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Abstract

ABSTRACT

The objective of this work is to develop robust numerical methods to compute probabilistic
response of dynamical systems with uncertain state parameters and uncertain loadings, using
the stochastic collocation method. This method is used due to the many advantages it has over
Monte Carlo simulations and the straightforward way to parallelize the problem at hand. By
probabilistic response, we mean the moments of the problem, as well as probability distribution
functions. The stochastic tensor collocation method suffers from the curse of dimensionality,
which is the exponential growth of the approximating space due to the increase of dimensions
in the same. To overcome this problem, it is possible to show that stochastic sparse collocation
method converges to the full tensor approximation, as the number of dimensions used grows.
This is a great advantage to avoid the computation of large number of realizations.

In this work we did several numerical examples, such as the statistical response of a cantilever
beam subjected to a tip force and with material uncertainty. In the range of dynamical mechan-
ical problems, a linear oscillator with uncertain stiffness and damping subjected to a Gaussian
stochastic process was solved using random vibration theory. Also a non linear oscillator sub-
jected to a random pulse and a 1d site response analysis considering a random shear velocity
profile where problems approached in this work.
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Chapter 1. Introduction

1. INTRODUCTION

1.1 UNCERTAINTIES IN DYNAMICAL SYSTEMS

In modern days, there has been a dramatic increase in the numerical capacity of computers, and
due to this fact, many numerical methods to solve models of deterministic dynamical problems
in the field of mechanics. Since this numerical capacity continues to grow, many researchers
have seen the chance to incorporate uncertainty into these dynamical problems, in a attempt to
generalize the previous deterministic cases.

Mathematically, a dynamic problem in mechanics can be modelled with a partial differential
equation

Lu = f (1.1)

whereL is a partial differential operator, that depends on the system properties such as geometry
conditions and material properties, f is the external loading and u is the response. Uncertainties
may be present in the partial differential operator or in the loading, and if either is uncertain, then
the response, u, would also be an uncertain quantity. The case in which f is an uncertain external
load has been studied extensively for the particular case of L, linear differential operators [Rice,
1944; Parzen, 1962; Lin, 1965]. Equation (1.1) becomes more complicated to solve when L is
uncertain, and the solution methods used for the case of uncertain external loading no longer
is valid. Equation (1.1) is known as a stochastic differential equation, which can be ordinary
(stochastic ordinary differential equation, SODE), if it depends only on one variable, or partial
(stochastic partial differential equation, SPDE), if the arguments of the equation are beyond one.

Once the response is characterized, it will be much easier to make possible designs for these
systems, so that they perform in an optimal way.

Since it is important to characterize the probabilistic response, then it is equally important to
model the inherent randomness within the forcing terms, as well as the possible uncertainties

1



Chapter 1. Introduction

in the physical domain of the problem. Among the possible uncertainties there is for example
the material properties, geometry and boundary conditions, etc. It is not a trivial task to find
a probabilistic model to account for these uncertainties. Several attempts have been made in
the case of geotechnical engineering such as the efforts of E.H.Vanmarcke [1977]; Ghiocel and
Ghanem [2002]; Lai, Foti, and Rix [2002]. In the field of Mechanics, many contributions have
been maid by Graham and Baxter [2000]; Ostoja-Starzewski and Wang [1989] which are more
oriented to the microscale level.

2
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Figure 1.1: Proposed methodology to perform analysis and design of systems with uncertainty.
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In figure (1.1) the entire process of analysis considering uncertainties of different types is sum-
marized in this diagram flow. The uncertainty can be present in the Input as well as the System.
The system can be a ordinary differential equation, a partial differential equation and a integral
equation. The system can also be linear and nonlinear.

1.2 OBJECTIVES AND OUTLINE OF THIS DISSERTATION

The objectives of this dissertation is to develop robust numerical methods to compute the prob-
abilistic response of dynamical systems with uncertain state parameters and uncertain loading,
using the sparse collocation technique, because of it’s advantages over straightforward Monte
Carlo simulation, as well as the easy way to parallelize with the sparse collocation technique.
By probabilistic response we mean the probability distribution function of the response, the mo-
ments and the covariance or correlation. With this information it is possible to fully characterize
the response of systems to later fulfill the ultimate goal, and that is to take an informed decision
to improve or optimize the performance of the system at hand.

The organization of this work is started with a brief explanation of general probability concepts
in chapter (2) followed by a reminder of the general theory of approximation and quadrature
of functions in chapter (3). In chapter (4) there is a review of the different methods present
in the literature regarding the methodologies to discretized random fields. In chapter (5) the
sparse stochastic collocation method is presented, as well as alternative methods used to solve
stochastic differential equations. In chapters (6) and (7) there are several numerical examples
using sparse collocation methods to solve static and dynamic problems in the field of mechanics.
In chapter (8) final conclusions and possible future topics of research regarding this work are
exposed.

1.3 BRIEF LITERATURE REVIEW

In the literature, there are different approaches and uses of numerical solutions intended for the
solution of stochastic partial diferential equations. The first problem at hand is to represent the
uncertainty of scalar or tensor fields, present in the partial differential operator, or in the forcing
terms using random fields. This problem has been tackled by Li and Der Kiureghian [1993],
Zhang and Ellingwood [1994], Spanos and Ghanem [1991], etc. All of the methods proposed
by these authors assume the knowledge of the autocovariance function of the random field in
question.

4
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Most of the numerical approaches that solve stochastic partial differential equations aim at ob-
taining the moments µp (which will be defined in chapter (2)) of the response. Some of the
authors that proceed with this methodology are [Ghanem and Spanos, 1991; Babuška, Tem-
pone, and Zouraris, 2004] using a Galerkin approach, and using collocation methods [Babuška,
Tempone, and Zouraris, 2004]one can also obtain the moments of the response. These methods
perform an approximation in both the physical and probabilistical domain D ⊗ Ω, but the dis-
tribution of the response is not obtained, and the only way to obtain it is by performing a Monte
Carlo simulation using the obtained approximations, which is already a computational relief
compared to a Monte Carlo simulation of the partial differential equation of interest. Never-
theless there are methods that are oriented to obtain the distribution of the response such as the
approach of Sett, Jeremić, and Kavvas [2007] and Paez [2006] with the inclusion of nonlinear
problems as well.

Galerkin methods were first approached by Jensen and Iwan [1991] and Ghanem and Spanos
[1991]. Jensen and Iwan [1991] solved the dynamical response on linear systems, considering
a gaussian stochastic process for excitation, and where the system is also characterized with
random properties (a random field) Ghanem and Spanos [1991] solved basically for linear static
problems. Later on Ghanem [1998] incursioned in different problems such as groundwater flow,
etc.

Stochastic collocation methods have the advantage that they are able to solve very easily non-
linear problems because of the decoupling of the SPDE problem, which basically is the compu-
tation ofN realizations of the SPDE of interest. Many authors have incursioned into this method
to solve different problems, where Baldeweck [1999] was the first. Baroth, Bodé, Bressolette,
and Fogli [2006]; Baroth, Bressolette, Chauviére, and Fogli [2007] solved it for a nonlinear
contact problem, Huang, Mahadevan, and Rebba [2007] used this method to solve a cantilever
beam and a plate problem (all linear elastic). Keese and Matthies [2003] have used stochastic
collocation methods to solve a stochastic groundwater flow, time varying mechanical problems,
etc. Nobile, Tempone, and Webster [2008a] have also solved the problem of ground water flow,
but considering a collocation method that incorporate also the influence importance of each
random variable in the discretized random field.

There are attempts to solve reliability problems where the limit state function G(x) has as
argument the solution of finite element realization problem, and since the general approach in
reliability problems is oriented at obtaining the gradient of the limit state function, thus there
has been a big effort to compute the sensitivity of the response of finite element models to
parameters that define the operator of the partial differential equation. In this field, Zhang and
Der Kiureghian [1993]; Haukaas and Der Kiureghian [2005]; Conte and Peng [1997] can be

5
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mentioned as leading researchers of the topic.

6



Chapter 2. General probability concepts

2. GENERAL PROBABILITY CONCEPTS

Probabilities are objective measures of the likelihood of occurrence of random events or un-
known parameters. The theory of probabilities is a formal way to express typical probability
concepts. These formal way is assisted by the rules of mathematics and logic. The first con-
tributers to the theory where Kolmogorov [1956]; Cox [1946].

2.1 PROBABILITY SPACES

The act of performing an experiment to quantify the behavior of a specific random phenomena
is defined as a trial and the result of the experiment is referred to as an outcome. For a given
experiment, there is a space of all possible outcomes, which can be determined simply by per-
forming the experiment many times under the same initial conditions. This space will be called
a sample space (a set), usually represented by Ω in the literature, such that the sample space can
be viewed as Ω = {θ1, . . . , θN}, where θi are all the possible outcomes. It must be noted that
the cardinality of the sample space can be discrete or dense and bounded or unbounded, thus if
the set is bounded and discrete, then the cardinality of the set will be finite, on the other hand if
the set is either unbounded or dense, then the cardinality will be infinite.

Remark 2.1.1. It must be pointed out that since θi are just elements that belong to the sample
space, θi ∈ Ω, then θi ∩ θj = ∅ ∀i 6= j, where ∅ is the empty set.

There is also the possibility of obtaining more than 1 outcome for each trial that is performed, so
it is necessary to define mathematically this possibility in order to group all of these outcomes
into a single set.

Definition 2.1.2. An event A is defined as a subset of the sample space, A ⊂ Ω.

7



Chapter 2. General probability concepts

An event is allowed to have more than one statement, but in any case it must satisfy that the
statements must be connected at all times with logical statements such as and, or, etc.

Example 2.1.3. Let us observe the random phenomena of coin flipping. There can be 2 out-
comes, heads (H) or tails (T ). So with no loss of generality, we can define θ1 as H and θ2 as T,
then Ω = {H,T}, which is the sample space.

Example 2.1.4. For a given year, the world cup will only host 3 teams; Italia, Brazil and
France. The sample space of the possible champion is Ω = {I, B, F}. The sample space
for the finalists will be Ω = {IB,BF, IF}. If the sample space of the first and second
place of the world cup is needed, the sample space increases its cardinality and will become
Ω = {IB,BI,BF, FB, IF, FI}

Since there are many options to assemble an event A with a given sample space Ω, then it is
interesting to define a set that contains all of the possible events.

Definition 2.1.5. A power set of Ω is defined as a set that contains as elements of all possible
subsets of Ω, and it can be written formally as P(Ω). Any subset of P(Ω) is called a family of
sets of Ω.

Example 2.1.6. If Ω = {A,B}, then P(Ω) = {{}, {A}, {B}, {A,B}}

So basically, power set can be viewed as an operation over a certain set, and it operates in such
a way that it creates a set that contains all the possible combinations of the original set.

Definition 2.1.7. A σ−algebra of a given set Ω is a collection Σ of subsets of Ω, that isAi ⊂ Ω,

such that Σ =
N⋃
i

Ai, that is closed under complementation and satisfies that it’s members are

countable unions. More formally, a subset Σ ⊂ P(Ω) is a σ − algebra with the following
properties:

1. Σ is nonempty, such that ∅,Ω ∈ Σ

2. If A ∈ Σ, then AC ∈ Σ is also satisfied, where AC is the complement of A, that can also
be viewed as Σ A.

3. The union of countably many sets in Σ is also in Σ, as well as the intersection.

∞⋃
j=1

Aj,
∞⋂
j=1

Aj ∈ Σ

8



Chapter 2. General probability concepts

This basically means that a σ − algebra is a set that contains some of the possible events that
belongs to the power set of the original set, so the definition is not as strong as opposed to the
definition of power set.

2.2 PROBABILITY MEASURE

Having in mind the general concepts of power set and σ−algebra, it is possible to return to the
primary interest of measuring certain events.

Definition 2.2.1. Given any set Ω of that represents a sample space, and a σ− algebra Σ on Ω,
then P is a probability measure if:

1. P is non negative

2. P (∅) = 0

3. P (Ω) = 1

Now what rests to do is to define for certain events of interest, the probability measure, taking
into account the sample space.

Definition 2.2.2. The probability of an event A ∈ Ω, such that A ∈ Σ is defined as:

P (A) =
∑
θ∈A

P ({θ}) (2.1)

where P is a measure that needs to be defined a priori taking into account the previous definition
and Σ is any of the possible σ − algebra that can be formed from the original sample space Ω.

When it comes to quantify the variability of an experiment that is random by nature, then this
type of variability is usually referred to as aleatory variability, which has to be treated sepa-
rately from epistemic variability. Epistemic variability is the attempt to quantify the variability
of a trial that has already taken place, but the results of the trial are unknown. In other words it
can be viewed as variability due to the lack of information or knowledge of the system in study.

Example 2.2.3. A very simply yet enlightening example is to roll die in a cup. Before the die
are rolled, it would be the case of aleatory uncertainty, but once the die are rolled, the uncertainty
turns into epistemic, which can be reduced if you are a cheat, taking little peeks as to gain more
knowledge of your hand.

9



Chapter 2. General probability concepts

2.3 CONTINUOUS RANDOM VARIABLES AND VECTORS

It is interesting to construct mappings from the sample space Ω to R, given a probability space
(Ω,Σ, P ), because probability spaces are not directly observable as opposed to the quantifiable
values of an experiment.

Definition 2.3.1. A random variable η, is a function that maps a sample space into the real
numbers and it can be written as follows:

η : Ω→ R (2.2)

Since the random variable already has a assigned probability measure P , then it is rather easy to
compute the probability of certain simple events, and from there, to define elementary concepts
to understand better the behavior of generical random variables.

Definition 2.3.2. The cumulative distribution function (CDF) Fη(z), is defined as the proba-
bility of the event in which the random variable is less or equal than a certain threshold that is
in the real numbers, this can be read more formally as:

Fη(z) = P ({θ : η(θ) ≤ z}) = P (η ≤ z) (2.3)

with z ∈ R and it can be easily checked that this function increases monotonically in the interval
of [0, 1] as variable z increases.

From the CDF, another function can be defined, which resembles a ”weight” function or mass
function, that physically tells where is the value of the random variable more likely to be before
the trial is performed.

Definition 2.3.3. The probability density function function (PDF) is defined as the derivative
of the CDF

pη(z) = F ′η(z) (2.4)

provided that Fη is differentiable at least 1 time.

It can be noted that the PDF is non-negative, and that
∫

R pη(z)dz = 1, which comes from the
previous definition of the P measure.

There is an important operator that maps from the probability space to the real numbers from
which many properties of random variables can be defined. This operator is known as expecta-
tion and it is defined as follows:

E[f(x)] =

∫ ∞
−∞

f(x)w(x)dx (2.5)

10
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where w(x) is a weight function, that in the future will be assigned as the PDF. With this in
mind, the expected value of a random variable is:

E[η] = µ1 =

∫
R
zdFη(z) =

∫
R
zpη(z)dz (2.6)

and a generalization of the moments is given by:

µp = E[ηp], p = 1, 2, . . . (2.7)

the first centered moment, also known as the variance is:

V [η] = µ′2 = E[(η − E[η])2] (2.8)

and the higher centered moments will be:

µ′p = E[(η − E[η])p], p = 1, 2, . . . (2.9)

finally, the standard deviation is defined as follows:

σ =
√
V [η] (2.10)

with these properties, it is not possible to posses the CDF or PDF of a random variable, but it is
possible to have an approximation of the latter functions

Example 2.3.4. A collection of some of the most important distributions is presented.

• Gaussian→ η ∼ N(µ, σ2)

pη(z) = ϕ(z) =
1√

2πσ2
e−

(z−µ)2

2σ2 (2.11)

E[η] = µ and V [η] = σ2

• Uniform→ η ∼ U(a, b)

pη(z) =

{
1
b−a for a ≤ z ≤ b

0 otherwise
(2.12)

• Exponential→ η ∼ Exp(λ)

pη(z) =

{
λe−λz for 0 ≤ z ≤ ∞

0 otherwise (2.13)

11
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2.3.1 Functions of random variables

Clearly, a function g : R → R that has as an argument a random variable η such that ζ = g(η),
then ζ is also a random variable. The CDF is given by:

Fζ = P (g(η) ≤ y) =

∫
R
dFζ(y) =

∫
R
I[η : g(η)≤y]dFη(z) (2.14)

where IA is the indicator function of a set A ⊂ R such that:

IA =

{
1 if η ∈ A
0 otherwise (2.15)

from this, the expected value and the variance are respectively:

E[g(η)] =
∫

R g(z)dFη(z)

V [g(η)] =
∫

R (g(z)− E[g(η)])2 dFη(z)
(2.16)

2.3.2 Random vectors

A random vector of dimension N , is function η : [Ω1 × Ω2 . . .× ΩN ] → RN is defined as a
collection of N real valued random variables, such that:

η(ω) = [η1(θ1), . . . , ηN(θN)]T (2.17)

Each component of the random vector has a sample space that can be different from each other
and to this generic random vector, it is possible to define the joint cumulative distribution
function (JCDF) as

Fη(z) = P (η1 ≤ z1, . . . , ηN ≤ zN) (2.18)

The joint probability distribution function (JPDF) naturally becomes:

pη(z) =
∂NFη(z)

∂z1 · · · ∂zN
(2.19)

provided that Fη is differentiable. From the previous definitions, it is possible to define the
expected value of a random vector.

E[η] =

∫
RN
ηdFη(z) ∈ RN (2.20)

A useful concept in multivariate analysis is the covariance matrix, which is simply:

C[η] = E[(η − E[η])(η − E[η])T ] ∈ RN×N (2.21)

12
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this matrix can give information related to two random variables that belong to a random vector.
A particular case of this matrix is the variance of each random variable belonging to the random
vector, which is basically the diagonal of the covariance matrix.

V [η] = diag(C[η]) ∈ RN (2.22)

In multivariate analysis it is very interesting to obtain the CDF or PDF of any component of the
random vector, this is referred to as the marginal distribution function Fηi : R → R, which
can be computed simply as:

Fηi = Fη(∞, . . . ,∞, zi,∞, . . . ,∞) (2.23)

It is quite clear that pηi = F ′ηi provided that Fηi is differentiable. The conditional probability
density function, ηj = [η1, . . . , ηi−1, ηi+1, . . . , ηN ] can be computed as:

pηj|ηi(zj|zi) =
pη(z)

pηi(zi)
(2.24)

Remark 2.3.5. The random variables η1, . . . , ηN are said to be independent if the distribution
Fη can be expressed as:

Fη(z1, . . . , zN) =
N∏
i=1

Fηi(zi) (2.25)

and also the PDF

pη(z1, . . . , zN) =
N∏
i=1

pηi(zi) (2.26)

(a) Change of variables Any random vector η, with a distribution function Fη(z) can be
expressed as a deterministic function of N independent random variables ζi, i = 1, 2, . . . , N ,
each with absolutely continuous distribution function Fζ(y) i.e. there exists G : RN → RN

such that η = G(ζ1, . . . , ζN) A possible way to construct such a mapping G is by using the
Rosenblatt transformation [Rosenblatt, 1952]:

Fζ1(y1) = Fη1(z1)
Fζ2(y2) = Fη2(z2|η1 = z1)
Fζ3(y3) = Fη3(z3|η1 = z1, η2 = z2)
...
FζN (yN) = FηN (zN |η1 = z1, . . . , ηN−1 = zN−1)

(2.27)

From equation (2.27), if the right side is multiplied, as well as the left side and then equated,
yields the following result:

N∏
i=1

Fζi(yi) =
N∏
i=1

FηN (zN |η1 = z1, . . . , ηi−1 = zi−1) (2.28)
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but the right hand side of equation (2.28) is Fη(z), the JCDF of η, and from this result, it
is possible to show that every JCDF has a associated at least one transformation such that the
JCDF of the transformed random vector ζ has independent components.

Example 2.3.6.

(b) Diagonalization of the covariance matrix The covariance matrix C[η] is a symmetric
and positive semi-definite. Hence, it has real eigenvalues λ1, . . . , λN ≥ 0 and a complete set of
orthonormal eigenvectors [v1, . . . ,vN ] :

C[η] = V DV T =
N∑
i=1

λivi(vi)
T (2.29)

with D diagonal and V orthogonal. Assuming that all the eigenvalues λi are strictly positive,
then it is possible to define the random vector ζ = [ζ1, . . . , ζN ]

ζ = D−
1
2V T (η − E[η]) =⇒ ζi =

1√
λi

vi · (η − E[η]) (2.30)

It is easy to show that the random variables ζi have zero mean, unit variance and are uncorre-
lated, but this does not imply that they are independent. A more compact notation of equation
(2.30)

=⇒ η = E[η] + V Dζ (2.31)

2.4 STOCHASTIC PROCESSES AND RANDOM FIELDS

Random processes or also known as Random fields emerged as a necessity to extend the con-
cept of random variables, because in certain trials, the outcome is not a number, but a function
of one or more parameters that posses a certain level of continuity. With this in mind, the defi-
nition of a random process is a family of random variables and it can be stated in a more formal
way as

Definition 2.4.1. Let D ⊂ Rd be a domain. A random field κ(x, θ) : D × Ω −→ R is a
collection of infinite random variables κ(x, θ), for each point x ∈ D.

Remark 2.4.2. The sample space is considered the same for each random variable assigned to
a point in the physical domain, simply for convenience, but in reality, this can clearly change.
Another point that can be made out is that the domain is not reserved only to a space domain, it
can be any type of domain, such as a time domain, in which the this particular random field is
usually denoted as a stochastic process, κ(t, θ).

14
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It is clearly quite cumbersome to characterize the infinite collection of random variables that
belong to the physical space D, that is why a discrete approach might be more interesting.
A random field can be viewed finite dimensional distribution of order n,with n points in the
physical domain D x1, . . . ,xn or in simple words as a random vector where each component of
the vector is associated to a random variable that belongs to the random field. From (2.18) the
JCDF is simply

Fn(z1, . . . , zn; x1, . . . ,xn) = P (κ(x1, θ1) ≤ z1, . . . , κ(xn, θn) ≤ zn) (2.32)

The random process is fully characterized by the distribution functions of any order n = 1, 2, . . .

and any set of points x1, . . . ,xn, provided that they satisfy some consistency and symmetry
conditions. The covariance function for two points x and y that belong to D is:

C[κ(x), κ(y)] = E[(κ(x, θ)− E[κ(x)])(κ(y, θ)− E[κ(y)])] = Cκκ(x,y) (2.33)

from (2.33), the variance is simply:

V [κ(x)] = C[κ(x), κ(x)] (2.34)

Definition 2.4.3. κ(x, θ) is said to be a second order random field if

V [κ(x)] <∞ (2.35)

for all x ∈ D

Example 2.4.4. In this example, a realization of a random field is performed in figure (2.1),
given a Gaussian correlation field function, and considering that the random field is Gaussian.

2.4.1 Stationary stochastic processes

Stationary stochastic models of the gaussian type was first introduced by Housner [1947]. Since
then, they have been used by a great number of authors [Bycroft, 1960], [Tajimi, 1960], [Hous-
ner and Jennings, 1964] and [Brady, 1966]). Even though these models do not represent accu-
rately what is really happening, they are a good first approximation to estimate the probabilistic
response of linear structural systems given that the used frequency content is the predominant
of the time history [Tajimi, 1960].

2.4.2 Non stationary separable stochastic processes

Since stationary stochastic processes present limitations, some authors introduced gaussian non
stationary stochastic processes, among the ones that can be mentioned are Bolotin [1960], Bog-
danoff and Kosin [1961], Goldberg, Bogdanoff, and Sharpe [1964], Amin and Ang [1966],
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Figure 2.1: This figure corresponds to the realization of a Gaussian random field with a Gaus-
sian covariance function in 2D, with µ = 0, σ = 1 and L = 10.

Shinozuka and Sato [1967], Jennings and Housner [1968] and Iyengar and Iyengar [1969]. It
must be noted that these models are just a empirical way to capture the behavior of strong
ground motion, based on the observation of real accelerograms. These models are made with a
stationary stochastic process, that provides the frequency content, modulated by a deterministic
function that multiplies the stationary process to give the amplitude evolution in time.

f(t) = ψ(t)s(t, θ) (2.36)

where ψ(t) is the modulating function that provides the variations of amplitude in time, and
s(t) is the gaussian stochastic process that provides the frequency content. Some of the basic
properties of these processes are as follow:

E[s(t, θ)] = µs(t) = 0 (2.37)

E[s2(t, θ)] = σ2
s(t) = 1 (2.38)

The latter yields a non stationary stochastic process f(t, θ), which in this particular case, is seen
as the ground acceleration. Using equations (2.37) and (2.38), the mean of the process can be
computed for any moment in time.

E[f(t, θ)] = E[ψ(t)s(t, θ)] = ψ(t)µs(t) = 0 (2.39)

The mean square of the process, that is equal to the variance for each moment is given by:

E[f 2(t)] = E[ψ2(t)s2(t, θ)] = ψ2(t)σ2
s(t) = ψ2(t) (2.40)
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This is so because σ2
x(t) = E[x2(t, θ)]− µ2

x(t) for any process x(t, θ) and last but not least, the
generalized autocorrelation function can be computed as:

Rff (t1, t2) = E[f(t1, θ)f(t2, θ)] (2.41)

and rearranging the terms yields:sub

Rff (t1, t2) = ψ(t1)ψ(t2)Rss(t1, t2) (2.42)

where Rss(t1, t2) is the autocorrelation function of the stationary process s(t, θ). Taking the
generalized autocorrelation function to the frequency domain, by means of the bivariate Fourier
transform, the following can be obtained:

Φff (ω1, ω2) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
ψ(t1)ψ(t2)Rss(t1, t2)e−i(ω2t2−ω1t1)dt1dt2 (2.43)

and using the Wiener-Kchinchine relationship, the following can be written

Φff (ω1, ω2) =

∫ +∞

−∞
Φss(ω)Ψ(ω2 − ω)Ψ∗(ω1 − ω)dω (2.44)

where

Ψ(ω) =
1

2π

∫ +∞

−∞
ψ(t)e−iωtdt (2.45)

Φff (ω1, ω2), determined by equation (2.44) is denoted as the generalized power spectral density
function.

2.4.3 Modulation functions

Many modulation functions have been proposed in the literature, and the way to adjust their
parameters is also solved differently, depending on the availability and type of the data of the
process that needs to be represented.

Bolotin [1984] and Shinozuka [1970], proposed a function that is composed by the difference
of two exponential functions.

ψ(t) =
√
β(e−αt − e−γt) (2.46)

where α < γ. This function is very inconvenient due to the difficulty to assign the parameters
α, β and γ, given any type of data..

A model function that is adjustable to accelerograms is gamma function, proposed by Saragoni
and Hart [1974]. This method supposes that the propagation medium can be modeled as a series
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of linear oscillators acting in cascade, where each oscillator properties are normally distributed.
This model also supposes that the source can be represented by a white noise excitation. Using
all of these assumptions, it is possible to arrive to the following expression for the mean square
of the process

E[f 2(t)] = ψ2(t) = βe−αttγ (2.47)

where α, β and γ are constants that can be determined by different ways.

Taking into consideration this model, Arias, Holzapfel, and Saragoni [1976], developed a sim-
ilar modulating function as the latter, but forcing the condition that the function reaches zero
once the process duration time is over. This is why the beta function was selected to represent
some random phenomena.

ψ(t) =

{ √
β
(
t
tf

)α
2
(

1− t
tf

) γ
2

si t ≤ tf

0 si t > tf
(2.48)

Given an accelerogram, the parameters of the gamma and beta method can easily be obtained
using the temporal moments of the record.

m2k =

∫ tf

0

tkf 2(t)dt =

∫ tf

0

ψ2(t)tkdt (2.49)

for k = 0, 1, . . . , n.

2.4.4 Simulation of separable processes

A separable stochastic process can be simulated numerically with the following equation:

f(t, θ) = ψ(t)
m∑
k=1

σk[Uk cos(ωkt) + Vk sin(ωkt)] (2.50)

where ψ(t) is the modulating function, σk is the variance of the process at time step k, which is
and can be approximated to:

σ2
k =

∫ ωk+
∆ωk

2

ωk−
∆ωk

2

G(ω)dω ≈ G(ωk)∆ωk (2.51)

Uk and Vk are independent random variables, that distribute normally, i.e.

Uk ∼ N(0, 1)

Vk ∼ N(0, 1)

G(ω) = 2Φ(ω) is the one sided power spectral density for ω in the positive reals and G(ω) = 0

elsewhere
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2.4.5 Evolutionary stochastic processes

Different techniques have been used to represent the change of statistical properties as well as
the change of frequency content in the time domain, such is the case of Liu [1972], who used
the instantaneous power spectral density to incorporate both the frequency and the time domain
at the same time in the following way:

P =

∫ tf

0

f 2(t) =

∫ tf

0

∫ +∞

−∞
ϕ(t, ω)dωdt (2.52)

Saragoni and Hart [1974] used different spectral functions for different intervals of time, but this
did not come out right because the sudden changes in the spectral content affected completely
the response of simple single degree of freedom oscillators.

f(t) = ψ(t)
n∑
i=1

(Ht(ti−1 − t)−Ht(ti − t))si(t) (2.53)

where ψ(t) is the modulating function, Ht(t) is the heavy side step function, and si(t) are the
stationary stochastic processes.

Hammond [1968], Shinozuka [1970] and Kameda [1980] used a evolutionary spectral function
in time using the Fourier-Stiljes transform.

f(t) =

∫ +∞

−∞
A(t, ω)e−iωtdZ(ω) (2.54)

where Z(ω) corresponds to stationary processes with orthogonal increments amongst them-
selves and A(t, ω) is a sigma oscillatory function, that has a spectral density that varies in the
time domain. On the other hand, we have the models proposed by Crempien Laborie and Der
Kiureghian [1988], that characterizes a process with non stationary amplitude and frequency
content, using the theory of sigma oscillatory processes, that is the characterization of non sta-
tionary processes as a sum of independent stochastic processes.

f(t) =
m∑
k=1

ψk(t)sk(t) (2.55)

where the evolutionary power spectral density in time is given by:

Φff (t, ω) =
m∑
i=1

ψ2
k(t)Φss(ω) (2.56)

Amongst these type of models, Conte and Peng [1997] can be pointed out as an improved and
natural consequence of Crempien Laborie [1988]. It must be pointed out that both these models
are very complicated, and that there is no study in the literature trying to relate the parameters
of these models to the parameters of the physical process of rupture, such as stress drops, area
of rupture, etc. These methods enlighten the natural phenomena observed in ground motion, but
it is very difficult to reproduce with real conditions.
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3. APPROXIMATION AND QUADRATURE OF
FUNCTIONS

3.1 THE SPACE OF SQUARE INTEGRABLE FUNCTIONS

Let us consider a deterministic function g : RN → R that holds as argument a random vector
η : Ω → RN that has a joint cumulative density function (JCDF) Fη(z), and a density pη(z). It
is clear that g is a random variable with

E[g] =

∫
RN
g(z)dFη(z) and V [g] = E [(g(η)− E[g])2] (3.1)

Definition 3.1.1. The space of square integrable functions in RN is defined as

L2
pη(R

N) =

{
g : RN → R such that

∫
RN
g(z)2dFη(z) <∞

}
(3.2)

and it is a Hilbert space with

• Inner product: 〈f, g〉L2
pη

= E[fg] =
∫

R f(z)g(z)dFη(z)

• Norm: ‖g‖L2
pη

=
√
E[g2]

L2
pη(R

N) admits an orthonormal basis ψi, i = 0, 1, . . . such that E[ψiψj] = δij for all i, j ≥ 0.
Another feature of the functions that belong to this space is that they can be expanded on this
basis in the following manner

g(η) =
∞∑
i=1

giψi(η) with gi = E[gψi] (3.3)

and this expansion satisfies that

lim
n→∞

‖g −
n∑
i=0

giψi(η)‖L2
pη

= 0 (3.4)
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3.2 APPROXIMATION OF SQUARE INTEGRABLE FUNCTIONS

3.2.1 Polynomial approximation of functions

(a) Construction of a polynomial basis in R Orthogonality is defined with respect to an
inner product, which in turn involves a measure of integration, dFη. These measures can be
absolutely continuous and it can take the following form:

dFη(z) = pη(z)dz on Ω (3.5)

where pη(z) is a positive function in Ω which in turn is referred to as the support of dFη. From
now on only support functions that are as well PDF functions will be considered. The moments
were previously defined as

µp = E[ηp], p = 1, 2, . . . (3.6)

and the assumption for the future is that all of these moments exist and they are of finite value.
The inner product of two polynomials p and q relative to the measure dFη is then well defined
as:

〈p, q〉L2
pη

=

∫
R
p(z)q(z)dFη = E[p(z)q(z)] (3.7)

There are classical weight functions dFη(z) = pη(z)dz where some representative ones are
summarized in the following table: Now as it can be noticed, these weight functions are not

Table 3.1: Classical weight functions.

name pη(z) support comment
Jacobi (1− z)α(1 + z)β [-1,1] α > −1 and β > −1

Laguerre zαe−z [0,∞] α > −1

Hermite |z|2αe−z2
[−∞,∞] α > −1

2

Legendre 1 [-1,1]

PDF functions, thus it is necessary to redefine them such that orthonormal polynomials can be
obtained from them. The orthonormal polynomials can be computed with the following three
term recurrence

Hk+1(η) = (η − αk)Hk(η)− βkHk−1(η) (3.8)

, with H0(η) = 1 and H−1(η) = 0 where

αk =
E[ηH2

k ]

E[H2
k ]

βk =
E[H2

k ]

E[H2
k−1]

(3.9)
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Table 3.2: Modified weight functions.

name pη(z) support comment
Modified Jacobi zα−1(1−z)β−1R 1

0 y
α−1(1−y)β−1dy

[0,1] α > 0 and β > 0

Modified Laguerre λe−λz [0,∞] λ > 0

Modified Hermite 1√
2πσ

e−
(z−µ)2

2σ2 [−∞,∞] σ > 0

Modified Legendre 1 [0,1]

It can be seen in the three-term recurrence relation expressed in equation (3.9), the term that
defines the series of βk is not defined for k = 0. In the case when the weights are not rep-
resenting the PDF of a random variable, then the first term of the recurrence relation will be
H0 =

∫
R pη(z)dz = β0. it must be noted that in the case of a PDF weight function, H0 = 1 as it

was stated before.

Placing the coefficients αk on the diagonal and
√
βk on the two side diagonals of a matrix

produces what is called the Jacobi matrix of the measure dFη,

J(dFη) =


α0

√
β1 0 . . . 0√

β1 α1

√
β2

0
√
β2 α2

. . .
... . . . . . .
0 0

 (3.10)

The Jacobi matrix is clearly tri-diagonal, real, symmetric of infinite order. With this in mind,
then the three term recurrence relation can also be written as√

βk+1Hk+1(η) = (η − αk)Hk(η)−
√
βkHk−1(η) (3.11)

, with H0(η) = 1√
β0

and H−1(η) = 0 and it can also be written as:

ηH(η) = Jn(dFη) +
√
βnHn(η)en (3.12)

with H(η) = [H0(η), . . . , Hn−1(η)]T and Jn are the eigenvalues of the Jacobi which are at the
zeros of H(η), and H(η) are the corresponding eigenvectors where η are the points of the zeros
of H(η).

Example 3.2.1. In the following example, well known orthogonal polynomials will be pre-
sented

• Uniform random variables, i.e. η ∼ U(−1, 1), which are referred to as Legendre polyno-
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Chapter 3. Approximation and quadrature of functions

mials
Hk+1(η) =

2k + 1

k + 1
ηHk(η)− k

k + 1
Hk−1(η)

E[HiHk] =
1

2(k + 1
2
)
δik

(3.13)

• Gaussian random variables, i.e. η ∼ N (0, 1), referred to as Hermite polynomials.

Hk+1(η) = ηHk(η)− kHk−1(η)

E[HiHk] = k!δik

(3.14)

• Exponential random variable, i.e. η ∼ Exp(1), called Laguerre polynomials

Hk+1(η) =
2k + 1− η
k + 1

ηHk(η)− k

k + 1
Hk−1(η)

E[HiHk] = δik

(3.15)

(b) Lagrange polynomial interpolation Let us consider the recent problem where the n cou-
ple values (zi, yi), with i ∈ [1, . . . ,m]. We are searching for a polynomial Lm ∈ Pm, referred
to as a interpolatory polynomial, such that

Lm(zi) = amz
m
i + . . .+ a1zi + a0 = yi, i = 0, . . . , n (3.16)

If n 6= m, then the problem will be either overdetermined or underdetermined. If n + 1 = m,
then it can be demonstrated that the problem the following theorem.

Theorem 3.2.2. If there is n + 1 points with its corresponding values such that (zi, yi), then
there is a unique polynomial Ln ∈ Pn that satisfies Ln(zi) = yi for i = 0, . . . , n

There is a specific way to find the polynomial that is given by theorem (3.2.2), and it is a the sum
of polynomials making up a base that can the whole space where the interpolation takes place.
This polynomial base is referred to in the literature as the Lagrange interpolation polynomial.

Definition 3.2.3. The Lagrange polynomial can be defined as:

Ln(z) =
n∑
i=0

yili(z) (3.17)

where li(z) ∈ Pn is a family of polynomials of order n, such that they form a base in the space
of Pn, and it can be written as:

li(z) =
∏
j

z − zj
zi − zj

(3.18)

for i = 0, . . . , n and j = 0, 1, . . . , i− 1, i+ 1, . . . , n
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Chapter 3. Approximation and quadrature of functions

It is important to compute the error associated with the use of the interpolating polynomial
Lnf(z), a polynomial that is interpolating the values {yi} at the nodes {zi}, that are related to
the successive evaluations of the function f(z) in the nodes.

Theorem 3.2.4. Let us assume the nodes z0, . . . , zn, that are going to be used to interpolate the
function f(z) ∈ Cn+1(Iz), where Iz is the smallest interval length associated with the nodal
points z1, . . . , zn+1, then the error at any point z of the domain in which the function f(z) is
defined will be given by the following expression:

En(z) = f(z)− Lnf(z) =
f (n+1)(ξ)

(n+ 1)!
νn+1(z) (3.19)

with ξ ∈ Iz and νn+1(z) =
n∏
i=0

(z − zi) is the nodal polynomial of degree n+ 1

Remark 3.2.5. It can be shown that the Lagrange polynomials can be written as:

Ln(z) =
n∑
i=0

νn+1(z)

(z − zi)ν ′n+1(zi)
yi (3.20)

Another way to write the same formula is

wj =
1∏

j

zi − zj
(3.21)

then, this will mean that wj = 1/ν ′(z), and it is possible to come up with

lj(z) = ν(z)
wj

z − zj
(3.22)

therefore, the polynomial that interpolates the data at the nodes can be expressed as

Ln(z) = L(z)
n∑
j=0

wj
z − zj

yj (3.23)

this new Lagrange formulation is a formula requiring O(n2) flops for computing quantities
independent of z. Trefethen [2004] shows that it is possible to arrive to a rule that depends on
the barycentric weights, thus calling itself the barycentric formula.

Ln(z) =

n∑
j=0

wj
z − zj

yj

n∑
j=0

wj
z − zj

(3.24)

which also has the advantage of letting new data being incorporated in a very easy way.
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Figure 3.1: Barycentric Lagrange interpolation of a Saragoni function using only 10 CC nodes.
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Figure 3.2: Barycentric Lagrange interpolation of a Saragoni function using 100 CC nodes.
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In figure (3.1) and (3.2), the Saragoni modulation function is interpolated using 10 and 100
Clenshaw-Curtis nodes. This function has a discontinuity in the first derivative at zero, thus
making this function more difficult to approximate, and as it can be seen, the Lagrange interpo-
lation using Clenshaw-Curtis nodes is quite successful.

3.3 QUADRATURE OF SQUARE INTEGRABLE FUNCTIONS IN R

3.3.1 Gauss formula

Given a positive measure dFη, the n-point Gaussian quadrature formula associated with the
measure dFη is: ∫

R
f(z)dFη(z) =

n∑
i=1

γif(τi) +Rn(f) (3.25)

which has a maximum algebraic exactness of 2n− 1

Rn(f) = 0 if f ∈ P2n−1 (3.26)

It is well known that that the nodes τi are the zeros of H(η; dFη).

3.3.2 Gauss-Radau formula

If there is an interval [a,∞], −∞ < a, containing the support of dFη, it may be desirable to
have an (n+1)-point quadrature rule of maximum degree of exactness that has a as a prescribed
node, ∫

R
f(z)dFη(z) = γR0 f(a) +

n∑
i=1

γRi f(τRi ) +RR
n (f) (3.27)

Here, RR
n (f) = 0 for all f ∈ P2n and τRi are the zeros of H(η; dFηR) where dFηR = (z−a)dFη.

This is called the Gauss-Radau formula.

3.3.3 Gauss-Lobatto formula

If the support of dFη is contained in the finite interval [a, b], it is more attractive to prescribe 2
nodes, the points a and b. Maximazing the degree of exactness subject to these constrains yields
the Gauss-Lobatto formula,∫ b

a

f(z)dFη(z) = γL0 f(a) +
n∑
i=1

γLi f(τLi ) + γLn+1f(b) +Ra,b
n (f) (3.28)
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Chapter 3. Approximation and quadrature of functions

which is written as an (n+ 2)-point formula; RL
n(f) = 0 for f ∈ P2n+1. The internal nodes τLi

are the zeros of H(η; dFηL) where dFηL = (z − a)(b− z)dFη.

Remark 3.3.1. If there is a domain Ω = [a, b], then a suitable transformation, ϕ : [a′, b′] →
[a, b], such that z = ϕ(ξ) = b−a

b′−a′ ξ + ab′+ba′

b′−a′ , which can be used to work in a more simple
domain, Ω′ = [a′, b′]

⇒
∫ b

a

f(z)dz =
b− a
b′ − a′

∫ b′

a′
f(ϕ(ξ))dξ (3.29)

3.3.4 Clenshaw-Curtis formula

This method proposed by Clenshaw and Curtis [1960] consists in a simple change of variable
z = cos(ι), and withought any loss of generality, if the integration intervale is [−1, 1], then the
following integral can also be expressed as∫ 1

−1

f(z)dz =

∫ π

0

f(cos(ι)) sin(ι)dι (3.30)

the latter integral can be resolved very efficiently using cosine series

f(cos(ι)) =
a0

2
+
∞∑
k=1

ak cos(kι) (3.31)

in which case the integral becomes∫ π

0

f(cos(ι)) sin(ι)dι = a0 +
∞∑
k=1

2a2k

1− (2k)2
(3.32)

where the cosine coefficients are

ak =
2

π

∫ π

0

f(cos(ι)) cos(kι)dι (3.33)

thus, one must perform a numeric integration again, and for periodic functions, Fourier-series
integrations are very accurate up to the Nyquist frequency, thus the cosine-series integral can be
approximated by the discrete cosine transform (DCT)

ak ≈
2

N

[
f(1)

2
+
f(−1)

2
(−1)k +

N−1∑
n=1

f
(

cos
(nπ
N

))
cos

(
nkπ

N

)]
(3.34)

for k = 0, . . . , N to later use the explicit quadrature formula. According to Trefethen [2008],
this method might have a theoretical lower polynomial degree of accuracy, but nevertheless, it
has great performance anyway, comparable to Gauss integration schemes, with the advantage
that the nodes are much faster to compute and they posses the advantage that they are nested
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knots. If the integration is required over R, then another type of variable transformation will be
needed to respect the original integration limits. Boyd proposed a very simple method based on
the following transformation z = L cot(ι), thus∫ ∞

−∞
f(z)dz = L

∫ π

0

f(L cot(ι))

sin2(ι)
dι (3.35)

and this equation can be solved simply by performing a trapezoidal rule integration scheme.∫ ∞
−∞

f(z)dz ' L
N−1∑
n=1

f(L cot(nπ
N

))

sin(nπ
N

)
dι (3.36)

This method will also render nested points.

3.4 INTERPOLATION OF SQUARE INTEGRABLE FUNCTIONS IN
RN

3.4.1 Polynomial approximation of functions

(a) Construction of a polynomial basis in multiple dimensions Assuming that the random
vector η, that is obtained after approximating by some specific method the random field of
interest, has independent components, the JPDF factorises as

pη(z) =
M∏
i=1

pi(zi) (3.37)

Let us consider that for each component of the random vector, ηi, and its corresponding density
function pηi , have associated an orthonormal basis H(i)

1 (zi), . . . , H
(i)
M (zi) of L2

pηi
. If a multi-

index i = [i1, . . . , iM ] ∈ NM is defined, then the previous can be seen in a more compact
way

Hi(z) = H1
i1

(z1)H2
i2

(z2) . . . HM
iM

(zM) (3.38)

and {Hi,∀i ∈ NM} will be an orthonormal basis in L2
pη(R

M), it is also referred to as a tensor

product basis.

(b) Interpolation using tensor product spaces

Definition 3.4.1. A tensor product space is defined as

ΞT
N = span{Hi,∀j(i) ≤ N} (3.39)
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So basically a tensor product space is the inclusion of approximating terms in each of the
components up to the N th term. If in each of the components there is N basis functions, the
dimension of the tensor space ΞT

N will be NM , this means that the dimension of the space grows
exponentially fast with M , the number of random variables (the curse of dimensionality).

• If ΞT
N , the space of polynomials of degree at most N in each component of the random

vector, then its dimesion will be

dim(ΞT
N) = (N + 1)M (3.40)

• If the space ΞT
N corresponds to a constant piecewise approximation over a cartesian parti-

tion of RN with N intervals in each component of the random vector, then its dimension
is

dim(ΞT
n ) = 2NM (3.41)

Because of the curse of dimensionality, tensor product approximations can be used with few
random variables.

(c) Interpolation using sparse product spaces

Definition 3.4.2. A sparse product space is defined as

ΞS
N = span{Hi,∀|j(i)| ≤ N} (3.42)

These type of spaces overcome partially the curse of dimensionality while keeping almost the
same approximability properties as tensor product spaces.

• The space ΞS
N that corresponds to polynomials of total degree at most of N will have the

following dimension

dim(ΞS
N) =

∑
|j(i)|≤N

1 =
(M +N)!

N !M !
=

(
M +N

l

)
� (1 +N)M (3.43)

• In a sparse wavelet space the dimension will be

dim(ΞS
N) =

∑
|j(i)|≤N

1 = 2N
(M +N)!

N !M !
= 2N

(
M +N

N

)
� 2NM (3.44)
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for a large M , these relations behave in an asymptotical way. So a sparse projection using a
polynomial basis can be constructed as

P S
Ng(η) =

∑
j(k)≤N

gkHk(η) (3.45)

where gk = E[gHk], and the amount of this coefficients is equal to the dimension of the ap-
proximating space ΞS

N

3.4.2 Sparse interpolation

The difference between 2 levels of interpolation is

∆i(g) = Ii(g)− Ii−1(g) (3.46)

where I−1(g) = 0

for integers w ∈ N, the following sets are defined

X(w,N) = {i ∈ NN , i ≥ 1 :
∑N

k=1(ik − 1) ≤ w}

Y (w,N) = {i ∈ NN , i ≥ 1 : w −N + 1 ≤
∑N

k=1(ik − 1) ≤ w}
(3.47)

where |i| = i1 + · · ·+ iN for i ∈ NN , then the Smolyak formula reads

IS(w,N)g(η) =
∑

|i|∈X(w,N)

M⊗
n=1

∆ing(η) (3.48)

This expression can also be written as

IS(w,N)g(η) =
∑

|i|∈Y (w,N)

(−1)N−|j|
(
M − 1

N − |i|

)
IT (N)g(η) (3.49)

where

IT (N)g(η) =

mi1∑
j1=1

· · ·
miN∑
jN=1

g(ηi1j1 , . . . , ηiN jN )lj1(ηi1) · · · ljN (ηiN ) (3.50)

Hence the sparse interpolation is obtained as a linear combination of tensor product interpola-
tions where the set of points where the function is evaluated will be

H(w,N) =
⋃

i∈Y (w,N)

(
ϑi1 × . . .× ϑiN

)
(3.51)

with
ϑi = {ηi1, . . . , ηimi} (3.52)

is the collection of tensor grids used in sparse interpolation.
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3.5 QUADRATURE OF SQUARE INTEGRABLE FUNCTIONS IN RN

In Barthelmann, Novak, and Ritter [2000], it is possible to find different methods to compute
integrals using cubature methods (the same as quadratures but in multiple dimesions). If our
integral is in a N -dimensional cube, ΛN , then the integral of any function can be expressed as

IN(g) =

∫
ΛN

g(η)dη (3.53)

A tensor product cubature is

IN(g1 ⊗ · · · ⊗ gN) = I1(g1)⊗ · · · ⊗ IN(gN) (3.54)

then the approximation in the ith component is (using any of the previously described 1d ap-
proximations methods)

U i(gi) =

mi∑
j=1

f(ηij) · γij (3.55)

then using (3.54), it is possible to compute numerically (3.53) as

(U i1 ⊗ · · · ⊗ U iN )(g) =

mi1∑
j1=1

· · ·
miN∑
jN=1

g(ηi1j1 , . . . , ηiN jN ) · (γi1j1 ⊗ · · · ⊗ γiN jN ) (3.56)

, which is a tensor cubature. This has the shortcoming that as the dimension of the integral
increases, the number of points increases dramatically, thus not making this method efficient.
To overcome this shortcoming, sparse interpolation gives the opportunity to developed sparse
numerical integration schemes. Let

∆i = U i − U i−1 (3.57)

A(w,N) =
∑

|i|∈X(w,N)

(∆i1 ⊗ · · · ⊗∆iN ) (3.58)

or equivalently it can be written as

A(w,N) =
∑

|i|∈Y (w,N)

(−1)w+N−|i|
(

N − 1

w +N − |i|

)
· (U i1 ⊗ · · · ⊗ U iN )(g) (3.59)

thus simply using for each dimension the desired quadrature method, to later use a method that
is proven by Babuška, Nobile, and Tempone [2007] and Nobile, Tempone, and Webster [2008a]
to be convergent to the tensor case, which decreases the amount of points needed to compute
the integral with respect to the full tensor scheme.
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Chapter 4. Discretization of random fields

4. DISCRETIZATION OF RANDOM FIELDS

The principal concern is to reduce a infinite amount of information (random variables that be-
long to a random field) to a finite amount of random variables such that the main information
of the random field is well represented. The approximate random field does not only need to
be well represented, but also with the minimum amount of random variables to decrease the
complexity of calculations. In the literature there are many methods which will be presented.

4.1 SERIES EXPANSION METHODS

Let κ(x, θ) : D×Ω −→ R be a random field with a certain autocovariance functionCκκ(x,y) =

C[κ(x, θ), κ(y, θ)], then an approximation can be

κN(x,ω) =
N∑
i=1

ηiφi(x) (4.1)

This can be viewed as an expansion of each possible realization of κ(x, θ0) over a basis {φi},
where ηi(θ) are the coordinates of this expansion. This can be done since this is a Hilbert space
(Neveu, don have this paper yet), thus it accepts expansions of the sort.

4.2 KARHUNEN-LOÈVE EXPANSION

The Karhunen-Loève expansion of a random field κ(x, θ) is a spectral decomposition of the
autocovariance function, so that there exists a sequence of values λ1 ≥ λ2 ≥ . . . λk . . . ≥ 0,
with lim

k→∞
λk = 0 and a corresponding sequence of functions ϕi(x) : D → R, i = 1, 2, . . . such

that ∫
D
Cκκ(x,y)ϕi(y)dy = λiϕi(x) (4.2)
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which is a Fredholm integral equation, where the kernel is the covariance function, being
bounded, symmetric and positive definite. The eigenfunctions satisfy

∫
D ϕi(x)bj(y)dx = δij

where δij is the Kronecker delta, thus being orthogonal. Now, it is possible to define a sequence
of random variables ηi(θ), i = 1, 2, . . . such that

ηi(θ) =
1√
λi

∫
D

(κ(x, θ)− E[κ(x)])ϕi(x)dx (4.3)

and if the covariance between the original random field and the Karhunen-Loève expansion of
such random field C[κ(x, θ), κ̂(x, θ)] is computed, it is possible to conclude that E[ηiηj] =

δij = 0, thus proving that these variables are uncorrelated with zero mean and unit variance and
can be viewed as the coordinates of the expansion and of any possible realization. With all this
in mind, the random field κ(x, θ) can be represented as the infinite series

κ(x, θ) = E[κ(x)] +
∞∑
i=1

√
λiϕi(x)ηi(θ) (4.4)

thus creating a separation of the space and the random variables of the field κ(x, θ). The
Karhunen-Loève expansion has very interesting properties, such as:

• Due to non accumulation of the eigenvalues around a zero value, it is possible to order the
terms of the expansion in descending way, such that if a truncation of the series defined
in (4.4) gives an approximated Karhunen-Loève expansion

κN(x,ω) = E[κ(x)] +
N∑
i=1

√
λiϕi(x)ηi(θ) (4.5)

• The covariance eigenfunction basis {ϕ(x)} is optimal in the sense of the mean square
error

err =

∫
D
E[(κ(x, θ)− κN(x, θ))2]dx (4.6)

, resulting from the truncation after the N th term is minimized (with respect to the value
of any other complete basis {φi(x)}).

• The closed form solution for each random variable in (4.3) is easy to obtain, and if κ(x, θ)

is a Gaussian field, then each random variable ηi is gaussian, and for this specific case,
{ηi} forms a set of independent standard normal random variables. It can also be proven
[Loève, 1977] that the expansion of Gaussian random fields is almost surely convergent
(I guess this is very important for time stochastic processes).

• The variance error, after truncating the series in the N th term is given by

V [κ(x, θ)− κN(x, θ)] = σ2(x)−
N∑
i=1

λiϕ
2
i (x) = V [κ(x, θ)]− V [κN(x, θ)] (4.7)
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The right hand side of the previous equation is always positive, hence the truncated
Karhunen-Loève expansion always under-represents the variance of the field.

Example 4.2.1. If there is a covariance function

C(x, y) = σ2e−|x−y| (4.8)

with x ∈ [0, 1], then the eigenfunctions will be:

ϕi(x) =
wi cos(θix) + sin(θix)√

θ2

2
+ (1 + sin(2θ)

2θ
) + 1

2
(1− sin(2θ)

2θ
) + sin2(θ)

(4.9)

and where θi is related to the eigenvalues and can be obtained from the following equation:

2θ cos(θ) + (1− θ2) sin(θ) = 0 (4.10)

It is very easy to obtain these roots with any method, such as the Newton scheme. so then it is
possible to obtain the eigenvalues from the following relationship:

θ2
i =

2− λi
λi

σ2 (4.11)

thus making it possible to characterize the random field represented by the covariance in equa-
tion (2.33) using the Karhunen-Loève expansion.

This type of expansion has a limited number of closed form solutions for the set of covariance
functions, thus it is necessary to perform other types of numerical expansions to have a spectral
representation of the random field given a covariance function.

4.3 GALERKIN EXPANSION METHOD

A Galerkin-type procedure was suggested by Spanos and Ghanem [1991] and it consists in
defining a complete basis of the Hilbert space {φi(x)}∞i=1 ∈ L2

pη(D). Each eigenfunction of
Cκκ(x,y) may be represented by an expansion of the form

ϕj(x) =
∞∑
i=1

dijφi(x) (4.12)

where dij are the unknown coordinates. The Galerkin procedure aims at obtaining the best ap-
proximation of ϕj when truncating the above series after the N th term, which is accomplished
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Figure 4.1: The first 4 eigenfunctions are plotted along the domain for a exponential covariance
function with a correlation length of 1. This was done using a piecewise Galerkin
method.
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Figure 4.2: The corresponding eigenvalues are plotted for the exponential covariance function
with a correlation length of 1.

35



Chapter 4. Discretization of random fields

by projecting ϕj onto the spaceHN spanned by {φi}Ni=1. The approximation of each eigenfunc-
tion is possible because they belong to the space of square integrable functions. The residual
can be written as

εN(x) =
N∑
i=1

dij

[∫
D
Cκκ(x,y)φi(y)dy − λjφi(x)

]
(4.13)

which is orthogonal toHN , thus the following is true

〈εN , φj〉 ≡
∫
D
εN(x)φj(x)dx j = 1, . . . , N (4.14)

which leads to a simple linear system

CD = ΛBD (4.15)

where the different matrices are defined as follows

Bij =
∫
D φi(x)φj(x)dx

Cij =
∫
D

∫
D Cκκ(x,y)φi(x)φj(y)dxdy

Dij = dij

Λij = δijλj

(4.16)

thus rendering a series of linear systems to be solved.

In figures (4.1) and (4.2), the eigenvalues and eigenfunctions of an exponential covariance
function are computed, using a piecewise Galerkin method. The discretization of the domain
was done using 40 equispaced elements, to assure a good approximation of the first 4 eigen-
functions. The correlation length of the covariance function is equal to 1. In figures (4.3)
and (4.4), the same computations where done, with the exception that the covariance function
changed to a squared exponential with the same correlation length. From both cases it can be
deduced the a rather small amount of terms of the expansion are needed to represent well the
random field, where in the exponential case, up to 5 terms are needed, and in the case of the
squared exponential, only 2 terms are needed (This is simply done by simple eye inspection).
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Figure 4.3: The first 4 eigenfunctions are plotted along the domain for a Gaussian covariance
function with a correlation length of 1. This was done using a piecewise Galerkin
method.
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Figure 4.4: The corresponding eigenvalues are plotted for the Gaussian covariance function
with a correlation length of 1.
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4.4 ORTHOGONAL SERIES EXPANSION METHOD

Often no closed form solution are available to the problem of obtaining eigen-pairs given a
kernel function such as the covariance. Taking this into mind, Zhang and Ellingwood [1994]
proposed a method to avoid the computation of the eigen-pairs just by selecting prior to any
calculation, a complete set of orthogonal functions. A similar idea had been used previously by
Lawrence (1987), (don’t have this paper). Let {ϕi(x)}∞i=1 be a family of orthogonal functions
forming a basis in L2, and without any loss of generality, let this family be orthonormal as well∫

D
φi(x)φj(x)dx = δij (4.17)

If κ(x, θ) is a random fields, with a given covariance function Cκκ(x,y), any realization of
the field is a function of L2 which can be expanded by means of the previously selected set of
orthogonal functions, and this expansion can be

κ(x, θ) = µ(x) +
∞∑
i=1

χi(θ)φi(x) (4.18)

where χi(θ) are zero-mean random variables. Using the orthogonality properties described
before, and also with the help of basic algebra, it is possible to show that

χ(θ) =

∫
D

[κ(x, θ)− µ(x)]φi(x)dx (4.19)

and
(Cχχ)kl ≡ E[χkχl] =

∫
D

∫
D
Cκκ(x,y)hk(x)hl(y)dxdy (4.20)

If κ(x, θ) is a zero mean Gaussian field, thenit is easy to prove that {χi}∞i=1 are zero mean
Gaussian random variables, but unfortunately, they might bee correlated, thus it is necessary to
construct the covariance matrix of these random variables, and to perform a transformation into
uncorrelated random variables using the spectral decomposition method described previously.

4.5 OPTIMAL LINEAR ESTIMATION METHOD

The method was proposed by Li and Der Kiureghian [1993]. It is also mentioned in the literature
as Kriging method or best linear unbiased estimator (BLUE) in the field of geostatistics. It is
a special case of the method of regression on linear functionals, and the approximation has the
following form

κN(x, θ) = a(x) +
N∑
i=1

bi(x)χi (4.21)
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where N is the total number of nodal points involved in the approximation. The functions a(x)

and bi(x) are obtained using a nonlinear regression, minimizing in each point x the error of the
variance, subjected to having an unbiased estimator of the real random field in the mean, these
consitions are expressed as

∀x ∈ D
Minimize V [κ(x, θ)− κN(x, θ)]

subjected to E[κ(x, θ)− κN(x, θ)] = 0
(4.22)

The condition of problem (4.22) requires that

E[x] = a(x) + bT (x) · E[χ] (4.23)

then, the error of the variance, which is always a positive value, holds true

V [κ(x, θ)−κN(x, θ)] = σ2(x)−2
N∑
i=1

bi(x)C[κ(x, θ), χi]+
N∑
i=1

N∑
j=1

bi(x)bj(x)C[χi, χj] (4.24)

The minimization problem is solved for each bi(x), thus requiring that the partial derivatives of
bi(x) be equal to zero for each i yields

∀i = 1, . . . , N −C[κ(x, θ), χi] +
N∑
j=1

bj(x)C[χi, χj] = 0 (4.25)

which can also be written in matricial form

−Cκχ(x) + Cχχ · b(x) = 0 (4.26)

with this result, the final estimation is written as

κN(x, θ) = E[x] + CT
κχ(x) · C−1

χχ (χ− E[χ]) (4.27)

Separating the deterministic terms from the stochastic ones gives

κN(x, θ) =
[
E[x]− CT

κχ(x) · C−1
χχ · E[χ]

]
+

N∑
i=1

χi(C
−1
χχ · Cκχ) (4.28)

and since the variance errors are always positive, then this approximation always underestimates
the variance.

4.6 EXPANSION OPTIMAL LINEAR ESTIMATION METHOD

The expansion optimal linear estimation method was proposed by Li and Der Kiureghian [1993].
It is an extension of OLE using a spectral vector of nodal variables χ. Assuming that κ(x, θ)
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is Gaussian, the spectral decomposition of the covariance matrix Cχ, where the random vector
χ = {κ(x1, θ), . . . , κ(xN , θ)} is

χ(θ) = µχ +
N∑
i=1

√
λiζi(θ)ϕi(x) (4.29)

where the set of random variable {ζi}|Ni are independent and standard normal. The pair (λi, ϕi)

are the eigenvalues and eigenvectors of the covariance matrix Cχχ that satisfies

Cχχϕi = λiϕi (4.30)

hence, if the substitution of (4.30) into (4.21) and solving the OLE problem yields

κN(x, θ) = µ(x) +
N∑
i=1

ζi(θ)√
λi
ϕTi Cκχ (4.31)

As in the Karhunen-Loève expansion, the series can be truncated after r terms, of course after
sorting the eigenvalues λi in a descending order. The variance error of this methos will be

V [κ(x, θ)− κN(x, θ)] = σ2(x)−
r∑
i=1

1

λi
(ϕTi Cκχ)2 (4.32)

The problem with this method is the choice of points in the random field, such to assure a good
result. This was not aborded by the author of the method.
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Chapter 5. Methods to solve stochastic differential equations

5. AVAILABLE NUMERICAL METHODS TO SOLVE
STOCHASTIC DIFFERENTIAL EQUATIONS

Depending on the type of variability existing in the domain (the operator) of the problem, such
as Young’s modulus, Poisson’s ratio, etc, there are different suitable numerical methods to solve
each of these problems. If the variability is very small around the mean value, a simple Neumann
expansion around the mean value of the operator is a recommendable solution [Sudret and Der
Kiureghian, 2000; Webster, 2007]. It is very easy to use since it only requires the solution of
a standard deterministic partial differential equation, and the number of times that this problem
needs is exactly the amount of terms that was taken in the Neumann expansion. In the same
way, a Taylor expansion technique has been developed in the past, around the mean of the
solution [Sudret and Der Kiureghian, 2000]. Jensen [1990]; Jensen and Iwan [1991] showed
several dynamical examples in which perturbation method solutions where unsatisfactory. He
used highly variable operators and forcing terms. In his study, he did not give convergence
properties of any kind. Babuska has shown that the conditions of convergence for perturbation
methods depends on the noise level, thus the method does not work for certain levels of noise.

Monte Carlo methods are not restricted by the dimension number or by the variability of the
problem. Another advantage of this method is the straightforwardness to parallelize the problem
at hand, thus solving M deterministic realizations by sampling the coefficients of the equation
with independent identically distributed (iid) approximations of the solution. The deterministic
solutions can be solved by any method, such as the Galerkin finite element method, finite dif-
ferences, etc. With each of these responses, the desired statistical information can be retrieved.

The Galerkin approach dates back to the work of Jensen [1990]; Spanos and Ghanem [1991];
Deb, Babuška, and Oden [2001] among others. The main problem with this approach is that it
leads to coupled set of differential equations, thus making it hard to solve, specially for the case
of nonlinear problems.
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Collocation methods where first introduced by Tatang [1995]; Baldeweck [1999]; Babuška,
Nobile, and Tempone [2007], the main idea of these methods is to solve stochastic partial dif-
ferential equations simply by converting this problem into a decoupled deterministic partial
differential equations, thus making the problem completely parallelizable. Another great ad-
vantage of this method is that it solves nonlinear problems of all types very easily. The specific
approach is to compute in specific realizations of the parameters that represent the operator (the
sparse grid points), and with these solutions, to interpolate using sparse interpolation

5.1 STANDARD DEFINITIONS

Let us consider the following problem

L(κ)(u) = f in D (5.1)

whereL is an operator of a certain kind withought loss of generality, and it is defined in a domain
D. Both κ = κ(x, θ) and f = f(x, θ) can be considered as random fields of a certain kind. The
latter variables can describe any kind of scalar field, such as the Poisson ratio, Young’s modulus
or the external forces acting on ∂D. The random field on the right hand side and left hand side
of equation (5.1) are considered to be functions of a finite amount of random variables (finite
noise) such that it can be written as

κ(x, θ) = κ(x; η1, . . . , ηN)
f(x, θ) = f(x; η1, . . . , ηN)

(5.2)

This approximation of a random field using a random vector is possible and it can be done using
different methodologies such as the truncation of the Karhunen-Loève expansion, etc. Many
assumptions can be made of the chosen random vector that represents the both random fields
κ(x, θ) and f(x, θ), such as the correlation between the components of the random vector as
C[ηi, ηj] = δij , the type of distribution that each component has, etc.

Sometimes, the uncertain coefficients of the operator L or the forcing term of equation (5.1)
needs to be more specified, an example is illustrated.

Example 5.1.1. If the coefficient κ(x, θ) is always greater than κmin for it to have physical
sense, then the following transformation guarantees that this will always be certain.

log(κ− κmin)(x, θ) = b0(x) +
N∑
i=1

√
λibi(x)ηi(θ) (5.3)

The latter is simple the truncation of the Karhunen-Loève expansion of log(κ − κmin). The
same can be done for the forcing term f(x, θ)
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Lemma 5.1.2. Let η be an N -dimensional random vector defined on (ΩN ,F , P ) and let ζ be
a σ-measurable random variable defined on the same space. Then ζ = g(η) for some Borel
measurable g : RN → R, this means that ζ will depend only on the components of η, that is,
ζ(η1, . . . , ηN)

This lemma can be extended to problem (5.1) for the case of finite dimensional noise, which
can be viewed in the following way:

L(κN)(uN) = fN in D (5.4)

using lemma (5.1.2) it can be concluded that uN = uN(x; η1, . . . , ηN)

Remark 5.1.3. It can be noticed that in the definition of the finite noise problem (5.2), for both
the forcing term and the term associated with the operator have dependency on the same random
variables. It is clear that in most of the real cases this is not, so the problem can be viewed in
the following way:

κ(x, θ) = κ(x;ηa)
f(x, θ) = f(x;ηf )

(5.5)

thus uN = uN(x;ηa,ηf )

5.2 STOCHASTIC COLLOCATION APPROXIMATION

Let uh(x,η) be the semi-discrete solution of∫
D
κ(x, θ)∇uh(x, θ) · ∇vh(x)dx =

∫
D
f(x)vh(x)dx ∀vh ∈ Vh (5.6)

Consider a sparse interpolation formula ISN : L2
pη(R

N) → ΞS
N that uses a sparse grid HS

N . The
stochastic collocation FEM solution is obtained by simply interpolating the semi-discrete solu-
tion on the sparse grid

uNh (x,η) = ISNuh(x,η) ∈ Vh ⊗ ΞS
N (5.7)

This means that if the points in the probability domain are η(1), . . . ,η(M) ∈ HN that belong
to the sparse grid, then using the pre-defined sparse interpolation, the solution can be achieved
simply by computing M deterministic solutions u(j)

h , j = 1, . . . ,M , using the points that be-
long to the sparse grid, and projecting the solution of these points into the sparse interpolation
formula.
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5.3 STOCHASTIC GALERKIN APPROXIMATION USING DOUBLE
ORTHOGONAL POLYNOMIALS

This method approximates the problem (5.1) with a solution that belongs both to the space of
the discretized space in the physical domain, as well as in the discretized probabilistic space
with uph such that

E [B(uph(x, θ), v
p
h(x, θ))] + E [N(uph(x, θ), v

p
h(x, θ))] = E

[
〈fN(x, θ), v(x, θ)〉Lpη

]
(5.8)

with v(x, θ) belonging to the same space as the proposed ansatz for the solution of this problem,
B is the bilinear form and N is the term that arises due to nonlinear effects. As an example let
us consider the diffusion problem used by Babuška, Tempone, and Zouraris [2004] in their
original work, such that there is no nonlinear terms as well as no reaction terms in order to keep
the derivations as simple as possible.{

∇ · (κ(x, θ)∇u) in D ⊂ Rd

u = 0 on ∂D (5.9)

Babuška, Tempone, and Zouraris [2004] developed an efficient method to solve stochastic finite
elements, using a stochastic Galerkin approach, that incorporates double orthogonal polynomi-
als in the probabilistical domain, to obtain a number of undecoupled systems, each of the size
of a deterministic realization of the same problem. Using a p × h finite element version, and
withought any loss of generality, attention is focused in finding a solution uph ∈ V h ⊗ ΞS

p such
that

E

[∫
D
κ(x, θ)∇uph(x, θ) · ∇v(x, θ)dx

]
= E

[∫
D
f(x, θ)v(x, θ)dx

]
(5.10)

Up to now, many authors have used this approach, which leads to fully coupled linear systems,
which makes it necessary to use highly efficient parallel strategies to find the desired numeri-
cal solution. To avoid this problem, a particular basis was chosen by Babuška, Tempone, and
Zouraris [2004], double orthogonal polynomials since this choice of basis decouples the prob-
lem, but this can only be achieved when the random variables are independent (which is the
case for KL expansion with Gaussian fields), and when each of these fields (aN , fN ) are a linear
combination of these random variables. Let {H(η)} be a basis for the subspace zp ⊂ L2

pη(Ω),
and {φ(x)} be a basis for the subspace Vh ⊂ H1

0 (D). Then an approximation of the solution
can be

uph(x, η) =
∑
j,i

uijHj(θ)φi(x) (5.11)

and the test functions can be taken as

v(x, θ) = Hk(θ)φl(x) (5.12)

44



Chapter 5. Methods to solve stochastic differential equations

to find uij coefficients, then equation (5.3) will be equivalent to∑
j,i

E

[
Hk(z)Hj(z)

∫
D
κ(x, θ)∇φi(x) · ∇φl(x)dx

]
uij

= E

[
Hk(z)

∫
D
f(x, z)φ(x)dx

]
∀k, l

(5.13)

defining

Gil(z) =

∫
D
κ(x, θ)∇φi(x)∇φl(x)dx

and fl(z) =

∫
D
f(x, z)φl(x)dx

(5.14)

If the random field is expanded into a KL expansion, then

Gil(z) =

∫
D

(
E[κ(x, θ)] +

N∑
p=1

bpzp

)
(5.15)

where
G0
il ≡

∫
D
E[κ(x, θ)]∇φi(x) · ∇φl(x)dx

and Gp
il =

∫
D
bp(x)∇φi(x) · ∇φl(x)dx

(5.16)

Since Hk ∈ Ξs
p, with a multi-index p = [p1, . . . , pN ], it is enough to take it as a product

Hk(z) =
N∏
r=1

Hkr(zr) (5.17)

where Hkr : Ωr → R is a basis function of the subspace Zpr = span{Hhr : h = 1, . . . , pr + 1}.
Keeping the choice of Hk in mind,∫

Ω

pη(z)HkHjGil(z)dz = G0
il

∫
Ω

N∏
m=1

pηm(zm)Hkm(zm)Hjm(zm)dz

+
N∑
n=1

Gn
il

∫
Ω

zn

N∏
m=1

pηm(zm)Hkm(zm)Hjm(zm)dz

(5.18)

Now, for every set Ωn, n = 1, . . . , N , the polynomials Hj(z) =
∏N

n=1Hjn(zn) need to be
chose, and they can be selected to satisfy biorthogonality, so that they can satisfy∫

Ωn

pηn(zn)Hkn(zn)Hjn(zn)dzn = δkj

and
∫

Ωn

znpηn(zn)Hkn(zn)Hjn(zn)dzn = cknδkj

(5.19)

To find these polynomials, N eigen-problems need to be solved, each of them having a size
of (1 + pn). The computational work required by these eigen-problems is negligible compared
with the effort to solve for uij Anyway, there is also the possibility of keeping these polynomials,
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for a given support Ωn, and performing a simple change of variables using the property stated
in (2.27) will reduce computational complexity. With this last finding, the right hand side of
equation (5.13) will be ∑

j,i

(∫
Ω

pη(z)Hk(z)Hj(z)Gil(z)dz

)
= G0

il

∫
Ω

pη(z)Hk(z)Hj(z)dz +
N∑
n=1

Gn
il

∫
Ω

znpη(z)Hk(z)Hj(z)dz

=

(
G0
il +

N∑
n=1

cknG
n
il

)
δkj

(5.20)

thus rendering a N decoupled problem.

5.4 MONTE CARLO APPROXIMATION

The statistical information, such as the response moments of uncertain systems can be computed
using the standard Monte Carlo method finite element methodE[uN(x, η1, . . . , ηN)2], simply by
sample averages of iid realizations of the coefficients that model the governing equation at hand.
For each realization, it does not matter what method is used to solve the governing equation, as
long as the method converges approprietly at the possible realizations of the random fields that
describe the coefficients of the model. This method is quite robust but it lacks speed conver-
gence, since the convergence rate with respect to the number of samples is roughly O(1/

√
M)

(Babuska) which is very slow, but on the other hand, it does not depend on the dimension of the
problem.
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6. NUMERICAL EXAMPLES USING THE SPARSE GRID
STOCHASTIC COLLOCATION METHOD FOR STATIC
PROBLEMS

In this chapter, a numerical example will be developed and it consists in searching the statisti-
cal response of a static mechanical problem. Different source of randomness are incorporated
(either in the forcing term or in the operator) and are solved using the sparse grid stochastic col-
location method. These solutions are contrasted with the solution given by the standard Monte
Carlo method.

6.1 BEAMS WITH UNCERTAIN MECHANICAL PROPERTIES

Let us consider now a beam with uncertain mechanical properties along the length (see figure
6.1). For this a collocation method will be used and the solution of the problem will be expanded

IS(w,N)g(η) =
∑

|i|∈Y (w,N)

(−1)N−|j|
(
M − 1

N − |i|

)
IT (N)g(η) (6.1)

where g = [u v θ]T The mechanical properties can be viewed as a random field with the follow-
ing covariance function

Cκκ(x, y) = e−
(x−y)2

L2 (6.2)

for x, y ∈ [0, 1], where L represents the correlation length. The truncated Karhunen Loève
expansion of this covariance function is given by

κN(x,η) = 1 + η1(θ)

(√
πL

2

)
+

N∑
k=2

λkbk(x)ηk(θ) (6.3)

with

λk =

√√
πLe

„
− b

k
2 c

2π2L2

8

«
(6.4)
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Figure 6.1: The beam has a unit length and is loaded at the tip with a concentrated force P.

bk(x) =

{
cos(bk/2cπx) if k odd
sin(bk/2cπx) if k even (6.5)

the random coordinates are uniformly distributed in [−
√

3,
√

3] with zero mean and unit vari-
ance. and EN(x,η) = 150 + eσκN (x,η) (GPa) represents the elastic Young modulus along the
length of the beam and with σ = 2. The values of the constants that define the random field will
give plausible realizations for the elastic modulus along the length of the beam.

6.1.1 Finite elements for beams using a residual formulation

Since there will be the need to compute the deterministic response for many cases, a Galerkin
method is developed to solve each of these deterministic problems. According to the virtual
work principal, the external work is equal to the internal work, thus yielding

Lintv = Lextv (6.6)

where the internal work is Lintv =
∫
D σδεdV . On the other hand, the kinematics of the beam can

be stated as
ε = ε0 − yχ = u,x − yv,xx (6.7)

which means that plane sections remain plane. Clearly δε = δu,x − yδv,xx, therefore

Lintv =

∫
D
σ(δu,x − yδv,xx)dV =

∫
l

(Nδu,x +Mδv,xx)dl (6.8)

sinceN =
∫
A
σdA andM = −

∫
A
yσdA. Using a finite element approximation of the following

form for the beam as
u ' Nuû û,x ' Buû
v ' Nvv̂ v̂,xx ' Bvv̂

(6.9)

introducing these approximations in the equation of virtual work will give a set of equations

Lintv = δûT
∫
l

BuTNdl + δv̂T
∫
l

BvTMdl (6.10)
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which can also be written as
Lintv = δûTFint

axi + δv̂TFint
bend (6.11)

and recalling that
Lextv = δûTFext

axi + δv̂TFext
bend (6.12)

the principal of virtual work implies that

R(û, v̂) = [Raxi(û) Rbend(v̂)]T = 0 (6.13)

There are many algorithms available in the literature to solve this kind of system of equations,
for instance the Newton-Raphson scheme. For the sake of simplicity, the integration rule for
each cross section is done using a composite midpoint rule over ns horizontal stripes of width b
and height h/ns.

⇒ N =

∫
A

σdA ' bh

ns

ns∑
i=1

σi (6.14)

and

M = −
∫
A

σydA ' −bh
ns

ns∑
i=1

σiyi (6.15)

where yi = h
2

(
2i−1
ns
− 1
)

. To compute the internal forces a simple 3 point Simpson quadrature
is more than enough, using the first end, the midpoint and the end of the element as P1, P2 and
P3, thus the expression for the internal force reduces to

Fint =

∫
l

[
BuTN
BvTM

]
dl (6.16)

where also, R = Fint − Fext and the integral can be solved with many quadrature schemes,
such as Simpson and Gauss. For this numerical example a 3 point Simpson rule was used. To
obtain the consistent tangent, the residual needs to be differentiated.

dR = dFint =
[

Fint
,û Fint

,v̂

] [ û
v̂

]
= KT

[
û
v̂

]
(6.17)

Defining the tangent modulus as ET = σ,ε, and remembering that ε,û = Bu, ε,v̂ = −yBv, it is
possible to compute the derivatives in the consistent tangent as follows (using the chain rule)

N,û = Bu
∫
A
ETdA ' Bu bh

ns

∑ns
i=1ET i

N,v̂ = −Bv
∫
A
ETydA ' −Bv bh

ns

∑ns
i=1ET iyi

M,û = −Bu
∫
A
ETydA ' −Bu bh

ns

∑ns
i=1ET iyi

M,v̂ = Bv
∫
A
ETy

2dA ' Bv bh
ns

∑ns
i=1ET iy

2
i

(6.18)

In the end, the consistent tangent can be computed along the element using any quadrature rule,
like the Simpson rule that was used for this example.
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Figure 6.2: The sparse grid using Clenshaw-Curtis nodes for N = 2, L = 2, w = 3.

The equations (6.14) and (6.15) can be a set of nonlinear equations due to the nonlinearity of the
constitutive equations. In the case of linear elastic constitutive relationships, equations (6.14)
and (6.15) shall become a set of nonlinear equations. In the following numerical examples, both
linear elastic and elastic perfectly plastic constitutive relationships are approached.
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Figure 6.3: The realization of the elastic Young modulus along the length of the beam of each
point of the previous sparse grid is shown.
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Figure 6.4: The absolute value of the weights assigned to each sparse grid point used before.
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Figure 6.5: Mean (in solid blue) plus minus the standard deviation (in red dashed) of the deflec-
tion at the tip of the beam due to a load of P = 1.5 (MN). the beam is considered
to be elastic.
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Figure 6.6: Mean (in solid blue) plus minus the standard deviation (in red dashed) of the deflec-
tion at the tip of the beam due to a load of P = 1.5 (MN). the beam is considered
to be inelastic, with σy = 250 (MPa).
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Figure 6.7: The surface response of the deflection of the tip of the beam with a load of P = 1.5
(MN) for the elastic case. This surface was computed using sparse interpolation
techniques and the previous sparse grid where the black dots are the realizations of
the sparse grid points.
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Figure 6.8: The surface response of the deflection of the tip of the beam with a load of P = 1.5
(MN) for the inelastic case, with σy = 250 (MPa). This surface was computed
using sparse interpolation techniques and the previous sparse grid where the black
dots are the realizations of the sparse grid points.
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Figure 6.9: The PDF of the deflection at the tip of the beam using a fitting scheme with Beta
function with the moments and limits, the K-S density estimation with Monte Carlo
simulation using the response surface and finally a Monte Carlo simulation from
scratch, also using K-S density estimation. All of these for the elastic case and
loaded with P = 1.5 (MN).
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Figure 6.10: The PDF of the deflection at the tip of the beam using a fitting scheme with Beta
function with the moments and limits, the K-S density estimation with Monte
Carlo simulation using the response surface and finally a Monte Carlo simulation
from scratch, also using K-S density estimation. All of these for the inelastic case
and loaded with P = 1.5 (MN) and σy = 250 (MPa).
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Figure 6.11: The 3d sparse grid for the previous problem with the addition of uncertain loading,
the load P ∼ U between the values of 1 and 1.5 (MN). N = 3 and w = 5.
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Figure 6.12: Expected value (solid blue line) plus minus the standard deviation (dashed red
line) of the tip deflection.
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Figure 6.13: Beta PDF estimation, using the first 2 moments as well as the limits and K-S
density estimation with the straight forward Monte Carlo simulation, the inelastic
case, with σy = 250 (MPa).
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It is worth mentioning that the tip load that was chosen is under the ultimate value for which all
of the fibers in the section reach the plastic region, considering a yielding stress of σy = 250

(MPa). It can be seen in figures (6.5) and (6.6), that the variability is very small. This is due
to the small variability that was taken in the original random field for the respresentation of
the elastic modulus. Figure (6.3) might be misleading since there are sparse grid points the
yield very variable realizations of the elastic modulus along the length of the beam. Figure
(6.4) shows the absolute value of the weights for each sparse grid point, and as it can be seen,
there are many of this nodes that do not contribute to the final response in mean and standard
deviation, specially for the points in the extreme part of the grid, which are the ones that escape
the mean values, thus giving a small variability to the response of the beam problem for both
the elastic and inelastic case.

Another important issue to be mentioned is that the random field that was used in this case is
nonstationary, and this can be seen in figure (6.3), since the variability concentrates more in the
middle of the beam, rather that the extremes, thus giving nonstationarity to the problem.

For this problem, the amount of sparse grid points that was used was very small in comparison
with the exactitude of the results shown in figures (6.9) and (6.10). For this case, the number
of flops used in the sparse grid computation plus the Monte Carlo simulation was far less than
the case of full Monte Carlo simulation. For both cases, 10000 points where used in the Monte
Carlo simulations. In the case of the beta estimation, it can be said that it is not a very good
approximation. Beta estimation is relatively exact for the third case of the beam, where the tip
load distributes uniformly, but still it is not recommendable to use this approach.
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7. NUMERICAL EXAMPLES USING THE SPARSE GRID
STOCHASTIC COLLOCATION METHOD FOR DYNAMIC
PROBLEMS

In this chapter, several dynamical examples will be presented, to show that the proposed method
produces satisfactory results also in dynamics. For this purpose, a Bouc-Wen model has been
selected, subjected to random pulses, as well as the response of a 1d soil column using the
spectral element method (SEM), considering a medium that is modelled as a piecewise constant
random field. Later, the treatment of the random SDOF random oscillator in the parameters and
subjected to a stochastic Gaussian process is studied in detail.

7.1 RESPONSE OF LINEAR SYSTEMS SUBJECTED TO STOCHAS-
TIC GAUSSIAN PROCESSES

Many authors have worked on this specific problem with different angles of approach. Such is
the case of Lin [1965], who is one of the first to work on this field. Lin studied the response of
linear systems, subjected to aleatory pulse sequences. Roberts [1965] used the same approach to
solve the problem, and in both cases, a non-stationary noise method, developed by Parzen [1962]
was used which is quite similar to the one developed by Rice [1944]. This same methodology
was used by Wen [1974] to study the of lightweight equipment joined to structural systems.
Hammond [1968] studied the response of systems subjected to base excitation by stochastic
processes that have a evolutionary power spectral density function with the principal aim of
including in the structural response the variation of the frequency content in time.

Roberts [1965] used relations in the frequency domain, assuming that the excitation was period-
ical and non-stationary. He was careful to define a period of time larger than the duration of the
duration of the external loading to avoid aliasing in the signal. This method however presents
problems for the computation of the response, if the selected period of time is not long enough.
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Holman and Hart [1974] computed the response of linear systems excited by segmented and
modulated stationary processes. They considered that the frequency content was invariant in
each time segment. Corotis and Vanmarcke [1975] proposed a method to compute the response
of linear structural systems subjected to sudden white noise.

Crempien Laborie and Saragoni [1978] studied the influence of strong ground motion duration
in the response of linear structural systems. For this they assumed a time segment of the excita-
tion to be stationary. This proved the necessity to study the response of non-stationary response
of structural systems.

Spanos and Lutes [1980] also used an evolutionary power spectral density function to compute
the response assuming that the response can be modelled as a Markov process.

The approach that will be developed now considering that the excitation is of Gaussian nature,
both non-stationary in time and in frequency and the structural system is linear.

7.1.1 Response of a simple oscillator

The response of a simple linear, SDOF (single degree of freedom) oscillator can be deduced
from its ordinary differential equation that is stated as

mü(t) + cu̇(t) + ku(t) = −mF (t) (7.1)

where m is the mass of the oscillator, c is the viscous damping and k is the elastic rigidity
of the oscillator. u is the displacement of the oscillator. u is the displacement of the oscillator,
considering the location were the oscillator is at rest as the reference state position. The external
excitation is considered as a basal acceleration F (t) which later on will be considered as a
stochastic process. The problem stated in (7.1) has an equivalent formulation when normalizing
my the mass m

ü(t) + 2ξωnu̇(t) + ω2
nu(t) = f(t) (7.2)

In this last equation, 2ξωn = c
m

and ω2
n = k

m
where ωn is the circular natural frequency of the

system and ξ is the critical damping ratio of the system. With these 2 constants, the dynamical
behavior of the system can be characterized. The response of the system can be written as a
Duhammel integral solution, which is simply a convolution integral given by

u(t) =

∫ +∞

−∞
h(t− τ)f(τ)dτ (7.3)
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where h(t) is the response of the system to an unitary impulse excitation, that can be considered
as a delta Dirac function, thus yielding

h(t) =

{
1
ωa
e−ξωnt sin(ωat) si t ≥ 0

0 si t < 0
(7.4)

where ωa = ωn
√

1− ξ2 If the expected value of the response is taken, then

E[u(t)] =

∫ +∞

−∞
h(t− τ)E[f(τ)]dτ (7.5)

and since the expected value of E[f(t)] = 0 is equal to zero, then equation (7.5) will become

E[u(t)] = 0 (7.6)

To compute the autocorrelation of the response, the following can be done

Ruu(t1, t2) = E

[∫ +∞

−∞
h(t1 − τ1)f(τ1)dτ1

∫ +∞

−∞
h(t2 − τ2)f(τ2)dτ2

]
(7.7)

using the properties of commutativity , then

Ruu(t1, t2) =

∫ +∞

−∞

∫ +∞

−∞
h(t1 − τ1)h(t2 − τ2)E[f(τ1)f(τ2)]dτ1dτ2 (7.8)

Ruu(t1, t2) =

∫ +∞

−∞

∫ +∞

−∞
h(t1 − τ1)h(t2 − τ2)Rff (τ1, τ2)dτ1dτ2 (7.9)

And in this last equation, the autocorrelation of the response has been computed, in function of
the autocorrelation of the process.

7.1.2 Response to a stationary process

A stationary stochastic process which has a autocorrelation function that depends only on the
difference between two instances of time t1 and t2

Rff (t1, t2) = Rff (t2 − t1) (7.10)

which can be related to the power spectral density function (PSD) Sff (ω) through the Wiener-
Kchinchine theorem

Rff (t2 − t1) =

∫ +∞

−∞
Sff (ω)eiω(t2−t1)dω (7.11)

replacing this last equation in (7.9) and alternating the order in the integral yields

Ruu(t1, t2) =

∫ +∞

−∞
Sff (ω)

∫ +∞

−∞
h(t1 − τ1)e−iωτ1dτ1

∫ +∞

−∞
h(t2 − τ2)eiωτ2dτ2dω (7.12)
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and with a proper variable change as ξ1 = t1 − τ1, ξ2 = t2 − τ2, τ = t2 − t1, it is possible to
obtain

Ruu(τ) =

∫ +∞

−∞
Sff (ω)e−iωτ

∫ +∞

−∞
h(ξ1)e−iωξ1dξ1

∫ +∞

−∞
h(ξ2)eiωξ2dξ2dω (7.13)

and the integral becomes ∫ +∞

−∞
h(τ)e−iωξidξi = 2πĥ(ω) (7.14)

where ĥ(ω) is the Fourier transform of h(t), given by

ĥ(ω) =
1

2π

∫ +∞

−∞
h(τ)e−iωξidξi =

1

2π((ω2
n − ω2)− 2iξωnω)

(7.15)

therefore, the autocorrelation function can be written as

Ruu(τ) =

∫ +∞

−∞
Sff (ω)e−iωτ ĥ(ω)ĥ∗(ω)dω (7.16)

If t1 = t2, then τ = 0. This corresponds to the mean square response

Ruu(0) = E[u2(t)] =

∫ +∞

−∞
‖ĥ(ω)‖2Sff (ω)dω (7.17)

If Sff varies slowly with respect to ‖ĥ(ω)‖, then the system will behave like a narrow band
filter, this means that the highest contribution of the excitation of the process will be around the
natural frequency ωn [Caughey and Stumpf, 1961], thus equation (7.17) will take the following
form

E[u2(t)] = Sff (ωn)

∫ +∞

−∞
‖ĥ(ω)‖2dω (7.18)

Caughey and Stumpf [1961], among many, use the residual theorem to solve equation (7.18),
leaving the following equation

E[u2(t)] =
πSff (ωn)

2ξω3
n

(7.19)

If the mean value is considered to be zero, then equation (7.19 completes the probabilistical
structure of the response in the case of an Gaussian excitation.

7.1.3 Response of a non-stationary separable process

if f is considered to be a non-stationary separable process, then using the property stated in
equation (7.8), the autocorrelation function can be found, which is given by

Rff (t1, t2) = ψ(t1)ψ(t2)Rss(t1, t2) (7.20)

61



Chapter 7. Sparse grid collocation methods for dynamic problems

now equation (7.9) can be used to find the autocorrelation of the response

Ruu(t1, t2) =

∫ +∞

−∞

∫ +∞

−∞
h(t1 − τ1)h(t2 − τ2)ψ(τ1)ψ(τ2)Rss(τ1, τ2)dτ1dτ2 (7.21)

Using the Wiener-Kchinchine relationship, the autocorrelation function can be expressed in
terms of the autocorrelation of the stationary process, an the latter, can be expressed in terms of
the power spectral density function of the stationary process as follows

Rss(τ1, τ2) =

∫ +∞

−∞
S(ω)eiω(τ2−τ1)dω (7.22)

making some algebraic arrangements the next expression can be obtained

Ruu(t1, t2) =

∫ +∞

−∞
S(ω)

∫ +∞

−∞
h(t1 − τ1)ψ(τ1)e−iωτ1dτ1

∫ +∞

−∞
h(t2 − τ2)ψ(τ2)eiωτ2dτ2dω

(7.23)
Calling non-stationary transfer function to

Υ(t, ω) =

∫ +∞

−∞
h(t− τ)ψ(τ)e−iωτdτ (7.24)

and replacing this term in equation (7.23), it is possible to obtain

Ruu(t1, t2) =

∫ +∞

−∞
Υ(t1, ω)Υ∗(t2, ω)S(ω)dω (7.25)

where Υ∗(t, ω) is the complex conjugate of Υ(t, ω). In the case that t1 = t2 = t, then the mean
square response will be

E[u2(t)] =

∫ +∞

−∞
‖Υ(t, ω)‖2S(ω)dω (7.26)

To obtain the probabilistical structure of the response, it is convenient to have the correlation
functions of the displacement-velocity,E[u̇(t)u(t)] and the mean square response of the velocity
E[u̇2(t)]. To obtain these functions, the methodology used by Crempien Laborie and Crempien
de la Carrera [2005] can be used, this is achieved derivating with respect to time equation (7.26),
and developing these expressions, the correlation between u y u̇ can be obtained.

∂

∂t
(E[u2(t)]) =

∂

∂t

∫ +∞

−∞
Υ(t, ω)Υ∗(t, ω)S(ω)dω (7.27)

The partial derivative can be taken into the integral

∂

∂t
(E[u2(t)]) =

∫ +∞

−∞

[
Υ̇(t, ω)Υ∗(t, ω) + Υ̇∗(t, ω)Υ(t, ω)

]
S(ω)dω (7.28)

The same with the expected operator

E[2u̇(t)u(t)] =

∫ +∞

−∞

[
Υ̇(t, ω)Υ∗(t, ω) +

(
Υ̇(t, ω)Υ∗(t, ω)

)∗]
S(ω)dω (7.29)
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If this expression is further manipulated, the correlation can be reached

2E[u̇(t)u(t)] = 2

∫ +∞

−∞
Real

[
Υ̇(t, ω)Υ∗(t, ω)

]
S(ω)dω (7.30)

E[u̇(t)u(t)] =

∫ +∞

−∞
Real

[
Υ̇(t, ω)Υ∗(t, ω)

]
S(ω)dω (7.31)

If equation (7.25) is partially derived with respect to any two different instances of time, then

∂2

∂t1∂t2
Ruu(t1, t2) =

∂2

∂t1∂t2

∫ +∞

−∞
Υ(t1, ω)Υ∗(t2, ω)S(ω)dω (7.32)

The partial derivatives can enter the integral in the following way

∂2

∂t1∂t2
Ruu(t1, t2) =

∫ +∞

−∞
Υ̇(t1, ω)Υ̇∗(t2, ω)S(ω)dω (7.33)

If t1 = t2 = t, then the mean square of the velocity will be obtained

E[u̇2(t)] =

∫ +∞

−∞
‖Υ̇(t, ω)‖2S(ω)dω (7.34)

expression that can be a analytical in certain cases.

Using equation (7.24), it is possible to see that it is also the solution of a simple SDOF sub-
jected to ψ(t) exp(−iωt), thus it can be solved using any numerical integration scheme such as
Newmark family for deterministic cases of ωn and ξ. To take into account the variability of the
natural frequency and the damping ratio the Law of Total Expectation can be used. This law
states that E[u2] = E[E[u2|η]], where η is a vector representing other uncertain parameters in
equation (7.2).
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Figure 7.1: SDOF subjected to a dynamic force modelled as a stochastic process.
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Figure 7.2: Sparse grid plot for the possible values of the circular natural frequency and the
critical damping ratio with N = 2 and w = 3.
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Figure 7.3: Realizations of the mean square displacement response in time for each point in the
previous sparse grid where the linear oscillator was subjected to a Gaussian process
with a gamma envelope. The coefficients of the envelope are α = 0.18, β = 0.5
and γ = 3.55.
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Figure 7.4: Mean square displacement response in time of a linear SDOF subjected to a non-
stationary Gaussian process with uncertain circular natural frequency and critical
damping ratio (both distribute uniformly). The coefficients of the gamma envelope
are α = 0.18, β = 0.5 and γ = 3.55.
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Figure 7.5: The absolute value of the weights for every sparse grid point that was considered
in the original grid.
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After solving (7.24), equation (7.26) needs to be solved, and for this case, a quadrature based on
the Laguerre quadrature rule. It is clear that the solution of this method is based on the positive
reals, and the problem at hand is in the whole real domain, but since the integrand of (7.26) is a
even function, then

E[u2(t)] = 2

∫ +∞

0

‖Υ(t, ω)‖2S(ω)dω (7.35)

and since S(ω) can be taken as a weight function, then the corresponding Jacobi matrix is
formed, and the nodes and weights are computed.

It is also important to mention that the response is also a Gaussian process, since it was originally
subjected to a Gaussian process in the first place, and because of the linearity of the operator.

In figure (7.2) we can see a sparse grid plot of natural frequencies versus the damping ratio
of the linear elastic SDOF in figure (7.1). The natural frequency and the damping ratio are
considered to distribute uniformly between the range of values seen in figure (7.2. The mean
square response of the SDOF subjected to a Gaussian process for each point of the sparse grid in
figure (7.2) can be seen if figure (7.3). The final mean square response considering uncertainty
in the damping and in the natural frequency can be seen in figure (7.4) and the absolute value of
the weights for each sparse grid point is showed in figure (7.5) with η1 is the natural frequency
ωn and η2 is the damping ratio ξ.

7.2 RESPONSE OF BOUC-WEN SDOF TO RANDOM PULSES

Let us consider the Bouc-Wen model for a SDOF that uses k1 and k2 as the stiffnesses that try
to capture the bilinear behavior of a lead bearing or other more general cases [Bouc, 1967]. The
change of stiffness occurs at a deformation uy. If we take the ratio of the stiffnesses α = k2

k1
,

then it is possible to use the following model

p(t) = αk1u(t) + (1− α)k1uyz(t) (7.36)

which is the total restoring force of the system, and the differential equation that determines
z(t) is given by

uyż(t) + γ|u̇(t)|z(t)|z(t)|n−1 + βu̇(t)|z(t)|n − u̇(t) = 0 (7.37)

where β and γ are dimensionless quantities that control the shape of the hysteresis loops. The
dimensionless parameter n, can be viewed as a controller of the degree of smoothness of the
curves during the transition of the stiffness and z(t) is a dimensionless function of time. As it
can be seen, the last 2 equations are dimensionally correct. As it can be seen clearly, if k2 = 0
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and n = 0, then the Bouc-Wen model reduces to a simple elastic perfectly plastic hysteresis
rule. These equations can be incorporated in the equation of motion as follows

mü(t) + p(t) = −müg(t) (7.38)

which does not have terms of velocity damping, but it can be included in the following manner

mü(t) + cu̇(t) + p(t) = −müg(t) (7.39)

and this equation takes into account viscous and hysteretic behavior, and it can be solved using
a state-space formulation.

ü(t) + 2ξω1u̇(t) + αω2
1u(t) + (1− α)ω2

1uyz(t) = −üg(t) (7.40)

To solve this set of nonlinear differential equations, the matlab function ode15s was used,
which is a variable order solver that is based on the numerical differentiation formulas. It also
uses alternately the backward differentiation formulas, that are also known as Gear’s method
[Shampine and Reichelt, 1997], which are very efficient for these kind of problems. dissipated
energy

WD =

∫ ∞
0

F (t)du =

∫ ∞
0

F (t)u̇dt (7.41)

where
F (t) = cu̇(t) + p(t) (7.42)

The advantage of this parameter that depends in time, is that it is a relatively smooth function,
thus it is more or less easy to characterize.

68



Chapter 7. Sparse grid collocation methods for dynamic problems

k1 ,k2 ,uy

m

üg
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Figure 7.6: A SDOF with a bilinear Bouc Wen model of hysteresis subjected to random pulses.
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Figure 7.7: Possible acceleration pulses applied at the base of the SDOF in figure (7.6).
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Figure 7.8: Normalized force-displacement curves of a SDOF oscillator with a Bouc-Wen non-
linear rule due to the previous pulses (in accordance by colors).
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Figure 7.9: Displacement response in time of a SDOF oscillator with a Bouc-Wen nonlinear
rule due to the previous pulses (in accordance by colors).
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Figure 7.10: Sparse grid plot of the possible maximum amplitudes and pulse durations using
N = 2 and w = 6.
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Figure 7.11: The expected value (solid blue line), plus minus the standard deviation (dashed
red line) of the normalized internal energy due to the random pulses stated before.
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Figure 7.12: Sparse interpolation of the final normalized internal energy where the black dots
are the realizations of the sparse grid points.
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Figure 7.13: The estimation of PDF using a Beta fitting method, K-S density estimation com-
bined with Monte Carlo simulation with the response surface and K-S density es-
timation with straightforward Monte Carlo simulation for the normalized internal
energy.
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Plot (7.7) are simply possible acceleration pulses, which are applied to the nonlinear SDOF
of figure (7.6). The normalized force displacement curves due to the acceleration pulses are
presented in plot (7.8) as well as the displacement plots which are shown in figure (7.9). From
these plots it is clear that time duration is an important factor to take into account, just as peak
ground acceleration.

Figures (7.10), (7.11) and (7.12) are respectively the sparse grid plot considering the peak
ground acceleration and the pulse duration, the expected value plus minus the standard devi-
ation and finally the response surface of the normalized internal energy. In figure (7.10) a great
variability can be observed as time evolves.

In graph (7.13) the method does not compare favorably to the straightforward Monte Carlo
simulation. There are events which cannot be found by the sparse grid interpolation thus giving
relatively different PDF functions. There must be a very local maxima or minima in the response
function that cannot be represented by the sparse interpolation, and to find this irregularity it is
necessary to turn to other methods. But for this kind of problem, there is not much in the
literature to start with, and it can be said that it is an open problem for the field.

7.3 SITE RESPONSE USING 1D SEM

The spectral element method is a numerical method that is formulated based on the weak form
of a partial differential equation. Basically it is a higher order finite element method. It was
introduced into the field of computational seismology in the late 90’s and the main contributors
are Komatitsch and Vilotte [1998]; Komatitsch and Tromp [1999]; Chaljub, Komatitsch, Vilotte,
Capdeville, Valette, and Festa [2007]; Faccioli, Maggio, Paolucci, and Quarteroni [1997]. In
this section the 1d wave equation will be presented, as well as the weak form of this equation.
Later the ansatz of this equation will be presented and the final solution will be derived.

The 1d wave equation can be stated as the following partial differential equation defined in a
physical domain Ω = [−H, 0].

ρ(z)u,tt(z, t)− [µ(z)u,z(z, t)],z = f(z, t) (7.43)

where u is the displacement field, ρ is the mass density, µ is the shear modulus and f is the
forcing term. The traction along the depth of the physical domain Ω will always be t(z, t) =

µ(z)u,z(z, t). It is obvious that the traction on the free surface will always be zero t(0, t) = 0

at all times, this property will be useful as the derivation of this problem advances. At the
bottom, an absorbing condition will be imposed such that t(−H, t) = tabs(−H, t), so that the
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downgoing waves do not reflect upwards again at the bottom condition. To solve this equation
using the spectral element method it is necessary to take it to it’s weak form, for this purpose
the wave equation is multiplied by an arbitrary displacement field v(z), to later integrate in the
whole domain ∫

Ω

[ρ(z)u,tt(z, t)− [µ(z)u,z(z, t)],z − f(z, t)] v(z)dz = 0 (7.44)

As it was mentioned before, this equation holds for any admissible displacement field v(z)

where admissible means that this function does posses a certain level of continuity over the
domain Ω. This last equation can be integrated by parts to obtain∫

Ω

ρ(z)u,tt(z, t)v(z)dz +

∫
Ω

µ(z)u,z(z, t)v,z(z)dz

=

∫
Ω

f(z, t)v(z)dz + [t(0, t)v(0)− t(−H, t)v(−H)]
(7.45)

continuing the derivation and as it was mentioned before, t(0, t) = 0, so the weak form finally
is ∫

Ω

ρ(z)u,tt(z, t)v(z)dz +

∫
Ω

µ(z)u,z(z, t)v,z(z)dz

=

∫
Ω

f(z, t)v(z)dz − tabs(−H, t)v(−H)
(7.46)

Now it is possible to divide the spatial domain Ω in elements Ωe, such that Ω = ∪Ee=1Ωe. After
this consideration the previous equation can be rewritten as

E∑
e=1

∫
Ωe

ρ(z)u,tt(z, t)v(z)dz +
E∑
e=1

∫
Ωe

µ(z)u,z(z, t)v,z(z)dz

=
E∑
e=1

∫
Ωe

f(z, t)v(z)dz − tabs(−H, t)v(−H)

(7.47)

The displacement field can be expanded in series as

u(z, t) = u(F e(ξ), t) ≈
N∑
i=0

u(F e(ξi), t)li(ξ) (7.48)

where F e(ξ) is a transformation into the isoparametric space (in this case [−1, 1]), such that
quadrature turns out to be much more simple. ξi are the quadrature nodes that for computational
purposes, it is very attractive to choose Gauss Lobatto Legendre nodes, because in this way, the
mass matrix turns out to be diagonal. li(ξ) are the components of the Lagrange interpolation
that are used to characterize the solution in each element by enriching the polynomial degree.
With this approximation, the final system of equations is

MÜ + KU = SF(t)

Which is possible to solve with different numerical methods such as the Newmark family.

74



Chapter 7. Sparse grid collocation methods for dynamic problems

z

cs1~Uniform60,85m/s

cs2~Uniform1000,1300m /s

h=15m

=0.04

=0.03

=1200kg/m3

=1800kg/m3

Figure 7.14: The 1d site conditions and the respective uncertainty in the shear wave speed of
each layer.

The problem that is analyzed is a medium with 2 layers as seen in figure (7.14). Both of these
layers have a shear wave velocity which is modelled as a uniform random variable, and the
distribute between 60 [m/s] and 85 [m/s] for the upper layer, and 1000 [m/s] and 1300 [m/s].
The 1d soil column is subjected to a deterministic Ricker wavelet that can be appreciated in
figure (7.15). The parameter of interest will be the Arias intensity [Arias, 1970], which is given
by the following equation

Ia =
π

2g

∫ ∞
0

Ü2(top)dt (7.49)

This quantity of interest is also relatively smooth, thus easy to characterize.
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Figure 7.15: The 1d soil column is subjected to this Ricker wavelet at the base.
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Figure 7.16: Sparse grid for the possible shear wave velocities of the bi-medium 1d soil column
with N = 2 and w = 6.
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Figure 7.17: Mean (solid blue line), plus minus the standard deviation (dashed red line) of the
evolutionary Arias intensity at the free surface due to a Ricker wavelet at the base
of the medium.
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Figure 7.18: Response surface of the Arias intensity at the free end using sparse interpolation
where the black dots are the realizations of the sparse grid points.
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Figure 7.19: PDF estimation using a Beta fitting method using the first 2 moments and the
limits, Monte Carlo simulation combined with K-S density estimation using both
the response surface and simulation from scratch. All of witch are due to a Ricker
wavelet at the base of the medium.
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Figure 7.20: Absolute value of the weights for each sparse grid point.
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Figure (7.16) shows the sparse grid using Clenshaw-Curtis nodes and in figure (7.17), the mean
plus minus one standard deviation of the evolutionary Arias intensity is obtained. The plots
show that the sparse grid interpolation and subsequent Monte Carlo simulation are very much
precise, and is almost comparable to the full Monte Carlo simulation. In figure (7.18) it is
clear that the shear wave velocity of the bottom medium in not an important factor, i.e. the
final response has no great variations if this parameter if changed, thus there is a waste of
computational effort due to the evaluation of points along the variation of cs2. An interesting
approach to solve this problem would be to use anisotropic parse grids [Nobile, Tempone, and
Webster, 2008b]. The explanation of this phenomena is due to the high contrast between the two
mediums, which allows an incoming wave from the bottom to the upper layer to be trapped in
the low velocity medium for a long while, thus not letting the high velocity medium to be used
to propagate the SH waves in comparison with the low velocity medium. In figure (7.19), the
final PDF for the beta fitting using the moments is plotted as well as the K-S density estimation
using the results of the Monte Carlo simulation for both the straightforward case and the sparse
grid approach. There is a remarkable similitude between both of the K-S density estimations
(straightforward and sparse grod approach). The beta estimation method using the moments is
quite far from the actual solution. Finally the absolute values of the weights are shown in figure
(7.20).
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8. CONCLUDING REMARKS AND FUTURE RESEARCH

8.1 CONCLUDING REMARKS

The sparse grid stochastic collocation methods are shown to be regular for problems in which
the solution is smooth, and irregular with irregular response. It is also not a good idea to use this
method for problems in which the noise level is very high, since this will lead to the necessity
to include many terms in the Karhunen Loève expansion, thus increasing the dimension of the
problem. There will be a point in which if the dimension increases too much, the best approach
will be the use of Monte Carlo simulation, because as mentioned before, Monte Carlo simulation
does not depend on the dimension number, though it converges rather slow.

The moments are not enough for engineering applications, at least not combined with beta func-
tions, though these computed with the moments and boundaries are maximizing the information
entropy [Harr, 1989]. But still they seem far off with respect to the two Monte Carlo simulation
based techniques that where exposed. It must be pointed out that there are other methods that
are present in the literature that estimate PDF functions using the first four moments which were
not explored in this work, the reader is referred to Johnson [1949].

8.2 FUTURE RESEARCH

There should be a different approach for dynamical/hyperbolic problems, to find the solution
of quantities of interest in time. For linear problems this can be done with the approach that
was used in chapter (7), but there is still an open question in the field of nonlinear response
of systems (only Fokker-Planck solutions and linearized methods that do not hold convergence
properties). A similar approach to the elastic case should be used.

A special effort direct towards improving of a priori anisotropic sparse grid collocation methods
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should be done since it is a computational effort saver.

Problems with localized maxima and minima should be addressed using adaptive schemes to
find this singular points.

Another interesting problem is the correct characterization-discretization of random fields using
the Galerkin approach, but with wavelets to make the matrices of the problem as sparse as
possible [Phoon, Huang, and Quek, 2004], thus reducing the computational effort that needs
to be done to solve the eigenvalue and eigenvector problem. It would also be interesting to do
this considering that for different zones withing the domain of interest, a different covariance
function, which can be a realistic way to model a large domain.
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d’Essone, France.
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Baroth, J., P. Bressolette, C. Chauviére, and M. Fogli (2007). An efficient SFE method using
Lagrange polynomials: Application to nonlinear mechanical problems with uncertain
parameters. Computer methods in applied mechanics and engineering 196, 4419–4429.

Barthelmann, V., E. Novak, and K. Ritter (2000). High dimensional polynomial interpolation
on sparse grids. Adv. Comput. Math 12 (4), 273–288.

Bogdanoff, J. L. and F. Kosin (1961). Comment on Reliability of Structures in Resisting
Chance Failure. Operations Research 9, 123–126.

Bolotin, V. V. (1960). Statistical Theory of the Aseismic Design of Strucutres. In J. Science

82



References

Council of Japan (Ed.), Proceedings of Second World Conference on Earthquake Engi-

neering, 1960, pp. 1365–1374. Science Council of Japan. Volume 2.

Bolotin, V. V. (1984). Random Vibrations of Elastic Systems. The Hauge, Holland: Martinus
Nijhoff.

Bouc, R. (1967). Forced vibration of mechanical system with hysteresisStatistical Method
of Determining the Maximum Response of a Building Structure During a Earthquake. In
Proceedings 4th Conference on Nonlinear Oscillation, Prague, Czechoslovakia.

Brady, A. G. (1966). Studies of Response to Earthquake Ground Motions. Technical report,
California Institute of Technology, Pasadena.

Bycroft, G. N. (1960). White Noise Representation of Earthquakes. Journal of Engineering

Mechanics Division, ASCE 86, 1–16.

Caughey, T. K. and H. J. Stumpf (1961). Transient Response of Dynamic Systems under
Random Excitations. Journal of Applied Mechanics 28, 563–566.

Chaljub, E., D. Komatitsch, J.-P. Vilotte, Y. Capdeville, B. Valette, and G. Festa (2007).
Spectral element analysis in seismology. In R.-S. Wu and V. Maupin (Eds.), Advances in

Wave Propagation in Heterogeneous Media, Volume 48 of Advances in Geophysics, pp.
365–419. Elsevier - Academic Press.

Clenshaw, C. W. and A. R. Curtis (1960). A method for numerical integration on an automatic
computer. Numerische Mathematik 2, 197–205.

Conte, J. P. and B. F. Peng (1997). Fully Nonstationary Analytical Earthquake Ground-
Motion Model. Journal of Engineering Mechanics, ASCE 123, 15–24.

Corotis, R. B. and E. H. Vanmarcke (1975). Time Dependant Spectral Content of a System
Response. Journal of Engineering Mechanics Division, ASCE 101, 623–637.

Cox, R. T. (1946). Probability, frequency, and reasonable expectation. American Journal of

Physics 14, 1–13.

Crempien Laborie, J. E. (1988). A Time-Frequency Model for Earthquake Motion and Struc-

tural Response. Ph. D. thesis, University of California, Berkeley.

Crempien Laborie, J. E. and J. G. F. Crempien de la Carrera (2005). Failure Probability of a
Simple SDOF Elastic Structure Subyected to an Evolutionary Model of Ground Motion.
AMCA, Mecnica Computacional 25, 721–741.

Crempien Laborie, J. E. and A. Der Kiureghian (1988). A Time-Frequency Evolutionary
Model for Earthquake Motion and Structural Response. Structural Safety 6, 235–246.

Crempien Laborie, J. E. and G. R. Saragoni (1978). Influence of the Duration of Earthquake
Ground Motion in Average Response Spectra. In Proceedings of Sixth European Confer-

ence on Earthquake Engineering, Dubrovnic, Jugoslavia, pp. 143–150. Volume 2.

83



References
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