞ < a, containing the support of
dFη, it may be desirable to have an (n + 1)-point quadrature rule
of maximum degree of exactness that has a as a prescribed node,∫

R
f (z)dFη(z) = γR

0 f (a) +
n∑

i=1

γR
i f (τR

i ) + RR
n (f ) (78)

Here, RR
n (f ) = 0 for all f ∈ P2n and τR

i are the zeros of H(η; dFηR
)

where dFηR
= (z − a)dFη. This is called the Gauss-Radau formula.



Gauss-Lobatto formula
If the support of dFη is contained in the finite interval [a, b], it is
more attractive to prescribe 2 nodes, the points a and b.
Maximazing the degree of exactness subject to these constrains
yields the Gauss-Lobatto formula,∫ b

a
f (z)dFη(z) = γL

0 f (a)+
n∑

i=1

γL
i f (τL

i )+γL
n+1f (b)+Ra,b

n (f ) (79)

which is written as an (n + 2)-point formula; RL
n (f ) = 0 for

f ∈ P2n+1. The internal nodes τL
i are the zeros of H(η; dFηL

)
where dFηL

= (z − a)(b − z)dFη.

Remark
If there is a domain Ω = [a, b], then a suitable transformation,
ϕ : [a′, b′]→ [a, b], such that z = ϕ(ξ) = b−a

b′−a′ ξ + ab′+ba′

b′−a′ , which
can be used to work in a more simple domain, Ω′ = [a′, b′]

⇒
∫ b

a
f (z)dz =

b − a

b′ − a′

∫ b′

a′
f (ϕ(ξ))dξ (80)



Clenshaw-Curtis formula
This method proposed by [?] consists in a simple change of
variable z = cos(θ), and withought any loss of generality, if the
integration intervale is [−1, 1], then the following integral can also
be expressed as∫ 1

−1
f (z)dz =

∫ π

0
f (cos(θ)) sin(θ)dθ (81)

the latter integral can be resolved very efficiently using cosine series

f (cos(θ)) =
a0

2
+
∞∑

k=1

ak cos(kθ) (82)

in which case the integral becomes∫ π

0
f (cos(θ)) sin(θ)dθ = a0 +

∞∑
k=1

2a2k

1− (2k)2
(83)



where the cosine coefficients are

ak =
2

π

∫ π

0
f (cos(θ)) cos(kθ)dθ (84)

thus, one must perform a numeric integration again, and for
periodic functions, Fourier-sereies integrations are very accurate up
to the Nyquist frequency, thus the cosine-series integral can be
approximated by the discrete cosine transform (DCT)

ak ≈
2

N

[
f (1)

2
+

f (−1)

2
(−1)k +

N−1∑
n=1

f (cos[
nπ

N
]) cos(

nkπ

N
)

]
(85)

for k = 0, . . . ,N to lateer use the explicit quadrature formula.
According to [?], this method might have a theroretical lower
polynomial degree of accuracy, but nevertheless, it has great
performance anyway, comparable to Gauss integration schemes,
with the advantage that the nodes are much faster to compute.



Approximation of square integrable functions in RN

Assuming that the random vector η, that is obtained after
approximating by some specific method the random field of
interest, has independent components, the JPDF factorises as

pη(z) =
M∏

i=1

pi (zi ) (86)

Let us consider that for each component of the random vector, ηi ,
and its corresponding density function pηi , have associated an

orthonormal basis H
(i)
1 (zi ), . . . ,H

(i)
M (zi ) of L2

pηi
. If a multi-index

i = [i1, . . . , iM ] ∈ NM is defined, then the previous can be seen in a
more compact way

Hi(z) = H1
i1(z1)H2

i2(z2) . . .HM
iM

(zM) (87)

and {Hi,∀i ∈ NM} will be an orthonormal basis in L2
pη(RM), it is

also referred to as a tensor product basis.



Approximation using tensor product spaces

Definition
A tensor product space is defined as

ΞT
N = span{Hi, ∀j(i) ≤ N} (88)

So basically a tensor product space is the inclusion of
approximating terms in each of the components up to the Nth

term. If in each of the components there is N basis functions, the
dimension of the tensor space ΞT

N will be NM , this means that the
dimension of the space grows exponentially fast with M, the
number of random variables (the curse of dimensionality).



I If ΞT
N , the space of polynomials of degree at most N in each

component of the random vector, then its dimesion will be

dim(ΞT
N ) = (N + 1)M (89)

I If the space ΞT
N corresponds to a constant piecewise

approximation over a cartesian partition of RN with N
intervals in each component of the random vector, then its
dimension is

dim(ΞT
n ) = 2NM (90)

Because of the curse of dimensionality , tensor product
approximations can be used with few random variables.



Approximation using sparse product spaces

Definition
A sparse product space is defined as

ΞS
N = span{Hi,∀|j(i)| ≤ N} (91)

These type of spaces overcome partially the curse of
dimensionality while keeping almost the same approximability
properties as tensor product spaces.



I The space ΞS
N that corresponds to polynomials of total degree

at most of N will have the following dimension

dim(ΞS
N) =

∑
|j(i)|≤N

1 =
(M + N)!

N!M!
=

(
M + N

l

)
� (1 + N)M

(92)

I In a sparse wavelet space the dimension will be

dim(ΞS
N) =

∑
|j(i)|≤N

1 = 2N (M + N)!

N!M!
= 2N

(
M + N

N

)
� 2NM

(93)

for a large M, these relations behave in an asymptotical way. So a
sparse projection using a polynomial basis can be constructed as

PS
Ng(η) =

∑
j(k)≤N

gkHk(η) (94)

where gk = E [gHk], and the amount of this coefficients is equal to
the dimension of the approximating space ΞS

N



Sparse interpolation

As a reminder for the Lagrange interpolation in one dimension is

INg(ηi ) =

Ni−1∑
k=0

g(ηik)Lk (ηi ) (95)

∫
RN

pη(z)f (z)dz =
N∏

i=1

(∫
R

pηi (zi )Pi (L(ηi ))dzi

)
(96)

Now, if the difference between 2 levels of interpolation is
performed as

∆j (g) = Ij (g)− Ij−1(g) (97)

where I−1(g) = 0, then the sparse interpolation reads

IS
Ng(η) =

∑
|j|≤N

M⊗
n=1

∆jn g(η) (98)



This expression can also be written as

IS
Ng(η) =

∑
N−M+1≤|j|≤N

(−1)N−|j|
(

M − 1

N − |j|

)
IT

N g(η) (99)

where

IT
N g(η) =

Nj1∑
k1=0

· · ·
NjN∑

kN =0

g(η1k1 , . . . , ηNkN
)Lk1(η1) · · · LkN

(ηN)

(100)
Hence the sparse interpolation is obtained as a linear combination
of tensor product interpolations where the tensor grid (set of
points where the function is evaluated) is

HT
j = {ηk = (η1k1 , . . . , ηNkN

), 0 ≤ ki ≤ Nj − 1} (101)

and
HS

j =
⋃

N−M+1≤|j|≤N

HT
j (102)

is the collection of tensor grids used in sparse interpolation.



Figure: This figure corresponds to a 3D grid of Clenshaw-Curtis points.

Figure: This figure corresponds to nested Clenshaw-Curtis points.



Quadrature of square integrable functions in RN

In [Barthelmann et al.(2000)Barthelmann, Novak & Ritter], it is
possible to find different methods to compute integrals using
cubature methods (the same as quadratures but in multiple
dimesions). If our integral is in a d-dimensional cube, then the
integral of any function can be expressed as

Id (f ) =

∫
[−1,1]d

f (z)dz (103)

A tensor product cubature is

Id (f1 ⊗ · · · ⊗ fd ) = I1(f1)⊗ · · · ⊗ Id (fd ) (104)



then the approximation in the i th component is (using any of the
previously described 1− D approximations methods)

U i (f ) =

mi∑
j=1

f (zij ) · γij (105)

then using (104), it is possible to compute numerically (103) as

(U i1⊗· · ·⊗U id )(f ) =

mi1∑
j1=1

· · ·
mid∑

jd =1

f (zi1j1 , . . . , zid jd )·(γi1j1⊗· · ·⊗γid jd )

(106)



, which is a tensor cubature. This has the shortcoming that as the
dimension of the integral increases, the number of points increases
dramatically, thus not making this method unefficient. To
overcome this shortcoming, sparse interpolation gives the
oportunity to develope sparse numerical integration schemes. Let

∆i = U i − U i−1 (107)

for i ∈ N, and |i| = i1 + · · ·+ id for i ∈ Nd , then the Smolyak
algorith reads

A(q, d) =
∑
|i|≤q

(∆i1 ⊗ · · · ⊗∆id ) (108)

thus simply using for each dimension the desired quadrature
method, to later use a method that is proven by
[Babuška et al.(2007)Babuška, Nobile & Tempone] and
[Nobile et al.(2008)Nobile, Tempone & Webster] to be convergent
to the tensor case, which decreases the amount of points needed
to compute the integral with respect to the full tensor scheme.



Discretization of random fields
The principal concern is to reduce a infinite amount of information
(random variables that belong to a random field) to a finite
amount of random variables such that the main information of the
random field is well represented. The approximate random field
does not only need to be well represented, but also with the
minimum amount of random variables to decrease the complexity
of calculations. In the literature there are many methods which will
be presented. Let κ(x, ω) : D × Ω −→ R be a random field with
a certain autocovariance function Cκκ(x, y) = C [κ(x, ω), κ(y, ω)],
then an approximation can be

κN(x,ω) =
N∑

i=1

ηiφi (x) (109)

This can be viewed as an expansion of each possible realization of
κ(x, ω0) over a basis {φi}, where ηi (ω) are the coordinates of this
expansion. This can be done since this is a Hilbert space (Neveu,
don have this paper yet), thus it accepts expansions of the sort.



Karhunen-Loève expansion

The Karhunen-Loève expansion of a random field κ(x, ω) is a
spectral decomposition of the autocovariance function, so that
there exists a sequence of values λ1 ≥ λ2 ≥ . . . λk . . . ≥ 0, with
lim

k→∞
λk = 0 and a corresponding sequence of functions

ϕi (x) : D → R, i = 1, 2, . . . such that∫
D

Cκκ(x, y)ϕi (y)dy = λiϕi (x) (110)



which is a Fredholm integral equation, where the kernel is the
covariance function, being bounded, symmetric and positive
definite. The eigenfunctions satisfy

∫
D ϕi (x)bj (y)dx = δij where δij

is the Kronecker delta, thus being orthogonal. Now, it is possible to
define a sequence of random variables ηi (ω), i = 1, 2, . . . such that

ηi (ω) =
1√
λi

∫
D

(κ(x, ω)− E [κ(x)])ϕi (x)dx (111)

and if the covariance between the original random field and the
Karhunen-Loève expansion of such random field C [κ(x, ω), κ̂(x, ω)]
is computed, it is possible to conclude that E [ηiηj ] = δij = 0, thus
proving that these variables are uncorrelated with zero mean and
unit variance and can be viewed as the coordinates of the
expansion and of any possible realization.



With all this in mind, the random field κ(x, ω) can be represented
as the infinite series

κ(x, ω) = E [κ(x)] +
∞∑

i=1

√
λiϕi (x)ηi (ω) (112)

thus creating a separation of the space and the random variables of
the field κ(x, ω). The Karhunen-Loève expansion has very
interesting properties, such as:

I Due to non accumulation of the eigenvalues around a zero
value, it is possible to order the terms of the expansion in
descending way, such that if a truncation of the series defined
in (112) gives an approximated Karhunen-Loève expansion

κN(x,ω) = E [κ(x)] +
N∑

i=1

√
λiϕi (x)ηi (ω) (113)

I The covariance eigenfunction basis {ϕ(x)} is optimal in the
sense of the mean square error

err =

∫
D

E [(κ(x, ω)− κN(x, ω))2]dx (114)

, resulting from the truncation after the Nth term is minimized
(with respect to the value of any other complete basis {φi (x)}



I The closed form solution for each random variable in (111) is
easy to obtain, and if κ(x, ω) is a Gaussian field , then each
random variable ηi is gaussian, and for this specific case, {ηi}
forms a set of independent standard normal random variables.
It can also be proven [Loève(1977)] that the expansion of
Gaussian random fields is almost surely convergent (I guess
this is very important for time stochastic processes).

I The variance error, after truncating the series in the Nth term
is given by

V [κ(x, ω)− κN(x, ω)] = σ2(x)−
N∑

i=1

λiϕ
2
i (x)

= V [κ(x, ω)]− V [κN(x, ω)]

(115)

The right hand side of the previous equation is always
positive, hence the truncated Karhunen-Loève expansion
always under-represents the variance of the field.



Example

If there is a covariance function

C (x , y) = σ2e−|x−y | (116)

with x ∈ [0, 1], then the eigenfunctions will be:

ϕi (x) =
wi cos(ωi x) + sin(ωi x)√

ω2

2 + (1 + sin(2ω)
2ω ) + 1

2 (1− sin(2ω)
2ω ) + sin2(ω)

(117)

and where ωi is related to the eigenvalues and can be obtained
from the following equation:

2ω cos(ω) + (1− ω2) sin(ω) = 0 (118)



Example

It is very easy to obtain these roots with any method, such as the
Newton scheme. so then it is possible to obtain the eigenvalues
from the following relationship:

ω2
i =

2− λi

λi
σ2 (119)

thus making it possible to characterize the random field
represented by the covariance in equation (116) using the
Karhunen-Loève expansion.

This type of expansion has a limited number of closed form
solutions for the set of covariance functions, thus it is necessary to
perform other types of numerical expansions to have a spectral
representation of the random field given a covariance function.



Galerkin expansion method

A Galerkin-type procedure was suggested by
[Spanos & Ghanem(1991a)] and it consists in defining a complete
basis of the Hilbert space {φi (x)}∞i=1 ∈ L2

pη(D). Each eigenfunction
of Cκκ(x, y) may be represented by an expansion of the form

ϕj (x) =
∞∑

i=1

dijφi (x) (120)

where dij are the unknown coordinates. The Galerkin procedure
aims at obtaining the best approximation of ϕj when truncating
the above series after the Nth term, which is accomplished by
projecting ϕj onto the space HN spanned by {φi}N

i=1. The
approximation of each eigenfunction is possible because they
belong to the space of square integrable functions.



The residual can be written as

εN(x) =
N∑

i=1

dij

[∫
D

Cκκ(x, y)φi (y)dy − λjφi (x)

]
(121)

which is orthogonal to HN , thus the following is true

〈εN , φj〉 ≡
∫
D
εN(x)φj (x)dx j = 1, . . . ,N (122)

which leads to a simple linear system

CD = ΛBD (123)



where the different matrices are defined as follows

Bij =
∫
D φi (x)φj (x)dx

Cij =
∫
D
∫
D Cκκ(x, y)φi (x)φj (y)dxdy

Dij = dij

Λij = δijλj

(124)

thus rendering a series of linear systems to be solved.



Orthogonal series expansion method
Many times there are no closed for solution to the problem of
obtaining eigen-pairs given a kernel function such as the
covariance. Taking this into mind, [Zhang & Ellingwood(1994)]
proposed a method to avoid the computation of the eigen-pairs
just by selecting prior to any calculation, a complete set of
orthogonal functions. A similar idea had been used previously by
Lawrence (1987), (don’t have this paper). Let {ϕi (x)}∞i=1 be a
family of orthogonal functions forming a basis in L2, and without
any loss of generality, let this family be orthonormal as well∫

D
φi (x)φj (x)dx = δij (125)

If κ(x, ω) is a random fiels, with a given covariance function
Cκκ(x, y), any realization of the field is a function of L2 which can
be expanded by means of the previously selected set of orthogonal
functions, and this expansion can be

κ(x, ω) = µ(x) +
∞∑

i=1

χi (ω)φi (x) (126)



where χi (ω) are zero-mean random variables. Using the
orthogonality properties described before, and also with the help of
basic algebra, it is possible to show that

χ(ω) =

∫
D

[κ(x, ω)− µ(x)]φi (x)dx (127)

and

(Cχχ)kl ≡ E [χkχl ] =

∫
D

∫
D

Cκκ(x, y)hk (x)hl (y)dxdy (128)

If κ(x, ω) is a zero mean Gaussian field, thenit is easy to prove that
{χi}∞i=1 are zero mena Gaussian random variables, but
unfortunately, they might bee correlated, thus it is necessary to
construct the covariance matrix of these random variables, and to
perform a transformation into uncorrelated random variables using
the spectral decomposition method described previously.



Optimal linear estimation method
The method was proposed by [Li & Kiureghian(1993)]. It is also
mentioned in the literature as Kriging method . It is a special case
of the method of regression on linear functionals, and the
approximation has the following form

κN(x, ω) = a(x) +
N∑

i=1

bi (x)χi (129)

where N is the total number of nodal points involved in the
approximation. The functions a(x) and bi (x) are obtained using a
nonlinear regression, minimizing in each point x the error of the
variance, subjected to having an unbiased estimator of the real
random field in the mean, these consitions are expressed as

∀x ∈ D
Minimize V [κ(x, ω)− κN(x, ω)]

subjected to E [κ(x, ω)− κN(x, ω)] = 0
(130)



The condition of problem (130) requires that

E [x] = a(x) + bT (x) · E [χ] (131)

then, the error of the variance, which is always a positive value,
holds true

V [κ(x, ω)− κN(x, ω)]

= σ2(x)− 2
N∑

i=1

bi (x)C [κ(x, ω), χi ] +
N∑

i=1

N∑
j=1

bi (x)bj (x)C [χi , χj ]

(132)



The minimization problem is solved for each bi (x), thus requiring
that the partial derivatives of bi (x) be equal to zero for each i
yields

∀i = 1, . . . ,N −C [κ(x, ω), χi ] +
N∑

j=1

bj (x)C [χi , χj ] = 0 (133)

which can also be written in matricial form

−Cκχ(x) + Cχχ · b(x) = 0 (134)

with this result, the final estimation is written as

κN(x, ω) = E [x] + C T
κχ(x) · C−1

χχ (χ− E [χ]) (135)

Separating the deterministic terms from the stochastic ones gives

κN(x, ω) =
[
E [x]− C T

κχ(x) · C−1
χχ · E [χ]

]
+

N∑
i=1

χi (C−1
χχ · Cκχ)

(136)
and since the variance errors are always positive, then this
approximation always underestimates the variance.



Expansion optimal linear estimation method

The expansion optimal linear estimation method was proposed by
[Li & Kiureghian(1993)]. It is an extension of OLE using a spectral
vector of nodal variables χ. Assuming that κ(x, ω) is Gaussian, the
spectral decomposition of the covariance matrix Cχ, where
χ = {κ(x1, ω)}, . . . , κ(xN , ω) is

χ(ω) = µχ +
N∑

i=1

√
λiζi (ω)ϕi (x) (137)

where the set of random variable {ζi}N
i are independent and

standard normal. The pair (λi , ϕi ) are the eigenvalues and
eigenvectors of the covariance matrix Cχχ that satisfies

Cχχϕi = λiϕi (138)



hence, if the substitution of (138) into (129) and solving the OLE
problem yields

κN(x, ω) = µ(x) +
N∑

i=1

ζi (ω)√
λi
ϕT

i Cκχ (139)

As in the Karhunen-Loève expansion, the series can be truncated
after r terms, of course after sorting the eigenvalues λi in a
descending order. The variance error of this methos will be

V [κ(x, ω)− κN(x, ω)] = σ2(x)−
r∑

i=1

1

λi
(ϕT

i Cκχ)2 (140)

The problem with this method is the choice of points in the
random field, such to assure a good result. This was not aborded
by the author of the method.



Operators with uncertain parameters

Let us consider the following problem

L(κ)(u) = f in D (141)

where L is an operator of a certain kind withought loss of
generality, and it is defined in a domain D. Both κ = κ(x, ω) and
f = f (x, ω) can be considered as random fields of a certain kind.
The latter variables can describe any kind of scalar field, such as
the Poisson ratio, Young’s modulus or the external forces acting on
∂D. The random field on the right hand side and left hand side of
equation (141) are considered to be functions of a finite amount
of random variables such that it can be written as:

κ(x, ω) = κ(x;η1, . . . ,ηN)
f (x, ω) = f (x;η1, . . . ,ηN)

(142)



This approximation of a random field using a random vector is
possible and it can be done using different methodologies such as
the truncation of the Karhunen-Loève expansion, etc. Many
assumptions can be made of the chosen random vector that
represents the both random fields κ(x, ω) and f (x, ω), such as the
correlation between the components of the random vector as
C [ηi , ηj ] = δij , the type of distribution that each component has,
etc.
Sometimes, the uncertain coefficients of the operator L or the
forcing term of equation (141) need to be more specified, an
example is illustrated.



Example

If the coefficient κ(x, ω) is always greater than κmin for it to have
sense, then the following transformation guarantees that this will
always be certain.

log(κ− κmin)(x, ω) = b0(x) +
N∑

i=1

√
λi bi (x)ηi (ω) (143)

The latter is simple the truncation of the Karhunen-Loève
expansion of log(κ− κmin). The same can be done for the forcing
term f (x, ω)



Lemma
Let η be an N-dimensional random vector defined on (ΩN ,F ,P)
and let ζ be a σ-measurable random variable defined on the same
space. Then ζ = g(η) for some Borel measurable g : RN → R, this
means that ζ will depend only on the components of η, that is,
ζ(η1, . . . ,ηN)

This lemma can be extended to problem (141) for the case of
finite dimensional noise, which can be viewed in the following way:

L(κN)(uN) = fN in D (144)

using lemma (28.2) it can be concluded that
uN = uN(x;η1, . . . ,ηN)



Remark
It can be noticed that in the definition of the finite noise problem
(142), for both the forcing term and the term associated with the
operator have dependency on the same random variables. It is
clear that in most of the real cases this is not, so the problem can
be viewed in the following way:

κ(x, ω) = κ(x;ηa)
f (x, ω) = f (x;ηf )

(145)

thus uN = uN(x;ηa,ηf )



Stochastic collocation methods

Let uh(x ,η) be the semi-discrete solution of∫
D
κ(x, ω)∇uh(x, ω) · ∇vh(x)dx =

∫
D

f (x)vh(x)dx ∀vh ∈ Vh

(146)
Consider a sparse interpolation formula IS

N : L2
pη(RN)→ ΞS

N that

uses a sparse grid HS
N . The stochastic collocation FEM solution is

obtained by simply interpolating the semi-discrete solution on the
sparse grid

uN
h (x,η) = IS

Nuh(x,η) ∈ Vh ⊗ ΞS
N (147)

This means that if the points in the probability domain are
η(1), . . . ,η(M) ∈ HN that belong to the sparse grid, then using the
pre-defined sparse interpolation, the solution can be achieved

simply by computing M deterministic solutions u
(j)
h , j = 1, . . . ,M,

using the points that belong to the sparse grid, and projecting the
solution of these points into the sparse interpolation formula.



Finite elements for beams using a residual formulation

According to the virtual work principal, the external work is equal
to the internal work, thus yielding

Lint
v = Lext

v (148)

where the internal work is Lint
v =

∫
D σδεdV . On the other hand,

the kinematics of the beam can be stated as

ε = ε0 − yχ = u,x − yv,xx (149)

which means that plane sections remain plane. Clearly
δε = δu,x − yδv,xx , therefore

Lint
v =

∫
D
σ(δu,x − yδv,xx )dV =

∫
l
(Nδu,x + Mδv,xx )dl (150)

since N =
∫

A σdA and M = −
∫

A yσdA



Using a finite element approximation of the following form for the
beam as

u ' Nuû u,x ' Buû
v ' Nv v̂ v,xx ' Bv v̂

(151)

introducing these approximations in the equation of virtual work
will give a set of equations

Lint
v = δûT

∫
l
BuT Ndl + δvT

∫
l
BvT Mdl (152)

which can also be written as

Lint
v = δûT Fint

axi + δvT Fint
bend (153)

and recalling that

Lext
v = δûT Fext

axi + δvT Fext
bend (154)



The principal of virtual work implies that

R(b̂, v̂) = [Raxi (b̂) Rbend (v̂)]T = 0 (155)

There are many algorithms available in the literature to solve this
kind of nonlinear system of equations, for instance the
Newton-Raphson scheme. For the sake of simplcity, the integration
rule for each cross section is done using a composite midpoint rule
over ns horizontal stripes of width b and height h/ns .

⇒ N =

∫
A
σdA ' bh

ns

ns∑
ı=1

σi (156)



and

−
∫

A
σydA ' −bh

ns

ns∑
i=1

σi yi (157)

where yi = h
2

(
2i−1

ns
− 1
)

. To compute the internal forces a simple

3 point Simpson quadrature is more than enough, using the first
end, the midpoint and the end of the element as P1, P2 and P3,
thus the expresion for the internal force reduces to[

Fint
ax

Fint
bend

]
=

∫
l BuT Ndl∫
l BvT Mdl

w
l

6

[
BuT N|P1 + 4BuT N|P2 + BuT N|P3

BvT M|P1 + 4BvT M|P2 + BvT M|P3

]
(158)

and R = Fint − Fext



Beams with uncertain mechanical properties
Let us consider now the same problem as stated previously, but
considering uncertain mechanical properties along the length of the
beam. For this a collocation method will be used and the solution
of the problem will be expanded

IS
Ng(η) =

∑
N−M+1≤|j|≤N

(−1)N−|j|
(

M − 1

N − |j|

)
IT

N g(η) (159)

where g = [u v θ]T The mechanical properties can be viewed as a
RF with the following covariance function

Cκκ(x , y) = e−
(x−y)2

L2 (160)

for x , y ∈ [0, 1], where L represents the correlation length. The KL
expansion of this covariance function is given by

κ(x ,η) = 1 + η1(ω)

(√
πL

2

)
+

N∑
k=2

λk bk (x)ηk (ω) (161)



with

λk =

√√
πLe

„
− b

k
2 c

2π2L2

8

«
(162)

bk (x) =

{
sin(bk/2cπx) if kodd
sin(bk/2cπx) if kodd

(163)

the random coordinates are uniformaly distributed in [−
√

3,
√

3]
with zero mean and unit variance. and E (x ,η) = 1/2 + eκ(x ,η)

represents the elastic modulus along the length of the beam.



Figure: Linear mean response.
Figure: Linear mean square
response.



Figure: Nonlinear mean response.
Figure: Nonlinear mean square
response.
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Stochastic Galerkin approximation using double orthogonal
polynomials

Let us consider the diffusion problem with no reaction for simplicity{
∇ · (κ(x, ω)∇u) in D ⊂ Rd

u = 0 on ∂D (164)

[Babuška et al.(2004)Babuška, Tempone & Zouraris] developed an
efficient method to solve stochastic finite elements, using a
stochastic Galerkin approach, that incorporates double orthogonal
polynomials in the probabilistical domain, to obtain a number of
undecoupled systems, each of the size of a deterministic realization
of the same problem. Using a p × h finite element version, and
withought any loss of generality, attention is focused in finding a
solution up

h ∈ V h ⊗ ΞS
p such that

E

[∫
D
κ(x, ω)∇up

h (x, ω) · ∇v(x, ω)dx

]
= E

[∫
D

f (x, ω)v(x, ω)dx

]
(165)



Let {H(η)} be a basis for the subspace zp ⊂ L2
pη(Ω), and {φ(x)}

be a basis for the subspace Vh ⊂ H1
0 (D). Then an approximation

of the solution can be

up
h (x, η) =

∑
j ,i

uij Hj (ω)φi (x) (166)

and the test functions can be taken as

v(x, ω) = Hk (ω)φl (x) (167)

to find uij coefficients, then equation (32) will be equivalent to

∑
j ,i

E

[
Hk (z)Hj (z)

∫
D
κ(x, ω)∇φi (x) · ∇φl (x)dx

]
uij

= E

[
Hk (z)

∫
D

f (x, z)φ(x)dx

]
∀k , l

(168)



Defining

Gil (z) =

∫
D
κ(x, ω)∇φi (x)∇φl (x)dx

and fl (z) =

∫
D

f (x, z)φl (x)dx
(169)

If the random field is expanded into a KL expansion, then

Gil (z) =

∫
D

E [κ(x, ω)] +
N∑

p=1

bpzp

 (170)

where

G 0
il ≡

∫
D

E [κ(x, ω)]∇φi (x) · ∇φl (x)dx

and G p
il =

∫
D

bp(x)∇φi (x) · ∇φl (x)dx
(171)



Since Hk ∈ Ξs
p, with a multi-index p = [p1, . . . , pN ], it is enough to

take it as a product

Hk (z) =
N∏

r=1

Hkr (zr ) (172)

where Hkr : Ωr → R is a basis function of the subspace
Z pr = span{Hhr : h = 1, . . . , pr + 1}. Keeping the choice of Hk in
mind,∫

Ω
pη(z)Hk Hj Gil (z)dz = G 0

il

∫
Ω

N∏
m=1

pηm (zm)Hkm(zm)Hjm(zm)dz

+
N∑

n=1

G n
il

∫
Ω

zn

N∏
m=1

pηm (zm)Hkm(zm)Hjm(zm)dz

(173)



Now, for every set Ωn, n = 1, . . . ,N, the polynomials
Hj (z) =

∏N
n=1 Hjn(zn) need to be chose, and they can be selected

to satisfy biorthogonality, so that they can satisfy∫
Ωn

pηn (zn)Hkn(zn)Hjn(zn)dzn = δkj

and

∫
Ωn

znpηn (zn)Hkn(zn)Hjn(zn)dzn = cknδkj

(174)



To find these polynomials, N eigen-problems need to be solved,
each of them having a size of (1 + pn). The computational work
required by these eigen-problems is negligible compared with the
effort to solve for uij Anyway, there is also the possibility of
keeping these polynomials, for a given support Ωn, and performing
a simple change of variables using the property stated in (80) will
reduce computational complexity. With this last finding, the right
hand side of equation (168) will be∑

j ,i

(∫
Ω

pη(z)Hk (z)Hj (z)Gil (z)dz

)

= G 0
il

∫
Ω

pη(z)Hk (z)Hj (z)dz +
N∑

n=1

G n
il

∫
Ω

znpη(z)Hk (z)Hj (z)dz

=

(
G 0

il +
N∑

n=1

cknG n
il

)
δkj

(175)
thus rendering a N decoupled problem



Solution of hyperbolic problems with uncertain parameters

Many authors have worked on this specific problem with different
angles of approach. Such is the case of [Lin(1965)], who is one of
the first to work on this field. Lin studied the response of linear
systems, subjected to aleatory pulse sequences. [Roberts(1965)]
used the same approach to solve the problem, and in both cases, a
non-stationary noise method, developed by [Parzen(1962)] was
used which is quite similar to the one developed by [Rice(1944)].
This same methodology was used by [Wen(1974)] to study the of
lightweight equipment joined to structural systems.
[Hammond(1968)] studied the response of systems subjected to
base excitation by stochastic processes that have a evolutionary
power spectral density function with the principal aim of including
in the structural response the variation of the frequency content in
time.



[Roberts(1965)] used relations in the frequency domain, assuming
that the excitation was periodical and non-stationary. He was
careful to define a period of time larger than the duration of the
duration of the external loading to avoid aliasing in the signal.
This method however presents problems for the computation of the
response, if the selected period of time is not long enough.
[Holman & Hart(1974)] computed the response of linear systems
excited by segmented and modulated stationary processes. They
considered that the frequency content was invariant in each time
segment. [Corotis & Vanmarcke(1975)] proposed a method to
compute the response of linear structural systems subjected to
sudden white noise.



[Crempien Laborie & Saragoni(1978)] studied the influence of
strong ground motion duration in the response of linear structural
systems. For this they assumed a time segment of the excitation to
be stationary. This proved the necessity to study the response of
non-stationary response of structural systems.
[Spanos & Lutes(1980)] also used an evolutionary power spectral
density function to compute the response assuming that the
response can be modelled as a Markov process. The approach that
will be developed now considering that the excitation is of
Gaussian nature, both non-stationary in time and in frequency and
the structural system is linear.



Response of a simple oscillator
The response of a simple oscillator can be deduced from its
ordinary differential equation that is stated as.

mü(t) + cu̇(t) + ku(t) = −mF (t) (176)

where m is the mass of the oscillator, c is the viscous damping and
k is the elastic rigidity of the oscillator. u is the displacement of
the oscillator. u is the displacement of the oscillator, considering
the location were the oscillator is at rest as the reference state
position. The external excitation is considered as a basal
acceleration F (t) which later on will be considered as a stochastic
process. The problem stated in (176) has an equivalent
formulation when normalizing my the mass m

ü(t) + 2ξωnu̇(t) + ω2
nu(t) = f (t) (177)

In this last equation, 2ξωn = c
m and ω2

n = k
m where ωn is the

circular natural frequency of the system and ξ is the critical
damping ratio of the system. With these 2 constants, the
dynamical behavior of the system can be characterized.



The response of the system can be written as a Duhammel integral
solution, which is simply a convolution integral given by

u(t) =

∫ +∞

−∞
h(t − τ)f (τ)dτ (178)

where h(t) is the response of the system to an unitary impulse
excitation, that can be considered as a delta Dirac function, thus
yielding

h(t) =

{ 1
ωa

e−ξωnt sin(ωat) si t ≥ 0

0 si t < 0
(179)

where ωa = ωn

√
1− ξ2 If the expected value of the response is

taken, then

E [u(t)] =

∫ +∞

−∞
h(t − τ)E [f (τ)]dτ (180)

and since the expected value of E [f (t)] = 0 is equal to zero, then
equation (180) will become

E [u(t)] = 0 (181)



To compute the autocorrelation of the response, the following can
be done

Ruu(t1, t2) = E

[∫ +∞

−∞
h(t1 − τ1)f (τ1)dτ1

∫ +∞

−∞
h(t2 − τ2)f (τ2)dτ2

]
(182)

using the properties of commutativity , then

Ruu(t1, t2) =

∫ +∞

−∞

∫ +∞

−∞
h(t1 − τ1)h(t2 − τ2)E [f (τ1)f (τ2)]dτ1dτ2

(183)

Ruu(t1, t2) =

∫ +∞

−∞

∫ +∞

−∞
h(t1 − τ1)h(t2 − τ2)Rff (τ1, τ2)dτ1dτ2

(184)
And in this last equation, the autocorrelation of the response has
been computed, in function of the autocorrelation of the process.



Response to a stationary process

A stationary stochastic process which has a autocorrelation
function that depends only on the difference between two instances
of time t1 and t2

Rff (t1, t2) = Rff (t2 − t1) (185)

which can be related to the power spectral density function (PSD)
Sff (ω) through the Wiener-Kchintchine theorem

Rff (t2 − t1) =

∫ +∞

−∞
Sff (ω)e iω(t2−t1)dω (186)



replacing this last equation in (184) and alternating the order in
the integral yields

Ruu(t1, t2) =
∫ +∞
−∞ Sff (ω)

∫ +∞
−∞ h(t1 − τ1)e−iωτ1dτ1∫ +∞

−∞ h(t2 − τ2)e iωτ2dτ2dω
(187)

and with a proper variable change as ξ1 = t1 − τ1, ξ2 = t2 − τ2,
τ = t2 − t1, it is possible to obtain

Ruu(τ) =
∫ +∞
−∞ Sff (ω)e−iωτ

∫ +∞
−∞ h(ξ1)e−iωξ1dξ1∫ +∞

−∞ h(ξ2)e iωξ2dξ2dω
(188)



and the integral becomes∫ +∞

−∞
h(τ)e−iωξi dξi = 2πĥ(ω) (189)

where ĥ(ω) is the Fourier transform of h(t), given by

ĥ(ω) =
1

2π

∫ +∞

−∞
h(τ)e−iωξi dξi =

1

2π((ω2
n − ω2)− 2iξωnω)

(190)
therefore, the autocorrelation function can be written as

Ruu(τ) =

∫ +∞

−∞
Sff (ω)e−iωτ ĥ(ω)ĥ∗(ω)dω (191)

If t1 = t2, then τ = 0. This corresponds to the mean square
response

Ruu(0) = E [u2(t)] =

∫ +∞

−∞
‖ĥ(ω)‖2Sff (ω)dω (192)



If Sff varies slowly with respect to ‖ĥ(ω)‖, then the system will
behave like a narrow band filter, this means that the highest
contribution of the excitation of the process will be around the
natural frequency ωn [Caughey & Stumpf(1961)], thus equation
(192) will take the following form

E [u2(t)] = Sff (ωn)

∫ +∞

−∞
‖ĥ(ω)‖2dω (193)

[Caughey & Stumpf(1961)], among many, use the residual theorem
to solve equation (193), leaving the following equation

E [u2(t)] =
πSff (ωn)

2ξω3
n

(194)

If the mean value is considered to be zero, then equation (194
completes the probabilistical structure of the response in the case
of an Gaussian excitation.



Response to a non-stationary separable process

if f is considered to be a non-stationary separable process, then
using the property stated in equation (183), the autocorrelation
function can be found, which is given by

Rff (t1, t2) = ψ(t1)ψ(t2)Rss(t1, t2) (195)

now equation (184) can be used to find the autocorrelation of the
response

Ruu(t1, t2) =
∫ +∞
−∞

∫ +∞
−∞ h(t1 − τ1)h(t2 − τ2)ψ(τ1)ψ(τ2)

Rss(τ1, τ2)dτ1dτ2
(196)



Using the Wiener-Kchintchine relationship, the autocorrelation
function can be expressed in terms of the autocorrelation of the
stationary process, an the latter, can be expressed in terms of the
power spectral density function of the stationary process as follows

Rss(τ1, τ2) =

∫ +∞

−∞
S(ω)e iω(τ2−τ1)dω (197)

making some algebraic arrangements the next expression can be
obtained

Ruu(t1, t2) =
∫ +∞
−∞ S(ω)

∫ +∞
−∞ h(t1 − τ1)ψ(τ1)e−iωτ1dτ1∫ +∞

−∞ h(t2 − τ2)ψ(τ2)e iωτ2dτ2dω
(198)



Calling non-stationary transfer function to

Υ(t, ω) =

∫ +∞

−∞
h(t − τ)ψ(τ)e−iωτdτ (199)

and replacing this term in equation (198), it is possible to obtain

Ruu(t1, t2) =

∫ +∞

−∞
Υ(t1, ω)Υ∗(t2, ω)S(ω)dω (200)

where Υ∗(t, ω) is the complex conjugate of Υ(t, ω). In the case
that t1 = t2 = t, then the mean square response will be

E [u2(t)] =

∫ +∞

−∞
‖Υ(t, ω)‖2S(ω)dω (201)



figures



Figure: Nonstationary transfer function.



To obtain the probabilistical structure of the response, it is
convenient to have the correlation functions of the
displacement-velocity, E [u̇(t)u(t)] and the mean square response of
the velocity E [u̇2(t)]. To obtain these functions, the methodology
used by [Crempien Laborie & Crempien de la Carrera(2005)] can
be used, this is achieved derivating with respect to time equation
(201), and developing these expressions, the correlation between u
y u̇ can be obtained.

∂

∂t
(E [u2(t)]) =

∂

∂t

∫ +∞

−∞
Υ(t, ω)Υ∗(t, ω)S(ω)dω (202)

The partial derivative can be taken into the integral

∂

∂t
(E [u2(t)]) =

∫ +∞

−∞

[
Υ̇(t, ω)Υ∗(t, ω) + Υ̇∗(t, ω)Υ(t, ω)

]
S(ω)dω

(203)
The same with the expected operator

E [2u̇(t)u(t)] =

∫ +∞

−∞

[
Υ̇(t, ω)Υ∗(t, ω) +

(
Υ̇(t, ω)Υ∗(t, ω)

)∗]
S(ω)dω

(204)



If the latter expression is further manipulated, the correlation can
be reached

2E [u̇(t)u(t)] = 2

∫ +∞

−∞
Real

[
Υ̇(t, ω)Υ∗(t, ω)

]
S(ω)dω (205)

E [u̇(t)u(t)] =

∫ +∞

−∞
Real

[
Υ̇(t, ω)Υ∗(t, ω)

]
S(ω)dω (206)

If equation (200) is partially derived with respect to any two
different instances of time, then

∂2

∂t1∂t2
Ruu(t1, t2) =

∂2

∂t1∂t2

∫ +∞

−∞
Υ(t1, ω)Υ∗(t2, ω)S(ω)dω

(207)
The partial derivatives can enter the integral in the following way

∂2

∂t1∂t2
Ruu(t1, t2) =

∫ +∞

−∞
Υ̇(t1, ω)Υ̇∗(t2, ω)S(ω)dω (208)

If t1 = t2 = t, then the mean square of the velocity will be
obtained

E [u̇2(t)] =

∫ +∞

−∞
‖Υ̇(t, ω)‖2S(ω)dω (209)

expression that can be a analytical in certain cases.
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