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Abstract

In the last years Additive Manufacturing (AM) or 3D printing has conquered a relevant role

among the newest enabling technologies of the fourth industrial revolution. 3D printing allows

to realize parts made of di�erent materials without any geometrical constraint. This charac-

teristic is unique in the world of industrial production and it has renewed the classical concept

of mechanical design allowing to produce the optimized components reducing the weight and

maximizing the sti�ness. Moreover, additive manufacturing allows to reduce production waste

and energy consumption.

Most di�used Additive Manufacturing technologies are Powder Bed Fusion (PBF) and

Fused Deposition Modeling (FDM). The �rst technology is based on the powder bed technol-

ogy, in which the powder (metal or ceramics) are spread on the building plate and sintered

trough a heat source. The second one, instead, employs a fused �lament (generally plastic)

which is deposited trough an extruder on the building plate. The cooling process of the fused

�laments and the consequent bonding among the �bers, give rise to the solid component. This

technologies allow to realize optimized components merging the last scienti�c founding with

the uniqueness of the artisan productions. The possibility to realize customized components

with a high rate of technology without a real production chain make 3D printing one of the

main performers of the fourth industrial revolution. Nevertheless a lot 3D printing technolo-

gies are already patented, the usage of 3D printing is not di�used on large scale yet, and the

processes itself are a�ected by some di�culties given by the complexity of the physical phe-

nomena. The practical experience suggest that a correct setting of printing process parameters

allow to improve the results of the print; although, at now, the experimentation process is

very expensive due to the high costs of the materials. A solution to avoid this inconvenience

is the possibility to simulate the printing process to predict the e�ects of printing parameters

variation on �nal components shape.

In the present thesis we will focus on the simulation of of 3D printing processes. The

dissemination is organized in two parts: the former is dedicated to Powder Bed Fusion, the

latter to Fused Deposition Modeling. Fort both the technologies we propose a wide ranging

discussion on the mechanical properties of the used materials and on the physical problems of

the speci�c technology. We analyze in detail the simulation approaches present in literature

and, for each technology, we have developed an appropriate computational method.

The simulation approaches for Powder Bed Fusion can be distinguished according to the

scale level of the simulation. Powder level simulations are focused on the study of the in-

teraction between the laser beam and the powder and on the study of the thermo-dynamic

evolution of the melt pool. From a literature review it merged that the only computational

method able to simulate these aspects of Powder Bed Fusion is the Lattice Boltzmann method.
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Once derived the Boltzmann equation from the kinetic theory of gases and after having ex-

plained its close relationship with the Navier-Stokes-Fourier equations, we have derived the

Lattice Boltzmann method and we have used it to solve some interesting thermo-�uid dy-

namic problems strictly related to the powder bed technology. Finally, we have developed a

�nite element method (FEM) based on sequential element activation to simulate powder layer

deposition and the interaction between the heat source and the powder. With this approach

we have investigated the in�uence of the printing parameters on a microscopic titan domain;

then we have used this method to simulate a real component.

The second part of this thesis is dedicated to the simulation of the Fused Deposition Model-

ing. In this case we have developed a FEM method based on the sequential element activation

to simulate the deposition of the fused �lament following the instructions contained in the

GCode �le used for the printing process. With this approach we have simulated the printing

of two plastic components and we have compared the numerical results with experimental

measurements obtained trough a high precision laser scanner.



Sommario

Negli ultimi anni la manifattura additiva, o stampa 3D, si è ritagliata un ruolo di rilievo tra le

nuove tecnologie abilitanti della quarta rivoluzione industriale. La stampa 3D consente di re-

alizzare oggetti di vario materiale senza alcun vincolo geometrico. Questa caratteristica, unica

nell'ambito delle produzioni industriali, ha rivoluzionato il concetto classico di progettazione

meccanica permettendo di progettare l'oggetto in maniera ottimizzata, riducendone la massa

o massimizzandone la rigidezza. Inoltre, la manifattura additiva consente di ridurre al minimo

gli scarti di lavorazione e il consumo di energia.

Le tecnologie additive maggiormente di�use sono la Powder Bed Fusion (PBF) e il Fused

Deposition Modeling (FDM). La prima è basata sulla tecnologia a letto di polvere, in cui le

polveri (metalliche o ceramiche) vengono dapprima stese sul piano di costruzione strato per

strato e, in seguito, sinterizzate in maniera selettiva. La seconda invece utilizza un �lamento

fuso (tipicamente plastico) depositato, tramite un estrusore, sul piatto di costruzione. Il raf-

freddamento dei �lamenti fusi e il conseguente bonding tra le �bre, danno vita al componente

solido. Queste due tecnologie consentono di realizzare componenti ottimizzati e personalizzati

coniugando gli ultimi ritrovati scienti�ci e tecnici con l'unicità tipica delle produzioni arti-

gianali. Proprio la possibilità di realizzare componenti speci�ci ad alta tecnologia senza la

necessità di realizzare una vera e propria catena produttiva, rendono la stampa 3D uno degli

attori principali della quarta rivoluzione industriale. Nonostante molti tecnologie di stampa

siano già patentate, l'utilizzo della stampa 3D non è ancora di�usa su larga scala e i processi

stessi sono interessati da alcune di�coltà dovute alle complessità dei fenomeni �sici interessati.

L'esperienza pratica suggerisce come un corretto settaggio dei parametri di stampa permette

di migliorare i risultati �nali delle stampe; tuttavia, in questa fase, la sperimentazione è molto

onerosa in termini economici per via del costo dei materiali. Una soluzione per ovviare a questo

inconveniente è rappresentata dalla possibilità di simulare il processo di stampa e predirre gli

e�etti dei parametri di stampa sui componenti �nali.

Nella presente tesi ci occuperemo della simulazione dei processi di stampa 3D. La dis-

sertazione è organizzata in due parti: la prima dedicata al Powder Bed Fusion e la seconda

dedicata al Fused Deposition Modeling. Per entrambe le tecnologie proponiamo un excurcsus

ad ampio raggio focalizzato sulle caratteristiche meccaniche dei materiali utilizzati e sui prob-

lemi �sici coinvolti nei processi. I fenomeni �sici sono analizzati in dettaglio insieme con le

metodologie di simulazione presenti in letteratura. In seguito, per ogni tecnologia abbiamo

sviluppato un metodo di simulazione appropriato.

Nel caso della Powder Bed Fusion il problema della simulazione del processo può essere

a�rontato a livello particellare o a livello del componente. Le simulazioni particellari si fo-

calizzano sullo studio dell'interazione tra il laser e le polveri microscopiche e sullo studio
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dell'evoluzione termo�uido dinamica della pozza di fusione. Da ricerche di letteratura è emerso

che l'unico metodo computazionale capace di simulare questi processi con risultati apprezz-

abili è il Lattice Boltzmann Method, basato sulla discretizzazione dell'equazione di Boltzmann.

Dopo aver derivato l'equazione di Boltzmann della teoeria cinetica dei gas e aver spiegato il

suo legame con le equazioni di Navier-Stokes-Fourier, abbiamo derivato il Lattice Boltzmann

Method e lo abbiamo impiegato per risolvere alcuni interessanti problemi termo-�uido dinam-

ici strettamente correlati alla fusione a letto di polvere. In secondo luogo, abbiamo sviluppato

un metodo ad elementi �niti (FEM), basato sull'attivazione sequenziale degli elementi per

simulare la deposizione degli strati di polvere e il passaggio della fonte di calore. Con questo

metodo abbiamo studiato l'in�uenza dei paramteri di stampa sulla stampa di una parte mi-

croscopica di titanio; in seguito utilizzando una soluzione approssimata, abbiamo sfruttato il

metodo per simulare un componente di grandezza reale.

La seconda parte di questa tesi è dedicata alla simulazione del processo di stampa Fused De-

position Modeling. In questo caso, abbiamo sviluppato un metodo FEM basato sull'attivazione

sequenziale degli elementi per simulare la deposizione del �lamento fuso seguendo le istruzioni

contenute nel Gcode utilizzato per la stampa. Con questo approccio abbiamo simulato la

stampa di due modelli plastici di�erenti per geometria e abbiamo confrontato i risultati ot-

tenuti con misure sperimentali e�ettuate con un laser scanner 3D ad alta precisione.
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Chapter 1

Additive Manufacturing, an overview

Additive manufacturing (AM) technology (also indicated as 3D printing) is de�ned by the

American Society for Testing and Materials (ASTM) as the process of joining materials to make

objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing

methodologies, such as traditional machining [ASTM, 2012].

Although AM is a quite new technology, since 1984, when the �rst stereolitographic 3D

printer was produced, a lot of new processes and new applications have been proposed. In

Figure 1.1 we show a brief time-line history of AM including the main innovations proposed

by various companies among the years.

1984: birth of 
Stereolitography 

(SLA)

1986: first 
patented 3D 

printer

1989: Stratasys 
commercialize 
the first Fused 

Deposition 
Modeling (FDM) 

printer

1992: 3D 
Systems 

commercialize 
the first SLA 

machine

2002: Arcam 
commercialize 

the first Electron 
Beam Melting 

(EBM) machine

2001: EOS 
commercialize 

the first 
Selective Laser 
Sintering (SLS) 
powder based 

machine

1995: 
Fraunhofer 

Institute 
develops the 
first Selective 
Laser Melting 

(SLM) machine

2007: Arcam 
produce the first 

CE-certified 
orthopedic 

implant

2010: Organovo 
produces the 

first 3D printed 
human blood 

vessel

2013: First 3D 
printed robotic 
human heart 

2016: Mass 
production of 3D 

printed engine 
parts

Figure 1.1: Time-line history of AM technology.

In a very �rst time, AM was used with the only purpose to create a single prototype of the

desired component and then move to a massive production thanks to the traditional production

chain. In the beginning, the main disadvantage of AM was the high production costs that

discouraged a massive usage of 3D printing in industrial contests [Lipson and Kurman, 2013].

Although, thanks to the new studies and the new discovered solutions, in recent years, 3D

printing has become cheaper and economically sustainable to a great number of industries.
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For this reason, AM is one of the most important enabling technologies of the 4th industrial

revolution [Economist, 2016].

The great innovation of AM is the capability to conjugate the detail precision and the

speci�city of the handmade production with the massive production of the industrial processes.

In particular the principal characteristics of AM are:

� possibility to manage very complex shapes, like, for example, lattice structures, im-

possible to produce with milling processes and casting optimized components [Mueller,

2012];

� possibility to produce components without assembling procedures, since the production

process is continuous and the part is produced in one shot;

� no needs of components stocking, since the part is directly produced using the desired

material;

� the reduced waste of material in comparison with classic milling process [Atzeni and

Salmi, 2012];

� a very low consumption of energy in front of the traditional processes. According to

this, AM can be viewed as a green technology [Ahn et al., 2013].

Nowadays 3D printing is used for a wide range of industrial applications; in particular

Cotteleer and Joyce [2014] (Figure 1.2) underlined that AM is adopted for the production of

mechanical parts and consumer products, but it is successfully applied also for the production

of biomedical implants [Auricchio and Marconi, 2016].

Figure 1.2: Principal �elds of application of 3d printing [Cotteleer and Joyce, 2014]

The increasing interest of the industries in AM technologies is con�rmed by the �ux of

money that is actually invested in the 3D printing supply chain. In Figure 1.3 we show the

growth rate of AM in the years 2016-2018 and the estimated growth rate for the four-year

period 2018-2022 [Wohlers Associates, 2017]. From 2016 to 2022 it has been estimated a

worldwide growth of AM from 6.1 up to 26.2 billion $. United States of America have almost

a half of all the industrial AM machines (46.3 %), followed by Israel (26.2 %) and Europe

(18.8%).

A signi�cant growth has been appreciated, in last years, also in AM material market. In

�gure 1.4 we show a 15-year history of photo-polymers sales for AM and a 8-year history of

laser-sintered polymers sales.



3

Figure 1.3: Growth rate of AM in the years 2016-2018 and estimated growth rate
for the four-year period 2018-2022 [Wohlers Associates, 2017]

We appreciate how, in both cases, there has been a signi�cant sales growth especially in

the past six years meaning that the production of parts trough AM is on constant growing.

Figure 1.4: Growth rate of photo-polymers and laser-sintered polymers sales market
in di�erent time periods [Wohlers Associates, 2017].

A signi�cant growth rate is appreciated also in metal powder market (Figure 1.5). In

particular between 2014 and 2016 the sales of AM powders almost tripled.

Figure 1.5: Growth rate of metal powder sales market [Wohlers Associates, 2017].
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This data show that AM industry is in constant growth and support the prevision of a

global economic impact of AM up to 550 billion $/year in 2025 [Economist, 2016].

Accordingly, we can conclude that AM is going to assume much more importance in various

industrial sectors; moreover all the economical predictions indicate that AM will increase its

economic impact in the following years.

1.1 Additive Manufacturing processes

The working principle of a generic 3D printing process is detailed in Figure 1.6.

Figure 1.6: General working principle of a 3D printing machine

We start from a CAD �le with the geometry of the desired component; from the CAD �le

we generate a triangular mesh of the external surface which is saved in the sterolitographic

(STL) �le. The STL �le is used by a speci�c a slicing software to virtually slice the model

and to de�ne all the informations needed to perform the printing process. The slicing process

consists in dividing the object into horizontal layers, then for each layer the printing path

is de�ned. Those informations are collected into a procedural �le, called GCODE �le which

manages the printing. Finally the object is ready to be printed with the desired technology

and material. The GCODE �le format varies according to the speci�c AM technology and

contains also the instructions to manage the environmental variables like the chamber and the

build plate temperature, the ventilation power, etc.

Using the GCODE �le, the printing process is performed and the desired object is gener-

ated. Then a controlled cooling process is performed before the part can be detached from

the building plate. In case of metal 3D printing, in many cases, speci�c heat treatment post

processing are also performed before part detaching from the building plate.

AM technologies are usually distinguished according to the adopted supply and the way the

material is aggregated. Actually the most di�used AM technologies are the Powder Bed Fusion

(PBF) and the Fused Deposition Modeling (FDM). In PBF powder layers are deposited on a

building plate and the powder are selectively melted by a heat source following a prede�ned

path. This technology is commonly used to produce complex shape metallic parts used in

various structural applications, for example in mechanical and biomedical �elds. In FDM,

instead, a semi-molten plastic �lament is deposited layer by layer on a building plate. In a very

�st time this technology was adopted only to produce non structural parts, but just prototypes.

In the last years, thanks to the development of new and better performing materials, it has

been adopted also to produce functional parts.
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In Table 1.1 [Rombouts, 2006] we list for each technology the most signi�cant process

parameters and the processed materials for each technology.

Supply Process Lay-out Layer
Creation
Technique

Phase
Change

Materials

L
I
Q

U
I
D

Stereo-
lithogra-
phy

Liquid resin
in a vat

Liquid layer
deposition

Photo-
polymerization

Acrylates,
epoxies,
�lled

Fused
Deposition
Modeling

Material
melted in a

nozzle

Continuous
extrusion

and
deposition

Solidi�cation
by cooling

Polymer,
wax,

polymers,
metals

Ink jet
printing

Droplets of
molten
material

Drop on
demand
deposition

Solidi�cation
by cooling

Polymers,
wax

P
O
W
D
E
R

Three-
dimensional
printing

Binder and
powder in

bed

Layer of
powder and
drop on
demand
deposition

No phase
change

Ceramics,
metals,
polymers
with binder

Powder
Bed Fusion

Powder in
bed

Layer of
powder

Melting and
resolidi�ca-

tion

Metals with
binder,
metals,
ceramics

Laser
cladding

Powder
delivery
through
nozzle

Continuous
injection of
powder

Laser
melting and
solidi�cation
by cooling

Metals

S
O
L
I
D

Laminated
object

manufac-
turing

Feeding,
cutting and
binding of
sheets

Deposition
of sheet
material

No phase
change

Polymer
(foam),

composites,
metals,
ceramics

G
A
S

Selective
laser

chemical
vapor

deposition

Gas �ow in
laser

Condensation
of gas

Forming
solid

material
from gas by
chemical
reaction

Metals,
ceramics

Table 1.1: Additive Manufacturing processes. In light blue AM technologies ana-
lyzed in this thesis.
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In �gure 1.7 we show two examples of parts produced with SLM: a bike frame (a) and an

arti�cial sternum (b). The bike frame is an example of optimized mechanical component which

allows consistent material savings without decreasing the strength and the sti�ness of the �nal

part. Even if it could be (maybe) possible to produce this part with traditional machining,

it would require a large amount of working time for the milling procedure and a consistent

waste of material. The arti�cial sternum, as well as human prosthesis in general, represents

an example of tailor made production, which is one of the peculiarities of additive processes.

With AM in fact it is possible to produce directly patient speci�c prosthesis without needing

of post processing operations.

(a) Bike frame (b) Arti�cial sternum and ribs

Figure 1.7: Example of 3D printed functional parts produced with SLM technology.
The

In �gure 1.8 we show two examples of parts produced with SLM: a sprocket (a) and a

human organ (b). The sprocket is a functional part that is usually produced with traditional

machining, although with AM it is possible to produce only few components for speci�c

applications without needing a production chain. The human organ, instead represents one of

the most interesting applications of FDM: the reproduction of patient-speci�c human organs

useful for the preparation of the surgery [Auricchio and Marconi, 2016].

(a) Sprockets (b) Human organ

Figure 1.8: Examples of 3D printed FDM parts. a) and b) Metallic parts realized
with SLM. c) and d) Plastic parts realized with FDM.

1.2 Aim of the thesis

In previous sections we have described the potential of AM technology in the fourth industrial

revolution, although what has slowed down a massive di�usion of AM until now are the
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relative high production costs, both in terms of AM machines and materials. Moreover, it is

clear that the quality of AM parts is strictly connected to the adopted printing parameters,

therefore studying the in�uence of those parameters is mandatory to respect the geometrical

and mechanical production constraints. Since the costs of AM technologies and materials

(especially metal powder) are still high, investigating the in�uence of printing parameters

only by experimental tests is not sustainable. In this respect, developing numerical tools

able to predict process failures like part distortions or fractures helps to improve the printing

process allowing consistent costs savings.

In the last years the great challenge in AM industry was to develop computational tools

able to simulate AM processes in reasonable time and using reasonable computational e�orts.

The aim of this doctoral thesis is to analyze in detail two of the most di�used AM technolo-

gies, Selective Laser Melting (SLM) and Fused Deposition Modeling (FDM), and to develop

numerical tools to simulate these processes at di�erent scale levels.

SLM is a very complex multi-physic process which involves several phenomena including

thermo-�uid dynamics and phase change. In this thesis we investigate the Lattice Boltzmann

method (LBM), which is, at the author knowledge, the only method able to predict the melt

pool evolution and the micro-scale characteristics of SLMed parts. We also set up a �nite

element method (FEM), based on sequential element activation, which is used to simulate

the material deposition on the building plate and to investigate the e�ects of several printing

parameters on temperature and residual stress distributions on a small portion of domain;

moreover with FEM we simulate the production of an entire SLM part evaluating residual

stress �eld and part displacements.

In the second part of this doctoral thesis we investigate the FDM printing process. We set

up a �nite element method based on sequential element activation to simulate the printing

process of FDM components following exactly the informations contained in real GCode �les.

Two simple benchmarks are simulated and the predicted displacements are validated trough

comparison with experimental tests.

Nevertheless the discussed limits, the proposed simulation approaches are able to give

consistent results both in SLM and FDM part distortion prediction.

1.3 Organization of the dissertation

The dissertation is organized as follows:

� Chapter 2 : Powder Bed Fusion. In this chapter we describe the physical aspects of PBF

and for each aspect we propose a literature review of both experimental investigations

and simulation techniques. Moreover in a speci�c section we focus on the characteristics

of the powder used in PBF and on the comparison of mechanical characteristics of

traditional machined and PBFed parts. Finally we describe the principal simulation

approaches underlying strengths and weaknesses for each of them;

� Chapter 3 : The Lattice Boltzmann method. In this chapter starting from the kinetic

theory of gases, we derive the Boltzmann equation and we demonstrate how this equation

is an alternative way to describe at the micro-mesoscopic scale the thermo-�uid dynamic

problem which is classically described at the macro-scale by the Navier-Stokes equations.
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Then we derive the lattice Boltzmann method and we prove that is mathematically

consistent to solve the Boltzmann equation;

� Chapter 4 : Applications of the Lattice Boltzmann method. In this chapter we apply

the Lattice Boltzmann method to solve some simple thermo-�uid dynamic problems.

For each problem we show the adopted algorithm and we validate the results trough a

comparison with literature results and reference solutions.

� Chapter 5 : Finite element simulation of Powder Bed Fusion. In this chapter we adopt

the �nite element method to set up a sequential element activation scheme to simulate

the powder bed deposition and the heat source interaction with powder. We use this

method to investigate the e�ects of several process parameters on thermal and residual

stress distribution on a very small portion of domain. Finally with an homogenization

approach we simulate the entire SLM process of a small component;

� Chapter 6 : Fusion Deposition Modeling. In this chapter we describe the physical as-

pects of FDM and for each aspect we propose a literature review of both experimental

investigations and simulation techniques. Moreover, in a speci�c section we focus on the

characteristics of the plastic �laments used in FDM and on the comparison of mechani-

cal characteristics of traditional prototyped and FDMed parts. Finally we describe the

principal simulation approaches underlying strengths and weaknesses for each of them;

� Chapter 7 : Finite element simulation of Fused Deposition Modeling. In this chapter

we adopt the �nite element method to set up a sequential element activation scheme to

simulate the �lament deposition in FDM. With this approach we simulate the printing

process of two FDM parts using the informations contained in the GCode �le; we validate

the results trough a comparison with experimental test.

� Chapter 8 : Conclusions, �nal considerations, perspectives and on-going works.



Chapter 2

Powder Bed Fusion

The Powder Bed Fusion (PBF) is a group of AM technologies used to realize metallic or

ceramic parts starting from a bed of powder lying on an horizontal plate. Figure 2.1 shows

the working principle of a PBF machine.

Figure 2.1: Working principle of a generic Powder Bed Fusion printer.

The PBF printing process can be summarized in the following steps:

I. Powder feed supply: the powder is moved from a storage tank next to the building

plate. In the example shown in Figure 2.1 the feed system consists of a moving piston,

but various feeding solution are available on the market;

II. Preheating: the powder are preheated to a �xed temperature, according to the selected

process and the considered material;

III. Powder deposition: the powder is transported on the building plate. The leveling

roller moves the powder on the building plate so to obtain a layer of the desired thickness;

9
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IV. Melting process: a heat source is used to selectively melt the powder following the

path de�ned during the the slicing process (see Figure 1.6 in Section 1);

V. Plate movement: the building plate is moved down and the process restarts from

point II until the �nal shape of the component is obtined;

VI. Powder removal: at the end of the printing process the exceeding powder is stored in

the tank and can be used for another print;

VII. Part removal: once the part reaches the ambient temperature it is possible to remove

it from the building plate;

PBF technologies can be distinguished by the adopted heat source: the Selective Laser

Melting uses a YAG or CO2 laser beam [S.Bremen et al., 2012], while the Electron Beam

Melting (EBM) adopts an electron gun to melt the powder Murr et al. [2012]. In general

a SLM machine needs a preheat treatment of the powder with a speci�c system, while in

EBM the preheating is realized with the electron gun. On the other hand, EBM processes are

performed in a vacuum chamber preventing the usage of non electrical conductive materials.

Another PBF process is the Selective Laser Sintering (SLS) which di�ers from SLM because

the powder are sintered and not completely melted [Agarwala et al., 1995].

2.1 Process parameters of Powder Bed Fusion printers

From 1995, when the SLM process was proposed for the �rst time at the Fraunhofer Institute

at Achen (Germany), a lot of companies producing PBF 3D printers born. There are several

brands producing SLM or SLS machine, for example: 3DSystems, Stratasys, EOS, Renishaw

etc., but there is just one company, Arcam, producing EBM printers.

The most important characteristics of PBF printers are listed below:

� Heat power: the power of the heat source is the principal parameter characterizing

a PBF machine. Laser beam can vary from 100 to 1000 W, instead the electron gun

can reach a 3000 W power. High heat power is suggested to melt materials with a

high melting temperature (e.g. Ti6Al4V), but, in general, a 200 - 400 W heat source is

enough the melt a wide range of metals (Steel, Aluminum, Nichel etc.);

� Laser spot: in SLM machines the laser spot can be �xed or variable. In general the

range of laser spot varies from 50 to 500 µm. Increasing the laser spot can speed up the

printing process but at the same time the produced surface energy decreases inhibiting,

in some cases, the complete melting of the powder;

� Number of heat sources: commonly, PBF machines adopt one heat source, but in

the last years some companies developed machines with 2 or 4 heat sources. If the heat

sources can work simultaneously the total process time can be signi�cantly reduced;

� Laser wavelength: in SLM machines the laser beam, in most of cases has a �xed

wavelength of 1070 nm and, with this setup, it is not possible to melt some type of powder

(e.g. coopper). Although there are some machines which adopt variable wavelength laser

beams to treat a larger range of materials;
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� Scan velocity: the scan velocity is a variable parameter depending on the consumer

choice. With high scan velocities, keeping constant any other parameter (laser power,

spot and wavelength), it is possible to speed up the printing process but at the same

time, the speci�c surface power decreases triggering a partial powder melting;

� Working volume: it is a �xed characteristic of any 3D printer. It depends on the

chamber volume and on the range of heat source movement on the building plate. An

higher chamber volume allows the construction of bigger components, but at the same

time involves a higher consumption of the inert gas �lling the chamber;

� Layer thickness: the layer thickness ia a variable parameter ranging, in most of cases

from 20 to 200 µm. A higher layer thickness speeds up the printing process but at the

same time it may trigger problems to melt the deeper powder;

� Materials: the range of the materials that it is possible to treat with a speci�c machine

depends, principally, from the laser characteristics. The possibility to work with a larger

range of materials increases the versatility of a machine;

� Resolution accuracy: the resolution accuracy is a very sensitive parameter depending

on laser characteristics, material and layer thickness. In general it can range from 1 to 50

µm. A high accuracy is mandatory to achieve better results terms of surface roughness

and in highly detailed parts;

� Build envelope capacity: it ranges, in most of cases, from 5 to 50 cm3/h and it is

inversely proportional to the resolution accuracy and directly proportional to the scan

velocity. It is possible to increase the printed volume rate renouncing to the geometry

precision of the part and admitting the possibility of partial powder melting;

� Multiple material: in most of cases a PBF printer dose not allow a material change

without a deep cleaning of the chamber and the feeding tank: this operation takes from

4 to 6 hours. Although there are some machines that allows a rapid change between

di�erent powder type by adopting two feeding tanks and physically dividing the build-

ing plate. On the other hand this solution decreases the physical space for the model

construction;

� Inert gas consumption: in SLM machines, the printing process is performed in an

isolated chamber �lled of an inert gas, in general Argon. The gas consumption can range

from 30 to 300 l/h; in addition at the start of the printing process the chamber needs

to be �lled of inert gas: bigger working volumes imply a higher quantity of inert gas;

In summary, we can state that most of the process parameters are related one to another

and there is not an objective way to valuate the printer performances, but the optimal solution

depends in any case on the characteristics of the component we have to print.

2.2 Powder for Powder Bed Fusion

In the last years, many types of powder have been used to produce PBFed parts and many

experimentation have been conduced to characterize the mechanical behavior of the parts.
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The most common powder adopted for PBF are:

� Aluminum alloys: e.g. AlSi12 and AlSi10 used to produce mechanical components

for aerospace and automotive industry. It's main features are the high ratio between

strength and weight and the good thermal properties that make it suitable for the

realization of parts like heat exchangers. The mechanical properties of a 3D printed

part produced with aluminum alloy AlSi12 are listed in Table 2.1. Data distributed by

3DSystems®;

Mechanical Property End of printing process After stress relief

� [MPa] [MPa]

Young's Modulus 70 103 ± 5 65 103 ± 5
Ultimate strength 470 ± 30 340 ± 30
Yield Strength 290 ± 20 220 ± 20

Elongation at break 8 ± 2 10 ± 2

Table 2.1: Mechanical properties of a AlSi12 3D printed part before and after stress
relief.

� Stainless Steel alloys: e.g. 316L, with a very low carbon rate, suitable for mechanical

applications in aggressive environment, it grants good mechanical properties at room

temperature and also at cryogenic temperatures; 17-4PH, used for various mechanical

applications, it shows good mechanical properties at temperatures up to 300°C, it is
suitable also for applications in slightly aggressive environment. The mechanical prop-

erties of a 3D printed part produced with stainless steel alloy 316L are listed in Table

2.2. Data distributed by 3DSystems®;

Mechanical Property After stress relief After full anneal

� [MPa] [MPa]

Young's Modulus 180 103 ± 15 180 103 ± 5
Ultimate strength 660 ± 20 610 ± 30
Yield Strength 530 ± 20 370 ± 30

Elongation at break 39 ± 5 51 ± 5

Table 2.2: Mechanical properties of a 316L steel 3D printed part after stress relief
and after full anneal.

� Titanium based alloys: e.g Ti6Al4V with di�erent rate of iron and oxygen contents.

Composites with low contents of oxygen (TiGr23) increase the ductility of the part, but

are accompanied with a slight reduction of the strength. They are used in biomedical

applications like surgical implants and orthodontic appliances, which require a good

fatigue strength. Composites with a higher content of oxygen increase the strength of
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the part, slightly reducing the ductility. They are used for medical tools and devices in

general. The mechanical properties of a 3D printed part produced with titanium alloy

TiGr23 are listed in Table 2.3. Data distributed by 3DSystems®;

Mechanical Property After stress relief After isostatic pressure treatment

� [MPa] [MPa]

Young's Modulus 118 103 ± 4 115± 8
Ultimate strength 1160 ± 20 980 ± 30
Yield Strength 1060 ± 30 890 ± 50

Elongation at break 10 ± 2 14 ± 2

Table 2.3: Mechanical properties of a TiGr23 3D printed part after stress relief and
after isostatic pressure treatment.

� Chromium based alloys: e.g. CoCrF75 that allows to obtain parts with very high

strength and hardness, particularly indicated for wear and part that requires high me-

chanical performances at high temperatures, furthermore this material forms a protec-

tive �lm around the part that prevents corrosive e�ects. Another Chromium alloy is the

CoCr which allows to obtain parts with a good elasticity and a high corrosion resistance.

It is suitable to produce parts that operate with high temperatures and in aggressive

environment. The mechanical properties of a 3D printed part produced with chromium

alloy CoCrF75 are listed in Table 2.4. Data distributed by 3DSystems®;

Mechanical Property After anneal After isostatic pressure treatment

� [MPa] [MPa]

Young's Modulus 225 103 ± 5 225± 5
Ultimate strength 1030 ± 70 1020 ± 70
Yield Strength 540 ± 30 510 ± 30

Elongation at break 29 ± 6 29 ± 6

Table 2.4: Mechanical properties of a CoCrF75 3D printed part after anneal and
after isostatic pressure treatment.

� Nichel based alloys: e.g. Ni625 which is widely used in mechanic, aerospace and

chemical industry for its high strength and the very high corrosion resistance. Ni718 is

characterized by the presence of small fraction of Mo that allow to obtain a good fatigue

resistance in manufactured parts and good mechanical properties at very temperatures

(up to 700°C). Moreover Ni625 and Ni718 show excellent cryogenic properties, therefore

this alloy is often used to produce parts that work in extreme conditions and aggressive

environments. The mechanical properties of a 3D printed part produced with niche

based alloy Ni718 are listed in Table 2.5. Data distributed by 3DSystems®;
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Mechanical Property End of printing process After stress relief

� [MPa] [MPa]

Young's Modulus � �
Ultimate strength 930 ± 20 1020 ± 70
Yield Strength 660 ± 20 850 ± 30

Elongation at break 36 ± 2 31 ± 2

Table 2.5: Mechanical properties of a Ni718 3D printed part at the end of printing
process and after stress relief.

The above mentioned properties must be considered with caution because they refers to

parts produced via 3D printing with non speci�ed process parameters. However in literature,

several studies have been proposed aiming to characterize the dependence of the mechanical

properties on process parameters and to compare the characteristic of 3D printed parts with

the characteristics of traditionally manufactured parts.

Siddique et al. [2015] studied the in�uence of SLM process parameters on AlSi12 parts; in

particular they have investigated the micro-structure and the mechanical properties of SLMed

components. In Figure 2.2, stress strain curves obtained trough tensile tests on specimens

realized with di�erent energy density are represented [Siddique et al., 2015]. The energy

density is given by the ratio between the laser energy and the laser spot. We can appreciate, in

particular, how, with a higher energy density the ultimate tensile strength and the elongation

at break signi�cantly increase. Finally we can observe that the ductility of part realized with

high energy density is higher than the ductility of parts realized with low energy density.

Figure 2.2: Stress strain curves obtained trough tensile tests on AlSi12 specimens
realized with di�erent energy density [Siddique et al., 2015].

Prashanth et al. [2014] investigated the stress strain curves of AlSi12 parts produced with

SLM and with casting processes. Figure 2.3 shows the true-stress/true-strain curves obtained
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with di�erent manufacturing process. The part produced with SLM shows a higher ultimate

tensile stress and a lower elongation at break than the part produced with a classic manufac-

turing process.

Figure 2.3: Stress strain curves obtained trough tensile tests on AlSi12 specimens
realized with di�erent manufacturing technology [Prashanth et al., 2014].

Furthermore, they also investigated the e�ects of the heat treatment on the part produced

with SLM. The results, proposed in Figure 2.4 (a), show the stress-strain curves obtained with

heat treatments performed at di�erent temperatures; in Figure 2.4 (b), yield strength, tensile

strength and fracture strain obtained with di�erent annealing temperatures are displaced for

both parts produced with SLM and casting process. We can observe how the heat treatment

reduces the strength of the both SLMed and casted parts, while the fracture strain (i.e., the

elongation at break) is signi�cantly increased after the heat treatment.

Figure 2.4: Stress strain curves obtained trough tensile tests on AlSi12 SLMed parts
annealed at di�erent temperatures (a). Variation of mechanical properties with the
annealing temperature on SLMed and casted parts [Prashanth et al., 2014].

Song et al. [2014] studied the e�ects of printing parameters on a SLMed femoral component

produced with CoCrMo. In particular they experimented the e�ects of various combinations
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of laser power and scan velocity on the relative density of the part. They concluded that the

energy rate assuring the highest energy density is around 0.35 J/s (see Fig. 2.5 from Song

et al. [2014]).

Figure 2.5: Variation of the relative density with increasing energy density on a
femoral SLMed component realized with CoCrMo [Song et al., 2014].

Takaichi et al. [2013] studied the mechanical properties of CoCrMo parts produced with

SLM printing process. In particular they investigated the e�ects of several laser power and

laser spot combinations on the results of uniaxial tensile tests.

Figure 2.6: Stress-strain curves of CoCrMo parts produced with SLM printing
process adopting di�erent process parameters (a-e) and with traditional casting
process (f)[Takaichi et al., 2013].

The results shown in Figure 2.6 reveal a very similar behavior of the stress-strain curves

realized with various combinations of laser power and laser spot (a)-(e). Nevertheless, we

can observe that the specimens realized with the highest energy densities (a,b) show higher

ductility in comparison with the specimens realized with lower energy density. Finally, com-
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paring the results of the SLMed specimens with the stress-strain curve of a casted component

(f), we can appreciate how the SLMed specimens reveal a higher tensile strength with every

combination of parameters; moreover, the specimens realized with the highest energy density

(a,b) have an elongation at break very similar to the casted component. In conclusion, we can

state that, according to the proposed results, the SLM parts have better mechanical properties

than the part realized with a traditional manufacturing process.

Vrancken et al. [2012] studied the micro structural and the mechanical properties of

Ti6Al4V parts realized with SLM printing process and they underlined the importance of

the heat treatment, in order to improve the mechanical properties of SLMed components. In

Figure 2.7 we can observe the stress-strain curves of parts realized with SLM, compared with

the stress-strain curves of parts produced with a reference Ti6Al4V material.

Figure 2.7: Stress-strain curves of CoCrMo parts produced SLM printing process
adopting di�erent process parameters (a-e). Stress-strain curve of a CoCrMo part
realized with a traditional casting process [Vrancken et al., 2012].

We can observe that the specimens have a very similar Young's Modulus. The results of

the tensile test, reveals that the SLMed parts have a higher yield stress, although they have a

signi�cant lower elongation at break, in comparison with te parts produced with a reference

material.

The authors also investigated the e�ects of the heat treatment on the yield stress and

the fracture strain of SLMed and casted parts. The heat treatment consistently reduces the

fracture strain on SLMed parts, while the opposite e�ect is detected on casted parts. The

heat treatment has almost no in�uence on the yield stress on SLMed parts, while the yield

stress is consistently reduced after heat treatment on the casted parts.

Another very interesting study on Ti6Al4V parts produced with SLM printing process, has

been proposed by Simonelli et al. [2014] who studied the in�uence of part orientation, during

the printing, on the �nal mechanical properties. They concluded that the ductility of the parts

is strongly in�uenced by the orientation; moreover, the directionality of the microstructure

in�uences cracks formation. Figure 2.8 shows the results of tensile tests conduced on specimens

built with di�erent orientations. The specimens are analyzed at the end of the printing process

(a) and after heat treatment (b). The results show a high ductility di�erence among specimens
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realized with di�erent orientation.

Figure 2.8: Stress-strain curves of Ti6Al4V parts produced with SLM printing
process, with di�erent built orientations. (a) Tensile tests results at the end of
the printing process; (b) tensile tests results after heat treatment [Simonelli et al.,
2014].

Jia and Gu [2014] studied the micro-structural properties of Ni718 parts produced via

SLM. They studied the e�ects of the laser energy density on the relative density of the parts.

They concluded that increasing the energy density allows to obtain a higher density of the

part.

Figure 2.9: Variation of the relative density with the energy density on Ni718 parts
produced via SLM [Jia and Gu, 2014].

Zhang et al. [2015] analyzed the mechanical properties of Ni718 parts produced via SLM;
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moreover they investigated the e�ects of di�erent heat treatments on the produced parts. The

results shown in Figure 2.10 reveal a di�erent e�ect of the heat treatment in comparison with

the other alloys previously analyzed.

Figure 2.10: Tensile test results on SLMed Ni718 parts at the end of the printing
process and after di�erent heat treatments processes (SA and HSA) [Zhang et al.,
2015].

In this case, in fact, both the SA and the HSA heat treatment produce a increasing of the

yield strength but, also, a consistent decreasing of the elongation at break; therefore the heat

treatment signi�cantly reduces the ductility of the part.

Wang et al. [2012] investigated the microstructure of Ni718 parts produced via SLM.

They underline that the micro-hardness of the specimens is, basically, directional independent.

Furthermore they focus on the importance of the heat treatment in order to obtain the best

mechanical properties. In speci�c they detect an average micro-hardness of 365 Hv in SLMed

parts and of 470 Hv on heat treated SLMed parts.

2.3 Physical aspects of Powder Bed Fusion

From a physical point of view the Powder Bed Fusion (PBF) is a very complex process which

involves several thermo-�uid dynamic phenomena. When the heat source scans the powder

layer, very high thermal gradients rise leading the powder to the melting point. The melted

powder give rise to the so-called melting pool which moves among the solid particles reaching

the equilibrium state and exchanging heat both with the solid particles and with the surround-

ing environment. When the melt pool temperature drops down, the fused material solidi�es.

This double phase change and the melt pool evolution are the most complex aspects in PBF

processes as detailed in Kruth et al. [2007]. Figure 2.11 shows the most important aspects

in�uencing the melt pool evolution:
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Figure 2.11: Physical phenomena rising during a Selective Laser Melting process.
In light blu the principal physical aspects; in black the secondary physical e�ects.

where we have indicated with light blue the most important phenomena and aspects, while

in black are listed the secondary ones.

The dynamics of the melt pool has a great impact on the porosity and on the surface

roughness of the �nal part [Yadroitsev et al., 2010] furthermore, the fast cooling process may

trigger a segregation between melted and solidi�ed powder [Thijs et al., 2010]. Finally, high

temperature gradients lead to the formation of residual stresses, which could signi�cantly

a�ect the mechanical properties of the component [Mercelis and Kruth, 2006].

In the following sections we will discuss in detail the principal and the secondary aspects

acting in the PBF process.

2.3.1 Heat source

The heat source is a very important aspect in PBF processes, in fact the intensity of the energy

distribution produced by a laser or an electron beam is fundamental in order to achieve a full

melting of the powder.

The energy surface distribution of a beam, in general can be represented by a Gaussian

distribution [Andrews and Phillips, 2005]:

I(x, t) =
P√
2πσ

exp

(
−(x− vt)2

2σ2

)
(2.1)

where I is the power density in a generic point x = {x, y} of the heated surface at time t;

v = {vx, vy} is the velocity of the beam on the building plate, P is the power of the beam and

σ is the standard deviation of the beam. The power of the beam is given by [Ammer et al.,

2014a]:

P = V · I (2.2)
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where V is the voltage and I is the current. Figure 2.12 shows the typical beam Gaussian

distribution:

Figure 2.12: Typical Gaussian distribution of a laser or an electron beam.

The characteristics of the Gaussian distribution describe the laser setup; in particular the

beam power P in�uences the maximum intensity of the Gaussian distribution, and the beam

spot in�uences the standard deviation of the energy distribution.

2.3.2 Heat interaction with metal powder bed

When the powder bed is heated by a laser or an electron beam, the beam energy is converted in

thermal energy by the absorption phenomena [Markl and Körner, 2016]. The heat conduction

in absorption phenomena is governed by the following equation:

ρ
∂(cpT )

∂t
= ∇ · (k∇T ) + αI(x, t) (2.3)

where: x = {x, y, z}, ρ is the density, cp is the speci�c heat, k is the thermal conductivity and
α is the absorptance, i.e the fraction of the beam energy absorbed per unit of time.

The �rst solution to the absorption problem of a heat source in metals was proposed by

Rosenthal [1941] who developed a mathematical model to describe the heat absorption during

welding and applied this model to the case of a quasi-stationary heat source [Rosenthal, 1946]:

T (x) =
q

2πk
exp
(V x

2λ

)
K0

(V ·R

2λ

)
(2.4)

where q is the heat source, λ is the thermal di�usivity, K0 is the Bessel function and with

R =
√
x2 + y2 + z2

Eq. 2.4 is able to predict, with good approximation the temperature distribution at a large

distance from the heat source, but it is not well suited to represent the energy absorption in

PBF processes since it does not takes into account the latent heat and the phase change.

The �rst solution taking into account also the melting process was proposed by Cline and
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Anthony [1977]. With an analogous model, Brockmann et al. [2003] investigated the thermal

distribution generated by a laser heat source on moving thin metal foils. Kou et al. [1981]

studied the e�ects of a moving laser beam on a semi-in�nite substrate, taking into account

both the e�ects of the latent heat and the melting/solidi�cation process. Finally, in literature

we can �nd a lot of works investigating the e�ects of laser and scanning parameters. In

particular we recall: Cheng and Lin [2000] how developed an analytical model to evaluate

the thermal distribution in the laser forming of metal sheets, investigating the e�ects of the

laser spot, the scanning velocity and the sheet thickness; and Pinkerton and Li [2004], who

proposed a model to estimate the melt pool dimensions with the variation of the parameters

process.

Absorptance and thermal conductivity

In Eq. 2.3 there are two parameters that play a key role the de�nition of the interaction be-

tween the heat source and the powders: (i) the absorptance α and (ii) the thermal conductivity

k.

In pure metals, the absorptance coe�cient is highly dependent on the temperature as

shown by Prokhorov [2018]. In Figure 2.13 we show the variation of the absorptance with

the temperature for several metal alloys. The absorptance is increasing with the temperature;

in particular, in correspondence of the melting point, where it ampli�es of a factor of 1-2.

Moreover, it has been proved that fast growing thermal gradients lead to the instability of

the melt pool may triggering an anomalous increasing of the absorptance [Debroy and David,

1995].
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Figure 2.13: Variation of the absorptance with the temperature [Prokhorov, 2018].

The thermal conductivity k relates the heat exchanged across a surface to the perpendic-

ular thermal gradient (Fourier's law). In dense materials, in general, k decreases with the

temperature [Bergman et al., 2011], however, in PBF the powder bed contains a lot of pores
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among the particles and almost all the parts produced with PBF processes are a�ected from

the residual porosity ϕ [Bland and Aboulkhair, 2015]. The porosity has a signi�cant in�u-

ence on the thermal conductivity Vafai [2015]. The �rst model which tries to predict thermal

conductivity k in a group of randomly packed perfect spheres was proposed by Maxwell [1873]:

kp
ks

=

(1− 2ϕ
1− ks/kg
2 + ks/kg

1 + ϕ
1− ks/kg
2 + ks/kg

)
(2.5)

with:
kp
ks

=
1 + 2ϕ

1− ϕ
for

ks
kg
→∞ (2.6)

where kp is the thermal conductivity of the packed porous media, ks is the thermal conductivity

of the solid dense material, kg is the thermal conductivity of the gas phase and ϕ is the ratio

between the gas volume and the total volume of the domain. we remark that Eq. 2.5 is valid

in the limit of low ϕ, but in PBF process the coe�cient ϕ can range from 30 to 60 %. The

constraint of Eq. 2.6, instead is valid for PBF processes, in fact the ratio ks/kg varies from

700 to 1000 which is commonly considered the in�nity limit for this problem [Luikov et al.,

1968]. Chiew and Glandt [1983] adapted Eq. 2.5 in order to extend the validity range from

30-60 % to 15% < ϕ < 85%. Similar numerical methods, to valuate the thermal conductivity

in regular packed powder distributions at room temperature, were proposed by Yinping and

Xingang [1995] and Kou et al. [1994], however they omit to include the e�ects of convective

and radiative �ows. Although, during PBF process the high temperature gradients and the

radiative e�ects in�uence the thermal conductivity. Tolochko et al. [2003] evaluated k as

follows:

k = kc + kr (2.7)

where kc is the contact thermal conductivity and kr is the radiative thermal conductivity

which can be evaluated as follows [Zeldovich and Raizer, 2012]:

kr =
16LKbT

3

3
(2.8)

where L is the mean photon free path between scattering events and Kb is the Stefan-

Boltzmann constant.

Heat absorption models

The energy absorption process has a great impact on the melting process and, in consequence,

on the �nal quality of the PBFed part [Klassen et al., 2014]. Eq. 2.1 describes the energy

distribution of a heat source on the surface of the powder bed, but it does not give any

information on the variation of the energy density with depth.

In dense materials, the power density of a beam penetrating a layer of thickness z varies,

in depth, according to the well-known Beer-Lambert law [Swinehart, 1962]:

dI

dz
= −αI(x, y) (2.9)
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Although, Eq. 2.9 has two strong limitations: (i) it is valid only for dense materials and (ii)

it does not consider any e�ect of heat di�raction. In PBF process the heat is absorbed by the

particle due to multiple re�ections [Tolochko et al., 2000] and the thermal energy is distributed

among the particles according to the density and the re�ectivity [Gusarov and Kruth, 2005].

Wang et al. [2002] developed a ray tracing model to simulate the energy absorption in sparse

particles distribution, and validated experimentally the results. Gusarov and Kruth [2005],

instead, proposed to solve the heat radiation equation to evaluate the energy absorption in

metallic powders and proposed an interesting comparison with the results obtained through

the ray tracing model, showing a good agreement between the predictions of the two methods.

Gusarov and Smurov [2010] developed a coupled heat radiation - heat transfer model to analyze

the absorption process in SLM and to study the e�ects of thermal distribution on the melt

pool shape. Drouin et al. [2007] set up a framework based on the Monte Carlo method able

to predict the energy absorption during EBM processes. Furthermore Klassen et al. [2014]

studied the energy absorption in EBM processes with a semi-empirical approach.

2.3.3 Solid-liquid phase change

The phase change is a very complex problem which describes the change of the state of the

material. During solid-liquid phase change a certain amount of energy, referred as latent heat

Ls is needed to win the forces that maintain the material at the solid state. The latent

heat represents the enthalpy di�erence between solid and liquid state. In pure material, the

solid-liquid phase change takes place at a �xed temperature called melting temperature Tm,

in composites materials, instead, the phase change happens on a temperature interval Tl -

Ts, namely, the liquid temperature and the solid temperature. The former process is called

isothermal phase change, the latter is called non-isothermal phase change.

Figure 2.14: Enthalpy variation on temperature during isothermal (a) and non-
isothermal (b) phase change processes [Sani, 2017].

In literature the methods adopted to describe the phase change process can be divided in

three groups, according on the way they treats the boundary between the solid and the liquid

part of the domain:
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� Front tracking methods;

� Fixed domain methods;

� Hybrid approaches.

Front tracking methods divide the domain in two portions: the solid portion and

the liquid portion coupled with a moving boundary describing the phase change front. This

methods are very accurate since they evaluate directly the phase change front moving at every

time step as well as the temperature gradient across the interface; on the other hand they are

very expensive from a computational point of view and they need a starting solution.

Figure 2.15: Front tracking phase change approach [Sani, 2017].

In �gure 2.15, we show the equations implemented in the front tracking method. Two

independent heat equations are used to describe the temperature evolution in the solid Ωs

and the liquid Ωl part of the domain:

cplρl
∂Tl
∂t

= ∇ · (kl∇Tl)

cpsρs
∂Ts
∂t

= ∇ · (ks∇Ts)
(2.10)

where kl and ks are the thermal conductivities of the liquid and the solid parts, respectively

and cpl and cps are the speci�c heats of the liquid and the solid parts, respectively.

At the interface Γsl a speci�c balance condition must be satis�ed; this condition, describing

the thermal gradient between the solid and the liquid material, is known as Stefan condition

and it is usually written as:

ks
∂Ts
∂n
− kl

∂Tl
∂n

= Lsρ
dΓsl
dt

, x = Γsl(t) (2.11)

where Γsl is the solid-liquid interface.

Fixed domain methods consider a single domain, governed by a single heat equation,

therefore it is not necessary to impose speci�c conditions at the interface but the Stefan



2.3. Physical aspects of Powder Bed Fusion 26

condition is implicitly taken into account in the heat equation which is written as follows:

cpρ
∂T

∂t
+ ρL

∂Γsl
∂t

= ∇ · (k∇T ) (2.12)

where Γsl is the solid liquid interface.

Figure 2.16: Fixed domain phase change approach [Sani, 2017].

There are three alternative methods to describe the solid liquid phase change on a �xed

domain:

� Enthalpy method;

� Equivalent heat capacity method;

� Temperature transforming method.

The enthalpy method is the most common technique. It consists in writing the heat equa-

tion in terms of the enthalpy:

ρ
∂H

∂t
= ∇ · (k∇T ) (2.13)

where the enthalpy H(T ) varies with the temperature according to the selected phase

change process. For example, if we consider the non-isothermal phase change, typical of metal

alloys, the enthalpy is written as follows:

H(T ) =


∫ Ts
T0
cps(T )dT, T < Ts∫ Ts

T0
cps(T )dT +

∫ Tl
Ts

∂Ls
∂T

dT, Ts ≤ T ≤ Tl∫ Ts
T0
cps(T )dT + Ls +

∫ T
Tl
cpl(T )dT, T > Tl

(2.14)

Comini et al. [1974] used the enthalpy method to solve the heat conduction-convection

problem with phase change in a �nite element scheme. Chatterjee and Chakraborty [2005],

instead, adopted the enthalpy method to describe the solid liquid phase change within a single

component, single phase lattice Boltzmann method.
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The equivalent heat capacity method consists in writing the heat equation in function of

the speci�c heat:

ρcp
∂T

∂t
= ∇ · (k∇T ) (2.15)

In this approach the speci�c heat cp(T ) varies with the temperature and the latent heat is

converted into an equivalent heat capacity. Considering a non-isothermal phase change, the

speci�c heat is given by:

cp(T ) =


cps, T ≤ Ts
Ls

Tl−Ts +
cps+cpl

2 , Ts ≤ T ≤ Tl
cpl, T > Tl

(2.16)

Eshraghi and Felicelli [2012] included the equivalent heat capacity model in their single-

phase single component lattice Boltzmann framework to evaluate the solid liquid phase change

in a representative material.

The temperature transforming method was introduced for the �rst time by Cao et al.

[1989]. It is a kind of combination between the previous methods. The heat equation is given

by:

ρ
∂cpT

∂t
= ∇ · (k∇T )− ρ∂f

∂t
(2.17)

where cp is given by:

cp(T ) =


cps, T < Ts
Ls

Tl−Ts +
cps+cpl

2 , Ts ≤ T ≤ Tl
cpl, T > Tl

(2.18)

and the function f(T ) is given by:

f(T ) =


cps(Tl − Ts), T < Ts
Ls
2 +

cps+cpl
2 (Tl − Ts), Ts ≤ T ≤ Tl

cpl(Tl − Ts) + Ls, T > Tl

(2.19)

We observe that, when the ∂f/∂t = 0 and cp is independent from the position, the heat

capacity model can be recovered. This method is not very di�used and in literature as been

applied few times due to instability problems. D. Celentano et al. [1994] developed a �nite

element method to analyze phase change problems with the temperature transforming model.

This approach was adopted also by Chen and Zhang [2005] who developed a �nite volume

scheme to analyze the phase change in selective laser sintering process.

2.3.4 Powder bed generation

As stressed by Wang et al. [2002] the energy absorption is dependent not only on the thermal

properties of the material (conductivity and absorptance) and on the heat source, but also on

the powder bed distribution. When the roller deposits the powder on the building plate, they
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naturally moves reaching the stability condition; this means that the powder are not regularly

displaced on the building plate. The particle position distribution can in�uence the absorption

process promoting multiple re�ection processes and causing the modi�cation of the melted zone

[Markl and Körner, 2016]. Moreover the powder distribution can in�uence the local porosity

of the part. With this premise is clear that a correct simulation of powder distribution on the

Figure 2.17: Powder packing with di�erent powder size [Shi and Zhang, 2006].

building plate is mandatory to study correctly the melting/solidi�cation process. In literature

there are many models aiming to reproduce the powder distribution. Shi and Zhang [2006]

developed a numerical model based on dropping and rolling rules to simulate the loose packing

process of spherical particles moving under gravity force (Fig. 2.17). This work relies on the so-

called rain drop model developed by [Meakin and Jullien, 1987]. The particle packing problem

can be faced also with the discrete element (DE) method [Ammer et al., 2014a]. This method

simpli�es the packing problem neglecting cohesive and frictional forces, but it is very e�cient

in terms of computational times and it is able to reproduce correctly the relative density in

powder bed deposition process. Finally, Zohdi [2014] developed a computational framework

for additive particle deposition including inter-particle contact forces, adhesive bonding forces

and electromagnetic forces which play an important rule in the interaction among very small

particles (< 10 µm).

2.3.5 Melting process and melt pool dynamics

Melting and solidi�cation are the core of PBF processes. During the melting process the solid

powder come to liquid state and moves among the other solid particles exchanging heat trough

convection and conduction, furthermore part of the heat is dissipated trough the radiation with

the surrounding environment. Heat exchange generates a very fast cooling e�ect leading to

the formation of the bulk material.

The fused material is commonly known with the name of melt pool. The evolution of the

melt pool is a typical thermo-�uid dynamic problem which is governed by the well-known
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Navier-Stokes equations:

∂ρ

∂t
+∇ · (ρv) = 0

∂v

∂t
+ v ·∇v = −1

ρ
∇P + ν∇2v + g

(2.20)

and by the heat energy conservation equation:

∂E

∂t
+∇ · (vE) = ∇ · (k∇E) + αI(x, t) (2.21)

where g is the gravity and E is the the thermal energy which is given by:

E =

∫ T

0
ρCp∆T + ρ∆H (2.22)

Eq. 2.20 and Eq. 2.21 describe the so called Navier-Stokes-Fourier �uid.

The melt pool movement is principally driven by wetting, capillarity and Marangoni forces;

furthermore, specially in EBM process, high power heat source can cause the partial evapo-

ration of the powder. In the next sections we discuss in detail about this topics.

Wetting

The wetting is the spreading behavior of a liquid on a solid surface. When a liquid comes in

contact with a smooth surface, in presence of a vapor phase, at the equilibrium state, the liquid

forms an angle called contact angle which depends on the physical and chemical properties

of the liquid and the solid surface. The contact angle is described by the Young's equation

[Fowkes, 1964]:

cos θc =
σSG − σSL

σLG
(2.23)

which relates the surface tensions between the three phases: solid, liquid and gas and where

σsg, σsl, σgl are the surface tension between solid-gas, solid-liquid and gas-liquid

Figure 2.18: Equilibrium contact angle in wetting on a smooth surface.

Eq. 7.5 is well suited to represent the wetting on smooth and regular surfaces, but fails in

describing wetting on rough surfaces and in dynamic situations. More accurate wetting models,

like Young-Duprè model [Schrader, 1995] or Cassie-Wenzel model [Bormashenko et al., 2007]
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allow to study the droplet spreading on rough surfaces. Furthermore Ho�man [1975] studied

the wetting problem in dynamic conditions and derived that the apparent contact angle θa in

dynamic wetting is given by:

θa = 3

√
ηV

C1σgl
+ θ3c (2.24)

where apparent remarks the dynamic nature of the wetting angle, η is the dynamic viscosity,

C1=̃0.013 is a constant of the model and θc is the static wetting angle and V is the velocity

of the contact line between the phases.

In melt pool dynamics, the dynamic wetting rises spontaneously and its behavior can be

controlled trough the Ohnesorge number O of the �uid:

O =
η

√
σglρrd

(2.25)

where rd is the radius of the droplet. In speci�c when O >> 1 the dynamic wetting is governed

by the viscous forces and when O << 1 the dynamic wetting is governed by the inertial forces

[Schia�no and Sonin, 1997a] and the contact line velocity V can be expressed as follows:

V =
σgl
η

with O >> 1

V =

√
σgl
ρrd

with O << 1
(2.26)

We can appreciate how the wetting angle is dependent from the dynamic viscosity η that

in metal decreases with the temperature according to the following formula:

η = η0 exp
Q

RT
(2.27)

where η0 is the viscosity at the ambient temperature, Q is the activation energy for �ow and

R is the universal gas constant [German, 1990].

The importance to have a good wetting behavior has been remarked by German [1984]

who pointed out that in metallurgic applications a good wetting reduces the local porosity

improving the mechanical properties of the component.

Several simulation frameworks have been proposed to investigate the wetting problem.

Pasandideh-Fard et al. [1996] faced the simulation of a three dimensional droplet spreading

on a smooth surface with the volume of �uid method. Raiskinmäki et al. [2000] used the

lattice Boltzmann (LB) method to study the wetting of three dimensional droplets spreading

on smooth and rough surfaces; in this work the multiphase approach developed by Shan and

Chen [1993] is employed. Huang et al. [2007], using the Shan and Chen [1993] (LB) method,

investigated the adhesion force between a liquid droplet and a smooth surface and developed

a systematic approach to evaluate the contact angle. Attar and Körner [2009] developed a free

surface lattice Boltzmann scheme, to simulate the droplet wetting problem. In this method

the free surface movement is tracked with the volume of �uid approach. Moreover, Attar and

Körner [2011] improved the previous framework including heat exchange, solid-liquid phase
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change and wetting on rough surfaces. This method was adopted by Scharowsky et al. [2012]

to simulate the powder wetting during EBM process. The results have been experimentally

validated with an high speed camera monitoring the melt pool evolution during the printing

process (Fig 2.19).

Figure 2.19: Liquid droplet wetting on rough surface after the solid-liquid phase
change. Coupled thermo-�uid dynamic simulation carried out using the free surface
lattice Boltzmann method [Scharowsky et al., 2012].

Capillarity

The capillarity is the capability of a liquid to move in narrow spaces in opposition to external

volume forces (e.g. gravity). Capillarity occurs due to the surface tension, generated by

intermolecular forces, and the adhesion force between the �uid and the solid surfaces. During

PBF process, capillarity naturally rise when the melt pool moves among the solid particles

and it is often accompanied by instability problems.

The instability of liquid cylinder, free to move in space, occurs when the length of the

cylinder L is greater than 2πr and the cylinder is perturbed with a wavelength λr greater than

2πr. When the cylinder is immersed in the gravity �eld, the stability condition is governed

by the Bond (Bo) number:

Bo =
ρgr

σlv
(2.28)

which expresses the ratio between the gravity forces and the surface tension. As remarked

by Coriell et al. [1977], when the Bo number increases the stability limit L/r decreases,

furthermore it has been proved that the liquid cylinder direction has a great impact on the

stability conditions, in fact, when the �lament is oriented in parallel direction to the gravity

�eld, is less stable than when the �lament is perpendicular to the gravity �eld [Bezdenejnykh

et al., 1999].

Rayleigh [1892] proposed the solution of the dynamic instability of cylinder free in space

and stated that the maximal growth rate Gr (until the cylinder break) of a sinusoidal pertur-

bation in space is given by:



2.3. Physical aspects of Powder Bed Fusion 32

Gr = 0.3433

√
σlv
ρr3

(2.29)

and it occurs for a wavelength of λr = 2.8694πr. Eq. 2.29 is usually known as Rayleigh

instability and it is valid for low viscosity �uids.

Figure 2.20: Example of Rayleigh instability on �uid water cylinder parallel to
gravity direction.

Chandrasekar [1970] investigated the capillary instability for high viscosity �uids and

pointed out that the viscosity in�uences the cylinder break up and the size of the generated

droplets, and proposed an interesting study on the instability of liquid ferrous cylinder.

Schia�no and Sonin [1997b] proposed an interesting study on molten liquid cylinders

bounded with solid surfaces, concluding that the instability of the cylinder depends on the

boundary conditions of the moving contact line. Roy and Schwartz [1999] extended the pre-

vious work to the investigation of a liquid cylinder instability on solid surfaces with various

shapes, concluding that the stability limit depends on the surface geometry.

Baer et al. [2000] used the �nite element method to develop a free surface scheme to

simulate capillary rise near the corners of solid surfaces. Raiskinmäki et al. [2002] used the

lattice Boltzmann method to simulate the capillary rise in thin pipes. Ahrenholz et al. [2008]

instead adopted the multiphase Shan and Chen [1993] LB method to investigate the capillary

rise in porous media. Capillary rise and depression in pipes with di�erent diameters has

been investigated also by Attar and Körner [2009] adopting a free-surface lattice Boltzmann

method. Finally Ammer et al. [2014a] included the capillary e�ect evaluation in a complex

simulation framework to simulate the thermo �uid dynamic motion of the melt pool.

Gusarov et al. [2007] applied the FV method to investigate the capillary instability in

SLMed steel parts production. They studied the process with �xed laser power and varying

the scan speed. They concluded that reducing the scan speed increases the stability of the

melt pool. The simulation results are in accordance with experimental tests.

Zäh and Lutzmann [2010] used the �nite element method to investigate the capillarity

stability conditions in EBM. The authors studied the in�uence of di�erent scan speeds and

laser powers on the capillary instability: in particular they established a relationship between

the printing parameters and the critical limit L/r which leads to melt pool fragmentation.

Cheng and Chou [2013] studied the correlation between the critical limit L/r and the melt
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pool area generated during an EBM process. In speci�c they investigated the in�uence of

various combinations of process parameters on both the melt pool area and the instability

limit.

Figure 2.21: Simulation of capillary rise and depression in pipes of di�erent size,
performed with a free surface lattice Boltzmann-method [Attar and Körner, 2009].

Gibbs-Marangoni e�ect/convection

TheGibbs-Marangoni e�ect, also known as Benard-Marangoni convection is a thermo-capillary

phenomena of �uid mass transfer between an interface due to a di�erence of surface tension.

Keene [1988] pointed out that in liquid metal alloys, the surface tension decrease with the

temperature, so during the melting process the Gibbs-Marangoni e�ect rise between hotter

and colder zones of the melt pool.

Figure 2.22: Example of Gibbs-Marangoni e�ect rising due to the temperature
gradient between the melt pool zones.

The strength of this thermo-capillarity e�ect is controlled by the Marangoni number Ma:

Ma =
∂σLV
∂T

∂T

∂s

L

2ηδ
(2.30)

where: ∂σLV /∂T is the surface tension gradient, ∂T/∂s is the surface thermal gradient, L is

the characteristic length of the melt pool and δ the thermal di�usivity.

In PBF processes the Gibbs-Marangoni convection a�ects both the temperature distri-

bution in the melt pool and the melt pool shape itself [Chan et al., 1987]. Several works in

literature face the problem of the Marangoni forces estimation in laser welding processes. Chan

et al. [1988] demonstrated that the Marangoni convection leads to an increment of the melt
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pool thickness which cannot be caught with the solution of the heat conduction equation (Eq.

2.3). Robert and Debroy [2001], instead, proposed a relationship among Ma numbers and

the other non dimensional number governing a thermo-�uid dynamic problems: the Peclet's

number (Pe) and the Prandtl number (Pr).

Qiu et al. [2015] set up a �nite volume simulation to study the melt pool dynamics in

SLM processes. They underlined that Marangoni forces are the main responsible of melt pool

instabilities which lead to the formation of imperfections on the �nal part. Jamshidinia et al.

[2013] developed a coupled �nite element/�nite volume method to investigate the melt pool

dynamics, including thermo and �uid dynamics e�ects and the Marangoni forces estimation.

Vaporization

Vaporization (or evaporation) can occur in PBF process when the powder bed is heated by a

high power heat source. When including the liquid/vapor phase change in the thermo-�uid

dynamic problem, the energy in Eq. 2.21 is given by:

E =

∫ T

0
ρCp∆T + ρ∆Hs + ρ∆Hv (2.31)

where the latent enthalpy ∆Hv(T ) of vaporization is de�ned as follows:

∆Hv(T ) =


Lv, T > Tg,

Lv ·
T − Tl
Tg − Tl

, Tl < T < Tg,

0, T < Tl

(2.32)

where Lv is the latent heat of liquid-vapor phase change, Tg is the temperature just above the

vaporization point and Tl is the temperature just below the vaporization point.

Figure 2.23: Experimental results of weight loss in 308 (1) and 309 (2) stainless
steel obtained with a special long time extended welding process [Block-Bolten and
Eagar, 1984].

The vaporization in PBF process can lead to the formation of a spurious pressure above the

melting pool, furthermore the vapor phase can modify the heat absorption process. Boublík

et al. [1973] proposed a relationship to estimate the spurious pressure in the temperature range
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of the vaporization temperature Tv and the critic temperature Tcr:

P ∗ = P0 exp
(−Lv(T − Tv)

RTTv

)
(2.33)

where Tv can be de�ned as (Tg − Tl)/2.
Starting from Eq. 2.33, Geiger and Poirier [1994] evaluated the evaporation rate as follows:

Ja =
λap
∗
aC

5
a

ρ
√

2πMwRT
(2.34)

where: γa is the activity coe�cient of the component, p
∗
a is the vapor pressure of the component

at the current temperature, Ca is the volumetric concentration of the solute at the surface

and Mv is the molar weight.

Eq. 2.33 is well suited in case of a low vaporization rate, but it is not able to predict strong

vaporization behaviors. Anisimov [1996] developed the �rst theoretical model to predict the

vaporization during laser sintering processes and studied the relation between the vacuum

temperature and the evaporation rate. Knight [1979] developed a theoretical model to simulate

rapid surface vaporization at the ambient temperature. Allmen and Blatter [2013] stressed

the importance of the vapor pressure on the melt pool suggesting that the vapor pressure acts

as a piston on the melt pool, pushing out the liquid from the pool. The authors investigate

the in�uence of the laser spot, the liquid layer thickness and the vapor pressure on the melt

pool ejection rate.

Allmen and Blatter [2013] investigated the in�uence of the vapor plume above the melt

pool on the heat absorption rate. They underlined that the vapor cloud surrounding the melt

pool modi�es the incident wavefront of the heat source, furthermore when a high power heat

source crosses the vapor plume, part of the vapor can condensate in sub-micro-metric droplets

which can absorb, scatter and re�ect a signi�cant portion of the incident power input.

Gürtler et al. [2013] adopted the �nite volume (FV) method to investigate melt pool dy-

namics in SLM process, including vaporization e�ects. Shan and Chen [1994] developed a

multicomponent multiphase lattice Boltzmann scheme to simulate liquid-vapor phase tran-

sition. This method was adopted by Gong and Cheng [2012] to develop a multiphase heat

transfer model with liquid-vapor phase change. The method is used to simulate bubble growing

and detachment from a heated smooth surface.

Figure 2.24: On the left: bubble growing from a heated surface. On the right:
velocity �eld after bubble detaching from the heated surface.
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Loh et al. [2015] developed a FE element method to investigate the evaporation rate

in single lines of aluminum alloy realized with SLM technology with di�erent scan speeds

and laser powers. This model is able to predict the strong evaporation rate that a�ects the

aluminum parts production; furthermore the simulation results are successfully compared to

the experimental tests.

2.3.6 Porosity

Porosity is a big issue in PBF processes, in fact a high percentage of pores in bulk material

can a�ect the mechanical behavior of the �nal component, reducing the material strength,

and the fatigue resistance [Aboulkhair et al., 2014]. Porosity depends on several parameters

of the printing process; in particular from: powder size and distribution, heat source power,

scan velocity and scan direction [Aboulkhair et al., 2014].

Figure 2.25: E�ect of hatch spacing on part porosity [Aboulkhair et al., 2014].

From the practical experience it merges that porosity is an important problem in producing

aluminum parts. One of the main causes of porosity in aluminum parts is the oxidation which

can occur during the melting process on top and lateral sides of the melt pool; the contact

among two oxide �lms generates the pores. [Louvis et al., 2011]. The oxidation of a generic

metal is given by the following red-ox reaction:

xM +O2 ←→MxO2 (2.35)

Louvis et al. [2011] pointed out that in order to obtain a 100% density in SLM aluminum

parts, the oxide �lm must be break up during the melting process. Aboulkhair et al. [2014]

studied the in�uence of scan velocity and scan strategy on pores formation. They conclude

that metallurgical pores principally rise at low scanning speeds when small gas particles are

trapped into the melt pool; keyhole pores, instead rise at high scanning speeds when the rapid
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cooling e�ect does not allow the melt pool to �ll the underlying cavities. They also investigate

the in�uence of hatch spacing in scan strategy on the resulting porosity, concluding that small

hatch spacing allows to reduce part porosity, as we can appreciate in Fig. 2.27. Osakada and

Shiomi [2006] stressed that high scan speeds trigger a balling e�ect on the top surface on the

melt pool. An excessive balling e�ect increase the roughness of top surface, favoring keyhole

pores formation.

Gürtler et al. [2013] included in their �nite volume method the spurious pressure to evaluate

keyhole pores formation. Bauereiÿ et al. [2014] adopted the lattice Boltzmann method to

simulate PBF process varying the heat source power. The simulations show that with low

laser power the insu�cient melt poll depth and the wetting behavior give rise to a signi�cant

porosity in the part. The simulation results have been validated trough experimental tests.

2.3.7 Surface roughness

The surface roughness is a peculiarity of parts created with PBF processes and depends on the

presence of semi-molten powder of the surface of the bulk layer. In most of cases the surface

roughness is an undesired e�ect that a�ects the �nal aspect and the mechanical properties of

the parts; furthermore it is source of crack initialization [Cansizoglu et al., 2008]. In few cases,

instead, the surface roughness is useful; a typical example are the mechanical implants where

the surface roughness favors the contact between the mechanical part and the human bones

[Rombouts et al., 2005].

The surface roughness is strongly dependent on the printing process parameters, in partic-

ular on the laser/electron beam characteristics. Gürtler et al. [2014] developed a �nite volume

method to investigate melt pool dynamics in SLM printing of aluminum parts and they study

the e�ects of di�erent powder size distributions on part porosity and surface roughness. They

conclude that small size particles distribution are useful to reduce the surface roughness. Qiu

et al. [2015] adopted the �nite volume method to investigate melt pool dynamics in SLM parts

production. The authors remark the importance of melt pool stability in order to reduce the

surface roughness.

Figure 2.26: Surface pro�le/roughness of a surface inclined of 65 °C [Strano et al.,
2013].

Strano et al. [2013] developed a mathematical model, based on experimental results, to
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describe the variation of the surface roughness in function of the sloping angle.

Jamshidinia et al. [2013], instead, adopted the �nite element method to investigate the

e�ects of di�erent hatch spacing on surface roughness in EBM. They conclude that, with the

considered hatch spacings, no signi�cant interactions between melting lines rise during the

scan process, while a signi�cant temperature di�erence is recovered after the cooling process.

Finally they conclude that with sparser hatch spacings low temperatures on top layer surface

are obtained, reducing the surface roughness. The results are validated trough experimental

tests [Jamshidinia and Kovacevic, 2014].

Figure 2.27: Surface roughness obtained with a hatch spacing of 500 µm [Jamshi-
dinia and Kovacevic, 2014].

2.3.8 Residual stresses and cracking problems

During melting/solidi�cation process high thermal gradients rise, leading to the formation

of residual stresses. When the temperature increases, the material expands and the material

strength decreases. The material expansion is bounded by the solid powder and once it reaches

the yield stress a plastic deformation begins. When the heat source moves away from the melt

pool, the melting powder starts to cool down triggering stress formation in the solidi�ed

material. Mercelis and Kruth [2006] called this stresses residual stresses.

Residual stress formation is strongly in�uenced by the temperature distribution during

the printing process and by the physical constraints imposed by the support structures. In

general, residual stresses can lead to high part deformations both during the printing process

and after the supports removal when the residual stresses start relaxing. Fig. 2.28 shows an

example of part detachment from the support structure due to the high stresses rising during

the print.

Figure 2.28: Example of part detachment from the building plate due to residual
stresses.



2.3. Physical aspects of Powder Bed Fusion 39

Furthermore, when residual stresses exceed the material ultimate strength, some cracking

problems can rise in the printed parts. Fig. 2.28 shows a typical example of cracks induced

by residual stresses on a SLMed Stainless Steel part.

Figure 2.29: Example of crack in 3D printed part induced by residual stresses
accumulation.

Mercelis and Kruth [2006] developed one of the �rst mathematical models to predict resid-

ual stresses in SLM parts. In this model many assumptions are taken into account: room

temperature is kept constant and stresses are assumed to be constant layer by layer, but in

spite of this simpli�cations the model is able to predict qualitatively good the residual stresses

distributions.

Li et al. [2004] developed a coupled thermo mechanical �nite element method, neglecting

hydrodynamics e�ects, to investigate the dependence of residual stresses on the melt pool

dynamics. Finally they relate the residual stress distributions to occurrence of the cracks

detected in experimental tests. Dai and L. Shaw [2006] developed a thermo mechanical �nite

element method to study the SLM production of multi material dental implants of nickel and

porcelain. They underlined how in multi material components the residual stresses are caused

by both thermal gradients and di�erence between the expansion coe�cients of the considered

materials; in fact, because of the strong di�erence between the expansion coe�cients of nickel

and porcelain, high residual stresses arise at the interface between the two materials triggering

cracks formation in the component.

Papadakis et al. [2014] investigated the residual stresses on a cantilever beam produced

with SLM. They developed a uncoupled thermo mechanical �nite element method, including

several simpli�cations; the strongest ones are the homogenization of three physical layers into

one layer of elements and the instantaneous application of thermal load. Nevertheless, their

model is able to predict with a 25 % error the vertical part displacements.

Many other similar �nite element schemes have been proposed in last years to predict resid-

ual stress distribution and parts distortions; among the other we recall the models proposed

by Krol et al. [2013], Zaeh and Branner [2010] and Keller et al. [2013].

In most of those works the heat source is homogenized, the element layers correspond to

several physical layers and, in some cases the scan path is not taken into account. Nevertheless,

such approximations allow to predict qualitatively good stress paths and part displacements.

Although, in order to predict with accuracy the stress distribution and the cracks formation it

is mandatory to calculate the temperature distribution and thus to include in the calculation
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the correct scan path [Seidel et al., 2014].

Figure 2.30: On the left: vertical displacements before and after support removal,
evaluated with a thermo mechanical �nite element model. On the right: experi-
mental results after support cutting [Papadakis et al., 2014].

Li et al. [2017] developed a very accurate �nite element method, to study residual stresses

and part distortions in a cantilever beam produced with SLM. To reduce the computational

demand they homogenize eight physical layers into one element layer, instead they follow

correctly the scan path and they model the heat source.

Afazov et al. [2017] developed a coupled analytical - FEM model to predict part distortions

in SLM processes. An analytical thermal model is developed to evaluate thermal functions that

are then used to perform the mechanical analysis. The results are compared with experimental

measurements showing a very good agreement with the experimental data. Furthermore,

according to the authors,the results are obtained reducing the computational time from many

days to few hours.

Figure 2.31: Distortion prediction in SLM part obtained with a coupled analytical
- FEM model [Afazov et al., 2017].
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Cracks formation

As previously discussed a high accumulation of residual stresses can lead to cracks formation.

Weisman [1976] studied hot cracks formation in welding process. From this point of view

welding is very similar to SLM/EBM processes because hot cracks appear when the semi-

molten material is not able to accumulate the strains induced by the shrinkage e�ect caused

by the very fast cooling e�ect. The zones more subjected to hot cracking problems are the

boundaries and the interfaces of the parts [Cieslak, 2002]. Furthermore it has been proved that

a narrow melting-solidi�cation temperature range reduces cracks formation. Finally Borland

[1960] pointed out that the presence of gases like sulfur can favor hot cracks formation in

iron-based materials.

Cieslak [2002] studied the formation of cold cracks after the solidi�cation process. This

type of cracks usually reveals after days or weeks from the part production.

Carter et al. [2014] studied the in�uence of the adopted laser scan strategy on the cracking

behavior of nickel part produced with SLM. They proved that a back-and-forth scan strategy

produce a more homogeneous structure characterized by regular grains which reduces the

cracking occurrence.

Cracking problems can also arise from fatigue. Walker et al. [2017] evaluated fatigue

cracks propagation in SLMed parts produced without heat treatment. The experiments are

conducted considering di�erent scan strategies and load magnitudes. Finally the cracks prop-

agation is related to the porosity of the parts and the di�erence between the crack propagation

in SLM parts and traditional manufacturing parts is investigated.

Siddique et al. [2017] investigated the e�ects of build plate temperature and post processing

heat treatment on fatigue resistance, concluding that those parameters have a signi�cant

in�uence on the it. Furthermore the experimental results show that local imperfections and

micro-structure can signi�cantly increase fatigue cracks propagation.

2.4 Numerical simulations of Powder Bed Fusion

In previous sections we have brie�y discussed about the physical aspects rising during AM

processes and how they have been faced from a computational point of view. The simulation

approaches can be divided in two big class according to the scale they face the problem:

� Powder level simulations

� Continuum level simulations

2.4.1 Powder level simulations

Powder level simulations try to solve the simulation of PBF processes at the microscopic level,

typical of the powder. In general powder level simulations are adopted to investigate small

portions of domain (hundreds of microns) and to study the e�ects of process parameters on

melt pool dynamics. Furthermore they are adopted to investigate the local e�ects, like surface

roughness and porosity, which can a�ect the mechanical properties of the part.

At the author knowledge, the only method which is able to solve such complicated problem

is the framework proposed by Attar and Körner [2011]. This is the �rst model able to simulate
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the solid-liquid phase change of the powder and to follow simultaneously the thermo-dynamic

evolution of the melt pool. The algorithm proposed in this work is based on a free surface

[Thürey et al., 2005], multi distribution [He et al., 1998] lattice Boltzmann method (LBM)

and it is adopted to solve the melting/solidi�cation problem in a 2D domain. This model is

able to treat wetting, surface tension, phase-change and heat conduction-convection. They

used this method to investigate melt pool evolution and balling e�ect during a single line

scanning on a stochastic powder bed. The authors concluded that the arrangement of melt

pool strongly in�uence balls formation and, consequently, relative density. Körner et al. [2013]

used the simulation framework proposed by [Attar and Körner, 2011] to simulate the formation

of a single layer of solidi�ed material. The rain drop model is used to simulate the powder

deposition. They investigated the in�uence of beam properties and layer thickness on the

�nal quality of the wall. They concluded that the stochastic allocation of the powder strongly

in�uence the wall quality, furthermore they pointed out that low scan velocities increase the

�nal density of the part, but at the same time they increase melt pool instability and, thus,

the surface roughness of the part.

Figure 2.32: Simulation of wall construction using a free surface multi distribution
lattice Boltzmann method [Körner et al., 2013].

Ammer et al. [2014a] extended this approach to three dimensions and proposed a complete

simulation framework of the entire PBF process, including powder bed generation, heat source

modeling and heat absorption/interaction with powder.

Figure 2.33: 3D simulation of EBM in a stochastic powder bed distribution [Ammer
et al., 2014a].
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In this method the free surface is modeled with the volume of �uid approach, which allows

to evaluate the porosity as the fraction of gas trapped between the solid layer. With this

method Ammer et al. [2014b] investigated a real case study which has been validated with an

experimental test [Juechter et al., 2014].

A similar approach is adopted by Markl et al. [2015] to investigate the in�uence of process

parameters on the melt pool generated by an electron beam on a single layer of powder. In

this work the authors studied the in�uence of three process parameters on the �nal porosity:

(i) beam power, (ii) beam spot and (iii) scan velocity. With a constant electron beam power

and a constant scan velocity, the decreasing of the beam area leads to an augment of the local

porosity; furthermore they show that duplicating the electron beam power, keeping constant

the beam area and the scan velocities, the porosity of the part increase. This simulation

approach was adopted by Markl et al. [2016] to simulate a multilayer powder bed constituted

of twenty layers. The results show the presence of un-molten powder on the top of the melt

pool, in particular, we notice that keeping constant the laser power and the scan velocity, the

decreasing of the beam area leads to an increment of the surface roughness. In fact, higher

energy density increases the instability of the melt pool, and according to Qiu et al. [2015],

also the surface roughness. This simulation takes into account also the Marangoni convective

�ows and the evaporation.

Figure 2.34: In�uence of the energy density and scan speed on the local porosity
in a 3D domain of multiple powder layers [Markl et al., 2016].

King et al. [2015], instead, adopted a coupled �nite element/�nite volume method to

investigate a multilayer SLM process, although this model has some limitations: they used

a continuous absorption model instead of developing a ray tracing model for heat absorption

in a stochastic powder bed, moreover they do not take into account the Marangoni forces,

evaporation and heat radiation. Their results show that with a higher scan speed and a

higher laser power a severe balling e�ect occurs, due to the increasing capillary instability

of the melt pool. Furthermore they investigate the e�ects of di�erent scan strategies with

constant laser power and scan velocity. The results show that a discontinuous track does not

present a severe balling e�ect, but nevertheless it does not allow to avoid the fragmentation

of the melt pool. In conclusion we can also notice that the results are in agreement with the
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results shown by Markl et al. [2016].

Figure 2.35: E�ect of laser power and scan velocity change [King et al., 2015].

In conclusion, the powder level simulations allow to investigate with accuracy the dynamics

of the melt pool and the local e�ects of the printing process parameters on the bulk material.

Although the to solve the powder level simulations, very �ne computational meshes are needed.

In general the element size must be of an order of magnitude lower than the powder diameter.

For example let's suppose to simulate a 1mm3 of domain with layers of 40 µm; considering a

cubic element mesh of 4 µm size we would need around 16 millions of elements. So, from a

computational point of view, powder level simulations are very expensive and can be performed

only with HPC computational e�orts. By fact until now it is not possible to simulate at the

powder level the printing process of an entire part even using supercomputers.

2.4.2 Continuum level simulations

Continuum level simulations are, in most of cases, used to study the PBF process at the scale

of the component, in this case they can be referred as macroscopic simulations. Although,

sometimes they are used also to investigate the local e�ects of the heat source on the powder

bed. In this last case the can be considered a kind of microscopic simulation.

The main purpose of this approach is to evaluate the residual stresses rising on the com-

ponent during the printing process and to evaluate the part distortions. All the macroscopic

simulation approaches adopt the strong approximation to consider the powder bed as a con-

tinuous domain. Furthermore, in most of cases, they do not simulate the �uid dynamic e�ects,

omitting the surface movement representation and neglecting wetting and surface tension ef-

fects.

The adopted meshing strategy and the time resolutions are dependent on the desired

precision level of the simulation: with very �ne meshes (µm) and very small time steps µs it is



2.4. Numerical simulations of Powder Bed Fusion 45

possible to study the local interaction between the heat source and the material and to follow

exactly the scan strategy. Although in this case it is possible to simulate only small portions

of domain (cm3) like in microscopic simulations, in fact in this case the typical element size

is equal to the powder layer thickness.

To simulate an entire component, although, it is not possible to adopt a �ne meshing

strategy, but, coarser meshing strategies are needed. In general the typical element size varies

between 2 and 50 times the layer height. This approach does not allow to simulate the

e�ects of volumetric heat sources and to follow correctly the scan path, although it allows to

obtain a global valuation of stress distribution and component deformations, with reasonable

computational e�orts.

Matsumoto et al. [2002] developed a �nite element method to investigate thermal and

residual stresses distribution on a single layer of powder. An uncoupled approach is adopted:

�rst the thermal analysis is carried out, then the results of the thermal analysis are used as

forcing term for the mechanical analysis. In this work the domain is assumed to be continuous

and heat conduction and radiation are taken into account for the thermal analysis, while a

thermo elastic constitutive model is adopted for the mechanical analysis.

Hussein et al. [2013] developed a thermo mechanical �nite element method in which the

scan strategy is taken into account, furthermore the heat source is modeled as a Gaussian

distribution and the heat conduction with the base plate is taken into account. They conclude

that the highest temperature gradient is found at the start of the printing process, while the

melt pool length increases with higher scan speeds. Furthermore the authors stress the fact

that the simulation is able to predict the zone that are more a�ected by distortions and needs

particular support structures in order to obtain the desired geometry.

Figure 2.36: Finite element simulation SLM process of a single layer of powder
which is treated as a continuum domain. Simulation approach includes the heat
source modeling and the base plate [Hussein et al., 2013].
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Foroozmehr et al. [2016] used the �nite element method to investigate melt pool sizes

during SLM process. Not only the spatial energy distribution of the laser beam, but also

the beam penetration depth is taken into account. The results of the study are validated

with experimental tests showing that, after a brief unstable behavior at the beginning of the

�rst scan line, melt pool sizes stabilize and similar melt pool shapes are recovered for the

subsequent scan lines.

Li et al. [2017] developed a temperature thread multi-scale model to study an equivalent

body heat �ux to be applied on the hatch layer and substitute the classic micro-scale heat

source treatment. With this approach they reduce the computational demand allowing to

simulate, layer by layer, a whole component. Finally they simulate the part detachment from

the building plate and they compare the numerical distortions with the experimental results.

Figure 2.37: Comparison between the predicted part distortions and the experi-
mental measurements of a cantilever beam produced with SLM [Li et al., 2017].

2.4.3 Multi scale approaches

Multi scale approaches aim to connect the microscopic world to the macroscopic one. In

particular they try to include the information given by the powder level simulation into the

microscopic simulations in order to calculate residual stresses and part distortions.

In recent years some multi scale models have been proposed; although at the state of the

art is no available any multi scale model which includes the results of a powder bed analysis

in a continuum scale simulation, but all the models are based on continuous approaches in

which some micro-structural aspects are included in the macroscopic simulation framework.

Li et al. [2016a] developed a multi scale model, based on the �nite element method, in

which they integrate a micro scale laser scan model, a meso scale layer hatch model, and a

macro scale part model. In the micro scale laser model the the authors calculate an equivalent

heat source from the energy distribution of a heat �ux on scanning a layer of powder material

(which is assumed to be continuous); then this equivalent heat source is included in a layer
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hatch model to estimate residual stresses, and �nally, the calculated residual stress �eld is

applied to the macroscopic part, following the scan direction, in order to predict the global

residual stress �eld. The simulation framework has been validated trough the comparison with

experimental data. This method is able to predict with good accuracy the part distortions

with a consistent saving of computational times [Li et al., 2016b].

Figure 2.38: Comparison between the predicted part distortions and the experi-
mental measurements of a plate beam produced with SLM and simulated with a
multi scale simulation. [Li et al., 2016a].

Yan et al. [2015] developed a multi-scale, FEM based, approach, to simulate the electron

beam interaction with the powder. The distribution of the absorbed energy is modeled using

Monte Carlo simulations in front of the classical Gaussian and double ellipsoidal models. The

simulation scheme is adopted to investigate the interaction between a single powder layer and

the electron beam, concluding that this model is able to predict some typical phenomena, like

eruption and explosion, that usually can be described only with a pure powder level simulation.

Although this study is lack of an experimental validation.

Seidel and Zaeh [2018] proposed a multi scale approach in which a very accurate modeling

of the heat source interaction with the powder bed is performed. The heat source absorption

in the plane is estimated using the Rosenthal Equation (Eq. 2.4), while the melt pool depth is

evaluated trough experimental tests. The results are used to solve the temperature distribution

of a single layer model; then a control volume scheme is developed to simulate the build-up of

the entire part.

Li et al. [2018] pointed out that the prediction of the residual stresses in SLM parts is

extremely expensive, from a computational point of view, when using a coupled thermo-

mechanical FEM simulation. Moreover the authors underlined that multi-scale predictive

models are necessary to reduce the computational costs and they also pointed out that scalable

simulation models must be able to take into account the in�uence of scan strategy on residual
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stresses and this is hard to obtain with a multi-layer approach in which an equivalent heat

source is used. They developed a scalable predictive model based on a micro scale study of

heat source interaction and meso scale hatch model where also the scan strategy is taken into

account. Finally a macro scale analysis based on the concept of block layers is used to build

up the part. The developed method has been used to predict the residual stresses in SLMed

parts and the results have been validated with experimental measurements.

Figure 2.39: Predicted and experimentally measured vertical residual stresses on a
SLMed part simulated with a multi scale approach and with di�erent numbers of
macro layers [Li et al., 2018].

2.4.4 Commercial Codes for Additive Manufacturing Simulations

The continuum level simulations and the multi scale simulations of AM are based on the

assumption of a continuum domain and, in general, they are performed using commercial

softwares. In literature the most frequently used commercial softwares are:

� Abaqus (Simulia, USA);

� COMSOL Multiphysics (COMSOL, Inc., USA);

� ANSYS (ANSYS, Inc., USA);

Abaqus is a well know �nite element code that since 2016 started the development of a

tool dedicated to PBF simulations in which, two simulation approaches are proposed:

� Microscopic in which a very �ne meshing strategy (equal or less than the layer thickness)

is adopted and the heat source can be modeled to study the interaction with the powder

bed, taking into account the scan strategy;
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� Macroscopic in which a coarser meshing strategy (element layer representing several

physical layers) and the heat source can be modeled to study the interaction with the

powder bed, taking into account the scan strategy.

In both cases the analysis is solved using an uncoupled thermo-mechanical approach in

which the results of the thermal analysis are used as forcing term in the mechanical analysis.

Next to this classic �nite element codes, new softwares dedicated to AM simulation have

been proposed in the last years. In particular we refer to:

� DIGIMAT AM (ExStream Engineering - MSC, Belgium);

� Virfac iAM (GeonX, Belgium);

� 3D Experience AM (Dassault Systemes, France);

Digimat AM is a tool developed by ExStream Engineering which allows to simulate various

AM processes, including SLM and SLS. The simulation is divided in two steps:

1. A preprocessing step where several representative volume elements of material are printed,

using a fully thermo-mechanical coupled analysis to identify the warpage behavior of the

printed material as a function of the process parameters;

2. A structural job, where material is deposited layer-by-layer and then cooled down once

the full part is built.

The warpage behavior of the representative volume is studied using the Inherent Strain

Method. The software allows the de�nition of several printing process parameters, including

the chamber temperature, the laser power, the scan spacing, the scan speed and the recoating

time. Although, when the author write, the software is able to perform simulations just with

a thermo-elastic constitutive model and no plastic or viscous characteristics can be taken

into account. Thanks to the usage of the Inherent Strain Method and the layer-by-layer

construction, the software is very fast and allows a consistent time saving in face of the classic

FEM approach.

Virfac iAM is a multi-physic multi-scale software dedicated to SLM process simulation.

The simulation framework is similar to the one proposed by Li et al. [2018], although at the

state of the art, only the macroscopic layer-by-layer construction is available and the simulation

of the build-up model is performed with the Inherent Strain Method. At the author knowledge,

the micro and the meso-structural tools will use the lattice Boltzmann Method. One of the

best characteristics of this software is the possibility to perform parallel computations with a

super fast GPU acceleration tool. This feature allows to obtain very low computational times

even on a simple desktop computer.

2.5 Conclusions

In this chapter, we have studied the physical e�ects rising in Powder Bed Fusion process and

we have investigated the possible computational solutions to simulate PBF process.
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PBF is a very complex process which involves several physical phenomena including wetting

and phase change. In the �rst part of this chapter we have analyzed in detail each phenomena,

focusing on the physical aspects and on the common experimental approaches; furthermore,

we have proposed a brief literature review of each phenomena, focusing both on experimental

studies and on computational approaches.

In the second part of this chapter we have focused on numerical simulations of Powder

Bed Fusion. Simulation approaches can be divided into two big classes: powder level and

continuum simulations; although in last years multiscale approaches which try to include

microscale results into a macroscopic framework have been developed. We have analyzed

advantages and disadvantages of each simulation approach, leaving applications of micro and

macroscopic simulations to the next chapters.



Chapter 3

The Lattice Boltzmann Method

The Boltzmann Equation can be derived from the kinetic theory of gases (KTG). Heceforth,

in the next sections, starting from the kinetic theory of gases and following step by step

Boltzmann's work, we will derive the Boltzmann Equation.

3.1 The Kinetic Theory of Gases

In the molecular theory of matter a general volume of gases is a system with a very large

number of particles moving in an irregular way. If we consider particles as mass points and

assume to deal with N particles, the classical Newton's equations, governing the motion of the

i-th particle (with i = 1,. . . , N) can be written as:

ẋi = ξi, ξ̇i = Fi → ẍi = Fi (3.1)

where xi is the space position vector of the i-th particle, ξi is the velocity, and Fi denotes the

force acting upon the i-th particle divided by the mass particle.

For a generic system of N particles, solving the time evolution problem means to know

the position and the velocity (xi, ξi) for each particle at each time step: this involves the

resolution of 6N �rst-order di�erential equations (Eq. 3.1) with 6N unknowns. In order to

simplify the notation it is common, and very useful, to introduce the 6N -dimensional Phase

Space with the generic element z represented as follows:

z =

{
X

Ξ

}
(3.2)

where X is a 3N dimensional space containing the N three-dimensional vectors xi, and Ξ is a

3N dimensional space containing the N three-dimensional vectors ξi. It is possible to represent

the time evolution of z as follows:

Z = ż =
dz

dt
with Z =

{
Ẋ

Ξ̇

}
(3.3)

where Ẋ is a 3N dimensional space containing the N three-dimensional vectors ξi, and Ξ̇ is a

3N dimensional space containing the N three-dimensional vectors Fi.

51
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Solving such a large system is an impossible task as shown by Borel [1914]. To get over the

hump, we renounce to compute the analytical solution of Eq. 3.3 and we use a probabilistic

approach. In fact, it is possible to introduce a probability density function, P (z, t), represent-

ing the probability to �nd each particle (of the N particle system) in a certain position with

a certain velocity at time t. Considering a region D of the phase space, the probability to �nd

the state z inside this region is given by:

Prob(z ∈ D) =

∫
D
P (z, t)dz (3.4)

In a similar way, we can de�ne P0(z) = P (z, 0) as the probability density function representing

the probability to �nd, at time t = 0, each particle (of the N particle system) in a certain

position with a certain velocity. Under speci�c regularity conditions [Cercignani, 1969], we

can substitute the discrete mass distribution in Eq. 3.3, with a continuous mass distribution

whose density is proportional to the probability density function P . Then, applying the mass

conservation principle to Eq. 3.3, we obtain:

dP

dt
=
∂P

∂t
+∇ · (PZ) = 0 (3.5)

where (∇ · ) is the classical divergence operator. Equation 3.5 is commonly known as Liouville
equation (LE). The second addend of Eq. 3.5 can be written as follows:

∇ · (PZ) = Z · (∇P ) + P (∇ ·Z) (3.6)

where the divergence of Z can be written in terms of the physical variables, as following:

∇ ·Z =
N∑
i=1

(
∂

∂xi
· ξi +

∂

∂ξi
·Fi

)
(3.7)

Now, if we assume xi and ξi to be independent variables and we consider the force per

unit mass to be velocity independent (i.e. (∂/∂ξi) ·F i = 0), it is straightforward to write:

∇ ·Z = 0. The second assumption is physically consistent if we assume to deal with a system

of particles not immersed in a magnetic �eld (i.e. no Lorentz Force is acting on the particles).

With those considerations, inserting Eq. 3.6 in Eq. 3.5, we can write the Liouville's equation

in such a way:

∂P

∂t
+Z ·

∂P

∂z
= 0 (3.8)

or, in terms of the physical variables xi and ξi:

∂P

∂t
+

N∑
i=1

ξi ·
∂P

∂xi
+

N∑
i=1

Fi ·
∂P

∂ξi
= 0 (3.9)

Finally, if there is no force acting on the particles, we can write a simpli�ed version of Eq. 3.9
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as follows:

∂P

∂t
+

N∑
i=1

ξi ·
∂P

∂xi
= 0 (3.10)

It is possible to demonstrate that Eq. 3.9 represents an alternative way to write Eq. 3.3 for

a continuous system, containing, not only the informations about a given motion, but also on

the motion close to the latter [Cercignani, 1969]. Another important point is that, if the initial

data are given with certainty, P0 is a Dirac Delta function and the evolution distribution P

is, likewise, a Dirac Delta function: in this case the center of the Delta function is the exact

solution of the equation of motion (Eq. 3.3).

Let us consider, now, the probability density function P for a system of N particles:

P (z, t) = P (x1, ξ1, . . . ,xN , ξN , t) (3.11)

As stressed by Cercignani [1972], and by Boltzmann himself, it is not possible to adopt Liouville

equation for practical purposes due to the enormous number of unknowns (∼= 1020). In order

to have a more manageable equation, we need, so, to reduce the numbers of unknowns in

function P .

Following Boltzmann's work, we write the evolution equation for just one particle distribution,

P (1), and not for the entire system of N particles. We de�ne P (1) as the probability to �nd a

particle with certain position and certain velocity, whatever is the state of the other particles.

P (1) is expressed as follows:

P (1)(x1, ξ1, t) =

∫
CN−1×R3N−3

P (x1, ξ1,x2, ξ2, . . . ,xN , ξN , t)dx2dξ2 . . . dxNdξN (3.12)

where CN−1 is the region of the physical space covered by N − 1 positions of the N − 1

particles. R3N−3 is, instead, the velocity axis covered by the 3N − 3 velocity components of

the N − 1 particles. In absence of collisions, P (1) must satisfy Eq. 3.10, so we can write:

dP (1)

dt
=
∂P (1)

∂t
+

N∑
i=1

ξi ·
∂P (1)

∂xi
= 0 (3.13)

In this way the problem is written in seven unknowns (three positions xi, three velocities ξi
and the time t).

Accordingly, approaching the one particle problem from a probabilistic point of view is

quite simple. However, as suggested by Boltzmann, the problem gets much more complex

if we intend to write the dynamic of a particle considering the possibility of collision with

a second particle. We assume, for simplicity, that the particles have the same dimensions

(diameter σ); the probability of a collision depends on the probability to �nd another particle

at the distance of diameter from the considered one. We need, so, another probability density

P (2) = P (2)(x1, ξ1,x2, ξ2, t) which states the probability to �nd particle 1 in position x1 with

velocity ξ1 and particle 2 in position x2 with velocity ξ2 at time t. Similarly to P (1), we can
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evaluate P (2) as follows:

P (2)(x1, ξ1,x2, ξ2, t) =

∫
CN−2×R3N−6

P (x1, ξ1,x2, ξ2, . . . ,xN , ξN , t)dx3dξ3 . . . dxNdξN

(3.14)

where CN−2 × R3N−6 is easily de�ned as an expansion of the integral domain in Eq. 3.12.

In order to de�ne the evolution equation of this system of two particles, we have to investigate

what happens during the collision between the particles. Fig 3.1 represents the collision

between particle 1 and particle 2: ξ′1 − ξ′2 is the di�erence between particle velocities coming

closer before collision, while ξ1 − ξ2 is the di�erence between particle velocities moving away

after collision.

Figure 3.1: Incoming and outgoing velocity di�erence between colliding particles.

For sake of simplicity, we introduce the following quantities:

v = ξ1 − ξ2 and v′ = v − 2n(n ·v) (3.15)

To evaluate the e�ects of the collisions between the particles, we refer to Fig. 3.2. Let us

consider a point, x1, on the sphere surface, we de�ne σn as the vector joining the center of

the sphere x2 and the point x1. We consider, also, an area dS (green area around x1) de�ned

as dS = σ2dn, where dn is the area of an element on the surface of the sphere around n. On

dS we can construct a cylinder containing the particles hitting dS in the time t + dt. The

height of that cylinder is de�ned as |v1 ·n|dt.

Figure 3.2: Probability of collision between particles.
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We introduce the probability, P c, of collision between the particle 1 and the particle 2

in the elements of volume: (x1,x1 + dx1),(ξ1, ξ1 + dξ1),(x2,x2 + dx2),(ξ2, ξ2 + dξ2). P
c is

expressed as follows:

P c = P (2)(x1,x2, ξ1, ξ2, t)dx1dξ1dξ2 × σ2dn|v1 ·n|dt (3.16)

Now, if we want to evaluate the probability of collision, P cf , between particle 1 and 2 when the

position (x2) and the velocity (ξ2) of the particle 2 are �xed, we need to integrate Eq.3.16 on

ξ1. During this operation it is convenient to discern between two situations as shown in Fig.

3.3. When the particles are coming closer, according to the de�nition of vector n, the quantity

v1n is negative, while, when the particles are moving away after collision v1n is positive.

Figure 3.3: Height of the cylinder before and after collision of the two particles.

Finally, after some mathematical computations the P cf is expressed as: P cf = G− L with:

G = (N − 1)σ2
∫
R3

∫
B+

P (2)(x1ξ1,x1 + σn, ξ2, t)|(ξ2 − ξ1) ·n|dξ1dn

L = (N − 1)σ2
∫
R3

∫
B−
P (2)(x1ξ1,x1 + σn, ξ2, t)|(ξ2 − ξ1) ·n|dξ1dn

(3.17)

where B+ is the part of domain containing the particles coming closer after collision; B−,

instead, is the part of domain containing the particles moving away after collision. L and

G can be viewed, respectively, as loss and earning terms in the sense that Ldx1dξ1dt is the

total number of attended particles with position between [x1;x1 + dx1] and velocity between

[ξ1; ξ1 + dξ1] which exit from those intervals due to collisions. Gdx1dξ1dt is the analogous

number of particles entering the same intervals.

Finally, inserting Eq. 3.17 in Eq. 3.13 and considering P (2) in place of P (1), we can write the

evolution equation for a system of two particles including the possibility of collisions:

dP (2)

dt
=
∂P (2)

∂t
+

N∑
i=1

ξi ·
∂P (2)

∂ξi
= G− L (3.18)
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3.2 The Boltzmann Equation

As remarked by Boltzmann, Eq .3.18 is by far to be eligible for practical purposes. In fact,

the probability to �nd a particle P (1) with certain position and velocity still involves the

probability P (2) (Eq. 3.17), which is very complicated to evaluate. To simplify the problem,

Boltzmann introduced some hypotheses:

� The evolution equation (Eq. 3.18) is valid in the Boltzmann-Grad limit, namely when

the number of particles N → ∞ and the diameter σ → 0. Under these conditions the

product Nσ2 remains �nite [Cercignani, 1972]. This hypothesis is clearly consistent, in

fact, considering, for example a small domain of gas we have: N ∼= 1020 and σ ∼= 10−10m;

� The collision between two particles is a quite rare event [Cercignani, 1972] in fact the

volume occupied by the N particles is Nσ3 ∼= 10−10m3;

� If the collision between two particles is a rare event, it is reasonable to consider the

probability to �nd particle 1 in position x1 with velocity ξ1 and the probability to �nd

particle 2 in position x2 with velocity ξ2 at time t, stochastically independent (i.e. the

correlation coe�cient between the probability density functions is 0). This hypothesis is

commonly known as Molecular Caos or Stosszahlanstaz. Applying the Molecular Caos

to P (2) we �nally obtain:

P (2)(x1, ξ1,x2, ξ2, t) = P (1)(x1, ξ1, t)P
(1)(x2, ξ2, t) (3.19)

Now, by inserting Eq. 3.19 into Eq. 3.17 and applying the Boltzmann-Grad limit, terms G

and L can be written as follows:

G = Nσ2
∫
B+

∫
R3

P (1)(x1, ξ
′
1, t)P

(1)(x1, ξ
′
2, t)|(ξ2 − ξ1) ·n|dξ2dn

L = Nσ2
∫
B−

∫
R3

P (1)(x1, ξ1, t)P
(1)(x1, ξ2, t)|(ξ2 − ξ1) ·n|dξ2dn

(3.20)

where N is the number of particles, σ is the diameter of a particle, ξ′1 and ξ
′
2 are the particle

velocities before the collision and ξ1 and ξ2 are the velocities after collision. By inserting Eq.

3.20 in Eq. 3.18 we obtain the �rst formulation of the Boltzmann Equation:

∂P (1)

∂t
+ ξ1 ·

∂P (1)

∂x1
= Nσ2

∫
B

∫
R3

[P (1)(x1, ξ
′
1, t)P

(1)(x1, ξ
′
2, t)+

−P (1)(x1, ξ1, t)P
(1)(x1, ξ2, t)]|(ξ2 − ξ1) ·n|dξ2dn

(3.21)

where the left side of the Eq. 3.21 has been written in its extended formulation. Eq. 3.21 is,

by fact, the evolution equation for the probability density function of one particle.

Next step of Boltzmann's work was to formulate an evolution equation for a system con-

taining s particles. We de�ne P (s) as the probability to �nd particle 1 in position x1 with

velocity ξ1, particle 2 in position x2 with velocity ξ2 and particle s in position xs with velocity
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ξs at time t. P
(s) is expressed as follows:

P (s)(x1, ξ1,x2, ξ2, . . . ,xs, ξs, t) =

∫
Cs×R3s

P (x1, ξ1,x2, ξ2, . . . ,xN , ξN , t)
N∏

j=s+1

dxjdξj

(3.22)

Now, inserting Eq. 3.22 in Eq. 3.9 and integrating on variable xj (s+ 1 < j < N) we found

the following expression:

∂P (s)

∂t
+

s∑
i=1

∫
CN−s×R3N−3s

ξi ·
∂P

∂xi

N∏
j=s+1

dxjξj +

N∑
k=s+1

∫
CN−s×R3N−3s

ξk ·
∂P

∂xk

N∏
j=s+1

dxjξj = 0

(3.23)

where s is the number of particles satisfying the condition |xi− ξi| < σ (i=1,. . . ,N, i 6= j) and

following Cercignani [1997], we separate the particles i < s from the particles i > s. Assuming

P to be regular we can rewrite the second addend of Eq. 3.23 as follows:∫
ξi ·

∂P

∂xi

N∏
j=s+1

dxjξj = ξi ·
∂P (s)

∂xi
−

N∑
k=s+1

∫
P (s+1)ξi ·nikdσikdξk (3.24)

where nik is the outgoing normal to the sphere |xi−xk| = σ; dσik is an in�nitesimal element

of that sphere and P s+1 is the distribution function for s+ 1 particles with argument (xj ,ξj)

(j = 1, 2, . . . , s, k).

The third addend of Eq. 3.23 can be rewritten by using the Gauss Lemma [Tang, 1972] as

follows: ∫
ξk ·

∂P

∂xk

N∏
j=s+1

dxjξj =

s∑
i=1

∫
P (s+1)ξk ·nikdσikdξk+

N∑
i=s+1(i 6=k)

∫
P (s+2)ξk ·nikdσikdξkdxidξi +

∫
P (s+1)ξk ·nkdSkdξk

(3.25)

where dSk is the in�nitesimal element of the boundary surface in the tridimensional subspace

described by xk and nk is the outgoing normal that surface. In both Eqs. 3.24 and 3.25 we

have omitted, for simplicity, the domain on the integral which is clearly the same as the one

in Eq. 3.23. So, inserting Eq. 3.24 and 3.25 in Eq. 3.23 we obtain:

∂P (s)

∂t
+

s∑
i=1

ξi ·
∂P (s)

∂ξi
=

s∑
i=1

N∑
k=s+1

∫
P (s+1)vik ·nikdσikdξk+

1

2

N∑
i=s+1(i 6=k)

∫
P (s+2)

∫
P (s+2)vik ·nkidσikdξkdxidξi

(3.26)

where vik = ξi - ξk is the relative velocity between the i
th and the kth particle and nki = −nik.
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It is possible to demonstrate [Cercignani et al., 2013] that the last integral in Eq. 3.26 is

equal to 0 and the value of the �rst integral is the same whatever is the value of the k index

[Cercignani, 1972], so it is common in literature to use ∗ in place of k. After some mathematical
computations [Cercignani, 1997] we can rewrite Eq. 3.26 as follows:

∂P (s)

∂t
+

s∑
i=1

ξi ·
∂P (s)

∂xi
= (N − s)σ2

s∑
i=1

∫
B+

∫
R3

(P (s+1)′ |vi ·ni|dnidξ∗−

s∑
i=1

∫
B−

∫
R3

P (s+1)|vi ·ni|)dnidξ∗

(3.27)

where the apex ′ is used to indicate quantities before particles collision; ξi and ξ∗ in P
(s+1)′

are substituted with:

ξ′i = ξi − ni(ni ·vi) and ξ′∗ = ξ∗ − n∗(n∗ ·v∗)

Finally we can turn the two integrals in Eq. 3.27 into one integral, extended to the whole

domain, by changing ni in n
′
i. We can also suppress index i in ni by substituting x∗ with:

x∗ = xi − σn

Eq. 3.27 can be, so, rewritten as follows:

∂P (s)

∂t
+

s∑
i=1

ξi ·
∂P (s)

∂xi
= (N − s)σ2

s∑
i=1

∫
B

∫
R3

(P (s+1)′ − P (s+1))|vi ·n|dndξ∗ (3.28)

This system of equations is commonly known as BBGKY Hierarchy [Bogoliubov, 1946].

Applying the Boltzmann-Grad limit it is, �nally, possible to write the evolution equation for

a system of s particles as follows:

∂P (s)

∂t
+

s∑
i=1

ξi ·
∂P (s)

∂xi
= Nσ2

s∑
i=1

∫
B

∫
R3

(P (s+1)′ − P (s+1))|vi ·n|dndξ∗ (3.29)

This system of equations is known as Boltzmann Hierarchy. We have two questions to answer

now:

� Is this system of equations representing the evolution of a Boltzmann Gas?

� Which is the relation between the Boltzmann Hierarchy (Eq. 3.29) and the Boltzmann

Equation (Eq. 3.21)?

As remarked by Cercignani [1972], the Boltzmann Hierarchy does not describe a priori the

evolution of a Boltzmann Gas, in fact only under under some special hypothesis on the initial

data, it turns to be eligible for this purpose, as discussed by [Spohn, 1984].

If we assume the Molecular Caos Hypothesis to be valid for the initial data:

P (s)(x1, ξ1,x2, ξ2, . . . ,xs, ξs, 0) =
N∏
j=1

P (1)(xs, ξs, 0)
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As remarked by Cercignani [1972],[Cercignani, 1975],[Cercignani, 1988], if the Boltzmann

Equation is satis�ed for the initial data P (1)(xs, ξs, 0), then it admits at least a solution:

P (1)(xs, ξs, t). If this happens, a solution of the Boltzmann Hierarchy is corresponding at the

initial data:

P (s)(x1, ξ1,x2, ξ2, . . . ,xs, ξs, t) =

N∏
j=1

P (1)(xs, ξs, t)

so the Molecular Caos Hypothesis is not in contradiction with the Boltzmann-Grad limit;

in other words, Molecular Caos Hypothesis is still valid for a system of s particles and the

Boltzmann Equation is justi�ed.

With this considerations, we can easily remove the index (1) from Eq. 3.21 and, �nally write

it as follows:

∂P

∂t
+ ξ ·

∂P

∂x
= Nσ2

∫
B

∫
R3

(P ′P ′∗ − PP∗)|v ·n|dndξ∗ (3.30)

3.2.1 A more physical interpretation of the Boltzmann Equation

Following Boltzmann's work, we can introduce a new unknown f de�ned as:

f = NmP = MP (3.31)

where N is the total number of particles, m is the mass of a single particle and M is the total

mass of the system. By imposing the �rst axiom of probability we have:∫
B

∫
R3

Pdxdξ = 1 →
∫
B

∫
R3

fdxdξ = M (3.32)

P is a numerical density distribution, while f is a mass density distribution, so, at every time,

the integral of the distribution f must recover the total mass of the system.

Introducing Eq. 3.32 into Eq. 3.30 the Boltzmann Equation can be written in its most popular

form:

∂f

∂t
+ ξ ·

∂f

∂x
= Q(f, f) (3.33)

The right-hand side of the equation is commonly known as Collision Operator:

Q(f, f) =
σ2

m

∫
(f ′f ′∗ − ff∗)|v ·n|dndξ∗ (3.34)

where f∗ = f(ξ∗), f
′
∗ = f(ξ′∗) and f ′ = f(ξ′). The form Q(f, f) is adopted to remark the

quadratic form of the collision operator. For sake of generality, the Boltzmann Equation can

be written including also a forcing term:

∂f

∂t
+ ξ ·

∂f

∂x
+ F ·

∂f

∂ξ
= Q(f, f) (3.35)
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3.2.2 Solution of the Boltzmann Equation

From the mathematical point of view, the Boltzmann Equation 3.35 is an integro-partial-

di�erential equation. It should be clear that the principal obstacle in order to solve Eq. 3.33

is the evaluation of the Collision Operator.

The Collision Invariants

Our goal is, now, to investigate some elementary properties of the collision operator Q(f, f).

We introduce a test function ϕ(ξ) and we study the integral:∫
R3

Q(f, f)ϕ(ξ)dξ =

∫
R3

∫
R3

∫
B

(f ′f ′∗ − ff∗)ϕ(ξ)|v ·n|dndξdξ∗ (3.36)

where ϕ and f are functions for which it is possible to change the integration order. With some

mathematical manipulations [Grad, 1961] it is possible to rewrite Eq. 3.36 in three di�erent

ways: ∫
R3

Q(f, f)ϕ(ξ)dξ =
σ2

m

∫
R3

∫
R3

∫
B

(f ′f ′∗ − ff∗)ϕ(ξ∗)|v ·n|dndξdξ∗∫
R3

Q(f, f)ϕ(ξ)dξ =
σ2

m

∫
R3

∫
R3

∫
B

(ff∗ − f ′f ′∗)ϕ(ξ′)|v ·n|dndξdξ∗∫
R3

Q(f, f)ϕ(ξ)dξ =
σ2

m

∫
R3

∫
R3

∫
B

(ff∗ − f ′f ′∗)ϕ(ξ′∗)|v ·n|dndξdξ∗

(3.37)

Summing Eq 3.36 with Eq. 3.37 and averaging the results we obtain:∫
R3

Q(f, f)ϕ(ξ)dξ =
σ2

4m

∫
R3

∫
R3

∫
B

(f ′f ′∗ − ff∗)(ϕ+ ϕ∗ − ϕ′ − ϕ′∗)|v ·n|dndξdξ∗ (3.38)

The integral of the �rst member gives the variation of the mean value of the function ϕ for

time unit, caused by the collisions. It is very interesting to notice that, whatever is f , the

integral in Eq. 3.38 is equal to zero if it is veri�ed the following relation:

ϕ+ ϕ∗ = ϕ′ + ϕ′∗ (3.39)

These functions (ϕ) are commonly known as Collision invariants. The solution of Eq. 3.39 was

found by Boltzmann himself, who supposed ϕ to be two times derivable gave to the collision

invariants the following expression:

ϕ(ξ) = a+ b · ξ + c|ξ|2 (3.40)

where the scalars a, c and the vector b are constant. In literature many other authors tried

to �nd di�erent solutions of Eq. 3.39, including Grad [1961] and Carleman [1957], �nally

Cercignani [1990] demonstrated the analytical correctness and the uniqueness of the solution
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proposed by Boltzmann. So if ϕ(ξ) has the form of Eq. 3.40 we obtain the following relation:∫
R3

Q(f, f)ϕ(ξ)dξ = 0 (3.41)

This expression states that the integral of the Collision term multiplied for the Collision

invariants comes to zero for every value of distribution function f .

Stationary solution of the Boltzmann Equation

The next step of Boltzmann's work was to study the stationary solution of the Eq. 3.35, which

is given by:
∂f

∂t
+ ξ ·

∂f

∂x
+ F ·

∂f

∂ξ
= 0 (3.42)

so to prove that exist positive functions f which satisfy the following equality:

Q(f, f) =
σ2

m

∫
(f ′f ′∗ − ff∗)|v ·n|dndξ∗ = 0 (3.43)

Considering Eq. 3.38, and assuming ϕ = log f , we can write the following expression:∫
log fQ(f, f)dξ =

σ2

4m

∫
(f ′f ′∗ − ff∗) log(

ff∗
f ′f ′∗

)|v ·n|dndξdξ∗ (3.44)

With simple computations we can write Eq. 3.44 as following:∫
log fQ(f, f)dξ =

σ2

4m

∫
f ′f ′∗(1−K) logK|v ·n|dndξdξ∗ with K =

ff∗
f ′f ′∗

(3.45)

It is possible to demonstrate that for any K ≥ 0 it holds valid the following relation:

(1−K) logK ≤ 0 (3.46)

and thus, considering that f ′f ′∗ is positive by de�nition, Eq. 3.45 can be rewritten as follows:

log fQ(f, f)dξ ≤ 0 (3.47)

which is known as Boltzmann inequality. Finally, it is easy to show that Eq. 3.46 vanishes

only if K = 1 and thus when:

ff∗ = f ′f ′∗ (3.48)

which is, just, another form to write Eq. 3.39, therefore substituting ϕ = log f in Eq. 3.40 we

obtain:

f(ξ) = exp(a+ b · ξ + c|ξ|2) (3.49)

Eq. 3.49 has the form of a Maxwellian distribution and represents the equilibrium solution

of the Boltzmann equation. Furthermore we have demonstrated that this solution is unique.

We note that in order to obtain functions f integrable in all the domain, it is necessary that
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c is negative, furthermore, we can assume c = −η and b = 2ηv where v is another constant

vector. Finally we can rewrite Eq. 3.49 as follows:

f(ξ) = G exp[−η + (ξ − v)2] (3.50)

where G is a constant depending on a, η,v. The constant vector v can be viewed as a

macroscopic velocity which changes the reference frame with a kind of rigid motion.

3.2.3 The stationary solution: Maxwellian distributions

The last step to derive the stationary solution of Boltzmann equation is to calculate the

coe�cients of the Maxwellian distributions (Eq. 3.49). We consider Eq. 3.35:

∂f

∂t
+ ξ ·

∂f

∂x
+ F ·

∂f

∂ξ
= 0 (3.51)

and the stationary solution (Eq. 3.49) which can be written as follows:

log f = a+ b · ξ + cξ2 = a+ blξl + cξ2 (3.52)

Inserting Eq. 3.52 in Eq. 3.51 we obtain:

∂a

∂t
+ ξl

∂bl
∂t

+ ξ2
∂c

∂t
+ ξi

∂a

∂xi
+ ξiξl

∂bl
∂xi

+ ξ2ξi
∂c

∂xi
+ Fibi + 2cFiξi = 0 (3.53)

and collecting the terms of the various powers of ξ we obtain:(
∂a

∂t
+Fibi

)
+

(
∂bl
∂t

+
∂a

∂xi
+2cFi

)
ξl+

(
∂c

∂t
δij+

1

2

(
∂bl
∂xi

+
∂bi
∂xl

))
ξiξl+

(
∂c

∂xi

)
ξ2 = 0 (3.54)

then, we can equate the each term to zero:(
∂a

∂t
+ Fibi

)
= 0 (3.55)

(
∂bl
∂t

+
∂a

∂xi
+ 2cFi

)
= 0 (3.56)

(
∂c

∂t
δij +

1

2

(
∂bl
∂xi

+
∂bi
∂xl

))
= 0 (3.57)

(
∂c

∂xi

)
= 0 (3.58)

and �nally, after some mathematical manipulation, Eq. 3.57 becomes:

∂2bj
∂xi∂xl

= 0 (3.59)
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meaning that the second spatial derivatives of the term bj are equal to zero, then bj can be

expressed as following:

bj = ηj(t) + βik(t)xk (3.60)

Now, inserting Eq. 3.60 in Eq. 3.57, we obtain:

βil = −dc
dt
δil + ωil(t) with ωil = −ωli (3.61)

then inserting Eq. 3.60 and Eq. 3.61 in Eq. 3.56 we obtain:

dηl
dt
− d2c

dt2
xl +

dwlk
dt

xk +
∂η

∂xl
+ 2cFl = 0 (3.62)

and �nally with some manipulations we can express the forcing term as following:

Fl = − 1

2c

dωlj
dt

xj −
∂φ

∂xl
(3.63)

which means that the external force is dependent on a conservative term described by the

potential function φ = φ(t,x) and a non conservative term dependent on the antisymmetric

tensor ωlj . Inserting Eq. 3.63 in Eq. 3.62 we obtain:

η = 2cφ(t,x) +
1

2

d2c

dt2
x2 − dηl

dt
xl + γ(t) (3.64)

where γ(t) is the integration constant. Now, inserting Eq. 3.64 and Eq. 3.60 in Eq. 3.55 we

obtain:

2c
∂φ

∂t
+ 2φ

dc

dt
− ∂φ

∂xi
bi = −1

2

d3c

dt3
x2 +

d2ηl
dt2

xl −
dγ

dt
+

1

2c

dωij
dt

xjbi (3.65)

Considering, now, Eq. 3.63, assuming φ = φ(x), it is easy to show that ωlj is constant and so

Eq. 3.65 can be rewritten as follows:

2φ
dc

dt
− ∂φ

∂xi
bi = −1

2

d3c

dt3
x2 +

d2ηl
dt2

xl −
dγ

dt
(3.66)

Assuming φ to be four times di�erentiable in time, with some mathematical manipulations,

we can rewrite Eq. 3.66 as follows:

5
∂2φ

∂xk∂xm∂xn

dc

dt
− ∂3φ

∂xi∂xk∂xm
ωin −

∂3φ

∂xi∂xk∂xl
ωim

− ∂3φ

∂xi∂xm∂xn
ωik −

∂4φ

∂xi∂xk∂xm∂xn

(
ηi −

dc

dt
xi + ωilxl

)
= 0

(3.67)

which describes a system of ten equations in seven unknown: dc/dt, ωik , ωim, ωin and αi.

Following Cercignani [1988], it is possible to show that η is related to c and γ by the following

relation:

η = 2cφ(x) + γ (3.68)
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thus including Eq. 3.68 in Eq. 3.50, the Maxwellian distribution can written as follows:

f(ξ) = exp(2cφ(x) + γ + cφ2) = exp

(
γ − ξ2

2RT
− φ(x)

RT

)
(3.69)

with:

T = − 1

2Rc

where T is the temperature of the system. The last issue is now to give an expression to the

potential function φ(x). We consider a potential function vanishing at the third derivative

de�ned as:

φ(x) = Akxk +
1

2
Bkmxkxm (3.70)

Then, inserting Eq. 3.70 in Eq. 3.65, we can rewrite Eq. 3.65 as follows:(
Aiηi −

dγ

dt

)
+

(
2Ai

dc

dt
−Akωki −Bkiηk −

d2ηi
dt2

)
xk

+

(
2Bkm

dc

dt
− 1

2
(Bkiωim +Bmiωil) +

d3c

2dt3
δkm

)
xkxm = 0

(3.71)

so with an analogue procedure to the one adopted for Eq. 3.53, we can derive the following

equalities:

Aiηi =
dγ

dt
(3.72)

2Ai
dc

dt
−Akωki −Bkiηk =

d2ηi
dt2

(3.73)

2Bkm
dc

dt
− 1

2
(Bkiωim +Bmiωil) = − d3c

2dt3
δkm (3.74)

Eqs. 3.72, 3.73, 3.74 represent a system of ten equations in eight unknowns: ηi, ωim, γ, c.

This system has non trivial solution in case that Bki = Bδki is isotropic. Considering this

condition, Eq. 3.74 can be written as follows:

2B
dc

dt
+

d3c

2dt3
= 0 (3.75)

which is a classical di�erential equation, with constant coe�cients, whose solution is given by:

c = c0 + c1 sin(2
√
Bt) + c2 cos(2

√
Bt) (3.76)

where c0, c1, c2 constant coe�cients. Inserting Eq. 3.75 in equation Eq. 3.73 and considering

the isotropicity of B we obtain:

d2ηi
dt2

+Bηi = 2Ai
dc

dt
−Akωki = −2Ai

3B

(d3c
dt3

+B
dc

dt

)
−Akwki (3.77)
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that is a di�erential equation with constant coe�cients, whose solution is given by:

ηi = −2Aidc

3Bdt
− Akωki

3
+ c3 sin(2

√
Bt) + c4 cos(2

√
Bt) (3.78)

where c3 and c4 are constant coe�cients. Finally, Eq. 3.72 can be rewritten as follows:

dγ

dt
= Aiηi =

Ai
B

(
−d

2ηi
dt2

+ 2Ai
dc

dt

)
(3.79)

which a simple �rst order di�erential equation with constant coe�cients. The solution of Eq.

3.79 is given by:

γ = −Ai
B

dηi
dt

+
2AiAic

B
+ c5 (3.80)

In conclusion, when c1 = 0, c2 = 0, c3 = 0 and c4 = 0, with some mathematical computations

of Eqs. 3.52, 3.60, 3.64 we obtain the �nal expression of the Maxwellian distribution:

f(ξ) = exp(γ + η · ξ + ωjkxkξk + cξ2)

f(ξ) = exp(γ)(2πRT )−
3
2 exp

[
−(ξ − v)2

2RT

]
(3.81)

where the term exp(γ) is the density. Eq. 3.81 is also known as equilibrium distribution

function because it satis�es Eq. 3.42 and �nally it can be rearranged in its most popular

form:

feq(ξ) =
ρ√

(2πRT )
3 exp

[
−(ξ − v)2

2RT

]
(3.82)

The H-theorem, the irreversibility and the second law of the thermodynamics.

The H-theorem is of basic importance in Boltzmann theory, because it states the irreversibility

of the Boltzmann Equation.

To derive the H-theorem, proposed by Boltzmann [1870] itself, we introduce a new operator

H which is, at the end, the integral on velocity of the quantity f log f and is de�ned as follows:

H =

∫
R3

f log fdξ (3.83)

considering Eq. 3.33, by multiplying each side by f log f and integrating on ξ we can rewrite

Boltzmann equation as follows:

∂H

∂t
+

∂

∂x
·J = S (3.84)

where:

J =

∫
R3

ξf log fdξ

S = Nσ2
∫
R3

log fQ(f, f)dξ

(3.85)
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The Boltzmann inequality (Eq. 3.47) implies that S is always ≤ 0 and becomes equal to zeros

if and only if f is a Maxwellian distribution. Carleman [1933] demonstrated that the time

derivative of H is never positive and it is equal to 0 if and only if f is a Maxwellian distri-

bution. Since H is lower bounded (from the equilibrium value), it decreases until it reaches

the equilibrium state where f has the form of a Maxwellian distribution, so the Equilibrium

solution is unique.

If the solutions are spatially homogeneous (i.e. H is not depending from x), Eq. 3.84 can

be rewritten as follows:

∂H

∂t
= S ≤ 0 (3.86)

Eq. 3.86 is known as H-Theorem and states that H is a not increasing function in time.

In other words, Eq. 3.86 shows that Boltzmann equation has the feature of the irresistibility.

From the microscopic point of view, H-Theorem can be interpreted as the likelihood of a

microscopic state, in the sense that it is a measure of the information contained in f decreas-

ing with time since the Boltzmann Equation describes an evolution toward more likely states

[Cercignani, 1988].

From a macroscopic point of view, instead, H-theorem can be viewed as an alternative

form to express the Clausius-Duhem inequality [Gurtin and Williams, 1966] which is, by fact,

another way to express the second law of thermodynamics. Finally, according to this principle,

H is related to the entropy S by the following relation:

∆H = −∆S

R
(3.87)

where ∆S is the entropy variation, ∆H is the variation of H function and R is the universal

gas constant.

3.3 Boltzmann Equation: a Bridge from the Micro- to the

Macroscopic description

One of the most interesting characteristics of BE is possibility to move from a microscopic

to a macroscopic point of view. Now our goal is to recover macroscopic quantities from the

distribution function f . In order to have a complete macroscopic description of the �uid, we

need to evaluate the following quantities:

� density: ρ;

� mass Flow: %i;

� momentum: ωi;

� momentum �ow: Ωij ;

� energy density: ψii;

� energy �ow: Ψi;
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Evaluating macroscopic density ρ is quite a simple task. ρ = ρ(x, t) is the integral f in the

one-particle phase space, so, it is straightforward to recover that:

ρ(x, t) =

∫
f(x, ξ, t)dξ (3.88)

The macroscopic velocity v is given by the average of the molecular velocity:

v =

∫
ξf(x, ξ, t)dξ∫
f(x, ξ, t)dξ

(3.89)

So considering Eq. 3.88 we can easily write also the momentum ωl as follows:

ωl = ρv =

∫
ξifdξ (3.90)

To evaluate the mass �ow %i we consider that every particle has its own velocity ξ, so we

can calculate the velocity deviation (usually called peculiar velocity) from the macroscopic

velocity:

c = ξ − v (3.91)

By inserting Eq. 3.91 in Eq. 3.90 and considering Eq. 3.88 we write mass �ow as follows:

%i =

∫
cifdξ =

∫
ξifdξ − vi

∫
fdξ = ρvi − ρvi = 0 (3.92)

Eq. 3.92 states that the mass �ow in i-th direction is equal to zero. In order to evaluate

the momentum �ow Ωij , instead, we have to consider the �ow of the i-th component on j-th

direction:

Ωij =

∫
ξiξjfdξ (3.93)

By applying Eq. 3.91 to Eq. 3.93 we can easily rewrite the momentum �ow as follows:

Ωij =

∫
ξiξjfdξ = ρvlvk +

∫
cicjfdξ (3.94)

where the momentum �ow has been decomposed in a macroscopic (�rst addend) and a micro-

scopic (second addend) part. The microscopic part is a hidden momentum �ow caused by the

random motion of the particles. It is possible to prove that the second addend of Eq. 3.94 is

the only contribution to the gas stress tensor which is de�ned as follows [Cercignani, 1988]:

pij =

∫
cicjfdξ (3.95)

The evaluation of the energy density ψii is straightforward with the application of the kinetic

energy de�nition:

ψii =
1

2

∫
ξ2fdξ =

1

2
ρv2 +

1

2

∫
c2fdξ (3.96)
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The �rst term of the right hand side of Eq. 3.96 represents the macroscopic kinetic energy,

while the second term is known as internal energy. It is convenient to de�ne the internal

energy for mass unit e:

ρe =

∫
cicifdξ (3.97)

Looking to Eq. 3.97, it is interesting to note that ρe is equal to the trace of plk, so the isotropic

part of the stress tensor is written as follows:

p =
2

A
ρe (3.98)

Finally, applying Boyle's Law : p = ρRT we can write the gas energy in following form:

e =
A

2
RT (3.99)

where A is the dimension of stress tensor and assumes the values 3, 5 and 7 in case of mono- bi-

or polyatomic gases. The last quantity we want to investigate is the energy �ow Ψii, de�ned

as:

Ψi =
1

2

∫
ξiξ

2fdξ (3.100)

By inserting Eq. 3.91 in Eq. 3.100 and doing some manipulations we obtain:

Ψi =
1

2

∫
ξiξ

2fdξ = vi

(
1

2
ρv2 + e

)
+ vipij +

1

2

∫
cic

2fdξ (3.101)

where the �rst addend is the energy �ow caused by the macroscopic convection, the second

one is the work of stress for time unit and the last addend is a non-convective energy �ow,

following Cercignani [1975] interpretation.

3.3.1 The Boltzmann Equation and the Conservation Equations

Let us consider, for sake of generality, Eq. 3.35, multiplying every term for ϕ(ξ), integrating

on ξ, and considering the property of the Collision invariants (Eq. 3.41), we can write the

following equation:

∂

∂t

∫
ϕkfdξ +

∂

∂xi

∫
ξiϕkfdξ + Fi

∫
ϕk

∂

∂ξi
dξ = 0 (3.102)

where k = 0, 1, 2, 3, 4 indicates the collision invariant and Fi can be taken out from the

integration operation if we assume the external force independent from the velocity. Eq.

3.102 has been written using index notation to make more clear the following computations.

In order to recover the conservation equations we need to calculate the three integrals

substituting successively the �ve collision invariants (we omit the entire calculation). Then,

considering the macroscopic quantities: density (Eq.3.88), momentum (Eq.3.90), momentum

�ow, (Eq.3.93), internal energy, (Eq.3.97) and energy �ow, (Eq.3.101) it is possible to recover
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the Conservation Equations:

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0

∂

∂t
(ρvi) +

∂

∂xi
(ρvivj + pij) = ρFj

∂

∂t

[
ρ

(
1

2
v2 + e

)]
+

∂

∂xi

[
ρvi

(
1

2
v2 + e

)
+ pijvj + qi

]
= ρFivi

(3.103)

where qi is the heat �ux vector [Cercignani, 1988]. The �rst equation is the well known Mass

Conservation equation. The last two equations, instead, worth a particular discussion. The

terms pij and qi, in fact need to be characterized; in other words we need to �nd some relations

(on the basic of experiments) in order to relate pij and qi with the physical quantities ρ, v

and e. If we consider qi = 0, no heat �ux is considered and so the problem is a pure �uid

dynamic problem and we can derive two di�erent Constituive Models:

� with: pij = pδij the Euler �uid model is recovered;

� with: pij = pδij − µ
(
∂vi
∂xj

+
∂

∂xi

)
− λ∂vl

∂xl
δij the Navier-Stokes �uid model is obtained.

Where µ and λ are the viscosity coe�cients. Finally if we use as heat �ux model the Fourier's

Law :

qi = −k ∂T
∂xj

coupled with the Navier-Stokes �uid model, we obtain the Navier-Stokes-Fourier �uid (NSF),

where k is the heat conduction coe�cient.

It is clear that this considerations are not needed if we want to solve the Boltzmann equa-

tion because all the macroscopic informations are contained in distribution f . The advantage

to solve the macroscopic equations in place of the Boltzmann equation is that macroscopic

equations have �ve functions in four variables, while the BE has one function of seven un-

knowns.

It is important to stress the fact that those equations have been recovered by neglecting the

collision operator, thanks to the property of the collision invariants. The problem of turning

from a microscopic to a macroscopic representation, in non trivial situations (i.e., when the

collision operator is not zero), by fact, has not been already analytically resolved.

3.3.2 The Bhatnagar-Gross-Krook approximation of the collision operator

The main obstacle for the resolution of the Boltzmann equation in general cases is represented

by the complicated form of the collision operator Q(f, f). To overcome this problem, the

idea is to replace the collision operator Q(f, f) with an approximated form P (f) which has

to verify two important conditions [Cercignani, 1997]:

� The validity of Eq. 3.41, assuring that the derivation of the macroscopic models in the

stationary case is still valid: ∫
ϕ(ξ)P (f)dξ = 0 (3.104)
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� The validity of the Boltzmann inequality (Eq. 3.47), in order to guarantee that the

solution of the Boltzmann Equation is still unique and the equilibrium solution has a

Maxwellian form: ∫
log fP (f)dξ ≤ 0 (3.105)

The simplest way to approximate the collision integral was proposed by Bhatnagar, Gross

and Krook and it is commonly known as BGK operator. This operator replace the collision

term with an operator which is proportional to the di�erence between a Maxwellian distribu-

tion fm(ξ) and the distribution function f(ξ):

P (f) =
fm(ξ)− f(ξ)

Λ
(3.106)

where Λ is a contact scalar. Eq. 3.106 is known as BGK collision term. Inserting Eq. 3.106

in Eq. 3.104, we obtain: ∫
ϕi(ξ)fm(ξ)dξ =

∫
ϕi(ξ)f(ξ)dξ (3.107)

which means that, independently from the position x and the time t, fm(ξ) is equal to the

density. In analogous way, inserting Eq. 3.106 in Eq. 3.105 we can rewrite Eq. 3.105 as

follows: ∫
log fP (f)dξ =

1

Λ

∫
fm(ξ)

(
1− f(ξ)

fm(ξ)

)
log

f(ξ)

fm(ξ)
dξ (3.108)

It is very interesting to notice that the BGK collision operator, from a mathematical point

of view, is much more complicated than the classic collision operator Q(f, f), in fact, the

Maxwellian distribution fm is de�ned as the following functional:

fm = fm(v(f(x, ξ, t)), ρ(f(x, ξ, t)), T (f(x, ξ, t))) (3.109)

Otherwise Q(f, f) is simply a quadratic function of f . So the natural question is: how this

approximation can simplify the problem? In the next section we will show that using the

BGK we can recover the constitutive equations for di�erent �uid phase, and, in particular

we will show how this approximation can be used to recover the Navier-Stokes equations in a

general case.

3.3.3 The perturbation method and the Linearized Boltzmann equation

In this section we derive the linearized Lattice Boltzmann equation which will be used in the

following section as starting point in the derivation of the constitutive equations. One of the

most common strategies to linearize an equation is to apply the so called perturbation method.

Here we consider the power series expansion of f in ε which is de�ned as follows:

f =

∞∑
n=0

εnfn (3.110)
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where n is the power. Applying Eq. 3.110 to the collision operator Q(f, f) we obtain:

f =
∞∑
n=0

εnQn (3.111)

where the coe�cients of the power series Qn are expressed as follows:

Qn =
n∑
l=0

Q(fl, fn−l) (3.112)

In literature many perturbation methods have been proposed among the years; most of this

are based on the initial assumption that the zero-th term of the power expansion f0 must

represent a Maxwellian distribution fm. It follows that:

Q(f0, f0) = 0 (3.113)

Furthermore, we can write Eq. 3.110 as follows:

f = f0 +
∞∑
n=1

εnfn (3.114)

thus, Eq. 3.112 can be rewritten as follows:

Qn = 2Q(f0, fn) +
n−1∑
l=1

Q(fl, fn−l) (3.115)

where the �rst term of Eq. 3.115 can be viewed as a linear operator, since the zero-th term

f0 acts on the n-th term fn of the expansion. It is common to rewrite Eq. 3.115 considering

the following relations:

fn = f0hn and f0Sn =

n−1∑
l=1

Q(fl, fn−l) (3.116)

where the unknowns turn from fn to hn. Applying the relations 3.116 to Eq. 3.115 we obtain:

Qn = 2Q(f0, f
eqhn) + feqSn (3.117)

In conclusion, considering the new operator Jhn = 2Q(f0, f0hn)/f0, we can write Eq. 3.117

as follows:

Qn = f0Jhn + f0Sn (3.118)

which is commonly known as linearized collision operator. Applying, now Eqs. 3.110, 3.115

to Eq. 3.33 we can rewrite the Boltzmann equation as follows:

ε0

(
∂f0
∂t

+ ξ ·
∂f0
∂x

)
+
∞∑
n=1

εn

(
∂fn
∂t

+ ξ ·
∂fn
∂x

)
= ε0Q(f0, fn) +

∞∑
n=1

εn
n−1∑
l=1

Q(fl, fn−l) (3.119)
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then, with simple computations we split Eq. 3.119 into two equations: the �rst describing the

equilibirum state and the second describing little deviations from the equilibrium state:

∂f0
∂t

+ ξ ·
∂f0
∂x

= Q(feq, feq) = 0

∂fn
∂t

+ ξ ·
∂fn
∂x

=
n−1∑
l=1

Q(fl, fn−l)
(3.120)

Accordingly, Introducing Eq. 3.116 in Eq. 3.120 we obtain:

∂hn
∂t

+ ξ ·
∂hn
∂x

= Jhn + Sn (3.121)

where the term Sn is de�ned as follows:

S1 = 0 for n = 1;

Sn =

∑n−1
l=1 Q(f0hl, f0hn−l)

f0
for n > 1;

(3.122)

Eq. 3.121 represents a series of equation in which the di�erence from an equation to the

previous one is given by the term Sn. Finally, considering n = 1, we obtain:

∂h

∂t
+ ξ ·

∂h

∂x
= Jh (3.123)

where Eq. 3.123 represents the linearized Boltzmann equation. The main advantage of this

formulation is the linear behavior of the equation, but the collision term still remains very

complicated since it is already an integro-di�erential operator.

3.3.4 The dimensionless Boltzmann equation

In this section we study the order of magnitude of the terms of Boltzmann equation. We

assume L0 to be the characteristic length, t0 the characteristic time, T0 the characteristic

temperature and ρ0 the characteristic density of the problem. We can write the following

dimensionless quantities:

x∗ =
x

L0
, t∗ =

t

t0
, ξ∗ =

L0

t0
ξ, F ∗ =

t0
2

L0
F , f∗ =

L0
3

ρ0t03
f (3.124)

Thus, the Boltzmann equation (Eq. 3.35) can be rewritten in non dimensional terms, as

follows:
∂f∗

∂t∗
+ ξ∗ ·

∂f∗

∂x∗
+ F ∗ ·

∂f∗

∂ξ∗
=

1

Kn
Q(f∗, f∗) (3.125)

where Kn is the Knudsen number which describe the ratio between the mean free path of a

particle lf and characteristic length of the problem:

Kn =
lf
L0

(3.126)
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In a certain sense the Knudsen number describes the state of aggregation of the molecules, in

fact, when Kn→∞ the particles are free to move, i.e the gas is very rare�ed, otherwise when

Kn→ 0 the gas is very dense similar in liquid state. Finally when Kn is a �nite number we

talk of transient state. In this thesis we focus on Kn→ 0, i.e. on very dense �uids which are

basically at the liquid state.

3.3.5 From Boltzmann equation to Navier-Stokes equations: the Chapman-
Enskog expansion

With the background delineated in the previous sections, we are now ready to describe the

procedure that leads to recover the Navier-Stokes equations from the Boltzmann equation in

its general con�guration.

As we have shown in Section 3.3.3, to obtain a more manageable formulation of the Boltz-

mann equation, it is convenient to introduce some approximation, in order to linearize the

equation; furthermore the classic approximation scheme relies on the perturbation method.

Hilbert [1906] proposed to adopt a power series expansion of the function f and, following

the procedure shown in Section 3.3.3 and assuming ε = Kn→ 0, we re-write the Boltzmann

equation in function of the unknown hn:

∂f0hn
∂t

+ ξ ·
∂f0hn
∂t

= Jf0hn+1 + Sn+1 (3.127)

where Sn+1 is de�ned by the Eq. and the Eq. 3.116 has been introduced.

Eq. 3.127 represent a system of equations in hn unknowns, furthermore it can be proved

[Cercignani, 1988] that the unknown hn can be expressed as a linear combination of the

�ve collision invariants ϕ(ξ); furthermore it is possible to show that the source term in the

(n+ 1)-th step is given by:

Πn+1 =

∂f0hn
∂t

+ ξ ·
∂f0hn
∂t

− Sn+1

f0
(3.128)

which means that the source term is calculated using the previous step solutions. Moreover

applying the orthogonality conditions [Cercignani, 2000] of the collision invariants, we can

rewrite Eq. 3.127 as follows: ∫
ϕk(ξ)

(
∂fn
∂t

+ ξ ·
∂fn
∂t

)
ξ = 0 (3.129)

We observe that both fn and ϕ are dependent on ξ, so we can invert the order of integration

and derivation an �nally write Eq. 3.129 as follows:

∂ρkn
∂t

+∇ · jkn = 0 with k = 0, 1, 2, 3, 4 (3.130)

where

ρkn =

∫
ϕkfndξ and jk =

∫
ξϕkfndξ (3.131)
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Accordingly, introducing the relations derived in Section 3.3, we can write ρk as follows:

ρk =


ρ

ρvi
ρ(12v

2 + e)

 with i = 1, 2, 3 (3.132)

while jk can be written as follows:

jk =


ρvi

ρvivj + pij
ρvi(

1
2v

2 + e) + pij + qj

 with i = 1, 2, 3 and j = 1, 2, 3 (3.133)

it is possible to show, with some computations, that the constitutive equations (Eqs. 3.103),

can rearranged, in terms of ρk and jk, as follows:

∂ρk

∂t
+∇ · jk = 0 with k = 0, 1, 2, 3, 4 (3.134)

We observe that Eq. 3.130 is the expansion of Eq. 3.134, so we are going to think that Eq.

3.130 represents an alternative form to write the constitutive equations. To better explain

this concept, we can rewrite Eq. 3.134 as following:

Ek(ρα) = Sk (3.135)

where Sk is given by:

Sk =


0

− ∂

∂xj
(pij − pδij)

− ∂

∂xj
(pijvj − pvi + qi)

 (3.136)

and Ek is the so-called Euler operator which is constructed such that Ek(ρα) = 0 give the

exact solution the inviscid �uid equations, called also. Euler equations. What Hilbert did was

to expand ρα, in Eq. 3.135, into a series of power of ε as following:

Ek(ρα) = Ek(ρα0 ) +

∞∑
n=1

εnEkα(ραn) +

∞∑
n=2

εnEkn(ραn) (3.137)

It is possible to prove [Cercignani, 1988] that the expansion of Eq. 3.137 is able to represent

the inviscid �uid equations, but contains also some additive terms (last two addend of Eq.

3.137) which made it suitable to solve only certain problems imposing suitable initial data and

boundary conditions. Finally we can conclude that the Hilbert expansion fails in giving valid

solutions for the Boltzmann equation for given initial data and boundary value problems and,

thus, it is not able to reproduce the Navier-Stokes-Fourier constitutive equations (Eq. 3.103).

A solution of this problem was provided by Chapman and Enskog who proposed [Chapman

and Cowling, 1970] to expand the Boltzmann equation itself and not the solutions, like in

Hilbert expansion; or in other words, to expand Sk and leave unexpanded ρα, such that:
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Ek(ρα) =
∞∑
n=1

εn(Skn) = Sk(ρα) (3.138)

With some computations on the space derivatives on term Ek, we can rewrite Eq. 3.138 as

follows:

∂ρα

∂t
= Dα(ρβ) with: Dα =

∞∑
n=0

εnD(n)
α (3.139)

where Dα is a non-linear operator. Chapman and Cowling [1970] pointed out that this ex-

pansion needs to maintain the results obtained with the Hilbert expansion, i.e., that f are

functionals of ρβ . Applying the chain derivation rule, we can write the time derivative of f is

given by:

∂f

∂t
=
∞∑
l=0

∂f

∂(∇lρβ)

∂(∇lρβ)

∂t
(3.140)

and thus, we can rewrite Eq. 3.139 as following:

∂

∂t
∇lρβ = ∇lDα(ρβ) (3.141)

where ∇l denotes the n−th order spatial derivatives. Now, according with the Chapman-

Enskog method, we have to expand f without expanding ρβ , which means that, when f is

regarded as function of x, ξ, t, it is not expanded, although, when f is regarded as functional

of ρβ , it is expanded in series of ε, according to Eq. 3.110. In consequence, we can expand

Eq. 3.127 as follows:

l−1∑
l=0

∂lf0hn−l
∂t

+ ξ ·
∂f0hn
∂t

= Jf0hn+1 + Sn+1 with n = 0, 1, 2, . . . (3.142)

and of course it must hold that Q0 = 0 meaning that the f0 is a Maxwellian distribution to

ensure the stationary solution. Furthermore, it must hold also the collision invariant property:∫
ϕβfndξ (3.143)

Now, regarding fn both as function of ξ and functional of ρβ , and assuming the orthogonality

conditions of ϕ [Cercignani, 2000], we can rewrite Eq. 3.142 as follows:

∂

ρβ
∂t+∇ ·

∫
ξϕβfdξ = 0 with β = 0, 1, 2, 3, 4 (3.144)

where ρβ is left unexpanded, in the Chapman-Enskog philosophy; moreover we can approxi-

mate the integral of fn as follows:

∂ρβ

∂t
+∇ ·

∫
ξϕβ

N∑
n=0

εnfndξ = 0 with β = 0, 1, 2, 3, 4 (3.145)
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which is the �nal result of the Chapman-Enskog expansion.

Now, looking to Eq. 3.130 and to Eq. 3.145, we can notice that the main di�erence

between the Hilbert expansion and the Chapman-Enskog Expansion is that in the former,

higher oder solutions are dependent on the previous solution, while in the latter, to obtain

higher order solutions, we need to solve a completely new set of equations.

When n = 0, f0 is a Maxwellian distribution, thus it is straightforward to see that we

recover Eq. 3.136 and the contribution to the stress tensor is given by:

pij = pδij (3.146)

In order to �nd the Navier-Stokes equations, instead, we have to write the solution for

n = 1, thus considering the �rst two terms of the Chapman-Enskog Expansion. It is �nally

possible to show that the �rst two terms of the Chapman-Enskog expansion gives the following

contribution to the stress and heat �ux tensor [Cercignani, 1988]:

pij = pδij − µ
(
∂vi
∂xj

+
∂vj
∂xi

)
− λ∂vl

∂xl
δij

qi = −k ∂T
∂xj

(3.147)

Furthermore it is possible to show that λ = 2/3µ and in consequence a Prandtl number

Pr = 2/3. This results is very important, in fact it is possible to prove that both the general

solution of the Boltzmann equation and the experimental tests show that for non Maxwellian

molecules the Prandtl number is close to 2/3.

In conclusion we have demonstrated that with a suitable expansion of certain terms of

the Boltzmann equation, it is possible to recover the macroscopic description of the Navier-

Stokes-Fourier viscous �uid.

3.3.6 Higher-order Chapman-Enskog expansion: Burnett and Super-Burnett
equations

In the previous Section, we have shown that applying the Chapman-Enskog to the Boltz-

mann equation, it is possible to recover the Navier-Stokes-Fourier macroscopic description of

a viscous �uid. Nevertheless, the Chapman-Enskog expansion has some shortcomings. In

particular, we notice that if we write the solution of Eq. 3.145 for n > 1, we do not recover a

more accurate description of a viscous �uid, but we recover the di�erent equations. In speci�c,

we know that the with n = 2 we recover the so-called Burnett equations and with n = 3 we

recover the so-called Super-Burnett equations [Agarwal et al., 2001].

It is not object of this thesis to study the Burnett and the Super-Burnett equations. We

just limit to brie�y describe their applications and physical background.

Physically speaking, the Burnett and the Super-Burnett equations are used to describe

micro-�ows or �uid-dynamics problems at the low pressure conditions (high �ights). These

�ows are associated to Knudsen numbers higher than 0.05, which are not precisely consis-

tent with the assumption made in Section 3.3.5, so those equations are describing a non full

dense �uid. Furthermore, many authors, including Struchtrup [2005], pointed out that those

equations are very unstable, and in general the solution blows up in time.



3.3. Boltzmann Equation: a Bridge from the Micro- to the Macroscopic description 77

Cercignani [1975] showed that in order to neglect higher order terms of Chapman Enskog

expansion, it is possible to split the time derivative of f instead of applying the perturbation

method, in this way, basically, Eq. 3.145 is truncated to the �rst order and only the Navier-

Stokes equations are recovered.

3.3.7 Considerations about the Navier-Stokes equations and Boltzmann
equation

In the previous sections, we have demonstrated that it is possible to derive the Navier-Stokes

equations from the Boltzmann equations. In the present Section, we look to those equations,

trying to give them a more physical interpretation.

First of all we rewrite the Boltzmann equation and the momentum conservation of a

Navier-Stokes �uid, in their normalized formulation:

∂f∗

∂t∗
+ ξ∗ ·

∂f∗

∂x∗
=

1

Kn
Q(f∗, f∗)

∂v∗

∂t
+ v∗ ·

∂v∗

∂x∗
=

1

Re

3∑
i=1

∂2v∗i
∂x∗i

2
− ∂P ∗

∂x∗

(3.148)

where, in both the equations we have neglected the forcing term. The left hand side is

the same for Boltzmann and Navier-Stokes equation, except for that the microscopic velocity

ξ∗ is replaced by the macroscopic velocity v∗. The left hand sides describe the convection

between the particles, while the right hand sides describe the di�usion (or collision) among

the particles. From a pure mathematical point of view, the convective term is hyperbolic,

while the di�usive term is parabolic.

The Knudsen number Kn and the Reynold number Re are the two parameters which

govern the non dimensional equations. It is possible to show that these non dimensional

numbers are related as follows:

Kn =
Ma

Re
(3.149)

whereMa is the Mach number. It is important to underline that in order to have incompress-

ible �ows, Ma must not exceed the value of 0.3.

3.3.8 Final overview on the Boltzmann equation and its applications

In the previous sections we have derived the Boltzmann equation starting from the Newton

particles dynamic and following step by step Boltzmann's work. We have illustrated some

important properties of the Boltzmann equation, like the H − theorem and its relation to

the second law of thermodynamics. Finally we have discussed about the possibility to pass

from the microscopic (particle level) to the macroscopic (continuous level) description of a

�uid. Introducing some approximations (i.e., the linear collision operator and the perturba-

tion method), we have demonstrated how it is possible to derive the Navier-Stokes-Fourier

equations, starting from the Boltzmann equation.
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The Boltzmann equation represents, thus a bridge between the microscopic word (Newton's

law and Liouville's theorem) and the macroscopic word (Navier-Stokes-Fourier equations), in

fact the Boltzmann equation conserves the essential characteristics of particle dynamics, but,

at the same time the probabilistic approach allows to recover the conservation equations at

the macro-scale. For this reason, in literature, it is quite common to refer to the Boltzmann

equation as a mesoscopic approach to solve thermo-�uid-dynamic problems.

To make easier the comprehension of the discussed historical work�ow, we highlight in

Fig. 3.4 the fundamental equations describing the evolution of a particle system at di�erent

scale levels.

NEWTON EQUATIONS (NE) (Eq. 3.1)

LIOUVILLE EQUATION (LE) (Eq. 3.8)

• Phase Space 

representation (Eq. 3.2)

• Probabilistic approach   

(Eq. 3.4)

• Assumption of the 

Boltzmann-Grad limit

• Molecular Caos hypothesis 

(Eq. 3.19)

BOLTZMANN EQUATION (BE) (Eq. 3.35)

• BGK approximation term 

(Eq. 3.106)

• Chapman-Enskog

expansion (1917)

• Integration in the phase 

space

NAVIER-STOKES-FOURIER EQUATIONS (NSF)  

(Eq. 3.205 --- Eq. 215)

FROM NEWTON EQUATIONS TO NAVIER-STOKES-

FOURIER EQUATIONS

MICRO
SCALE

MESO
SCALE

MACRO
SCALE

1687

1838

1872

1841

Derived from (BE) in 

1968

Figure 3.4: From Newton equation to Navier-Stokes-Fourier equations: basic steps.
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3.4 From the Boltzmann Equation to the Lattice Boltzmann

Method

In the previous sections, we have demonstrated that the Boltzmann equation can be success-

fully adopted to describe the evolution of a Navier-Stokes-Fourier �uid, thus it can be used to

solve thermo-�uid dynamic problems.

The main complication in the resolution of the Boltzmann equation is represented by

the complicated form of the collision operator Q(f, f). We have shown that the analytic

expression of the collision operator can be substituted by an approximated operator which

is more manageable. Nevertheless, the solution of the Boltzmann equation remains still very

complicated.

The �rst solution scheme for the Boltzmann equation was proposed by McNamara and

Zanetti [1988] who developed, the so-called Lattice Boltzmann method. The Lattice Boltzmann

method (LBM) takes it origins from the Lattice Gas Automata (LGA) method [Frisch et al.,

1986]. The basic idea of LGA is that it is possible to describe the Navier-Stokes �uid on a

simpli�ed regular domain considering simpli�ed dynamics and assuring mass and momentum

conservation. LGA has been developed in the middle of seventies and then they have been used

until the eighties, without a real theoretical background. The idea behind the development of

LGA was to build up a computational framework easy and manageable to solve �uid dynamics

problems with the available computational e�orts.

The basic idea of LGA was to discretize the space with a lattice structure and to describe

the �uid as an amount of particles which can move with certain velocities along �xed directions,

colliding with other particles. Although, LGA shaw several problem; �rst of all in this method

the equilibrium distribution was represented the by the Dyrac-Fermi distribution and not by

the Maxwellian distribution, leading to a violation of the Galilean invariance [Wolf-Gladrow,

2004]. Furthermore, in LGA, the velocity is dependent on the velocity and, in general, the

method su�ers of instability problems.

To solve all this issues, McNamara and Zanetti [1988] proposed to substitute the Dyrac-

Fermi distribution with the Maxwellian distribution, and proposed the �rst Lattice Boltzmann

method.

3.4.1 Brief chronology of the Lattice Boltzmann method

Nevertheless LBM is a quite new computational method, in about twenty years of life, it has

been successfully applied to face di�erent thermo-�uid dynamic problems.

At the beginning of the 90s, the LB method was tested on �uid dynamic problems with

an analytical solution [McNamara and Zanetti, 1988], then Shan and Chen [1993] developed

the �rst LB method to simulate multiphase and multicomponent �ows. However, only in 1997

He and Luo [1997a] demonstrated that the LB equation can be directly derived from the BE,

giving a solid theoretical background to the corresponding computational method.

In early 2000s, the LB method was used to simulate particle-�uid suspensions [Ladd and

Verberg, 2001] and incompressible �ows through porous media [Guo and Zhao, 2002]. Teixeira

et al. [2000] and Palmer and Rector [2000] proposed two di�erent lattice schemes to face ther-

mal problems, while Yu et al. [2003] extended the application of LB method to incompressible

�ows with high Re number. Chatterjee and Chakraborty [2005] adopted the LB method to
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investigate the solid-liquid phase change and Körner et al. [2005] developed a free surface LB

scheme for modelling foaming. Geller et al. [2006] proposed an interesting comparison among

various CFD tools, concluding that the LB method is particularly suitable to face problems

with very complex geometries and boundary conditions; moreover Zheng et al. [2006] proposed

a LB scheme to simulate multiphase �ows with high density ratio. Attar and Körner [2011]

adopted for the �rst time the LB method to investigate melt pool dynamics in EBM processes,

including powder melting/solidi�cation process and free surface evolution of the melt pool.

Gong and Cheng [2012] used the LB method to simulate liquid-vapour phase change for high

density ratio �uid mixtures; �nally Huang et al. [2013] proposed an innovative LB scheme to

face solid-liquid phase change problems.

From this review, it is interesting to notice that until 1997, the Lattice Boltzmann method

was used without a real theoretical background, which was given right in that year by He and

Luo [1997b].

The procedure to derive the lattice Boltzmann method from the Boltzmann equation can

be resumed in the following steps:

� The derivation of an evolution equation discretized in time, the so-called lattice Boltz-

mann equation;

� the application of a quadrature formula to approximate the integration in momentum

space;

� the calculation of a proper discrete equilibrium distribution function which allows to

reproduce exactly the macroscopic quantities.

In the following section, following the work of He and Luo [1997b] we will show how LBM

can be rigorously derived by the Boltzmann equation.

3.4.2 From the Boltzmann Equation to the Lattice Boltzmann Equation

To derive the Lattice Boltzmann equation we start from the classic formulation of the Boltz-

mann equation neglecting the forcing term (Eq. 3.33):

∂f

∂t
+ ξ ·

∂f

∂x
= Q(f, f) (3.150)

now, we replace the collision term Q(f, f) with the BGK approximation and we can rewrite

the Boltzmann equation as follows:

∂f

∂t
+ ξ ·

∂f

∂x
=
feq(x, ξ, t)− f(x, ξ, t)

τ
(3.151)

From the pure mathematical point of view, Eq. 3.151 is an ordinary di�erence equation (ODE).

To solve Eq. 3.151, we apply the well know chain derivation rule and, thus, we rewrite Eq.

3.151 as following:
df

dt
+

1

τ
f =

1

τ
feq (3.152)
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where the d is the total derivative operator. Eq. 3.152 is a �rst order di�erential linear equation

with constant coe�cients [Coddington, 2012]. The solution for this type of equations is well

known and can be expressed as:

f(t+δt) = f(x+ξδt, ξ, t+τt) = exp−
δt
τ f(x, ξ, t)+

1

τ
exp−

δt
τ

∫ δt

0
exp

δt′
τ feq(x+ξδt′, ξ, t+t′)dt′

(3.153)

Applying Taylor expansion around term δt= 0 and truncating it at the �rst order we obtain

the following equalities:

exp−
δt
τ = 1− 1

τ
δt+O(δt2) (3.154)

1

τ
exp−

δt
τ

∫ δt

0
exp

δt′
τ feq(x+ ξδt′, ξ, t+ t′)dt′ =

1

τ
feq(x, ξ, t)δt+O(δt2) (3.155)

Inserting the two expansions (Eqs. 3.154, 3.155) in Eq. 3.153 we obtain the �nal expression

of the lattice Boltzmann equation:

f(x+ ξδt, ξ, t+ δt)− f(x, ξ, t) = −1

τ
(f(x, ξ, t)− feq(x, ξ, t)) +O(δt2) (3.156)

where τ is called relaxation time.

An analogous procedure is applied to expand the equilibrium distribution function (Eq.

3.82), which can be rewritten as follows:

feq(ξ) =
ρ√

(2πRT )
3 exp

[
− ξ2

2RT

]
exp

[
− v2

2RT
+
ξ ·v

RT

]
(3.157)

we perform the Taylor expansion on the term u/
√
RT around u/

√
RT = 0. This procedure is

usually called low Mach number expasion because in an ideal gas the sound speed cs is given

by:

cs =
√
ζRT (3.158)

where ζ is the ratio between the isobaric and the isochoric speci�c heats. Thus, being the Mach

number the ratio between the macroscopic velocity and the sound speed, it is proportional

to u/
√
RT . Finally, applying the low Mach number expansion, we obtain the expanded

formulation of the equilibrium term:

feq(ξ, t) =
ρ√

(2πRT )
3 exp

[
− ξ2

2RT

][
1 +

ξ ·v

RT
+

(ξ ·v)2

2(RT )2
− v2

2RT

]
+O(Ma3) (3.159)

3.4.3 The integration in the momentum space

As discussed in Section 3.3, the macroscopic quantities can be recovered through the zero-

th, �rst and second momentum of distribution functions f . Following He and Luo [1997b]

procedure, to recover the lattice Boltzmann method we need to apply a quadrature formula
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to solve the generic momentum:

Mk =

∫
ξlxξ

m
y ξ

n
z f(x, ξ, t)dξ (3.160)

where k = l +m+ n. The generic quadrature formula can be written as follows:

Mk =

∫
ξlxξ

m
y ξ

n
z f(x, ξ, t)dξ =

p∑
i=1

wiξ
l
xξ
m
y ξ

n
z f(x, ξi, t) (3.161)

where the velocity space ξ is now discretized in a set of discrete velocities ξi The choice of

the correct quadrature formula is of crucial importance in the discretization procedure. As

pointed out by Cercignani [1975], the Chapman-Enskog expansion of the Boltzmann equation,

leading to the Navier-Stokes equations, is basically a expansion of f in the �rst two orders

f0 = feq and f1; moreover He and Luo [1997b] underlined that the quadrature formula must

be able to compute exactly the macroscopic quantities, so it must hold that:

ρ(x, t) =

∫
f(x, ξ, t)dξ =

p∑
i=1

wif(x, ξi, t)

v =

∫
ξf(x, ξ, t)dξ

ρ(x, t)
=

∑p
i=1wiξf(x, ξi, t)

ρ(x, t)

e =

∫
cjcjf(x, ξ, t)dξ

ρ(x, t)
=

∑p
i=1wicjcjf(x, ξi, t)dξ

ρ(x, t)

(3.162)

The problem now is: how to chose the quadrature formula? We remark that, in order to

reproduce correctly the momentum, the generic quadrature formula must be such that:∫
φ(ξ)g(x, ξ, t)dξ =

p∑
j=1

wjφ(ξi)g(x, ξj , t)dξ (3.163)

where φ(ξ) is a generic polynomial function and g(x, ξ, t) is a generic distribution function.

Thus, applying such quadrature scheme to the equilibrium distribution function (Eq. 3.159),

we obtain:∫
φ(ξ)feq(x, ξ, t)dξ =

p∑
j=1

wjφ(ξ)
ρ√

(2πRT )
3 exp

[
− ξ2

2RT

][
1 +

ξ ·v

RT
+

(ξ ·v)2

2(RT )2
− v2

2RT

]
(3.164)

From a pure mathematical point of view, Eq. 3.164 has the following form:∫
exp−ξ

2

φ(ξ)dξ (3.165)

so the argument of the integral has the form of a Gaussian distribution, therefore, the integral

can be computed numerically using the Gauss-Hermite quadrature formula. and, in particular,

we are able to reproduce exactly integrals as proposed in Eq. 3.165.
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Figure 3.5: LB schemes in two and three dimensions. On the left, the bi-dimensional
D2Q9 model with its 9 velocities. On the right, the three-dimensional D3Q19
scheme with its 19 velocities.

The usage of the quadrature formulas leads to discretize the velocity space. It is usual,

in literature, to identify the discrete set of velocity with the denomination: DmQn where m

indicates the space dimension and n indicates the number of the velocities. Classical schemes

are D2Q5, D2Q9, D3Q19 and D3Q27. In Figure 3.5 we show the D2Q9 and the D3Q19 lattice

schemes, which are the most adopted LBM schemes in 2D and 3D, respectively.

In the following section we will apply the Gaussian quadrature formula to derive the D2Q9

lattice scheme and the associated discrete equilibrium distribution function.

3.4.4 Velocity and equilibrium distribution discretization

Let us suppose to work in a 2D space and to discretize the square lattice mesh as indicated in

Figure 3.5 (left). Working in a Cartesian space, we can de�ne the polynomial function φ(ξ)

as follows:

φ(ξ)l,m = ξlxξ
m
y (3.166)

where ξx and ξy are the Cartesian components of the velocity ξ. Inserting Eq. 3.166 in Eq.

3.164 we obtain:∫
φ(ξ)l,mf

eq(ξ)dξ =
ρ

π
(
√

2RT )l+m

[(
1− v2

2RT

)
ZlZm +

√
2(vxZl+1Zm + vyZlZm+1)√

RT

+
v2xZl+2Zm + 2vxvyZl+1Zm+1 + v2yZlZm+2

RT

]
(3.167)

where Zl is given by:

Zl =

∫ +∞

−∞
exp−

ξ2

2RT
ξl√
2RT

dξ (3.168)

Eq. 3.168 represents the l−th order moment of the function exp−
ξ2

2RT that, in this contest,

assumes the function of a weight function. Thus, applying the quadrature formula (Eq. 3.163)
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to Eq. 3.168, we can approximate the integral as follows:

Zl =

p∑
j=1

wj
ξlj√
2RT

(3.169)

In this case, the optimal quadrature solution is obtained for p = 3. The abscissas of the

quadrature formula are:

ξ1 = −
√

3

2

1√
2RT

, ξ2 = 0, ξ3 = +

√
3

2

1√
2RT

(3.170)

and the weights are:

w1 =

√
π

6
, w2 =

2
√
π

3
, w3 =

√
π

6
(3.171)

So, introducing Eqs. 3.169, 3.170, 3.171 in Eq. 3.167 we obtain:∫
φ(ξ)l,mf

eq(ξ)dξ =
ρ

π

3∑
l,m=1

wlwmφ(ξ)l,m

[
1 +

(ξl,m ·v)

RT
+

(ξl,m ·v)2

2R2T 2
− (v)2

2RT

]
(3.172)

Therefore, the equilibrium distribution functions are given by:

feql,m =
ρwlwm
π

[
1 +

(ξl,m ·v)

RT
+

(ξl,m ·v)2

2R2T 2
− (v)2

2RT

]
(3.173)

where ξl,m is the discrete set of velocities given by the quadrature formula. Then, considering

the gas sound speed given by the low Mach number expansion (Eq. 3.158) and assuming

ζ = 1, we can write the lattice sound speed as following:

cs =
√
RT (3.174)

and thus rewrite Eq. 3.173 as follows:

feqi = ωi

[
1 +

(ei ·v)

c2s
+

(ei ·v)2

2c4s
− (v)2

2c2s

]
, with i = 1, 2, . . . , 9 (3.175)

where ea is the common name, used in literature to call the discrete set of velocities given by

ξl,m with the combination of indexes l = 1 : 3 and m = 1 : 3; ea are de�ned as:

ei =


e1,3 = (±1, 0)c

e2,4 = (0,±1)c

e5,6,7,8 = (±1,±1)c

e9 = (0, 0)c

(3.176)
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which correspond to the scheme proposed in Fig. 3.5 (left). The weights, instead, are straight-

forward de�ned as:

ωi =
wlwm
π

=


ω1,2,3,4 = 1/9

ω5,6,7,8 = 1/36

ω9 = 4/9

(3.177)

The variable c can be viewed as a speed of light [He and Luo, 1997b] of the system and it is

given by the following relation:

c =
√

3cs =
√

3RT (3.178)

Moreover, since c is by fact a scalar velocity, it can be de�ned as:

c =
δx

δt
(3.179)

where δx is the lattice typical dimension and δt is the minimum time increment for the solution

of the LBM. In literature, δx and δt are known as lattice units. It is also very common to

assume δx = 1 and δt = 1. Accordingly, c = 1 and Eq. 3.178 can be rewritten as follows:

cs =
c√
3

=
1√
3

(3.180)

In consequence, Eq. 3.173 can be rewritten as follows:

feqi = ωi

[
1 +

3(ei ·v)

c2
+

9(ei ·v)2

2c4
− 3(v)2

2c2

]
, with i = 1, 2, . . . , 9 (3.181)

Applying the same space discretization to the Eq. 3.156, we can write the discrete lattice

Boltzmann equation:

fi(x+ eiδt, t+ δt) = fi(x, t)−
1

τ

[
fi(x, t)− feqi (x, t)

]
with i = 1, . . . , n (3.182)

To solve Eq. 3.182, it is usual to split the solution in two steps: the streaming step:

fsi (x+ eiδt, t+ δt) = fi(x, t) (3.183)

and the collision step:

fi(x+eiδt, t+δt) = fsi (x+eiδt, t+δt)− 1

τ

[
fsi (x+eiδt, t+δt)−feqi (x+eiδt, t+δt)

]
(3.184)
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where the equilibrium term is given by Eq. 3.181 and the macroscopic equations are given by:

ρ = ρ(x, t) =

n∑
i=1

fi

v = v(x, t) =
1

ρ

n∑
i=1

eifi

e = e(x, t) =
1

2ρ

n∑
i=1

(ei − v)2fi

(3.185)

Finally, we underline that, in order to assure the stability of the method, the macroscopic

velocity v must remain always below the cs. This limit, as matter of fact, is given by the low

Mach number expansion adopted to evaluate the equilibrium term.

3.5 The lattice Boltzmann method and the conservation equa-

tions

In the previous sections we have mathematically derived the lattice Boltzmann method from

the Boltzmann equation. The natural question is: with the lattice Boltzmann method it

is possible to reproduce correctly the macroscopic behavior of a thermo-dynamic �uid? In

order to prove that form the lattice Boltzmann method it is possible to recover the we apply

the Chapman-Enskog expansion to the discrete Boltzmann equation in order to recover the

Navier-Stokes equations and the heat advection di�usion equation.

3.5.1 From lattice Boltzmann equation to Navier-Stokes equations

In this section we introduce some important aspects to better characterize the lattice Boltz-

mann equation.

In Eq. 3.179 we have introduced the assumption c = 1 which implies that LBM is char-

acterized by a convective scaling, meaning that δt = δx. This procedure can be viewed as a

kind of normalization and δt is related to the Knudsen number (Kn). In speci�c, it possible

to demonstrate [Kuzmin, 2010] that Kn = τ , meaning that relaxation time is the scale pa-

rameter which governs the lattice Boltzmann equation. Accordingly, if we want to recover the

conservation equations for a dense �uid, we need to perform the Chapman-Enskog expansion

in the limit τ → 0, to be consistent with the considerations explained in Section 3.3.4.

Eq. 3.182 does not include the forcing term. External forces contribution can be taken

into account as follows:

fi(x+eiδt, t+δt) = fi(x, t)−
1

τ

[
fi(x, t)−feqi (x, t)

]
+δtFi, with i = 1, 2, . . . , 9 (3.186)

where δtFi is an additional term which takes into account the contribution of external forces

acting on the computational domain, for example the gravitational �eld. The contribution

of the external forces is taken into account as a external momentum, thus the macroscopic
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velocity v is calculated as follows:

v = v(x, t) =
1

ρ

n∑
i=1

eifi +
mF δT

ρ
(3.187)

where m is a constant to be determined. According to Ladd and Verberg [2001], the forcing

term can be expanded in series of power as follows:

Fi = ωi

[
A +

3(ei ·B)

c2
+

9(ei ·C)2

2c4
− 3(C)2

2c2

]
, with i = 1, 2, . . . , 9 (3.188)

where A, B, C are constant coe�cients which can be derived imposing that the moments of Fi
satisfy the desired constitutive equations (in our case of study, the hydrodynamic equations).

The zero-th, �rst, and second moments of Fi are de�ned as follows:

n∑
i=1

Fi = A

n∑
i=1

eiFi = B

n∑
i=1

eieiFi =
CT +C

2
+
c2AI

3

(3.189)

In conclusion, we can state that in LBM the forcing term is strictly dependent on the consti-

tutive equations we want to satisfy [Guo et al., 2002a].

The Chapman Enskog expansion

The Chapman-Enskog expansion of the lattice Boltzmann equation (Eq. 3.186) is based on

the expansion in series of powers of both the discrete distribution functions fi and the time t:

fi =
∞∑
n=1

εnf
(n)
i

t =

∞∑
n=1

εnt(n)

(3.190)

We observe that the series of power is dependent on the coe�cient ε = Kn which tends to 0

like in the Chapman-Enskog expansion of the Boltzmann equation.

Expanding in Taylor series the right hand side of Eq. 3.186 and applying the expan-

sion procedure to Eq. 3.186, with some mathematical computations we obtain the following
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equations [Guo et al., 2002a]:

f
(0)
i = feqi

∂f
(0)
i

∂t(1)
+ ei

∂f
(0)
i

∂x(1)
= − 1

τδt
f
(1)
i + εFi

∂f
(0)
i

∂t(2)
+

(
1− 1

2τ

)(
∂f

(1)
i

∂t(1)
+ ei

∂f
(1)
i

∂x(1)

)
= − 1

τδt
f
(2)
i −

δt

2

(
∂εFi
∂t(1)

+ ei
∂εFi
∂x(1)

) (3.191)

with:
∂

∂t
= ε

∂

∂t(1)
+ ε2

∂

∂t(2)
,

∂

∂x
= ε

∂

∂x(1)
+ ε2

∂

∂x(2)
(3.192)

Considering the moments of the Eqs. 3.191 on t1 = εt, inserting Eq. 3.188, and taking into

account the de�nition of the macroscopic quantities (Eq. 3.185), we obtain:

∂ρ

∂t(1)
+∇(1) · (ρv) = A(1)

∂ρv

∂t(1)
+∇(1) ·Π

(0) =

(
n+

m

τ

)
B(1)

n

(3.193)

where n and m are constants to be determined given by:

A = εA(1), B = εB(1) (3.194)

while Π
(0)
αβ =

∑
i eiαeiβf

(0)
i is the zero-th order momentum �ux tensor. If we assume A(1) = 0

and (n+m/τ) = 1 we recover the Euler equations which describe the dynamics of a inviscid

�uid, that in the continuous case correspond to the Eqs. 3.136. This result is in accordance

with the one obtained applying the Hilbert expansion to the Boltzmann equation. Moreover,

the �rst order momentum �ux can be calculated as follows:

Π
(1)
αβ = −τδt

[
(vαF(1)β + vβF(1)α) + c2sρ(∇(1)αvβ +∇(1)βvα)− 1

2

(
C(1)αβ +C(1)βα

)]
(3.195)

where: F(1) is given by:

F = εF(1) (3.196)

Martys et al. [1998] pointed out that if we assume C = 2vF(1), with some computations, the

momentum �ux can be re-conducted to the expression of the stress tensor of the Navier-Stokes

equations (Eq. 3.147):

p(1)αβ = pδαβ − µ
(
∇(1)αvβ +∇(1)βvα

)
(3.197)

where µ is the kinematic viscosity and it is given by: µ = c2sτδt. However, in LBM method,

the lattice discretization induces some modi�cations on viscosity and forcing term, so, in order

to avoid instabilities, it is convenient to introduce some corrections on the viscosity de�nition.
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We consider the second order moments of Eqs. 3.191 on t2 = ε2t and we obtain:

∂ρ∂t(2) = δt

(
m− 1

2

)
∇(1) ·F(1)

∂(ρv)

∂t(2)
= δt

(
m− 1

2

)
∂F(1)

∂t(1)
+∇(1) ·p(1)

(3.198)

where the stress tensor is de�ned as follows:

p(1)αβ = −

(
τ − 1

2

)
c2sδtρ

(
∇(1)αvβ +∇(1)βvα

)
+

δt

[(
τ − 1

2

)(
vαF(1)β + vβF(1)α

)
− τ

2

(
C(1)αβ +C(1)βα

)] (3.199)

Looking to Eq. 3.199, we notice that it contains, basically, the Eq. 3.195 with an additional

term. Those additional terms can be condensed, to recover Eq. 3.197, by assuming the

following equality:

µ =

(
τ − 1

2

)
c2sδt, C =

(
1− 1

2τ

)
2vF (3.200)

Moreover, we can appreciate how, in Eqs. 3.198, space and time partial derivatives on the

right had sides cause unexpected second order e�ects on density and momentum distributions.

In order to avoid those e�ects, m must be assumed equal to 1/2 and, in consequence, the

macroscopic velocity (Eq. 3.187) can be calculated as follows:

v = v(x, t) =
1

ρ

n∑
i=1

eifi +
FδT

2ρ
(3.201)

where F is the external forcing term. Finally the external forcing term is given by:

Fi =

(
1− 1

2τ

)
ωi

[
3(ei − v)

c2
+

9(ei ·v)

c4
ei

]
·F (3.202)

Finally, inserting Eq. 3.201 and Eq. 3.200 in Eq. 3.193, doing some computations on the

stress tensor, we can recover the Navier-Stokes equations, written as follows:

∂ρ

∂t
+∇ · ρv = 0

∂ρv

∂t
+∇ · (ρvv) = −∇p+ µ∇ · [ρ(∇v +∇Tv)] + F

(3.203)

3.5.2 From lattice Boltzmann equation to Energy conservation equation

The above described procedure to derive the Navier-Stokes equations from the lattice Boltz-

mann equation, deals with the �rst two moments of the distribution functions fi, meaning

that the last of the Eqs. 3.185 is not taken into account; in fact, from the macroscopic point
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of view, we have not recovered the complete description of a Navier-Stokes-Fourier �uid but

only mass and momentum conservation equations.

In order to describe the thermal evolution of the �uid, we consider a new distribution

function g de�ned as follows:

g =
(ξ − v)2

2
f (3.204)

thus that the integral of g on the velocity space returns exactly the internal energy (Eq. 3.97).

Following He et al. [1998], we can introduce Eq. 3.204 in Eq. 3.151, with some computations,

we can rewrite the Boltzmann equation as follows:

∂g

∂t
+ ξ ·

∂g

∂ξ
=
geq(x, ξ, t)− g(x, ξ, t)

τT
− fq (3.205)

where f is the distribution function usually adopted to describe the �uid-dynamic problem,

while q is de�ned as follows:

q = f(ξ − v) ·

[
∂v

∂t
+ ξ ·

∂v

∂x

]
(3.206)

and the equilibrium distribution function geq(x, ξ, t) is given by:

geq(ξ) =
ρ(ξ − v)

2
√

(2πRT )
3 exp

[
−(ξ − v)2

2RT

]
(3.207)

In conclusion, Eq. 3.151 and Eq. 3.205 with the associated equilibrium distributions, Eq.

3.207 and Eq. 3.82, give rise to a system of equations describing the �uid dynamic evolution

of a thermal �ow.

Applying to Eq. 3.205 a discretization procedure similar to the one proposed in Sec-

tion 3.4.2, we can derive the discretized lattice Boltzmann equation describing the thermal

evolution:

gi(x+ eiδt, t+ δt) = gi(x, t)−
δt

τT + 0.5δt

[
gi(x, t)− geqi (x, t)

]
− τT
τT + 0.5δt

fi(x, t)qi(x, t)δt

with i = 1, . . . , n

(3.208)

and the associated discrete equilibrium term can be discretized as follows:

geqi = ρeωi

[
3

2
+

3(ei ·v)

2c2
+

9(ei ·v)2

2c4
− 3(v)2

2c2

]
, with i = 1, 2, . . . , 4

geqi = ρeωi

[
3 +

6(ei ·v)

c2
+

9(ei ·v)2

2c4
− 3(v)2

2c2

]
, with i = 5, 6, . . . , 8

geqi = ρeωi

[
3(v)2

2c2

]
, with i = 9

(3.209)
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Eq. 3.208 and Eq. 3.209 are usually referred as thermal lattice Boltzmann method (TLBM).

For sake of completeness, we remark that this solution is not unique, in fact it is possible

to adopt directly the temperature as macroscopic unknown (instead of the internal energy);

furthermore, di�erent solutions have been proposed to evaluate the equilibrium distribution

functions.

The Chapman-Enskong expansion

Like for the �uid dynamic case, also for the thermo-�uid-dynamic problem we have to demon-

strate that from the thermal lattice Boltzmann method it is possible to recover the macroscopic

description of a thermal �uid, i.e., the heat advection-di�usion equation.

The Chapman-Enskog expansion of the lattice Boltzmann equation (Eq. 3.208 ) is based

on the expansion in series of powers of both the discrete distribution functions gi and the time

t:

gi =

∞∑
n=1

εng
(n)
i

t =
∞∑
n=1

εnt(n)

(3.210)

We observe that the series of power is dependent on the coe�cient ε = Kn which tends to 0

like in the Chapman-Enskog expansion of the Boltzmann equation. The �rst order Chapman-

Enskog expansion of Eq. 3.208 is given by:

∂g
(0)
i

∂t(1)
+ ei

∂g
(0)
i

∂x(1)
= − 1

τT
g
(1)
i − f

(0)
i qi (3.211)

Then, considering that g(0) = geq and taking into account the de�nition of the distribution

function g (Eq. 3.204), we can rewrite Eq. 3.211 in terms of the macroscopic quantities as

follows:
∂ρe

∂t(1)
+∇(1) · (ρev) = −p∇(1) ·v (3.212)

obtaining the Euler energy equation (last of the Eqs. 3.136). The second term of the right

hand side of Eq. 3.212 represents the convective term and is dependent on the equilibrium

term g(0) which is related, by de�nition (Eq. 3.204) to the internal energy. The left hand

side of Eq. 3.212 represents the di�usive term and is dependent on the equilibrium term f (0)

which is related to the pressure compression work.

Applying the second order Chapman Enskog expansion, instead, we obtain:

∂g
(0)
i

∂t(2)
+
∂g

(1)
i

∂t(1)
+ ei

∂g
(1)
i

∂x(1)
= − 1

τT
g
(2)
i + τ

[
∂f

(0)
i

∂t(1)
+∇ · (eif

(0)
i )

]
(3.213)

Finally, inserting Eq. 3.211 in Eq. 3.213, and integrating on the velocity space, we obtain:

∂ρe

∂t(2)
−∇(1) · (ρk∇e) = ρµ(∇(1)v +∇T

(1)v) : ∇(1)v (3.214)
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where k is the thermal conductivity. The second term of the left hand side of Eq. 3.214

represents the convective term, describing the heat convection; this term is generated from

the second and the third term of the left hand side of Eq. 3.213 and it is dependent on the non

equilibrium term g(1) which is related, by de�nition (Eq. 3.204) to the internal energy. The

right hand side of Eq. 3.214 represents the di�usive term, describing the heat di�usion. This

contribution derives from the second term of the right hand side of Eq. 3.213 and depends on

the non equilibrium term f (1) which is related, by de�nition (Eq. 3.185) to the density.

Then combining Eq. 3.214 with Eq. 3.212, we obtain:

∂ρe

∂t
+∇ · (ρve) = ρµ(∇v +∇Tv) : ∇v − p∇ ·v (3.215)

Eq. 3.215 is the macroscopic energy conservation equation, thus the description of a

Navier-Stokes-Fourier �uid is complete.

3.6 Final considerations about the Boltzmann Equation and

the lattice Boltzmann method

In this chapter we have presented the lattice Boltzmann method which is used to solve numer-

ically the Boltzmann equation under certain hypotheses. We have demonstrated that LBM

can be analytically derived from the Boltzmann equation. Moreover we have demonstrated

that the macroscopic equations governing a thermo-�uid dynamic �ow (Navier-Stokes-Fourier

equations) can be obtained directly from the Boltzmann equation using the Chapman-Enskog

expansion. This expansion procedure has been adopted also to show that the lattice Boltz-

mann equation is consistent with the discrete formulation of the macroscopic description of a

Navier-Stokes-Fourier �uid.

In previous sections it merged that the lattice Boltzmann method is, by fact a kinetic

particle-based approach which conserves the essential information of particle dynamics, nec-

essary to recover the conservation equations at the macroscale; in this respect, the lattice

Boltzmann method, as well as the Boltzmann equation itself, represents a bridge between the

micro- and the macroscopic world and therefore is usually referred as mesoscopic.

In Figure 3.6 we have resumed the principal results obtained in this chapter, underling the

principal steps to obtain the lattice Boltzmann method. In particular we observe that, even

if the �rst lattice Boltzmann scheme was introduced in 1988 [McNamara and Zanetti, 1988],

it was mathematically demonstrated only in 1997 [He and Luo, 1997a].
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LATTICE BOLTZMANN EQUATION (Eq. 3.156 – Eq. 3.159)

• BGK approximation (Eq. 3.151)

• Taylor expansion in time (Eq. 3.154, 

3.155)

• ODE resolution

• Low Mach number expansion (Eq. 

3.158)

• Integration in the momentum space 

(Eq. 3.163)

• Velocity and equilibrium distribution 

discretization (Eq. 3.166)

FROM BOLTZMANN EQUATION TO 

LATTICE BOLTZMANN METHOD

BOLTZMANN EQUATION (Eq. 3.35)

LATTICE BOLTZMANN METHOD (Eq. 3.181, 182, 183, 184)

Streaming

Collision

1872

1997

1997

Figure 3.6: From the Boltzmann equation to the lattice Boltzmann method: basic
steps.

3.6.1 Why use the lattice Boltzmann method for Powder Bed Fusion sim-
ulation

As discussed in Chapter 2, powder bed fusion process can be viewed as a thermo-�uid-dynamic

problem. In literature, during the years several approaches have been proposed to face thermo-

�uid dynamic problems.

In computational �uid dynamics (CFD) the classical methods to solve a �uid dynamic



3.6. Final considerations about the Boltzmann Equation and the lattice Boltzmann method94

problem can be divided according to (i) the type of grid, (ii) how the domain is discretized,

(iii) how the Navier-Stokes equations are treated to face the turbulence simulation:

� Type of grid:

� Structured grid;

� Unstructured grid;

� Domain discretization techniques:

� Finite volume method (FV);

� Finite element method (FEM);

� Finite di�erence method (FD);

� Turbulence resolution:

� Direct Numerical Simulation (DNS);

� Reynolds-averaged Navier�Stokes (RANS);

� Large eddy simulation (LES);

This classical resolution techniques require an integration on a discrete space and in general

are very expensive in terms of computational times. The lattice Boltzmann method is a full

explicit method that is solved on a structured grid without needing of integration operations.

Those characteristics make the lattice Boltzmann method suitable to be run on massively

parallel architectures, thus it is particularly suitable for problems which require a large amount

of memory, for example the simulation of powder melting in PBF. The lattice Boltzmann

method has been successfully used to simulate multiphase, multicomponent and free surface

�ows with complex geometries thanks to the ease imposition of the boundary conditions.

Those characteristics make the LBM indicated to simulated �ows trough porous media. This

occurrence is typical of the powder bed fusion in which the melted particles move among the

solid particles. Moreover, with the lattice Boltzmann method it is almost easy to incorporate

the thermal treatment in the �uid description, so it is possible to manage with problems

in which the the �uid motion is accompanied with the heat exchange among the �uid and

with the boundaries. Finally, LBM has been successfully used also to simulate phase change

problems. The liquid-gas transition has been faced in many works, while, at the state of the

art, only few models dealing with the solid liquid phase change are available.

3.6.2 Conclusions

In this chapter we have studied in detail the Lattice Boltzmann method which takes origins

from the Boltzmann equation.

In the �rst part of the chapter, starting from the kinetic theory of gases we have derived the

Boltzmann equation; then we have discussed the mathematical peculiarities of this equation,

focusing on the di�cult treatment of the collision term. Secondly, we have demonstrated that,

applying the perturbation method, it is possible to derive, from the Boltzmann equation, the

Navier-Stokes-Fourier equations.
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In the second part of this chapter we have introduced the Lattice Boltzmann method, an

explicit computational scheme which can be used to solve the Boltzmann equation and we

have demonstrated that this approach can be used to solve the both the Navier-Stokes and

the advection-di�usion equation.

In the next chapter we will use the lattice Boltzmann method to solve some simple thermo-

�uid dynamic problems.



Chapter 4

Applications of the Lattice Boltzmann

method

In this chapter we propose some examples of application of the lattice Boltzmann method. In

particular we start with simple �uid and thermo dynamic problems, then we move to more

complicate multiphase and free surface problems. Finally we propose an example of solid

liquid phase change transition.

4.1 Single phase �ows

In this section we focus on the LBGK method to solve single-phase �ows at low Re numbers

and on the corresponding algorithm, reported in Figure 4.1. In particular, we test the proposed

algorithm on a reference benchmark CDF solution, i.e. the Lid-Driven-Cavity (LDC) problem,

Burggraf [1966]; in this problem a square cavity is �lled with �uid and a constant horizontal

velocity is imposed on the upper side of the domain.

The �rst step of our algorithm consists in converting the dimensional quantities into lattice

units. As discussed in previous chapter, the LB method relies on a discrete domain called

lattice. Each lattice scheme is de�ned by a time resolution ∆t and a space resolution ∆x

which can be de�ned in any set of units (e.g. SI), although in literature almost all the works

are realized in lattice units which are a �ctitious unit system scaled such that ∆t = 1 and

∆x = 1. The conversion procedure is not unique. In this work we adopt the scheme proposed

by Krüger et al. [2017] based on the Law of Similarity which states that two incompressible

�ow systems are �uid-dynamically similar if they have the same Re number and the same

geometry. In single phase �ow problems Re number can be expressed as follows:

Re =
L′V ′

ν ′
=
LV

ν
(4.1)

where L′ is the typical scale of the physical problem, V ′ is the typical velocity of the physical

problem and ν ′ is the physical viscosity. In LDC the scale of the problem is given by the

cavity dimension, while ν ′ is depending on the chosen �uid; furthermore from L′ and V ′ we

can easily de�ne the typical time scale T ′ = L′/V ′. Once de�ned the grid resolution Nx x Nx

96
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Figure 4.1: LBGK algorithm. The scheme consist of two loops. A main loop over
time and a secondary loop over lattice cells. The bounce back rule is adopted for
no-slip boundaries and the Zou-He model [Zou and He, 1997] is used to impose
constant velocity on the top boundary.

we can evaluate the physical grid spacing as:

∆′x =
L′

Nx

(4.2)

and we can de�ne a conversion factor for length as follows:

Cx =
∆x′

∆x
=
L′

L
(4.3)

from which it is simple to derive that : L = Nx. The de�nition of V and ν is not straightforward

because, in LB method, to avoid instability problems we must ensure that V < cs and the

relaxation time τ is not to close to 0.5 [Krüger et al., 2017]. Once de�ned a proper value for
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τ we can derive the kinematic lattice viscosity as follows [Frisch et al., 1986]:

ν = cs
2
(
τ − 1

2

)
(4.4)

Now, considering the physical dimensions of the viscosity we can write the following relation:

ν ′

ν
= Cν =

Cx
2

Ct
, → Ct =

Cx
2

Cν
(4.5)

where Cν is the viscosity conversion factor and Ct is the time conversion factor. Finally we

can derive the lattice velocity V as follows:

V =
V ′

CV
, → V = V ′

Ct
Cx

(4.6)

where CV is the conversion factor for the velocity. Moreover, knowing Ct we can derive the

physical time step as ∆′t = Ct∆t and calculate the number of iterations needed to cover the

desired time interval. If the resulting lattice velocity V is not consistent with the method

constraints, as �rst step we try to change the relaxation time τ , alternatively, we can change

the lattice grid resolution Nx.

We notice also that the density in LB method is a pure scaling parameter, that does not

a�ect the stability of the method, so it is possible to adopt the any desired value of ρ; although,

to be consistent with the previously assumptions, it is common to assume ρ = 1, and to de�ne

a conversion factor as follows:

Cρ =
ρ′

ρ
(4.7)

where ρ′ is the physical density.

Once performed the parameters conversion, the distribution functions fi are initialized,

at the equilibrium state through Eq. 3.175 and the iterative process starts. The algorithm

consists of two loops: a main loop over the time and a loop over the cells.

During the streaming step we impose the boundary conditions; in particular we implement

the Dirichlet boundary conditions proposed by Zou and He [1997] to impose the �xed velocity

on the upper side of the domain, while we apply the simple bounce-back scheme to perform

no-slip boundaries on the other sides:

fsir(x+ ei∆t, t+ ∆t) = fi(x, t) (4.8)

where subscript index ir denotes the opposite direction to the considered velocity ei, such

that: eir = −ei.
After the streaming step we evaluate the density ρ and the velocity v trough Eq.3.185,

then the equilibrium distributions can be computed and �nally the collision among particle

distributions takes place (Eq. 3.184).

Figure 4.2 shows the simulation results of the LDC problem. We have solved the Lid

Driven Cavity problem for three Re numbers: Re = 100, Re = 400 and Re = 1000. The

cavity of length L = 1 m is �lled with water with kinematic viscosity ν = 10−6 m2/s and the

lattice grid dimensions are: 300 x 300.
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The �rst three plots represent the velocity distribution (L2 norm) of the steady state

solution for various Re numbers. The results have been validated through a comparison with

the solution proposed by Ghia et al. [1982] which is commonly considered a reference solution

for this kind of problem. The normalized horizontal and vertical velocity components (u and

v-velocity) along the line of vertical and horizontal symmetry have been compared with the

reference solution. We observe a good agreement between the solution obtained with the

LBGK simulation and the one proposed by Ghia et al. [1982].

Re = 100 Re = 400 Re = 1000

Re = 100 Re = 400 Re = 1000

Re = 100 Re = 400 Re = 1000

Normalized u-velocity along horizontal line at x/L = 0.5

Normalized v-velocity along vertical line at y/L = 0.5

Velocity distribution in the Lid-driven-cavity

Figure 4.2: LDC problem performed with di�erent Re numbers. The normalized
horizontal and vertical velocity components in the middle of the domain are com-
pared with the solution proposed by Ghia et al. [1982], showing a good agreement
for the considered Reynolds number.
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4.2 Thermal Lattice Boltzmann method

As above mentioned, the LB method is well suited also to describe the thermal �ows. In

literature, the main thermal Lattice Boltzmann (TLB) methods are the multi-distribution

method [Palmer and Rector, 2000] and the multi-speed method [Teixeira et al., 2000], but the

latter method was proved by McNamara et al. [1995] to su�er of instability problems.

In the following, we adopt the multi-distribution approach proposed by Guo et al. [2002b]

to set up a TLB method for incompressible �uids and we test it on a conventional benchmark

i.e., the Rayleigh-Benard convection. In this problem a rectangular cavity is �lled with �uid

and a temperature di�erence is applied between upper and bottom boundaries to give rise to

a convective �ow.

In multi-distribution approach two sets of distribution functions, namely f and g, are

taken into account: f is the distribution used to study the �uid-dynamic problem, while g is

adopted to study the thermo-dynamic problem. The discrete evolution equations governing a

thermo-�uid dynamic problem are:

fi(x+ ei∆t, t+ ∆t) = fi(x, t)−
1

τ

[
fi(x, t)− feqi (x, t)

]
with i = 1, . . . , n

gi(x+ ei∆t, t+ ∆t) = gi(x, t)−
1

τF

[
gi(x, t)− geqi (x, t)

]
with i = 1, . . . , n

(4.9)

where τ and τF are the relaxation times for the �uid and the thermal problem respectively.

An e�ective numerical solution of Eq. 4.9 can be provided splitting the solution process into

a streaming and a collision step.

The streaming step is de�ned as follows:

gsi (x+ ei∆t, t+ ∆t) = gi(x, t)

f si (x+ ei∆t, t+ ∆t) = fi(x, t)
(4.10)

where the particle distributions in position x at time t are streamed to position (x + ei∆t)

after a time step ∆t. At the end of the streaming, the macroscopic quantities are obtained as

follows:

ρ = ρ(x, t) =

n∑
i=1

fsi , v = v(x, t) =
1

ρ

n∑
i=1

eif
s
i , T = T (x, t) =

n∑
i=1

gsi (x, t) (4.11)

Henceforth the equilibrium distributions are evaluated as follows [Guo et al., 2002b]:

feqi = wiρ

[
1 +

ei ·v

cs2
− v2

2cs2
+

(ei ·v)2

2cs4

]

geqi = wiT

[
1 +

ei ·v

cs2

] (4.12)
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Finally, the post collision distribution functions are given by:

fi(x+ ei∆t, t+ ∆t) = fsi (x+ ei∆t, t+ ∆t)− 1

τ

[
fsi (x+ ei∆t, t+ ∆t)− feqi (x+ ei∆t, t+ ∆t)

]
gi(x+ ei∆t, t+ ∆t) = gsi (x+ ei∆t, t+ ∆t)− 1

τF

[
gsi (x+ ei∆t, t+ ∆t− geqi (x+ ei∆t, t+ ∆t)

]
(4.13)

The coupling between mass-momentum conservation and advection-di�usion, when consid-

ering buoyancy driven �ows, can be performed by introducing the so-called Boussinesq ap-

proximation [Boussinesq, 1903]. This approximation states that density variations, caused by

temperature gradients, are taken into account only when they are multiplied by the gravity.

Considering Eq. 3.103, we can expand the body force term F as:

F = ρg (4.14)

where g denotes the gravity acceleration. Applying the Boussinesq approximation, we can

rewrite Eq. 4.14 as follows:

F = ρg − ραg(T − T0) (4.15)

where α is the coe�cient of thermal expansion and T0 is the average �uid temperature. The

�rst constant term of Eq. 4.15 can be condensed into the pressure term of Eq. 3.103, so we

can rewrite the NS equations as follows:

∇ ·v = 0

∂v

∂t
+ (v ·∇)v − ν∇2v = −1

ρ
∇p− αg(T − T0)

(4.16)

The buoyancy force (Eq. 4.15) can be included in the TLB method by adding a forcing term

F to Eq. 3.156:

f(x+ ξ∆t, ξ, t+ ∆t) = f(x, ξ, t)− 1

τ

[
f(x, ξ, t)− feq(x, ξ, t)

]
+ F (4.17)

Henceforth, following an analogue procedure to the one proposed by He et al. [1998], we can

write the discrete forcing term as follows:

Fi = ραωi

[eig
c2s

]
(T − T0) (4.18)

which is included in the algorithm as an addend of the right hand side of the collision process
among fi particle distributions:

fi(x+ ei∆t, t+ ∆t) = fsi (x+ ei∆t, t+ ∆t)− 1

τ

[
fsi (x+ ei∆t, t+ ∆t)− feqi (x+ ei∆t, t+ ∆t)

]
+ Fi

gi(x+ ei∆t, t+ ∆t) = gsi (x+ ei∆t, t+ ∆t)− 1

τF

[
gsi (x+ ei∆t, t+ ∆t− geqi (x+ ei∆t, t+ ∆t)

]
(4.19)

The adopted TLB algorithm is proposed in Figure 4.3. The conversion procedure between
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real quantities and lattice quantities is similar to the one presented in Section 4.1 and it is

based on two non dimensional numbers describing a convective �ow: the Prandtl (Pr) number

and the Rayleigh (Ra) number. Pr number describes the ratio between kinematic viscosity

and thermal di�usivity:

Pr =
ν ′

k′
(4.20)

while Ra number states if the heat is primarily transferred by conduction or convection:

Ra =
g′α∆T ′L′3

ν ′k′
(4.21)

where apex ′ indicates the physical quantities. Combining in di�erent manners Eq. 4.20 with

Eq. 4.21 we obtain:

PrRa =
α′∆T ′g′L′3

k′2
and

Ra

Pr
=
α′∆T ′g′L′3

ν ′2
(4.22)

Considering that the non dimensional groups PrRa and Ra/Pr have to remain unchanged

during the conversion between physical and lattice quantities, we can write the following

relations:

PrRa =
α′∆T ′g′L′3

k′2
=
α∆TgL3

k2

Ra

Pr
=
α′∆T ′g′L′3

ν ′2
=
α∆TgL3

ν2

(4.23)

The conversion factor for length is de�ned as proposed in Section. 4.1, then following the

procedure proposed by Latt [2008] we can evaluate ν and k as follows:

ν =

√
Pr

Ra

Ct

Cx
2 and ν =

√
1

PrRa

Ct

Cx
2 (4.24)

we notice that the conversion factor for temperature does not appear in Eq. 4.24, this is

justi�ed by the adimensional nature of the coe�cient α∆t. In general the choice of conversion

factor for the temperature does not a�ect the solution since the advection-di�usion equation

is linearly dependent from the temperature [Latt, 2008].

Finally, the relaxation times can be derived as follows:

τ =
ν

cs2
+

1

2

τF =
k

cs2
+

1

2

(4.25)

If the relaxation times are close to 0.5, as stressed in Section 4.1, the algorithm becomes

unstable; in this case we need to modify Ct, changing the physical time step, or in second

choice we can change the lattice scheme resolution.

The core of the algorithm is basically the LBGK method which is performed on fi and

gi distributions. At the beginning of the simulation fi and gi distributions are initialized at

the equilibrium state trough (Eq. 4.12), then at each time step a loop over all the cells is
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performed.

During the streaming step we impose the boundary conditions. For the �uid-dynamic

problem we adopt no-slip boundaries on the upper and the bottom sides, while periodic

boundaries are adopted for left and right sides:

fsi (x+ S, t+ ∆t) = fi(x, t) (4.26)

where S is the distance between the periodic boundaries of the domain. For the thermo-

dynamic problem, we adopt periodic boundaries for left and right sides, while a �xed temper-

ature is imposed on upper and bottom sides of the domain. The �xed temperature can be

easily imposed with Dirichlet boundaries as shown in [Liu et al., 2010].
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Figure 4.3: TLB algorithm, based on the multi-distribution approach. DFs repre-
sents the distributions of the �uid-dynamic problem; GFs represents the distribu-
tions for the thermo-dynamic problem. The bounce back rule is adopted to impose
no-slip boundary conditions. Dirichlet boundary [Liu et al., 2010] conditions have
been implemented to impose �xed temperature on the upper and the bottom sides
of the domain.

Figure 4.4 shows the steady state solution of the Rayleigh-Benard convection in a 2:1

rectangular cavity. We adopt Pr = 1, which is a typical value for air or gases in general,

and we study the e�ects of Ra numbers variation on simulation results. We consider three

Ra numbers: Ra = 104, Ra = 5 · 104 and Ra = 105. The temperature results are normalized

with the formula (T −Tl)/∆T proposed by He et al. [1998]; the velocity results are normalized

on the maximum velocity.

Temperature distribution in the cavity
Ra = 10,000 Ra = 50,000 Ra = 100,000

Ra = 10,000 Ra = 50,000 Ra = 100,000

Ra = 50,000 Ra = 100,000

Temperature isolines

Velocity isolines

Ra = 10,000

Figure 4.4: Steady state solution of the Rayleigh-Benard convection obtained with
Pr = 1 and varying Ra numbers.
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Figure 4.5: Variation of the Nu number in fuction of the Ra number. The results
are compared with the solution proposed by Clever and Busse [1974].

We validate the results of the Rayleigh-Benard convection through a comparison with the

solution proposed by Clever and Busse [1974] which is considered a reference solution for

this problem. The results are expressed in terms of the Nusselt Nu number, which describes

the ratio between the convective heat transfer and the conductive heat transfer. In lattice

quantities Nu can be expressed as follows [Kao and Yang, 2007]:

Nu = 1 +
〈vy ·T 〉H
k ·∆T

(4.27)

where 〈〉 are the Macaulay brackets and H is the height of cavity.

4.3 Multiphase �ows

Multiphase �uids or mixture of immiscible �uids are very interesting problems for mechanical

applications, including the PBF process. In this section we present the Shan and Chen [1993]

method for single component multi-phase �ows. In this method a so called pseudopotential

function ψ(x, t) is introduced to simulate the interaction among neighboring particle distri-

butions. The great innovation of Shan and Chen [1994] method consists in the possibility to

simulate phase segregation without the necessity of any method to track the surface between

di�erent phases [Fyta et al., 2006].

Shan and Chen [1993] method is used to face the classical problem of a droplet wetting

on a smooth surface: this problem is very interesting for several applications and it has been

successfully studied by many authors; for example [Raiskinmäki et al., 2000] adopted the Shan

and Chen [1993] method to simulate droplets spreading on smooth and rough surfaces.

The original Shan and Chen [1993] method is based on the LBGK method presented,

except for the de�nition of the macroscopic velocity which is given by:

vsh = v +
F

2ρ
(4.28)

where the velocity v is obtained with Eq. 3.185 and F = F (x, t) is a force acting on the �uid
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which is obtained from the contribution of three type of forces [Huang et al., 2009]:

F (x, t) = F int(x, t) + F ads(x, t) + F est(x, t) (4.29)

where F int(x, t) is the particle to particle interaction force de�ned as [Shan and Chen, 1994]:

F int(x, t) = −Gψ(x)
∑
i

wiψ(x+ ei∆t, t)ei (4.30)

F ads(x, t) is the adhesion force between gas or liquid phase and the solid walls, de�ned as

follows [Benzi et al., 2006]:

F ads(x, t) = −Gψ(x)
∑
i

wiψ(ρw)s(x+ ei∆t, t)ei (4.31)

and F est(x, t) is a generic forcing term. In Eqs. 4.30 and 4.31, G is a parameter that controls

the strength of interaction and adhesion force, ψ is the pseudopotential function and ρw is

a �ctitious density assigned to the solid interfaces [Benzi et al., 2006]; �nally, s is a boolean

function which is equal to one if the position x+ ei∆t is employed by a solid particle, while

it is equal to zero if it is employed by a �uid particle.

The de�nition of the pseudopotential function is a crucial point in the method setup; in

this work we adopt the following formulation [He and Doolen, 2002]:

ψ(x, t) =

√
2(p− ρcs2)

Gc2s
(4.32)

where p is the pressure evaluated with the introduction of an Equation of State (EOS). The

most common EOS are [Yuan and Schaefer, 2006]:

� the Van der Walls (VdW) [der Waals, 1873] EOS, de�ned as follows:

p =
ρRT

1− bρ
− aρ2 (4.33)

� the Redlich-Kwong (R-K) [Redlich and Kwong, 1949] EOS, de�ned as follows

p =
ρRT

1− bρ
− aρ2√

T (1 + bρ)
(4.34)

� the Carnahan-Starling (C-S) [Carnahan and Starling, 1969] EOS, de�ned as follows:

p = ρRT
1 + c+ c2 − c3

(1− c)3
− aρ2 with c =

bρ

4
(4.35)

where a and b are the constants of the model. In Eqs. 4.33, 4.34, 4.35 the �rst addend of the

right hand side represents the repulsive term between phases, while the second addend is the

attractive term.

The algorithm adopted to face the droplet wetting problem is presented in Fig. 4.6. The
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�rst step of our algorithm consists in the initialization of the density distribution in the domain.

During the streaming step, as usual, we impose the boundary conditions. The bounce back

rule is adopted to simulate non-slip boundaries on top and bottom sides of the domain, while

periodic boundaries are imposed on the vertical walls.

The proposed algorithm is used to study the wetting of droplets on a smooth surface.

When �uid and vapor phases come in contact with a solid wall the capillary forces leads to

the thermo-dynamic equilibrium between phases. At the state of the equilibrium a typical

angle between �uid phases and the solid wall is observed. This angle is usually known as

contact angle and it is described by the Young's equation:

cos(θeq) =
σSG − σSL

σLG
(4.36)

where σ is the surface tension between solid (S), liquid (L) and gas (G) phase. Benzi et al.

[2006] showed that in Shan and Chen [1993] method the contact angle can be adjusted by

changing the density of the solid wall ρw in Eq. 4.31.
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Figure 4.6: Pseudopotential LB algorithm, based on Shan and Chen [1993] model.
The bounce back rule is used for no-slip boundaries. The Redlich-Kwong EOS is
adopted to describe the state of matter and He and Doolen [2002] formulation is
used to describe the pseudopotential function.

In Figure 4.7 an example of droplet wetting is presented. This case study has been carried

out adopting the R-K EOS, with the parameters proposed by Huang et al. [2009]. Analogous

parameters for the VdW and the C-S EOS have been proposed by Yuan and Schaefer [2006].

As detailed in Benzi et al. [2006], the parameter ρw in Eq. 4.31 can be used to vary manage

the contact angle. In particular in R-K EOS when ρw varies between the vapor and the liquid

density, the contact angle varies from 180° to 0°.

Droplet wetting on a smooth surface

LXLY

LZ

LXLY

LZ

LXLY

LZ

LXLY

LZ
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Figure 4.7: Droplet wetting on a smooth surface performed using the multiphase
Shan and Chen [1993] LB scheme, using the R-K EOS. Di�erent contact angles
obtained by varying the solid wall density ρw.

We evaluate the equilibrium contact angle θeq on the XZ plane; we underline that this

choice does not in�uence anyway the results since the problem is radial symmetric. The

obtained equilibrium contact angles are summarized in Table 4.1.
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ρw θeq

2 153.3°
3 77.2°
5 14.6°

Table 4.1: Contact angle between the droplet and the bottom wall.

The results are very similar to the ones obtained by Huang et al. [2009] in the bi-

dimensional case.

In Figure 4.8 we show an example of two droplets wetting on a smooth surface. This

example has been carried out adopting the parameters proposed by Huang et al. [2009]. We

can appreciate how, during the wetting process, cohesion force develops between the two

droplets as well as the adhesion force of the droplets with the bottom wall.

Figure 4.8: Droplet wetting on a smooth surface performed using the multiphase
Shan and Chen [1993] LB scheme, using the R-K EOS.

4.3.1 Thermal multiphase �ows

In this section we propose an example of thermal multiphase �uid �ow. The algorithm is

based on the Shan and Chen [1993] pseudopotential lattice Boltzmann method (see Figure 4.6),
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while the thermal problem has been included using the multi-distribution lattice Boltzmann

approach proposed by Guo et al. [2002b] (see Figure 4.3).

In Figure we show an example of droplet wetting on a smooth surface. In this example

we adopt the R-K EOS and the density of the bottom wall has been kept equal to 5.0.

Periodic boundaries has been imposed on the vertical walls, while no-slip boundaries have

been adopted on bottom and top walls. Higher temperature is imposed and maintained

constant on the bottom wall. Lower temperature is imposed and maintained constant on the

top wall. Periodic thermal boundaries are adopted on the vertical walls. Colored isolines

represent the temperature which is normalized with the formula (T − Tl)/∆T proposed by

He et al. [1998]. Higher temperature is equal to 100°C; lower temperature is equal to 25°C.
During the wetting process we observe that higher temperature is found in correspondence of

the zones of the domain with higher temperature and thermal conductivity. Furthermore we

notice that the contact angle is smaller than in the case of a non-thermal �ow. This result is

in accordance with the experimental results shown by Ruijter et al. [1998].

Figure 4.9: Droplet wetting on a smooth surface performed using the multiphase
Shan and Chen [1993] LB scheme, using the R-K EOS. Temperature di�erence is
imposed between bottom and top wall.

4.4 Free surface �ows

In this section we present the LB free surface model proposed by Thürey et al. [2005]. The

classical multiphase multicomponent LB methods query the computation of liquid and gas

phase; in free surface LB schemes, instead, the gas phase is neglected and only the liquid

phase evolution is calculated, reducing the computational costs. To simulate free surface

�ows, the lattice domain is divided among three parts: liquid cells, interface cells and gas
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cells. Interface cells form a closed boundary around the liquid cells, so that no liquid cell is

directly in contact with a gas cell. Initial density and mass are assigned to liquid and interface

cells while gas cells have no mass and no density. In consequence, gas cells have no distribution

functions and they are not considered during calculations. In liquid cells the mass is equal

to the density, while in interface cells the mass is lower than the density. To discern liquid,

interface and gas cells it is convenient to introduce a new variable called liquid fraction given

by:

ε(x, t) =
m(x, t)

ρ(x, t)
→


ε = 1 → Liquid cell

0 < ε < 1 → Interface cell

ε = 0 → Gas cell

(4.37)

where m(x, t) is the mass contained in the cell at position x at time t and ε is the liquid

fraction. Figure 4.10 shows an example of cells initialization. Both liquid and interface cells

have the same density. The liquid fraction is equal to the fraction of cell �lled by the liquid

and it can be easily estimated by approximating the real boundary with straight adjacent

lines. The precision of this procedure is dependent from the lattice mesh resolution.

Liquid cell

Interface cell

Gas cell

Real droplet 

boundary

Intersection 

point

Approximated 

boundary

Filled part of 

the cell

Figure 4.10: Example of cell initialization and procedure to calculate the liquid
fraction on the interface cells.

The interface movement is tracked by the calculation of the mass exchange between ad-

jacent cells, similarly to VOF (volume of �uid) method. The probability density functions

correspond to a certain number of particles allocated at each cell, so the mass exchange can

be performed directly at the streaming step. Only liquid and interface cells can exchange mass

one to each other, no mass exchange between interface and gas cells is allowed. The mass ex-

change between liquid cells or between an interface and a liquid cell is basically described by

the di�erence between in-coming and out-coming distribution functions:

∆ms
i (x, t) = fir(x− ei∆t, t−∆t)− fi(x, t−∆t) (4.38)

where apex s has been used to stress the fact that mass exchange is computed while streaming

step takes place. The mass exchange among two interface cells has to take into account the

average �uid fraction which represents the area of �uid interface between two cells:

∆ms
i (x, t) = fir(x− ei∆t, t−∆t)− fi(x, t−∆t)

[
ε(x− ei∆t, t−∆t) + ε(x, t−∆t)

]
2

(4.39)
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In Figure 4.11 the mass exchange process among adiacent cells is presented in a D2Q9 lattice

scheme. It is important to underline that Eqs. 4.38 and 4.40 are completely symmetric and

cc
Considered cell

Neighboring cells

Mass exchange 

LIQUID-INTERFACE

Mass exchange 

INTERFACE-INTERFACE

Real interface

Figure 4.11: Mass exchange process among an interface cell and the neighboring
liquid and interface cells.

therefore mass is automatically conserved in the whole domain:

ms(x, t) = m(x, t−∆t) +
∑
i

∆ms
i (x, t) (4.40)

As above mentioned, Eq. 4.38 is valid for liquid/interface and liquid/liquid mass exchange,

although, it is possible to simplify calculations considering that in liquid cells the mass is equal

to the density and so the streaming of particle distributions among liquid cells represents the

mass exchange. With this considerations it is possible to calculate only the mass exchange

between liquid/interface and interface/interface cells; however it is necessary to identify the

next-to-interface liquid cells.

An important relevant point in free surface �ows, is how to impose boundary conditions

on the interface. The streaming process between an interface and an empty cell, in fact,

cannot be directly computed because in empty cells the particle distributions are not de�ned

and they need to be reconstructed. Following the approach proposed by Körner [2008], the

reconstructed distribution functions are given by:

fsi (x, t) = feqir (pE ,v) + feqi (pE ,v)− fi(x, t−∆t) (4.41)

where the equilibrium distributions are calculated with Eq. 4.12 and pE is the external pressure

surrounding the interface layer. The external pressure is de�ned as follows:

pE =
1

3
ρE − kσ (4.42)

where k is the curvature of the interface and σ is surface energy. Eq. 4.41 is used not only

to reconstruct the distribution functions coming from the empty cells, but also to reconstruct

the distribution functions coming from the directions de�ned by:

n · eir > 0 (4.43)

where n is the normal at the interface in the considered cell. This correction is adopted
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to prevent the asymmetry rising on the interface because of the number of the unknown

incoming distributions is, generally smaller than the known ones [Körner et al., 2005]. Figure

4.12 shows the streaming process on an interface cell. To state which distribution functions

BEFORE STREAMING

cc

Considered cell

Neighboring cells

Real interface

Normal to interface

Incoming DFs

Reconstructed DFs

AFTER STREAMING

Not considered DFs

cc

Figure 4.12: Example streaming process on an interface cell. Black arrows rep-
resent the known distribution functions incoming from liquid cells. Red arrows
represent the reconstructed distribution functions coming from neighboring inter-
face and empty cells.

need to be reconstructed it is necessary to calculate the normal in the considered interface

cell. In literature there are several methods to perform the normal calculation; the simplest

one is to de�ne n as a kind of average of the liquid fraction of the neighboring cells [Thürey

et al., 2005]:

n(xk,l) =
1

2

[
ε(xk+1,l)− ε(xk−1,l)
ε(xk,l+1)− ε(xk,l−1)

]
(4.44)

where (k, l) are the coordinates of the considered cell. A more accurate scheme has been

proposed by Thies [2005]. In this scheme, the template sphere method is adopted to evaluate

both the normal at the interface and the curvature. The normal at the interface is calculated

taking into account the �rst two layers of neighboring cells (25 cells) and can be evaluated

through the following formula:

ñ(xk,l) =

2∑
s=−2

2∑
r=−2

(1− ε(xk+s,l+r))
xk+s,l+r
|xk+s,l+r|

n(xk,l) =
ñ(xk,l)

|ñ(xk,l)|

(4.45)

After streaming, the collision can take place for both interface and liquid cells. The inclusion

of volume forces (e.g. gravity) is performed like in VOF, weighting the force with the liquid

fraction:

fi(x, t) = fsi (x, t)− 1

τ

[
fsi (x, t)− feqi (x, t)

]
+ ε(x)wiρ(x, t)ei · g (4.46)

At the end of the loop over all cells, it is necessary to check if the liquid fraction of the interface



4.4. Free surface �ows 114

cells is still between 0 and 1; otherwise cell conversion is performed as follows:

ε(x, t) =
ms(x, t)

ρ(x, t)
> 1 → cell �lled

ε(x, t) =
ms(x, t)

ρ(x, t)
< 1 → cell emptied

(4.47)

The conversion of the cells is a very delicate step of the algorithm because it allows the

interface movement and because during cells conversion the mass must be conserved and no

liquid cell has to be in contact with gas cell (i.e. the interface has to be closed around the

liquid cells). For de�nition, in liquid cells the mass must be equal to the density, while in

empty cells the mass has to be equal to zero, however, normally, a mass excess rise during

the conversion process. The part of mass exceeding the density in �lled cells and the negative

mass in emptied ones must be distributed among the surrounding interface and liquid cells.

The simplest way to reallocate exceeding and negative mass is to divide it equally among the

cells, but this approach can be source of instability. A more accurate solution [Thürey et al.,

2005] is to redistribute the mass among surrounding cells, according to the normal direction:

m(x+ ei) = m(x+ ei) +mex ϕi
ϕtotal

(4.48)

where ϕi is given by:

ϕi =

{
n · ei if n · ei > 0

0 if n · ei ≤ 0
for �lled cells

ϕi =

{
−n · ei if n · ei < 0

0 if n · ei ≥ 0
for emptied cells

(4.49)

and ϕtotal is the sum of ϕi. During cells conversion, many problems may rise. More details

about those topics are provided by Thürey et al. [2005] and Körner et al. [2005]. In Figure

4.15 the adopted free surface LB algorithm is presented.

With the proposed algorithm we simulate the dynamic wetting of a droplet on a smooth

surface. In case of dynamic wetting, Young's equation can be rewritten as follows:

Fx = σSG − σSL − σLG cos(θdyn) (4.50)

Figure 4.13: Contact angle in dynamic conditions.
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Inserting Eq. 4.50 in Eq. 4.36, we obtain:

Fx = σLG cos(θdyn)− σLG cos(θeq) (4.51)

meaning that force Fx vanishes when θdyn = θeq. In order to describe a dynamic wetting

condition we need to take into account the wetting force Fx. In this work we follow the

procedure proposed by Attar and Körner [2009].
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Figure 4.14: Free surface LB algorithm, based on [Thürey et al., 2005] model. Mass
exchange is calculated only for interface and �uid neighboring cells. Classic bounce
back scheme is adopted to simulate no slip boundaries.

In Figure we show the results of a dynamic droplet wetting on smooth surface. In this sim-

ulation gravity is considered and it is equal to 0.00005 lu/tu2 (where dimensions are expressed

in lattice units); surface tension is kept equal to 0.002 mu/tu2.
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Figure 4.15: Dynamic wetting of a droplet on a smooth surface.

We can observe that the dynamic nature of the contact angle is evident during the droplet

spreading on the smooth surface.

4.5 Phase change

A crucial point in the simulation of the PBF process is the phase change treatment. There are

basically two approaches to simulate the solid-liquid phase-change: the phase-�eld method and

the enthalpy-based method. Miller and Succi [2002] proposed a phase-�eld based LB method

to simulate the crystal growth from the melt pool. This method uses a chemical variable to

de�ne melting and solidi�cation of the particles. In enthalpy-based method, instead, the solid-

liquid interface is traced by using the total entropy variation. Chakraborty and Chatterjee

[2007] proposed an enthalpy-based LB method for solid-liquid phase change in convective �ows.

Because of the non linear behavior of the latent heat, the enthalpy-based LB methods need,

generally, an iteration step to solve the AD equation. In this work we adopt the enthalpy-

based LB model proposed by Huang et al. [2013]. This approach allows to avoid iteration

steps [Chatterjee, 2009] or to solve a system of equations at each lattice cell [Eshraghi and

Felicelli, 2012], to track the solid-liquid interface.

In phase change problems a heat source causes the melting of the material. The heat

source can be described as follows:

Φ = −∂(ρLslψ)

∂t
(4.52)

where Lsl is the latent heat of solid-liquid phase change and ψ is the liquid fraction. Advection

di�usion equation can be rewritten as follows:

∂(ρH)

∂t
+∇ · (ρcpTv) = ∇ · (k∇T ) (4.53)

where H is the total enthalpy de�ned as:

H = cpT + ψLsl (4.54)

The phase-change LB method is a natural extension of the TLB model presented in Section
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4.2; however, it is convenient to use the enthalpy in place of the temperature because the

temperature is not continuously di�erentiable in time [Alexiades, 1992]. The change of variable

is stressed by the usage of hi in place of gi and Eq. 4.9 is rewritten as follows:

hi(x+ ei∆t, t+ ∆t) = hi(x, t)−
1

τF

[
hi(x, t)− heqi (x, t)

]
+ Φi i = 1, . . . , n (4.55)

The macroscopic enthalpy of each cell is given by:

H =
n∑
i

hi (4.56)

and the equilibrium distributions are written as follows:h
eq
i = H − cpT + wicpT

(
1− v2

2c2s

)
i = a0

heqi = wiρ
[
1 + ei ·v

cs2
− v2

2cs2
+ (ei ·v)2

2cs4

]
i 6= a0

(4.57)

where a0 is the i-th direction associated to the zero velocity. The temperature is derived from

the enthalpy as follows:

T =


H/cp T < Ts

Ts + H−Hs
Hl−Hs (Tl − Ts) Ts ≤ T ≤ Tl

Tl + (H −Hl)/cp T > Tl

(4.58)

where Ts is the solidus temperature, Tl is the liquidus temperature, Hs andHl are the enthalpy

values related to the solid and the liquidus temperature respectively. The limit Ts ≤ T ≤
Tl physically means that the phase-change happens at a constant temperature Tm which is

called melting temperature. With the above described procedure, the phase change can be

obtained without performing any iteration step. The last obstacle to face is the description

of the moving boundary. We adopt the immersed moving boundary scheme proposed by

Noble and Torczynski [1998] which was veri�ed by Strack and Cook [2007] to be accurate and

computationally e�cient. The solid-liquid interface is tracked with the liquid fraction. The

liquid fraction varies from 0 (solid) to 1 (liquid). The lattice cells in which 0 < ψ < 1 represent

the moving boundary. To track the boundary movement, the collision term of �uid-dynamic

distributions is modi�ed to take into account the liquid fraction:

fi(x, t) = f si (x, t)− 1−B
τ

[
f si (x, t)− feqi (x, t)

]
+ Fi +BΩi (4.59)

where Fi is the forcing term and B is de�ned as follows:

B =
(1− ψ)(τF − 0.5)

ψ + τF − 0.5
(4.60)

The additive collision term Ωi is given by:

Ωi = fsir(x, t)− f
s
i (x, t) + feqi (ρ,vs)− feqir (ρ,v) (4.61)
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where vs is the velocity of the solid part. A typical problem to test the phase-change problem

is the melting by convection in a cavity under a constant heat �ux. The algorithm adopted

to solve the problem is presented in Figure 4.17 . To ensure the stability of the method, for

�uid and thermal boundary conditions, we adopt the non-equilibrium extrapolation scheme

proposed by Zhao-Li et al. [2002]: the no-slip boundaries are decomposed into an equilibrium

term and a non equilibrium term:

fsi (x, t) = feqi (x, t) + fneqi (x, t)

hsi (x, t) = heqi (x, t) + hneqi (x, t)
(4.62)

where feqi and heqi distributions are derived trough Eq. 4.57, while fneqi and hneqi are obtained

via extrapolation from the neighboring cells [Huang et al., 2013]. In �gure 4.17 the solid-liquid

phase change LB algorithm is presented. The proposed algorithm is used to investigate the

melting process in a square cavity. The boundary conditions of the problem are presented in

Figure 4.16. A high temperature (Thigh) is imposed on the right side of the domain, while

a low temperature (Tlow) is maintained on the left side of the domain. Upper and bottom

sides are assumed to be adiabatic [Tang et al., 2005]. In solid-liquid phase change three non

dimensional parameters are considered: Pr, Ra and the Stefan (Ste) number which is de�ned

as follows:

Ste =
cp(Thigh − Tm)

Lsl
(4.63)

where Tm is the melting temperature of the considered material. In our simulation we have

adopted Ra = 1.0E4, Pr = 0.01 and Ste = 0.01. This simulation has been performed on a

150 x 150 lu grid. The temperature has been normalized with the following formula:

T ∗ =
T − Tm

Thigh − Tm
(4.64)

where Thigh is the imposed temperature on the left wall of the domain. In analogous

manner the time can be normalized with the Fourier (Fo) number which is de�ned as follows:

Fo =
k · t

Ly
(4.65)
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Figure 4.16: Solid-Liquid phase-change
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Figure 4.16 refers to the melting process at Fo = 30.
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Figure 4.17: Solid-Liquid phase-change LB algorithm, based on Shan and Chen
[1993] model. The bounce back rule is used for no-slip boundaries. The Redlich-
Kwong EOS is adopted to describe the state of matter and the He and Doolen
[2002] formulation is used to describe the pseudopotential function.

4.6 Conclusion and perspectives

In this section we have adopted the lattice Boltzmann method to solve some interesting

thermo-�uid dynamic problems. First we have solved two classic problems, i.e., the lid driven
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cavity and the Rayleigh-Benard convection, then we moved to more complicated problems

such as multiphase and free-surface �ows. Finally we studied the melting problem of a single

component �uid. The treated problems are very interesting from AM point of view because

both wetting, temperature evolution, and phase change occur during powder melting. The

next step of our research will be to include the phase change algorithm within the multiphase

and the free surface algorithm so to be able to simulate the thermo-�uid dynamic evolution

of droplet melting in PBF process.



Chapter 5

Finite Element Simulation of Powder

Bed Fusion

The lattice Boltzmann simulations of PBF are a very powerful instrument to investigate the

melt pool evolution and the e�ects of the printing parameters on the stability of the melt pool

and on the microscopic properties of the material. Although, as discussed in Section 2.4.2,

they are not a reasonable choice in order to simulate an entire component, because they would

require huge computational e�orts.

To overcome this obstacle, many authors adopted the �nite element method (FEM) to

simulate the PBF process at di�erent scale of analysis. Nevertheless FEM approach has the

strong simpli�cation to assume the powder bed as a continuum domain and to neglect the melt

pool dynamics, it is a very good solution to simulate entire structural components; moreover,

FE analysis can be adopted also to investigate the local interactions between the heat source

and the powder bed.

5.1 Simulation approach

In this Section, using Abaqus, we develop a FE framework to simulate the PBF process at the

powder and at the component scale level. As brie�y mentioned in Section 2.4.4, since 2016

Abaqus started to develop a tool for SLM process simulation. This tool is in a very embryonic

state, without documentation and without a graphic interface. The simulation of SLM process

can be performed trough an uncoupled approach: �rst a thermal analysis is carried out to

evaluate the time evolution of the temperature �eld, then the results are used as input for a

mechanical analysis to evaluate stress distribution and deformations. In order to respect the

physical process, two basic ingredients are needed:

� Simulation of the powder bed deposition trough sequential element activation;

� Simulation of the heat source movement on activated elements to reproduce the laser

scan path.

In our simulation approach, we divide the input data into three input groups:

� Event Series. In SLM we de�ne two event series: powder deposition and laser scan

simulation;

121
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� Parameter Table. Here we de�ne the needed input parameters associated to each

event series;

� Table Collection. Here we assign the values to each previously de�ned parameter.

In Figure 5.1 we show the Abaqus code used to de�ne the necessary input data.

* EVENT SERIES TYPE, Fields=1,  NAME=Roller_On_And_Off, "On and off",    Unitless

* EVENT SERIES TYPE, Fields=1,  NAME=Power_Magnitude,   "Power", ML2T03

*EVENT SERIES, Name=Roller_Motion,  Type=Roller_On_And_Off,  Time=Total,    input=Roller.inp 

*EVENT SERIES, Name=Laser_Path, Type=Power_Magnitude, Time=Total,    input=Power.inp

EVENT SERIES

Number of fields contained in this Event Series Type of information and measure unit

* PARAMETER TABLE TYPE,  NAME=Roller_Specs, PARAMETERS = 2

STRING, "Roller Event Series"

FLOAT,  "Roller Heigth"

* PARAMETER TABLE TYPE,  NAME=Laser_Specs, PARAMETERS = 6

STRING, "Laser Event Series"

FLOAT, "Laser Spot radius"

FLOAT, "Penetration Depth"

STRING, "Intensity Distr" 

STRING, "Depth Decay"

FLOAT, "Ellipse Factor"

PARAMETER TABLES

Input files associated to 

each Even Series

“Type” must recall the name of the Event Series type, 

to read correctly the data of the input files

Number of variables 

contained in this table

Type of variable Quantity associated to the variable

TABLES COLLECTION

* TABLE COLLECTION, NAME=Material_Input   

* PARAMETER TABLE,  TYPE=Roller_Specs

Roller_Motion, 

0.05

* TABLE COLLECTION, NAME=Energy_Input

* PARAMETER TABLE,  TYPE=Laser_Specs

Laser_Path,

0.06,

0.10,

Goldak3Param or Gaussian_Distribution,

Exponential_Decay, 

1.0

“Type” must recall the name of the Parameter Table type, 

to read correctly the data of the input variables

The string recalls the Event Series associated file 

Value associated to the corresponding variable defined in the associated parameter table

Figure 5.1: Example of the Abaqus code necessary to de�ne the input data for the
SLM simulation.

The Event Series reproduce the physical events during the printing process. In case of

SLM, we need two event series: Roller_Motion in which we de�ne the roller movements on the
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building plate and we sequentially activate the elements to reproduce the powder deposition;

and the Laser_Path in which we de�ne the laser path of the layer of elements representing

the powder layer.

The Parameter Tables collect all the necessary parameters to perform both the sequential

element activation and the heat source interaction with the elements. We de�ne two di�er-

ent tables: the former contains the variables necessary to perform the Roller_Motion; the

latter contains all the variables needed to model the laser heat source and to simulate the

Laser_Path.

The Table Collection is used to assign, to each variable contained in the parameter table,

the corresponding value. The input argument can be a �oating number or a string; in this

last case, the string can be the name of the associated event series or a particular string to

activate prede�ned plugin functions.

In the next sections we analyze in detail each event series following the real printing pro-

cess.

5.1.1 Roller_Motion event series and sequential element activation

The sequential element activation reproduces the powder deposition on the building plate. Its

de�nition must be in accordance with the physical printing process. As shown in Figure 2.1,

usually the powder is deposited on the building plate by a roller which moves along X or Y

direction. In our simulation approach the roller replaced by a marching rectangle which moves

following a prede�ned path. When the center of an element falls within the ideal volume

covered by the marching rectangle, then the element is activated.

In order to simulate a real printing process, the typical element height must be equal (or

a sub-multiple) to the powder layer height: in this case we refer to this meshing strategy as

�ne. Although, this kind of meshing strategy is not so far eligible to simulate an entire SLmed

part, in fact, as discussed in Section 2.4.2, the computational costs strongly increase. In oder

to simulate an entire SLMed functional component, it is usual to assume the typical element

height as a multiple (10 to 50 times) of the powder layer height: in this case we refer to this

meshing strategy as coarse. The element activation process remains basically the same in both

cases, but the heat source modeling is signi�cantly di�erent, as discussed in Section 5.1.2.

To make easier the comprehension of the element activation process, we consider a very

simple benchmark of a cube with size 10 mm centered on a square building plate of size 100

mm, we aim to simulate with a coarse meshing strategy (Figure 5.2)
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10 mm10 mm

10 mm

SLMed PART

BUILDING PLATE

(a) (b)

Figure 5.2: Example of a simple cubic component used to explain the sequential
activation procedure.

We consider the roller moving on Y direction, moreover we assume the base of the of the

marching rectangle to be in�nite, while the rectangle height (roller height) is equal to the

typical element height (0.5 mm). Accordingly, the Roller.inp �le, containing the instructions

to perform the sequential element activation is arranged as in Table 5.1.

T X Y Z Roller ON/OFF
[s] [mm] [mm] [mm] �

0.000 0 -50 0.5 1
10.000 0 +50 0.5 0

16.394 0 -50 1.0 1
26.394 0 +50 1.0 0
. . . . . . . . . . . . . . .

Table 5.1: Scheme of the input �le for the sequential element activation. Roller
ON/OFF is a bit function which states if the marching rectangle starts to move (1)
or it is stopped (0).

The sequential element activation is shown in Figure 5.3.
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t = 4.5 s t = 4.75 s(a) (b) t = 5.00 s (c)

t = 5.25 s (d) t = 5.50 s (d) t = 328 s (e)

Marching 
Rectangle

Figure 5.3: Example of sequential element activation on a simple geometry.

We observe that there is a gap between the �nal time instant of the �rst powder deposition

and the beginning of the second powder deposition. During this period the laser selectively

melts the powder. The laser scan simulation is performed trough another event series.

5.1.2 Laser_path event series and laser scan strategy

The thermal force strategy must follow exactly the real laser path. On the market there are

basically two types of lasers used in for the SLM printing process: (i) pulsed lasers and (ii)

continuum lasers. The former melts the powder trough a series of high frequency impulses,

the latter melts the powder trough a continuum laser track. In our simulation, the laser path

is taken into account trough the input �le Laser.inp. This �le contains the coordinates of

the laser heat source and the heat source power at each time step. A common sequence of

instructions to manage the heat source movement is presented in Table 5.2.

T X Y Z Laser Power
[s] [mm] [mm] [mm] [W]

10.001 5 5 0.25 400
10.003 4.95 5 0.25 0
10.009 4.95 4.95 0.25 400
10.014 4.90 4.95 0.25 0
. . . . . . . . . . . . . . .

Table 5.2: Scheme of the input �le for the heat source movement.
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This case simulates a pulsed laser heat source strategy, in fact the laser power is shifted

in an alternate way from on to o� status; this condition can be easily adapted to simulate

a continuous laser heat sources. In Fig. 5.4, we show an idealized example of a simple scan

strategy.

Figure 5.4: Example of an idealized scan strategy starting at the end of the depo-
sition process (Figure 5.3 (d)).

In Section 5.1.1, we have discussed about the possibility of using a �ne and a coarse

meshing strategy. The adopted meshing strategy in�uences not only the sequential element

activation, but also the Laser.inp �le. In case of a �ne mesh, each activated layer of elements

corresponds to a physical layer of powder, therefore there is a perfect alternation of deposition

and heat source movement. In case of a coarse mesh, instead, since a layer of elements

corresponds to several layers of powder, after each deposition step we have to repeat several

times the heat source movement on the deposited layer to simulate the correct number of scan

paths.

5.1.3 Roller_motion & Laser_path �les generation

The previous section showed that the correct de�nition of Roller.inp and Laser.inp �les is

fundamental to simulate with high �delity the SLM process. The instructions of the real

printing process are usually contained in a �le referred as G-Code. This �les contains all

the informations about the laser path, but also many other informations like the chamber

temperature, the building plate temperature, and all the parameters to manage the chamber

inertization.

Actually, we have not at our disposal slicing softwares dedicated to SLM solutions, therefore

we consider the slicing softwares commonly used for FDM printers. In this case the path

contained in the G-Code �le represents the �lament deposition path and, for our application,

we assume it to be the laser path on the powder bed. We remark that this choice is not fully

consistent with the real printing process because the real laser path is typically very scattered,

while the deposition process in FDM printers is more continuous.

The information needed to describe the laser path are:

� Laser position at each time step;
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� Layer thickness;

� Laser power;

� Deposition process time.

The needed informations are directly extracted from the G-Code by means of a Matlab

script. In correspondence of the end of each layer, a time gap is imposed to take into account

the deposition process. In Figure 5.5 we show an example of the G-code �le rielaborated

trough our Matlab code

Figure 5.5: Example of a G-code �le rielaborated with our Matlab script to generate
the input �les for SLM printing process simulation.

In Figure 5.6 we show part of the instruction of Roller.inp and Laser.inp input �les gen-

erated from the rielaboration of the G-Code (Figure 5.5) by means of the Matlab �le.
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[T] [X] [Y]         [Z]    [On/Off]

0.00000,     0.000,   -11.700,     0.040, 1

3.00000,     0.000,    11.700,     0.040, 0

5.54988,     0.000,   -11.700,     0.080, 1

8.58880,     0.000,    11.700,     0.080, 0

11.12129,    0.000,   -11.700,     0.120, 1

14.16116,    0.000,    11.700,     0.120, 0

Roller.inp

[T] [X] [Y]         [Z]    [Power]

3.00000,   -39.084,    -9.084,     0.040, 2.000E+05

3.00690,   -25.292,    -9.084,     0.040, 2.000E+05

3.00953,   -20.990,    -6.029,     0.040, 2.000E+05

…………………, …………………,    …………………,    ……………, ………………………,

5.54966,    38.362,    -8.754,     0.040, 2.000E+05

5.54980,    38.633,    -8.754,     0.040, 2.000E+05

5.54988,    38.754,    -8.633,     0.040, 0.000E+00

Laser.inp
Continuous 
Laser 

Time gap between two 
deposition processes

Figure 5.6: Roller.inp and Laser.inp input �les rielaborated from the G-Code (Fig-
ure 5.5) by means of the Matlab code.

5.1.4 General simulation framework

In previous Sections we have described the working principle of Abaqus AM plugin for SLM

process simulation. In this Section we explain the general simulation framework we have

developed to simulated the SLM process of real components (Figure 5.7).

Figure 5.7: General framework adopted for SLM process simulation.

First, a model of the part is realized through a CAD software, then a triangular mesh of the

external surface is generated (STL �le) and used as input for the slicing software (e.g., Slic3r

or KISSlicer). The G-Code �le is rielaborated by means of the Matlab �le; then Roller.inp

and Laser.inp �les are generated. Those �les are used to perform the SLM process simulation

of the part. The �nite element simulation of SLM is splitted in two parts:



5.1. Simulation approach 129

� Thermal Analysis. Used to evaluate the temperature �eld evolution during the sequential

element activation and the heat source movement;

� Mechanical Analysis. The temperature �eld is used as input for the mechanical analysis

and residual stress �eld evolution and part distortions are evaluated.

In the following Section we describe in detail the thermal and the mechanical analysis.

5.1.5 Thermal analysis

In SLM process the laser beam heats the powder bed exchanging heat and melting the powder;

the absorbed heat is then dissipated trough convection and radiation with the surrounding

gas. The problem can be described by the well known heat conduction-convection equation:

ρc
∂T

∂t
= ∇ · (k∇T ) + q (5.1)

where ρ = ρ(T ) is the material density, c = c(T ) is the speci�c heat capacity, k = k(T ) is

the thermal conductivity, q is the heat source, and t is the time. The SLM printing process

takes place in a chamber �lled of an inert gas at constant temperature; moreover the deposited

powder are usually preheated to facilitate the melting process. The initial condition of the

problem is given by:

T (x, 0) = Tp x ∈ Dp (5.2a)

T (x, 0) = Tc x ∈ Dc (5.2b)

where x = (x, y, z) is the position, Dp is the powder packing, Dc is the building chamber, while

Tp and Tc are the powder preheating temperature and the chamber temperature, respectively.

To avoid part detachments during the printing process it is usual to adopt a �xed temperature

(higher than the chamber temperature) on the building plate Dp; to simulate this occurrence

we impose the following Dirichlet boundary condition:

T (x, t) = Tp x ∈ Dp (5.3)

where Dp is the building plate and Tp is the imposed building plate temperature. The Neu-

mann boundary conditions of the problem are de�ned as follows [Schoinochoritis et al., 2017]:

k
∂T

∂n
+ qc + qr = 0 x ∈ S(t) (5.4)

where n is the vector normal to the surface, S(t) is the external surface (changing during

element activation), while qc and qr are the heat �uxes due to convection and radiation,

respectively, de�ned as:

qc = h(T − Tc) (5.5a)

qr = Kb(T
4 − T 4

c )ε (5.5b)

where h = h(T ) is the heat transfer coe�cient, Kb represents the Stefan-Boltzmann constant,

and ε is the emissivity.
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A very important aspect in the thermal analysis is, for sure, the laser beam modeling. In

the next section we illustrate the adopted laser beam model.

Laser beam and phase change model

The most adopted laser beam model is the Gaussian model. It assumes a symmetrical energy

distribution in which the maximum irradiance is in correspondence of the center of the beam,

then it vanishes in exponential way. The irradiance of a Gaussian beam is given by:

I(r) = I0 exp−Ccr
2

(5.6)

where I0 is the maximum irradiance, Cc is the contraction coe�cient and r2 = x2 + y2 is the

distance of a point (x, y) from the center of the beam. The radius R of the laser beam is the

distance where I(R) = I0 exp−2; therefore, in this case, Cc = 2R2. Accordingly, Eq. 5.6 can

be rewritten as follows:

I(r) = I0 exp−
2r2

R2 (5.7)

Figure 5.8: Laser beam: Gaussian distribution model.

The laser beam power is given by:

P = 2π

∫ +∞

0
I(r)dr (5.8)

Finally, inserting Eq. 5.7 in Eq. 5.8, we can derive the maximum irradiance in function of the

laser beam power:

I0 =
2P

πR2
(5.9)

and consequently, Eq. 5.7 can be rewritten as follows:

I(r) =
2P

πR2
exp−

2r2

R2 (5.10)

Eq.5.10 allows to predict the distribution of the laser power on the powder surface; although

only a portion of this power is absorbed by the powder, part of the power, instead, is re�ected,



5.1. Simulation approach 131

as discussed in Section 2.3.2. To take into account only the absorbed laser power, Dai and

L.Shaw [2005] multiplied the right hand side of Eq. 5.10 for the absorption coe�cient α:

I(r) =
2Pα

πR2
exp−

2r2

R2 (5.11)

Finally, Roberts [2012] integrated the Gaussian irradiance on the beam radius R and

obtained an equivalent heat �ux for Eq. 5.11:

q = 0.864
Pα

πR2
(5.12)

Another solution for modeling the laser beam was proposed by Goldak et al. [1984] who

modeled the laser beam as a Gaussian distribution over an ellipsoid with semi-axes a, b, c

in which the maximum irradiance I0 is located in the center of the ellipse and the irradiance

I(r) falls to 0.05I0 in coeespondence of the ellipsoidal surface. The spatial heat source of the

so-called Goldak distribution is de�ned as follows:

q(x, y, z) =
6
√

6αP

π
√
πabc

exp−3
(
x2

a2
+ y2

b2
+ z2

c2

)
(5.13)

In this thesis we have adopted the Goldak model (Eq. 5.13) to describe the laser heat

source, and we have assumed the eccentricity equal to 1.05.

The last aspect we need to treat is the solid liquid phase change in our simulation frame-

work. In this thesis we have adopted the equivalent heat capacity model described in Section

2.3.3.

5.1.6 Mechanical analysis

In this work we face the simulation of parts realized with Ti6Al4V, which is a metal alloy

that exhibits a typical thermo-plastic behavior. In the incremental theory of plasticity, when

assuming a small strain regime, it is usual to introduce the following additive decomposition:

ε = εe + εp + εT (5.14)

where ε is the total strain, while εe, εp and εT are the elastic, plastic and thermal strain

components, respectively, de�ned in Voigt notation as follows.

εe = D−1σ, with D = − ν
E

(1⊗ 1) +
1 + ν

E
I

εp = λσdev

εT = α(T − T0)1

(5.15)

where σ is the stress (expressed in Voigt notation), E = E(T ) is the Young's modulus, ν

is the Poisson's ratio, α = α(T ) is the thermal expansion coe�cient, I is the identity, 1 =

{1, 1, 1, 0, 0, 0}T, and σdev represents the deviatoric part of the stress tensor:

σdev = σ − 1

3
tr(σ)1 (5.16)
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λ is the plastic �ow factor de�ned as follows:

λ = 0 if σvm < σp

λ > 0 if σvm > σp
(5.17)

where σp = σp(T ) is the yield stress and σvm is the e�ective Von Mises stress de�ned as

follows:

σvm =

√
3

2
(σdev)Tσdev (5.18)

5.1.7 Material properties

In this thesis we consider SLMed Ti6Al4v parts. As discussed in Section 2.2, titanium com-

posites are indicated for medical applications due to their bio-compatibility and their good

mechanical properties. The melting process signi�cantly a�ects the physical and the mechan-

ical properties of the re-solidi�ed material.

Physical properties of Ti6Al4V

In Table 5.3 we show the temperature dependence of the physical properties of Ti6Al4V

powder [Fu and Guo, 2014].

Temperature Density Specific Heat Thermal Conductivity
[Kg/m3] [J/(Kg · °C)] [W/(m · °C)]

20 2652 546 0.20
100 2735 562 1.24
500 3150 641 6.43
1000 3670 651 12.91
1600 4189 750 19.40
1650 4189 759 28.30
1660 4189 831 32.10
1900 4189 831 33.50
2800 4189 831 33.50

Table 5.3: Thermal properties of Ti6Al4V powder with increasing temperature.

In Table 5.4 we report the physical properties commons to the material at powder and

solid state [Fu and Guo, 2014].

Solidus Temperature (Ts) 1605 °C
Liquidus Temperature (Tl) 1650 °C
Latent Heat of fusion (Ls) 285 kJ/Kg

Table 5.4: Thermal properties of Ti6Al4V powder with increasing temperature.
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In Table 5.5 we show the temperature dependence of the physical properties of Ti6Al4V

solid alloy [Mills, 2002].

Temperature Density Specific Heat Thermal Conductivity
[Kg/m3] [J/(Kg · °C)] [W/(m · °C)]

20 4420 546 7.00
100 4406 562 7.45
500 4350 641 12.60
1000 4282 651 19.30
1600 4198 750 27.00
1650 4189 759 28.40
1660 3920 831 33.40
1900 3750 831 34.60
2800 3138 831 34.60

Table 5.5: Thermal properties of Ti6Al4V solid alloy with increasing temperature.

The last physical parameters needed for the simulation are the emissivity ε and the absorp-

tion coe�cient α. The measurement of the emissivity is a�ected by a high rate of uncertainty.

In this study we assume a constant value of emissivity ε = 0.33 [Hagqvist et al., 2013], both for

the powder and for the solid alloy. The absorption coe�cient is dependent on the wavelength

λ of the laser beam; according to Tolochko et al. [2000], with λ = 1070µm (Nd:YAG laser

adopted in almost all SLM printers) the absorption coe�cient of Ti6Al4V is the same for the

material at the powder and at the solid state: α = 0.77. Finally the heat convection coe�cient

(or �lm coe�cient) is estimated equal to 27 W/(m2C), considering a low �ow rate (30 l/h) of

Argon in the build chamber.

Mechanical properties of Ti6Al4V

In Table 5.6 we show the temperature dependence of the mechanical properties of Ti6Al4V

solid alloy [Mills, 2002].

Temperature Young's modulus Yield stress Expansion coe�cient
[GPa] [MPa] [10−6/°C]

25 114 1061 8.2
100 109 934 9.2
200 100 743 9.9
315 93 668 10.5
430 84 616 11.0
540 57 478 11.4
1650 0.1 1 20.1
2800 0.1 1 20.1

Table 5.6: Mechanical properties of Ti6Al4V solid alloy with increasing tempera-
ture.
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5.2 Simulation results

In this Section we use the described simulation framework to reproduce the SLM process

of simple geometry components. In the following section, we investigate the e�ects several

printing process on thermal and residual stresses �elds, using a �ne meshing strategy. In

Section 5.2.2, we adopt a coarse meshing strategy to simulate entire SLMed parts.

5.2.1 Fine mesh simulations

In Figure 5.9 we show the investigated model and the adopted meshing strategy. The model is

a simple square base parallelepiped with base dimensions 1 x 1 mm. The model is constituted

of 2 layers of powder of 50 µm. We adopt a cubic meshing strategy with element size equal

to 25 µm, such that the physical layer is represented of two elements in height.

a) b)

Figure 5.9: Parallelepiped part: a) geometry, b) meshing strategy.

In Fig. 5.10 we show the laser scan path used for each layer. The printing process starts

with the external perimeters, then it proceeds with the in�ll.

a) b)

First layer deposition

Second layer deposition

First Laser scan

Second Laser scan

c) d)

Infill
Perimeters

Infill
Perimeters

Figure 5.10: Simulation scheme adopted for the parallelepiped model.

In the following sections, we investigate the e�ects of (i) laser parameters, (ii) scan strategy,

and (iii) printer variables on temperature and residual stress �elds. In Table 5.7 we report
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in detail the values of the investigated parameters, compatible with a commercial 3D metal

printer.

Parameter Value 1 Value 2 Value 3

L
A
S
E
R

Power 100 W 200 W 400 W

Radius
textddddddd

50 µm 75 µm 100 µm

S
C
A
N

Overlap 20 % 50 % 80 %

Velocity
text

2 m/s 4 m/s 6 m/s

P
R
I
N
T
E
R

Build plate
tempera-
ture

textddddddd
25 °C

textddddddd
200 °C

textddddddd
400 °C

Chamber
tempera-
ture

textddddddd
25 °C

textddddddd
200 °C

textddddddd
400 °C

Table 5.7: Adopted simulation parameters for the �ne mesh analyses of the paral-
lelepiped geometry.

We investigate the in�uence of each simulation parameter, assuming for any other param-

eter the medium value (Value 2 ).

Power

In Figure 5.11, we show the results of the simulation obtained varying the laser power and

keeping all other parameters with Value 2 (see Table 5.7) . In particular we show the tem-

perature distribution at an instant of the laser scan and the residual stresses at the end of

the cooling process. In dark red we underline the melt pool generated by the moving heat

source. We notice that with a 100 W laser heat source it is not possible to melt the powder

on the external perimeters of the part because the temperature does not reach the melting

temperature (Tm = 1625°C). Also the residual stress �eld distribution is signi�cantly a�ected

by the laser power. In particular we notice that with 400 W heat source the residual stresses

are higher but also more homogeneous than the stresses obtained with 100 W and 200 W laser

powers. This e�ect can be justi�ed by that with 400 W laser power the bottom layer is par-

tially remelted during the laser scanning of the top layer, moreover melt pool dimensions are

higher than the one obtained with other laser powers, therefore, adjacent scanning lines have

a higher remelting rate than with other laser powers. The partial remelting of zones of the

model can be viewed as a kind of heat treatment that allows to obtain a more homogeneous

cooling rate and, in consequence, a more homogeneous stress �eld distribution.
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Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
967 MPa 

Max:
1061 MPa 

POWER   100 W

Max:
825 MPa 

POWER   200 W POWER   400 W

Max:
3198 °C

Max:
1950 °C

Max:
1167 °C

POWER   100 W POWER   200 W POWER   400 W

Figure 5.11: Temperature and residual stress distribution obtained with di�erent
laser powers.

Radius

In Figure 5.12, we show the results obtained with di�erent spot radius and keeping all other

parameters with Value 2 (see Table 5.7). In particular we show the temperature distribution

at an instant of the laser scan and the residual stresses at the end of the cooling process. In

dark red we underline the melt pool generated by the moving heat source. We observe that

with 100µm spot radius it is not possible to melt the powder on the external perimeters of

the part because the temperature does not reach the melting temperature (Tm = 1625°C).

Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
717 MPa 

RADIUS   50 mm

Max:
1061 MPa 

RADIUS   75 mm RADIUS   100 mm

Max:
1523 °C

Max:
1950 °C

Max:
2776 °C

RADIUS   50 mm RADIUS   75 mm RADIUS   100 mm

Max:
967 MPa 

Figure 5.12: Temperature and residual stress distribution obtained with di�erent
spot radius.

Looking at residual stresses, we observe that the stress paths obtained with the following

laser power and spot sets are very similar:

� 200 W � 50 µm (Figure 5.12) and 400 W � 75 µm (Figure 5.11)
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� 200 W � 100 µm (Figure 5.12) and 100 W � 75 µm (Figure 5.11)

In particular in Figure 5.13 we have displaced the temperature evolution of the point P

positioned in the middle of the internal in�ll. We observe 3 peaks in the temperature �eld:

these peaks are given by the three next-near laser scan lines (Perimeter 1, Perimeter 2, In�ll).

We appreciate that, with Perimeter 1, the point P comes to liquid state only when the laser

power and the laser spot are assumed to be 400 W and 75 µm respectively, instead during

the other scan lines point P is melted with both the laser parameters combinations. In this

case the adopted overlap rate (50%) among the subsequent scan lines causes the subsequent

remelting of the point P.

With this sets of parameters the obtained laser energy density is very similar (10 % dif-

ference) and, in consequence, also the temperature evolution of a speci�c point P is similar.

Since residual stresses rise in consequence of the shrinkage induced by the cooling e�ect, we

can state that residual stresses are strictly dependent of the laser energy density.
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Figure 5.13: Temperature evolution in a speci�c point of the domain (P), with
di�erent laser power and spot.

These results allow to conclude that in order to correctly characterize the SLM process

it is convenient to talk about of laser energy density and not of laser power and beam spot

independently one of each other. Furthermore we have shown that the higher energy density

allows to obtain a more regular residual stress �eld distribution.
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Overlap

In Figure 5.14, we show the results obtained with di�erent scan velocities and keeping all other

parameters with Value 2 (see Table 5.7). In particular we show the temperature distribution

at an instant of the laser scan and the residual stresses at the end of the cooling process. In

dark red we underline the melt pool generated by the moving heat source. In this case, we

displace the temperature distribution at the start of the in�ll scan path, thus to investigate

the e�ect of the overlap between adjacent scan lines.

Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
1061 MPa 

OVERLAP 20%

Max:
943 MPa 

Max:
3418 °C

Max:
2891 °C

Max:
2443 °C

Max:
967 MPa 

OVERLAP 50% OVERLAP 80%

OVERLAP 20% OVERLAP 50% OVERLAP 80%

Figure 5.14: Temperature and residual stress distribution obtained with di�erent
scan overlaps among adjacent scan lines.

We observe that the overlap among adjacent scan lines signi�cantly a�ects the temperature,

the dimensions and the shape of the melt pool. In particular with a higher overlap we observe

that melt pool dimensions increase, but at the same time, melt pool has not the typical

comet's tail shape, but it is more similar to a rectangle with rounded angles. Also the melt

pool temperature is signi�cantly a�ected by the overlap choice and, of course, higher overlap

rate leads to higher vacuum temperatures. Looking at the residual stress path distribution,

we appreciate that a higher overlap allows to obtain a more regular stress distribution, but, at

the same time, the values of the stresses are higher due to the higher thermal gradients rising

during the melting process.

In particular, in Figure 5.15 we show the temperature evolution of point P adopting two

di�erent overlap rates. We observe that the overlap has (of course) a signi�cant impact after

the �rst laser scan path. With 50% overlap rate, higher temperatures are reached due to scan

lines Perimeter 2 and In�ll 1. Instead with a 20% overlap rate, lower temperatures are reached

during the scanning process and, in speci�c, the melting process takes place only during the

scan line Perimeter 2.
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Figure 5.15: Temperature evolution in a speci�c point of the domain (P), with
di�erent overlap ratio.

Velocity

In Figure 5.16, we show the results obtained with di�erent scan velocities and keeping all other

parameters with Value 2 (see Table 5.7). In particular we show the temperature distribution

at an instant of the laser scan and the residual stresses at the end of the cooling process. In

dark red we underline the melt pool generated by the moving heat source. We observe that

with scan velocity 6 m/s it is not possible to melt the powder on the external perimeters of

the part because the temperature does not reach the melting temperature (Tm = 1625°C).
Furthermore we can appreciate that reducing the scan velocity the laser heat source stands

for more time on the same zone of the model and, therefore, melt pool dimensions extends.
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Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
856 MPa 

VELOCITY   2 m/s

Max:
1061 MPa 

VELOCITY   4 m/s VELOCITY   6 m/s

Max:
1426 °C

Max:
1950 °C

Max:
3270 °C

Max:
967 MPa 

VELOCITY   2 m/s VELOCITY   4 m/s VELOCITY   6 m/s

Figure 5.16: Temperature and residual stress distribution obtained with di�erent
scan velocities.

The scan velocity in�uences the energy rate: a lower scan velocity increases the energy

rate and, in consequence, the thermal gradients generated during the melting process. We

observe that higher energy rate produces higher residual stresses on the part after the cooling

process. Finally we can conclude that increasing the scan velocity is a good strategy to speed

up the printing process, provided that the adopted velocity is able to assure enough energy

rate to perform the melting process.

Build Plate temperature

In Figure 5.17, we show the results obtained with di�erent building plate temperatures and

keeping all other parameters with Value 2 (see Table 5.7). In particular we show the temper-

ature distribution at an instant of the laser scan and the residual stresses at the end of the

cooling process. In dark red we underline the melt pool generated by the moving heat source.

We observe that the building plate temperature has a signi�cant impact on the temperature

�eld results; in fact, since the part is very thin, it assumes the temperature of the building

plate and it is not much in�uenced by the ambient temperature.
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Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
798 MPa 

PLATE TEMP.      25°C

Max:
1061 MPa 

Max:
2104 °C

Max:
1950 °C

Max:
1825 °C

Max:
967 MPa 

PLATE TEMP.      200°C PLATE TEMP.      400°C

PLATE TEMP.      25°C PLATE TEMP.      200°C PLATE TEMP.      400°C

Figure 5.17: Temperature and residual stress distribution obtained with di�erent
building plate temperatures temperatures.

On the contrary, looking at residual stresses, we observe that there is signi�cant di�erence

among the three cases. In particular we notice that, at the end of the cooling process, the

part printed with the building plate at the ambient temperature (25 °C) is almost completely
yielded, while when the building plate is maintained at 400 °C, no yielding appears on the

part.

Chamber temperature

In Figure 5.18, we show the results obtained with di�erent chamber temperatures and keeping

all other parameters with Value 2 (see Table 5.7). In particular we show the temperature

distribution at an instant of the laser scan and the residual stresses at the end of the cooling

process. In dark red we underline the melt pool generated by the moving heat source.

Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
899 MPa 

CHAMB. TEMP.      25°C

Max:
1001 MPa 

Max:
1978 °C

Max:
1950 °C

Max:
1934 °C

Max:
967 MPa 

CHAMB. TEMP.      200°C CHAMB. TEMP.      400°C

CHAMB. TEMP.      25°C CHAMB. TEMP.      200°C CHAMB. TEMP.      400°C

Figure 5.18: Temperature and residual stress distribution obtained with di�erent
chamber temperatures.
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We observe that the ambient temperature has not a signi�cant impact on the temperature

�eld results; in fact, since the part is very thin, its temperature is almost equal to the building

plate temperature (200 °C). Looking at the residual stresses, we observe that the stress �eld

distributions are almost the same among the three cases. This fact is completely justi�ed

by the similar melt pool dimensions and maximum temperatures reached during the melting

process.

Finally, the results obtained in this section and in the previous section, con�rm that in

models with a very small height (lower than 1 mm), the build plate temperature in�uences

the residual stress �eld distribution much more than the chamber temperature. In particular,

a high build plate temperature allows to signi�cantly reduce residual stresses after the cooling

process.

Conclusions

In this Section we have analyzed the e�ects of SLM process parameters variation on the

temperature and the residual stresses distribution on a small Ti6Al4V part. According to

this results, we can conclude that laser and scan parameters e�ects must be evaluated in

terms of the energy density rate dispensed during the SLM process. In general, we have

demonstrated that with higher energy density rate, melt pool dimensions increase as well as

melt pool temperature. This condition leads to the formation of higher residual stresses, but,

also, of a more uniform stress path distribution.

On the other hand, the printer parameters e�ects must be considered in relation with the

adopted geometry. In particular we have proved that in very thin geometries, residual stress

after the cooling process are in�uenced by the build plate temperature much more than by the

chamber temperature. Higher build plate and chamber temperatures allow to obtain lower

values of residual stresses after the cooling process, due to the lower thermal gradients rising

during the process.

5.2.2 Coarse mesh simulations

In Fig. 5.19 we show the investigated geometry. The model represents a simple bridge which

is a classical benchmark test in AM prototyping. Bridge dimensions are typical of a part

produced with a commercial AM printer. The part is produced with 100 µm layers of Ti6Al4V

powder.

Figure 5.19: Bridge like model.
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To simulate the part following correctly the printing process would mean to adopted, at

least, cubic elements with size 100 µm. With this meshing criterion we would obtain more

than 2 million elements and the computational costs would exponentially grow. For this reason

we adopt a coarse meshing strategy. In speci�c we assume the element height equal to 0.8

mm; in such way each layer of elements represents 8 physical layers.

In Figure 5.20 we show the laser path adopted for the pillars and the deck of the bridge. We

remark that the real SLS process of the bridge requires support structure among the pillars.

In this example, we neglect the support structures, but we apply proper boundary conditions

to simulate the clamping e�ect of the support structures on the bridge.

Figure 5.20: Adopted laser paths for the pillars and deck of the bridge (schematic).

In this example the laser power has been assumed equal to 400 W and the laser spot equal

to 75 µm.

Figure 5.21: Temperature �eld distribution at the end of the printing process (a)
and after the cooling process (b).
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In Figure 5.21 we show the temperature �elds at the end of the printing process (a) (0.5

s after the laser power has been shut down) and after the cooling process (b). The cooling

process has been simulated adopting the cooling curve of a commercial 3D printer; in this case

the part reaches the ambient temperature almost after 5000 s.

In Figure 5.22, we show the stress �eld at the end of the printing process (a) (0.5 s after

the laser power has been shut down) and after the cooling process (b).

Figure 5.22: Stress �eld distribution at the end of the printing process (a) and after
the cooling process (b).

We can appreciate how the cooling process leads to a signi�cant increase of the residual

stresses, due to the shrinkage e�ect. In addiction, we observe that the highest residual stresses

are concentrated in correspondence of the clamps imposed on the model, on the bottom of

the pillars and on the bottom of the deck between the pillars.

The real detaching process of a SLMed part from the building plate is physically performed

removing the support structures. In this work, since we have not simulated the support

structures, we remove the constraints applied to the bridge except on the bottom of one

pillar. In Figure 5.23 we show the constraints applied on the structure for the printing process

simulation (a) and the constraints adopted to simulate the part detaching (b).

Figure 5.23: Constraints adopted to simulate support structures during the printing
process (a) and during the part detachment process (b).
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In Figure 5.24 we displace the stress path at the end of the cooling process and after the

detachment process. We observe that the maximum stress is consistently reduced after the

detaching of the bridge from the building plate. The stress relief is given by the release of the

elastic energy.

Figure 5.24: Stress �eld distribution at the end of the cooling process (a) and after
the detachment process (b).

In Figure 5.25 we show the Z-axis displacements at the end of the cooling process and

after the part detachment from the building plate.

Figure 5.25: Z-axis displacement �eld at the end of the cooling process (a) and
after the detachment process (b).

The maximum Z-axis displacement is about 2.3 mm in correspondence of point A.



Chapter 6

Fused Deposition Modeling

Fusion Deposition Modeling (FDM), also known as Fused �lament fabrication (FFF) is a AM

technology patented by Stratasys in 1992 to realized plastic parts starting from a plastic solid

�lament. Figure 6.1 shows the working principle of a generic FDM machine.

Figure 6.1: Working scheme of a generic Fused Deposition Modeling printer.

The FDM printing process can be summarized in the following steps:

I. Filament Supply: a spool of �lament is positioned on a particular support and the

�lament is inserted in the extrusion head;

II. Filament Extrusion: the �lament is moved by drive wheels into the nozzle, then it is

heated until it reaches the semi-molten state and extruded with the desired shape and

dimensions;

III. Filament Deposition: the �lament is deposited layer by layer on the building plate

by the nozzle which moves on the building plate at a constant height;

146
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IV. Nozzle Upward Movement: when a layer is constructed, the nozzle moves upward of

an height corresponding to the physical layer height and the process restarts from step

III;

V. Part Removal: once the part reaches the ambient temperature it is possible to remove

it from the building plate.

6.1 Process parameters of Fused Deposition Modeling printers

FDM patent expired in 2012. From that time, a lot of companies producing FDM 3D printers

born and the cost of FDM machines consistently decreased. Among the others the leading

companies in this sector are: Stratasys, 3DStystems, HP. The most important characteristics

of commercial FDM printers are listed below:

� Extrusion dimensions: common nozzles usually extrude the �lament with an ellip-

soidal shape. Bead height dimensions range from 0.1 to 1 mm, bead width can vary form

0.1 to 2 mm. Lower bead dimensions allow to obtain a higher detail precision during

the print, although, the printing process becomes slower;

� Maximum extruder temperature: extrusion temperature usually ranges from 200°C
to 600°C. Higher extrusion temperature allow to treat a lager range of polymers;

� Number of the nozzles: desktop printers have just one nozzle, professional printers,

instead, adopt multiple nozzles to change material during the same printing process and

allow a faster part production;

� Working volume: this is a �xed characteristic of each printer. A higher working

volume allows to produce larger models. The dimensions can vary from 10 centimeters

up to 3 or 4 meters.

� Chamber temperature: in desktop printers the chamber temperature is the ambient

temperature, in professional 3D printers, the chamber temperature can be increased

up to 150-200°C; this solution is adopted to reduce residual stresses arising during the

printing process.

� Building plate temperature: in desktop printers the building plate temperature is

kept at ambient temperature, in professional 3D printers, the building plate temperature

can be increased up to 250°C; this solution is adopted to increase the adhesion force

between the building plate and the part.

6.2 Polymers used in Fused Deposition Modeling

In the last years many types of polymers have been adopted to produce FDM parts, and many

experimentations have been conduced to test parts produced with FDM.

The most common polymers adopted for in FDM printing are:
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� Acrilonitrile Butadiene Stirene (ABS): can be used to produce prototypes for de-

sign veri�cation and functional performance testing. It's main features are good strength

and tenacity at low temperatures, good electrical resistance and good shock resistance.

The mechanical properties of a commercial ABS �lament, at the ambient temperature,

are listed in Table 6.1. Data are distributed by Stratasys®.

Mechanical Property Value

Young's Modulus 2600-3000 [MPa]
Tensile Yield Strength 55-60 [MPa]
Flexural Modulus 1700-2200 [MPa]
Flexural Strength 65-75 [MPa]
Elongation at break 25-40% [MPa]

Table 6.1: Mechanical properties of a commercial ABS �lament.

� PolyCarbonite (PC): can be used for several applications in industry including: ex-

ternal aircraft windows, �ak jackets and safety protections. It's main features are high

resistance to chemically aggressive environments, good mechanical properties at high

temperatures and high toughness. The mechanical properties of a commercial PC �l-

ament, at the ambient temperature, are listed in Table 6.2. Data are distributed by

Stratasys®.

Mechanical Property Value

Young's Modulus 1944-1958 [MPa]
Tensile Yield Strength 30-40 [MPa]
Flexural Modulus 1800-2006 [MPa]
Flexural Strength 68-89 [MPa]
Elongation at break 4.8-2.5%

Table 6.2: Mechanical properties of a commercial PC �lament.

� PolyLactic Acid (PLA): can be used for several applications in industry including:

plastic shopping bags and part of domestic appliances, but it is suitable to produce

functional components. It's main features are good tensile resistance and ease processing

in injection and fused deposition modeling. The mechanical properties of a commercial

PLA �lament, at the ambient temperature, are listed in Table 6.3. Data are distributed

by Stratasys®.
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Mechanical Property Value

Young's Modulus 2539-3039 [MPa]
Tensile Yield Strength 26-45[MPa]
Flexural Modulus 2470-2930 [MPa]
Flexural Strength 45-84 [MPa]
Elongation at break 1-2.5%

Table 6.3: Mechanical properties of a commercial PLA �lament.

� ULTEM: can be used for many applications in medical, electronic/electric, microwave,

automotive, and aircraft industries. It's main features are a high tensile resistance at

ambient temperature and good tensile resistance at high temperatures, high dielectric

strength and stability, and a very high heat resistance. The mechanical properties of a

commercial ULTEM �lament, at the ambient temperature, are listed in Table 6.4. Data

are distributed by Stratasys®.

Mechanical Property Value

Young's Modulus 2150-2270 [MPa]
Tensile Yield Strength 47-33 [MPa]
Flexural Modulus 2050-2300 [MPa]
Flexural Strength 68-112 [MPa]
Elongation at break 2.2-5.8%

Table 6.4: Mechanical properties of a commercial ULTEM �lament.

� PolyEtherEtherKetone (PEEK): can be used for many applications in medical,

electronic/electrical, microwave, automotive, and aircraft industries. It's main features

are a high tensile resistance at ambient temperature and high ductility rate, moreover,

it is resistant to aggressive environments. The mechanical properties of a commercial

PEEK �lament, at the ambient temperature are listed in Table 6.5. Data are distributed

by Victrex®.

Mechanical Property Value

Young's Modulus 4000 [MPa]
Tensile Yield Strength 98 [MPa]
Flexural Modulus 3800 [MPa]
Flexural Strength 125 [MPa]
Elongation at break 45%

Table 6.5: Mechanical properties of a commercial PEEK �lament.

In literature, several studies have been proposed aiming to characterize the mechanical
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properties dependence on the process parameters and to compare the characteristic of 3D

printed parts with the characteristics of parts produced with traditional manufacturing.

Several studies have been conducted to estimate the mechanical properties of FDMed parts

produced with di�erent di�erent printing parameters.

One of the most investigated parameters is the in�ll raster angle. Ziemian et al. [2012]

investigated the e�ects of di�erent raster orientations on tensile and ultimate yield strength,

concluding that the maximum values are obtained with 0/90 and 45/45 raster angles, both

with tensile and �exural tests. Cantrell et al. [2017] carried out analogous experiments on

PC FDMed components, concluding that tensile strength is not signi�cantly in�uenced by

the raster orientation, while the maximum shear strength is obtained with +45/-45 raster

orientation (Figure 6.2)

Figure 6.2: Tensile (a) and shear (b) stress-strain curves of FDMed PC parts pro-
duced with di�erent raster orientations [Cantrell et al., 2017].

Letcher and Waytashek [2014] demonstrated that the raster orientation has a signi�cant

in�uence on PLA specimens response to 3-points bending test, where the 0° raster orientation
allows to obtain the higher �exural strength. A similar result has been obtained by Rahman

et al. [2015] for FDMed PEEK components.

Figure 6.3: Ultimate tensile stress variation with the total part thickness. Di�erent
layer thickness are considered [Rankouhi et al., 2016].

Another parameter that have been widely investigated in literature is the layer thickness.
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Rankouhi et al. [2016] proved that ABS parts produced with a layer thickness of 0.2 mm show

a higher ultimated tensile strength and sti�ness in comparison with parts realized with layer

thickness equal to 0.4 mm (Figure 6.3).

As previously discussed, some industrial applications require good mechanical properties

of plastic parts even at extreme temperatures. Many studies focused on the evaluation of

the mechanical properties of FDMed parts in extreme environmental conditions. Weiss et al.

[2015] conducted a very accurate study to evaluate both thermal and mechanical properties

of FDMed ABS specimens at cryogenic temperatures (Figure 6.4).

Figure 6.4: Tensile stress (a) and compressive stress (b) strain curves of FMDed
ABS parts at di�erent cryogenic temperatures [Weiss et al., 2015].

Another parameter which is often investigated in FDM printing process is the build direc-

tion of the parts. Bagsik et al. [2010] studied the stress strain curves obtained trough tensile

tests on FDMed ULTEM parts.

Figure 6.5: Stress strain curves obtained trough tensile tests on FDMed ULTEM
parts produced with di�erent build orientations [Bagsik et al., 2010].
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They concluded that the build orientation has a great impact on the mechanical properties

of the part, in particular on the Young's Modulus and on the elongation at break (Figure 6.5).

6.3 Physical aspects of Fused Deposition Modeling

Within FDM technology, the �lament is �rst heated to a semi-molten state and then extruded,

while the nozzle moves following a prede�ned printing path. After deposition, the thermal en-

ergy is dissipated through conduction (within and between the �laments) as well as convection

and radiation (both between the �lament and the external environment). The heating and

the subsequent cooling processes, leading the semi-molten �lament to re-assume a solid state,

are characterized by high thermal gradients inducing residual stresses on the printed compo-

nent [Zein et al., 2002]. These stresses produce part distortions, either during the printing

process itself and after the component removal from the building plate [Bellehumeur et al.,

2004]. Figure 6.6 shows the most important aspects in�uencing the fused deposition modeling

process:

Figure 6.6: Physical phenomena rising during the Fused Deposition Modeling pro-
cess. In light blue the principal physical e�ects; in black the secondary physical
e�ects.

Thermal gradients strongly in�uence the quality of the produced parts together with other

several printing parameters, like extrusion temperature, chamber temperature, nozzle velocity,

and extruded �lament dimensions. Most important, it has been experimentally proved that

such parameters can a�ect not only the shape [Wittbrodt and Pearce, 2015] and the dimensions

[Lieneke et al., 2016] of the printed part, but also its mechanical properties [Ziemian et al.,

2012], including the yielding strength and the strain at failure [Alaimo et al., 2017].

In the following section we will describe the principal physical phenomena involved in FDM

process.

6.3.1 Heat conduction-convection-radiation

Di�erently from PBF process, in FDM the material is deposited on the building plate at a

high temperature corresponding to the extrusion temperature. When the �lament is extruded
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it starts a cooling process which leads the �lament to the solid state. During this process the

�lament exchanges heat trough:

� conduction due to the temperature gradient rising inside the �lament;

� convection between the �lament and the surrounding environment;

� radiation of the thermal energy

Heat conduction-convection-radiation can be described by the following equation:

ρc
T

t
= ∇ · (k∇T ) + qc + qr (6.1)

where qc represents the convective term and qr represents the radiation term, which are de-

scribed as follows:

qc = h(T − Tc)
qr = Kb(T

4 − T 4
c )ε

(6.2)

in which Kb is the Stefan-Boltzmann constant and ε is the emissivity.

6.3.2 Phase Change

The phase change in plastic polymers is a very complicate process that is dependent on the

molecular structure of the material [Tadokoro, 1979]. According to their molecular structure,

plastic polymers can be divided into two classes:

� Crystalline polymers: characterized by a regular and periodic molecular structure at

the solid state;

� Amorphous polymers: characterized by an irregular molecular structure at the solid

state;

The degree of crystalline order, usually referred as χ, states if a polymer has a crystalline (χ ≈
1) or an amorphous (χ ≈ 0) molecular structure. Crystalline polymers are characterized by

higher density and higher sti�ness than amorphous polymers; moreover, crystalline polymers

can be oriented in space in order to obtain speci�c mechanical properties in a speci�c direction.

This procedure gives to crystalline polymers a high rate of anisotropy.

In plastic polymers two types of phase change may occur, according to the molecular

structure of the polymers:

� Melting. It is a typical process of crystalline polymers that occurs when, at a certain

temperature, called melting temperature Tm, the ordered molecular chains drop into a

liquid disordered state. In this process a large amount of energy is needed to win the

internal forces which order the molecular structure. This process is the same that occurs

in metal phase change;
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� Glass transition. It is a typical process of amorphous polymers in which the temper-

ature increasing simply increase the molecular disorder. This process is characterized

by a typical temperature referred as glass transition Tg. Below the glass transition

temperature, the amorphous polymers have a glassy behavior; over the glass transition

temperature, they show a rubbery behavior.

In �gure 6.7 we show the di�erent phase change processes for crystalline and amorphous

polymers.

T

H(T)

T

H(T)Crystalline Polymer Amorphous Polymer

Melting process

Tm

Glass transition process

Tg

Figure 6.7: On the left, the melting process typical of crystalline polymers; on the
right, the glass transition process typical of amorphous polymers.

We observe that, di�erently from the melting process, in glass transition process no latent

heat is needed to perform the phase change.

6.3.3 Bonding

Bonding is the tendency of semi-molten �bers to get in contact one to each other due to

the cohesion force rising between them at high temperatures. Bonding is a very important

phenomenon in FDM printing process because a good bonding rate between the deposited

�laments is mandatory to obtain good mechanical properties on the �nal parts [Gurrala and

Regalla, 2014].

In FDM technology we can discern between two types of bonding:

� Intra-layer bonding: generated between the deposited �laments of the same layer

(see Figure 6.8). The intra-layer bonding forms a typical neck between the bounded

�laments and the resulting dimensions of the bounded �laments are smaller then the

nominal ones.

� Inter-layer bonding: generated between subsequent deposited layers (see Figure 6.9).

The inter-layer bonding forms a typical neck between the �laments of adjacent layers,

therefore the height of a package of two layers is smaller than the nominal one.

Bellehumeur et al. [2004] pointed out that the bonding quality among polymer �laments

in the FDM process determines the integrity and mechanical properties of resultant prototypes

and they developed a Newtonian sintering model to quantitatively predict the bonding quality
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Intra-layer bonding

Before Bonding

After Bonding

L1

L2

Figure 6.8: Intra-layer bonding in FDM printing process (rielaborated from [Gur-
rala and Regalla, 2014]).

Inter-layer bonding

Before Bonding

After Bonding H2

H1

Figure 6.9: Inter-layer bonding in FDM printing process (rielaborated from [Gurrala
and Regalla, 2014]).

of the part. They concluded that the bonding rate between the �laments is strongly dependent

on chamber temperature and on cooling time of the deposited �laments. Figure 6.10 (a) shows

the variation of neck radius with the time in isothermal conditions, obtained with di�erent

extrusion temperatures. Figure 6.10 (b) shows the variation of the neck radius with the

time in non isothermal conditions. In both cases the experimental results are compared with

the predictions of the Newtonian sintering model, showing a good agreement between the

experimental results and the analytic model.

6.3.4 Adhesion

Adhesion is a chemical-physical phenomenon rising between two chemically di�erent materials.

In FDM printing, the adhesion force origins between the building plate (which is usually

made with Ultem) and the deposited �laments. The development of enough adhesion force is

mandatory to maintain the part attached to the building plate. In Figure 6.11 we represent a

typical case of part detachment from the building plate.

A common and well known solution to avoid part detachments from the building plate

consists of increasing the build plate temperature, but, this solution can be adopted only in
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(a) (b)

Figure 6.10: Variation of the radius deck in isothermal (a) and in non-isothermal
(b) conditions [Bellehumeur et al., 2004].

Figure 6.11: Part detachment from the building plate during FDM printing process.
Detachment occurs due to the not enough adhesion force.

certain professional 3D printers. Another possible way to solve the problem is to spray special

lacquers on the building plate to increase arti�cially the adhesion force.

In literature the adhesion in FDM process has been investigated by few authors, in par-

ticular in combination with textiles.

Pei et al. [2015] investigated the adhesion of ABS, Nylon, and PLA FDMed parts, printed

directly onto textiles. Natural (cotton and wool) plastic (light polyester) textile have been

considered in this study, concluding that PLA has the overall best adhesion.

A similar study was conducted by Sabantina et al. [2015] who used a high temperature

after treatment to increase the adhesion force between PLA and the considered textile. This

studies proposes interesting experiments with di�erent textiles and FDM printing parameters,

although they do not evaluate directly the adhesion force.

Sanatgar et al. [2017] adopted the standard SS-EN ISO11339:2010 procedure to evaluate

the adhesion force of PLA and nano-composites parts during FDM printing process. They

concluded that the adhesion force is highly in�uenced by the printing process parameters like

the extrusion temperature and the build plate temperature as shown in Figure 6.12.



6.4. Numerical Simulation of Fused Deposition Modeling 157

Figure 6.12: Variation of the adhesion force with extrusion temperature (a), build
plate temperature (b) and build plate fabric type (c) [Sanatgar et al., 2017].

6.4 Numerical Simulation of Fused Deposition Modeling

The simulation approaches of FDM process can be divided into two categories:

� Filament level simulations

� Part level simulations

in the following sections we brie�y describe each simulation approach.

6.4.1 Filament level simulations

Filament level simulations aim to predict phenomena rising at the �lament level such as

bonding and adhesion. As previously discussed, there are 2 types of bonding phenomena:

bonding between �laments and bonding between layers.

Gurrala and Regalla [2014] proposed a mathematical model to describe the radius of the

neck between two bounded �laments. The authors proved experimentally that neck sizes are

time dependent and with the developed mathematical model were able to predict the evolution

of the neck radius during the bonding process, as shown in Figure 6.13.
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Figure 6.13: Neck radius variation with time during the bonding process between
two FDMed deposited �laments [Gurrala and Regalla, 2014].

Coogan and Kazmer [2017] proposed a di�usion-controlled healing model for predicting

bond strength between layers in FDM process. This model has been used to predict the bond

strength in ABS specimens printed with di�erent printing conditions and the results have been

validated trough experimental test.

Xia et al. [2017] adopted a mathematical model for direct multiphase �ow simulations and

used the �nite volume method to simulate three dimensional �lament deposition including

bonding.

Figure 6.14: Temperature evolution between bounded �laments deposited at di�er-
ent extrusion temperatures (a) 215°C, (b) 295°C, and (c) 375°C [Xia et al., 2017].

The method is lack of residual stresses evaluation and has not been applied to simulate real
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three dimensional components, although it considers the real shape of the deposited �lament

and it is able to predict with accuracy the temperature evolution within and between the

�laments. Figure 6.14 shows the temperature evolution between bounded �laments deposited

at di�erent extrusion temperatures.

6.4.2 Part level simulations

Part level simulations aim to predict the evolution of stress and distortions �eld during the

printing process. In particular one of the major tasks of part level simulation is to predict the

distortions of the printed model from the design model, so to preventively change the printing

parameters in order to avoid part distortions.

Zhang and Chou [2006] proposed the �rst three dimensional model to simulate FDMed

components production. In this work the �nite element method is adopted and a sequential el-

ement activation is performed to simulate the deposition process. This work has been followed

by Zhang and Chou [2008] to simulate the FDM printing process varying layer thickness, scan

speed and extrusion temperature. The results have been validated trough a comparison with

experimental tests showing good agreement with experimental data (see Figure 6.15).

Figure 6.15: Real FDMed part distortions compared with simulation predictions.
Every specimen has been realized with di�erent printing parameter [Zhang and
Chou, 2008].

In the following section we will adopt a model similar to the one proposed by Zhang and

Chou [2006] to simulate real FDMed components starting from the informations contained in

the G-Code �le.



Chapter 7

Finite element simulation of Fused

Deposition Modeling

In the previous chapter we have discussed about the computational approaches usually adopted

for the FDM printing process simulation. Filament level simulations investigate local e�ects

rising during the printing process. In particular they are adopted to simulate the intra and

inter layer bonding and the adhesion force generated between the part and the building plate.

Although, �lament level simulations are very expensive in terms of computational costs and

required memory and they cannot be used to simulate entire FDMed parts.

On the contrary, part level simulations are not accurate as �lament level simulations are.

They do not consider the real shape of the �laments and they neglect bonding and they assume

a perfect adhesion between the part and building plate. Although, part level simulations have

reduced computational costs and they allow to simulate entire FDMed components.

The overall framework of FDM process is shown in Fig. 7.1 (left side). First, a model of

the part is realized through a CAD software, then a triangular mesh of the external surface

is generated (STL �le) and used as input for the slicing software (e.g., Slic3r or KISSlicer) to

de�ne all the parameters necessary to perform the printing process: the �lament deposition

path, the deposition velocities, the extrusion temperature, and the environmental variables.

All these information are stored in a �le, usually referred as GCode. This �le is used both to

realize the printing process and to perform the simulation of the part.

Relying on the information in the GCode, we set up a �nite element analysis (FEA) in

Abaqus (v. 2017 Simulia, Dassault Systemés) Courter et al. [2017] based on a sequential ele-

ment activation scheme to simulate the entire printing process. The analysis is divided in two

steps. A thermal analysis, solving the heat equation, is performed to evaluate the time-spatial

temperature �eld evolution during the sequential element activation process. Subsequently,

the resulting temperature �eld is adopted as forcing term in a mechanical analysis, used to

evaluate residual stresses and part distortions (see Fig. 7.1 right side).

7.0.1 Sequential element activation

During the FDM printing process, the nozzle deposits a semi-molten �lament following a

prede�ned path contained in the GCode �le. As an example, in Fig. 7.2 we show a sequence

of standard instructions extracted from a GCode �le realized with KiSSlicer.

160
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Mechanical            Analysis

Deformed                PartFinal                Part

FINITE ELEMENT

ANALYSIS

CAD        Model

STL          File

GCode File

Thermal AnalysisFDM Printer PRINTING PROCESS

PRODUCTION SIMULATION

Figure 7.1: Overall framework of the FDM printing process. In the central part,
the virtual calculation of the GCode �le from a 3D CAD model of the component.
On the left, the physical printing process; on the right, the simulation process.
The GCode information are used both to perform the physical printing and the
simulation of the part

; BEGIN_LAYER_OBJECT Z=7.40

; 'Perimeter Path', 0.6 [feed mm/s], 33.2 [head mm/s]

G1 X109.57 Y88.14 E9.0562 F9000

G1 X109.57 Y88.13 E9.0563 F1992

G1 X109.57 Y71.38 E9.3716

G1 X109.60 Y71.34 E9.3725

G1 X112.40 Y71.34 E9.4251

.. ....... ...... .......

Figure 7.2: Sequence of standard instructions contained in a GCode �le realized
with KISSlicer

The three necessary information, included in the GCode and needed to perform the se-

quential element activation, are: (i) the nozzle position, (ii) the nozzle velocity, and (iii) the

cross sectional dimensions of the extruded �lament.

t X Y Z Extruded �lament area
[s] [mm] [mm] [mm] [mm2]

1351.68 109.57 88.14 7.40 0.10
1315.69 109.57 88.13 7.40 0.10
1332.44 109.57 71.38 7.40 0.10
1332.49 109.60 71.34 7.40 0.10
1335.29 112.40 71.34 7.40 0.10
. . . . . . . . . . . . . . .

Table 7.1: Scheme of the input �le for the sequential element activation. X, Y, Z
are the coordinates of the �lament centerline at time T. Extruded �lament area
represents the cross-sectional area of the extruded �lament, which drops to zero in
correspondence of the travel movements
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We extract these information from the GCode �le by means of an in-house Matlab code

that directly write a suitable input �le for the �nite element analysis, as reported in Tab.

7.1. Columns X, Y, and Z describe the position of the centerline of the extruded �lament at

time t, while the last column contains the cross sectional area. The deposition path de�ned in

the GCode �le is, usually, not completely continuous, since the nozzle, in some cases, moves

on the building plate without depositing material; such movements are usually referred as

travel movements. To be fully consistent with the GCode �le, during the sequential element

activation, we assume the area of the �lament equal to zero in correspondence of the travel

movements.

The cross section of the extruded �lament is typically characterized by a rectangular

shape with round corners, resembling an ellipsoidal shape. For simplicity, we consider the

cross section to be rectangular with dimensions equal to the ellipse axes.

NOZZLE

MARCHING RECTANGLE

EXTRUDED FILAMENT SECTION

EXTRUDED FILAMENT 
CENTERLINE

ACTIVATED ELEMENT

FILAMENT

B

A

C

D
F

E

G

H

BA

CD

FE

GH

NON ACTIVATED ELEMENT

Figure 7.3: Element activation process. The extruded �lament section (cyan el-
lipse) is substituted by the circumscribed marching rectangle (blue rectangle). The
rectangle moves following the �lament centerline (red line). When the center of
an element (green point) falls into the volume described by the marching rectan-
gle, then the element is activated (green element). Gray points correspond to the
centroids of the non-activated elements (gray elements)

To realize the sequential element activation, a marching rectangle, representing the �la-

ment cross section, is imagined to move following the �lament centerline contained in the

GCode �le (�lament centerline coincident with marching rectangle center): if the center of an

element falls within the ideal volume described by the marching rectangle, then the element

is activated. Figure 7.3 shows the element activation process for a single layer of elements.

Remark. To respect the physics of the problem, it is necessary to adopt a meshing strategy

in which the element height is equal to the height of the extruded �lament (physical layer

height) or to a sub-multiple of such height; furthermore it is convenient, but not mandatory,

to keep the element width equal or a sub-multiple of the width of the extruded �lament. With

this precautions we ensure that the activated elements exactly match the dimensions of the
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extruded �lament. This topic will be discussed more in detail in Section 7.0.6.

7.0.2 Thermal analysis

During the FDM process the �lament is extruded at temperature Tf and it is deposited on

the building plate Dp having temperature Tp. The building chamber Dc is kept at constant

temperature Tc. Due to temperature gradients, the �laments exchange thermal energy with

both the previously deposited material and with the surrounding air in the chamber.

The time spatial evolution of the temperature �eld T (x, t) is governed by the well-known

heat equation Hussein et al. [2013]:

ρcṪ = ∇ · (k∇T ) + q (7.1)

where ρ = ρ(T ) is the material density, c = c(T ) is the speci�c heat capacity, k = k(T ) is the

thermal conductivity, q is the internal heat source, and t is the time. The initial conditions of

the problem are given by Schoinochoritis et al. [2017]:

T (x, 0) = Tf x ∈ Df (7.2a)T (x, 0) = Tc x ∈ Dc (7.2b)

where x = (x, y, z) is the position, Df is the extruded deposited material, Dc is the building

chamber, while Tf and Tc are the extrusion and the chamber temperature, respectively. On

the building plate Dp we impose the following Dirichlet boundary condition:

T (x, t) = Tp x ∈ Dp (7.3)

where Dp is the building plate and Tp is the imposed building plate temperature. The Neu-

mann boundary conditions of the problem are de�ned as follows Schoinochoritis et al. [2017]:

k
∂T

∂n
+ qc + qr = 0 x ∈ S(t) (7.4)

where S(t) is the external surface of the body (changing during element activation) and n

is the vector normal to the surface of the body, while qc and qr are the heat �uxes due to

convection and radiation, respectively, de�ned as:

qc = h(T − Tc) (7.5a)qr = Kb(T
4 − T 4

c )ε (7.5b)

where h = h(T ) is the heat transfer coe�cient, Kb represents the Stefan-Boltzmann constant,

and ε is the emissivity.

7.0.3 Mechanical analysis and material properties

In this paper we face the simulation of parts realized with a ABS �lament, which is an

amorphous polymer that exhibits a typical thermo-plastic behavior Tiganis et al. [2002]. In

the incremental theory of plasticity, assuming a small strain regime, it is standard to introduce

the following additive decomposition:

ε = εe + εp + εT (7.6)
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where ε is the total strain, while εe, εp and εT are the elastic, plastic and thermal strain

components, respectively, de�ned in Voigt notation as follows.

εe = D−1σ, with D = − ν
E

(1⊗ 1) +
1 + ν

E
I

εp = λσdev

εT = α(T − T0)1

(7.7)

where σ is the stress (expressed in Voigt notation), E = E(T ) is the Young's modulus, ν

is the Poisson's ratio, α = α(T ) is the thermal expansion coe�cient, I is the identity, 1 =

{1, 1, 1, 0, 0, 0}T, and σdev represents the deviatoric part of the stress tensor:

σdev = σ − 1

3
tr(σ)1 (7.8)

λ is the plastic �ow factor de�ned as follows:

λ = 0 if σvm < σp

λ > 0 if σvm > σp
(7.9)

where σp = σp(T ) is the yield stress and σvm is the e�ective Von Mises stress de�ned as

follows:

σvm =

√
3

2
(σdev)Tσdev (7.10)

At the ambient temperature (Ta = 25 ◦C) the adopted material properties, correspond to

a commercial ABS �lament (see Table 7.2).

Property V alue Property V alue

Density 1040 Kg/m3 Thermal expansion coe�cient 9 · 10−5 ◦C−1

Young modulus 1826 MPa Speci�c heat 1290 J/(◦C ·Kg)
Poisson ratio 0.32 Thermal conductivity 0.15 W/(◦C ·m)
Yield stress 25 MPa Glass transition temperature 95◦C

Table 7.2: Mechanical and thermal properties of the commercial ABS �lament at
the ambient temperature

In amorphous polymers the glass transition temperature, usually indicated as Tg, marks

the transition from the glassy to the rubbery mechanical behavior of the material. This

process, usually referred as glass transition, is di�erent from the melting process, because

it does not involve a transition from a ordered to a disordered molecular structure. The

melting process, typical of crystalline polymers, occurs when the ordered polymer chains fall

out of their crystalline structure giving rise to a disordered liquid; instead the glass transition
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process, typical of amorphous polymers, simply indicates an increasing disorder associated

to the molecular structure, since at the solid state the molecular chains are not arranged in

an ordered crystalline structure. Accordingly, the glass transition temperature Tg in�uences

the thermal properties of amorphous polymers. In Fig. 7.4 we show the variation of thermal

conductivity and speci�c heat with temperature in the commercial ABS �lament.
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Figure 7.4: Variation of thermal conductivity and speci�c heat with temperature
in the commercial ABS �lament. [Rheology Testing And Consultancy, 2004]. Tg
represents the glass transition temperature

Furthermore the glass transition temperature Tg has a great impact on the mechanical

properties of the ABS �lament; in fact, above this temperature the Young's modulus and the

yield stress drop down to values close to zero Song et al. [2012]; Armillotta et al. [2018]. Figure

7.5 shows the variation of the Young's modulus with the temperature for the considered ABS

�lament Song et al. [2012].
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Figure 7.5: Variation of the Young's modulus with the temperature in the commer-
cial ABS �lament Song et al. [2012]. Tg represents the glass transition temperature

Following Richeton et al. [2005, 2006] the variation of the yield stress in amorphous poly-

mers can be described by the following cooperative model:
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σp = σp0 −mT +
2KbT

V
sinh−1

ε̇

ε̇0 exp

(
−∆HB

KbT

) for T < Tg

σp =
2KbT

V
sinh−1

ε̇

ε̇0 exp

(
−∆HB

KbT

)
exp

(
cg1(T − Tg) ln 10

cg2 + T − Tg

) for T ≥ Tg
(7.11)

where σp0 is the yield stress at the absolute zero temperature, V is an arbitrary activation

volume, ∆HB is the activation energy, ε0 is a constant pre-exponenial strain, and c
g
1 and c

g
2 are

the coe�cients of the Williams-Landel-Ferry (WLF) time-temperature superposition. Evalu-

ating all the parameters in Eq. 7.11 is not a simple task and, in addiction, no experimental

data are available in literature for ABS. However, a review of the studies dealing with the

yield stress temperature dependency of amorphous polymers shows that: (i) below the glass

transition temperature the yield stress linearly decreases with slope m Rault [1998] and (ii)

above the glass transition temperature the yield stress can be assumed almost constant with

a value close to zero Armillotta et al. [2018]. Accordingly, for the considered ABS we assume

a yield stress variation with temperature as shown in Fig. 7.6, where m = 0.24 and σp = 1

MPa Armillotta et al. [2018], for T > 100◦C.
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Figure 7.6: Variation of the tensile yield stress with the temperature in the com-
mercial ABS �lament Richeton et al. [2006]; Armillotta et al. [2018]. Tg represents
the glass transition temperature and m represents the slope of the linear part

Remark 1: Eq. 7.11 was proposed by Richeton et. al. Richeton et al. [2005] to describe

the variation of the compressive yield stress with the temperature. However, in the present

study, we assume that the same functional relation is also valid for the tensile yield stress.

Remark 2: The �lament as-deployed can be considered homogeneous and isotropic (Ro-

dríguez et al. [2003], Alaimo et al. [2017]) but the geometrical structure at a sub-millimeter

scale, resulting from the deposition process, implies, at the macro-scale, an overall mechanical

anisotropy. In particular, several works (Ning et al. [2017], Liao et al. [2018], Ryder et al.

[2018]) showed that both yielding stress and Young's modulus vary with �ber orientation and

�lament cross-sectional dimensions. Assuming an orthotropic, transversely isotropic behav-

ior, such a dependence with �ber orientation is usually more evident when observing yielding
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stress at macro-scale (up to 30% in transverse direction compared to �ber orientation). As

concerns the Young's modulus, the decrease in sti�ness is usually less pronounced, resulting in

variation up to 15% in transverse direction compared to �ber orientation. Such data refer to

tensile tests performed on ABS unidirectional specimens at ambient temperature. To capture

the 3D-printed part anisotropy, it should be used a extremely �ne mesh (element dimensions

much smaller than the �lament cross section) able to accurately represent the microstructure.

In the present work we neglected the anisotropy, but as con�rmed by the obtained results,

this assumption can be considered acceptable.

7.0.4 Part detachment procedure

During the printing process, residual stresses arise due to the constrained progressive cooling of

the body still under construction, in response to the temperature decreasing from the extrusion

temperature Tf to the chamber temperature Tc. Similarly, during the cooling transient after

the printing process, residual stresses increase since the temperature goes from the chamber

temperature Tc to the ambient temperature Ta. Residual stresses tend to induce a warping

deformation that is usually prevented by the adhesion between the part and the building plate.

However, if residual stresses are high enough, they can cause part detachment, since the warp

tendency is not be balanced by the adhesion force.

Accordingly, a crucial point for a complete characterization of the process is the evalu-

ation of the adhesion force. This task can be very complicated because the adhesion force

is in�uenced by local imperfections, impurities, and a non uniform temperature distribution

of the building plate, as well as by the chemical properties and the dimensions of the �la-

ment. A widely adopted method to prevent the part detachment is to introduce, between the

building plate and the part to be realized, a support structure usually referred as raft. Raft

basically consists of 4-6 �lament layers, the �rst of which is characterized by a �lament of

relatively large dimensions. Typical values of the �rst raft layer height and width are 0.6 and

1.8 mm, respectively. The dimensions of this layer increase the adhesion force, thus avoiding

component detachment.

When a part is printed on the raft, no detachment usually occurs during the printing or

the cooling process. In this case, in the proposed model we simulate the part as constrained

in correspondence of the supports and, at the end of the cooling process, we remove all the

constraints, allowing the part to reach its �nal deformed con�guration.

Instead, when a part is printed without pre-printing the raft, detachments can occur, most

of the times during the cooling process. In this case, neglecting the adhesion force evaluation,

in the proposed model we consider the part as constrained during all the printing and the

cooling process, then adopting a reverse engineering approach, we remove the constraints only

in correspondence of the detachment points of the part.

7.0.5 Simulated geometries

In this study we simulate the FDM printing process of two parts, shown in Fig. 7.7: a planar

spring (a) and a bridge model (b). In particular we observe that the planar spring and the

bridge model have comparable dimension on the XY plane, while the planar spring presents

a reduced dimension along Z-axis.
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The �rst model is printed without raft, thus the adhesion force plays an important role,

while the second model is printed using support structures (needed for geometry) and raft as

usually done in long printing processes (≥ 3 hours).

0.95 mm

40 mm

65 mm
25 mm

17.5 mm

102.5 mm

(a) (b)

Figure 7.7: Geometry of the planar spring (a) and bridge model (b)

For sake of completeness, we report in Tab. 7.3 the adopted printing process parameters.

Geometry Tf Tp Tc In�ll Raft Supports
[◦C] [◦C] [◦C] [%]

Planar spring 240 90 45 100 No No
Bridge 240 120 45 30 Yes Yes

Table 7.3: Printing process parameters adopted for the planar spring and bridge
model

The 3D printer used for the present study is a 3NTR A4v3 Win. The machine is equipped

with three extruders, which can be heated up to 410 ◦C, through a ceramic heating component;

a nozzle of 0.4 mm of diameter is used. The bed temperature can reach 120 ◦C, while the

heated chamber can reach 85 ◦C. Figure 7.8 shows the part orientation with respect to the

printing bed.

(a) (b)

Figure 7.8: Layout of the printed parts with respect to the building plate; (a) planar
spring, (b) bridge.
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7.0.6 Sensitivity analysis on simulation parameters

The FDM numerical analyses are mainly in�uenced by (i) the time step ∆t, (ii) the meshing

strategy, and (iii) the adopted constitutive model. We now focus on the planar spring problem

(Fig. 7.7(a)) and we investigate the in�uence of the parameters listed above on the simulation

results, adopting the ranges discussed in the following:

1. Time step. The printing process has been simulated with the time steps listed in Tab.

7.4:

∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6 ∆t7 ∆t8 ∆t9
Value [s] 8 4 2 1 0.5 0.25 0.125 0.0625 0.03125

Table 7.4: Time steps adopted for the planar spring simulation

2. Meshing strategy. As previously discussed, in order to correctly reproduce the printing

process, it is necessary that the typical element height is equal to a sub-multiple of the

�lament height. Accordingly, to be fully consistent with the real process, the element

width should be equal or a sub-multiple of the �lament width, but in some cases this

meshing strategy can lead to �nite element models with a very large number of elements

(≥ 106), which requires very strong computational resources. For this reason we also

investigate meshing strategies consistent with the height but not with the width of

the deposited �lament. In this work we use a square base mesh with variable height.

Denoting with ly the �lament width and with hy the �lament height (i.e., the element

height), we report the adopted meshing strategies in Table 7.5:

Meshing strategy Height Width

M-1 hy 4ly
M-2 hy 2ly
M-3 hy ly
M-4 hy ly/2
M-5 hy/2 ly/2

Table 7.5: Meshing strategies adopted for the planar spring simulation. In red, the
meshing strategies consistent only with the �lament height. In blue, the meshing
strategies fully consistent with �lament dimensions

3. Constitutive model. ABS properties needed for numerical simulations can be divided

in two groups: (i) physical properties, including density, heat coe�cient, speci�c heat

and expansion coe�cient; (ii) mechanical properties, including Young's modulus and

yielding stress; all those properties are temperature dependent. We always consider

the dependency of the physical properties on the temperature and we investigate the

e�ect of neglecting, or including, also the dependency of the mechanical properties on

the temperature. Accordingly, in Tab. 6 we report the combinations of the adopted

constitutive models with the temperature dependence of the ABS mechanical properties.
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Constitutive model Physical properties Young's modulus Yield stress

Linear elastic - 1 (LE1) Variable Constant (Ta) -
Linear elastic - 2 (LE2) Variable Variable (Fig. 7.5) -
Elasto plastic - 1 (EP1) Variable Variable (Fig. 7.5) Constant (Ta)
Elasto plastic - 2 (EP2) Variable Variable (Fig. 7.5) Variable (Fig. 7.6)

Table 7.6: Constitutive models adopted for the considered ABS �lament. For each
constitutive model we remark the temperature dependence of the physical and the
mechanical properties. Ta represents the ambient temperature

7.0.7 Validation

To validate the developed numerical framework, we compare the Z-axis displacements obtained

from the simulation to the ones obtained from experimental measurements. The reference

value for z-axis displacements has been assumed as the theoretical one from the CAD model.

In particular, for the planar spring we consider the experimental results of four samples, while

for the bridge model we consider two experimental tests, but, due to the high repeatability of

the printing, we compare the numerical prediction with just one experimental measurement.

S-1

S-2

S-3

S-4

S-5

S-6
S-7

S-8

S-9
S-10

S-11

B-7

B-12

B-4

B-2
B-1

B-3

B-5
B-6

B-8
B-9

B-10
B-11

(a) (b)

Figure 7.9: Test points for the evaluation of the error between simulation results
and experimental measurements

For each model we evaluate the numerical errors in speci�c test points. Figure 7.9 shows

the test points for both the planar spring (a) and the bridge model (b).

The error evaluation is slightly di�erent between the two models. For the planar spring,

in each test point, we consider the Z-axis displacements measured on each sample uiz and we

calculate the average Z-axis displacement umz . For the bridge model, instead, in each test

point we consider the Z-axis displacement uz measured on a single sample. Then, we evaluate

the point-wise Z-axis displacement errors. For the planar spring we calculate the di�erence

between the average of the experimental measurement and the simulation displacement umz −
uhz , then we estimate the relative error (umz − uhz )/umz . For the bridge model the procedure is

very similar, except that umz is replaced by uz.

Finally, we estimate the global displacement error for each model calculating the coe�cient
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of variation CV of the obtained data:

CV =
SD

µ
, with: SD =

√∑
N (u∗z − uhz )2

N
, and µ =

∑
N u
∗
z

N
(7.12)

where SD is the standard deviation, µ is the arithmetic mean, N is the number of the test

points, and u∗z correspond to umz for the planar spring and to uz for the bridge model.

7.1 Results and discussion

7.1.1 Sensitivity analysis on simulation parameters

In this section we show the in�uence of the simulation parameters on the thermal and me-

chanical analysis results of the planar spring model. All the simulations have been carried out

on a Intel Core i7-6700 CPU 3.4 GHz machine, using 16GB of Ram and 4 CPUs.

Time step

We study the time step in�uence on simulation results considering the meshing strategy M-3

and the constitutive law EP2. Figure 7.10 shows the temperature and the Von Mises stress

�elds during the sequential element activation and at the end of the printing process, respec-

tively. In particular, we show the results obtained with the largest (∆t1) and the smallest

(∆t9) time steps. The element activation temperature should be equal to the extrusion tem-

perature Tf (see Tab. 7.3). We note that the adopted time step strongly in�uences the

activation temperature: in fact, using the time step ∆t9, the activation temperature is close

to Tf , while with the time step ∆t1 the activation temperature is less than Tf/2.

Dt1 = 8 sec Dt9 = 0.03125 sec

Nodal Temperature [°C]

238.7°C110.4°C

Time Step

Von Mises Stress [MPa]

Max:
12.38 MPa 

Max:
11.67 MPa 

Figure 7.10: Results of the thermal and the mechanical analysis obtained with the
smallest (∆t1) and the largest (∆t9) time steps. The time step choice has a signi�-
cant in�uence on the element activation temperature, while it has less in�uence on
the mechanical analyses results
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On the contrary, looking at the residual stress results, we appreciate a low di�erence

between the residual Von Mises stress obtained with time step ∆t1 and with time step ∆t9;

in both cases the stress distribution looks almost coincident, except on the corners of the

model where the time step ∆t9 allows to predict a stress gradient that is not well predicted

with the time step ∆t1. In Fig. 7.11 we show the detailed variation of the element activation

temperature and the residual stresses for increasing time steps. The activation temperature

di�erence is justi�ed observing that the average cooling rate of an ABS �lament, during a

standard FDM printing process, is close to 25 ◦C/s Bellehumeur et al. [2004], thus to capture

a temperature variation of 1 ◦C, it is necessary a time step lower than 0.04 s. Consequently,

adopting higher time steps, it does not allow to correctly capture the temperature �eld time

evolution during the deposition process.
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Figure 7.11: (a): decreasing of the activation temperature with increasing time
steps. (b): Von Mises stress (σvm) and stress tensor components (σij) variation
with time step.

Finally, in Fig. 7.12 we show the dependency of the computational time on the time step

for both the thermal and the mechanical analysis. We appreciate how the computational

time of the mechanical analysis carried out with the time step ∆t9 is 9 times higher than the

computational time obtained with time step ∆t1.
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Figure 7.12: Computational times variation (CPU time) with the time step. A
signi�cant increase in computational times is observed, in particular, for the me-
chanical analysis when ∆t is lower than 1 s.

According to this results, we can conclude that: (i) a small enough time step is mandatory

to evaluate the temperature distribution during the printing process; (ii) the residual stress

�eld at the end of the printing process is not signi�cantly in�uenced by the adopted time step;

(iii) the computational time is strongly in�uenced by the time step choice, in particular with

regard to the mechanical analyses with time steps below ∆t4.

Meshing strategy

We study the in�uence of the meshing strategy on simulation results with the constitutive law

EP2 and with the time step ∆t5. Figure 7.13(a) shows the layers of the sliced model, while

Figs. 7.13(b)-(f) show the adopted meshing strategies. The �lament height (i.e., the layer

height) hy is equal to 0.35 mm for the �rst layer and to 0.2 mm for the other layers, while the

�lament width is equal to 0.5 mm for each layer.

PHYSICAL LAYERS 

MESHING STRATEGY   M-4

Elements: 65400 Elements: 131200

0.35 mm
0.2 mm
0.2 mm
0.2 mm

MESHING STRATEGY   M-3

Elements: 16400

MESHING STRATEGY   M-1 MESHING STRATEGY   M-2

Elements: 1300

MESHING STRATEGY   M-5

Elements: 4100
(a) (b) (c)

(d) (e) (f)

Figure 7.13: Adopted meshing strategies for the planar spring simulation, according
to Tab. 7.5

In Fig. 7.14 we show the results of the thermal and the mechanical analyses obtained
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with the considered meshing strategies. In particular, we show the temperature during the

sequential element activation and the residual stresses at the end of the printing process. With

the meshing strategies M-3 and M-5, we obtain very similar results both in terms of element

activation temperature and in terms of maximum Von Mises stress; furthermore, the stress

�eld distribution is very similar for the two cases. Meshing strategy M-1, instead, presents

local modi�cations of the stress path in correspondence of the corners of the planar spring,

in comparison with meshing strategies M-3/5. Looking, in speci�c, at the bottom corner

of the model, we observe that the stress gradient obtained with the meshing strategy M-1

is signi�cantly lower from the one obtained with the meshing strategies M-3 and M-5. In

particular, the Von Mises stress di�erence between points A and B is equal to 0.67 MPa with

mesh M-1, to 4.02 MPa with mesh M-3, and to 4.13 MPa with mesh M-5. This discrepancy can

be justi�ed considering that the meshing strategy M-1 has a base dimension that is four times

the �lament width; instead meshes M-3 and M-5 are fully consistent with �lament dimensions.

Nodal      [°C]
Temperature MESHING STRATEGY   M-3

180.7°C

Von Mises 
Stress [MPa]

Max:
11.67 MPa 

181.9°C

MESHING STRATEGY   M-5

MESHING STRATEGY   M-3 MESHING STRATEGY   M-5

Max:
11.83 MPa 

MESHING STRATEGY   M-1

MESHING STRATEGY   M-1

173.4°C

Max:
11.15 MPa 

A

B

A

B

A

B

Figure 7.14: Temperature and Von Mises stress distribution obtained varying the
meshing strategy. Signi�cantly di�erent activation temperature is observed for
meshing strategies M-1 and M-3/5. Local modi�cations of the stress path can be
observed at the corners of the model, between meshing strategies M-1 and M-3/5

Finally, in Fig. 7.15 we show the dependence of the computational times on the number of

elements for both the thermal and the mechanical analyses. We observe that the computational

times have almost a linear behavior while increasing the number of elements.
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Figure 7.15: Computational times variation (CPU time) with increasing number of
elements. We appreciate a linear behavior of the computational times both for the
thermal and the mechanical analysis

In summary, the choice of the meshing strategy is not univocal. We have shown that a

�ner meshing strategy, fully consistent with the �lament dimensions, allows to predict with

more accuracy stress gradients, although the computational demand strongly increases. We

suggest to use a �ner meshing strategy for small models which require lower computational

costs and in which the local e�ect can signi�cantly a�ect the deformed shape of the part.

On the other hand, in large models, where the local e�ects are negligible in comparison with

the global dimensions of the part, we suggest to adopt a coarser meshing strategy to contain

computational costs.

Constitutive model

We study the in�uence of the constitutive model on simulation results with the meshing

strategy M-3 and with the time step ∆t5. Since the adopted physical properties are the same

for all the constitutive models, no variation is observed among the thermal analysis results.
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Von Mises Stress [MPa]

Von Mises Stress [MPa]

LINEAR ELASTIC – 1     (LE1) LINEAR ELASTIC – 1     (LE2)

ELASTO PLASTIC – 1     (EP1)

Max:
328 MPa 

Max:
229 MPa 

Max:
24.72 MPa 

(a) (b)

(c) (d)

Max:
11.85 MPa 

ELASTO PLASTIC – 2 (EP2)       

Figure 7.16: Von Mises stress at the end of the printing process obtained varying
the constitutive model. (a, b): yielding surface is not de�ned. (c): yielding surface
is not dependent on the temperature. (d): yielding surface is dependent on the
temperature. More details about the constitutive models are speci�ed in Table 6

In Fig. 7.16 we show the Von Mises stress �elds obtained at the end of the printing process.

Since the cooling process has not yet taken place, building plate and chamber temperature

are de�ned as in Tab. 7.3.

As discussed in Section 7.0.3 (see Fig. 7.6), for a given temperature the Von Mises stress

must not exceed the corresponding yield stress. The results of the analyses con�rm that the

constitutive models LE1 (a), LE2 (b) and EP1 (c) do not allow to obtain physically acceptable

values of the residual stresses. The only constitutive model that allows to achieve physically

acceptable residual stresses is the elasto plastic model EP2 with the yielding stress dependent

on the temperature (d).

7.1.2 Validation

In the present section we compare the displacements, obtained with our simulation scheme,

with the displacements obtained trough experimental tests. The samples have been measured

with a high precision laser scanner (Julight S.r.l.), with spatial and vertical resolution of 200

nm.

According to the results shown in Section 7.1.1, we have adopted a thermo-elasto-plastic

constitutive law for both models, but di�erent meshing strategies and time steps. The planar

spring, compared to the �lament dimensions, is a relatively small model in which the local

e�ects can signi�cantly a�ect the �nal results, therefore we have adopted meshing strategy

M-4 and time step ∆t6. Compared to the �lament dimensions, the bridge is a relatively large

model and the local e�ects are negligible, therefore we have adopted meshing strategy M-2

with time step ∆t3.

7.1.3 Planar spring

Figure 7.17 shows a samples of the planar spring after the detachment from the building plate;

in particular we notice the warpage e�ect at the corners of the structure. Figure 7.18 shows



7.1. Results and discussion 177

the vertical displacements of the upper surface of the four samples, obtained through the

experimental measurements.

(a) (b)

Figure 7.17: Planar spring model after the detachment from the building plate.
Warpage e�ect is appreciable at the corners of the component

We observe how the deformed shapes of the four samples are similar; in particular the high-

est displacements are found in correspondence of corner A where the printing process starts.

Furthermore on the sides along X direction the samples show a very similar displacements

path.

[mm] [mm]

[mm]

A A

A

SAMPLE 1 SAMPLE 2

SAMPLE 3
[mm]ASAMPLE 4

Figure 7.18: Experimental measurements of the vertical displacements of the upper
surface of the planar spring. Four di�erent samples have been considered

Since the part has been printed without raft, in order to simulate the part detachment

from the building plate, we need to identify the points of the samples which remain attached

at the building plate at the end of the cooling process. Knowing that the samples height is

equal to 0.95 mm (see Fig. 7.7(a)), it is su�cient to �nd the points of the upper surface with

Z coordinate equal to 0.95 mm.
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SAMPLE 1 SAMPLE 2

SAMPLE 3

ATTACHED POINTS DETACHED POINTS

SAMPLE 4

Figure 7.19: In blue, the points that remain attached to the building plate at the
end of the cooling process. In red, the points detached from the building plate at
the end of the cooling process

Figure 7.19 shows the points that remain attached to the building plate (blue points)

and the points which are detached from the building plate (red points). We notice that the

distributions are very similar for the four samples.

During the simulation of the printing process, we impose Dirichlet boundary conditions

setting all the displacements components to zero on the bottom nodes of the planar spring;

then, according with the results shown in Fig. 7.19, to simulate the part detachment after

the cooling process, we remove the constraints on the bottom nodes in correspondence to the

(experimentally observed) detached points. Since the detached points are not precisely the

same among the four samples, we assume a point to be detached if it is detached at least twice

on the four samples.

We underline that, in general, the physical points do not match the mesh nodes, so in

order to state which nodes have to be detached at the end of the cooling process, we need to

interpolate the measured points with the mesh nodes. We consider for each node a square

in�uence area with size equal to ly (i.e., the base size of the element) and centered in the node.

Then, we consider the points that belong to the in�uence area: if the number of the detached

points is grater than the number of the attached ones, the node is assumed to be detached.

In Fig. 7.20 we show the simulation results in terms of residual stresses at the end of the

printing process (a), at the end of the cooling process (b) and after the part detachment from

the building plate (c).
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Von Mises Stress [MPa] END OF COOLING PROCESS (b)
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Tc: 45°C
Pc: ON

(a) (b) Tp: 25°C
Tc: 25°C
Pc: ON

(c) Tp: 25°C
Tc: 25°C
Pc: OFF

Tp: Plate temperature
Tc: Chamber temperature
Pc: Plate constraints

LEGEND:

END OF PRINTING PROCESS

AFTER PART DETACHMENT

(a)

(c)Von Mises Stress [MPa] 

Figure 7.20: Von Mises stress at signi�cant time instants of the simulation. Residual
stresses increase during the cooling process due to the shrinking e�ect. Residual
stresses are, �nally, relaxed after the constraints removal

We observe a consistent increase of the residual stresses between the end of the printing

process and the end of the cooling process. This e�ect arises due to the constraints applied on

the bottom of the model that does not allow the planar shrinking of the part. After removing

the constraints corresponding to the detached nodes, we can appreciate the relaxation of the

residual stresses due to the release of the elastic strain energy.

Figure 7.21 shows the simulated Z axis displacements at the end of the printing process

(a), at the end of the cooling process (b) and after the part detachment from the building

plate (c), respectively. We appreciate how the model exhibits a shrinking e�ect during the

cooling process and how, after part detachment, the deformed shape is qualitatively similar

to the experimental results proposed in Fig. 7.18. In particular we can observe that the

maximum displacement is in correspondence of corner A; furthermore we appreciate the same

displacement path on the sides along X direction.
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Figure 7.21: Z axis displacements at signi�cant time instants of the simulation.
Displacements at the end of both printing and cooling process are of an order of
magnitude lower than the displacements after part detachment

Finally, we observe that the displacements after constraints removal are of an order of

magnitude greater than the displacements during printing and cooling process.

Test Point u1z u2z u3z u4z umz uhz umz − uhz
(umz − uhz )

umz
[µm] [µm] [µm] [µm] [µm] [µm] [µm] [%]

S-1 315 254 331 397 324 376 -52 -16.0
S-2 226 219 245 231 230 269 -39 -16.8
S-3 305 251 329 243 282 382 -100 -35.5
S-4 412 353 337 393 374 348 26 6.9
S-5 323 273 302 293 298 268 30 10.0
S-6 341 263 412 387 351 372 -21 -6.1
S-7 242 201 315 145 226 296 -70 -31.1
S-8 351 248 298 367 316 412 -96 -30.4
S-9 214 227 302 295 260 256 4 1.3
S-10 234 241 206 332 253 422 -169 -66.5
S-11 424 553 622 578 544 508 36 6.7

Table 7.7: Experimental and numerical values of Z axis displacements on the planar
spring test points. The errors are calculated between the average of the experimen-
tal results umz and simulation results uhz (measured in µm)

In Tab. 7.7 we report the Z axis displacements of the four samples in the test points.

We compare the experimental displacements with the numerical ones and we evaluate the

point-wise errors.

We can observe that the highest point-wise error is found in correspondence of point S-

10 (see Fig. 7.9) where the simulation overestimate the experimental displacement of about

66.5%. In test points S-3, S-7, and S-8 the error is around 30%, while in the other test points
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is always below 20%.

Finally, from the results of Tab. 7.7, we obtain the following coe�cient of variation:

CV = 23.5%

Looking at the point-wise errors we notice that the larger errors are caused by an overesti-

mation of the displacements. The source of this error must be sought in the adopted detach-

ment procedure (see Section 7.0.4). The real detaching process occurs when the stresses exceed

the adhesion force, thus part of the strain energy is spent to break the constraint generated

by the adhesion force. In the simulated detachment process, instead, no dissipation of strain

energy occurs since constraints are simply removed in correspondence of the detached points

and, therefore, the numerical displacements exceed the experimental ones. Finally, another

possible source of error may consists in a non-perfect matching between the physical detached

points and the �nite element detached nodes.

7.1.4 Bridge model

The bridge model is signi�cantly di�erent from the planar spring, since, even if the base sizes

are comparable, the height of the bridge is an order of magnitude larger than the planar spring

height. The bridge has been printed using rafts; furthermore the printing process involves two

important issues:

o The in�ll path of the model is 30%, meaning that not all the elements will be activated

during the simulation;

o The printing process needs support structures among the pillars. In the proposed frame-

work we assume that, during the printing and the cooling process, the component is

perfectly attached to the supports; as a consequence we do not simulate the printing

process of the support structures, but we, simply, replace them with perfect clamps in

correspondence of the bottom parts of the deck among the pillars (which would be in

contact with the support structures). Besides leading to a much faster simulation, this

approach is consistent with the physical process because the last layers of the supports

are larger than the underlying layers and larger than the bridge deck; moreover in these

layers the adopted �lament dimensions are larger than in the other layers. This solution

increases the sti�ness of the supports, favoring the clamping of the bridge deck with the

support structures.

Figure 7.22 shows the sample before and after the supports removal. At the end of the cool-

ing process the bridge is perfectly attached to the support structures; after support removal,

the bridge shows a remarkable warpage. Furthermore, we observe an anomalous indentation

between the top of the external pillars and the deck of the bridge. The physical supports

removal can be considered an instantaneous process, therefore our simulated detaching proce-

dure (Section 7.0.4) is fully consistent with the physics of the problem.
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BRIDGE BEFORE SUPPORTS REMOVAL

BRIDGE AFTER SUPPORTS REMOVAL

Raft

Support
structures

Anomalous
indentation

Anomalous
indentation

Figure 7.22: Bridge model before and after the supports removal. A warpage e�ect
is clearly evident on the upper surface of the model after support removal

We observe that the deformed structure is symmetric with respect to both X-Z and Y-Z

plane; moreover, when the bridge is positioned on a horizontal planar surface, only the two

central pillars touch the planar surface, while the other pillars result detached. During the

simulation of the printing process, we impose Dirichlet boundary conditions setting all the

displacements components to zero on the bottom nodes; then, during the detachment simu-

lation we have removed all the constraints except on the two central pillars. We remark that

this assumption does not a�ect in any way the �nal deformed shape of the model, which could

also be obtained with other constraint con�gurations and imposing a rigid motion. In Figure

7.23 we show the results of the experimental measurements of the bridge.

1.55 mm
101.16 mm

104.89 mm
(a)

(b)

Figure 7.23: Experimental measurements of the bridge model. (a): XZ surface of
the model; (b) detail of the upper surface of the model

We present the XZ surface (a) and a detail of X-axis and Z-axis displacements of the

upper surface of the bridge (b). In Fig. 7.24 we show the simulation results in terms of

residual stresses at the end of the printing process (a), at the end of the cooling process (b),

and after the supports removal (c). During the cooling process residual stresses signi�cantly

increase due to the shrinking e�ect and the presence of the constraints. After support removal

from the building plate, the residual stresses partially relax and part deformation takes place.

Furthermore, we can appreciate how the highest stresses are located in correspondence of the

interface between the pillars and the deck.
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Von Mises Stress [MPa] END OF PRINTING PROCESS END OF COOLING PROCESS

AFTER SUPPORTS REMOVALVon Mises Stress [MPa] 
Tp: 120°C
Tc: 45°C
Pc: ON

(a) (b) Tp: 25°C
Tc: 25°C
Pc: ON

(c) Tp: 25°C
Tc: 25°C
Pc: OFF

Tp: Plate temperature
Tc: Chamber temperature
Pc: Plate constraints

LEGEND:

(b)(a)

(c)

Figure 7.24: Von Mises stress at signi�cant time instants of the simulation. Residual
stresses increase during the cooling process due to the shrinking e�ect. Residual
stresses are, �nally, relaxed after the constraints removal

Figure 7.25 shows the numerical Z axis displacements at the end of the printing process

(a), at the end of the cooling process (b), and after the supports removal (c). Looking at the

displacements, we appreciate a slight shrinking e�ect after the cooling process and we notice

that the deformed shape after support removal is qualitatively similar to the experimental one.

Furthermore, we observe that the simulation is able to predict also the anomalous indentation

between the external pillars and the deck.

Z - Displacements [mm] END OF PRINTING PROCESS END OF COOLING PROCESS

AFTER SUPPORTS REMOVALZ - Displacements [mm] 
Tp: 120°C
Tc: 45°C
Pc: ON

(a) (b) Tp: 25°C
Tc: 25°C
Pc: ON

(c) Tp: 25°C
Tc: 25°C
Pc: OFF

Tp: Plate temperature
Tc: Chamber temperature
Pc: Plate constraints

LEGEND:

(b)(a)

(c)

Figure 7.25: Z axis displacements at signi�cant time instants of the simulation. A
shrinking e�ect is detected during the cooling process and the indentation between
the external pillars and the deck of the bridge is evident in the simulation

Fig. 7.26 shows the anomalous indentation in correspondence of the interface between the

external pillars and the deck of the bridge.



7.1. Results and discussion 184

SIMULATION PREDICTIONREAL BRIDGE MODEL

Figure 7.26: Detail of the indentation between the top of the external pillars and
the deck of the bridge. The simulation is able to predict this anomalous e�ect

As �rst quantitative comparison between simulation and experimental results, we study

the characteristics of the upper surface of the bridge after support removal. In Fig. 7.27 we

show the X-axis (a) and the Z-axis (b) displacements of XZ surface of the bridge. To analyze

the upper surface of the part, we consider the Z-axis displacements in correspondence of the

center and the X-axis shortening.

X - Displacements [mm] AFTER SUPPORTS REMOVAL

Z - Displacements [mm] 

101.25 mm

1.64 mm
105.34 mm

AFTER SUPPORTS REMOVAL

(a)

(b)

Figure 7.27: X axis and Z axis displacements of the XZ surface of the bridge

The relative displacement error between numerical and experimental measurements is equal

to 5.9%. X-axis shortening is calculated starting from the nominal length of the bridge which

is equal to 102.5 mm (see Fig. 7.7b)). The relative shortening error between numerical and

experimental measurements is equal to 6.7%. An analogous procedure is adopted to evaluate

the X-axis elongation of the bottom surface of the bridge. In this case, the relative error

between numerical and experimental measurements is equal to 18.8%.

In Table 7.8 we report the Z axis displacements of the considered the test points. The

experimental displacements are compared with the numerical ones and the point-wise errors

are calculated. All the errors are below 20% and in all the points the simulation overestimate

the numerical displacements. Furthermore it is interesting to notice that the errors of the

bottom surface test points B-1:B-6 (see Fig. 7.9) are higher than 10%, while the errors of the

top surface test points B-7:B12 are lower than 10%.
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Test Point uz uhz uz − uhz
(uz − uhz )

uz
[µm] [µm] [µm] [%]

B-1 1824 2074 -250 -13.7
B-2 961 1143 -182 -18.9
B-3 553 650 -97 -17.5
B-4 548 639 -91 -16.6
B-5 984 1136 -152 -15.4
B-6 1831 2023 -192 -10.5
B-7 1417 1469 -52 -3.7
B-8 851 874 -23 -2.7
B-9 409 437 -28 -6.8
B-10 413 427 -14 -3.4
B-11 841 855 14 -1.7
B-12 1402 1444 -42 -3.0

Table 7.8: Experimental and numerical measurements of Z axis displacements on
bridge model test points. The errors are calculated between the experimental results
uz and simulation results uhz (measured in µm)

Finally, we obtain the following coe�cient of variation:

CV = 12.2%

The global simulation error is lower than the one obtained for the planar spring. This

result was expected considering that the detaching procedure, in this case, is more repeatable

and thus, more consistent with the physical one.

7.2 Conclusions

In this work, using the commercial software Abaqus, we have developed a FEA framework to

simulate the Fused Deposition Modeling process. The simulation framework has been analyzed

in detail, with a particular focus on the sequential element activation scheme; furthermore,

we have investigated the in�uence of the simulation parameters on the results of the analysis.

We concluded that:

o The time step has a large in�uence on the the local temperature distribution during the

printing process, while it has a minor in�uence on the mechanical analysis results;

o The meshing strategy is important to reproduce the real printing process. A �ner mesh-

ing strategy is suggested in case of small models to investigate local e�ects, while a

coarser meshing strategy is recommended in case of large models in which the local

e�ects are negligible, where small and large refers to the dimensions of the models in

comparison with the �lament dimensions;

o The constitutive model must be calibrated with accuracy. In particular, temperature

dependency of Young's modulus and yield stress limit must be taken into account in

order to obtain physically acceptable results.
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With the proposed framework we have simulated two case studies: a planar spring and

a bridge model, studying and adopting, for the simulation parameters, a suitable trade-o�

between computational time and results accuracy. According to the real printing process, two

di�erent detachment procedures have been considered and the limitations of each model have

been discussed in detail. We have validated the simulation outcomes through a comparison

with experimental tests. We are able to capture correctly the deformed shape of the models,

furthermore, 23% and 12% vertical displacement errors have been detected for the planar

spring and the bridge model, respectively. These errors can be justi�ed by the adopted simpli-

�ed modeling assumptions but also by measurement errors. We showed that the temperature

dependency of some physical properties of the extruded �lament, as the yielding stress and

Young's modulus, must be considered to obtain physically acceptable results and cannot be

neglected when performing FDM process simulations.

7.3 Limitations

The major limitation of this study lies in the execution of numerical simulations without

considering any type of adhesion model between the �rst layer and the building plate. The

introduction of any type of adhesion model requires the execution of complex experimental

tests, carried out at di�erent temperatures, to measure the adhesion force between the plate

and the �lament. The procedure proposed in the present work is able to capture the deformed

shape of the printed component and obtain an acceptable agreement with experimental data.



Chapter 8

Final remarks

In this thesis we have faced the simulation of two widely di�used 3D printing technologies:

Powder Bed Fusion (PBF) and Fused Deposition Modeling (FDM).

The �rst part of this work is dedicated to PBF. We have analyzed the physical aspects

involved within this very complex technology; in particular we have focused on phase-change

modeling and thermo-�uid dynamic evolution of the melt pool which in�uence shape and

mechanical properties of the �nal part. From a literature review it merged that there are

two levels to simulate PBF process: the powder level and the continuum level; advantages

and disadvantages of each technology has been discussed in detail. In this thesis we have

investigated both the simulation approaches.

Powder level simulations aim to predict melt pool evolution and stability during the print-

ing process. The only method which has revealed able to simulate such complex process is the

lattice Boltzmann method (LBM). Starting from the kinetic theory of gases we have derived

the Boltzmann equation and, �nally, the lattice Boltzmann scheme; moreover we have proved

that LBM mathematically represents a non conventional method to solve Navier-Stokes and

Advection-Di�usion equations. We have adopted the lattice Boltzmann method to solve some

interesting thermo �uid dynamic problems, including droplet wetting at variable temperatures

and solid-liquid phase change. The next step of our work will be to include the phase change

within the thermo-�uid dynamic models so to reproduce the entire melting process.

Continuum level simulations are used to predict temperature distributions, residual stresses

and deformations on the �nal part. In this work we have set up a �nite element scheme based

on sequential element activation in which the laser scan path is accurately taken into account

as well as the laser power distribution. We have used the developed scheme to simulate the

heat source interaction with a domain constituted of two layers of powder. In particular we

have studied the in�uence of several process parameters on temperature and residual stress

distributions, showing that these distributions are dependent on laser energy density. Finally,

using a coarsest meshing strategy, we have simulated an entire part produced with SLM and

we have evaluated the displacements after detaching from the building plate.

The second part of this thesis is dedicated to Fused Deposition Modeling (FDM). We

have analyzed the physical aspects involved within this technology with particular attention

to the bonding between the �laments and the adhesion force between the plastic �laments

and the building plate. Like for PBF, also in case of FDM, the process can be simulated

at the �lament/�ber level and at the component level. In this work we have developed an

187
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uncoupled thermo-mechanical �nite element method, based on sequential element activation,

to reproduce with high �delity FDM printing process starting from the informations contained

in the G-Code �le. The simulations have been validated trough a comparison between the

numerical displacements and the ones obtained trough experimental tests. Next step of our

work will be to include the adhesion force in our framework.

In conclusion in this thesis we have studied in detail the critical aspects of PBF and FDM;

moreover we have set up a practical, even if approximated framework, to predict residual

stress and displacement �elds in 3D printed parts. In case of SLM the predicted displacements

revealed to be consistent with the order of magnitude of literature results. In case of FDM,

instead, the comparison with the experimental data revealed the method to be able to predict

the displacements with good accuracy. The authors hope that this thesis could be a good

instrument to have a better comprehension of AM processes and to set up a practical and

e�cient simulation framework.



Bibliography

M. Cotteleer and J. Joyce. 3d opportunity: Additive manufacturing paths to performance,

innovation, and growth. Deloitte Review, 14:5�19, 2014.

Wohlers Associates. Wohlers Report 2017 3D Printing and Additive Manufacturing State of

the Industry. Wohlers Associates, 2017.

S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, and F. Walther. In�uence of process-

induced microstructure and imperfections on mechanical properties of alSi12 processed by

selective laser melting. Journal of Materials Processing Technology, 221:205�213, 2015.

K. Prashanth, S. Scudino, H. Klauss, K. Surreddi, L. Löber, Z. Wang, A. Chaubey, U. Kühn,

and J. Eckert. Microstructure and mechanical properties of al�12Si produced by selective

laser melting: E�ect of heat treatment. Materials Science and Engineering: A, 590:153�160,

2014.

C. Song, Y. Yang, Y.Wang, D. Wang, and J. Yu. Research on rapid manufacturing of CoCrMo

alloy femoral component based on selective laser melting. The International Journal of

Advanced Manufacturing Technology, 75(1-4):445�453, 2014.

A. Takaichi, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu,

A. Chiba, and N. Wakabayashi. Microstructures and mechanical properties of Co�29Cr�

6Mo alloy fabricated by selective laser melting process for dental applications. Journal of

the mechanical behavior of biomedical materials, 21:67�76, 2013.

B. Vrancken, L. Thijs, J. Kruth, and J. Van Humbeeck. Heat treatment of Ti6Al4v produced

by Selective Laser Melting: Microstructure and mechanical properties. Journal of Alloys

and Compounds, 541:177�185, 2012.

M. Simonelli, Y. Tse, and C. Tuck. E�ect of the build orientation on the mechanical properties

and fracture modes of SLM Ti�6Al�4V. Materials Science and Engineering: A, 616:1�11,

2014.

Q. Jia and D. Gu. Selective laser melting additive manufacturing of Inconel 718 superalloy

parts: Densi�cation, microstructure and properties. Journal of Alloys and Compounds, 585:

713�721, 2014.

D. Zhang, W. Niu, X. Cao, and Z. Liu. E�ect of standard heat treatment on the microstructure

and mechanical properties of selective laser melting manufactured Inconel 718 superalloy.

Materials Science and Engineering: A, 644:32�40, 2015.

189



BIBLIOGRAPHY 190

AM. Prokhorov. Laser Heating of Metals. CRC Press, 2018.

I. Sani. Selective Laser Melting process simulation: advancements towards a cost-e�ective

model. PhD thesis, 2017.

Y. Shi and Y. Zhang. Simulation of random packing of spherical particles with di�erent size

distributions. In ASME 2006 International Mechanical Engineering Congress and Exposi-

tion, pages 539�544, 2006.

T. Scharowsky, A. Bauereiÿ, R. Singer, and C. Körner. Observation and numerical simulation

of melt pool dynamic and beam powder interaction during selective electron beam melting.

In Proceedings of the Solid Freeform Fabrication Symposium, pages 815�820, 2012.

E. Attar and C. Körner. Lattice boltzmann method for dynamic wetting problems. Journal

of colloid and interface science, 335(1):84�93, 2009.

A. Block-Bolten and TW. Eagar. Metal vaporization from weld pools. Metallurgical Transac-

tions, 15(3):461�469, 1984.

N. Aboulkhair, N. Everitt, T. Ashcroft, and C. Tuck. Reducing porosity in alsi10mg parts

processed by selective laser melting. Additive Manufacturing, 1:77�86, 2014.

G. Strano, L. Hao, R. Everson, and K. Evans. Surface roughness analysis, modelling and

prediction in selective laser melting. Journal of Materials Processing Technology, 213(4):

589�597, 2013.

M. Jamshidinia and R. Kovacevic. The in�uence of heat accumulation on the surface rough-

ness in additive manufacturing by electron beam melting (ebm). In Proceedings-ASPE 2014

Spring Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufactur-

ing, pages 45�50, 2014.

L. Papadakis, A. Loizou, J. Risse, and J. Schrage. Numerical computation of component shape

distortion manufactured by selective laser melting. Procedia CIRP, 18:90�95, 2014.

S. Afazov, W. Denmark, B. Toralles, A. Holloway, and A. Yaghi. Distortion prediction and

compensation in selective laser melting. Additive Manufacturing, 17:15�22, 2017.

C. Körner, A. Bauereiÿ, and E. Attar. Fundamental consolidation mechanisms during selective

beam melting of powders. Modelling and Simulation in Materials Science and Engineering,

21(8):085011, 2013.

R. Ammer, M. Markl, U. Ljungblad, C. Körner, and U. Rüde. Simulating fast electron beam

melting with a parallel thermal free surface Lattice Boltzmann method. Computers and

Mathematics with Applications, 67(2):318�330, 2014a.

M. Markl, A. Bauereiÿ, A. Rai, and C. Körner. Numerical investigations of selective elec-

tron beam melting on the powder scale. In Proceedings of the Fraunhofer Direct Digital

Manufacturing Conference, 2016.



BIBLIOGRAPHY 191

W. King, A. Anderson, R. Ferencz, N. Hodge, C. Kamath, and S. Khairallah. Overview

of modelling and simulation of metal powder bed fusion process at Lawrence Livermore

National Laboratory. Materials Science and Technology, 31(8):957�968, 2015.

A. Hussein, L. Hao, C. Yan, and R. Everson. Finite element simulation of the temperature

and stress �elds in single layers built without-support in selective laser melting. Materials

& Design (1980-2015), 52:638�647, 2013.

C. Li, J. Liu, X. Fang, and Y. Guo. E�cient predictive model of part distortion and residual

stress in selective laser melting. Additive Manufacturing, 17:157�168, 2017.

C. Li, C. Fu, Y. Guo, and F. Fang. A multiscale modeling approach for fast prediction of

part distortion in selective laser melting. Journal of Materials Processing Technology, 229:

703�712, 2016a.

C. Li, Y. Guo, X. Fang, and F. Fang. A scalable predictive model and validation for residual

stress and distortion in selective laser melting. CIRP Annals, 2018.

Q. Zou and X. He. On pressure and velocity boundary conditions for the Lattice Boltzmann

BGK model. Physics of Fluids, 9(6):1591�1598, 1997.

U. Ghia, K. Ghia, and C. Shin. High Re solutions for incompressible �ow using the Navier-

Stokes equations and a multigrid method. Journal of Computational Physics, 48(3):387�411,

1982.

C. Liu, K. Lin, C. Mai, and C. Lin. Thermal boundary conditions for thermal Lattice Boltz-

mann simulations. Computers and Mathematics with Applications, 59(7):2178�2193, 2010.

R. Clever and F. Busse. Transition to time-dependent convection. Journal of Fluid Mechanics,

65(4):625�645, 1974.

X. Shan and H. Chen. Lattice boltzmann model for simulating �ows with multiple phases and

components. Physical Review, 47(3):1815, 1993.

X. He and G. Doolen. Thermodynamic foundations of kinetic theory and Lattice Boltzmann

models for multiphase �ows. Journal of Statistical Physics, 107(1-2):309�328, 2002.

N. Thürey, C. Körner, and U. Rüde. Interactive free surface �uids with the lattice Boltzmann

method. Technical Report05-4. University of Erlangen-Nuremberg, Germany, 2005.

J. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, et al. Exper-

imental characterization of the mechanical properties of 3d-printed ABS and polycarbonate

parts. Rapid Prototyping Journal, 23(4):811�824, 2017.

B. Rankouhi, S. Javadpour, F. Delfanian, and T. Letcher. Failure analysis and mechanical

characterization of 3d printed ABS with respect to layer thickness and orientation. Journal

of Failure Analysis and Prevention, 16(3):467�481, 2016.



BIBLIOGRAPHY 192

K. Weiss, N. Bagrets, C. Lange, W. Goldacker, and J. Wohlgemuth. Thermal and mechanical

properties of selected 3D printed thermoplastics in the cryogenic temperature regime. In

IOP Conference Series: Materials Science and Engineering, volume 102, page 012022. IOP

Publishing, 2015.

A. Bagsik, V. Schöppner, and E. Klemp. FDM part quality manufactured with Ultem* 9085.

In 14th international scienti�c conference on polymeric materials, volume 15, pages 307�315,

2010.

P. Gurrala and S. Regalla. Part strength evolution with bonding between �laments in fused

deposition modelling: This paper studies how coalescence of �laments contributes to the

strength of �nal FDM part. Virtual and Physical Prototyping, 9(3):141�149, 2014.

C. Bellehumeur, L. Li, Q. Sun, and P. Gu. Modeling of bond formation between polymer

�laments in the fused deposition modeling process. Journal of Manufacturing Processes, 6

(2):170�178, 2004.

R. Sanatgar, C. Campagne, and V. Nierstrasz. Investigation of the adhesion properties of

direct 3d printing of polymers and nanocomposites on textiles: E�ect of FDM printing

process parameters. Applied Surface Science, 403:551�563, 2017.

H. Xia, J. Lu, S. Dabiri, and G. Tryggvason. Fully Resolved Numerical Simulations of Fused

Deposition Modeling. Part I-Fluid Flow. arXiv preprint arXiv:1711.05940, 2017.

Y. Zhang and K. Chou. A parametric study of part distortions in fused deposition modelling

using three-dimensional �nite element analysis. Proceedings of the Institution of Mechanical

Engineers, Part B: Journal of Engineering Manufacture, 222(8):959�968, 2008.

Gammadot Rheology Testing And Consultancy. Acrylonitrile Butadiene Styrene thermal

properties, 2004. URL http://gammadot.com/Techzone/nexus/ABS/ABScp.htm.

P. Song, Z. Cao, Q. Meng, S. Fu, Z. Fang, Q. Wu, and J. Ye. E�ect of lignin incorporation

and reactive compatibilization on the morphological, rheological, and mechanical properties

of ABS resin. Journal of Macromolecular Science, Part B, 51(4):720�735, 2012.

J. Richeton, S. Ahzi, K. Vecchio, F. Jiang, and R. Adharapurapu. In�uence of temperature

and strain rate on the mechanical behavior of three amorphous polymers: characterization

and modeling of the compressive yield stress. International journal of solids and structures,

43(7-8):2318�2335, 2006.

A. Armillotta, M. Bellotti, and M. Cavallaro. Warpage of FDM parts: Experimental tests

and analytic model. Robotics and Computer-Integrated Manufacturing, 50:140�152, 2018.

ASTM. Standard terminology for additive manufacturing technologies. ASTM International,

2012.

H. Lipson and M. Kurman. Fabricated: The new world of 3D printing. John Wiley & Sons,

2013.



BIBLIOGRAPHY 193

The Economist. Mastering the Fourth Industrial Revolution. The Economist Newspaper

Limited, 2016.

B. Mueller. Additive manufacturing technologies�Rapid prototyping to direct digital manu-

facturing. Assembly Automation, 32(2), 2012.

E. Atzeni and A. Salmi. Economics of additive manufacturing for end-usable metal parts. The

International Journal of Advanced Manufacturing Technology, 62(9):1147�1155, 2012.

S. Ahn, D. Chun, and W. Chu. Perspective to green manufacturing and applications. Inter-

national Journal of Precision Engineering and Manufacturing, 14(6):873�874, 2013.

F. Auricchio and S. Marconi. 3D printing: clinical applications in orthopaedics and trauma-

tology. EFORT open reviews, 1(5):121�127, 2016.

The Economist. A printed smile - 3D printing is coming of age as a manufacturing technique.

https://www.economist.com/science-and-technology/2016/04/28/a-printed-smile,

2016. [Online; accessed 31-July-2018].

M. Rombouts. Selective Laser Sintering/Melting of Iron-Based Powders. PhD thesis, 2006.

S.Bremen, W. Meiners, and A. Diatlov. Selective laser melting. Laser Technik Journal, 9(2):

33�38, 2012.

L. Murr, S. Gaytan, D. Ramirez, E. Martinez, J. Hernandez, K. Amato, P.Shindo, F. Medina,

and R. Wicker. Metal fabrication by additive manufacturing using laser and electron beam

melting technologies. Journal of Materials Science & Technology, 28(1):1�14, 2012.

M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow. Direct selective laser sintering

of metals. Rapid Prototyping Journal, 1(1):26�36, 1995.

Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng. The microstructure and mechanical

properties of deposited-IN718 by selective laser melting. Journal of Alloys and Compounds,

513:518�523, 2012.

J. Kruth, G. Levy, F. Klocke, and T. Childs. Consolidation phenomena in laser and powder-

bed based layered manufacturing. CIRP annals, 56(2):730�759, 2007.

I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov. Single track formation in selective

laser melting of metal powders. Journal of Materials Processing Technology, 210(12):1624�

1631, 2010.

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J-P. Kruth. A study of the

microstructural evolution during selective laser melting of TI6Al4V. Acta Materialia, 58

(9):3303�3312, 2010.

P. Mercelis and J-P. Kruth. Residual stresses in selective laser sintering and selective laser

melting. Rapid Prototyping Journal, 12(5):254�265, 2006.

L. Andrews and R. Phillips. Laser beam propagation through random media, volume 152. SPIE

press Bellingham, WA, 2005.



BIBLIOGRAPHY 194

M. Markl and C. Körner. Multiscale modeling of powder bed�based additive manufacturing.

Annual Review of Materials Research, 46:93�123, 2016.

D. Rosenthal. Mathematical theory of heat distribution during welding and cutting. Welding

Journal, 46:20, 1941.

D. Rosenthal. The theory of moving sources of heat and its application to metal treatments.

Transactions of the ASME, 46:852, 1946.

H. Cline and T. Anthony. Heat treating and melting material with a scanning laser or electron

beam. Journal of Applied Physics, 48(9):3895�3900, 1977.

R. Brockmann, K. Dickmann, P. Geshev, and K. Matthes. Calculation of laser-induced tem-

perature �eld on moving thin metal foils in consideration of Stefan problem. Optics & Laser

Technology, 35(2):115�122, 2003.

S. Kou, S. Hsu, and R. Mehrabian. Rapid melting and solidi�cation of a surface due to a

moving heat �ux. Metallurgical Transactions, 12(1):33�45, 1981.

P. Cheng and S. Lin. An analytical model for the temperature �eld in the laser forming of

sheet metal. Journal of Materials Processing Technology, 101(1-3):260�267, 2000.

A. Pinkerton and L. Li. Modelling the geometry of a moving laser melt pool and deposition

track via energy and mass balances. Journal of Physics, 37(14):1885, 2004.

T. Debroy and S. David. Physical processes in fusion welding. Reviews of modern physics, 67

(1):85, 1995.

T. Bergman, F. Incropera, D. DeWitt, and A. Lavine. Fundamentals of heat and mass transfer.

John Wiley & Sons, 2011.

S. Bland and N. Aboulkhair. Reducing porosity in additive manufacturing. Metal Powder

Report, 70(2):79�81, 2015.

K. Vafai. Handbook of porous media. Crc Press, 2015.

J. Maxwell. Electricity and Magnetism Clarendon Press, 1873.

A. Luikov, A. Shashkov, L. Vasiliev, and Y. Fraiman. Thermal conductivity of porous systems.

International Journal of Heat and Mass Transfer, 11(2):117�140, 1968.

Y. Chiew and E. Glandt. The e�ect of structure on the conductivity of a dispersion. Journal

of Colloid and Interface Science, 94(1):90�104, 1983.

Z. Yinping and L. Xingang. Numerical analysis of e�ective thermal conductivity of mixed

solid materials. Materials & Design, 16(2):91�95, 1995.

H. Kou, K. Lu, and C. Yu. E�ective thermal conductivity of composite material with spherical

inclusions in orthorhombic structure. Computers & structures, 53(3):569�577, 1994.



BIBLIOGRAPHY 195

N. Tolochko, M. Arshinov, A. Gusarov, V. Titov, T. Laoui, and l. Froyen. Mechanisms of

selective laser sintering and heat transfer in ti powder. Rapid prototyping journal, 9(5):

314�326, 2003.

Y. Zeldovich and Y. Raizer. Physics of shock waves and high-temperature hydrodynamic phe-

nomena. Courier Corporation, 2012.

A. Klassen, A. Bauereiÿ, and C. Körner. Modelling of electron beam absorption in complex

geometries. Journal of Physics, 47(6):065307, 2014.

D. Swinehart. The beer-lambert law. Journal of chemical education, 39(7):333, 1962.

N. Tolochko, Y. Khlopkov, S. Mozzharov, M. Ignatiev, T. Laoui, and V. Titov. Absorptance

of powder materials suitable for laser sintering. Rapid Prototyping Journal, 6(3):155�161,

2000.

A. Gusarov and J. Kruth. Modelling of radiation transfer in metallic powders at laser treat-

ment. International Journal of Heat and Mass Transfer, 48(16):3423�3434, 2005.

X. Wang, T. Laoui, J. Bonse, J. Kruth, B. Lauwers, and L. Froyen. Direct selective laser

sintering of hard metal powders: experimental study and simulation. The International

Journal of Advanced Manufacturing Technology, 19(5):351�357, 2002.

A. Gusarov and I. Smurov. Modeling the interaction of laser radiation with powder bed at

selective laser melting. Physics Procedia, 5:381�394, 2010.

D. Drouin, A. Couture, J. Réal, D. Dany, X. Tastet, V. Aimez, and R. Gauvin. CASINO

V2. 42�A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and

Microanalysis Users. Scanning, 29(3):92�101, 2007.

G. Comini, S. Del Guidice, R. Lewis, and O. Zienkiewicz. Finite element solution of non-linear

heat conduction problems with special reference to phase change. International Journal for

Numerical Methods in Engineering, 8(3):613�624, 1974.

D. Chatterjee and S. Chakraborty. An enthalpy based Lattice Boltzmann model for di�usion

dominated solid liquid phase transformation. Physics Letters, 341(1-4):320�330, 2005.

M. Eshraghi and S. Felicelli. An implicit Lattice Boltzmann model for heat conduction with

phase change. International Journal of Heat and Mass Transfer, 55(9-10):2420�2428, 2012.

Y. Cao, A. Faghri, and W.Chang. A numerical analysis of Stefan problems for generalized

multi-dimensional phase-change structures using the enthalpy transforming model. Inter-

national journal of heat and mass transfer, 32(7):1289�1298, 1989.

Dsego D. Celentano, E. Oñate, and S. Oller. A temperature-based formulation for �nite

element analysis of generalized phase-change problems. International Journal for Numerical

Methods in Engineering, 37(20):3441�3465, 1994.

T. Chen and Y. Zhang. Thermal modeling of metal powder-based selective laser sintering.

Proc. Solid Freeform Fabrication, pages 356�69, 2005.



BIBLIOGRAPHY 196

P. Meakin and R. Jullien. Restructuring e�ects in the rain model for random deposition.

Journal de Physique, 48(10):1651�1662, 1987.

TI Zohdi. Additive particle deposition and selective laser processing-a computational manu-

facturing framework. Computational Mechanics, 54(1):171�191, 2014.

F. Fowkes. Contact angle, wettability, and adhesion. ACS Publications, 1964.

M. Schrader. Young-dupre revisited. Langmuir, 11(9):3585�3589, 1995.

E. Bormashenko, R. Pogreb, G. Whyman, Y. Bormashenko, and M. Erlich. Vibration-induced

Cassie-Wenzel wetting transition on rough surfaces. Applied physics letters, 90(20):201917,

2007.

R. Ho�man. A study of the advancing interface. I. Interface shape in liquid�gas systems.

Journal of colloid and interface science, 50(2):228�241, 1975.

S. Schia�no and A. Sonin. Molten droplet deposition and solidi�cation at low weber numbers.

Physics of Fluids, 9(11):3172�3187, 1997a.

R. German. Supersolidus liquid phase sintering. I: Process review. International journal of

powder metallurgy, 26(1):23�34, 1990.

R. German. Powder metallurgy science. Metal Powder Industries Federation, 1984.

M. Pasandideh-Fard, Y. Qiao, S. Chandra, and J. Mostaghimi. Capillary e�ects during droplet

impact on a solid surface. Physics of �uids, 8(3):650�659, 1996.

P. Raiskinmäki, A. Koponen, J.Merikoski, and J.Timonen. Spreading dynamics of three-

dimensional droplets by the lattice-boltzmann method. Computational Materials Science,

18(1):7�12, 2000.

H. Huang, J. Thorne, M. Schaap, and M. Sukop. Proposed approximation for contact angles in

shan-and-chen-type multicomponent multiphase lattice boltzmann models. Physical Review

E, 76(6):066701, 2007.

E. Attar and C. Körner. Lattice boltzmann model for thermal free surface �ows with liquid�

solid phase transition. International Journal of Heat and Fluid Flow, 32(1):156�163, 2011.

S. Coriell, S. Hardy, and Cordes. Stability of liquid zones. Journal of Colloid and Interface

Science, 60(1):126�136, 1977.

N. Bezdenejnykh, J. Meseguer, and Perales. An experimental analysis of the instability of

nonaxisymmetric liquid bridges in a gravitational �eld. Physics of Fluids, 11(10):3181�

3185, 1999.

L. Rayleigh. Xvi. on the instability of a cylinder of viscous liquid under capillary force. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(207):

145�154, 1892.

S. Chandrasekar. Hydrodynamic and hydromagnetic stability. Claredron Press, 1970.



BIBLIOGRAPHY 197

S. Schia�no and A. Sonin. Formation and stability of liquid and molten beads on a solid

surface. Journal of �uid mechanics, 343:95�110, 1997b.

R. Roy and L. Schwartz. On the stability of liquid ridges. Journal of Fluid Mechanics, 391:

293�318, 1999.

T. Baer, R. Cairncross, P. Schunk, R. Randall, R. Rao, and P. Sackinger. A �nite element

method for free surface �ows of incompressible �uids in three dimensions. part ii. dynamic

wetting lines. International Journal for Numerical Methods in Fluids, 33(3):405�427, 2000.

P. Raiskinmäki, A. Shakib-Manesh, A. Jäsberg, A. Koponen, J. Merikoski, and J. Timonen.

Lattice-boltzmann simulation of capillary rise dynamics. Journal of statistical physics, 107

(1-2):143�158, 2002.

B. Ahrenholz, J. Tölke, P. Lehmann, A. Peters, A. Kaestner, M. Krafczyk, and W. Durner.

Prediction of capillary hysteresis in a porous material using lattice-boltzmann methods and

comparison to experimental data and a morphological pore network model. Advances in

Water Resources, 31(9):1151�1173, 2008.

A. Gusarov, I. Yadroitsev, P. Bertrand, and I. Smurov. Heat transfer modelling and stability

analysis of selective laser melting. Applied Surface Science, 254(4):975�979, 2007.

M. Zäh and S. Lutzmann. Modelling and simulation of electron beam melting. Production

Engineering, 4(1):15�23, 2010.

B. Cheng and K. Chou. Melt pool geometry simulations for powder-based electron beam addi-

tive manufacturing. In 24th Annual International Solid Freeform Fabrication Symposium-An

Additive Manufacturing Conference, Austin, TX, USA, pages 644�654, 2013.

B. Keene. Review of data for the surface tension of iron and its binary alloys. International

Materials Reviews, 33(1):1�37, 1988.

C. Chan, J. Mazumder, and M. Chen. Three-dimensional axisymmetric model for convection

in laser-melted pools. Material Scinece and Technology, 33(1):306�3011, 1987.

C. Chan, J. Mazumder, and M. Chen. E�ect of surface tension gradient driven convection

in a laser melt pool: Three-dimensional perturbation model. Journal of applied physics, 64

(11):6166�6174, 1988.

A. Robert and T. Debroy. Geometry of laser spot welds from dimensionless numbers. Metal-

lurgical and materials transactions, 32(5):941�947, 2001.

C. Qiu, C. Panwisawas, M. Ward, H. Basoalto, J. Brooks, and M. Attallah. On the role of

melt �ow into the surface structure and porosity development during selective laser melting.

Acta Materialia, 96:72�79, 2015.

M. Jamshidinia, F. Kong, and R. Kovacevic. Numerical modeling of heat distribution in the

electron beam melting® of Ti-6Al-4V. Journal of Manufacturing Science and Engineering,

135(6):061010, 2013.



BIBLIOGRAPHY 198

T. Boublík, V. Fried, and E. Hála. The Vapour Pressures of Pure Substances: Selected Values

of the Temperature Dependence of the Vapour Presses of Some Pure Substances in the

Normal and Low Pressure Region. 1973.

D. Geiger and Poirier. Transport phenomena in materials processing. the minerals. Metals

and Materials Society, 1994.

SI Anisimov. Vaporization of metal absorbing laser radiation. In 30 Years Of The Landau

Institute�Selected Papers, pages 14�15. World Scienti�c, 1996.

C. Knight. Theoretical modeling of rapid surface vaporization with back pressure. AIAA

journal, 17(5):519�523, 1979.

M. Von Allmen and A. Blatter. Laser-beam interactions with materials: physical principles

and applications, volume 2. Springer Science & Business Media, 2013.

F. Gürtler, M. Karg, K. Leitz, and M. Schmidt. Simulation of laser beam melting of steel

powders using the three-dimensional volume of �uid method. Physics Procedia, 41:881�886,

2013.

X. Shan and H. Chen. Simulation of nonideal gases and liquid-gas phase transitions by the

lattice boltzmann equation. Physical Review E, 49(4):2941, 1994.

S. Gong and P. Cheng. A lattice boltzmann method for simulation of liquid�vapor phase-

change heat transfer. International Journal of Heat and Mass Transfer, 55(17-18):4923�

4927, 2012.

L. Loh, C. Chua, W. Yeong, J. Song, M. Mapar, S. Sing, Z. Liu, and D. Zhang. Numerical

investigation and an e�ective modelling on the Selective Laser Melting (SLM) process with

aluminium alloy 6061. International Journal of Heat and Mass Transfer, 80:288�300, 2015.

E. Louvis, P. Fox, and C. Sutcli�e. Selective laser melting of aluminium components. Journal

of Materials Processing Technology, 211(2):275�284, 2011.

K. Osakada and M. Shiomi. Flexible manufacturing of metallic products by selective laser

melting of powder. International Journal of Machine Tools and Manufacture, 46(11):1188�

1193, 2006.

A. Bauereiÿ, T. Scharowsky, and C. Körner. Defect generation and propagation mechanism

during additive manufacturing by selective beam melting. Journal of Materials Processing

Technology, 214(11):2522�2528, 2014.

O. Cansizoglu, O. Harrysson, D. Cormier, H. West, and T. Mahale. Properties of ti�6al�4v

non-stochastic lattice structures fabricated via electron beam melting. Materials Science

and Engineering, 492(1-2):468�474, 2008.

M. Rombouts, L. Froyen, A. Gusarov, E. Bentefour, and C. Glorieux. Photopyroelectric

measurement of thermal conductivity of metallic powders. Journal of Applied physics, 97

(2):024905, 2005.



BIBLIOGRAPHY 199

F. Gürtler, M. Karg, M. Dobler, S. Kohl, I. Tzivilsky, and M. Schmidt. In�uence of powder

distribution on process stability in laser beam melting: analysis of melt pool dynamics

by numerical simulations. In Solid freeform fabrication symposium. SFF, Austin, pages

1099�1117, 2014.

J. Li, L. Li, and F. Stott. Thermal stresses and their implication on cracking during laser

melting of ceramic materials. Acta Materialia, 52(14):4385�4398, 2004.

K. Dai and L L. Shaw. Parametric studies of multi-material laser densi�cation. Materials

Science and Engineering, 430(1-2):221�229, 2006.

T. Krol, C. Seidel, J. Schilp, M. Hofmann, W. Gan, and M. Zaeh. Veri�cation of structural

simulation results of metal-based additive manufacturing by means of neutron di�raction.

Physics Procedia, 41:849�857, 2013.

M. Zaeh and G. Branner. Investigations on residual stresses and deformations in selective

laser melting. Production Engineering, 4(1):35�45, 2010.

N. Keller, F. Neugebauer, H. Xu, and V. Ploshikhin. Thermo-mechanical simulation of additive

layer manufacturing of titanium aerospace structures. In LightMAT Conference, volume 3,

2013.

C. Seidel, M. Zaeh, M. Wunderer, J. Weirather, T. Krol, and M. Ott. Simulation of the

Laser Beam Melting Process�Approaches for an E�cient Modelling of the Beam-material

Interaction. Procedia CIRP, 25:146�153, 2014.

C. Weisman. Welding handbook 1. Fundamentals of Welding, volume 1. Macmillan, 1976.

M.J. Cieslak. Fundamentals of welding - Cracking pheomena associated with welding, volume 6.

ASM Handbook, 2002.

J.C. Borland. Hot cracks in Welds. British Welding Journal, 7:558�559, 1960.

L. Carter, C. Martin, P. Withers, and M. Attallah. The in�uence of the laser scan strategy

on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy.

Journal of Alloys and Compounds, 615:338�347, 2014.

KF Walker, Q Liu, and M Brandt. Evaluation of fatigue crack propagation behaviour in

ti-6al-4v manufactured by selective laser melting. International Journal of Fatigue, 104:

302�308, 2017.

S. Siddique, M. Imran, and F. Walther. Very high cycle fatigue and fatigue crack propagation

behavior of selective laser melted alSi12 alloy. International Journal of Fatigue, 94:246�254,

2017.

X. He, S. Chen, and G. Doolen. A novel thermal model for the lattice boltzmann method in

incompressible limit. Journal of Computational Physics, 146(1):282�300, 1998.

R. Ammer, U. Rüde, M. Markl, V. Jüchter, and C. Körner. Validation experiments for LBM

simulations of electron beam melting. International Journal of Modern Physics, 25(12):

1441009, 2014b.



BIBLIOGRAPHY 200

V. Juechter, T. Scharowsky, R. Singer, and C. Körner. Processing window and evaporation

phenomena for Ti�6Al�4V produced by selective electron beam melting. Acta Materialia,

76:252�258, 2014.

M. Markl, R. Ammer, U. Rüde, and C. Körner. Numerical investigations on hatching pro-

cess strategies for powder-bed-based additive manufacturing using an electron beam. The

International Journal of Advanced Manufacturing Technology, 78(1-4):239�247, 2015.

M. Matsumoto, M. Shiomi, K. Osakada, and F. Abe. Finite element analysis of single layer

forming on metallic powder bed in rapid prototyping by selective laser processing. Interna-

tional Journal of Machine Tools and Manufacture, 42(1):61�67, 2002.

A. Foroozmehr, M. Badrossamay, and E. Foroozmehr. Finite element simulation of selective

laser melting process considering optical penetration depth of laser in powder bed. Materials

& Design, 89:255�263, 2016.

C. Li, J. Liu, and Y. Guo. Prediction of residual stress and part distortion in selective laser

melting. Procedia CIRP, 45:171�174, 2016b.

W. Yan, J. Smith, W. Ge, F. Lin, and W. Liu. Multiscale modeling of electron beam and

substrate interaction: a new heat source model. Computational Mechanics, 56(2):265�276,

2015.

C. Seidel and M. Zaeh. Multi-scale Modelling Approach for Contributing to Reduced Dis-

tortion in Parts Made by Laser-based Powder Bed Fusion. Procedia CIRP, 67:197�202,

2018.

E. Borel. Introduction géométrique à quelques théories physiques. Gauthier-Villars Paris, 1914.

C. Cercignani. Mathematical methods in kinetic theory. Springer, 1969.

C. Cercignani. On the Boltzmann equation for rigid spheres. Transport Theory and Statistical

Physics, 2(3):211�225, 1972.

C. Cercignani. Ludwig Boltzmann e la meccanica statistica, volume 4. La goliardica pavese,

1997.

H. Tang. Gauss Lemma. Proceedings of the American Mathematical Society, 35(2):372�376,

1972.

C. Cercignani, R. Illner, and M. Pulvirenti. The mathematical theory of dilute gases, volume

106. Springer Science & Business Media, 2013.

N. Bogoliubov. Problemy dinamicheskoi teorii v statisticheskoi �zike. Gostekhizdat, 1946.

H. Spohn. Boltzmann hierarchy and Boltzmann equation. In Kinetic Theories and the Boltz-

mann Equation, pages 207�220. Springer, 1984.

C. Cercignani. Theory and application of the Boltzmann equation. Scottish Academic Press,

1975.



BIBLIOGRAPHY 201

C. Cercignani. The Boltzmann equation. In The Boltzmann Equation and Its Applications,

pages 40�103. Springer, 1988.

H. Grad. The many faces of entropy. Communications on Pure and Applied Mathematics, 14

(3):323�354, 1961.

T. Carleman. Problemes mathématiques dans la théorie cinétique de gaz, volume 2. Almqvist

& Wiksell, 1957.

C. Cercignani. Are there more than �ve linearly-independent collision invariants for the Boltz-

mann equation? Journal of Statistical Physics, 58(5):817�823, 1990.

L. Boltzmann. Weitere studien über das wärmegleichgewicht unter gasmolekülen. In Kinetis-

che Theorie II, pages 115�225. Springer, 1870.

T. Carleman. Sur la théorie de l'équation intégrodi�érentielle de Boltzmann. Acta Mathemat-

ica, 60(1):91�146, 1933.

M. Gurtin and O. Williams. On the clausius-duhem inequality. Zeitschrift für Angewandte

Mathematik und Physik (ZAMP), 17(5):626�633, 1966.

D. Hilbert. Grundzüge einer allgemeinen Theorie der linearen integralgleichungen. Vierte Mit-

teilung. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-

Physikalische Klasse, 1906:157�228, 1906.

C. Cercignani. Rare�ed gas dynamics: from basic concepts to actual calculations, volume 21.

Cambridge University Press, 2000.

S. Chapman and T. Cowling. The mathematical theory of non-uniform gases: an account

of the kinetic theory of viscosity, thermal conduction and di�usion in gases. Cambridge

university press, 1970.

R. Agarwal, K. Yun, and R. Balakrishnan. Beyond Navier�Stokes: Burnett equations for �ows

in the continuum�transition regime. Physics of Fluids, 13(10):3061�3085, 2001.

H. Struchtrup. Failures of the Burnett and super-Burnett equations in steady state processes.

Continuum Mechanics and Thermodynamics, 17(1):43�50, 2005.

G. McNamara and G. Zanetti. Use of the Boltzmann equation to simulate lattice gas automata.

Physical Review Letters, 61(20):2332, 1988.

U. Frisch, D. D'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J-P. Rivet. Lattice

gas hydrodynamics in two and three dimensions. Technical report, Los Alamos National

Lab., NM (USA); Observatoire de Nice, 06 (France); Ecole Normale Superieure, 75-Paris

(France), 1986.

D. Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltzmann models: an introduction.

Springer, 2004.

X. He and L. Luo. Theory of the Lattice boltzmann method: From the Boltzmann equation

to the Lattice Boltzmann equation. Physical Review, 56(6):6811, 1997a.



BIBLIOGRAPHY 202

A. Ladd and R. Verberg. Lattice Boltzmann simulations of particle-�uid suspensions. Journal

of Statistical Physics, 104(5-6):1191�1251, 2001.

Z. Guo and T. Zhao. Lattice Boltzmann model for incompressible �ows through porous media.

Physical Review, 66(3):036304, 2002.

C. Teixeira, H. Chen, and D. Freed. Multi speed thermal Lattice Boltzmann method sta-

bilization via equilibrium under relaxation. Computer Physics Communications, 129(1-3):

207�226, 2000.

B. Palmer and D. Rector. Lattice Boltzmann algorithm for simulating thermal �ow in com-

pressible �uids. Journal of Computational Physics, 161(1):1�20, 2000.

D. Yu, R. Mei, L. Luo, and W. Shyy. Viscous �ow computations with the method of Lattice

Boltzmann equation. Progress in Aerospace Sciences, 39(5):329�367, 2003.

C. Körner, M. Thies, T. Hofmann, N. Thürey, and U. Rüde. Lattice Boltzmann model for free

surface �ow for modeling foaming. Journal of Statistical Physics, 121(1-2):179�196, 2005.

S. Geller, M. Krafczyk, J. Tölke, S. Turek, and J. Hron. Benchmark computations based on

Lattice Boltzmann, �nite element and �nite volume methods for laminar �ows. Computers

& Fluids, 35(8-9):888�897, 2006.

H. Zheng, C. Shu, and Y. Chew. A Lattice Boltzmann model for multiphase �ows with large

density ratio. Journal of Computational Physics, 218(1):353�371, 2006.

R. Huang, H. Wu, and P. Cheng. A new Lattice Boltzmann model for solid liquid phase

change. International Journal of Heat and Mass Transfer, 59:295�301, 2013.

X. He and L. Luo. A priori derivation of the Lattice Boltzmann equation. Physical Review,

55(6):R6333, 1997b.

E. Coddington. An introduction to ordinary di�erential equations. Courier Corporation, 2012.

A. Kuzmin. Multiphase simulations with lattice Boltzmann scheme. 2010.

Z. Guo, C. Zheng, and B. Shi. Discrete Lattice e�ects on the forcing term in the Lattice

Boltzmann method. Physical Review, 65(4):046308, 2002a.

N. Martys, X. Shan, and H. Chen. Evaluation of the external force term in the discrete

Boltzmann equation. Physical Review, 58(5):6855, 1998.

O. Burggraf. Analytical and numerical studies of the structure of steady separated �ows.

Journal of Fluid Mechanic, 24(1):113�151, 1966.

T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. Viggen. The Lattice

Boltzmann Method. Springer, 2017.

G. McNamara, A. Garcia, and B. Alder. Stabilization of thermal Lattice Boltzmann models.

Journal of Statistical Physics, 81(1-2):395�408, 1995.



BIBLIOGRAPHY 203

Z. Guo, B. Shi, and C. Zheng. A coupled Lattice BGK model for the Boussinesq equations.

International Journal for Numerical Methods in Fluids, 39(4):325�342, 2002b.

J. Boussinesq. Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique

et avec la théorie mécanique de la lumière, volume 2. Gauthier-Villars, 1903.

J. Latt. Choice of units in lattice Boltzmann simulations. Freely available online at

http://lbmethod. org/_media/howtos: lbunits. pdf, 2008.

P. Kao and R. Yang. Simulating oscillatory �ows in Rayleigh Benard convection using the

Lattice Boltzmann method. International Journal of Heat and Mass Transfer, 50(17-18):

3315�3328, 2007.

M. Fyta, S. Melchionna, E. Kaxiras, and S. Succi. Multiscale coupling of molecular dynamics

and hydrodynamics: application to DNA translocation through a nanopore. Multiscale

Modeling & Simulation, 5(4):1156�1173, 2006.

H. Huang, Z. Li, S. Liu, and X. Lu. Shan-and-Chen type multiphase Lattice Boltzmann study

of viscous coupling e�ects for two-phase �ow in porous media. International Journal for

Nunmerical Methods in Fluids, 61(3):341�354, 2009.

R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, and F. Toschi. Mesoscopic modeling of a two

phase �ow in the presence of boundaries: the contact angle. Physical Review, 74(2):021509,

2006.

P. Yuan and L. Schaefer. Equations of state in a lattice boltzmann model. PF, 18(4):042101,

2006.

J. D. Van der Waals. Over de Continuiteit van den Gas en Vloeistoftoestand, volume 1.

Sijtho�, 1873.

O. Redlich and J. Kwong. On the thermodynamics of solutions. An equation of state. Fugac-

ities of gaseous solutions. Chemical Reviews, 44(1):233�244, 1949.

N. Carnahan and K. Starling. Equation of state for nonattracting rigid spheres. The Journal

of Chemical Physics, 51(2):635�636, 1969.

M. De Ruijter, P. Kölsch, M. Voué, J. De Coninck, and JP. Rabe. E�ect of temperature on the

dynamic contact angle. Colloids and Surfaces A: Physicochemical and Engineering Aspects,

144(1-3):235�243, 1998.

C. Körner. Lattice Boltzmann model for free surface �ow. In Integral Foam Molding of Light

Metals, pages 163�170. Springer, 2008.

M. Thies. Lattice Boltzmann modeling with free surfaces applied to in-situ gas generated foam

formation. PhD thesis, PhD-Thesis, University of Erlangen-Nörnberg, 2005.

W. Miller and S. Succi. A Lattice Boltzmann model for anisotropic crystal growth from melt.

Journal of Statistical Physics, 107(1-2):173�186, 2002.



BIBLIOGRAPHY 204

S. Chakraborty and D. Chatterjee. An enthalpy based hybrid Lattice Boltzmann method for

modelling solid liquid phase transition in the presence of convective transport. Journal of

Fluid Mechanics, 592:155�175, 2007.

D. Chatterjee. An enthalpy based thermal Lattice Boltzmann model for non isothermal sys-

tems. Europhysics Letters, 86(1):14004, 2009.

V. Alexiades. Mathematical modeling of melting and freezing processes. CRC Press, 1992.

D. Noble and J. Torczynski. A Lattice Boltzmann method for partially saturated computa-

tional cells. International Journal of Modern Physics, 9(08):1189�1201, 1998.

O. Strack and B. Cook. Three dimensional immersed boundary conditions for moving solids

in the Lattice Boltzmann method. Journal for Numerical Methods in Fluids, 55(2):103�125,

2007.

G. Zhao-Li, Z. Chu-Guang, and S. Bao-Chang. Non equilibrium extrapolation method for

velocity and pressure boundary conditions in the Lattice Boltzmann method. Chinese

Physics, 11(4):366, 2002.

G. Tang, W. Tao, and Y. He. Thermal boundary condition for the thermal Lattice Boltzmann

equation. Physical Review, 72(1):016703, 2005.

B. Schoinochoritis, D. Chantzis, and K. Salonitis. Simulation of metallic powder bed additive

manufacturing processes with the �nite element method: A critical review. Proceedings of

the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231

(1):96�117, 2017.

K. Dai and L.Shaw. Finite element analysis of the e�ect of volume shrinkage during laser

densi�cation. Acta materialia, 53(18):4743�4754, 2005.

I. Roberts. Investigation of residual stresses in the laser melting of metal powders in additive

layer manufacturing. 2012.

J. Goldak, A. Chakravarti, and M. Bibby. A new �nite element model for welding heat sources.

Metallurgical transactions B, 15(2):299�305, 1984.

C. Fu and Y. Guo. Three-dimensional temperature gradient mechanism in selective laser

melting of Ti-6Al-4V. Journal of Manufacturing Science and Engineering, 136(6):061004,

2014.

K. Mills. Recommended values of thermophysical properties for selected commercial alloys.

Woodhead Publishing, 2002.

P. Hagqvist, F. Sikström, and A. Christiansso. Emissivity estimation for high temperature

radiation pyrometry on Ti�6Al�4V. Measurement, 46(2):871�880, 2013.

C. Ziemian, m. Sharma, and S. Ziemiana. Anisotropic mechanical properties of abs parts

fabricated by fused deposition modelling. In Mechanical engineering. InTech, 2012.



BIBLIOGRAPHY 205

T. Letcher and M. Waytashek. Material property testing of 3d-printed specimen in pla on an

entry-level 3D printer. In ASME 2014 international mechanical engineering congress and ex-

position, pages V02AT02A014�V02AT02A014. American Society of Mechanical Engineers,

2014.

K. Rahman, T. Letcher, and R. Reese. Mechanical properties of additively manufactured

PEEK components using fused �lament fabrication. In ASME 2015 International Mechan-

ical Engineering Congress and Exposition, pages V02AT02A009�V02AT02A009. American

Society of Mechanical Engineers, 2015.

I. Zein, D. Hutmacher, K. Tan, and S. Teoh. Fused deposition modeling of novel sca�old

architectures for tissue engineering applications. Biomaterials, 23(4):1169�1185, 2002.

B. Wittbrodt and J. Pearce. The e�ects of PLA color on material properties of 3-d printed

components. Additive Manufacturing, 8:110�116, 2015.

T. Lieneke, V. Denzer, G. Adam, and D. Zimmer. Dimensional tolerances for additive manu-

facturing: Experimental investigation for Fused Deposition Modeling. Procedia CIRP, 43:

286�291, 2016.

G. Alaimo, S. Marconi, L. Costato, and F. Auricchio. In�uence of meso-structure and chemical

composition on FDM 3D-printed parts. Composites Part B: Engineering, 113:371�380, 2017.

H. Tadokoro. Structure of crystalline polymers. Krieger Pub Co, 1979.

E. Pei, J. Shen, and J. Watling. Direct 3D printing of polymers onto textiles: experimental

studies and applications. Rapid Prototyping Journal, 21(5):556�571, 2015.

L. Sabantina, F. Kinzel, A. Ehrmann, and K. Finsterbusch. Combining 3D printed forms

with textile structures-mechanical and geometrical properties of multi-material systems. In

IOP Conference Series: Materials Science and Engineering, volume 87, page 012005. IOP

Publishing, 2015.

T. Coogan and D. Kazmer. Healing simulation for bond strength prediction of FDM. Rapid

Prototyping Journal, 23(3):551�561, 2017.

Y. Zhang and Y. Chou. Three-dimensional �nite element analysis simulations of the fused

deposition modelling process. Proceedings of the Institution of Mechanical Engineers, Part

B: Journal of Engineering Manufacture, 220(10):1663�1671, 2006.

B. Courter, V. Savane, J. Bi, S. Dev, and C. Hansen. Finite Element Simulation of the Fused

Deposition Modelling Process. In Proceedings of the NAFEMS World Congress, pages 11�14,

2017.

B. Tiganis, LS. Burn, P. Davis, and AJ. Hill. Thermal degradation of acrylonitrile�butadiene�

styrene (ABS) blends. Polymer degradation and stability, 76(3):425�434, 2002.

J. Richeton, S. Ahzi, L. Daridon, and Y. Rémond. A formulation of the cooperative model for

the yield stress of amorphous polymers for a wide range of strain rates and temperatures.

Polymer, 46(16):6035�6043, 2005.



BIBLIOGRAPHY 206

J. Rault. Yielding in amorphous and semi-crystalline polymers: the compensation law. Journal

of non-crystalline solids, 235:737�741, 1998.

J. Rodríguez, J. Thomas, and J. Renaud. Mechanical behavior of acrylonitrile butadiene

styrene fused deposition materials modeling. Rapid Prototyping Journal, 9(4):219�230, 2003.

F. Ning, W. Cong, Y. Hu, and H. Wang. Additive manufacturing of carbon �ber-reinforced

plastic composites using fused deposition modeling: E�ects of process parameters on tensile

properties. Journal of Composite Materials, 51(4):451�462, 2017.

G. Liao, Z. Li, Y. Cheng, D. Xu, D. Zhu, S. Jiang, J. Guo, X. Chen, G. Xu, and Y. Zhu. Prop-

erties of oriented carbon �ber/polyamide 12 composite parts fabricated by fused deposition

modeling. Materials & Design, 139:283�292, 2018.

M. Ryder, D. Lados, G. Iannacchione, and A. Peterson. Fabrication and properties of novel

polymer-metal composites using fused deposition modeling. Composites Science and Tech-

nology, 158:43�50, 2018.

3ntr, Additive Manufacturing Systems. http://www.3ntr.eu/. Accessed: 2018-09-19.


