
Università degli Studi di Pavia
Facoltà di Ingegneria

Dipartimento di Ingegneria Civile e Architettura
Master degree in Civil Engineering

Max-Ent approximants and
applications with collocation method

Funzioni approssimanti alla massima entropia e
applicazioni con il metodo di collocazione

– Master Thesis –

Supervisor: Professor
Ferdinando Auricchio
Co - supervisor: Author:
Andrea Montanino Alberto Cattenone

UIN 419049

Academic year 2014/2015



HARD WORK & DEDICATION
(Floyd Mayweather Jr.)



Acknowledgments

I would like to express my very great appreciation to professor Ferdinando Auricchio and Ing.
Andrea Montanino for their valuable and constructive suggestions during the planning and devel-
opment of this research work. Their willingness to give their time so generously has been very
much appreciated. I want to thanks all my friends Alice, Margherita, Valentina, Xi, Rodrigo and
Marco for their help in time of trouble. A special thanks to my dear friends Alessio and Nicolò
for having supported me in all my studies carrier. At least but not at last, i desire to express
all my gratitude to professors Gianni Sorato and Caterina Armao for their help every time i need it.

This work is dedicated to all my parents in particular to my dear grandmother.

I



Abstract

In this work we present a new family of approximation schemes based on the maximum entropy,
which are generated by a compromise between the statistic inference of the nodes of the domain
and the necessity to have local shape functions. During this research we outline the principal
mathematical and features, with particular attention to computational codes. In the first part of
the work we focus on the Janeys’ maximum entropy principle and on the Shannon’s theorem; from a
physicist viewpoint, instead, we sketch out the thermodynamic background which define the formal
aspect of the shape functions. Then we move to a more practical contest, by introducing the first
kind of approximants we want to investigate: the Local max-ent approximation schemes (LME).
We focus on the optimization program which allows to build the shape functions. In particular we
follow step by step the minimization of the associated Lagrangian problem with Newton-Raphson
method, which is the core of the program. We have also tested the approximants with simple
approximating problems. After the basis functions, we give the necessary environment to build
up the first and second derivatives of the approximants; as usual we start from the analytic form
to derive a practical code. This is the first big section of our work. In the second, we start from
LMEs with purpose to impose a second order consistency condition (SME). Also for this case we
start from a pure mathematical viewpoint to delineate the construction of the basis functions and
associated first and second derivatives, by following analogous steps we approached to in LME. In
appendix of both the methods we draw attention to the computational aspects that involve the
optimization of the program in order to reduce the machine time processing, in specific during
the minimization program and the memory usage in storing the results. In the last part of the
work, we purpose to test both the approximation schemes in some elastic problem, to prove the
efficiency of the approximants. We adopt first regular grids of nodes and then irregular ones, in
order to really test the program in mesh-less conditions and we use the collocation method in
order to find the solutions. First we face a convex problem, as recommended by the mathematical
base, then we purpose to test LMEs for a problem fixed on a concave domain to see the response
of the approximants also in this conditions. In conclusion we give our critique on the studied
methods, illustrating the virtues and the limits of the approximants, focus on the possible future
applications.

II



Sommario

In questo lavoro viene presentata una famiglia di approssimanti meshfree basati sulla massima
entropia che traggono la loro base da un compromesso computazionale, nel senso ottimale inteso
da Pareto, tra l’inferenza statistica dei nodi del dominio e la necessità di avere funzioni di forma
quanto più possibile locali. Nella presente ricerca si illustrano le fondamenta matematico - fisiche
che sorreggono il metodo. Nello specifico, ci si sofferma sul principio di massima entropia di Jaynes
e sulla misura dell’entropia fornita dal teorema di Shannon; dal punto di vista fisico si punta lo
sguardo sul background termodinamico che costituisce il punto di partenza dell’aspetto formale
di definizione delle funzioni di forma di seguito illustrate. Partendo dalle necessarie condizioni
preliminari tipiche di tutti i metodi senza mesh, vengono delineate le caratteristiche dei metodi
di approssimazione aventi ordine di consistenza lineare (LME) e quadratico (SME), focalizzando
l’attenzione sulla costruzione delle funzioni di forma e delle loro derivate prime e seconde. In
particolare viene seguito passo passo tutto l’iter di costruzione delle funzioni, dalla delineazione
del problema di minimizzazione Lagrangiano al metodo iterativo di Newton-Raphson utilizzato
per trovare i minimi del problema. Nel primo grande blocco della trattazione ci soffermiamo sul
metodo LME e nel secondo sulla sua naturale estensione all’ SME. Per entrambe i metodi è stato
inserito un capitolo riguardante la pura parte di implementazione con l’intento di suggerire delle
soluzioni che permettano di ridurre i tempi di calcolo e salvare spazio di memoria. Infine, si
vogliono testare gli approssimanti su problemi pratici; d’apprima si sono affrontati dei problemi
elastici definiti su domini concavi sia per griglie di punti regolari che non: questo per verificare
la risposta di entrambe i metodi in un contesto generale. In seconda istanza si è voluto testare
il metodo LME per un dominio concavo al fine di verificare se il metodo è in grado di fornire
risultati soddisfacenti anche in queste condizioni matematicamente sfavoreli. Dato che, grazie alla
derivazione matematica, si è in grado di calcolare analiticamente le derivate seconde, in ambo i
casi i problemi elastici sono stati risolti grazie all’uso del metodo di collocazione. In coda alla
trattazione riportiamo un giudizio critico sulla effettiva praticità del metodo evidenziandone le
virtù e i limiti. All’interno del lavoro ci si è serviti altresì di diverse immagini al fine di illustrare
meglio forma degli approssimanti e risultati ottenuti.
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Chapter 1

Introduction to meshfree methods

Mesh-free methods are a particular field of numerical simulation that do not require any data
connection between the nodes of the domain. The only thing the methods need are the nodes and
their coordinates. In this way the shape functions are built only from the node set. Mesh-free
methods have been introduced in the 70’s in order to face border-less problem. Then those meth-
ods have been approached to different study areas including engineering and in particular civil
engineering. The motivation of the usage of those methods is that in others methods like finite
elements or finite volumes, every node has a predefined number of fixed neighbor nodes; this could
be a problem when we have a material that can move around or that can have excursion in high
deformation field (in cracking problem for example). In this case, in fact, the neighbors of a single
node can change during the simulation and this causes a consistent error in the final results. With
this methods, instead, since there isn’t any connection grid between the nodes, the error of the
method is caused principally by the way the shape functions are constructed. For example in fluid
dynamics or in structural analysis with large strain and deformations, those methods have been
performed successfully. The most important mesh-free methods are [12]:

• Mesh-less Local Petrov Galerkin (MLPG) [4];

• Moving least squares (MLS) [26];

• Generalized finite difference method (GFDM) [12];

• Smoothed particle hydrodynamics (SPH) [12];

All those methods have been approached to different ways the philosophical principle of mesh-free,
but there are some features that never change. In particular the shape functions of every method
must have some common proprieties:

• Partition unity (compulsory condition)

n∑
a=1

φi(x) = 1

which means that in every evaluation point the summary of the shape functions in that point
must be unitary;

• Linear fields reproduction (preferable condition)

n∑
a=1

φi(x)xi = x

1
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that guarantees the approximants are able to exactly reproduce any linear field;

• Delta-Kroneker propriety (preferable condition)

φi(xj) =

{
1 i = j

0 i 6= j

this is a typical condition of interpolating shape functions we can recover also in classical
finite element schemes.

In addition to this proprieties a good mesh-free method should have also this requirements:

• arbitrary nodal distribution;

• stability;

• consistency;

• compact support;

• efficiency;

• delta function property;

• compatibility.

The principal limitation of mesh-free approximants, in comparison to the classical finite element
methods is that in general it’s more heavy, in a computational way, to compute the shape functions
and their derivatives. We list below, for some methods, the way to approach to the shape functions
construction:

• finite integral representation methods (ex. SPH) :

f(x) =

∫ x2

x1

f(ζ)W (x− ζ)dζ

• finite series representation methods (ex. MLS) or points interpolation methods (ex. PIMs) :

f(x) = a0 + a1p1(x) + ...anpn(x)

• finite differential representation methods :

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2

It’s possible to appreciate how the basis functions haven’t a predefined form, like in simple finite
element methods, but we need to calculate integrals or derivatives to find them out.

Generally the shape functions have the typical form of a radial function.

1.1 Application of meshfree methods

In a practical view, those methods have been used in geodesy, geophysics, mapping, or meteorology.
Later, applications were found in many areas such as in the numerical solution of PDEs, artifi-
cial intelligence, learning theory, neural networks, signal processing, sampling theory, statistics
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(kriging), finance and optimization. In particular their usage in approximating PDEs is the most
important application in math fields. For example the usage of the RBF (radial basis functions) in
order to approximating partial differential equations has been accelerated by Kansa’s experience
(1990); in this way Kansa gave an enormous contribute to the diffusion of mesh-free usage in
approximating problems. PDEs are the mathematical expression of a lot of physic problems, for
example the equations that operates on meteorology, in which mesh-free methods are essential to
have a good approximations of natural phenomenon and so have trustworthy weather forecast. In
our study area we can find application of mesh-free approximation scheme in those problems:

• Simulations where creating a useful mesh from the geometry of a complex 3D object may
be especially difficult;

• Simulations where nodes may be created or destroyed, such as in cracking simulations;

• Simulations where the problem geometry may move out of alignment with a fixed mesh, such
as in bending simulations;

• Simulations containing nonlinear material behavior, discontinuities or singularities.

Local max-ent approximation schemes and Second order max-ent approximation schemes, we are
going to investigate are fully assimilated in mesh-free methods, in fact they have all the char-
acteristics over described. The newness of this methods consists in the total generality way the
shape functions are constructed with. The name, in fact, reveals the basis of the methods: the
maximum entropy principle. The method’s esprit is to have the most adaptive and general shape
functions possible. The classical entropy definition is well known in thermodynamics and refers to
the measure of disorder of a system. This approach is very indicated for mesh-free in fact with a
random set of nodes, as it will be possible to appreciate, the generic shape function is constructed
only depending from the relative positions of all the other nodes.

1.2 Work pourposes

In the following chapters we purpose to delineate the features of both Local max-ent approximation
schemes and Second order max-ent approximation schemes. First of all we’ll give the mathematical
basis to the construction of the shape functions, with particular attention to the constraints which
rule over the problem. We want also to give a consistent representation of those approximants so
we’ll propose some figures to make easier the comprehension of certain features of our schemes.
Then we’ll point out that which we consider to be the most relevant part of our program: the
construction of the first and second derivatives of the basis functions; this aspect is very important
cause their correct definition allows us to solve directly PDEs. At least, after having tested the
approximation schemes for simple cases, we’ll face some elastic problems with different type of
grids, in order to being able to make a concrete critical analysis of the method. In the last part
of the work we’ll test both the approximation schemes to solve elastic problems with regular and
random grids of nodes, for convex and concave domain.



Chapter 2

Local max-ent approximation
schemes (LME)

In this chapter we purpose to outline the principal features of the first method we want to illus-
trate. First we give a general review of which are the mathematical characteristics of this kind of
approximants, by starting from the simple domain constraints, to the more specific analytic condi-
tions. Then we move from the Global max-ent approximation schemes, which are the first empiric
attempt of building consistent approximants, to Local max-ent approximation schemes which are
the first type of schemes we want to investigate. We also focus on some mathematical and physi-
cist peculiarity which are very important for a complete comprehension of the background of the
method.

2.1 Convex approximation schemes

We have, first of all, to define the type of set of nodes we have to work with. Before starting the
introduction of max-ent approximants it’s important to remember the majority of approximation
schemes belong to the class of the convex approximation schemes; also our LMEs be part of this
large family. In particular the convex approximation schemes are characterized by two important
features:

• the positivity of all the shape functions;

• being exact on affine function.

In specific those conditions [1] do not allow to define an unique approximation scheme, but are
essential, we others ancillary conditions to obtain our goal.

We define a set of nodes X = {xa, a = 1, ..., N} ⊂ Rd a convex hull of X if and only if:

convX = x ∈ Rd| x = Xλ, λ ∈ RN+ , 1 ·λ = 1 (2.1)

Let u : convX → R be a function whose values {ua; a = 1, ..., N} are known on the node set, we
wish to construct approximations to u of the form

uh(x) =

n∑
a=1

pa(x)ua (2.2)

4
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where pa : convX → R can be considered shape functions, in fact they are the coefficients of a
linear combination of ua. We want also to construct these shape functions, in way they have three
specific proprieties [1]:

pa(x) ≥ 0, ∀x ∈ convX, a = 1, ..., N (2.3)
n∑
a=1

pa(x) = 1, ∀x ∈ convX (2.4)

n∑
a=1

pa(x)xa = x, ∀x ∈ convX (2.5)

These three conditions guarantee that affine functions are exactly reproduced by the convex ap-
proximants. In particular, with (2.4), in every single point of convX we want the sum of the values
of the shape functions being equal to 1 and with with (2.5) we impose that a linear situation must
be reproduced exactly by a simple linear combination of xa whose coefficients are precisely the
values of the shape functions in the considered point of the convex hull.

However the newest implication of this 3 proprieties, is that if we consider both the propriety
(2.3) and the propriety (2.4) we can interpret the shape functions as probability distributions.
Finally we can also write a vector: p(x) whose entires are: {p1(x), ..., pN (x)} to contain all the
components. By virtue of (2.4) and (2.5), this can be defined in this way:

Px(X) = {p ∈ RN+ | Xp = x,1 ·p = 1} (2.6)

So we are sure this is a convex hull. Now the natural question is: if Px(X) is not empty, it’s
possible to define shape functions consistent with the constraints? To answer this question we
refers to Charatheodory’s theorem [10]:

Theorem 1 (CHARATHEODORY’S THEOREM). Let C denote a convex N-dimension cone
and let z=

∑b
j=1 xj with xj ⊂ C. Exist {y1, . . . yn} ⊂ C | z =

∑b
i=1 yi so that ∀i it’s possible to

write:
yi = εjxj with 0 ≤ εj ≤ 1

According to this theorem, if b < N it’s possible to demonstrate that at least N-d-1 points are
not necessary in order to express x ∈ convX as convex combination of points. This allow us to
consider single domains which are subsets of convX, in which it’s always possible to associate εj
to the probability distribution. For simplicity, in this work we consider always convex domains.

Fixed this important frameworks, we have now all the instruments to be able to start constructing
the maximum entropy approximants.

2.2 Global max-ent approximants

Given that we have already established the affinity between the shape functions and probability
distributions, we can now introduce the concept of entropy, which is preparatory to the construc-
tion of our approximation schemes. In particular in this section we want to build the bridge
between the mathematical background and a consistent physical expression of the approximants.
The right definition of entropy can be researched by introducing a mono-dimensional variable
which is not a statistic one, but a probabilistic one. We call Entropy of this variable, a measure
of the associated uncertainty. In a very first time, the term entropy was introduced by Clausius



2.2. Global max-ent approximants 6

linked to thermodynamic studies; then the same concept was adopted also in other scientific fields.
In our area of interest, the uncertainty associated with a finite scheme can also be interpreted as
the amount of information gained by realizing the random variable. To measure the uncertainty
associated to the scheme (or the information entropy) we must refer to Shannon’s theorem [24].
Starting from the concept that the uncertainty of a variable is maximum when the probability asso-
ciated with it’s 50%, we can must recall this theorem to give a measure of the information entropy:

Theorem 2 (SHANNON’S THEOREM). Let X be the group of values that variable a may
assume and let p(x) = Pr(a = x) be the probability that variable a affects exactly x, then it’s
possible to define the information entropy of varible a:

H(x) = Ex[I ′(x)]

where I ′(x) is the auto-information, namely the contribution of every single bit to the total
entropy [15]. Applying this concept and introducing the expression of the probability function, we
can express the entropy of any finite convex scheme in this way:

H(p1, ..., pn) = −
n∑
a=1

pa log pa (2.7)

this theorem has also an important corollary:

Corollary 1 (SHANNON’S THEOREM). Let H(x) be the information entropy of the variable
a, this functions has the following properties:

H(x) is:

• non-negative;

• symmetric;

• continuous;

• strictly concave in the domain;

and owns all the classical proprieties in general the entropy has.

Clearly, it’s possible to recover the sense of the auto-information, explained by Shannon’s the-
orem, in the expression adopted in (2.7): the auto-information is the contribution to the total
system entropy given by any single bit (node) according to its occurrence probability.
Finally we can regard to every single point of a finite convex scheme as a complete system of
events, where {p1(x), ..., pn(x)} are the corresponding probabilities and H(p1(x), ..., pn(x)) are
the entropy linked to the finite scheme. From this point of view, to reproduce a function from
scattered points can be regarded as a statistical inference problem, in fact, following this approach,
Eq.(2.2) expresses the expected value of uh(x) as determined by probabilities (p1(x), ..., pn(x)).
Our goal is to create a process of inference which could be unbiased and depending just from the
knowledge of the function, without any other assumption. To reach our purposes we have to refer
to the"Principle of maximum entropy" by Edwin T. Jaynes; according to Jaynes [13] the least
biased probability distribution is that which maximize entropy.

Theorem 3 (JAYNES’ PRINCIPLE OF MAXIMUM ENTROPY). The maximum entropy
distribution is uniquely determined as the one which is maximally non committal with regard to
missing information, in that it agrees with what is known, but expresses the maximum uncertainty
with respect to all other matters.
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So, following Jaynes’ principle and looking to the problem with an informational-theoretical
viewpoint, it’s possible to find the optimal convex approximation schemes by solving the problem:

(MaxEnt) maximize H(p) = −
n∑
a=1

pa log pa (2.8)

subject to Eq: (2.3), (2.4), (2.5).

Jaynes looks at the entropy like a measure of the amount of the information of the initial distribu-
tion, in this way by maximizing the entropy, it’s possible to find a distribution which contains the
minimum amount of consistent information. Finally Jaynes proved that the normal (standard)
distribution (σ = 1, µ = 0) is the only one able to maximize the entropy in a continuous space.

Now, looking carefully at the problem with a mathematical viewpoint, we notice that (2.7) is
strictly concave in its domain (see corollary of Shannon’s theorem), so, due to the strictly con-
vexity of the set of point X the solution of the MaxEnt problem is unique. This proposition is
very simple to prove by only applying Weierstrass extreme value theorem and considering the
convexity of the domain. This method can provide to find the shape functions and to build up
the basis for constructing conforming elements in a convex set of point, however, it conceals some
problems. By looking to figure 2.1

Figure 2.1: Examples of max-ent approximation schemes. a) Vertex shape function
illustrating Delta-Kroneker propriety. b) Interior node shape function showing the
character of max-ent program. c) Example of max-ent approximation illustrating the
very poor interpolation character of those kind of approximation schemes.

we can appreciate how, in a pentagon domain, with only border nodes, [a)] the Delta-Kroneker
propriety is satisfied and the restriction of max-ent shape functions on the edge is correctly linear;
however, in example [c)] it’s clear that the max-ent program has a very poor interpolation of
initial data even if the general shape function of an interior node [b)] has in general the correct
behavior of vanishing at the boundary (but is highly non local).

2.3 Local max-ent approximants

In chapter § 2.2 we have established the global max-ent approximation schemes are not able to
satisfy the necessity of good interpolation and locality on the convex domain. So we have to
introduce some changes in the program, principally in order to control the degree to which the
value at x is correlated to nearby nodal values.
To localize the problem, we need to introduce the concept of width of shape function, which can
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be defined in this way:

w|pa|
∫

Ω

pa(x)|x− xa|2dx (2.9)

where we define Ω = convX. Remembering we are reasoning in a probabilistic-inferential way,
we can define Eq.(2.9) a second moment of pa around xa. This concept can be compared to the
concept of dispersion in a Probability Density Function (PDF) around the mean value:

E[x− µx] (2.10)

So we can define the local approximation scheme as the summary in every x of the width of any
shape function:

W |p| =
n∑
a=1

w|pa| =
∫

Ω

n∑
a=1

pa(x)|x− xa|2dx (2.11)

The most local approximation scheme is that which minimize (2.11) subjected to the constraints
(2.3), (2.4), (2.5). Thus the functional does not involve any derivatives its minimization can be
performed pointwise by this way:

(RAJ) For fixed x minimize U(x,p) ≡
n∑
a=1

pa(x)|x− xa|2dx (2.12)

We refers to Eq. (2.12) as Rajan convex approximation schemes cause Rajan showed [21] that if
the nodes are in general position (meaning that there are no 3 col-linear points in bi-dimensional
cases or 4 cospherical points in three-dimensional cases) there is an unique solution to RAJ corre-
sponding to the piece-wise affine shape functions supported by the unique Delanuay triangulation
[21] associated with the node set X. Clearly this solution is optimal in the sense of the width.

At this point we have introduced two principles: one about the maximum entropy and one about
the maximum locality, to define a convex approximation scheme. However we need to conciliate
the two criteria, because, generally, it’s very hard to find a simultaneously convex approximation
scheme that agrees to both the conditions.

2.3.1 Local max-ent approximation schemes as a Pareto set

To carry on with our presentation we need to single out an economic principle: the "Pareto
Optima". It was introduced by the italian economist Vilfredo Pareto. The Pareto efficiency is
a state of allocation of resources in which it’s impossible to make any one individual better off
without making at least one individual worse off. Given an initial allocation of goods among a
set of individuals, a change to a different allocation that makes at least one individual better off
without making any other individual worse off is called a Pareto improvement. An allocation is
defined as Pareto efficient or Pareto optimal when no further Pareto improvements can be made.

Theorem 4 (PARETO’S PRINCIPLE). Consider a system with function f : Rn → Rm where X
is a compact set of feasible decisions in the metric space Rn, and Y is the feasible set of criterion
vectors in Rm such that:

Y = {y ∈ Rn : y = f(x), x ∈ X}

Assuming that the preferred directions of criteria values are known, a point y” ∈ Rm is preferred
to another point y′ ∈ Rm, written as, y” > y′. The Pareto set is thus written as:

P ((Y )) = {y ∈ Rm : {y” ∈ Y : y” > y′, y” 6= y′} = �}

In our background this solution is what we need, cause we have to harmonize the competing
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objectives described before. Introducing the β parameter we can define the Pareto optimal solution
of the problem:

(LME)β For fixed x minimize fβ(x,p) ≡ βU(x,p)−H(p) (2.13)

with the restriction imposed by Eq. (2.3), (2.4), (2.5),.

It is simple to recover the program (2.13) degenerates in (ME) if β = 0 and in (RAJ) if β = +∞.
This problem has multiple solutions in general, but the only element of (RAJ) with maximum
entropy is in Pareto set. Remember that, cause H(p) it’s strictly concave in (RAJ) the Pareto-
optimal for β = +∞ is unique and can be described by:

pPareto∞ (x) = arg max H(p) (2.14)

Since for β ∈ [0,+∞) the function f(x, · ) is continuous and convex in Px(X) the (LME)β has
an unique solution: pβ(x) if and only if x ∈ conv(X). We call the convex approximation scheme
defined by pβ(x): local max-ent convex approximation scheme.

2.3.2 Optimization program and exponential form of the shape func-
tions

We purpose now to give an explicit expression of the shape functions so as to be able to calculate
it in every point of the domain. To do this we have, first, to rewrite Eq. (2.5) in this way:

N∑
a=1

pa(x)(xa − x) ≡ Yp = 0 (2.15)

where Y is a matrix whose columns are xa − x. Now, introducing a Lagrangian formulation of
the problem, (LME)β we obtain:

L(p, λ0,λ) =

∫
β

(p) + λ0(1 ·p− 1) + λ ·Yp (2.16)

in which we can recognize λ ∈ Rd and λ0 ∈ R: the Lagrange multipliers. The problem (2.16) has
an unique solution, if it’s defined in a convex hull and if β ∈ [0,+∞). It’s possible to prove that
there is only a couple of (,λ∗0,λ

∗) that simultaneously satisfying the ”Karush−Kuhn−Tucker”
conditions and such that {pβ , ,λ0,λ} is a saddle point of (2.16).

In mathematical optimization, the Karush–Kuhn–Tucker (KKT) conditions are first order nec-
essary conditions for a solution in nonlinear programming to be optimal, provided that some
regularity conditions are satisfied [10]. Allowing inequality constraints, the KKT approach to
nonlinear programming and generalizes the method of Lagrange multipliers, which allows only
equality constraints.

Theorem 5 (KARUSH-KUHN-TUCKER CONDITIONS). Given the following non linear opti-
mization problem:

min f(x)

gi(x) < 0

hj(x) = 0

where f(x) is the function we want to minimize, gi(x), (i = 1, . . . ,m) are mono-lateral restrictions
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and hj(x), (j = 1, . . . , l) are bilateral restrictions. Suppose that f : Rn → R and that gi : Rn → R,
hj : Rn → R and suppose they are continuous differenziable around x*. If x* it’s a local minimum
point and it satisfies both the constraints regularity conditions, then exist multipliers gi : Rn → R
and hj : Rn → R thus that:

•

∇(f(x∗) +

m∑
i=1

λi∇gi(x∗) +

l∑
i=1

µj∇hj(x∗) = 0

•
gi(x∗) ≤ 0, ∀i = 1, . . . ,m

•
hj(x∗) = 0, ∀j = 1, . . . , l

•
λi ≥ 0 (i = 1, . . . ,m)

•
λigi(x∗) = 0 ∀i = 1, . . . ,m

The first condition refers to annulment of the gradient connected to the Lagrangian function;
the second and the third are the admissibility constraints of the point x*; the fourth regards the
non-negativity of the multiplier associated to the inequality constraints; the fifth means that the
multiplier of the inactive constraints must be 0.

In order that the necessary KKT conditions allow to find a minimum point we must refer to
the corollary of the theorem:

Corollary 2 (KARUSH-KUHN-TUCKER CONDITIONS). To find a solution of the KKT min-
imizing problem its’ sufficient to have regularity on point x*. The regularity of x* is warranted by
onl one of this conditions:

• Linear independence constraint qualification (LICQ);

• Mangasarian–Fromovitz constraint qualification (MFCQ);

• Constant rank constraint qualification (CRCQ);

• Constant positive linear dependence constraint qualification (CPLD);

• Quite-normality constraint qualification (QNCQ);

• Slater’s conditions;

The last point is interesting for our pourposes. Slater’s conditions state that if we have a convex
optimization problem there is surely an interior point of conv(X) where the equality contraints
are satisfied and the inequality constraints are strictly <0.

We can note that every interior point: x ∈ int(conv(X)) satisfy, in LMEβ , the Slater’s con-
ditions. So we can derive the expression of the Local Max-ent approximants by finding the unique
solution of the Lagrangian problem (2.16):

pβa(x) =
1

Z(x,λ∗(x))
exp[−β|x− xa|2 + λ∗(x) · (x− xa)] a = 1, ..., N (2.17)
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where:
λ∗(x) = arg min logZ(x,λ) (2.18)

with:

Z(x,λ) ≡
N∑
a=1

exp[−β|x− xa|2 + λ∗(x) · (x− xa)] (2.19)

In fact the shape function has an exponential form, so to calculate the solutions of the minimizing
program (2.18) we can avoid to introduce: log(Z). Considering Slater’s conditions, we know there
is a solution of Eq. (2.18), now we want to prove the solution is unique. Like for any other
function, we write first the gradient and then the hessian of the objective function:

r(x,λ) ≡ ∂λ logZ(x,λ) =

N∑
a=1

pa(x,λ)(xa − x) (2.20)

J(x,λ) ≡ ∂λ∂λ logZ(x,λ) =

N∑
a=1

pa(x,λ)(xa − x)⊗ (xa − x)− r(x,λ)⊗ r(x,λ) (2.21)

Both in the gradient Eq: (2.20) and in the hessian function Eq: (2.21), pa(x,λ) denotes the eval-
uation of (2.17) at an arbitrary value λ of the Lagrange multiplier; and as we expected we can
found the 1st order consistency condition.

Now if we consider a non-zero vector u ∈ Rd and let ua = u · (x − xa), since by assumption
aff(X ∈ R, it follows that not all ua are identical. We also, already, know from (2.17) that
pa(x,λ) > 0, then we can write the square function associated and by the strictly convexity
propriety we have:

u ·J(x,λ) ·u =

N∑
a=1

pa(x,λ)u2
a −

(
N∑
a=1

pa(x,λ)ua

)2

> 0 (2.22)

So J(x,λ) is positive define and therefore log(Z) is strictly convex and the minimizer is unique
since we are working in a convex domain.

2.3.3 Phisicist interpretation of the shape functions

In the abstract of our work, we have already sketched the importance of the physicist basis which
have inspired the construction of those approximants. Now we want to underline the importance of
β parameter in Pareto optimization problem and try to give it not just a mathematical significance,
but also a physicist one.
First we must introduce the meaning of Partition function as we usually call Eq. (2.19). In physics,
a partition function describes the statistical properties of a system in thermodynamic equilibrium
(which in fact is a Pareto optima of the problem). We can define the Partition function in this
way:

Z =
∑
s

e−β ·Es

where:

• s is the index for the micro-states of the system;

• β is the thermodynamic beta;

• Es is the total energy of the system in the respective micro-state.;
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According to the second law of thermodynamics, a system assumes a configuration of maximum
entropy at thermodynamic equilibrium , which recalls (2.8), in fact for a generic system the entropy
can be expressed in this way:

H(p) = −kβ
∑
i

pi ln pi

subjected to:

• unity propriety; ∑
i

pi = 1 which is similar to
n∑
a=1

pa(x) = 1,

• fixed average energy;

∑
i

piEi = U which is similar to
n∑
a=1

pa(x)xa = x

in fact, in a probabilistic view, the energy of the generic configuration i can be expressed as
Ea = |xa − x|2. Now if we solve the associated Lagrange problem, pi fields are:

pi =
1

Z
e

1
kβ

(−1+λ1)

in which we can easily recover the analytic form of the approximants described by the LME
problem (2.17). At last we can define:

β =
1

kβT

where kβ is Boltzmann’s constant and T is the absolute temperature. By this standpoint we can
regard to the Rajan problem as the zero-limit temperature of the thermalization problem, in fact:

T = 0 → β = +∞

instead the generic thermalization problem may be regarded as the LMEβ problem in Eq. (2.13)

2.4 Monodimensional domain shape functions

The 1D domain is the simplest but also the one which allow us to have a better comprehension
of the behavior of our approximants. For what we have exposed in chapter §(2.3.3) it’s clear
the parameter that states on the shape functions is β. Here we want to represent the 1D Local
max-ent approximants for different values of these parameter so that it’s clear the influence of β.
In figure 2.2, 2.3, 2.4, 2.5, we use the same grid with 11 nodes and 1000 points to make easier the
comparison. In this work we distinguish between nodes and points. We call:

• nodes: the grid points in which we construct the shape functions. Every node has its shape
function.

• points: the grid points in which we compute the value of every single shape function. The
increasing of the number of points allows to have a better representation of the shape func-
tions.

Clearly to have a good comparison between different cases, we necessitate to use few nodes and
many points.
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Figure 2.2: 1D shape functions represented with 11 nodes and 1000 points; β=2
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Figure 2.3: 1D shape functions represented with 11 nodes and 1000 points; β=20
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Figure 2.4: 1D shape functions represented with 11 nodes and 1000 points; β=200
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Figure 2.5: 1D shape functions represented with 11 nodes and 1000 points; β=800

We can appreciate how, when β has low values, the Max − Ent program is found, in fact the
shape functions extend on all the domain. Instead, when we increase the value of β we recover
the Rajan program, so the shape functions have the maximum degree of locality.

Now we extend the treatise also to a random grid of nodes, in fact in our purpose, those ap-
proximants must be more general as possible so we want to see if the Eq. (2.3), (2.4), (2.5), which
are the principal constraints of the method, are respected. In figure 2.6 we adopt a random grid
for the nodes and also a random grid for the points, so as to be more general as possible, we also
adopt a middle value of β. It’s possible to note that all the proprieties are completely satisfied.
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Figure 2.6: 1D shape functions represented with 11 nodes and 1000 points with a
random grid; β=100

2.4.1 Example of a function approximation

According to Eq. (2.5), the shape functions, so as they are constructed, must guarantee a perfect
approximation of any type of linear function and, if the method is good, they have to be able
to reproduce any kind of function. In this section we want to test the effectively capability of
the approximants to reproduce a simple analytic function. In the next examples we adopt the
following strategy: we use an increasing number of nodes and a fixed number of evaluation points.
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This is a useful strategy in order to have a good discretization of the analytic function and have
an increasing better interpolation of the approximants. In this case, although, we have to use
Moore − Penrose pseudo-inverse method to invert a rectangular matrix. We want to underline
that if we use same number of nodes, points and definition points for the analytic function, we
obtain non significant results, in fact we have an error close to zero (' 10−17) as we expect due
to propriety (2.5).

We use the analytic function: f(x) = sin(x) and we assume β increasing with the decreasing
of the nodal spacing: in particular form the practical experience we can derive this formulation
[1]:

γ = βh2

where h is the medium nodal spacing between the nodes of the approximation scheme. In particular
our purpose is to have a concrete comparison between a regular and a random grid of nodes. This is
very important in order to find out if the approximants are well working also in a worse condition.

To prove the goodness of the results, it’s possible to estimate the absolute error between the
analytic function and the max-ent approximation. Since the functions are defined point-wise we
need to calculate in every point of the domain the difference between the two functions and so the
absolute error can be written in this way:

Err =

√
N∑
i=1

‖yian − uilme‖
2

√
N∑
i=1

‖yian‖
2

In figure 2.7 and 2.8 we show the decreasing of the error with the increasing of the number of the
shape functions used to approximate the analytic one. The first figure refers to a regular condition,
second to an irregular one.

10
1

10
2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

APPROXIMATION ERROR

NSF

E
rr

o
r

 

 

error progression LME

2nd order slope

3rd order slope

4st order slope

5st order slope

Figure 2.7: Approximation error with trend lines, regular grid

where NSF means the number of shape functions.

As we expected Err → 0 when we increase the numbers of the shape functions we reproduce
the analytic function with. In particular we note, that both for the regular grid then for the
irregular one, the decreasing of the errors of LME program follow a tendency line with a slope
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Figure 2.8: Approximation error with trend lines, irregular grid

quite equal to 2. This is very comfortable cause the method has the same behavior in both cases.

2.5 Bidimensional domain shape functions

We extend, now, our study, to the bi-dimensional case. This in general involve a more compu-
tational burden, but the main program does not change. The only thing we introduce is a new
parameter: γ, which controls the degrees of locality of the approximants, according to Ortiz ex-
perience [1]. γ can be such defined:

γ = βh2

where β is the thermalization parameter and h is a measure of the nodal spacing. Since the nodal
spacing can be different along different directions, we can take as "h" the lower between the val-
ues of the side of the domain (conservative choice). To facilitate the comparison between different
values of γ, we have taken a regular distribution of nodes. In figure 2.9, 2.10, 2.11, 2.12 we have
represented the shape functions for different values of parameter γ:
As in the mono-dimensional case, we can notice that if β → 0 shape functions are similar to (ME)
solution; if β →∞ the linear program (RAJ) can be recovered.

Figure 2.9: 2D shape function in rectangular domain with 55 nodes and 5500 points;
γ=0.8
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Figure 2.10: 2D shape function in rectangular domain with 55 nodes and 5500 points;
γ=1.8

Figure 2.11: 2D shape function in rectangular domain with 55 nodes and 5500 points;
γ=2.8

Figure 2.12: 2D shape function in rectangular domain with 55 nodes and 5500 points;
γ=6.8



2.5. Bidimensional domain shape functions 18

For the same reason expressed in chapter § 2.4 we want to show the generality of method also
with a scattered nodes distribution. We take, for example, the random set of nodes defined in a
square domain (L=1), represented in figure 2.13: in this example we adopted the strategy to keep
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Figure 2.13: Random 2D set of nodes

constant the distribution of the nodes on the boundary and next to the boundary. This choice is
useful in order to have a simple comparison with the second order consistency approximants, as
suggested by M.Ortiz and M.Arroyo [2].
By taking, for example, node 51, we obtain the associated shape function (see fig. 2.14)

Figure 2.14: Generic shape function of a node of the random set; γ=1.8

With this example it’s possible to better appreciate the locality propriety also with scattered
nodes.
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2.5.1 Exemple of a function approximation

For the same reasons exposed in section § 2.4.1, we are going to test the LMEβ program in a
bi-dimensional domain. this doesn’t involve any significant variation from the 1D solution, but in
this case we use a quite more difficult function. Of course we use more points then nodes, in fact
if use the same number of nodes and definition points, due to (2.5), we have an error close to 0
(' 10−16).
Analytic function:

f(x, y) = sin

(
3(−x2 − y5)

)
· cos

(
3(−x5 − y2)

)
As in 1D case, we want to make a comparison between regular grid and irregular one to test if the
program is really able to reproduce the function in any condition. To prove the goodness of the
results, it’s possible to estimate the absolute error between the analytic function and the max-ent
approximation. Since the functions are defined point-wise we need to calculate in every point of
the domain the difference between the two functions and so the absolute error can be written in
this way:

Err =

√
N∑
i=1

‖zian − zilme‖
2

√
N∑
i=1

‖zian‖
2

In figure 2.15 and 2.16 we show the decreasing of the error with the increasing of the number of
the shape functions used to approximate the analytic one. We use parameter γ=1.
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Figure 2.15: Approximation error with associated tendency lines; regular grid
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Figure 2.16: Approximation error with associated tendency lines; irregular grid

Like in 1D case, we can recognize Err → 0 with the increasing of the number of the shape
functions. For the regular case we have a decreasing line with slope ' 2. It’s interesting to note
for the irregular grid e obtain quite the same slope, even if we have bigger errors. In general the
approximation errors are bigger then 1D case, this due to the more complexity of the function we
have investigated.



Chapter 3

First derivatives of the shape
functions

In this chapter our goal is to compute a close mathematical form of the first derivative of the
shape functions. The gradient of LMEβ is very important in order to have at our disposition the
instruments to solve PDEs. To be able to evaluate the derivatives in an analytic way could be an
advantage since we can avoid to implement any finite difference methods, which could be more
onerous in computational terms.

We have remarked in chapter § 1, the shape functions has an exponential form, but the smoothness
of the local max-ent approximants is not guaranteed a priori since our program is characterized
point-wise so we are not sure they are derivable [2].

Proposition 1 (continuity class). Consider affX = Rd and let β: convX be Cr in int convX.
Then the local max-ent shape functions are of class Cr in int convX.

This proposition is readily checked by considering (2.15), in fact due to (2.5) it’s clear that:

N∑
a=1

pa(x)(xa − x) = r(x,λ∗) = 0 (3.1)

and for (2.21) we also sure that:
det ∂λr(x,λ∗) 6= 0

λ∗ ∈ Cr

and so the shape functions are of class Cr.
We are now allowed to calculate ∇p∗a. First we introduce fa which is the argument of the expo-
nential function in (2.17) :

fa(x,λ, β) = −β|x− xa|2 + λ∗(x) · (x− xa); (3.2)

so we can rewrite the expression of the generic shape function in this way:

pa(x,λ, β) =
exp[fa(x,λ, β)]∑
b exp[fb(x,λ, β)]

(3.3)

Introducing now the Lagrangian problem:

g(λ) = − log

{∑
a

exp[fa(x,λ, β)]

}
(3.4)

21
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we have to underline 2 important aspects which controls the first derivatives:

• λ(x): which means the derivatives of Lagrange multiplier is involved in the calculation;

• β could also be considered non-constant, so that β(x). In this case we introduce another
unknown in the minimizing problem and in the derivation one. According to Ortiz [1] is not
useful to consider β(x), in fact in practical cases β is assumed constant.

it’ simply to recover:

∇p∗a = p∗a

(
∇f∗a −

∑
b

p∗b∇p∗b
)

(3.5)

we can apply the chain rule to compute every single part of ∇f∗a :

∇f∗a =

(
∂fa
∂x

)∗
+

(
∂fa
∂λ

)∗
·Dλ∗ +

(
∂fa
∂β

)∗
·∇β (3.6)

and we do non consider the last addend since β is constant. It’s now easy to check:(
∂fa
∂x

)∗
= −2β(x− xa) + λ∗(x),

(
∂fa
∂λ

)∗
= (x− xa)

the only term which is unknown is Dλ∗. To compute it we must refer to (3):

Dr∗ =

(
∂r

∂x

)∗
+

(
∂r

∂λ

)∗
·Dλ∗ = 0

by considering that: (
∂r

∂x

)∗
= J∗,

(
∂fa
∂λ

)∗
= −2βJ∗Id

where Id is the identity matrix in the dimensions of the problem. It follows that:

Dλ∗ = 2βJ∗Id − J∗−1

now by substituting the last expression in(3.6) we obtain the final expression of the first derivatives
of the approximants:

∇pβa(x) = −pβa(x)J(x,λ∗(x))−1(x− xa) (3.7)

where J∗ is the Hessian of the objective function described in (2.21).

3.1 Continuity and differentiability of the shape functions

The LMEβ first derivatives have some important proprieties ∀x ∈ conv(x) we have to fix to better
know the behavior of the approximants.

Proposition 2 (Continuity Propriety). : Let x ∈ conv(X). If pβ(x) is the unique solution
of LMEβ then pβ(x) is a continuous function of β in [0; +∞).

From this propriety derives an immediate corollary:

Corollary 3.
lim
β→0

pβ(x) = p0(x)

which means that it’s possible to recover the max-ent program, from the more general LMEβ
when β → 0. This allow us to retain general the program 2.17.
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Proposition 3 (Smoothness Propriety). : Let x ∈ conv(X), then pβ(x) is a Cr function of
β in (0,+∞).

This propriety is very important in order to be licensed to follow a mathematical way to com-
pute the derivatives of the approximants, cause they are continuous in every point of conv(X).

Those two proprieties are both linked to the situation: β = [0,+∞), were, rigorously, the lo-
cal max-ent approximants should not have any problem. Now we propose other more significant
proprieties regarding the approximants when β → +∞

Proposition 4 (Uniqueness of Rajan solution). : Let x ∈ conv(X). Consider a sequence
of non-negative reals {βk} (k ∈ N) diverging to +∞ as k → +∞. Then every convergent sub-
sequence of {pβk(x)} converges to a solution of (RAJ), Furthermore, if the nodes are in general
position, then pβ(x) converges to the unique solution of (RAJ), as β → +∞.

This is very important in order to recover the RAJAN solution when nodes are not co-spherical,
so to have a general method.

Proposition 5 (Uniqueness of Pareto Optima). : Let x ∈ conv(X). Consider the solution
fo (RAJ) with maximum entropy:

pPareto∞ (x) = arg max H(p)

which is unique by the virtue of the strict concavity of the entropy in the convex set of nodes, then
it’s possible to demonstrate that:

lim
β→+∞

pβ(x) = pPareto∞ (x)

This last propriety states that, regardless to the uniqueness of the minimizers of RAJAN
problem, the limit of LMEβ exist as β → +∞, in fact the max − ent regularization program of
RAJ extracts from the set of the Rajan’s solutions the only one which is optimal in Pareto sense
and then is unique by the strict concavity of the entropy in the convex domain.

3.2 Monodimensional first derivatives of the shape functions

We purpose now to displace the first derivatives of the shape functions presented in chapter § 2.4.
In figure 3.1, 3.2, 3.3, 3.4, we apply (3.7) progam to reach our goal.
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Figure 3.1: 1D first derivatives of the shape functions represented with 11 nodes and
1000 definition points; β=2
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Figure 3.2: 1D first derivatives of the shape functions represented with 11 nodes and
1000 definition points; β=20
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Figure 3.3: 1D first derivatives of the shape functions represented with 11 nodes and
1000 definition points; β=200
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Figure 3.4: 1D first derivatives of the shape functions represented with 11 nodes and
1000 definition points; β=800
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It’ s possible to appreciate how the first derivatives have the same tendency shown by the shape
functions: in fact we note for β = 2 the derivatives involve all the domain, while for β = 800 they
are full local.

Now we want to test the program for a non regular grid, so to prove the goodness of the ap-
proximants derivatives for a random set of nodes. With reference to figure 2.6 we propose in figure
3.5 the associated derivatives:
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Figure 3.5: 1D first derivatives of the shape functions represented with 11 nodes and
1000 definition points with a random grid; β=100

3.2.1 Program Correction

We give now a suggestion to avoid an implicit error involved in the basis program (3.7). Looking
to the original program it is possible to appreciate how the derivatives of the first and the last
shape function, in the first and the last point in which they are evaluated, vanishes. In fact, in
those points we obtain:

(x− xa) = 0;

this condition is analytically correct, but inconsistent in a physicist vision, cause it involves:

∇pβa(x) = 0

which is not possible cause in mono-dimensional case the first derivative of the function represent
the slope of the tangent line; this could mean that the tangent line is parallel to x-axis, in this
way it’s inconsistent this solution.

To solve this problem we can follow 2 different ways:

• finite difference method: so to ignore the value of the derivatives in the critical points
obtained with the basis program and compute it by applying this method by using the
ordinates of the derivatives of the nearest nodes. This way, as we will see, is not efficient to
our final target;

• "homemade" method: the way we apply, which consists, simply, in modifying the value
of the critical points.

In figure we represent for example the β=20 case, without any correction to original program in
order to give a complete vision of the bug.
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Figure 3.6: 1D first derivatives of the shape functions represented with 11 nodes and
100 definition points. Original program; β=20

In this case we have use a 100 points grid (instead 1000 points grid used before) in order to make
easier to see the computational error.
Here we illustrate now the homemade method we use to solve problem bug:

• the value of every node xa must never change;

• assume first x point:
x1 = x1 + ε

where ε is a small value of your choosing, with the only purpose to make:

(x− xa) 6= 0

• assume last x point:
xN = xN − ε

for the same reason over exposed. In practical cases ε must be assumed in relation to the
nodal spacing of the problem.

In our illustrated cases we have imposed:

x1 = 10−8 xN = L− 10−8

Clearly in this way we obtain not the real value of the derivative we want to compute, but the value
in a point very close to the investigated one, the error between the true value and the approximated
one is normally very small and this does not create any problem in practical applications.

3.3 Bi-dimensional first derivatives of the shape functions

The derivatives of 2D shape functions are the natural extension of the mono-dimensional case. In
following figures we represent the first derivatives, of the approximants exposed in chapter §2.5,
in both directions of the plane:
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Figure 3.7: 2D X derivative of the shape function represented with 55 nodes and 5500
definition points; γ=0.8

Figure 3.8: 2D Y derivative of the shape function represented with 55 nodes and 5500
definition points; γ=0.8

Figure 3.9: 2D X derivative of the shape function represented with 55 nodes and 5500
definition points; γ=1.8
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Figure 3.10: 2D Y derivative of the shape function represented with 55 nodes and 5500
definition points; γ=1.8

Figure 3.11: 2D X derivative of the shape function represented with 55 nodes and 5500
definition points; γ=2.8

Figure 3.12: 2D Y derivative of the shape function represented with 55 nodes and 5500
definition points; γ=2.8
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Figure 3.13: 2D X derivative of the shape function represented with 55 nodes and 5500
definition points; γ=6.8

Figure 3.14: 2D Y derivative of the shape function represented with 55 nodes and 5500
definition points; γ=6.8

Figure 3.15: 2D X derivative of the shape function represented with 55 nodes and 5500
definition points; random grid; γ=1.8
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Figure 3.16: 2D X derivative of the shape function represented with 55 nodes and 5500
definition points; random grid; γ=1.8

where 3.15 and 3.16, refers to the shape function of the random grid.

3.3.1 Program correction

It is possible to recover also in the bi-dimensional case the same problem illustrated for the mono-
dimensional one. The greatest difficult we have to face it’s the fact we can find the problem bug
in every border of the domain. In figure 3.17 we displace the gradient functions obtained with the
original program, near the angle and on the border of a simple rectangular domain:

Figure 3.17: 2D shape functions X and Y gradient represented without any program
correction

It’s possible to appreciate how each component of the gradient function near the border of the
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angle of the domain presents the extended version of the problem we had for the 1D first deriva-
tives. The reasons of these errors are analogous to ones exposed in chapter §3.2.1. In this case,
clearly, the gradient represent the unitary vector normal to tangent plane.

To avoid this problem, we can follow this method:

• the value of every node xa must never change;

• for angle nodes:

we can impose those conditions:

xangle = xangle ± ε yangle = yangle ± ε

where sign "+" or "-" is introduced with the purpose to move to interior points the previous
value of ~x.

• For border nodes:

in general we can adopt this way:[
xborder
yborder

]
=

[
xborder
yborder

]
±
[
ε

0

]
or ±

[
0

ε

]
where we use the first or the second addend in order to move the border points to the line
of the "next to boundary nodes", and with the same criteria we choose sign "+" or "-".

• For nodes belonging to not orthogonal lines:

In this section we consider only bi-dimensional elements composed of orthogonal lines. If
we want to extend the problem to elements with not orthogonal borderlines, we have to
move every border point to interior ones on the direction described by the normal to the
considered line. In general: [

xborder
yborder

]
=

[
xborder
yborder

]
·n±

[
ε

ε

]
·n

where ~n is a unit vector normal to the considered line. The sign "+" or "-" is chosen in
order to move the considered point to interior ones.

In all the cases the value of ε, must be chosen in relation to the nodal spacing between the points.
In general we adopt the reasonable choice of ε = 10−8.



Chapter 4

Second derivatives of the shape
functions

In this chapter we propose to evaluate the second derivatives of the shape functions. This op-
eration is not exactly conventional in fact, even if the approximants have an exponential form,
the derivatives are consistent only to the consistency order we have imposed with (2.5), so to
the first order. In this work, although we want to evaluate the second order derivatives and test
them in practical problems to check if the consistency conditions are really essential to have good
approximating schemes.

By considering the smoothness propriety, we know the shape functions are Cr in convX,
and we can try to evaluate the second derivatives in an analytic way, like we did for the first
derivatives. It’s necessary always to consider that the shape functions are defined point-wise, by
considering this we can evaluate the second derivatives by following the generalized chain rule for
multi-variable functions.

The general math expression of our goal is:

Hp∗a =
1

p∗a
∇p∗a ⊗∇p∗a + p∗aHf

∗
a − p∗a

N∑
b=1

1

p∗b
∇∗b ⊗∇p∗b − p∗a

N∑
b=1

p∗bHf
∗
b (4.1)

now it’s clear the only term we need to compute is Hf∗a . Here we introduce the generalized chain
rule for multi-variable functions:

∂2f

∂x2
= Hf∗a =

∂

∂x

[
∂f

∂λ

∂λ

∂x

]
+

∂

∂x

[
∂f

∂x

∂x

∂x

]

and so by splitting the formula:

Hf∗a =

(
∂2f

∂x2

∂x

∂x
+

∂2f

∂λ∂x

∂λ

∂x

)
∂x

∂x
+
∂f

∂x

∂2x

∂x2
+(

∂2f

∂x2

∂λ

∂x
+

∂2f

∂x∂λ

∂x

∂x

)
∂λ

∂x
+
∂f

∂λ

∂2λ

∂x2
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by applying the chain rule to (3.6) we derive the general mathematical expression:

Hf∗a = −2β +Dλ∗ +Dλ∗
T

+

d∑
k=1

(D2
xλk)∗(∂λkfa)∗ (4.2)

now, by substituting the previous expression in (30), we obtain:

Hp∗a =
1

p∗a
∇p∗a ⊗∇p∗a − p∗a

N∑
b=1

1

p∗b
∇∗b ⊗∇p∗b + p∗a

d∑
k=1

(xa − xak)(D2
xλk)∗ (4.3)

The most complicated part of the program is the one which goes down to the evaluate the other
two unknowns. We start from the analytic condition:

D2
xr
∗ = 0

from here we can derive the following condition:

D2
xλ
∗ = 0

where we evaluate:

D2
xgλ∗

i
= (∂x∂xgλi)

∗ + (∂x∂λgλi)
∗(Dλ∗)T + (Dλ∗)(∂x∂λgλi)

∗T +

d∑
k=1

g∗λiλk(D2
xλk)∗ (4.4)

it’s simple to recover that, in a 2D problem, since λ = 1 → 2 from the previous expression we
have a system of 4 equations in 4 unknowns. From the 1st derivatives study, we know that:

Dλ∗ = 2βI− (J)−1

then the other unknowns can be calculated in this way:

(∂x∂xgλi)
∗ = 4

N∑
b=1

p∗b(xi − xbi)[β
∗(x− xb)]⊗ [β∗(x− xb)]

(∂x∂λgλi) = −2β∗
N∑
b=1

p∗b(xi − xbi)(x− xb)⊗ (x− xb)

(∂λ∂λgλi)
∗ = −

N∑
b=1

p∗b(xi − xbi)(x− xb)⊗ (x− xb)

Now we have all the instruments to compute the second derivatives.

4.1 Mono-dimensional second derivatives of the shape func-
tions

We want now to give a concrete representation of the second derivatives of the approximants.
With reference to the shape functions represented in chapter § 2.4, in figure 4.1, 4.2, 4.3, 4.4 we
displace the associated second derivatives.
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Figure 4.1: 1D second derivatives of the shape functions represented with 11 nodes
and 1000 definition points; β=2
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Figure 4.2: 1D second derivatives of the shape functions represented with 11 nodes
and 1000 definition points; β=20
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Figure 4.3: 1D second derivatives of the shape functions represented with 11 nodes
and 1000 definition points; β=200
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Figure 4.4: 1D second derivatives of the shape functions represented with 11 nodes
and 1000 definition points; β=800

In particular we note the second derivatives are all correct according the formulation, except
the last ones for β = 800, where we obtain a wrong results in some points, according to the ana-
lytic formulation. Although this bug is not of much importance to our final purposes, in fact the
value of β=800 is very high in relation to the selected nodal spacing.

In figure 4.5, we displace the derivatives of the random grid approximants:
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Figure 4.5: 1D second derivatives of the shape functions represented with 11 nodes
and 1000 definition points with a random grid; β=100

As we can appreciate, the program is well working also in this situation.

4.2 Bi-dimensional second derivatives of the shape functions

We now extend the treatise to the bi-dimensional case and with reference to the shape functions
of chapter §2.5, we displace in the next figures the XX, XY and YY second derivatives for different
values of parameter γ:
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Figure 4.6: 2D XX second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=0.8

Figure 4.7: 2D XY second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=0.8

Figure 4.8: 2D YY second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=0.8
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Figure 4.9: 2D XX second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=1.8

Figure 4.10: 2D XY second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=1.8

Figure 4.11: 2D YY second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=1.8
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Figure 4.12: 2D XX second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=2.8

Figure 4.13: 2D XY second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=2.8

Figure 4.14: 2D YY second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=2.8
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Figure 4.15: 2D XX second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=6.8

Figure 4.16: 2D XY second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=6.8

Figure 4.17: 2D YY second derivative of the shape function represented with 55 nodes
and 5500 definition points; γ=6.8
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Figure 4.18: 2D XX second derivative of the shape function represented with 55 nodes
and 5500 definition points; random grid; γ=1.8

Figure 4.19: 2D XY second derivative of the shape function represented with 55 nodes
and 5500 definition points; random grid; γ=1.8

Figure 4.20: 2D YY second derivative of the shape function represented with 55 nodes
and 5500 definition points; random grid; γ=1.8



4.2. Bi-dimensional second derivatives of the shape functions 41

where in figure 4.18, 4.19, 4.20, we refer to the random grid.



Chapter 5

Computer implementation of Local
Max-ent program

In this chapter we purpose to outline the principal features of the computer implementation of our
approximation schemes. In particular, we focus on the optimization program which is the heart
of the code, then we show some important aspects of pure programming which allow us to create
more efficient programs in terms of time and memory usage.

First, although, we want to give a general view of the Local max − ent program, so to make
easier the comprehension every step of the program we evaluate shape functions and associated
derivatives with.

5.1 General features of Max-ent program

To create a code which is able to reproduce the program we have illustrated in chapter § 2.3,
we must consider that the most important and onerous part of the problem is the optimization
one, made with the Newton-Raphson iterative method. Our goal is to create a program which is
faster and less expensive (in memory terms) as possible. To made our program we have used two
languages: MATLAB®and FORTRAN 77®. The first language has been used for the preliminary
part of the code, in order to create the necessary files for the core of the program, and to displace
the final results. FORTRAN 77®, instead, has been used for the computational part in which we
evaluate the shape functions and their derivatives. In particular the usage of FORTRAN 77®is
very useful to reduce the computational time and the memory usage during the processing; in fact
the program involves many for and while cycles and MATLAB®is quite fifty times slower than
FORTRAN 77®, furthermore with this language we can use more RAM memory sources.

In figure 9.1 we present a flow-chart to illustrate the operative scheme of the program.

42
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Figure 5.1: Local Max-Ent program flowchart
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where we have used MATLAB®for the "Mesh Generation" and FORTRAN 77®for the rest of
the program. In flow-chart 9.1 we have omitted two possibly part of the program that are not
essential:

• Program controls: we can control if the minimazing program has worked right by checking
proprieties:

– positivity propriety: 2.3;

– unity propriety: 2.4;

– linear propriety: 2.5;

– equality of the mixed second partial derivatives.

• Results displacements: we can realize some plots in which we displace the shape functions
with associated derivatives and the program controls; in this way we have a better vision of
the final results.

it’s possible to insert this part of the program after the output files. In this case is simplest to
work with MATLAB®.

5.2 Newton-Raphson method

In this section we purpose to focus on the Newton-Raphson iterative method which is the core of
Local Max-ent program, in fact allow us to find the solution of Eq. 2.13. We must remind we have
already demonstrated the solution is unique due to the concavity of the entropy on the convex
domain, in this way this non-linear approximation method is optimal to reach our goal.
We now to illustrate this iteration method, with a particular attention to convergence conditions.

First of all, we consider a function: f(x). we can write its Taylor series about the generic point
x0:

f(x0 + ε) = f(x0) + f ′(x0)ε+
1

2
f ′′(x0)ε2

now, by taking only the first order terms:

f(x0 + ε) = f(x0) + f ′(x0)ε (∗)

we can recognize in this scripture the equation of the tangent line (in a mono-dimensional case) or
of the tangent plane (in a bi-dimensional case) in the point (x0; f(x0)). This expression above can
be used to estimate the amount of offset epsilon needed to land closer to the root starting from
an initial guess x0. Setting f(x0 + ε) = 0 and solving (*) for ε = ε0 gives:

ε0 = − f(x0)

f ′(x0)

which is the first-order adjustment to the root’s position. By letting x1 = x0 + ε0, calculating
a new ε1, and so on, the process can be repeated until it converges to a fixed point (which is
precisely a root) using:

εn = − f(xn)

f ′(xn)

Unfortunately, this procedure can be unstable near a horizontal asymptotic or a local extreme.
However, with a good initial choice of the root’s position, the algorithm can be applied iterative
to obtain :

xn+1 = xn −
f(xn)

f ′(xn)
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with {n = 1, 2, 3, . . . }. An initial point x0 that provides safe convergence of Newton’s method is
called an approximate zero.
Thus, for what we have explained in precedent chapters, we know there are no problems in finding a
zero in our problem, since, as the shape functions has been constructed, they have none asymptote,
and there is only one local extreme which is also an absolute extreme.
For the bi-dimensional case, the analytic approach is the same, but have to compute the two
partial derivatives of the function:

∂f(x, y)

∂x

∂f(x, y)

∂y

which constructs the gradient of the function. We have to find an unique solution of the equation:

∇(x, y) = 0

In particular, since we are working to find an extreme point, we must fix our attention upon the
derivative of the function, so in this case, the expression: f ′(x) = 0 is replaced by the Jacobian
matrix of the two first derivative, so by the Hessian Matrix:

H =

[
∂2f(x,y)
∂x2

∂2f(x,y)
∂xy

∂2f(x,y)
∂xy

∂2f(x,y)
∂y2

]

5.3 Program optimization

The problem of the storage of the results it’s very critical, in fact, during the computer processing
we need high RAM package in order to store results and temporary variables needed to compute
next unknowns of the program. To give an example of RAM usage, we can consider a square
grid with 50 nodes for side and we assume the number of points like the nodes for simplicity; we
have totally 2500 nodes that generate a shape function’s matrix with 25002 elements which are
the values in every point of any nodal shape function. If we consider the classical representation
of the numbers in double precision we need 64 bit for number and so we must have about 200
Mb of memory; if we want to compute also the first and the second derivatives we need about 1.2
Gb of RAM. It’s now clear that if we have an higher number of nodes the necessity of memory
exponentially increases, for example with 6400 nodes we need 7.1 Gb of RAM. This simple expla-
nation let we understand how expensive those approximants are in terms of memory usage and so
in computing time.
Our goal is to reduce the usage of memory in order to be able to compute the LME approximants
for higher grids. The approach we use aim at evaluate the value of any shape functions only in the
points next to the investigated node, where we know the shape function has significant ordinates
different to 0. It’s possible to evaluate in this way the radius from the node were we want to
compute the shape functions:

Ra = max

(√
− ln (Tol0) ·ha; 4ha

)
where: Tol0 is the fixed tolerance below that we consider 0 the value of the shape function, ha is
the value of the maximum nodal spacing around the investigated node. In general it’s reasonable
to assume Tol0 = 10−9.

We can organize the shape functions and derivatives matrices in this way:
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
i j value

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .



where i is the number of the nodal shape function (the row of the entire matrix) and j is the
point in which we evaluate the associated nodal shape function. Of course we organize in the
same way all the matrices.
It’s important to note that this method allow us also to reduce considerably the computing time,
in particular cause we avoid to evaluate the shape functions and their derivatives in points where
we know the results are close to zero.

Such we have illustrated, is very important in order to reduce the memory usage and, consid-
erably also the computational time, but if we want to make more performing the program, we
have to consider the most expansive part, in terms of time, is the Newton-Raphson optimization
of 2.13. In fact to reduce the numbers of the iterations is very important in order to make it
better. To do this the easier way is to choose the right point λ form where we start the iterations.
In our program we have selected as first attempt solution, the optimal solution λ∗ of the closest
node. In this way we are able to have very good results in terms of number of iterations saved.

In table 5.1 and 5.2 we report some interesting results about the original and optimized pro-
gram:

Nodes for side Memory employed Machine time Iterations
[Mb] [s]

20 28.8 1.56 4796
30 147 6.23 11747
40 465 19.23 23127
50 1134 49.45 36422
60 2235 116.95 54819
70 4153 265.84 74050
80 6987 502.35 102122
90 10562 812.35 128125
100 15236 1256.32 162897
120 28756 2286.57 245982
140 45620 3562.13 335157
160 68354 4986.78 438625
180 98625 6785.45 549355
200 132564 8956.26 665321

Table 5.1: Computational values for the ORIGINAL PROGRAM
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Nodes for side Memory employed Machine time Iterations
[Mb] [s]

20 4.00 0.35 2735
30 11.76 1.21 5087
40 20.34 3.30 8364
50 34.36 7.86 11503
60 50.00 19.96 15743
70 68.95 47.13 19616
80 96.32 98.12 25453
90 114.49 173.58 30464
100 156.88 279.43 37311
120 233.88 491.72 51428
140 364.03 837.55 64083
160 520.79 1416.68 82582
180 742.32 2049.91 102352
200 1017.77 2834.24 121856

Table 5.2: Computational values for the OPTIMIZED PROGRAM

To make easier the comprehension of the importance of the optimization, we displace the re-
sults in figure 5.2:

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

Nodes for side

M
e
m

o
ry

 [
G

b
]

Increasing of memory employed for the original and the optimized program

 

 

Memory employed, original program

Memory employed, optimized program

It’s very remarkable how, the trend of iteration line and the trend of the machine time line is
quite the same, as expected, in fact the most expensive part of the program is the optimization
one and so by decreasing the waste of time in this part, we can reduce in general the total com-
putational time.
The little difference in favor of the iteration line, in terms of decreasing, is due to the second
derivatives calculation, in fact even if we have approached with sparse matrices, this part of the
program involves point-wise the solution of a linear system [2x2] which causes the increasing of
the total machine elaboration time.
With a normal computer with 8Gb of Ram it is possible to elaborate mesh with 160000 nodes
and points, but the program needs a lot of time, this is the most significant problem of the
approximants calculation.
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Figure 5.2: Comparison between the original and the optimized program, in terms of
memory, time and iterations



Chapter 6

Second order max-ent
approximation schemes (SME)

In this chapter we purpose to extend the previous method to a second order consistency condition.
In Local max-ent approximation schemes we have imposed the linear consistency condition (Eq.
2.5), which involves the capability of perfect reproduction of a linear function. We want, now, to
impose a condition which allows the approximants to perfectly reproduce a parabolic function. In
the following sections, we outline the principal features of the method, focusing our attention on
the differences between this method and the previous. In particular we propose some comparisons
of function approximation to test the efficiency of the method.

6.1 Feasibility conditions for second order convex approxi-
mants

First of all we recall the feasibility conditions introduced for the Local Max-Ent approximation
schemes [8]:

sa(x) ≥ 0, ∀x ∈ convX, a = 1, ..., N (6.1)
n∑
a=1

sa(x) = 1, ∀x ∈ convX (6.2)

n∑
a=1

sa(x)xa = x, ∀x ∈ convX (6.3)

where sa(x) is the new calling of the shape functions of node xa.

Those conditions are still working also for this method extension. Now if we want to extend
the approximants to a second order consistency condition it is natural to consider the following
formulation:

n∑
a=1

sa(x)x2
a = x2, ∀x ∈ convX (6.4)

where x2
a is chosen as coefficient of the combination. This is not the only possible solution, but

it’s the more convenient one to not have an implicit problem, since sa is unknown.
Although, by considering Eq. (6.3) and (6.1) it’s evident that to satisfy (6.4) it’s necessary that,
for x away from the boundary, all the shape functions vanish at this point. This solution, even
mathematically correct, hasn’t any consistent physicist validation. So to bypass this problem, we

49
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can move away from the canonical formulation and replace (6.4) with a relaxed form:

n∑
a=1

sa(x)x2
a = x2 + g(x), ∀x ∈ convX (6.5)

where g(x) is called gap function and must satisfy two constrain:

g(x) ≥ 0; (6.6)

g(x) = 0, ∀x ∈ bd(convX) (6.7)

In this way in a mono-dimensional domain, x2 + g(x) lies within the convex hull of points (xa, x
2
a)

and the second order consistency condition is not violated.
It’s very important to remark the second condition requires x2 + g(x) to be piece-wise quadratic
and smooth, since the smoothness of the shape functions is that of the gap function. The main
limitation of the gap function method is that it’s difficult to define appropriate gap functions for
unstructured node sets and so it’s difficult also to control the aspect ratio of the basis functions
and their smoothness. To evade the problem, we can rewrite (6.5) in this way [8]:

n∑
a=1

sa(x)(x2
a − da) = x2, −→

n∑
a=1

sa(x)(x− xa)2 =

n∑
a=1

sada (6.8)

for some non-negative parameters da. Clearly da is subjected to same restriction of the gap
function g(x).
We can also observe, the right side of the second expression of (6.8) is greater than zero. This
viewpoint allows us to define the feasible constraints only by setting the offsets da. This make
easier to define the gap function upon a sparse set of nodes with variable density. In a more
general formulation, in multiple dimensions:

n∑
a=1

sa(x)(x− xa)⊗ (x− xa) =

n∑
a=1

sada (6.9)

where, now, da is a positive-define symmetric matrix depending by the nodal gap in the problem
dimensions.

6.2 Design of feasible constraints

6.2.1 Mono-dimensional case

The one dimensional case is the simplest one cause we have to work only with scalar objects. We
have to make a distinction between different type of nodes. Consider a set of nodes:

x1, x2 . . . , xN−1, xN

we can define da in 3 different way:

• boundary nodes

According to (6.8):
d1 = dN = 0



6.2. Design of feasible constraints 51

• next to boundary nodes

d2 = max

{
βh2

1,
α

4
h2

2

}
dN−1 = max

{
βh2

N−1,
α

4
h2
N−2

}

where: α is a non dimensional parameter we assume ≥ 1; β is a slack parameter in general
≥ 1. We adopt β=1 in most cases.

• interior nodes

da = max

{
βh2

a−1,
α

4
h2
a

}
for α = 3, . . . , N − 2;

where ha−1 = xa − xa−1.

6.2.2 Bidimensional case

We center our attention to a bi-dimensional case. Consider the simple square domain in figure
6.1:
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Figure 6.1: General set of nodes

we can now analyze any single case.

• boundary nodes

For the boundary nodes we have to consider individually any line which the boundary is
composed of. For example we can refer to segment which has zero ordinate 6.2. We call: A
node (0;0) and B node (1;0). We have so 3 different cases in face ĀB:
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Figure 6.2: Boundary nodes

– boundary nodes

dA = dB = 0

– next to boundary nodes

da = βh2
at⊗ t

– interior nodes

da =
α

4
h2
at⊗ t

where t is the unit tangent vector to face ĀB. In this case, since face ĀB is straight, t it’s
constant, in different context it could be variable and defined by coordinates of node a and
node a+ 1.

• next to boundary nodes

Now we look to figure 6.3, in particular to the face parallel to ĀB; in this case we dis-
cern two different situation:
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Figure 6.3: Next to boundary nodes
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– "angle" nodes:
we call "angle" nodes whose which are in the junction between 2 different faces. In fact
they are the boundary nodes of this face.

da = βh2
a(n⊗ n + n′ ⊗ n′)

where n and n′ are the normal to the two different faces the node refers to.

– interior nodes

da = βh2
an⊗ n +

α

4
h2
at⊗ t

where n and t are the normal unit vector and the tangent unit vector of the node face,
respectively.

• interior nodes

In this case we have to identify three different situations by starting from the simplest:
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Figure 6.4: Interior nodes

– isotropic spacing among two orthogonal directions
which is the example presented in figure 6.4;

da =
α

4
h2
aId

where Id is the identity matrix whose dimensions are d, in our example [2x2].

– non-isotropic spacing among two orthogonal directions
which is the natural extension of the previous case.

da =
α

4

[
h2
a 0

0 h2
b

]
where h2

a and h2
b are the spacing among the two different orthogonal directions.

– non-isotropic spacing among two general directions
In this case, which is by far the more difficult one, we have to introduce the general
metric tensor ha. It must be symmetric and positive define. It characterizes the nodal
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spacing on each direction. We define:

da =
α

4

d∑
i=1

(hia)2via ⊗ via

where hia and via are the eigenvalues and the eigenvectors of the metric tensor, respec-
tively.

For example, by considering an orthogonal coordinates system, the matrix da has only two
non-zero component (on the principle diagonal), we can display a "normalized" value of da
in every node:

0 0.050.10.150.20.250.30.350.40.450.50.550.60.650.70.750.80.850.90.951

00.050.10.150.20.250.30.350.40.450.50.550.60.650.70.750.80.850.90.951
0

1

2

3

4

x 10
−3

x−axis

NORMALIZED VALUE OF "da"

y−axis

We must remark α can assume any value grater then 1; although, for highly non-uniforms
grids, it’s better to use values between the range: 1.2 ≤ α ≤ 3.

6.3 Optimization program for the second order max-ent ap-
proximation schemes

We introduce now the non-linear program to find the basis functions sa. We still use maxi-
mum entropy as a selection principle and practical computation method to choose the optimal
approximants between the set of second order consistent convex approximants satisfying feasible
constraints. We obtain:

(SME) for fixed x maximize−
N∑
a=1

sa(x) ln sa

which is subjected to 6.1, 6.2, 6.3 and also to second consistency condition, we can rewrite in this
way:

N∑
a=1

saDa(x,xa,da) = 0 (6.10)

where:
Da(x,xa,da) = (x− xa)⊗ (x− xa)− da (6.11)
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where Da is a symmetric matrix which has the dimensions of the problem.
To solve the minimizing problem, we can follow the same approach we used for Local max-ent
approximants and we recall the partition function:

Z(x,λ,µ) =

N∑
a=1

exp [λ · (x− xa)− µ : Da] (6.12)

and so the optimal solution can be written as:

sa =
exp [λ∗(x) · (x− xa)− µ∗(x) : Da]

Z(x,λ∗,µ∗)
(6.13)

where λ∗(x) and µ∗(x) are the Lagrangian multipliers obtained by minimizing the dual Lagrangian
function:

g(λ(x),µ(x)) = lnZ(x,λ,µ) (6.14)

The minimizing problem is subjected to Eq. (6.1), Eq. (6.2), Eq.(6.3) and (6.5), which we can
rewrite in this more consistent way:

N∑
a=1

Da(x,xa,da) = 0 (6.15)

In particular we remark that λ∗(x) has the same dimensions of LME program µ∗(x), instead, is a
new term which is symmetric and in general positive define. Since also Da is positive define and
symmetric, we can spit the scalar product in Voigt notation in this way:

µ∗(x) : Da =

 µ11 ·Da11

µ22 ·Da22

2µ12 ·Da12


where in this case we have considered a bi-dimensional space.

6.4 Mono-dimensional domain shape functions

We give, now, a representation of the shape functions in a mono-dimensional domain. We assume
β=1 and we change the value of α, which is the parameter that controls the second order feasibility
condition.
In figure 6.5, 6.6, 6.7 and 6.8 in particular we can notice how for lower values of α the shape
functions span about less nodes. For example with α=1.5 the basis function spans about four node
spacing, instead for α=4 the function spans about a six nodal spacing. In figure 6.5, specifically,
it is possible to recognize the trend of the gap functions.

This is very important in computational problems, in fact playing with this parameter we can
reduce numbers of non-zero elements of the matrices and so reduce the machine processing time
and the memory usage.

The terms: nodes and points have the same meaning we have illustred in chapter § 2.4
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Figure 6.5: 1D shape functions represented with 9 nodes and 900 definition points;
α=1.5
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Figure 6.6: 1D shape functions represented with 9 nodes and 900 definition points;
α=2.0
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Figure 6.7: 1D shape functions represented with 9 nodes and 900 definition points;
α=3.0
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Figure 6.8: 1D shape functions represented with 9 nodes and 900 definition points;
α=4.0

With the same quadratic distribution of chapter: 2.4 we test the program on a non regular grid
of nodes:

00.03130.1250.2813 0.5 0.7813 1.125 1.5313 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SME Shape Functions 1D alfa=1.5

Nodes

S
h

a
p

e
 f

u
n

c
ti
o

n
s

Figure 6.9: 1D shape functions represented with 11 nodes and 1000 definition points
with a random grid; α=1.5

6.4.1 Example of a function approximation

Our purpose is to make a comparison between the LME and the SME method. To make this
comparison we take the same function used in chapter § 2.4. Since in LME the discretization
parameter is β and for SME is α we must be sure to use similar parameters, to make reasonable
the comparison. We introduce this formulation that came from practical experience:

α ≈ 2

γ

which is consistent for uniform grid in one dimensional cases. So by considering that γ = βh2, we
can rewrite the comparison condition in this way:

β ≈ 2

αh2
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For the same analytic function:
f(x) = sin(x)

we want to make a consistent comparison between the two approximation schemes. To do this
we must link the parameter α to a consistent analogous parameter β. Its’ possible thanks to the
previous formulation. To prove the goodness of the results, it’s possible to estimate the absolute
error between the analytic function and the SME max-ent approximation in this way:

Err =

√
N∑
i=1

‖yian − yisme‖
2

√
N∑
i=1

‖yian‖
2

In figure 6.10 and 6.11 we displace the comparison of the errors for the regular case and the
irregular one: For the regular grid, we notice SME program has a slope '4, and so is better then
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Figure 6.10: Comparison between the LME approximation and the SME approxima-
tion of the sine function
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Figure 6.11: Comparison between the LME approximation and the SME approxima-
tion of the sine function

LME (slope '2), but for the irregular case , even if the error is lower, the SME approximants have
the same trend line then LME ones. This allow us to retain SMEs are good working for regular
grids, but for the irregular grids we don’t obtain good results. We can conclude SME method is
more unstable than LME approximation schemes.
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6.5 Bi-dimensional domain shape functions

In this section we want to extend the treatise to the bi-dimensional case. The natural extension
of the problem involves greater computational burden. We take a different way to represent shape
functions than LME problem solving. Instead displacing the same shape functions for different
values of α, we displace for a usual value of α (=2) different type of basis functions. The choice
has been made by taking in consideration that α differently from β in LME, has not a straight
physicist value in 2D. As usual, in figure 6.12, 6.13, 6.14, 6.15, we assume β=1.

Figure 6.12: 2D angle shape function represented with 81 nodes and 8100 definition
points; α=2

Figure 6.13: 2D border shape function represented with 81 nodes and 8100 definition
points; α=2

It’s possible to appreciate the shape functions have similar behavior in LME program.
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Figure 6.14: 2D center shape function represented with 81 nodes and 8100 definition
points; α=2

Figure 6.15: 2D random shape function represented with 81 nodes and 8100 definition
points; α=2

6.5.1 Random Grid

Those approximants show a critical bug, in fact, form our experience, is very difficult to reproduce
the shape functions for random grids of nodes. In particular the difficulties came from the definition
of parameter da which substitutes the gap function. We recall the formulation of da for non-
isotropic spacing:

da =
α

4

d∑
i=1

(hia)2via ⊗ via

we take from [8]. With this approach is not clear which kind of neighbor nodes we have to consider
to compute the gap. By looking to the case of an isotropic spacing along two orthogonal directions:

da =
α

4

[
h2
a 0

0 h2
b

]
it’s clear the matrix could be considered a kind of normalized inertia tensor, in fact if we consider
a regular grid of nodes, the value of da for every node could be reached by considering the inertia
matrix of the nodes next to the investigated one and normalizing it for the number of nodes which
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are effectively contributory to the inertia in that direction. Form this consideration, we have tried
3 ways to move this problem to a random grid:

• ALL NODES METHOD:

we consider all the nodes of the grid around the investigated one, we make the tensor of
inertia and we normalize it with the number of total nodes;

• 9 NODES METHOD:

we take just 8 nodes and the investigated one to compute the matrix of inertia and we
evaluate the eigenvalues (eigenvectors) and we normalize them with number of contributory
nodes

• 5 NODES METHOD:

we take just 4 nodes and the investigated one to compute the matrix of inertia and we
evaluate the eigenvalues (eigenvectors) and we normalize them with number of contributory
nodes

where we call contributory node which one is give a non zero contribution to definition of the
matrix of inertia.

In particular the second and the third ways are both consistent in a regular grid but we have
noticed that for completely random grids anyway we define da we cant’ reach a solution of the
minimizing program. This means the SMEs are very sensible to this parameter and if it’s not
perfect the program doesn’t work. Furthermore in literature there isn’t any source that explains
this bug or simply uses this approximants in an efficient way.

6.5.2 Example of function approximation

Considering the same function used in chapter § 2.5.1, we want now to displace the approximation
error of SME program and make a comparison with the results obtained with LME. In this case
we are not able to make the comparison for the regular and irregular grid of nodes, so we are going
to face the results only for the regular grid of nodes. We assume α = 2 which is a common choice
and we use β = 1 as thermalization parameter.
To prove the goodness of the results, it’s possible to estimate the absolute error between the
analytic function and the SME max-ent approximation. Since the functions are defined point-wise
we need to calculate in every point of the domain the variance between the two functions and so
the absolute error can be written in this way:

Err =

√
N∑
i=1

‖zian − zisme‖
2

√
N∑
i=1

‖zian‖
2

where N is the number of grid points.

In figure 6.16 we displace the comparison between the LME error and the SME error.
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Figure 6.16: Approximation error with associated tendency lines, regular grid

As for the mono-dimensional case, we have the SMEs approximants show a decreasing tendency
line with slope ' 4, instead the LMEs line has slope ' 2. This is in line with what we expected. In
fact since SME has second order consistency condition the decreasing of the error must be faster.



Chapter 7

First derivatives of the shape
functions

In this chapter we present the first derivatives of the shape functions. We follow the same analytic
line we used for LME program. In this case the problem is more difficult due to the higher numbers
of unknowns. It’s also important to remember the problem is defined point-wise and the same
proprieties delineated in chapter § 3 are still consistent.

We must refer to optimization problem exposed in chapter § 6.3 [8]. We can define the fol-
lowing functions:

fa(x, λ,µ) = exp [λ∗ · (x− xa)− µ∗ : Da] (7.1)

and

{λ∗(x),µ∗(x)} = arg min [lnZ(x,λ,µ)] (7.2)

where λ∗ and µ∗ are the Lagrangian multipliers that minimize the problem. We notice λ∗ is
a vector and µ∗ is a symmetric second order tensor which can be written in Voigt notation to
uniform the treatise. It’s also very important to notice that, if we write µ∗ and Da in Voigt
notation, we have to multiple per 2 the 3rd component of Da to guarantee the correctness of the
results. In this way we can write the gradient and the hessian of g with respect to the Lagrange
multipliers found with Newton-Raphson method:

r =

[
gλ

gµ

]
(7.3)

J = JT =

[
gλλ gλµ̃

gµ̃λ gµ̃µ̃

]
(7.4)

where µ̃ is the Voigt notation of tensor µ. We can define any component of the gradient and the
hessian in this way:

gλ =

N∑
a=1

sa(x− xa)

gλλ =

N∑
a=1

sa(x− xa)⊗ (x− xa)− gλ ⊗ gλ

63
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gµ̃ = −
N∑
a=1

saD̃a

gµ̃µ̃ =

N∑
a=1

saD̃a ⊗ D̃a − gµ̃ ⊗ gµ̃

gµ̃λ = −
N∑
a=1

saD̃a ⊗ (x− xa)− gµ̃ ⊗ gλ

It’s readily checked the first order spatial derivatives of the basis functions can be written as:

∇s∗a = s∗a

(
∇f∗a −

N∑
b=1

s∗b∇f∗b
)

(7.5)

in fact the analytic form must be the same for the LMEs approximants. The main difference is
the term ∇f∗a , since we have 3 unknowns: x, λ∗(x), µ∗(x). It’s, so, possible to define ∇f∗a in this
way:

∇f∗a = (∂xfa)∗ + Dλ∗(∂yfa)∗ + Dµ̃∗(∂µ̃fa)∗

where:
(∂xfa)∗ = λ∗ − 2µ(x− xa), (∂yfa) = (x− xa), (∂µ̃fa)∗ = −D̃a

we notice that the terms Dλ∗ and Dµ̃∗ are not explicitly available, but considering that r∗ is
identically zero, from the Newton-Raphson results, we can write:

0 =
[
g∗xλ g∗xµ̃

]
+
[
Dλ∗ Dµ̃∗

] [g∗λλ g∗λµ̃

g∗µ̃λ g∗µ̃µ̃

]
and so we define:

rx
∗ =

[
g∗xλ g∗xµ̃

]
where:

g∗xλ = (∂x∂λg)∗ = −2µ∗
N∑
a=1

sa(x− xa)⊗ (x− xa) + Id = −2µ∗g∗λλ + Id

g∗xµ̃ = (∂x∂λg)∗ = −2µ∗
N∑
a=1

sa(x− xa)⊗ D̃a = −2µ∗g∗µ̃λ

with this expression, we can define exactly ∇fa(x,λ,µ) and so we are able to evaluate the gradient
of the basis function:

∇s∗a = −s∗a
{

2µ∗(x− xa) + r∗xJ
∗−1

[
x− xa
−D̃a

]}
(7.6)

7.1 Monodimensional first derivatives of the shape functions

In this section we present the first derivatives for the same grid of LME program. In particular, in
figure: 7.1, 7.2, 7.3, 7.4, we use the same grid with different values of α. In figure 7.5 we represent
the derivatives of the shape functions of a random grid.
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Figure 7.1: 1D first derivatives of the shape functions represented with 9 nodes and
900 definition points; α=1.5
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Figure 7.2: 1D first derivatives of the shape functions represented with 9 nodes and
900 definition points ; α=2.0
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Figure 7.3: 1D first derivatives of the shape functions represented with 9 nodes and
900 definition points; α=3.0
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Figure 7.4: 1D first derivatives of the shape functions represented with 9 nodes and
900 definition points; α=4.0
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Figure 7.5: 1D first derivatives of the shape functions represented with 9 nodes and
900 definition points;random grid; α=1.5

It’s possible to appreciate that for increasing values of α the derivatives spans about more nodes
just like for the shape functions.

7.1.1 Program correction

To plot the gradient of the shape functions, we refer to 7.6, however, by applying the original
formulation illustrated in previous chapter, the program creates a problem. If we consider the
derivatives of the first and last shape functions, we can notice that in the first and the last point
of the domain the first derivatives goes to 0; in fact in those particular positions we have:

(x− xa) = 0;

and
D̃a = 0
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so it’s natural that in those points we have:

∇s∗a = −s∗a
{

2µ∗(x− xa) + r∗xJ
∗−1

[
x− xa
−D̃a

]}
= 0

This condition is right in a mathematical viewpoint but is not consistent in a physicist way if we
look to the form of the shape functions. In figure 7.6 we re-plot the gradient illustrated in figure
7.1 without our correction to remark the difference with the original program: where we have
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Figure 7.6: 1D first derivatives of the shape functions represented with 9 nodes and
100 definition points; original program; α=1.5

plotted the gradient for a specific value of α and we used 100 points to describe the functions,
so we can better appreciate this bug of the program. This is clearly analytically correct, but it
doesn’t have a physicist consistency. In fact, since, the gradient (in 1D case) represent the angle
ratio of the tangent line, in those specific points, it’s wrong to have

∇s∗a = 0

because it means the tangent line it’s parallel to x-axis, which is impossible in relation with the
form of the shape functions. To avoid this problem, we can reason in this way:

• fix the values of every xa;

• assume first x point:
x1 = x1 + ε

where ε is a small value of your choosing, with only purpose to make:

(x− xa) 6= 0

since we can’t operate on D̃a without a radical modify to program itself.

• assume last x point:
xN = xN − ε

for the same reason over exposed.
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In general it’s reasonable to assume: ε = 10−8

In the case we have shown we put:

x1 = 10−8 xN = L− 10−8

7.2 2D First Derivative shape functions representation

We present now the first derivatives of the bi-dimensional shape functions.

Figure 7.7: X derivative of the angle shape function represented with 81 nodes and
8100 definition points; α=2

Figure 7.8: Y derivative of the angle shape function represented with 81 nodes and
8100 definition points; α=2
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Figure 7.9: X derivative of the border shape function represented with 81 nodes and
8100 definition points; α=2

Figure 7.10: Y derivative of the border shape function represented with 81 nodes and
8100 definition points; α=2

Figure 7.11: X derivative of the center shape function represented with 81 nodes and
8100 definition points; α=2
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Figure 7.12: Y derivative of the center shape function represented with 81 nodes and
8100 definition points; α=2

Figure 7.13: X derivative of the random shape function represented with 81 nodes and
8100 definition points; α=2

Figure 7.14: Y derivative of the random shape function represented with 81 nodes and
8100 definition points; α=2
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7.2.1 Program correction

It is possible to recover also in 2D case the same problem illustrated for mono-dimensional domain.
The greater difficulty we have to face it’s the fact we find the bug in every border of the domain.
In figure 7.15 we displace the derivatives that involve this problem:

Figure 7.15: 2D shape functions X and Y gradient represented without any program
correction

we can appreciate how each component of the gradient function near the border or the angle
nodes present the extended version of the problem we had for 1D first derivative. The reason of
this are analogous to ones exposed in chapter §7.1.1. In this case, clearly, the gradient represent
the 2 unit vector normal to tangent plane.

To avoid this problem, we can follow this method:

• For angle nodes:

we can impose those conditions:

xangle = xangle ± ε ynew = yprevoius ± ε

where sign "+" or "-" is introduced with the purpose to move to interior nodes the previous
value of ~x.

• For border nodes:

in general we can adopt this way:[
xborder
yborder

]
=

[
xborder
yborder

]
±
[
ε

0

]
or ±

[
0

ε

]
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where we use the first or the second addend in order to move the border point to the line of
the "next to boundary nodes", and with the same criteria we choose sign "+" or "-".

• For nodes belonging to not orthogonal lines:

In this work we consider only bi-dimensional elements composed of orthogonal lines. If
we want to extend the problem to elements with non orthogonal borderlines, we have to
move every border node to interior ones on the direction described by the vector normal to
the considered line. In general:[

xborder
yborder

]
=

[
xborder
yborder

]
·n±

[
ε

ε

]
·n

where ñ is a unit vector normal to the considered line. The sign "+" or "-" is chosen in
order to move the considered node to interior ones.

Like for the mono-dimensional case we can assume ε = 10−8



Chapter 8

Second derivatives of the shape
functions

Thanks to the second order consistency condition, we can evaluate consistently the second deriva-
tives of Max Ent approximants [8]. The second spatial derivatives of basis functions can be written
in this way:

Hs∗a =
1

s∗a
∇s∗a ⊗∇s∗a + s∗aHf

∗
a − s∗a

N∑
b=1

1

s∗b
∇∗b ⊗∇s∗b − s∗a

N∑
b=1

s∗bHf
∗
b (8.1)

where is simple to recognize the only unknown term is Hf∗a . To compute it we must follow the
mixed partial variable chain rule:

∂2fa
∂x2

= Hf∗a =
∂

∂x

[
∂fa
∂λ

∂λ

∂x

]
+

∂

∂x

[
∂fa
∂x

∂x

∂x

]
+

∂

∂x

[
∂fa
∂µ̃

∂µ̃

∂x

]
=(

∂2fa
∂x2

∂x

∂x
+
∂2fa
∂λ∂x

∂λ

∂x
+
∂2fa
∂µ∂x

∂µ

∂x

)
∂x

∂x
+
∂fa
∂x

∂2x

∂x2
+(

∂2fa
∂λ2

∂λ

∂x
+
∂2fa
∂x∂λ

∂x

∂x
+
∂2fa
∂µ∂λ

∂µ

∂x

)
∂λ

∂x
+
∂fa
∂λ

∂2λ

∂x2
+(

∂2fa
∂µ2

∂µ

∂x
+
∂2fa
∂x∂µ

∂x

∂x
+
∂2fa
∂λ∂µ

∂λ

∂x

)
∂µ

∂x
+
∂fa
∂µ

∂2µ

∂x2
.

By applying the previous formulation to f∗a we obtain:

Hf∗a = −2µ∗ +Dλ∗ + (Dλ∗)T + (∂x∂µ̃fa)(Dµ∗)T + (Dµ∗)(∂x∂µ̃fa)T+
d
2 (d+1)∑
k=1

(D2
xµ̃k)∗(∂µ̃kfa)∗ +

d∑
k=1

(D2
xλk)∗(∂λkfa)∗

(8.2)
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where d is the dimension of our problem and k refers to the k-th component of the Lagrangian
multiplier we have already calculated. Now by introducing 8.2 in 8.1 we have:

Hs∗a =
1

s∗a
∇s∗a ⊗∇s∗a − s∗a

N∑
b=1

1

s∗b
∇∗b ⊗∇s∗b + s∗a(∂x∂µ̃fa)(Dµ∗)

T
+

s∗a(∂x∂µ̃fa)T (Dµ∗)− s∗a

d
2 (d+1)∑
k=1

D̃ak(Dx
2
µ̃k)∗ + s∗a

d∑
k=1

(xa − xak)(D2
xλk)∗

(8.3)

where now the unknowns are represented by (∂x∂µ̃fa), (Dx
2
µ̃k)∗, (Dx

2
λk)∗. It’s also interesting

to notice how it’s useful to evaluate 1
s∗a
∇∗a in this way:

1

s∗a
∇∗a = −

{
2µ∗(x− xa) + r∗xJ

∗−1

[
x− xa
−D̃a

]}
to avoid error amplification in particular when we consider the shape functions far away from the
investigated node. In those points, in fact, we have both the shape function both its gradient close
to 0, so is very probably to have a consistent error amplification.

(∂x∂µ̃fa) is the simplest unknown to find, in fact it’s given by:

• mono-dimensional grid:
−2(x− xa)

• bi-dimensional grid:

−2

[
x1 − xa1 0 x2 − xa2

0 x2 − xa2 x1 − xa1

]
The most complicated part of the program is the one which goes down to the evaluate the other two
unknowns, in fact they are not explicitly available and they calculation includes a linear problem
solving. We start from the analytic condition:

D2
xr
∗ = 0

from it we can derive the following conditions:

D2
xgλ

∗ = 0

D2
xgµ̃

∗ = 0

where we evaluate:

D2
xgλ∗

i
= (∂x∂xgλi

)∗ + (∂x∂λgλi
)∗(Dλ∗)T + (Dλ∗)(∂x∂λgλi

)∗T + (∂x∂µ̃gλi
)∗(Dµ∗)T+

(Dµ∗)(∂x∂µ̃gλi
)∗T + (Dλ∗)(∂λ∂µ̃gλi

)(Dµ∗)T + (Dµ∗)(∂λ∂µ̃gλi
)T (Dλ∗)T+

(Dλ∗)(∂λ∂λgλi
)(Dλ∗)T + (Dµ∗)(∂µ̃∂µ̃gλi

)∗(Dµ∗)T+

d∑
k=1

gλiλk

∗(D2
xλk)∗ +

d
2 (d+1)∑
k=1

gλi
µ̃k
∗(D2

xµ̃k)∗ = 0

(8.4)
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and:

D2
xgµ̃∗

j
= (∂x∂xgµ̃j

)∗ + (∂x∂λgµ̃j
)∗(Dλ∗)T + (Dλ∗)(∂x∂λgµ̃j

)∗T + (∂x∂µ̃gµ̃j
)∗(Dµ∗)T+

(Dµ∗)(∂x∂µ̃gµ̃ji)
∗T + (Dλ∗)(∂µ̃∂λgµ̃j

)T (Dµ∗)T + (Dµ∗)(∂µ̃∂λgµ̃j
)T (Dλ∗)T+

(Dλ∗)(∂λ∂λgµ̃j
)(Dλ∗)T + (Dµ∗)(∂µ̃∂µ̃gµ̃j

)∗(Dµ∗)T+

d∑
k=1

gµ̃j
λk
∗(D2

xλk)∗ +

d
2 (d+1)∑
k=1

gµ̃j
µ̃k
∗(D2

xµ̃k)∗

(8.5)

Given that d = 2 it’s simple to find that i goes from 1 to 2 and j goes from 1 to 3. We notice
also D2

xgλ and D2
xgµ̃ are third order tensors and so for every point of the domain we have to

solve an algebraic system with 20 linear independent equations with 20 unknowns. This system
can be divided into 4 linear independent systems with 5 unknowns for each one. This fact is very
important in a implementation view, because, by using Gauss-Jordan method to invert the matrix
of the coefficients of the linear system, the split of the system is suitable in order to reduce the
machine time execution. We can easily solve the systems by knowing that:[

Dλ Dµ̃
]

= −r∗xJ−1

where r∗x has been previously defined by in chapter §(8). Instead, we have already available all
the terms gλλ,gλµ̃,gµ̃λ,gµ̃µ̃, in fact, since they are the Lagrange multipliers of Newton-Raphson
solutions, they can be recovered in term J. The remaining 12 derivatives presented in expressions
8.4 and 8.5 can be evaluated in this way:

(∂x∂xgλi
)∗ = 4

N∑
b=1

s∗b(xi − xbi)[µ
∗(x− xb)]⊗ [µ∗(x− xb)]

(∂x∂λgλi
) = −2µ∗

N∑
b=1

s∗b(xi − xbi)(x− xb)⊗ (x− xb)

(∂x∂µ̃gλi
)∗ = 2µ∗

N∑
b=1

s∗b(xi − xbi)(x− xb)⊗ D̃b +

N∑
b=1

s∗b(xi − xbi)(∂x∂µ̃fb)
∗

(∂λ∂µ̃gλi
)∗ = −

N∑
b=1

s∗b(xi − xbi)(x− xb)⊗ D̃b

(∂λ∂λgλi
)∗ = −

N∑
b=1

s∗b(xi − xbi)(x− xb)⊗ (x− xb)

(∂µ̃∂µ̃gλi
)∗ =

N∑
b=1

s∗b(xi − xbi)D̃b ⊗ D̃b

(∂x∂xgµ̃j
)∗ = −2

N∑
b=1

s∗b(xi − xbi)
[
2D̃bj

µ∗(x− xb) + (∂x∂µ̃jfb)
∗]⊗[µ∗(x− xb)]

−2µ∗
N∑
b=1

s∗b(x− xb)⊗ (∂x∂µ̃fb)
∗ − 2Nj

(∂x∂λgµ̃j
)∗ =

N∑
b=1

s∗b(xi − xbi)
[
2D̃bjµ

∗(x− xb) + (∂x∂µ̃jfb)
∗]⊗(x− xb)
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(∂x∂µ̃gµ̃j
)∗ = −

N∑
b=1

s∗b(xi − xbi)
[
2D̃bjµ

∗(x− xb) + (∂x∂µ̃jfb)
∗]⊗D̃b −

N∑
b=1

s∗bD̃bj
(∂x∂µ̃fb)

∗

(∂µ̃∂λgµ̃j
) =

N∑
b=1

s∗bD̃bj
D̃b ⊗ (x− xb)

(∂λ∂λgµ̃j
) = −

N∑
b=1

s∗bD̃bj
(x− xb)⊗ (x− xb)

(∂µ̃∂µ̃gµ̃j
) = −

N∑
b=1

s∗bD̃bj
D̃b ⊗ D̃b

where Nj in our instance of a 2D problem is represented by:

[
Nj

]
j=1,2,3

=
[
N1N2N3

]
=

[[
1 0

0 0

]
,

[
0 0

0 1

]
,

[
0 1

1 0

] ]

in a mono-dimensional problem Nj it’s simply 1.

We can now evaluate the second spatial derivatives of the shape functions.

8.1 Mono-dimensional second derivatives of the shape func-
tions

In the followings figures we displace the second derivatives of the mono-dimensional shape func-
tions, both for the regular grid and for the random one.
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Figure 8.1: Second derivatives of the shape functions represented with 9 nodes and
900 definition points; α=1.5
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Figure 8.2: Second derivatives of the shape functions represented with 9 nodes and
900 definition points; α=2.0
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Figure 8.3: Second derivatives of the shape functions represented with 9 nodes and
900 definition points; α=3.0
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Figure 8.4: Second derivatives of the shape functions represented with 9 nodes and
900 definition points; α=4.0
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Figure 8.5: Second derivatives of the shape functions represented with 9 nodes and
900 definition points; random grid; α=1.5

8.1.1 Program correction

It’s possible to find out an error very similar to that we found for the first derivatives, but in this
case the values of the second derivatives near the borders goes to +∞. To correct the bug, we can
use an adapted Finite difference Method and work in this way:

f(x1)′′ = 2 · f(x2)′′ − f(x3)′′

f(xN )′′ = 2 · f(xN−2)′′ − f(xN−3)′′

given that we know that near the border the slope of the hessian function is quite constant. In
general we’ll have an error on the border which decrease with the increasing of the nodes.

8.1.2 Bi-dimensional second derivatives of the shape functions

By applying the program 8.1 in following figures we displace the second derivatives of the basis
functions:

Figure 8.6: XX second derivative of the angle shape function represented with 81
nodes and 8100 definition points; α=2
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Figure 8.7: XY second derivative of the angle shape function represented with 81
nodes and 8100 definition points; α=2

Figure 8.8: YY second derivative of the angle shape function represented with 81
nodes and 8100 definition points; α=2

Figure 8.9: XX second derivative of the border shape function represented with 81
nodes and 8100 definition points; α=2
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Figure 8.10: XY second derivative of the border shape function represented with 81
nodes and 8100 definition points; α=2

Figure 8.11: YY second derivative of the border shape function represented with 81
nodes and 8100 definition points; α=2

Figure 8.12: XX second derivative of the center shape function represented with 81
nodes and 8100 definition points; α=2
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Figure 8.13: XY second derivative of the center shape function represented with 81
nodes and 8100 definition points; α=2

Figure 8.14: YY second derivative of the center shape function represented with 81
nodes and 8100 definition points; α=2

Figure 8.15: XX second derivative of the random shape function represented with 81
nodes and 8100 definition points; α=2
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Figure 8.16: XY second derivative of the random shape function represented with 81
nodes and 8100 definition points; α=2

Figure 8.17: YY second derivative of the random shape function represented with 81
nodes and 8100 definition points; α=2

8.1.3 Program correction

The original program present the same problem we had in the mono-dimensional case. To avoid
this bug it’s possible to operate in this way:

• Border nodes
for this kind of nodes, it’s possible to apply the following scheme:

– (0;0)-(Lx;0) border

f ′′xx,xy,yx,yy(num, :) = f ′′xx,xy,yx,yy(num+ 1, :) ∗ 2− f ′′xx,xy,yx,yy(num− 2, :)

with: num=Ny · i+1 for i = 1→ Nx − 2

– (0;Ly)-(Lx;Ly) border

f ′′xx,xy,yx,yy(num, :) = f ′′xx,xy,yx,yy(num− 1, :) ∗ 2− f ′′xx,xy,yx,yy(num− 2, :)

with: num=Ny · i+Ny for i = 1→ Nx − 2
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– (0;0)-(0;Ly) border

f ′′xx,xy,yx,yy(i, :) = f ′′xx,xy,yx,yy(num, :) ∗ 2− f ′′xx,xy,yx,yy(num+Ny, :)

with: num=i+Ny for i = 2→ Ny − 1

– (0;Lx)-(Lx;Ly) border

f ′′xx,xy,yx,yy(i, :) = f ′′xx,xy,yx,yy(num, :) ∗ 2− f ′′xx,xy,yx,yy(num−Ny, :)

with: num=i-Ny for i = NxNy −Ny + 2→ NxNy

• Angle nodes

f ′′xx,xy,yx,yy(1, :) = f ′′xx,xy,yx,yy(Ny + 2, :) ∗ 2− f ′′xx,xy,yx,yy(Ny + 3, :)

f ′′xx,xy,yx,yy(Ny, :) = f ′′xx,xy,yx,yy(2Ny − 1, :) ∗ 2− f ′′xx,xy,yx,yy(3Ny − 2, :)

f ′′xx,xy,yx,yy(num, :) = f ′′xx,xy,yx,yy(num−Ny + 1, :) ∗ 2− f ′′xx,xy,yx,yy(num− 2Ny + 2, :)

with num=Ny(Nx − 1) + 1

f ′′xx,xy,yx,yy(tot, :) = f ′′xx,xy,yx,yy(tot−Ny − 1, :) ∗ 2− f ′′xx,xy,yx,yy(tot− 2Ny − 2, :)

with tot=NyNx

where, we call ”Nx” and ”Ny” the number of grid points in each directions.



Chapter 9

Computer implementation of Second
order max-ent program

In this chapter we want to outline the principal features of the minimizing program. Since the
program is very similar to LME we have quite the same problems, in particular we want to reduce
the computational time and the memory space used to save temporary and final results. The
program has been written in MATLAB®for the part of mesh generation and results; FORTRAN
77®, instead has been used for the core of the program which involves the Newton-Raphson
minimizing and the derivatives calculation.

9.1 General features of SME program

To create a code which is able to reproduce the SME program, we must consider that the most im-
portant and onerous part of the problem is the optimization one, made with the Newton-Raphson
iterative method. Our goal is to create a program which is faster and less expensive (in memory
terms) as possible, in particular since in this case the Newton-Raphson method involves 5 un-
knowns and not 2 as in LME.
We present now a simple flow chart to delineate the principal steps of the program.

84
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Figure 9.1: Second order Max-Ent program flowchart
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where we have used MATLAB®for the mesh generation and FORTRAN 77®for the rest of the
program. In flow-chart 9.1 we have omitted two possibly part of the program that are not essential:

• Program controls: we can control if the minimizing program has worked right by checking
proprieties:

– positivity propriety: 6.1;

– unity propriety: 6.2;

– linear propriety: 6.3;

– quadratic propriety: 6.4;

– equality of the mixed second partial derivatives.

• Results displacements: we can realize some plots in which we displace the shape functions
with associated derivatives and the program controls; in this way we have a better vision of
the final results.

it’s possible to insert this part of the program after the output files. In this case is simplest to
work with MATLAB®.

9.2 Program optimization

The computational problems involved by SME program are quite the same then LME. In particular
our goal is to be able to save memory and to reduce the machine time. The strategy we can adopt
is similar to which we have used for LMEs: first of all we introduce sparse matrices in order to
save RAM memory. The approach we use aim at evaluate the value of any shape functions only
in the points next to the investigated node, where we know the shape function has significant
ordinates different to 0. It’s possible to evaluate in this way the radius from the node were we
want to compute the shape functions:

Ra = max

(√
−α

2
ln (Tol0) ·ha; 4ha

)
where: Tol0 is the fixed tolerance below that we consider 0 the value of the shape function, ha is
the value of the maximum nodal spacing around the investigated node. In general it’s reasonable
to assume Tol0 = 10−9

Such we have illustrated, is very important in order to reduce the memory usage and, consid-
erably also the computational time, but if we want to make more performing the program, we
have to consider the most expensive part, in terms of time, is the Newton-Raphson optimization
method, that in this case involves the inversion of a [5x5] matrix. To reduce the number of the
iterations, the easier way is to choose the right point λ,µ form where we start the iteration. In
our program we have selected as first attempt solution, the optimal solution λ∗,µ∗ of the closest
node. In this way we are able to have very good results in term of number of iterations saved.
According to [9], instead, it is possible to choose as initial guesses:

λ = 0 and µ =
1

2
·

1

da,CN

where CN, means the closest node. At the end we can conclude to use for λ our solution and for
µ the suggested strategy, in this way the program is optimized the best.
In table 9.1 and 9.2 we report some interesting results about the regular and optimized program:
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Nodes for side Memory employed Machine time Iterations
[Mb] [s]

20 28.8 2.93 7770
30 147 10.12 18678
40 465 33.56 34922
50 1134 89.71 56818
60 2235 178.4 84970
70 4153 315.2 119221
80 6987 496.5 161352
90 10562 716.35 207562
100 15236 1012.78 262264
120 28756 1865.62 388652
140 45620 3245.65 536251
160 68354 4865.43 698621
180 98625 7256.51 876235
200 132564 10235.69 1068352

Table 9.1: Computational values for the ORIGINAL PROGRAM

Nodes for side Memory employed Machine time Iterations
[Mb] [s]

20 4.92 0.66 4430
30 14.88 1.98 8089
40 25.09 5.93 12629
50 42.31 14.17 17945
60 61.50 29.80 24401
70 84.87 56.11 31582
80 118.08 96.14 40215
90 141.45 155.20 49352
100 193.11 221.30 60070
120 287.82 456.40 81256
140 488.95 786.56 102532
160 640.83 1345.20 129653
180 931.89 2156.80 163254
200 1225.83 3256.80 198625

Table 9.2: Computational values for the OPTIMIZED PROGRAM

To make easier the comprehension of the importance of the optimization, we plot the results
in figure 9.2. We can note the decreasing of the time and the number of iterations, and like for
LME we note the time has a lower decreasing then iterations. This condition is due to by the fact
the most of saved time belongs to the part of shape functions computation, while the computation
time of the derivatives remains quite the same.
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Figure 9.2: Comparison between the straight and the optimized program, in terms of
memory, time and iterations
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9.3 Matrix inversion

Our optimized program produce sparse matrices which are not symmetric. This involves a problem
when we have to invert it in order to solve any application problem, in fact it’s very hard to
build up a subroutine for FORTRAN 77®. To avoid the problem it’s possible to use Intel MKL
PARDISO®or in alternative PARDISO 5.0.0 (open source). Those software are able to solve
an unsymmetrical linear system also with sparse matrices. In figure 9.3 we present Intel MKL
PARDISO®working scheme.

Figure 9.3: Intel MKL PARDISO®software



Chapter 10

Max-Ent approximation schemes
applications

Our purpose is now to text the efficiency of those approximation schemes. In particular we refers to
elastic problems in convex domain and not convex domain. In this work our goal is to investigate
the effective consistency of the second derivatives of the approximants so we use the Collocation
method in problem solving. First we test the approximants with the very simple Poisson’s equation,
then we move to more practical test.

10.1 Poisson’s equation

By working with bi-dimensional domain, we introduce the 2D membrane problem:

∇2u(x, y) = f(x, y)

whose solution is well known:

u(x, y) = sin(πx) · sin(πy) f(x, y) = −2π2 sin(πx) · sin(πy)
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Figure 10.2: Error progression of Poisson problem for different values of α, regular
grid

In figure 10.1 and 10.2 we have displaced the approximation error for both LME and SME programs
by changing the control parameters. We can note we SME program has a superior convergence
order then LME. This is completely justified by the fact SMEs have a second order consistency
condition.
In figure 10.3 we displace the errors obtained with LME program with random grid:
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Figure 10.3: Error progression of Poisson problem for different values of β; random
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In this case the slope of convergence line is lower then for the random grid, but is quite similar to
regular case.
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10.2 Elastic problem

Our goal is to prove the efficiency of the approximants for some simple elastic problems. We’ll
consider different problems with fixed a random distribution of nodes. We know that the elastic
one is the simplest way to prove its efficiency, but we must know how the approximants works, to
evaluate if it’s usefull to proceed with more difficult tests.

10.2.1 General framework of the problem

First of all we have to choose a way to solve the problem. We have two different chooses to
consider:

• WEAK FORM:

this type of procedure is certain the most used in mechanics problems, but requires the
calculation of integers upon the functions derivatives domain;

• STRONG FORM:

in this case we need to compute the second derivatives of the shape functions, which, gener-
ally, requires more processing time and memory package, but allow us to avoid the calculation
of integers, which could be more onerous for high numbers of nodes;

In this work we choose to test the second way, first of all, cause we have an analytic way to
calculate them, second to test the method with the most uncertain pick.

10.2.2 Quick review of elasticity

In this section we give a brief review of general concepts of elasticity. First we introduce the 3
fields equation of elasticity problem:

• equilibrium equation:
σij,j + bi = 0

• constitutive equation:
σij = Dijhkεhk

• compatibility equation:

εij =
1

2
(ui,j + uj,i)

associated with the commons boundary conditions:

• imposed displacement:
ui = ūi

• imposed stress :
σijnj = t̄i

Our goal is now to rewrite the 3 equations to obtain equations which have for unknowns only the
displacements ones [30]. First we write the 2nd equation by introducing the constitutive tensor:

Dijhk =

λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 2µ


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so we obtain this 3 equations:
σxx = (λ+ 2µ)εxx + λεyy

σyy = λεxx + (λ+ 2µ)εyy

σxy = 2µεxy

then we introduce in those equations the compatibility ones to obtain the 2 equations that domi-
nates our problem:

(λ+ 2µ)u,xx + λv,yx + µ(u,yy + v,xy) + bx = 0

λu,xy + (λ+ 2µ)v,yy + µ(u,yx + v,yy) + by = 0

now we re-adapt them to have a more useful formulation:

u,xx(λ+ 2µ) + v,xy(λ+ µ) + u,yy(µ) + bx = 0

v,xxµ+ u,xy(λ+ µ) + v,yy(λ+ 2µ) + by = 0

as inspected, we have now equations with only displacements unknowns that, of course, involve
the second derivatives of the field. Since we are going to face a finite element problem we can
introduce the classical approximation by using the shape functions and their derivatives we have
already at our available.

(λ+ 2µ)

( N∑
j=1

φj,xxu
j

)
+ µ

( N∑
j=1

φj,yyu
j

)
+ (λ+ µ)

( N∑
j=1

φj,xyv
j

)
+ bx = 0

µ

( N∑
j=1

φj,xxv
j

)
+ (λ+ 2µ)

( N∑
j=1

φj,yyv
j

)
+ (λ+ µ)

( N∑
j=1

φj,xyu
j

)
+ bx = 0

The same procedure is needed to compute the boundary conditions, so, for the imposed displace-
ments we have: ( N∑

j=1

φj,xxu
j

)
= ūi

( N∑
j=1

φj,xxv
j

)
= v̄i

and for the stress border conditions:

σxx = (λ+ 2µ)
∂u

∂x
+ λ

∂v

∂y

σyy = λ
∂u

∂x
+ (λ+ 2µ)

∂v

∂y

σxy = µ

(
∂u

∂y
+
∂v

∂x

)
By introducing the expression of our first and second derivatives approximants, we can solve easly
the elastic problem by using a strong formulation.

10.2.3 Plate in traction with LME

We consider a simple traction problem of plate in traction on a side:
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We use the following data to solve the problem:

E = 2.11 · 1011MPa Young’s modulus

ν = 0.3 Poissont’s Ratio

q = 1N Distributed force

L = 1m Square dimension

For this problem we know the exact solution; by considering a strain plain problem we have:

εzz = εzx = εzy = 0

so from the mono-axial stress condition σyy = σxy = 0 and from the strain condition εzz = 0 we
can derive:

σzz = νσxx

and so:

εxx =
σxx
E
− ν

E
σzz =

ν2

E
σxx

εyy = − ν
E

(σxx + σzz) = − ν
E

(1 + ν)σxx

now by imposing the uniform stress σxx = 1 we obtain:

εxx = 0.4313 · 10−11

εyy = −0.1848 · 10−11

that is also the displacement of the north-est node cause L=1 m. Now we apply the LME approxi-
mants and we hope that we can caught the right solution, since the approximants have a 1st order
consistency. We test the program in for a regular and for an irregular grid of nodes. In both cases
we use a simple grid with 81 nodes. In the tables 10.1 we presents the computational results in
terms of nodal displacements for the uniform grid and we displace them in figure 10.8 by applying
an amplification factor.
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Nodal displacements X - direction
· 10−11 m

0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313

Nodal displacements Y - direction
· 10−11 m

-0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848
-0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617
-0.1386 -0.1386 -0.1386 -0.1386 -0.1386 -0.1386 -0.1386 -0.1386 -0.1386
-0.1155 -0.1155 -0.1155 -0.1155 -0.1155 -0.1155 -0.1155 -0.1155 -0.1155
-0.0924 -0.0924 -0.0924 -0.0924 -0.0924 -0.0924 -0.0924 -0.0924 -0.0924
-0.0693 -0.0693 -0.0693 -0.0693 -0.0693 -0.0693 -0.0693 -0.0693 -0.0693
-0.0462 -0.0462 -0.0462 -0.0462 -0.0462 -0.0462 -0.0462 -0.0462 -0.0462
-0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231

0 0 0 0 0 0 0 0 0

Table 10.1: Nodal displacements of the plate in traction (LME) with uniform grid
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Figure 10.4: Nodal displacements of the plate in traction (LME) with uniform grid
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From the nodal displacements we can easily recover the stresses we report in figure 10.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sigma xx

x−axis

y
−

a
x
is

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sigma yy

x−axis

y
−

a
x
is

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sigma xy

x−axis

y
−

a
x
is

Figure 10.5: Stresses of the plate in traction (LME) with uniform grid

In the tables 10.3 we presents the computational results in terms of nodal displacements for the
random grid and we displace them in figure 10.8 by applying an amplification factor.

Nodal displacements X - direction
· 10−11 m

0 0.0539 0.1078 0.1617 0.2156 0.2695 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.2690 0.1270 0.1322 0.3115 0.2108 0.3774 0.4313
0 0.0539 0.2262 0.3502 0.2612 0.1230 0.1963 0.3774 0.4313
0 0.0539 0.2605 0.1154 0.3186 0.3455 0.1323 0.3774 0.4313
0 0.0539 0.2698 0.1289 0.2321 0.2051 0.1823 0.3774 0.4313
0 0.0539 0.1621 0.2605 0.0897 0.1803 0.2547 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313

Nodal displacements Y - direction
· 10−11 m

-0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848
-0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617
-0.1386 -0.1386 -0.1020 -0.1299 -0.0471 -0.1033 -0.0553 -0.1386 -0.1386
-0.1155 -0.1155 -0.0791 -0.0653 -0.1021 -0.0648 -0.0533 -0.1155 -0.1155
-0.0924 -0.0924 -0.0608 -0.1059 -0.0744 -0.1291 -0.0708 -0.0924 -0.0924
-0.0693 -0.0693 -0.1028 -0.0682 -0.1190 -0.1363 -0.0838 -0.0693 -0.0693
-0.0462 -0.0462 -0.0486 -0.0637 -0.1482 -0.1394 -0.0373 -0.0462 -0.0462
-0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231

0 0 0 0 0 0 0 0 0

Table 10.2: Nodal displacements of the plate in traction (LME) with random grid
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In figure 10.6 we give a representation of the nodal displacements, then in figure 10.7, we dis-
place the stresses upon the plate in traction:
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Figure 10.6: Nodal displacements of the plate in traction (LME) with random grid
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Figure 10.7: Stresses of the plate in traction (LME) with random grid

In both situations we have assumed γ = 0.6 and so β = 38 (classical values) and we can no-
tice that the results we have obtained are exactly the analytic solutions of the problem. Note that
we have maintained uniformly distributed the boundary and next to boundary nodes. This is a
common choice for this kind of problems according to [8].
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10.2.4 Plate in traction with SME

We approach, now to the same problem by using the SME approximants, which have a second
order consistency condition, so we expect to reach the same exact results we had with LME
approximation schemes. In this case, we take the parameter α = 3 (classical value).
First we presents the computational results for a random grid of nodes:

Nodal displacements X - direction
· 10−11 m

0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2696 0.3235 0.3774 0.4313

Nodal displacements Y - direction
· 10−11 m

-0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848
-0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617
-0.1386 -0.1386 -0.1386 -0.1386 -0.1386 -0.1386 -0.1386 -0.1386 -0.1386
-0.1155 -0.1155 -0.1155 -0.1155 -0.1155 -0.1155 -0.1155 -0.1155 -0.1155
-0.0924 -0.0924 -0.0924 -0.0924 -0.0924 -0.0924 -0.0924 -0.0924 -0.0924
-0.0693 -0.0693 -0.0693 -0.0693 -0.0693 -0.0693 -0.0693 -0.0693 -0.0693
-0.0462 -0.0462 -0.0462 -0.0462 -0.0462 -0.0462 -0.0462 -0.0462 -0.0462
-0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231

0 0 0 0 0 0 0 0 0

Table 10.3: Nodal displacements of the plate in traction (SME) with uniform grid

In figure 10.8 we give a representation of the nodal displacements, then in figure 10.9, we displace
the stresses upon the plate in traction:
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Figure 10.8: Nodal displacements of the palte in traction (SME) with uniform grid
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Figure 10.9: Stresses of the plate in traction (SME) with uniform grid

We analyze now the case of a random grid of nodes: as we have already explained, in this case
the Newton-Raphson iterative method does not converge anyhow. To show this situation, we have
created a program depending form a parameter : ε which is able to control the density of interior
nodes: when ε = 0 we have a regular node set, and when ε = 1 we have a completely random node
set.

• ε=0.3

Nodal displacements X - direction
· 10−11 m

0 0.0539 0.1078 0.1617 0.2156 0.2695 0.3234 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2695 0.3234 0.3774 0.4313
0 0.0539 0.1094 0.1743 0.2232 0.2557 0.3331 0.3774 0.4313
0 0.0539 0.1140 0.1584 0.2247 0.2730 0.3106 0.3774 0.4313
0 0.0539 0.1158 0.1471 0.2190 0.2769 0.3325 0.3774 0.4313
0 0.0539 0.1121 0.1482 0.2287 0.2569 0.3182 0.3774 0.4313
0 0.0539 0.1064 0.1777 0.2091 0.2630 0.3236 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2695 0.3234 0.3774 0.4313
0 0.0539 0.1078 0.1617 0.2156 0.2695 0.3234 0.3774 0.4313

Nodal displacements Y - direction
· 10−11 m

-0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848
-0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617 -0.1617
-0.1386 -0.1386 -0.1384 -0.1427 -0.1324 -0.1329 -0.1447 -0.1386 -0.1386
-0.1155 -0.1155 -0.1163 -0.1094 -0.1132 -0.1188 -0.1103 -0.1155 -0.1155
-0.0924 -0.0924 -0.0856 -0.0947 -0.0928 -0.0953 -0.0895 -0.0924 -0.0924
-0.0693 -0.0693 -0.0636 -0.0731 -0.0698 -0.0738 -0.0664 -0.0693 -0.0693
-0.0462 -0.0462 -0.0407 -0.0439 -0.0401 -0.0399 -0.0498 -0.0462 -0.0462
-0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231 -0.0231

0 0 0 0 0 0 0 0 0

Table 10.4: Nodal displacements of the plate in traction (SME) with random grid
ε=0.3

In figure 10.10 we give a representation of the nodal displacements, then in figure 10.11, we



10.2. Elastic problem 100

displace the stresses upon the plate in traction:
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Figure 10.10: Nodal displacements of the plate in traction (SME) with random grid
ε=0.3
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Figure 10.11: Stresses of the plate in traction (SME) with random grid, ε=0.3

As we can note, in this case the nodes are quite regular, and we are able to find the right
solution.
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• ε=0.5

Nodal displacements X - direction
· 10−11 m

0 0.0539 0.1078 0.1619 0.2156 0.2695 0.3233 0.3773 0.4312
0 0.0540 0.1079 0.1617 0.2156 0.2695 0.3234 0.3773 0.4312
0 0.0539 0.1000 0.1533 0.2133 0.2543 0.3134 0.3774 0.4313
0 0.0539 0.1030 0.1756 0.2182 0.2703 0.3351 0.3774 0.4313
0 0.0539 0.1320 0.1874 0.2076 0.2556 0.3335 0.3774 0.4313
0 0.0539 0.0883 0.1447 0.1945 0.2939 0.3184 0.3774 0.4314
0 0.0539 0.1341 0.1851 0.2258 0.2713 0.3451 0.3774 0.4314
0 0.0540 0.1079 0.1621 0.2158 0.2697 0.3236 0.3774 0.4314
0 0.0539 0.1080 0.1619 0.2159 0.2696 0.3236 0.3774 0.4314

Nodal displacements X - direction
· 10−11 m

-0.1848 -0.1848 -0.1846 -0.1848 -0.1848 -0.1848 -0.1848 -0.1848 -0.1847
-0.1617 -0.1617 -0.1614 -0.1617 -0.1618 -0.1618 -0.1617 -0.1617 -0.1616
-0.1385 -0.1385 -0.1495 -0.1475 -0.1365 -0.1300 -0.1438 -0.1386 -0.1385
-0.1155 -0.1155 -0.1178 -0.1174 -0.1175 -0.1058 -0.1270 -0.1154 -0.1154
-0.0924 -0.0924 -0.0965 -0.0985 -0.0963 -0.0878 -0.0931 -0.0924 -0.0923
-0.0693 -0.0693 -0.0627 -0.0587 -0.0721 -0.0661 -0.0803 -0.0693 -0.0692
-0.0462 -0.0462 -0.0362 -0.0352 -0.0527 -0.0552 -0.0491 -0.0462 -0.0462
-0.0231 -0.0231 -0.0232 -0.0231 -0.0230 -0.0231 -0.0231 -0.0231 -0.0231

0 0 0 0 0 0 0 0 0

Table 10.5: Nodal displacements of the plate in traction (SME) with random grid
ε=0.5
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Figure 10.12: Nodal displacements of the plate in traction (SME) with random grid
ε=0.5

In this case we can notice how the solution is not identical to the analytic one. In fact also
the stresses, displaced in 10.13, we can appreciate how the follow of every component is not
correct.
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Figure 10.13: Stresses of the plate in traction (LME) with uniform grid

• ε=0.8

Nodal displacements X - direction
· 10−11 m

0 0.0525 0.1055 0.1603 0.2152 0.2684 0.3231 0.3771 0.4309
0 0.0543 0.1098 0.1579 0.2127 0.2677 0.3217 0.3770 0.4308
0 0.0539 0.1236 0.1440 0.1867 0.2397 0.3120 0.3762 0.4301
0 0.0536 0.0902 0.1793 0.2194 0.2319 0.3167 0.3757 0.4296
0 0.0535 0.1059 0.2011 0.2424 0.3060 0.3106 0.3754 0.4291
0 0.0537 0.1363 0.1655 0.2184 0.2786 0.3433 0.3750 0.4288
0 0.0535 0.1253 0.1468 0.1820 0.2795 0.3128 0.3748 0.4286
0 0.0535 0.1069 0.1604 0.2139 0.2675 0.3210 0.3748 0.4286
0 0.0535 0.1069 0.1604 0.2139 0.2675 0.3210 0.3748 0.4286

Nodal displacements Y - direction
· 10−11 m

-0.1802 -0.1805 -0.1759 -0.1771 -0.1802 -0.1809 -0.1828 -0.1831 -0.1832
-0.1577 -0.1575 -0.1537 -0.1551 -0.1560 -0.1585 -0.1592 -0.1599 -0.1604
-0.1341 -0.1343 -0.1515 -0.1367 -0.1462 -0.1388 -0.1458 -0.1368 -0.1375
-0.1120 -0.1119 -0.1012 -0.1159 -0.1181 -0.1052 -0.1041 -0.1139 -0.1143
-0.0891 -0.0892 -0.0966 -0.0836 -0.0984 -0.0740 -0.0959 -0.0910 -0.0915
-0.0668 -0.0668 -0.0610 -0.0835 -0.0610 -0.0614 -0.0646 -0.0683 -0.0686
-0.0445 -0.0445 -0.0487 -0.0596 -0.0528 -0.0579 -0.0542 -0.0455 -0.0456
-0.0223 -0.0222 -0.0223 -0.0223 -0.0224 -0.0225 -0.0226 -0.0228 -0.0228

0 0 0 0 0 0 0 0 0

Table 10.6: Nodal displacements of the plate in traction (SME) with random grid
ε=0.8

In figure 10.14 we give a representation of the nodal displacements by applying an am-
plification factor, then in figure 10.15, we displace the stresses upon the plate in traction:
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Figure 10.14: Nodal displacements of the plate in traction (SME) with random grid
ε=0.8
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Figure 10.15: Stresses of the plate in traction (LME) with uniform grid

It’s clear that in this case, since we are approaching to a more randomized solution, we
have the problems over described, in fact the results are more sparse from the right solution.

Those tests confirm the SME program is less efficient then the LME one when we have a random
set of nodes.
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10.2.5 Quarter of plate with hole (LME)

In this section we want to test the program with this traction problem:

First of all we have to remark this type of domain is not a convex one. This is very important, cause
from the start of our study we have adopted only convex domain in order to have consistent shape
functions; although we want to investigate the response of our approximants in this situations.
What we wish is to have a good solution in all of the plate and possibly not a good one on the
border of the hole.
We use analogous data used for the plate in simple traction:

E = 2.11 · 1011MPa Young’s modulus

ν = 0.3 Poissont’s Ratio

σ0 = 1N Distributed force

L = 1m Square dimension

a = 0.2m Radious of the hole

For this specific problem has been studied an analytic solution: if we consider the load σ0 we can
derive the solution in terms of stresses from it in this way [3]:

σxx = σ0

[
1− a2

r2

(
3

2
cos(2θ) + cos(4θ)

)
+

3a4

2r4
cos(4θ)

]

σxy = σ0

[
−a

2

r2

(
1

2
sin(2θ) + sin(4θ)

)
+

3a4

2r4
sin(4θ)

]
σyy = σ0

[
−a

2

r2

(
1

2
cos(2θ)− cos(4θ)

)
− 3a4

2r4
cos(4θ)

]
and the solution in displacement terms can be so written:

u =
1 + ν

E
σ0

(
1

1 + ν
r cos θ +

2

1 + ν

a2

r
cos θ +

1

2

a2

r
cos 3θ − 1

2

a4

r3
cos 3θ

)
where r is the distance of the considered point from x-axis origin and θ is the angle measured from
the positive x-axis counterclockwise.
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We have to impose also the following boundary conditions:

σn ·n = 0 and σn · t = 0 on the quarter hole and north side

s ·n = 0 and σn · t = 0 on the west and south side

σn ·n = σ0 and σn · t = 0 on the east side

Since we have operated with a displacement approach, we follow this work line also in this contest.
In figure 10.16 we plot the node grid:
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Figure 10.16: Set of nodes for quarter plate with hole problem

by applying the previuos border conditions, we obtain the following nodal displacements:
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Figure 10.17: Nodal displacements for the plate with quarter hole problem

In table 10.7 we present the x displacements of the side in traction of the plate:

It’s possible to note the results are very poor in particular near the concave border. This was
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Nodal displacements
Exact

0.5237 · 10−11

0.5231 · 10−11

0.5213 · 10−11

0.5185 · 10−11

0.5149 · 10−11

0.5105 · 10−11

0.5057 · 10−11

0.5007 · 10−11

0.4957 · 10−11

0.4911 · 10−11

0.4869 · 10−11

Nodal displacements
Approximate
0.4335 · 10−11

0.4207 · 10−11

0.4284 · 10−11

0.4264 · 10−11

0.4237 · 10−11

0.4230 · 10−11

0.4222 · 10−11

0.4213 · 10−11

0.4204 · 10−11

0.4196 · 10−11

0.4192 · 10−11

Table 10.7: Comparison between analytic and approximate results on north-est nodal
displacement

presumable since to have a correct solution of the minimizing problem the entropy must be de-
fined in a convex domain. We try to avoid this bug by introducing a false node used to make
convex the domain has we can see in figure 10.18. The domain it’s now convex, but we have a node
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Figure 10.18: Set of nodes for quarter plate with hole problem; correction

that is not part of the domain. During the computational process the additional node generates a
shape function with connected derivatives. We have, so, to remove the additional row and column
from every matrix. In this case we can appreciate how both the proprieties (2.4), (2.3), (2.5), are
respected.

We expect, with this attempt to have better results near the concave border and in all the
domain. Another good attempt to solve the problem is to increase the parameter β as it’s possible
in order to have more local shape functions, so to reduce the error given to the concave border.
In figure 10.19 we plot the displacement obtained:
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Figure 10.19: Nodal displacements for the corrected plate with quarter hole problem

Indeed, we note an improvement in method’s performances, even if we don’t have a correct solution
on the concave domain. To test effectively the goodness of the solution it’s possible to evaluate
the error between the correct solution and the approximated one in this way:

Err =

√
N∑
i=1

||uian − uilme ||2√
N∑
i=1

||uian ||2

which can be normalized on the mean value of the correct solution. In figure 10.20 we displace
the decreasing error for the increasing of the number of nodes and in figure 10.21 we displace the
σxx component of stress:
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Figure 10.20: Approximation error with trend lines, for the quarter hole problem

As we note, the decreasing line as a slope next to 2. Surely the concavity of a little part of the
domain has influenced the results of the approximation. By this example we can deduce if we want
to face problems with high irregular grids, we will not be able to obtain a good approximations.
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Figure 10.21: σxx component of stress, for the quarter hole problem

We can appreciate we are able to obtain good results in terms of stresses in this case, by us-
ing an high number of nodes.



Chapter 11

Conclusions and future perspectives

In this work we have outlined the principal characteristics of the meshfree maximum entropy
approximants. First we have delineated the principal mathematical aspects of the approximants:
from the probabilistic to the statistic background, then we have moved to a more physicist way to
look the approximants, observing the similarity between the partition function we have used here
and the one used in statistic mechanical. In particular we have put our attention to the analytic
construction of the shape functions and their first and second derivatives. During the progression
of the work we have appreciated how the construction of every single shape function is expensive in
terms of computational time, in fact it involves the loop over all the nodes of the domain, and we
have checked the high dependence from the control parameters α and β. We have, also, introduced
2 different consistency condition on the approximation schemes. In particular we have noticed the
increasing of consistency condition involves an high computational burden, in fact both in the
evaluation of the shape functions and the associated derivatives, we have a consistent increasing of
the machine time due to the presence of 5 unknowns in front of 2 we had in LME program. In our
approximation tests we have proved the effective more efficiency of the second order approximants
then the first order one’s, where we have a regular grid of nodes, but we found some problems
where we approach to random grid domains with SMEs. In fact the second order approximation
schemes, even if show an higher slope in approximation tests, present itself like a very sensible
method, in specific we have shown how a simple parameter (da) which relaxes the second order
consistency condition appears to be essential in order to have the correct evaluation of the basis
functions. With the LMEs approximation schemes, that seam to work better, we have approached
to elasticity problems in a convex domain. In this case we have found good results by reaching
the exact solution. As last point of our work we have faced the quarter plate with hole problem,
with which we wanted to test the efficiency of the approximants in a concave domain. With this
type of grid the approximants are not able to give a correct solution so we have introduced a false
node in order to make convex the domain in which we construct the shape functions so to avoid
the problem of the minimization program.
In our work we have dedicated, also, two chapters to the problem of the computer implementation,
cause to build up the shape functions and relative derivatives involves an high computational
burden. We have outlined, in particular, the high machine time, which is, just in part, shot down
by the usage of sparse matrices.

As final review of our work we can conclude those family of approximants is well working
everywhere for regular grid of nodes. The LME program shows a good behavior also for random
grid of nodes, even if it’s very heavy in a computational way and gives best performances in convex
domain.

As a further development of this work we purpose to confront this method with other clas-
sical method used for mesh-less problem like SPLINES, NURBS or a MODIFIED PARTICLE
METHOD [3], in order to test if it’s convenient to go ahead with this approximation schemes.
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As future perspective it’s also possible to find a way to construct the shape functions only with a
determinate number of nodes and not by using all the nodes of the domain so to make the methods
more flexible in a common use.
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