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Notation and some preliminaries

In this brief section we give some notation and introduce quantities and properties that will be
often used in the thesis.

Some algebraic structures.

• Group: it is called group a set G provided with an operation, ·, which satisfies the following
properties

– ∀ g1,g2 ∈ G, g1 · g2 = g3 with g3 ∈ G, i.e. · is an internal operation;

– ∀ g1,g2,g3 ∈ G, (g1 · g2) · g3 = g1 · (g2 · g3), i.e. · is associative;

– ∃ u ∈ G | u · g = g · u = g, ∀ g ∈ G, i.e. there exists a neuter element u;

– ∀ g ∈ G, ∃ g−1 ∈ G | g · g−1 = g−1 · g = u, i.e. there exists an inverse element g−1

for every g.

• Linear space: given a scalar field K, it is called linear space on K a set V provided with the
following properties

– there exists in V an internal operation + such that

∗ ∀ v1,v2,v3 ∈ V, (v1 + v2) + v3 = v1 + (v2 + v3);

∗ ∃ 0 ∈ V | v + 0 = 0 + v = v, ∀ v ∈ V ;

∗ ∀ v ∈ V, ∃ − v ∈ V | v + (−v) = −v + v = 0;

∗ ∀ v1,v2 ∈ V, v1 + v2 = v2 + v1.

– there exists an external operation called scalar multiplication which associates to ev-
ery couple (λ,v), with λ ∈ K and v ∈ V , an element of V , indicated with λv and called
multiple of v through λ, and such that the following properties hold
∀ v,w ∈ V, ∀ λ, µ ∈ K

∗ λ(v + w) = λv + λw;

∗ (λ + µ)v = λv + µv; (λµ)v = λ(µv).

– indicated by 1 the multiplicative unit of K, it holds 1v = v, ∀ v ∈ V

Mathematical sets often used into the thesis.

• R3: linear space of three-dimensional vectors

• Gorth+: multiplicative group of rotation tensors (nonlinear manifold)

• so(3) : linear space of [3 × 3] skew-symmetric tensors. A tensor Θ is skew-symmetric if

ΘT = −Θ.

We recall that
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– so(3) is isomorphic with R3, i.e. there exists a one-one correspondence between ele-
ments of so(3) and elements of R3: given a tensor Θ ∈ so(3) there exists a unique
vector θ ∈ R3 and viceversa such that

Θa = θ × a ∀ a ∈ R3 (0.0.1)

with

Θ =





0 −θ3 θ2
θ3 0 −θ1
−θ2 θ1 0



 ,θ =







θ1
θ2
θ3







.

θ is called axial vector of Θ and we will refer to the latter relation as axial vector
relation. Often we will use the notation [θ×] to indicate the skew tensor Θ in order to
emphasize its axial vector.

– For a skew-tensor Θ and its axial vector θ the following identity holds

Θ2b = Θ(Θb) = [θ ⊗ θ − θ2I]b ∀ b ∈ R3, (0.0.2)

where θ =‖ θ ‖.

– Given two skew tensors Θ and W and their axial vectors respectively θ and w the
following identity holds

[ΘW − WΘ]a = (θ × w) × a ∀ a ∈ R3. (0.0.3)

The term in brackets is called Lie brackets.

• TΛGorth+: tangent space to the group of rotation tensors at the point Λ. If Λ = I, where I
is the identity tensor, then the notation become TIG

orth+. It can be proved that the linear
space of skew-symmetric tensors is the tangent space to the rotation manifold at any point,
i.e.

TΛGorth+ ≡ so(3) ∀ Λ ∈ Gorth+.

Index notation. The following indices will be used

• Latin indices, i, j, k..., which range from 1 to 3

• Greek indices, α, β..., which can take values 1 and 2

Some properties of vector operations. The following properties of cross and scalar prod-
uct will be often used. Given a,b, c ∈ R3

• cross product between parallel vectors a× (αa) = 0;

• cross product anticommutativity: a × b = −b× a;

• mixed product identities a · (b × c) = c · (a × b) = b · (c × a);

• double cross product identity a × (b × c) = (a · c)b − (a · b)c.

Given also a rotation tensor Λ ∈ Gorth+:
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• invariance of scalar product under rotation

a · b = Λa · Λb; (0.0.4)

• distributivity of cross product with respect to product with a rotation

Λ(a × b) = Λa × Λb. (0.0.5)

Orthonormality conditions for 3 vectors: given a triad of vectors ti ∈ R3, they form an orthonormal
triad with right-hand-rule if

ti · tj = δij , t3 = t1 × t2,

where δij is the Kroneker delta.

Derivative of an exponential mapping. Given an exponential mapping, the expression
of its derivative is obtained studying the solution of an ordinary differential equation (for more
details see [9] page 227). Consider a tensor A and the initial-value problem

Ẋ(t) = AX(t) t > 0,

X(0) = I,

for a tensor function X(t), 0 6 t <∞. The solution of the problem is

X(t) = exp[tA] −→
˙

exp[tA] = Aexp[tA].

If A is a skew tensor, then exp[tA] is a rotation ∀ t > 0

Notation and some rules in tensor analysis. Given a smooth material tensor field
H(X, t), its material gradient ∇XH and material divergence divXH are defined as

∇XH =
∂H(X, t)

∂X
, divXH = tr

[

∇XH
]

.

Given a smooth spatial tensor field G(x , t), its spatial gradient ∇G and spatial divergence divG
are defined as

∇G =
∂G(x , t)

∂x
, divG = tr

[

∇G
]

.

Given three arbitrary tensor, B, C and D, a symmetric tensor A and a vector field g, we will use
the following properties

D : (BC) = (BT D) : C = (DCT ) : B; (0.0.6)

div(DT g) = D : ∇g + g · divD; (0.0.7)

A : B = A : sym[B]. (0.0.8)



Introduction

In this work we present a three-dimensional elastic beam theory capable of describing
the deformation and the static equilibrium of a beam with no restrictions on either dis-
placements or rotations and taking into account shear strain. A small-strain hypothesis
is introduced. The model was first proposed by Reissner in [18, 19]. Subsequently it was
revised by Simo in [23, 24, 25] and Simo first introduced the still used terminology geomet-
rically exact beam to indicate the model. These works are considered the pioneering ones
on the subject. After them a wide literature have been produced, especially addressed to
the investigation of computational aspects.

Our work moves from the Simo’s ones and proposes new developments for the beam
model following two main goals. The first one is the recovering of the one-dimensional weak
form of equilibrium equations proposed by Simo in [23] exploiting the three-dimensional
continuum principle of virtual work. The second one is the illustration of two different
forms of equilibrium equations related with two different linearization procedures for ro-
tation tensors, the tensors used to describe the finite rotations of beam cross-sections in
the three-dimensional space.

In order to achieve the goals we first investigate the three-dimensional principle of
virtual work (chapter one) and then we propose “an excursion into finite rotation”, to cite
Argyris [1] (chapter two). Both topics are quite complex: the first one demand to manage
with three-dimensional nonlinear stress and strain measures, the second one with con-
cepts of differential geometry. Chapter three is devoted to develop explicitly the proposed
goals and hence the various forms of finite-deformation small-strain model equations are
obtained. In presentation of the equations attention is posed on the introduction of a
special polar decomposition for the beam deformation gradient and on the explanation of
the small-strain hypothesis role into the model.

A third and last goal of the work is the presentation of the Finite Element formulation
developed to solve the model and subsequently implemented. Some tests are presented in
order to state the reliability of the finite element.

Have a good reading.
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Chapter 1

Three-dimensional equilibrium
equations in non-linear continuum
mechanics

The chapter opens with a brief section which introduces the definition of reference and cur-
rent configurations and their associated three-dimensional stress measures. Subsequently
we provide strong form of equilibrium equations for a three-dimensional deformable con-
tinuum body using the various stress measures just introduced. From the strong form we
finally obtain the principle of virtual work, both in reference and current configuration.

1.1 Stress measures

Consider a continuum body B occupying currently, at time t, an arbitrary region Ω with
boundary surface ∂Ω and, at time t = 0, the region Ω0 with boundary surface ∂Ω0. We
refer to Ω as current configuration and to Ω0 as reference configuration. The position of
body material points with respect to a fixed reference system are denoted by the vector field
x in the current configuration Ω and by the vector field X in the reference configuration
Ω0. Consider the actual infinitesimal force, df , acting in the current configuration Ω on
an infinitesimal surface plane element, da, internal to the body with normal unit vector n
and located at point x , see figure (1.1). da, n and x are denoted respectively by da0, n0

and X when considered in the reference configuration Ω0. The force df is given by

df = tnda = tn0
da0 , (1.1.1)

where, for the Cauchy’s stress theorem,

tn(x ,n, t) = σ(x , t)n and tn0
(X,n0, t) = P(X, t)n0. (1.1.2)

σ is the Cauchy stress tensor and P is the first Piola-Kirchhoff stress tensor. The former
linearly maps the current unit area vector nda into the current infinitesimal force df

11



12 Three-dimensional equilibrium equations in non-linear continuum mechanics

while the latter linearly maps the reference unit area vector n0da0 again into the current
infinitesimal force df . σ is defined in the current configuration and it is also called true
stress tensor since it is the physical stress of the true-current configuration. P instead is
a two-point tensor since maps a vector defined in the reference configuration into a vector
defined in the current configuration. Substituting the Cauchy’s theorem into equation
(1.1.1) we get

df = σnda = Pn0da0 . (1.1.3)

Consider the relation which maps the reference area vector n0da0 into the current one nda
(Nanson’s formula, see [10] page 75)

nda = JF−Tn0da0

where F is the deformation gradient and J = detF. Substituting the above equation into
(1.1.3) we obtain the relation between Cauchy and First Piola-Kirchhoff stress tensors

P = JσF−T (1.1.4)

and
σ = J−1PFT . (1.1.5)

Moreover, balance of angular momentum implies Cauchy tensor to be symmetric

σ = σT (1.1.6)

and hence it follows from (1.1.5) that

J−1PFT = J−1
(

PFT
)T

= J−1FPT ⇒ PFT = FPT . (1.1.7)

Consequently, P is, in general, not symmetric.
Consider the infinitesimal force df0 = F−1df , which is the current infinitesimal force

df mapped back to the reference configuration. From this quantity the second Piola-
Kirchhoff stress tensor S is defined as

df0 = Sn0da0 . (1.1.8)

Equation (1.1.8) states that S maps the reference unit area vector n0da0 into the reference
infinitesimal force df0. It can be shown that S is a symmetric tensor (see [10] page 127)

S = ST . (1.1.9)

The relation between P and S is obtained substituting the definition of df0 into equation
(1.1.8) and multiplying with F

FF−1df = FSn0da0 ⇒ df = FSn0da0.

Comparing the above relation with (1.1.3)2 we get

P = FS. (1.1.10)

Alternative forms of stress tensor are not considered in this thesis. For further information
see [10] and [22].
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Box1: Definition of stress tensors

• Cauchy’s stress tensor: σnda = df

• First Piola-Kirchhoff stress tensor: Pn0da0 = df

• Second Piola-Kirchhoff stress tensor: Sn0da0 = df0 where df0 = F−1df

Figure 1.1: Reference configuration (left). Current configuration (right).
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1.2 Strong (differential) equilibrium equations

In this section we present translational and rotational differential equilibrium equations
for the three-dimensional continuum body B in the static regime. These equations are
clearly valued on the real current configuration Ω and involve df , but since the differential
infinitesimal current force df can be expressed in term of both the true Cauchy’s tensor
σ and the two-point first Piola-Kirchhoff tensor P, they can be formulated in two ways,
one for each stress measure adopted.

Strong equilibrium with the true Cauchy’s stress σ

Consider a generical part P of the current region Ω, with boundary region ∂P. The force
resultant, r, and the moment resultant, m, relative to P ⊂ Ω can be defined as

f =

∫

P

b dv +

∫

∂P

tn da, (1.2.1)

m =

∫

P

r × b dv +

∫

∂P

r × tn da. (1.2.2)

where

• b = b(x ) is the vector field of body force per unit current volume;

• r = x − x o is the position vector computed with respect to a generic momentum
pole o in x o;

• tn is the traction vector introduced in the previous section;

• dv ⊂ P is the current infinitesimal volume;

• da ⊂ ∂P is the current infinitesimal area.

The static equilibrium axiom postulates that a deformable body is in equilibrium if and
only if the force resultant and the momentum resultant are zero on each portion of the
body, i.e. a body B in a configuration Ω is in equilibrium if and only if

∫

P

b dv +

∫

∂P

tn da = 0 ∀ P ⊂ Ω, (1.2.3)

∫

P

r × b dv +

∫

∂P

r × tn da = 0 ∀ P ⊂ Ω. (1.2.4)

The equations are respectively the specialization of linear and angular momentum balance
laws to the static regime and are known respectively as translational equilibrium and
rotational equilibrium equations. Using the Cauchy theorem (1.1.2)1 and the divergence
theorem, the surface integral in the translational equilibrium (1.2.3) can be given as

∫

∂P

tn da =

∫

∂P

σn da =

∫

P

divσ dv
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where the operator“div(·)” is the spatial divergence operator (see section ). By substituting
this result into the translational equilibrium (1.2.3) we obtain

∫

P

divσ + b dv = 0 ∀ P ⊂ Ω

which, holding for any part P of the region Ω, yields the Cauchy’s equation of equilibrium

divσ + b = 0 (1.2.5)

Note that both σ = σ(x ) and b = b(x ), as well as the “div(·)” operator, are all defined
with respect to the current configuration.

From the rotational equilibrium (1.2.4), manipulated using again the Cauchy’s theorem
and the divergence theorem, it can be shown1 that

σ = σT (1.2.6)

Strong equilibrium with the two-point first Piola-Kirchhoff stress P

The translational and rotational equilibriums can be expressed as integral over the region
P0, subset of the reference region Ω0, with boundary region ∂P0. With this task, we
write the force resultant f and the moment resultant m with respect to the reference
configuration Ω0. From the relation between the current and reference volume, dv = Jdv0,
the integral of body forces can be given as

∫

P

b(x )dv =

∫

P0

b0(X)dv0, with b0 = Jb,

where b0 are called reference body forces and J = detF. From the equivalence of infinites-
imal forces df , (1.1.1), the surface integral of the traction forces can be given as

∫

∂P

tn(x ) da =

∫

∂P0

tn0
(X) da0.

With these equations in hand, f and m take the form

f =

∫

P0

b0 dv0 +

∫

∂P0

tn0
da0, (1.2.7)

m =

∫

P0

r × b0 dv0 +

∫

∂P0

r× tn0
da0. (1.2.8)

It must be emphasized that force and moment resultants even thought described with re-
spect to the reference configuration are still valued in the current configuration. Note that

1for this demonstration see [10] page 147
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the position vector r has not been affected by any transformation. The static equilibrium
conditions with respect to the reference configuration takes hence the form

∫

P0

b0 dv0 +

∫

∂P0

tn0
da0 = 0 ∀ P0 ⊂ Ω0, (1.2.9)

∫

P0

r× b0 dv0 +

∫

∂P0

r × tn0
da0 = 0 ∀ P0 ⊂ Ω0. (1.2.10)

Using the Cauchy theorem (1.1.2) and the divergence theorem, the surface integral in
(1.2.9) can be given as

∫

∂P0

tn0
da0 =

∫

∂P0

Pn0 da0 =

∫

P0

DivP dv0

where the operator “Div” is the material divergence operator (see section ()). By substi-
tuting this result into the translational equilibrium (1.2.9), we obtain

∫

P0

DivP + b0 dv0 = 0 ∀ P0 ⊂ Ω0

which, holding for any part P0 of the region Ω0, yields the reference form of Cauchy’s
equation of equilibrium

DivP + b0 = 0. (1.2.11)

From the rotational equilibrium (1.2.10), manipulated using again the Cauchy’s theorem
and the divergence theorem, it can be shown that

PFT = FPT . (1.2.12)

1.3 Principle of virtual work

In order to develop the principle of virtual work, we introduced the displacement field u
defined as the difference between the position vector field x individuating each point of the
current region Ω and the position vector field X individuating each point of the reference
region Ω0

u = x − X. (1.3.1)

We define the virtual variation of the displacement field δu as infinitesimal arbitrary and
virtual change of the displacement field u at fixed time t

δu = uε − u (1.3.2)

where uε stands for an infinitesimal perturbed displacement field. The virtual variation is
defined such that

δu(x ) ∈ δU where δU = {δu(x ) : δu(x ) ∈ C0, δu = 0 on ∂Ωū}, (1.3.3)
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where ∂Ωū ⊂ ∂Ω is the boundary region where displacements are assigned. With this
definition in hand, we can enter into the study of the principle of virtual work. Also this
kind of equilibrium equations can be given in two forms, depending on which is the do-
main of integration: the current configuration Ω or the reference configuration Ω0. In the
next paragraphs we derive both of them. We recall that we deal with static equilibrium
equations, i.e. we do not consider acceleration term ü, as done for the differential case.

1.3.1 Principle of virtual work on current configuration Ω

In this paragraph we consider the weak (or integral) form of the Cauchy’s equilibrium
equation which leads to the formulation of principle of virtual work written with respect
to the current configuration Ω.

Consider the virtual displacement δu(x ) as an arbitrary weighting vector function.
Multiplying the differential Cauchy’s equilibrium equation (1.2.5) by the weighting func-
tion δu and integrating over the current domain we obtain

∫

Ω

[

(divσ + b) · δu
]

dv = 0 ∀ δu ∈ δU. (1.3.4)

which is the integral scalar-valued weak equilibrium equation written on the current config-
uration. The fundamental lemma of calculus of variations guaranties this weak equation
to be equal to the strong one (for further details see [30]). Splitting the integral, the
previous equation is written as

∫

Ω
divσ · δu dv +

∫

Ω
b · δu dv = 0 ∀ δu ∈ δU. (1.3.5)

Consider the first integral
∫

Ω divσ · δu dv. The scalar product between the divergence of
a tensor and a vector can be expressed in term of the vector gradient by the rule (0.0.7).
Hence in our case we can write the equality

divσ · δu = div(σT δu) − σ : ∇δu.

Since σ is a symmetric tensor (σ = σT ), trivially we have

divσ · δu = div(σδu) − σ : ∇δu

and therefore the considered integral becomes
∫

Ω
divσ · δu dv =

∫

Ω
div(σδu) dv −

∫

Ω
σ : ∇δu dv. (1.3.6)

In order to rearrange this expression, we examine first the term
∫

Ω σ : ∇δu dv. Since σ is
symmetric, we can use the rule of double contraction between a tensor and a symmetric
tensor (0.0.8) to rewrite

∫

Ω
σ : ∇δu dv =

∫

Ω
σ : sym

[

∇δu
]

dv =

∫

Ω
σ : δe dv, (1.3.7)
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where we recognized in sym
[

∇δu
]

the Euler-Almansi strain tensor’s virtual variation δe2.
Consider now the other term

∫

Ω div(σδu) dv. Applying first the divergence theorem and
then the symmetry of σ, this integral can be given as

∫

Ω
div(σδu)dv =

∫

∂Ω
n · σδu da =

∫

∂Ω
σn · δu da.

Since δu vanishes on the boundary region ∂Ωū where displacements are assigned, the
integral over the whole boundary region reduces to an integral over ∂Ωt̄n

, i.e. the region
where traction are assigned,

∫

∂Ω
σn · δu da =

∫

∂Ωt̄n

t̄n · δu da.

Therefore by substitution into previous equation we get
∫

Ω
div(σδu)dv =

∫

∂Ωt̄n

t̄n · δu da. (1.3.8)

Recollecting results of equations (1.3.7) and (1.3.8) and substituting them into (1.3.6) the
expression of the term

∫

Ω divσ · δu dv takes the form
∫

Ω
divσ · δu dv =

∫

∂Ωt̄n

t̄n · δu da−

∫

Ω
σ : δe dv. (1.3.9)

Substituting this expression into equation (1.3.5) we obtain
∫

∂Ωt̄n

t̄n · δu da−

∫

Ω
σ : δe dv +

∫

Ω
b · δu dv = 0 ∀ δu ∈ δU,

which changing sign and reordering terms finally becomes the principle of virtual work
written on current configuration

∫

Ω
σ : δe dv −

∫

Ω
b · δu dv −

∫

∂Ωt̄n

t̄n · δu da = 0 ∀ δu ∈ δU, (1.3.10)

with boundary conditions
u = ū on ∂Ωū ⊂ ∂Ω.

The principle of virtual work states that at the equilibrium configuration the virtual work
σ : δe done by fixed σ with the virtual variation δe on the whole volume equals the sum
of work done with virtual displacement δu by body forces b on the whole volume and
surface tractions t̄n on the boundary area ∂Ωt̄n

.
Usually the terms of the principle are indicated by the notation

∫

Ω
σ : δe dv = δLint; (1.3.11)

∫

Ω
b · δu dv +

∫

∂Ω
t̄n · δu da = δLext. (1.3.12)

2for demonstration that sym
[

∇δu
]

= δe see [10] page 376
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where the first integral, δLint, is called internal virtual work and second one, δLext, external
virtual work. Note that stress, body forces, traction vectors are all defined on current
region Ω, which clearly is also the integral domain.

Because the traction boundary conditions, tn =¯̄tn on ∂Ωt̄n
, arise directly from the

weak equilibrium equation they are often called natural boundary conditions. Instead the
displacements boundary conditions, u = ū on ∂Ωū, are called essential since they have to
be imposed out of the weak form.

1.3.2 Principle of virtual work on reference configuration Ω0

We consider here the principle of virtual work wherein the integral domain is the reference
region Ω0. In this case the internal virtual work δLint can be expressed in two equiva-
lent forms, using the first Piola-Kirchhoff stress tensor P or the second Piola-Kirchhoff
stress tensor S. For this reason we study the internal and external work separately. The
computation is developed starting from the principle of virtual work written in current
configuration 3(see equation (1.3.10)).

Internal work

Internal virtual work in term of first Piola-Kirchhoff stress tensor P. Con-
sider the internal virtual work in current configuration δLint (1.3.11) and rewrite it using
σ : δe = σ : ∇δu

δLint =

∫

Ω
σ : ∇δu dv.

Recalling the relations between current and reference differential volume, respectively dv
and dv0, and between spatial and material gradient of δu, respectively ∇[δu(x )] and
∇X[δu(X)]

dv = Jdv0 and ∇δu = ∇X(δu)F−1,

where J = detF, the internal work δLint takes the form

δLint =

∫

Ω0

[

σ : ∇X(δu)F−1J
]

dv0. (1.3.13)

The equation states that the internal virtual work integrated on the current configuration
domain can be given as an integral on the reference domain of the function in brackets.
Using first the property of double contraction between a tensor and a product of tensors,
(0.0.6)3, and then the relations between σ and P (JσF−T = P) and between δu and δF
(∇X(δu) = δF) 4 the function in brackets can be rearranged in the form

σ : ∇X[δu]F−1J = JσF−T : ∇X(δu)

= P : δF.
3The virtual work on reference configuration which uses the first Piola-Kirchhoff tensor P can be

obtained also by weighting with virtual displacements and integrating on the reference domain the strong
equilibrium form written with P, see [10] page 384

4see [10] page 374 for this proof



20 Three-dimensional equilibrium equations in non-linear continuum mechanics

By substitution of this expression into (1.3.13), we finally obtain the internal virtual work
written on reference configuration in term of first Piola-Kirchhoff stress tensor P,

δLint =

∫

Ω0

[

P : δF
]

dv0. (1.3.14)

The stress tensor P turns out to be work conjugate with the virtual variation of deforma-
tion gradient δF.

Internal virtual work in term of second Piola-Kirchhoff stress tensor, S. Con-
sider the internal work on reference configuration in term of P (equation (1.3.14)). Using
that P = FS and the double contraction rule (0.0.6)2 it follows that

P : δF = FS : δF = S : FT δF.

Since S is symmetric, we can use the rule of double contraction between a tensor and a
symmetric tensor (0.0.8) to rewrite

S : FT δF = S : sym[FT δF] = S : δE,

where we recognize the Green-Lagrange strain tensor’s virtual variation δE = sym[FT δF]5.
Hence by substitution we get the equality

P : δF = S : δE, (1.3.15)

which introduced into equation (1.3.14) finally leads to the internal virtual work written
on reference configuration in term of second Piola-Kirchhoff stress tensor S

δLint =

∫

Ω0

[

S : δE
]

dv0. (1.3.16)

External virtual work

Consider the external virtual work written in current configuration, δLext (equation (1.3.11)).

The term associated with the body force,
∫

Ω

[

b · δu
]

dv, can be expressed in term of an in-

tegral over the reference domain Ω0 using again the relation (dv = Jdv0) between current
and reference differential volume

∫

Ω
b · δu dv =

∫

Ω0

b0 · δu dv0 with b0 = Jb. (1.3.17)

To express the boundary work
∫

∂Ωt̄n

t̄n · δu da as an integral over the reference domain,

we recall that by the definition of differential force df (1.1.1) and the Cauchy’s theorem
we have

df = tnda = tn0
da0, with tn = σn, tn0

= Pn0.

5see [10] page 375 for this demonstration
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Specializing these relations for the boundary region where tractions are assigned, we get

t̄nda = t̄n0
da0.

and consequentially
∫

∂Ωt̄n

t̄n · δu da =

∫

∂Ωt̄n0

t̄n0
· δu da0. (1.3.18)

Substituting the results of (1.3.17) and (1.3.18) into the expression of the external work
(1.3.12), we finally get the external virtual work written on reference configuration

δLext =

∫

Ω0

b0 · δu dv0 +

∫

∂Ωt̄n0

t̄n0
· δu da0. (1.3.19)

Observing that displacement boundary conditions must be assigned on the reference con-
figuration in order to be consistent with the virtual work, the two complete forms of the
principle of virtual work on Ω0 can finally be given

∫

Ω0

P : δF dv0 −

∫

Ω0

b0 · δu dv0 −

∫

∂Ωt̄n0

t̄n0
· δu da0 = 0 ∀ δu ∈ δU, (1.3.20)

∫

Ω0

S : δE dv0 −

∫

Ω0

b0 · δu dv0 −

∫

∂Ωt̄n0

t̄n0
· δu da0 = 0 ∀ δu ∈ δU, (1.3.21)

with boundary conditions
u0 = ū0 on ∂Ωū0

⊂ ∂Ω0.

1.3.3 Box resume of principle of virtual work
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• Principle of virtual work on current configuration Ω

∫

Ω
σ : δe dv −

∫

Ω
b · δu dv −

∫

∂Ωt̄n

t̄n · δu da = 0 ∀ δu ∈ δU;

with boundary conditions

u = ū on ∂Ωū ⊂ ∂Ω.

• Principle of virtual work on reference configuration Ω0

– Internal work using first Piola-Kirchhoff stress tensor P and virtual variation
of deformation gradient δF

∫

Ω0

P : δF dv0 −

∫

Ω0

b0 · δu dv0 −

∫

∂Ωt̄n0

t̄n0
· δu da0 = 0 ∀ δu ∈ δU;

– Internal work using second Piola-Kirchhoff stress tensor S and virtual variation
of Green-Lagrange strain tensor δE

∫

Ω0

S : δE dv0 −

∫

Ω0

b0 · δu dv0 −

∫

∂Ωt̄n0

t̄n0
· δu da0 = 0 ∀ δu ∈ δU;

with boundary conditions

u0 = ū0 on ∂Ωū0
⊂ ∂Ω0.

Table 1.3.1: Principles of virtual work: resume of different forms



Chapter 2

Rotation tensors and their virtual
variations

In the considered beam model a crucial role in the description of the beam motion is
played by a three-dimensional rotation tensor, Λ, which defines the orientation of the
cross-section in space. As described in detail below, rotation tensors do not belong to
a linear space but to a multiplicative group, Gorth+, which is the reason why they are
not easily amenable to direct discretization and their linearization is not straightforward.
The continuum beam theory, the discrete theory and the finite elements approach are
strictly related with rotations and their linearization. Therefore the chapter is dedicated
to investigate rotation parameterizations and linearization procedures. A brief recall of
properties of rotation tensors and their derivative is first given.

2.1 Rotations: definition, properties and derivative

2.1.1 Definition and properties

A rotation is an orthogonal tensor with unit determinant. As any orthogonal tensor,
a rotation Λ is defined as a linear transformation which satisfies the condition

Λu · Λv = u · v (2.1.1)

for all vectors u ∈ Rn and v ∈ Rn. The above relation states that a rotation tensor
preserves the inner product, i.e. both the angle between u and v and their lengths,
‖ u ‖, ‖ v ‖, are preserved. Here and in the following we refer to three-dimensional
tensors and not to n-dimensional since it is sufficient for our purposes. From (2.1.1) it is
straightforward to verify that

ΛTΛ = ΛΛT = I or Λ−1 = ΛT , (2.1.2)

23
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which are known as orthogonality conditions. Equation (2.1.2)1 is given in index notation
as

ΛijΛik = ΛjiΛki = δjk (2.1.3)

where δjk is the Kronecher delta. It shows that in matrix term the condition (2.1.2)1 is
an orthonormality condition on the columns of matrix Λ.
For a general orthogonal tensor Q it holds that detQ = ±1. In fact from equation (2.1.2)
it follows that

det(QTQ) = detI = 1,

and from determinant properties

det(QTQ) = det(QT )det(Q) = det(Q)2

which implies that
det(Q) = ±1.

In particular a rotation is by definition an orthogonal tensor with det = 1.
The set of all rotations, which we refer to as Gorth+, has group structure under multi-

plication, hence it satisfies the following properties

• ∀ Λ1,Λ2 ∈ Gorth+ Λ = Λ1Λ2 with Λ ∈ Gorth+, i.e. the product of two rotations is
a rotation;

• ∀ Λ1,Λ2,Λ3 ∈ Gorth+ (Λ1Λ2)Λ3 = Λ1(Λ2Λ3), i.e. the product of three rotations
is associative;

• I ΛI = IΛ = Λ ∀ Λ ∈ Gorth+, i.e. there exists a neuter element, the identity matrix;

• ΛΛ−1 = Λ−1Λ = I ∀ Λ ∈ Gorth+, i.e. there exists an inverse element Λ−1 for every
Λ.

We point out that in general the rotation product is not commutative, i.e.

Λ1Λ2 6= Λ2Λ1 with Λ1,Λ2 ∈ Gorth+.

Physically it is easy to see that two inverted sequences of rotations around not parallel
fixed axes in space map the same vector into two different positions.
Finally since the set of rotations is not a linear space, rotations are not additive, i.e. given
two rotations, Λ1 ∈ Gorth+ and Λ2 ∈ Gorth+, then Λ1 + Λ2 = H /∈ Gorth+.

2.1.2 Derivative: spin tensors

In the beam theory the rotation will be defined as a one parameter rotation, i.e. it will be
function only of a one independent variable, the reference length of beam. Since we will
clearly deal with the derivative of a rotation with respect to this parameter, we introduce
here such topic which is not trivial at all.
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Consider an arbitrary parameter, t, and a one-parameter rotation Λ = Λ(t). We indicate
by Λ̇ the derivative of Λ with respect to t. Taking derivative of the orthogonality condition
ΛΛT = I (2.1.2), we get

Λ̇ΛT + ΛΛ̇
T

= 0

which given in the form

Λ̇ΛT = −ΛΛ̇
T

−→ Λ̇ΛT = −(Λ̇ΛT )T

shows that Λ̇ΛT is a skew tensor. With this result in hand we define the spin tensor Ω
and consequently its axial vector ω, spin vector, as

Ω = [ω×] = Λ̇ΛT where Ω ∈ so(3), ω ∈ R3. (2.1.4)

The terminology spin vector is taken from rigid body dynamics where the parameter t as
the specific meaning of time. In beam theory we preserve this name in order to preserve
the analogy.
Reversing (2.1.4) we get the derivative Λ̇ as

Λ̇ = ΩΛ. (2.1.5)

With a similar procedure, derivative of the other orthogonality condition ΛTΛ = I (2.1.2)
respect to t yields to the definition of the skew tensor Ωr and its axial vector ωr as

Ωr = [ωr×] = ΛT Λ̇ where Ωr ∈ so(3), ωr ∈ R3, (2.1.6)

and to another form of derivative Λ̇

Λ̇ = ΛΩr. (2.1.7)

Note that Λ̇ /∈ Gorth+, i.e. the derivative of a rotation is not a rotation. At contrary,
recalling from section () that the skew-tensor space so(3) is the tangent space to the
rotation group, equations (2.1.5) and (2.1.7) show that the derivative is a composition of
the current rotation with an element of the rotation tangent space. Moreover in the case
(2.1.5) the spin tensor Ω follows the rotation in the composition product, i.e. it lays in a
space that has been already rotated by Λ. Accordingly it belongs to the rotation tangent
space in Λ, TΛGorth+. In the case (2.1.7) the spin tensor Ωr precedes the rotation in the
composition product, i.e. it lays in a space that has not been affected by any rotation.
Accordingly it belongs to the rotation tangent space in the identity I, TIG

orth+.
Comparing equations (2.1.5) and (2.1.7) it is easy to obtain

Ω = ΛΩrΛ
T and Ωr = ΛTΩΛ (2.1.8)

which shows that Ω is the rotated-forward expression of Ωr and Ωr is the rotated-back
expression of Ω.
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An equivalent relation can be obtained for axial vector ω and ωr. Comparing again (2.1.5)
and (2.1.7) it follows that

ΩΛa = ΛΩra ∀ a ∈ R3,

which using the axial vector relation (0.0.1) can be given in term of ω and ωr as

ω × Λa = Λ(ωr × a) ∀ a ∈ R3.

Using for the right-hand-side the distributivity property of cross product under rotation
(0.0.5), we obtain

ω × Λa = Λωr × Λa ∀ a ∈ R3,

which entails
ω = Λωr (2.1.9)

and consequentially
ωr = ΛTω. (2.1.10)

Such as for their skew tensors, ω is the rotated-forward expression of ωr and ωr is the
rotated-back expression of ω.
Spin tensor Ω and spin vector ω, together with their rotated-back form respectively Ωr

and ωr, will play a crucially role in the development of the beam model.

2.2 Parameterizations of rotations

A three-dimensional rotation tensor can be represented by a 3× 3 matrix. By the way the
minimum number of degree of freedom needed to describe a finite rotation is three. The
fact is evident since the nine components of the rotation matrix are related each other by
the six orthonormality conditions which define a rotation tensor (see equations (2.1.2) and
(2.1.3)). A parametrization of the three-dimensional rotation is a representation of the
rotation through three (or in some cases four) parameters instead of the nine parameters
employed in the matrix representation. These parametrizations are useful to reduce the
costly representation of matrix rotation in a computational context. Some of them is also
very useful to develop linearization of rotation, as shown below.

Several rotation parameterizations have been proposed in literature (e.g. see [1], [3],
[5]). Here we study in depth the so called rotation vector parametrization, which we use in
the development of beam theory and in successive finite element approach. Moreover we
mention other parametrizations we have found in literature to be related with the beam
model.

The rotation vector parametrization is extensively treated in [1, 4, 11]. The name is not
univocal in literature, so much so that Argyris in [1] refers to it as rotation pseudovector
parametrization. The rotation vector is a vector with direction along the physical axis of
rotation, versus defined by the right-hand-rule in dependence of the clockwise or counter-
clockwise sense of rotation and norm equal to the angle of rotation. This parametrization
is demonstrated to coincide with the exponential map for rotation which is a chart of fun-
damental importance in definition of both linearizations of rotations and rotation updating
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computational techniques. The illustration of rotation vector parametrization for the ro-
tations is followed by the explanation of the same parametrization for the spin tensors.

We consider finally pseudovector parametrizations which follow from different defini-
tion of the norm of rotation tensor and quaternion parametrization.

2.2.1 Rotation vector parametrization

Exponential mapping and Rodrigues formula

From a physical point of view, in three-dimensional space a rotation can be described by
an axis, defined by a unit vector e, and an angle θ which lies in a plane orthogonal to
the axis. All the space rotates around e, see Fig.2.1. We introduce the rotation vector, θ,

Figure 2.1: Construction of rotation matrix Λ(θ) with rotation vector θ

defined as
θ = θe. (2.2.1)

Accordingly, by definition, θ has norm equal to θ and is directed as the unit vector e.
Indicating with φ, χ, ψ the components of θ in a cartesian reference system {OX1X2X3},
θ can be given as

θ =







φ
χ
ψ







(2.2.2)

and its norm θ =‖ θ ‖ as

θ =
√

φ2 + χ2 + ψ2. (2.2.3)
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Consider a vector p which is mapped into p̂ by a rotation of an angle θ around the axis
in direction of e, Fig.2.1. This mapping has the form

p̂ = Λp (2.2.4)

where Λ is a rotation tensor. Our task is to find an explicit expression of Λ as a function
of θ, i.e. to establish the transformation

p̂ = Λ(θ)p. (2.2.5)

A very clear derivation can be performed by use of vector calculus [1]. Looking at Fig.2.1
the relation between vector p and its rotated vector p̂ can be given as

p̂ = p + p∆. (2.2.6)

Our task is to transform the right-hand-side of (2.2.6) into the matrix product of (2.2.5).
To this end from the Fig.2.1 we first deduce the following relation

p∆ = PD +DP̂ , (2.2.7)

where DP̂ is drawn normal to PC. We note that the vector DP̂ stands perpendicular to
the plane OPC. Therefore it points in the direction (e × p). To find its magnitude we
observe that

DP̂ = a sin θ. (2.2.8)

On the other hand, we observe that the magnitude of (e × p) is

‖ e × p ‖= 1 · p sinα = p
a

p
= a. (2.2.9)

It follows in conjunction with (2.2.8) and (2.2.9) that

DP̂ = (e × p) sin θ =
sin θ

θ
(θ × p). (2.2.10)

Next we proceed to the determination of the vector PD. Fig.(2.1) shows immediately that
it is not only perpendicular to (e×p) but also to e since it lies in the plane PCP̂ normal
to e. Hence it may be assigned the direction of e× (e×p). Now the absolute value of the
last vector is clearly again a since e is a unit vector and it is normal to (e × p), i.e.

‖ e × (e × p) ‖=‖ e × p ‖= a.

At the same time Fig.2.1 yields to

PD = a− a cos θ = (1 − cos θ)a = 2 sin2 θ

2
a. (2.2.11)

Hence we deduce, using (2.2.11) and the direction of PD,

PD = 2 sin2 θ

2
(e × (e × p)) =

1

2

sin2(θ/2)

(θ/2)2
(θ × (θ × p)). (2.2.12)
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Applying (2.2.12) and (2.2.10) in (2.2.7) and (2.2.6), the vector p̂ takes the form

p̂ = p +
sin θ

θ
(θ × p) +

1

2

sin2(θ/2)

(θ/2)2
(θ × (θ × p)). (2.2.13)

Equation (2.2.13) can be written in matrix form

p̂ = p +
sin θ

θ
Θp +

1

2

sin2(θ/2)

(θ/2)2
Θ2p (2.2.14)

where

Θ =





0 −ψ χ
ψ 0 −φ
−χ φ 0



 and Θ2 = ΘΘ =





−(χ2 + ψ2) χφ φψ
χφ −(ψ2 + φ2) ψχ
φψ ψχ −(φ2 + χ2)





(2.2.15)
Θ is the skew-symmetric tensor having θ as axial vector. The equality between equations
(2.2.13) and (2.2.14) is easily shown recalling that by definition of axial vector (see equation
(0.0.1)), the cross products θ × p and θ × (θ × p) can be given in the matrix form

θ × p = Θp and θ × (θ × p) = Θ2p. (2.2.16)

Equation (2.2.14) is the transformation we were looking for, i.e.

p̂ = Λ(θ)p with Λ(θ) = I +
sin θ

θ
Θ +

1

2

sin2(θ/2)

(θ/2)2
Θ2 . (2.2.17)

Substituting the trigonometric identity sin2 x = 1−cos(2x)
2 into the argument of Θ2 we

obtain an equivalent form of the transformation Λ(θ)

Λ(θ) = I +
sin θ

θ
Θ +

1 − cos θ

θ2
Θ2. (2.2.18)

These equivalent formulae represent the rotation vector parametrization of rotation tensor
Λ.
We make now some calculation in order to show the orthogonality of Λ(θ). The transpose
ΛT (θ) can be easy computed recalling that Θ is a skew tensor, (ΘT = −Θ),

ΛT (θ) = I −
sin θ

θ
Θ +

1 − cos θ

θ2
Θ2. (2.2.19)

Evaluating the rotation Λ(θ) for θ = −θ we obtain the right-hand-side of previous ex-
pression, hence we can state that

ΛT (θ) = Λ(−θ).

Λ(−θ) clearly maps the rotated vector p̂ back into p, because Λ(−θ) is the rotation
around the inverted rotation vector. Therefore Λ(−θ) = Λ−1. Accordingly we have

Λ−1 = Λ(−θ) = ΛT (θ).
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which confirms that Λ(θ) is orthogonal.
Consider the series expansion of Θ

exp[Θ] = I + Θ +
1

2!
Θ2 +

1

3!
Θ3 + ...+

1

n!
Θn + .... (2.2.20)

which is by definition the exponential function of the skew-tensor Θ. It can be proved
(see [9] page 228) that the exponential function of a generic skew tensor is a rotation
tensor, i.e. the exponential is the chart which maps a skew-symmetric tensor in a rotation
tensor. Here we show in fact that the expression of Λ (2.2.17) (or (2.2.18)) yields to the
exponential map of Θ.

Proof
We start expanding in series with respect to θ the trigonometric functions in (2.2.17),
which yields to

Λ(Θ) = I+
[

1−
θ2

3!
+
θ4

5!
+...+(−1)

θ2n

(2n + 1)!
...
]

Θ+
[ 1

2!
−
θ2

4!
+
θ4

6!
+...+(−1)

θ2n

(2n + 2)!
...
]

Θ2.

(2.2.21)
Considering now the skew-symmetric tensor Θ with axial vector θ and θ =‖ θ ‖, by
explicit computation it can be demonstrated that

−θ2Θ = Θ3, θ4Θ = Θ5

−θ2Θ2 = Θ4, θ4Θ2 = Θ6

which leads to the recurrence formulae

(−1)n−1θ2(n−1)Θ = Θ2n−1, (−1)n−1θ2(n−1)Θ2 = Θ2n. (2.2.22)

Developing the multiplications in equation (2.2.21) and then substituting into it the right-
hand-side of (2.2.22), we obtain Λ as a series expansion of Θ

Λ(Θ) = I + Θ +
1

2!
Θ2 +

1

3!
Θ3 + ...+

1

n!
Θn + ....

which proves that
Λ = exp[Θ] �

Finally the exponential mapping defined in (2.2.17) or (2.2.18) can be recast also in
alternative but equivalent forms bringing out the unit vector e = θ\θ. They are know
in literature as Rodrigues formulae. Writing (2.2.18) using the vector notation for skew
tensor Θ = [θ×], we obtain

Λ(θ) = I +
sin θ

θ
[θ×] +

1 − cos θ

θ2
[θ × [θ×]],

which becomes, pointing out e, the Rodrigues formula

Λ(θ) = I + sin θ[e×] + (1 − cos θ)[e × [e×]]. (2.2.23)
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Alternatively, introducing in (2.2.18) the identity (0.0.2)

Θ2b = Θ(Θb) = [θ ⊗ θ − θ2I]b ∀ b ∈ R3,

we obtain

Λ(θ) = I +
sin θ

θ
Θ +

1 − cos θ

θ2
(θ ⊗ θ − θ2I) =

= cos θI +
sin θ

θ
Θ +

1 − cos θ

θ2
θ ⊗ θ. (2.2.24)

Recognizing again e, by substitution into the previous equation we get another form of
Rodrigues formula

Λ(θ) = cos θI + sin θ[e×] + (1 − cos θ)(e ⊗ e). (2.2.25)

An extensive investigation on the rotational vector parametrization can be found in [1].
By the way, in this article can be found an explanation of the important property for the
exponential map

exp[S1 + S2] 6= exp[S1]exp[S2],

where S1 and S2 are two general skew tensors. In [9] a small section is devoted just to the
exponential map. There it can be found an alternative demonstration that the exponential
of a skew tensor is a rotation tensor.

Spin tensors by rotation vector

We have already said that the spin tensor Ω = Λ̇ΛT and its axial vector ω as well as
their rotated-back form Ωr = ΛTΩΛ and ωr = ΛTω, introduced in section (2.1.2), play
a crucial role in the kinematics and equilibrium of beam model. We are interested here in
study their relations with the rotation vector θ. The relations can be found developing the
definition of spin tensors, Ω = Λ̇ΛT and Ωr = ΛT Λ̇, substituting Λ with the exponential
mapping or the equivalent Rodrigues formulae. The computation shows that both the spin
vectors ω and ωr are related linearly with the derivative of the rotation vector θ̇ through
a non linear function of θ; it results in fact that

ω = T(θ)θ̇ (2.2.26)

ωr = TT (θ)θ̇ (2.2.27)

where

T(θ) = I +
1 − cos θ

θ2
Θ +

θ − sinθ

θ3
Θ2, (2.2.28)

TT (θ) = I −
1 − cos θ

θ2
Θ +

θ − sinθ

θ3
Θ2. (2.2.29)
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TT (θ) is computed from T changing the sign to the coefficient of Θ, since Θ is skew
(ΘT = −Θ). Using identity (0.0.2), the quadratic skew tensor Θ2 can be given in term
of vector θ, hence tensor T can be rearranged easily as

T(θ) =
sinθ

θ
I +

1 − cos θ

θ2
Θ +

θ − sinθ

θ3
θ ⊗ θ.

Substituting the expression of T (2.2.28) into the relation between ω and θ̇ (2.2.26) and
using the axial vector notation for Θ, we obtain

ω = θ̇ +
1 − cos θ

θ2
θ × θ̇ +

θ − sin θ

θ3
θ × (θ × θ̇),

which shows that if θ and θ̇ are parallel, as in the case of a plane problem, ω = θ̇.
We know that the relation between Λ and its rotation vector θ can be always expressed

as the exponential map of the skew tensor Θ = [θ×]

Λ = exp[Θ] =

∞
∑

k=0

Θk

k!
.

It is of interest that also T(θ) can be expressed by a series expansion of Θ which takes
the compact form

T(Θ) =

∞
∑

k=0

Θk

k + 1!
(2.2.30)

as clearly shown in [21]. Moreover it is provedin [4] that

Λ(θ) = I + ΘT(θ). (2.2.31)

Finally it is important to recognize that T(Θ) is singular for certain value of θ. Cal-
culating the determinant from expression (2.2.28) we obtain

det(T) =
2(1 − cosθ)

θ2
,

which is null for θ = 2nπ n = 1, 2, 3, ... In order to avoid this problem during computa-
tions, some references as [12] and [13] introduce a special incremental updating procedure
when solving the nonlinear finite element equations, known as updated Lagrangian, other
references as [4, 6, 15], introduce a rescaling process on θ.

For proof of equations (2.2.26), (2.2.27) and (2.2.28) see reference [2] and [4].

A family of trigonometric functions for the rotation vector parametrization

Observing Λ(θ) and T(θ), we suppose that their first and second linearization with respect
to θ would be quite complex. In order to carry out these operations in a systematic and
easy way, the following family of trigonometric functions is introduced

a0(θ) = cos θ, a1(θ) =
sin θ

θ
, a2(θ) =

1 − cos θ

θ2
, a3(θ) =

θ − sin θ

θ3
, (2.2.32)
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where we recall that θ =‖ θ ‖. With this notation in hand, the exponential maps (2.2.18)
and (2.2.24) can be rewritten as

Λ(θ) = I + a1(θ)Θ + a2(θ)Θ
2, (2.2.33)

Λ(θ) = a0(θ)I + a1(θ)Θ + a2(θ)θ ⊗ θ, (2.2.34)

and the tensor T(θ) as

T(θ) = I + a2(θ)Θ + a3(θ)Θ
2, (2.2.35)

T(θ) = a1(θ)I + a2(θ)Θ + a3(θ)θ ⊗ θ. (2.2.36)

Note the similarity between equations (2.2.33) and (2.2.35) or between (2.2.34) and (2.2.36)
which display a difference of one unit in the indices of the respective ai(θ) functions.

In order to compute linearizations of Λ(θ) and T(θ), it results very useful to give the
linearizations of trigonometric functions ai(θ) with respect to δθ, which come from the
operation

δ(ai(θ)) =
dai(θ)

dθ
δθ.

since θ belongs to a linear space. Observing that θ2 = θ · θ, linearizing both right-hand
and left-hand sides we get

2θ δθ = θ · δθ + δθ · θ → δθ =
θ · δθ

θ
.

Substituting the variation δθ into the linearization of ai we can write

δ(ai(θ)) = bi(θ)(θ · δθ) where bi(θ) =
1

θ

dai(θ)

dθ
.

Each function bi(θ) is given explicitly by

b0(θ) = −
sin θ

θ
, b1(θ) =

θ cos θ − sin θ

θ3
,

b2(θ) =
θ sin θ − 2 + 2 cos θ

θ4
, b3(θ) =

3 sin θ − 2θ − θ cos θ

θ5
. (2.2.37)

In an analogous way, we can define functions ci(θ) as

δ(bi(θ)) = ci(θ)(θ · δθ) where ci(θ) =
1

θ

dbi(θ)

dθ
,

which are

c0(θ) =
sin θ − θ cos θ

θ3
, c1(θ) =

3 sin θ − θ2 sin θ − 3θ cos θ

θ5
,

c2(θ) =
8 − 8 cos θ − 5θ sin θ + θ2 cos θ

θ6
, c3(θ) =

8θ + 7θ cos θ + θ2 sin θ − 15 sin θ

θ7

. (2.2.38)

An extensive treatment of this subject can be found in [21].
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2.2.2 Pseudovector parameterizations and quaternions

This brief section is devoted to give the expressions of various parametrizations we have
found studying the literature about three-dimensional rotations. Consider the vector ρ in
direction of the unit vector e = θ\θ defined as

ρ = ρe = tan
θ

2
e. (2.2.39)

with

ρ = tan
θ

2
=‖ ρ ‖ .

Rearranging equation (2.2.13) by trigonometric identities and then substituting (2.2.39),
after some manipulation it can be shown that we obtain the following relations

p̂ = Λ(ρ)p (2.2.40)

with

Λ(ρ) = I +
2

1 + ρ · ρ
[R + R2], (2.2.41)

where R = [ρ×] is the skew-symmetric matrix with axial vector ρ. Expression (2.2.41)
is a pseudovector parametrization of Λ. This expression is simpler than the exponential
mapping expression, but it is not associated to any series expansion. For a detailed proof
of (2.2.40) see [1].

Another parametrization of the rotation Λ, given explicitly in term of θ components,
{ϕ,χ, ψ}, and θ norm, θ, is

Λ =















1 −
[

1 −
(

cϕ
θ

)2]

(1 − cosθ)
ϕχ

θ2
(1 − cosθ)−

ψ

θ
sinθ

ϕψ

θ2
(1 − cosθ) +

χ

θ
sinθ

ϕχ

θ2
(1 − cosθ) +

ψ

θ
sinθ 1 −

[

1 −
(χ

θ

)2]

(1 − cosθ)
ψχ

θ2
(1 − cosθ) −

ϕ

θ
sinθ

ϕψ

θ2
(1 − cosθ) −

χ

θ
sinθ

ψχ

θ2
(1 − cosθ) +

ϕ

θ
sinθ 1 −

[

1 −
(ψ

θ

)2]

(1 − cosθ)















.

(2.2.42)
To conclude, consider the element composed by a scalar part q0 and a vector part q

related to the rotation vector θ by

{q0,q} =
{

cos
θ

2
,θ sin

θ

2

}

. (2.2.43)

with q1, q2, q3 components of q. This element {q0,q} is know as quaternion. The four pa-
rameters which define the quaternion, q0, q1, q2, q3, are not independent since by definition
√

q20 + q21 + q22 + q23 = 1, i.e the quaternion norm is unit. The rotation tensor Λ can be
represented by the quaternion {q0,q} through the following relation

Λ = (2q20 − 1)I + 2q0Q + 2q ⊗ q, (2.2.44)
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where Q = [q×] is the skew-tensor with axial vector q and I is the identity. The quater-
nions are very useful to represent a rotation compound. Consider two rotations Λ1 and Λ2

represented respectively by two sets of quaternions, {q0,q} and {p0,p}. The quaternion
{r0, r} representing the product rotation Λ = Λ1Λ2 is given as function of {q0,q} and
{p0,p} by

{r0, r} = {(p0q0 − p · q), (p0q + q0p + p× q)}

Hence, Λ = Λ1Λ2 can be obtained directly from {q0,q} and {p0,p} replacing {r0, r} into
(2.2.44). We note in passing that representation (2.2.44) is not a bijection, since from
a single rotation tensor one can extract two quaternions. Therefore, a special procedure
(e.g. see [29] or [24]) is devised to reduce (although never fully eliminate) the sensitivity
of the extraction of a quaternion from a rotation tensor. For further information on this
parametrization see [13, 24, 5]

2.3 Virtual variations of rotations and spin tensors

In this section we deal with the linearization procedures for rotation and spin tensors,
in order to provide quantities afterwards needed to develop the beam principle of virtual
work. Before proceeding we briefly recall the definition of manifold and tangent spaces,
useful to explain the linearization concept in our context. Then we specialize the treatment
to the linearization of the rotation manifold Gorth+.

Following the definition of B.Doolin [8], a differentiable manifold M is a topological
space that in the neighborhood of each point looks like an open subset of Rk. It can be
imagined as a generalization of a surface in the three-dimensional space. A curve on the
manifold is a map of an interval of R1 into a line of the manifold. A tangent vector to
a curve of the manifold is the velocity vector of an object which moves along the curve,
where the velocity vector as the usual meaning of derivative with respect to the curve
parameter. Given a point p of the manifold, the set of all tangent vectors attached to each
curve passing through p is the tangent space of the manifold at p, TpM. The collection
of tangent spaces of all points of the manifold is called the tangent space of the manifold:
TM.

Specializing the treatment to the rotation group Gorth+, it can be demonstrated that
Gorth+ is a manifold (see [8] page 21). The space of skew-tensors so(3) is the tangent space
of the rotation manifold, i.e.

TΛGorth+ = so(3) ∀ Λ.

The last statement can be proved considering the rotation Λ as a one parameter function
Λ(t) and then taking derivative with respect to t of the orthogonality condition (2.1.2),
as done in previous sections.

With this notation in hand, we can introduce the linearization concept. Consider a
manifold M with a generic element M, its tangent space TM with a generic element W
and a function H = H(M) | H : M → C where C is a generic set. We indicate the tangent
operator or linearization of H by the notation δH(M)[W] and we call M the point of
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linearization and W the direction of linearization. We state that this operator must be
linear in the direction of linearization and we define it as

δH(M)[W] = lim
ε→0

H(Mε) − H(M)

ε

=
[ d

dε
H
(

Mε

)

]

ε=0
. (2.3.1)

Mε represent a configuration infinitesimally near to M, obtained perturbing M in the
direction of the tangent element W. The perturbed configuration Mε must satisfy the
conditions

Mε ∈ M and lim
ε→0

Mε = M. (2.3.2)

The structure of the tangent operator and also its linear dependence on the direction of
linearization result to be connected with the structure of Mε.

Consider now the rotation manifold Gorth+ with a generic element Λ and the perturbed
infinitesimal rotation indicated as Λε. The tangent operator of a generic function H =
H(Λ) in a point Λ, δH(Λ), can be constructed in two ways. They depend on the structure
of Λε which is strictly related with the choice to perform the linearization directly on the
manifold or indirectly into the linear space of rotation vectors. Hence these two ways or
forms of linearization are called

• direct linearization form, where Λε is constructed via an infinitesimal variation of
the manifold element Λ, on the rotation manifold (Gorth+), i.e. where the lineaziation
is done directly on the manifold.

• indirect linearization form, where Λε is constructed via an infinitesimal variation
of the rotational vector space element θ, into the rotational vector linear space,
i.e. the linearization is done on the linear space of vectors which parameterize the
rotation tensors.

For the direct linearization, the perturbed rotation Λε can be constructed in two ways,
known as spatial or material:

Λε = exp[εWδ]Λ with Wδ ∈ TΛGorth+ ⊂ so(3) spatial,

Λε = Λexp[εΨδ] with Ψδ ∈ TIG
orth+ ⊂ so(3) material,

the detailed explanation of which is given in next sections. Note that these perturbed
rotations respect the definition of the direct linearization form. They give rise to a tangent
operator of the form

δΛ[Wδ] = lim
ε→0

exp[εWδ ]Λ− Λ

ε
spatial,

δΛ[Ψδ] = lim
ε→0

Λexp[εΨδ] − Λ

ε
material,
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which is the particular case for the function H = I. It is fundamental to note that the point
of linearization Λ and the direction of linearization Wδ (or Ψδ) belong to two different
sets, the first one to the manifold Gorth+ while the second one to the linear space so(3). It
depends on the fact that we linearize directly on the manifold Gorth+ which is a nonlinear
manifold and consequently differs from its tangent space, so(3).
For the indirect linearization, the perturbed rotation Λε is constructed as

Λε = Λ(θ + εδθ) ≡ exp[Θ + εδΘ] with Θ, δΘ ∈ so(3), θ, δθ ∈ R3,

where Θ = [θ×]. Note that this perturbed rotation respects the definition of the indirect
linearization form. It gives rise to a tangent operator of the form

δΛ(Θ)[δΘ] = lim
ε→0

exp[Θ + εδΘ] − exp[Θ]

ε
.

In this case the point of linearization Θ (or equivalently θ) and the direction of linearization
δΘ (or equivalently δθ) belong to same space, the rotational skew-tensor one (or rotational
vector one). It depends on the fact that Λ is parametrized by the linear space of rotation
vectors θ and the linearization is taken into this space.

In the next paragraphs each of the two linearizations is deeply investigated. Figure
(2.2) could be of help to understand the differences between the linearizations.

2.3.1 Direct linearization of rotation and spin tensors: spatial and ma-
terial form

Spatial form. The quantity Λε used in the spatial form of direct linearization

Λε = exp[εWδ]Λ with Wδ ∈ TΛGorth+ ⊂ so(3) (2.3.3)

respects conditions (2.3.2), i.e. it is an infinitesimal perturbed configuration of Λ. Since
the exponential of a zero tensor is the identity tensor, from the expression of Λε easily we
have that

Λε = Λ for ε = 0.

Moreover Λε is a rotation since it is a product of two rotations. The order of product
matrices into the expression of the perturbed rotation says that the new infinitesimal
rotation exp[εWδ ] is superimposed on the current rotation Λ. It means that the skew
tensor Wδ lays in the space tangent to Λ, or, more physically, that the rotation vector wδ

of the infinitesimal rotation is a vector already affected by the rotation Λ, i.e. it has been
already rotated from its initial position to the actual one. This kind of rotation sequence,
where the rotation vector of the second one is a vector that lives in the space rotated from
the first one, is called by Argyris, [1], a compound of rotations around follower axes. For
this reason wδ and the linearization form are called spatial.

The direct spatial linearization (or tangent operator) of the rotation tensor, δΛ, is
computed as stated in equation (2.3.1) by directional derivative as

δΛ =
d

dε
(Λε)







ε=0
=

d

dε
(exp[εWδ ])







ε=0
Λ = Wδexp[εWδ ]







ε=0
Λ
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Figure 2.2: Gorth+ manifold, its tangent spaces at current rotation, Λ, and at I, and the
three parameterizations

where we have used the derivative of the exponential mapping as presented in section ().
Evaluating the function for ε = 0 and recalling that exp[0] = I we obtain the direct spatial
rotation linearization

δΛ[Wδ] = WδΛ. (2.3.4)

The same result can be obtained in another elegant manner using directly the limit oper-
ation and the definition of exponential mapping. In fact the limit definition of δΛ can be
written as

δΛ[Wδ] = lim
ε→0

exp[εWδ]Λ − Λ

ε
= lim

ε→0

(

exp[εWδ ] − I
)

Λ

ε
.

Using the series expansion for the exponential of the skew-tensor εWδ (see expression
(2.2.20)), the last expression can be given as

lim
ε→0

(

exp[εWδ ] − I
)

Λ

ε
= lim

ε→0

(

εWδ + ε2W2
δ\2! + ε3W3

δ\3! + ...)Λ

ε

which computing the limit and substituting yields to

δΛ[Wδ] = WδΛ.
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Observe what we anticipated: the direct linearization depends on two measures, Λ and
Wδ which do not belong to the same space.

Focusing attention on the spin tensor Ω = Λ̇ΛT and on its axial vector ω, its direct
spatial linearization can be computed taking the directional derivative of the infinitesimal
perturbed spin tensor Ωε = Λ̇εΛ

T
ε where Λε is the direct spatial one. By substitution we

get

Ωε =
˙[

exp[εWδ ]Λ
][

exp[εWδ ]Λ
]T

=

=
[

˙
exp[εWδ ]Λ + exp[εWδ ]Λ̇

]

(Λ)T exp[−εWδ] =

=
˙

exp[εWδ ]exp[−εWδ] + exp[εWδ ]Ωexp[−εWδ ]. (2.3.5)

where for convenience the derivative with respect to t has been explicitated. Consider the

first addend
˙

exp[εWδ ]exp[−εWδ]. As proved by Simo in [24], the term can be given in
the form

˙
exp[εWδ ]exp[−εWδ] =

2

1+ ‖ ρ ‖2

(

Ṙ + RṘ − ṘR
)

with

ρ = tang

(

‖ εwδ ‖

2

)

εwδ

‖ εwδ ‖
, R = [ρ×].

Taking directional derivative with respect to ε evaluated at ε = 0, it can be proved that

d

dε

(

˙
exp[εWδ ]exp[−εWδ]

)









ε=0

= Ẇδ. (2.3.6)

Consider now the second addend of Ωε, exp[εWδ ]Ωexp[−εWδ]. Recalling that

d

dε
exp[εWδ ]







ε=0
= Wδ and exp[0] = I,

using the derivative product rule we compute

d

dε

(

exp[εWδ ]Ωexp[−εWδ ]
)









ε=0

= WδΩ −ΩWδ. (2.3.7)

Collecting the expressions of the two addend, the direct spatial spin tensor linearization
follows

δΩ =
d

dε
Ωε









ε=0

= Ẇδ + [WδΩ− ΩWδ]. (2.3.8)

Recognizing the Lie brackets (see section ()), the previous equation can be given in term
of axial vectors δω, wδ and ω as

δω × h =
(

ẇδ + wδ × ω
)

× h ∀ h ∈ R3 , (2.3.9)

which provides the direct spatial spin vector ω linearization. This quantity will play a
crucial role in the develop of the beam model.

The spatial linearization of the back spin vector ωr = ΛTω will be computed directly
later on in the beam kinematic.
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Material form. The quantity Λε used in the material form of direct linearization

Λε = Λexp[ǫΨδ] with Ψδ ∈ TIG
orth+ ⊂ so(3) (2.3.10)

respects the conditions (2.3.2) to be an infinitesimal perturbed configuration of Λ, as shown
for the spatial case. The order of product matrices into the expression of the perturbed
rotation says that the new infinitesimal rotation exp[ǫΨδ] precedes in the sequence of
rotations the actual one Λ. It means that the skew tensor Ψδ lays in the space tangent to
the identity I, or, more physically, that the rotation vector ψδ of the infinitesimal rotation
is a vector not affected by the rotation Λ, i.e. it has not been already rotated. Moreover
Λ continues to be the actual rotation as it was in spatial form, i.e. its rotation axis has
not been rotated by previous rotations. For this reason ψδ and the linearization form are
called material. This kind of rotation sequence, where the rotation vectors do not suffer
of previous rotations, is called by Argyris, [1], a compound of rotations around fixed axes.
In that work the author proves that a sequence of two rotations around follower axes is
equal to the inverted sequence around fixed axes and viceversa. This confirms that the
spatial and material direct perturbed rotations Λε are, indeed, equivalent.

The direct material linearization (or tangent operator) of the rotation tensor, δΛ, is
computed, as stated in equation (2.3.1), by directional derivative as

δΛ =
d

dε
(Λε)







ε=0
=

d

dε
Λ(exp[εΨδ])







ε=0
= ΛΨδexp[εΨδ]







ε=0
,

where we have used the derivative of the exponential mapping as presented in section ().
Evaluating the function for ε = 0 and recalling the exp[0] = I we obtain the direct material
rotation linearization

δΛ[Ψδ] = ΛΨδ . (2.3.11)

Here again note that the direct linearization depends on two measures, Λ and Ψδ which
do not belong to the same space.

We do not evaluate the spin tensor linearization in material form since we choose to
use in the beam model the spatial direct form and not the material one.

An interesting analogy between directions of direct linearization and spin vec-
tors. Explicitating the direction of linearization Wδ with respect to the tangent operator
δΛ (by reversing expression (2.3.11)) we obtain

Wδ = δΛΛT with Wδ ∈ so(3).

Exactly the same expression can be obtained formally linearizing the orthogonality condi-
tion ΛΛT = I.

We recall that the definition of the spin tensor

Ω = Λ̇ΛT and Ω ∈ so(3)

has been obtained formally differentiating the same orthogonality condition with respect
to the arbitrary parameter t from which Λ depends. Setting an analogy between the
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operation of linearization and of derivative with respect to an arbitrary parameter, we
can see the perfect analogy between the spin tensor Ω and the spatial direction of direct
linearization Wδ. Moreover we have shown that when Λ is parameterized by its rotation
vector θ the spin vector ω is related with t-derivative rotation vector θ̇ by

ω(θ) = T(θ)θ̇.

Because of the analogy just introduced, we can heuristically state that the same relation
holds between the direction vector wδ and the linearization of rotation vector δθ, i.e.

wδ = T(θ)δθ.

Considering the linearization and t-derivative of the other orthogonality condition,
ΛTΛ = I, the same analogy can be done for the material direction of direct linearization
Ψδ with the rotated back spin tensor Ωr. As a consequence, considering the rotation
vector parametrization case, we can state

ωr = TT (θ)θ̇ → ψδ = TT (θ)δθ.

To conclude the analogy, looking at the expressions relating Ω with Ωr and ω with
ωr, (2.1.8), (2.1.9) and (2.1.10), we can give the relations between spatial and material
directions of direct linearization Wδ-Ψδ and wδ-ψδ

Wδ = ΛΨδΛ
T , and Ψδ = ΛTWδΛ,

wδ = Λψδ, and ψδ = ΛTwδ.

All the relations presented in this paragraph have been proved explicitly by Ibrahimbegovic
in [11].

2.3.2 Indirect linearization of rotation and spin tensors

The quantity Λε used in the indirect linearization

Λε = exp[Θ + εδΘ] with Θ, δΘ ∈ so(3) (2.3.12)

respects conditions (2.3.2), i.e. it is an infinitesimal perturbed configuration of Λ. It
is trivial to see that Λε = exp[Θ] for ε = 0. Moreover Λε ∈ Gorth+ because it is an
exponential of a skew tensor. In this case the perturbed rotation is not anymore a rotation
sequence since the linearization is not carried out into the group of rotation, Gorth+. On
the contrary, it is carried out into the linear space which parameterizes the rotation, i.e.
the space of rotation vectors (or equivalently the space of skew-tensor associated with
rotation vectors), via the chart which links so(3) with Gorth+, that is the exponential
map1. Since the space of variation is linear, variations are is carried out on Θ by usual
additive operations, so the condition

Θε ∈ so(3) where Θε = Θ + εδΘ

1we recall that since so(3) is isomorphic with R
3, see section (), we can refer equivalently either to the

skew symmetric tensor Θ or to its axial vector θ
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is respected, together with Θε = Θ for ε = 0.
The indirect linearization or “tangent operator” of the rotation, δΛ, is again calculated

by the directional derivative

δΛ =
d

dε
(Λε)







ε=0
=

d

dε

(

exp[Θ + εδΘ]
)









ε=0

.

In this case we cannot use anymore the property of the exponential map derivative, as

done in previous cases, since it refers to the case d
dt

(exp[tA]) where t is a parameter and A

a generical skew tensor, see section (). Instead we must substitute the perturbed Θε into
the explicit expression of the exponential map (2.2.18) and carry out derivation. After
some manipulations, the tangent operator δΛ results

δΛ(θ)[δθ] = a1(θ)δΘ + a2(θ)(δθ ⊗ θ + θ ⊗ δθ)

+b0(θ)(θ · δθ)I + b1(θ)(θ · δθ)Θ + b2(θ)(θ · δθ)θ ⊗ θ (2.3.13)

where ai and bi are the trigonometric functions given in section (2.2.1). Note that the
indirect linearization depends on two measures, θ and δθ, which belong to the same space.
The tangent operator δΛT can be obtained from δΛ since δΛT = (δΛ)T . Hence δΛT can
be obtained from δΛ just changing the signs to the skew tensor coefficients a1 and b1.

In the case of a product between δΛ (or δΛT ) and a general vector a ∈ R3, if we high-
light the linear (by definition) dependence on δθ, the result is clearly a product between
an operator, function of a and θ, and the vector δθ, i.e.

δΛ(θ)[δθ]a = ΥδΛ(θ,a)δθ ∀ a ∈ R3 (2.3.14)

δΛT (θ)[δθ]a = ΥδΛT (θ,a)δθ ∀ a ∈ R3. (2.3.15)

As the operators Υ are quite useful for development of our beam theory using indirect
linearization, we provide their expressions

ΥδΛ(θ,a) = −a1(θ)[a×] + a2(θ)(θ · a)I + a2(θ)θ ⊗ a + ...

...+ b0(θ)a ⊗ θ + b1(θ)(Θa ⊗ θ) + b2(θ)(θ · a)θ ⊗ θ (2.3.16)

ΥδΛT (θ,a) = a1(θ)[a×] + a2(θ)(θ · a)I + a2(θ)θ ⊗ a + ...

...+ b0(θ)a ⊗ θ − b1(θ)(Θa ⊗ θ) + b2(θ)(θ · a)θ ⊗ θ, (2.3.17)

where [a×] is the skew tensor with a as axial vector.
Focusing attention on the spin tensors Ω = Λ̇ΛT and Ωr = ΛT Λ̇ = ΛTΩΛ and on

their axial vectors, respectively, ω and ωr = ΛTω, we recall that their dependence on the
rotation vector θ is given by equations (2.2.26, 2.2.27)

ω = T(θ)θ̇ and ωr = TT (θ)θ̇.

The indirect linearizations of these vectors can be clearly computed taking linearization
with respect to θ of the previuos expressions, as follows

δω = δTθ̇ + Tδθ̇ with δT = δT(θ)[δθ] (2.3.18)

δωr = δTT θ̇ + TT δθ̇ with δTT = δTT (θ)[δθ]. (2.3.19)
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In order to compute them, we provide the expression of δT, calculated taking directional
derivative of T(θ + εδθ) with T from equation (2.2.28),

δT(θ)[δθ] = a2(θ)δΘ + a3(θ)(δθ ⊗ θ + θ ⊗ δθ)

+b1(θ)(θ · δθ)I + b2(θ)(θ · δθ)Θ + b3(θ)(θ · δθ)θ ⊗ θ. (2.3.20)

Note that this expression is equal to the indirect linearization δΛ (2.3.13), where the indices
of ai and bi are incrmentated of one unit. The tangent operator δTT can be obtained from
δT since δTT = (δT)T . Hence δTT can be obtained from δT just changing the signs to
the skew tensor coefficients a2 and b2.

Here again, in case of a product between δT (or δTT ) and a general vector a ∈ R3,
it is useful to highlight dependence on δθ, which is done defining the operators ΥδT(θ,a)
and ΥδTT (θ,a)

δT(θ)[δθ]a = ΥδT(θ,a)δθ ∀ a ∈ R3 (2.3.21)

δTT (θ)[δθ]a = ΥδTT (θ,a)δθ ∀ a ∈ R3, (2.3.22)

with

ΥδT(θ,a) = −a2(θ)[a×] + a3(θ)(θ · a)I + a3(θ)θ ⊗ a + ...

...+ b1(θ)a ⊗ θ + b2(θ)(Θa ⊗ θ) + b3(θ)(θ · a)θ ⊗ θ (2.3.23)

ΥδTT (θ,a) = a2(θ)[a×] + a3(θ)(θ · a)I + a3(θ)θ ⊗ a + ...

...+ b1(θ)a ⊗ θ − b2(θ)(Θa ⊗ θ) + b3(θ)(θ · a)θ ⊗ θ, (2.3.24)

where [a×] is the skew tensor with a as axial vector.
An extensive treatment about the indirect linearization can be found in [11] and [21].
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Chapter 3

Three-dimensional
finite-deformation small-strain
beam theory

In this chapter we illustrate the beam theory formulation. As we said in the introduction,
the formulation is based on the beam equilibrium equations obtained from the three-
dimensional principle of virtual work in which beam deformation and strain measures
have been introduced.

Therefore section 3.1 is devoted to the computation of beam deformation and strain
measures and of their variations, needed to exploit the principle of virtual work. Both
direct and indirect forms of rotation variations are computed in order to present later the
respective associated forms of principle of virtual. In this section we introduce an interest-
ing decomposition of the deformation gradient which leads to a very compact formulation
of kinematics and, later, of equilibrium allowing us to individuate clearly the beam strain
resultants.

Section 3.2 deals with integration over the beam cross-section of three-dimensional
principle of virtual work using the internal work in term of both second Piola-Kirchhof, S,
and first Piola-Kirchhof, P, stress tensors. The integration leads to the one-dimensional
principles where beam stress resultants and variation of beam strain resultants are iden-
tified.

In section 3.3 we introduce the small-strain hypothesis, which consists of neglecting
into the Green-Lagrange strain tensor, E, a term quadratic in the beam strain vector. A
first consequence is a simplified form of the stress resultants in the principle of virtual
work. A second consequence is that postulating a linear elastic constitutive relation be-
tween S and the simplified form of E, we prove that linear elastic constitutive equations
in term of strain and simplified stress resultants follow. In particular we obtain the same
result postulated by Reissner [18, 19] and Simo [23, 24] in their pioneering works. Only in
Simo’s work [25] we have found a justification of the one-dimensional constitutive equa-
tions, while the work of other authors do not pay much attention to the subject. It must

45
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pointed out that the clear identification of the term to be neglected in E in order to get
a small-strain theory follows from the decomposition of F. The chapter ends with the
linearization of finite-deformations small-strains model equations using the direct form of
rotation linearization.

A schematical presentation of the model can be found in a number of works, as
[6, 11, 13, 15, 21] and many others, which pay more attention to computational aspects
than to the formulation of basic model equations. An extensive treatment of the latter
can instead be found in works by Reissner [18, 19] and Simo [23, 24] where anyway the
equations are obtained in a different way than in the present work. In particular Reissner
follows a direct approach, i.e he considers the equilibrium on an infinitesimal beam element
with forces and moments at extreme cross-sections and a distribuited load along the ele-
ment, obtaining the one-dimensional differential equilibrium. Hence, having external loads
in term of internal resultants, he directly substitutes them into the one-dimensional beam
principle of virtual work to obtain the expression of beam virtual strain measures in term
of kinematic quantities. Finally, by some manipulations, he find the strain-displacement
relations. Instead Simo in [23] first defines the beam deformation map and the beam stress
resultants as the integral over the cross-section of the first Piola-Kirchhof stress tensor.
Then, introducing the map into the principle of inner power (P : δḞ) and isolating stress
resultants, he is able to recognize beam strain resultants. At the same time, introducing
the stress resultant expression into the three-dimensional differential equilibrium he gets
the differential one-dimensional beam equilibrium. In a later work, [24], he gets the weak
form of equilibrium by testing the differential form and integrating by parts, using the
direct form of rotation variations.

3.1 Kinematics

3.1.1 Geometrical description and motion of the beam

In the three-dimensional space the geometrical beam structure is described by a set of
plane elements, called cross-sections, and by a curve which connects the cross-section
centroids, called line of centroids. For simplicity, we assume the line of centroids to be a
straight line at the reference configuration and the cross section to have area and shape
constant along the line of centroids.

Consider a cartesian reference system {O;E1,E2,E3} with coordinates {X1,X2,X3}.
At the reference configuration, the line of centroid is parallel to the third axis E3 and has
length L. Moreover cross-sections are parallel to the plane identified by the axes E1,E2 and
each cross section occupies a region denoted by A0 ⊂ R2. As a consequence, the general
subset Ω0 ⊂ R3, which identifies a material body in three-dimensional continuum at the
reference configuration, here takes the special form Ω0 = A0 × [0, L]. The position vector,
X, of a beam material point at the reference configuration then becomes X ∈ A0 × [0, L]
and takes the form

X = XαEα +X3E3, with (X1,X2) ∈ A0 and X3 ∈ [0, L] (3.1.1)
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Figure 3.1: Geometric description of beam deformation. Definition of reference frame, EI ,
and moving frame, ti

Deformation map. To describe the change of configuration for the beam we introduce

• a vector field, φ0 = φ0(X3), which defines the position of the line of centroids in the
three-dimensional space;

• an orthonormal frame, tI = tI(X3), such that t1 and t2 define the unit vectors
laying on each cross section in the current configuration and t3 defines the unit
vector normal to each cross section in the current configuration.

The orthonormal frame is called moving or intrisic frame. The orientation of the compo-
nents tα with respect to the components Eα of the reference system defines the section
orientation. At the reference configuration φ0 ≡ X3E3 and tI = EI .
The current configuration of the beam, x ∈ R3, is defined through the deformation map
function φ(X1,X2,X3) as

x ≡ φ(X1,X2,X3) = φ0(X3) +Xαtα(X3). (3.1.2)

Since the moving frame tI is orthonormal and function only of X3, there exists a one-
parameter orthogonal tensor Λ(X3) ∈ Gorth+which maps uniquely the reference frame EI
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into the moving frame tI as
tI(X3) = Λ(X3)EI . (3.1.3)

We call Λ cross-section rotation tensor. Using the rotation tensor, the deformation map
in (3.1.2) can be recast as

x ≡ φ(X1,X2,X3) = φ0(X3) +XαΛ(X3)Eα. (3.1.4)

From (3.1.4) we note that x has a fundamental property: it is uniquely defined by the func-
tions φ0 and Λ, since Xα is an independent field. Moreover we remark that φ0 = φ0(X3)
and Λ = Λ(X3), i.e. they depend only on X3. Hence, the set of beam configuration spaces
C takes the form

C = {(φ0,Λ) : X3 → R3 × Gorth+}. (3.1.5)

The displacement field u = x − X following from equations (3.1.1) and(3.1.2) is

u = φ0 +Xαtα −XIEI with u = u(X1,X2,X3). (3.1.6)

Within a beam theory, expression (3.1.2) includes some important physical hypotheses,
here summarized

• cross-sections remain plane in the current configuration;

• cross sections remain undeformed in their plane in the current configuration;

• the unit vector t3 is normal to the cross section but not necessarily tangent to the
line of centroids.

The first two hypotheses follow from the fact that the deformation map is independent of
any function of the section coordinates X1,X2. In [25], Simo and Vu-Quoc introduce a
generalization of this including in the deformation map a warping phenomenon. The last
hypothesis sets the independence in the current configuration between the tangent to the
centroid line, φ0,3, and the normal to the cross-section t3. This means that the theory
takes into account the shear strain effect. The analogy with the Timoschenko hypothesis
for small displacement theory is clear.

To conclude, we give some interesting properties of the cross-section rotation matrix
Λ. Since both the frames tI and EI are orthonormal, by equation (3.1.3) it can be proved
that

Λ(X3) = tI(X3) ⊗ EI (3.1.7)

if EI is the standard basis in R3. Equation (3.1.7) points out that Λ is a two point tensor.
Λ transforms a vector a ∈ R3 as follows

Λa = aiti with a = aIEI
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The expression above can be obtained directly from (3.1.3) or from (3.1.7) using the tensor
product definition (see [9] page 4). We see that Λ maps a into a vector which has the
same components of a in the basis ti.

From a computational point of view, it is interesting to note that taking EI as the
standard basis in R3 the column vectors constituting Λ are respectively t1, t2, t3 in the
standard basis.

The definition of a beam deformation map is the basic step to build a beam theory
from a three-dimensional continuum theory using a principle of virtual work 1. By equa-
tion (3.1.2) we have imposed mathematical constrains on the three-dimensional continuum
expression of the deformation map, i.e we have done a kinematical hypothesis.

3.1.2 Deformation gradient and strain measures

Before proceeding with the computation of deformation gradient, we recall that the deriva-
tive of a general one-parameter rotation matrix is Λ̇(t) = Ω(t)Λ(t) where Ω(t) is the skew-
symmetric spin tensor, as demonstrated in section (2.1.2). Considering that also here we
deal with a one-parameter rotation, the cross-section rotation Λ(X3), we can naturally
write

d

dX3
Λ ≡ Λ,3 = ΩΛ, with Ω = Ω(X3), Ω ∈ so(3). (3.1.8)

From the three-dimensional theory of nonlinear continuum mechanics the deformation
gradient F is defined in term of the deformation map φ as

F =
∂φ

∂X
or FiJ =

∂xi

∂XJ
. (3.1.9)

Substituting into the deformation gradient definition the beam deformation map expres-
sion (3.1.2), F is computed as

F = t1 ⊗ E1 + t2 ⊗ E2 + (φ0,3 +XαΛ,3Eα) ⊗ E3.

Using the spin tensor Ω to express the cross-section rotation derivative Λ,3, the term
XαΛ,3Eα in the previous expression can be rearranged as

XαΛ,3Eα = XαΩΛEα = XαΩtα,

where in the second equality we have used equation (3.1.3). By substitution of this term,
the deformation gradient becomes

F = tα ⊗ Eα + (φ0,3 +XαΩtα) ⊗ E3.

Adding and subtracting the tensor t3 ⊗ E3 into the right-hand-side, we obtain

F = Λ + [(φ0.3 − t3) +XαΩtα] ⊗ E3,

1If we use another variational principle, as a mixed one for example, we should make hypotheses also
on other quantities besides the deformation map
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where we used that Λ = tI ⊗ EI when EI is the standard basis of R3. Finally, collecting
rotation Λ, the deformation gradient expression becomes

F = Λ
[

I + [ΛT (φ0.3 − t3) + ΛTXαΩtα] ⊗ E3

]

, (3.1.10)

or in more compact form
F = ΛA, (3.1.11)

where

A = I + a ⊗ E3, (3.1.12)

a = γr +Xακ
r
α, (3.1.13)

and

γr = ΛTγ with γ = φ0,3 − t3, (3.1.14)

κr
α = ΛTκα with κα = Ωtα = ω × tα = tα,3. (3.1.15)

We observe that

γr = ΛT (φ0.3 − t3) = ΛT (φ0.3 − ΛE3) = ΛTφ0.3 − E3, (3.1.16)

κr
α = ΛT (ω × tα) = ΛT (ω × ΛEα) = ωr ×Eα, (3.1.17)

with ωr = ΛTω. (3.1.18)

In the last equality of equation (3.1.17) we have used the distributivity of cross product
respect to a rotation tensor (see section ).

The decomposition of the deformation gradient presented in equation (3.1.11) is a left
extended polar decomposition of F, [14, 28], because Λ is a pure rotation tensor and
A is a pure stretch tensor and an upper triangular matrix.2 We have proved in appendix
that A is a measure of pure stretch, i.e.

A = I for a rigid body motion.

Consequently, the tensor L defined as

L = A − I. (3.1.19)

is a measure of pure strain, since L = 0 for a rigid body motion. Recalling A from
equations (3.1.12) we obtain

L = a ⊗ E3. (3.1.20)

The matrix representation of A and L in term of a is

A =





1 0 a1

0 1 a2

0 0 1 + a3



 L =





0 0 a1

0 0 a2

0 0 a3



 (3.1.21)

2Pay attention to the fact that this tensor, A, is not the usual tensor, U, of the polar decomposition
because the latter is symmetric (and positive definite) while A is not symmetric
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Figure 3.2: Beam strain measure γ: physical meaning and components in the current
configuration tI

Since L is a pure strain tensor, relation (3.1.20) states that all the beam strain measures
are contained in the vector a. From (3.1.13) with (3.1.14) and (3.1.15) we see that a
depends on γ and κα through γr and κr

α, hence we are interested in understanding their
physical meaning.

Consider first γ = φ0,3 − t3 and γr = ΛTγ. γ is the difference between the vector
tangent to the current line of centroids (φ0,3) and the unit vector orthogonal to the cross-
section in the current configuration (see Figure 3.2). It is clear that the components of γ
with respect to the current moving frame ti can be interpreted as follow.

• γ1 and γ2, i.e. the components in directions t1 and t2 respectively, represent the
shear flow between sections;

• γ3, i.e. the component in direction t3, represents the elongation, or shrinkage, of an
infinitesimal fiber in the direction of the cross-section normal.

It means that these components are the physical true shear and axial strain measures.
The vector γr = ΛTγ is γ rotated back from the current to the reference configuration.

Since, by definition, a rotation tensor R maps a vector, with components measured with



52 Three-dimensional finite-deformation small-strain beam theory

respect to a reference system mi, into another vector with the same components measured
with respect to the rotated reference system Rmi, it means that the components of γ are
numerically the same of γr measured in the reference system ΛT tI = EI . Since we refer
the beam equations to the reference configuration, i.e. EI is our basis, the shear and axial
strain model measures will be the components γr

1 , γ
r
2 , γ

r
3 . This statement will be later

confirmed by the equilibrium equations.
Consider now κα = ω × tα, ωr = ΛTω and κr

α = ΛTκα. Since ω is a spin vector
with respect to the direction t3, we aspect that it controls the variation of rotation in this
direction. In fact consider the case when ω lines up with t3 (see Figure 3.3). The cross
products ω × t1 and ω × t2 are vectors laying in plane t1 − t2 and turning around t3.
It means that they represent the physical variation of rotation around t3, i.e. the cross
section torsion. Similar observation can be done in the case when ω lines up with t1 or
t2. In these case the respectively cross products represent the variation of rotation around
t1 and t2, i.e. the physical cross-section bending around t1 and t2. For the exposed
reasons we can say that the components of ω represent the true bending and torsional
strain model measures. The vector κα is a combination of all these variations of rotations,
i.e. it represents the global curvature of the beam.

For the same reasons explained in the case of γr, the components of ωr = ΛTω will
be bending and torsional strain model measures. Also this statement will be confirmed by
the equilibrium equations.

The matrix form of F which arises directly from equation (3.1.9) is

F =





Λ11 Λ12 φ01,3 +XαΛ1α,3

Λ21 Λ22 φ02,3 +XαΛ2α,3

Λ31 Λ32 φ03,3 +XαΛ3α,3.



 (3.1.22)

Note that tI = ΛI , as follows from (3.1.3), where ΛI is the Ith column of Λ. We adopt tI

each time we want to point out the physical meaning of an expression, while we adopt ΛI

each time we want to point out the dependence of an expression from Λ. For example, in
γ and κα we have used tI . In the matrix form of F we have chosen to use ΛI . So for the
components of C and E we will use tI to understand to physical meaning of their terms.

The right Cauchy-Green deformation tensor, C = FTF, can be computed from the left
extended polar decomposition of F as

C = (ΛA)T (ΛA) = ATA = I + E3 ⊗ a + a ⊗ E3 + (a · a)E3 ⊗ E3. (3.1.23)

As a consequence the Green-Lagrange strain tensor, E = 1
2(C − I), is computed as

E =
1

2
(E3 ⊗ a + a ⊗ E3 + (a · a)E3 ⊗E3), (3.1.24)

or in term of L

E =
1

2
(L + LT + LTL) . (3.1.25)

It must be emphasized that E, which is by definition a pure strain measure, is quadratic
in the strain vector a.
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Figure 3.3: Beam strain measure ω: physical meaning and components in the current
configuration tI

Using the extended decomposition of F as in (3.1.11) and the quantities afterward
introduced, the expression of E takes a form extremely compact and at the same time
understandable.

Finally we provide the matrix form of C and E

C =





1 0 C13

0 1 C23

C31 C32 C33,



 (3.1.26)

where
C13 = C31 = t1 · φ0,3 + t1 ·Xαtα,3,
C23 = C32 = t2 · φ0,3 + t2 ·Xαtα,3,
C33 = φ0,3 · φ0,3 + 2φ0,3 ·Xαtα,3 +Xαtα,3 ·Xβtβ,3,

and
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E =





0 0 E13

0 0 E23

E31 E32 E33,



 (3.1.27)

where
E13 = E31 = t1 · φ0,3 + t1 ·Xαtα,3,
E23 = E32 = t2 · φ0,3 + t2 ·Xαtα,3,
E33 = φ0,3 · φ0,3 + 2φ0,3 ·Xαtα,3 +Xαtα,3 ·Xβtβ,3 − 1.

These expression arise directly from the matrix expression of F.

Some interesting observations about E and C. From the three-dimensional con-
tinuum theory we know that E can be expressed also as

E =
1

2

(

∇
X
u + ∇T

X
u + ∇T

X
u∇

X
u
)

, (3.1.28)

which has the same structure as expression (3.1.25). Consider the equations (3.1.25) and
(3.1.28) in the rearranged form

E = Ls +
1

2
LTL, (3.1.29)

E = εεε+
1

2
∇T

X
u∇

X
u, (3.1.30)

where Ls = sym[L] and εεε = sym[∇
X
u]. The two expressions are obviously equivalent, but

we remark that
LTL 6= ∇T

X
u∇

X
u and Ls 6= εεε. (3.1.31)

The material displacement gradient, ∇
X
u = F − I, can be easily computed in term of L

from (3.1.11) and (3.1.19) as
∇

X
u = Λ + ΛL− I, (3.1.32)

which gives

∇T
X
u∇

X
u = 2I + L + LT − Λ− ΛT − ΛL− LTΛT + LTL. (3.1.33)

We see that the right-hand-side includes more terms than just LTL, in particular it includes
rigid rotations and linear strains L. Accordingly, if we can simplify the theory for example
neglecting quadratic terms in strain (small strain hypothesis) we however could not at all
neglect ∇T

X
u∇

X
u, because we would neglect more than just quadratic strain but also rigid

rotations and linear strains. This consideration will be recalled in section (3.3).
Moreover in this finite-deformation model εεε turns to not be a pure strain measure.

Using equation (3.1.32) we compute

εεε =
1

2
(∇

X
u + ∇T

X
u) =

1

2
(Λ + ΛTL − 2I + ΛT + ΛTLT ),
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which for rigid body motion becomes

εεε =
1

2
(Λ + ΛT − 2I) = sym[Λ] − I 6= 0. (3.1.34)

Instead, in the small rotation model, where Λ ≈ I + Θ with Θ skew tensor, εεε reduces to

εεε = sym[I + Θ] = sym[Θ] + I− I = 0.

It confirms that in the small rotation regime εεε = sym[∇
X
u] is a measure of pure strain.3.

From the expression of C in (3.1.23) we can compute the measure

λ2 = λ2(N) =‖ FN ‖2= CN · N

In a three-dimensional solid λ2 is the stretching, or ratio of elongation, of a fiber passing
from the reference to the current configuration and originally orientated in direction N .
Particularly easy and useful is the computation of λ2 in directions E1, E2 and E3. In fact
from equation (3.1.23) we get

λ2(E1) = CE1 ·E1 = 1,

λ2(E2) = CE2 ·E2 = 1,

λ2(E3) = CE3 ·E3 = (1 + a3)
2.

It can be observed that

• λ2(E1), λ
2(E2), λ

2(E3) are the squares of the eigenvalues of A,

• any fiber, originally orthogonal to the cross-section, stretch out along its final direc-
tion by coefficient (1 + a3),

• λ(E3) linearly depends on the coordinate section Xα, as can be seen from the ex-
pression of a3.

The last statement confirms that section remains plane in the current configuration.

Properties of A. Since A is an upper triangular matrix, its eigenvalues are the element
of the principal diagonal. Then the eigenvalues of A are

λ1 = 1, λ2 = 1, λ3 = 1 + a3. (3.1.35)

The respectively associated eigenvectors are

n1 =







c1
c2
0







n2 =







c3
c4
0







n3 =







a1

a3
c5

a2

a3
c5
c5







(3.1.36)

3For further information on the subject see ([26])
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where {c1, c2, c3, c4, c5} are arbitrary constants4. Equations (3.1.36)1 and (3.1.36)2 show
that the eigenvectors associated with the eigenvalue λ = 1 necessarily lay on the reference
cross-section A0. Moreover (3.1.36) show that the eigenvectors cannot form an orthogonal
triad unless to reduce the third one to the null vector.
We choose {c1 = c4 = 1, c2 = c3 = 0} such that

n1 = E1, n2 = E2, (3.1.37)

and c5 = a3 such that

n3 = a. (3.1.38)

Note that the vector a which defines A in (3.1.12) is also an eigenvector of A. From the
definition of eigenvectors 5we obtain

AE1 = E1, AE2 = E2, Aa = (1 + a3)a (3.1.39)

which is confirmed by explicit computation. Since a cross section in the reference config-
uration is parameterized as A0 = XαEα, equations (3.1.39)1 and (3.1.39)2 show that A
maps the cross-section into itself.
A can be diagonalized. The condition for a matrix H to be diagonalized is

p− r[H − λiI] = m[λi]

where p is the matrix dimension, r[·] stands for the rank andm[λi] stands for the molteplic-
ity of the eigenvalue λi. For A we have that

for λ = 1 −→ r[A− I] = 1 n− r = 2 m[λ] = 2, (3.1.40)

for λ = 1 + a3 −→ r[A− (1 + a3)I] = 2 n− r = 1 m[λ] = 1, (3.1.41)

which confirm that A can be diagonalized.

3.1.3 Virtual variations of deformation and strain quantities

To exploit the principle of virtual work using as internal work both the form with the first
Piola-Kirkhhof stress tensor (P : δF) and with the second Piola-Kirkhhof stress tensor
(S : δE), we clearly need to compute

δF and δE.

With the introduced left extended polar decomposition of the deformation gradient F, we
are going to show that the quantities needed to compute those expressions are δΛ, δφ0,3

4The eigenvector nk is computed resolving the system
(

A − λkI
)

nk = 0.

5Given a matrix H with eigenvalue α, the eigenvector of H associated to the eigenvalue α is the vector
g such that Hg = αg
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and δω.
First of all we recall that

E =
1

2
(E3 ⊗ a + a ⊗ E3 + (a · a)E3 ⊗ E3)

and

F = ΛA with A = a ⊗E3.

Hence taking their linearization, δE and δF formally take the form

δE =
1

2
(E3 ⊗ δa + δa ⊗ E3 + 2(δa · a)E3 ⊗ E3), (3.1.42)

δF = δΛA + ΛδA with δA = δa ⊗ E3. (3.1.43)

According to these expressions, we need to compute δΛ and δa. We will deal with the
first one below. Here we point out that

a = γr +Xακ
r
α,

with γr = ΛT (φ0,3 − t3) = ΛTφ0,3 − E3,

κr
α = ωr × Eα.

Hence the variation δa can be evaluated as

δa = δγr + δXακ
r
α, (3.1.44)

where, taking linearization of γr and κr, we have

δγr = δΛTφ0,3 + ΛT δφ0,3, (3.1.45)

δκr
α = δωr × Eα. (3.1.46)

Since ωr = ΛTω, we finally note that the independent linearized measures we need in
order to get δF and δE are δφ0,3, δΛ and δω, as stated at the beginning.
Since φ0 is a vectorial field, its linearization is straightforward, resulting from the direc-
tional derivative of the perturbed field φ0ε = φ0 + εδφ0

δφ0 =
d

dε
(φ0ε)







ε=0
= δφ0. (3.1.47)

From derivative linearity it naturally follows that the linearization of φ0,3 is δφ0,3.
The crucial linearization of the rotation tensor Λ and of the spin vector ω can be evaluated
both in the direct and indirect form, as explained in section 2.3. Using both of them we
will explicitly evaluate the variations δγr and δωr, which result to be fundamental in the
equilibrium equations.
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Direct linearization form of rotation. Using this linearization form we recall that
δΛ is

δΛ =
d

dε
(Λε)







ε=0
=

d

dε
(exp[εWδ ])







ε=0
Λ = Wδexp[εWδ ]







ε=0
Λ = WδΛ,

which entails
δΛT = −ΛTWδ

since Wδ is a skew-symmetric tensor. We recall also that the linearization of the spin
vector, δω, is

δω × h =

(

wδ,3 + wδ × ω

)

× h ∀ h ∈ R3.

With these quantities in hand we can explicit the direct form of δγr and δωr. By substi-
tution into (3.1.45), the first one becomes

δγr = −ΛTWδφ0,3 + ΛT δφ0,3.

Collecting ΛT and using the axial vector wδ of Wδ, the equation is recast in the final form

δγr = ΛT [δφ0,3 − wδ × φ0,3] . (3.1.48)

The second linearization, δωr, can be compute as

δωr = δ[ΛTω] = δΛTω + ΛT δω

= −ΛTWδω + ΛT

(

wδ,3 + wδ × ω

)

.

Using the vector notation for the first addend in the last expression, −ΛTWδω = −ΛT (wδ×
ω) and splitting the second term, the equation can be rearranged as

δωr = −ΛT (wδ × ω) + ΛT (wδ × ω) + ΛTwδ,3,

which gives the final form

δωr = ΛTwδ,3. (3.1.49)

Now we have all the needed quantities to calculate δκr
α and subsequently δa and finally δF

and δE. Anyway this operation will not be carried out explicitly since, as anticipated, the
variations which will appear into the principles of virtual work will be directly δγr and δωr.

Indirect linearization form of rotation. Using this linearization form we briefly recall
that the rotation tensor is directly parameterized by its rotation vector θ, Λ = Λ(θ), hence
the linearization of the rotation is carried out with respect to the vector space θ

δΛ = δΛ(θ̂)[δθ]
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where the hat specifies the point of linearization and in the following will be omitted. The
linearized expression is quite long, as can be seen in section (2.3.2), and indeed not so
useful for our purposes, which are to find the expressions for δγr and δωr. Therefore we
directly focus attention on the latter ones.
In this section we computed that

δγr = δΛTφ0,3 + ΛT δφ0,3.

First addend of the right-hand-side, δΛTφ0,3, using the full notation become

δΛTφ0,3 ≡ δΛT (θ)[δθ]φ0,3.

This matrix-vector product is by definition linear in δθ. Noting that such product ex-
pression has been already provided in section (2.3.2) for a general vector a ∈ R3, by
substitution of a with φ0,3, we obtain

δΛT (θ)[δθ]φ0,3 = ΥδΛT (θ,φ0,3)δθ. (3.1.50)

Since it is obvious that the operator in the last equation is function of θ, for notation sim-
plicity this dependency will be omitted in the following, hence ΥδΛT (θ,φ0,3) ≡ ΥδΛT (φ0,3).
The expression of the operator is

ΥδΛT (φ0,3) = a1(θ)[φ0,3×] + a2(θ)(θ · φ0,3)I + a2(θ)θ ⊗ φ0,3...

... +b0(θ)φ0,3 ⊗ θ − b1(θ)[(θ × φ0,3) ⊗ θ]...

... +b2(θ)(θ · φ0,3)θ ⊗ θ. (3.1.51)

where the coefficient ai, and bi has been introduced in section (2.2.1). Substituting results
of equations (3.1.50) and (3.1.51) into δγr we finally obtain

δγr = ΥδΛT (φ0,3)δθ + ΛT δφ0,3 (3.1.52)

Let us consider now the variation δωr. In section (2.2.1) we introduced the relation
ωr = TT (θ)θ̇ which can be here clearly specified for the derivative with respect to the
parameter X3 as

ωr = TT (θ)θ,3. (3.1.53)

Linearizing this expression we obtain

δωr = δTTθ,3 + TT δθ,3, (3.1.54)

where the first addend on the right-hand-side, δTTθ,3, indicated in full notation becomes

δTTθ,3 ≡ δTT (θ)[δθ]θ,3.

This matrix-vector product is by definition linear in δθ. Noting that the expression of
such a product has been already provided in section (2.3.2) for a general vector a ∈ R3,
by substitution of a with θ,3, we obtain

δTT (θ)[δθ]θ,3 = ΥδTT (θ,θ3)δθ. (3.1.55)



60 Three-dimensional finite-deformation small-strain beam theory

Here again we simplify the notation by ΥδTT (θ,θ,3) ≡ ΥδTT (θ,3). The last operator has
the expression

ΥδTT (θ,3) = a2(θ)[θ,3×] + a3(θ)(θ · θ,3)I + a3(θ)θ ⊗ θ,3...

... +b1(θ)θ,3 ⊗ θ − b2(θ)[(θ × θ,3) ⊗ θ]...

... +b3(θ)(θ · θ,3)θ ⊗ θ. (3.1.56)

Substituting results of equations (3.1.55) and (3.1.56) into the expressions for δωr, (3.1.54),
we obtain

δωr = ΥδTT (θ,3)δθ + TT δθ,3 (3.1.57)

As already noted in section (2.3.2), the operator ΥδTT (a) is equal to ΥδΛT (a) once chang-
ing ai with ai+1 and bi with bi+1.
Here again, as for the other linerization form, we do not calculate explicitly the variation
δF and δE.

3.2 Equilibrium: principle of virtual work

In the present section we consider the three-dimensional principle of virtual work in the
form of integral equation over the reference configuration, for which the internal virtual
work can be expressed equivalently both in term of tensors P and δF and in term of
tensors S and δE, as shown in section 1.3.

We first introduce the beam deformation and strain variations into the internal work
expressions. Than we collect the terms depending on the area section and we split the
volume integral into a line integral over the beam reference axis and surface integrals
over beam reference cross-section. Recognizing the surface integrals as the stress and
couple section resultants, it appears a line integral of the scalar product between the
stress-couple resultants and the variation of beam strain resultants. This line integral is
the searched one-dimensional beam internal work. Finally we show that the equivalence
between the two forms of three-dimensional internal virtual work is preserved also between
their associated one-dimensional forms.

For the moment we give the final equilibrium equations in term of the beam strain
variations, δγr and δωr, without explicit direct or indirect rotation variations. In fact, the
following computations hold for both direct and indirect forms of rotation variations, and
hence there is no need to specialize the theory for one of them at the moment. Moreover
the same final equations hold for a finite-strain theory since small-strain hypothesis is not
yet introduced.

The three-dimensional principle of virtual work we consider is

δL = δLint − δLext = 0 ∀ δu, (3.2.1)

where

δLint =

∫

Ω0

[

S : δE
]

dv0 or δLint =

∫

Ω0

[

P : δF
]

dv0, (3.2.2)
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and

δLext =

∫

Ω0

[

b0 · δu
]

dv0 +

∫

∂Ω0

[

t̄n0
· δu

]

da0. (3.2.3)

The explicit expression of external work is not presented in this section but in 3.4 since
it depends on the choice of direct or indirect form of rotation variations. In that section
we also present the strong forms of equilibrium and the Neumann boundary condition
obtained by integrating by part the weak equilibrium equations.

3.2.1 Internal virtual work using P and δF

Consider the internal virtual work

δLint =

∫

Ω0

[

P : δF
]

dv0.

Taking linearization of extended left polar decomposition of deformation gradient, F =
ΛA, the expression of deformation gradient variation, δF, becomes

δF = δΛA + ΛδA. (3.2.4)

Knowing from section 2.1.2 that the linearization of a rotation tensor, δΛ, can always be
expressed as a product between a skew tensor, Wδ, and the rotation, i.e. δΛ = WδΛ,
substituting this expression into the previuos equation we get

δF = (WδΛ)A + ΛδA = WδF + ΛδA.

Introducing this expression into that of the internal work, δLint becomes

δLint =

∫

Ω0

[

P : WδF
]

dv0 +

∫

Ω0

[

P : ΛδA
]

dv0. (3.2.5)

Let us consider the first integral,
∫

Ω0

[

P : WδF
]

dv0. Its argument can be recast as

P : WδF = PFT : Wδ.

Recalling from the three-dimensional equilibrium that PFT is a symmetric tensor, (PFT =
FPT ), since Wδ is a skew-symmetric tensor their double contraction is zero. Then

∫

Ω0

[

P : δWF
]

dv0 = 0. (3.2.6)

Let us consider now the second integral,
∫

Ω0

[

P : ΛδA
]

dv0. Using equation (3.1.43), the

expression ΛδA can be recast in the form

ΛδA = Λ(δa ⊗ E3) = (Λδa) ⊗ E3,
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where the second equality can be easily verified exploiting index notation. Developing the
double contraction, the integral becomes

∫

Ω0

P : ΛδA dv0 =

∫

Ω0

P : (Λδa ⊗ E3) dv0 =

∫

Ω0

PE3 · Λδa dv0 =

∫

Ω0

P3 · Λδa dv0,

(3.2.7)
where the second and third equalities can be computed easily exploiting index notation.

Collecting the results for the first and second integral, the internal virtual work becomes

δLint =

∫

Ω0

[P3 · Λδa]dv0. (3.2.8)

Recalling that δa = δγr +Xαδκ
r
α and that δκr

α = δωr ×Eα, equation (3.2.8) becomes by
substitution

δLint =

∫

Ω0

P3 · Λδγr + P3 ·Λ(δωr ×XαEα) dv0. (3.2.9)

Let us focus our attention on the second addend. Using the distributivity of cross product
with respect to a rotation tensor, (0.0.5), and recalling ΛEα = tα, we get

P3 ·Λ(δωr ×XαEα) = P3 · (Λδωr ×Xαtα).

The right-hand-side can then be rearranged using the mixed product rule as

P3 · (Λδωr ×Xαtα) = Λδωr · (Xαtα ×P3).

With this expression of the second addend, the internal work becomes by substitution

δLint =

∫

Ω0

P3 · Λδγr + Λδωr · (Xαtα × P3) dv0. (3.2.10)

Noting that Λδγr and Λδωr are independent of area coordinates, X1 and X2, the volume
integral in (3.2.9) can be split into a line integral along the beam reference length and two
surface integrals over the reference area sections

δLint =

∫

L0

[

Λδγr ·

∫

A0

P3da0 + Λδωr ·

∫

A0

[Xαtα × P3]da0

]

dl0. (3.2.11)

From the first surface integral we define the cross-section stress resultant, f ,

f =

∫

A0

P3da0. (3.2.12)

From the second surface integral we define the cross-section couple resultant, m,

m =

∫

A0

[Xαtα × P3]da0. (3.2.13)
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With this notation in hand, the internal virtual work along the beam reference length
takes the form

δLint =

∫

L0

[

Λδγr · f + Λδωr · m
]

dl0. (3.2.14)

We refer to this equation as the spatial form of the internal beam virtual work.
Expressions of f and m have a clear physical meaning. As shown in chapter (1.3),
Pn0da0 = σnda where n0 and n are the unit normal to an internal plane respectively
in reference and current configuration. Considering beam cross-sections, n0 = E3 and
n = t3. By substitution of the last expression into the three-dimensional ones we obtain

PE3da0 = σt3da → P3da0 = σ3da,

where σ3 is the vector of Cauchy’s tensor components acting on the cross-section in the
current configuration. Consequently

∫

A0

P3da0 =

∫

A
σ3da,

which shows, recalling equation (3.2.12) that the f components are the integral over the
current cross-section of the respective σ3 components, i.e. they are the stress resultant in
the current configuration. Noting that Xαtα which appears in m represents the distance
between a section point and the centroid in the current configuration, then m expression
shows that the components of m are bending and torsional moments acting on the current
cross-section.

3.2.2 Internal virtual work using S and δE

Consider the expression of Green-Lagrange stain tensor variation, δE, equation (3.1.42)

δE =
1

2
(E3 ⊗ δa + δa ⊗ E3 + 2(δa · a)E3 ⊗ E3). (3.2.15)

The internal virtual work

δLint =

∫

Ω0

[

S : δE
]

dv0

can be computed developing the double contraction as follows. First we split δE and
obtain

δLint =

∫

Ω0

[

S :
1

2
(E3 ⊗ δa + δa ⊗ E3) + S : (δa · a)E3 ⊗E3

]

dv0.

The first double contraction can be computed by index notation using the symmetry of S

S :
1

2
(E3 ⊗ δa + δa ⊗ E3) =

1

2
SijE3iδaj +

1

2
SijE3jδai =

=
1

2
SjiE3iδaj +

1

2
SijE3jδai =

= 2(
1

2
SijE3jδai) =

= δa · SE3.
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The second one easily follows by index notation computation as

S : (δa · a)E3 ⊗ E3 = (δa · a)E3 · SE3.

Substituting these expressions into the internal work δLint, we obtain

δLint =

∫

Ω0

[

δa · SE3 + (δa · a)E3 · SE3

]

dv0 (3.2.16)

and then, collecting δa, we get

δLint =

∫

Ω0

[

δa · (S3 + aS33)
]

dv0. (3.2.17)

Recalling that δa = δγr +Xαδκ
r
α and that δκr

α = δωr × Eα, equation (3.2.17) becomes
by substitution

δLint =

∫

Ω0

δγr · (S3 + aS33) + (δωr ×XαEα) · (S3 + aS33) dv0.

Using the mixed product rule the second addend can be rearranged in order to isolate δωr,
hence the previous equation takes the form

δLint =

∫

Ω0

δγr · (S3 + aS33) + δωr · [XαEα × (S3 + aS33)] dv0.

Noting that δγr and δωr are independent of section coordinates, X1 and X2, the volume
integral in previous equation can be split into a line integral along the beam reference
length and two surface integrals over the reference area sections, yielding

δLint =

∫

L0

[

δγr ·

∫

A0

[S3 + aS33]da0 + δωr ·

∫

A0

[XαEα × (S3 + aS33)]da0

]

dl0. (3.2.18)

From the first surface integral we define the cross-section stress resultant, fr,

fr ≡

∫

A0

[S3 + aS33]da0. (3.2.19)

From the second surface integral we define the cross couple resultant, mr,

mr ≡

∫

A0

[XαEα × (S3 + aS33)]da0. (3.2.20)

With this notation in hand, the internal virtual work along the beam reference length
takes the form

δLint =

∫

L0

[

δγr · fr + δωr · mr

]

dl0. (3.2.21)

We refer to this equation as the material form of the internal beam virtual work.
The physical meaning of fr and mr does not appear so clear looking at their integral
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definition. In the next section we show that they are the rotated-back expression of f and
m. Note that the strain measure a appears in the integral expression of force.

Observe that in the internal work only the components of S acting on the reference
cross section, i.e. S33, S13, S23, appears. It means that S11, S22, S12 = S21 naturally do
not come into the internal work, without the necessity to enforce any hypothesis on them.
The reason for this derives from the fact that δE11, δE22, δE12 = δE21 are zero (see matrix
expression of E in (3.1.27)), as a consequence of the particular deformation map assumed.
Hence it is not correct to say that we assume components of stress to be null on the planes
parallel to axis of beam.

Finally we note that

S3 + aS33 = (I + a ⊗ E3)S3 = AS3. (3.2.22)

By this equality, equations (3.2.17), (3.2.19), (3.2.20) can be respectively recast as

δLint =

∫

Ω0

[

δa ·AS3

]

dv0, (3.2.23)

fr =

∫

A0

[AS3]da0, (3.2.24)

mr =

∫

A0

[XαEα × AS3]da0. (3.2.25)

3.2.3 Map between material and spatial beam internal work

In this section we refer to spatial internal virtual work, equation (3.2.14), with the symbol
δLP

int and to the material internal virtual work, equation(3.2.21), with the symbol δLS
int.

Observing the spatial work in equation (3.2.14) we note that stress and couple resultants,
f and m, work respectively for Λδγr and Λδωr, which are the virtual variations, δγr,
δωr rotated-forward from the reference to the current configuration. This observation
encourages us to investigate which relation links f and m with fr and mr, the stress and
couple resultants work conjugate with δγr and δωr.

Recalling the equation relating the first and the second Piola-Kirchhoff stress tensors,
P = FS, it follows that

P3 = PE3 = FSE3 = FS3.

Using extend polar decomposition of deformation gradient (F = ΛA), the surface integrals
f =

∫

A0
P3da0 and m =

∫

A0
[Xαtα × P3]da0 can be written, substituting P3, as

f =

∫

A0

ΛAS3da0, m =

∫

A0

[Xαtα × ΛAS3]da0.

Since Λ can be taken out of the area integral, we finally get

f = Λ

∫

A0

AS3da0 = Λfr,
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m =

∫

A0

[Λ(XαEα × AS3)]da0 = Λ

∫

A0

[XαEα × AS3]da0 = Λmr.

The obtained map
f = Λfr m = Λmr (3.2.26)

states that stress and couple resultants, f and m, in the spatial internal virtual work are
the rotated-forward stress and couple resultants, fr and mr, of the material internal virtual
work.

This result, even if obtained by simple manipulations, is very interesting. Using it into
equation (3.2.14), the spatial work δLP

int takes the form

δLP
int =

∫

L0

[

Λδγr ·Λfr + Λδωr · Λmr

]

dl0, (3.2.27)

which, compared with the material internal work, δLS
int

δLS
int =

∫

L0

[

δγr · fr + δωr · mr

]

dl0,

provides the following two important results

1. the resultants and their conjugate virtual variations in the spatial internal virtual
work are the resultants and the conjugate virtual variations of the material internal
virtual work both rotated-forward by the actual rotation Λ;

2. the two forms of the internal beam work are confirmed to be equal, since from the
definition of an orthogonal tensor it follows that

Λδγr · Λfr = δγr · fr, Λ(ΛT δw,3) ·Λmr = ΛT δw,3 ·mr,

where we recall that Λ is a rotation tensor.

Finally, it is of interest to deeply investigate what represent the expressions Λδγr and
Λδωr conjugate, in the spatial work, respectively with f and m. Recalling the expression
of γr and ωr

γr = ΛTγ, ωr = ΛTω,

by a simple substitution we can write

Λδγr = Λδ(ΛTγ), Λδωr = Λδ(ΛTω).

The last equations state that γ and ω are first rotated back to the reference configuration,
than linearized, and finally rotated-forward again to the current configuration, i.e. Λδγr

and Λδωr are a Lie derivative of respectively γ and ω with the rotation tensor Λ being
the map for pull-back and push-forward. Hence, the internal work δLP

int can also be given
in the form

δLP
int =

∫

L0

[

δΛγ · f + δΛω ·m
]

dl0, (3.2.28)

where the symbol δΛ stands for the Lie derivative.
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3.3 Small-strain hypothesis and constitutive equations

This section is devoted to the introduction and to the explanation of the small-strain
hypothesis which consists of a reduction of the full expression of the Green-Lagrange strain
tensor E. Attention will be given to the consequent reduced expression of the internal
virtual work and to the constitutive equations that can be obtained in the context of this
hypothesis. The relation between constitutive equations and the small-strain hypothesis
will be in particular investigated since in literature it results to be not so clear a point
while in our presentation it results to be straightforward.
Consider the expression of E in term of the pure strain tensor L

E =
1

2
(L + LT + LTL).

or, substituting the expression L = a ⊗ E3 which is useful to make evident the strain
vector a,

E =
1

2
(E3 ⊗ a + a ⊗ E3 + (a · a)E3 ⊗E3).

The small strain hypothesis consists of approximating E by neglecting the term LTL =
(a · a)E3 ⊗E3, which is quadratic in the pure strain tensor L or in the pure strain vector
a. Therefore the approximated Green-Lagrange strain tensor E∗ is

E ≈ E∗ =
1

2
(L + LT ) = Ls, or E ≈ E∗ = (E3 ⊗ a)s. (3.3.1)

The exact identification of the term quadratic in pure strain follows from the parametriza-
tion of Green-Lagrange strain tensor in term of L which is a direct consequence of intro-
duction of the left extended polar decomposition of the deformation gradient. The only
reference where we have found a similar development of the small-strain hypothesis is [16],
which anyway deals only with plane problems.
Before investigating the consequences of the small-strain assumption, it must be pointed
out that neglecting LTL in E = E(L) is very different than neglecting ∇T

Xu∇Xu in
E = E(∇Xu), i.e.

E∗ =
1

2
(L + LT ) 6= εεε = sym[∇

X
u].

In fact, the quadratic term in ∇Xu contains rigid rotations and linear term in L which
cannot be neglected in a large displacement theory. Moreover εεε∗ = ∇s

Xu is not a pure
strain measure in a large displacement beam theory, i.e. εεε∗ 6= 0 for rigid body motion.
For a detailed description see section (3.1).

3.3.1 Internal work with small-strain hypothesis

The linearization E∗, can be easily computed from equation (3.3.1) as

δE∗ =
1

2
(E3 ⊗ δa + δa ⊗ E3). (3.3.2)
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Consider the approximated internal virtual work

δLint ≈ δL∗

int =

∫

Ω0

S : δE∗dv0.

Substituting expression of δE∗ and than referring to the computations done in section
(3.2.2), it follows that

δL∗

int =

∫

Ω0

S :
1

2
(E3 ⊗ δa + δa ⊗ E3) dv0 =

∫

Ω0

δa · S3dv0. (3.3.3)

Comparing this expression with the complete expression of δLint we note that the term
S : (δa · a)E3 ⊗ E3 does not appear in the reduced internal work. The term is in fact
the quadratic one in the strain vector a. Finally the small-strain internal work, δL∗

int, can
indeed be obtained by the approximation of the finite-strain internal work as follows

δLint =

∫

Ω0

[δa · (S3 + aS33)] dv0 ≈ δL∗

int =

∫

Ω0

[δa · S3] dv0,

or, since S3 + aS33 = AS3, as

δLint =

∫

Ω0

[δa ·AS3] dv0 ≈ δL∗

int =

∫

Ω0

[δa · S3] dv0.

Clearly the stress and couple resultant fr and mr identified in the finite-strain internal
work, in the small-strain theory get the approximated form

fr =

∫

A0

AS3 da0 ≈ f∗r =

∫

A0

S3, da0 (3.3.4)

mr =

∫

A0

(XαEα × AS3) da0 ≈ m∗

r =

∫

A0

(XαEα × S3) da0. (3.3.5)

It must be pointed out that the small-strain hypothesis cannot be imposed in a compact
form on the three-dimensional internal virtual work in term of P and δF. The reason can
be understood comparing the two equivalent internal works

∫

Ω0

[

S : δE
]

dv0 and

∫

Ω0

[

P : δF
]

dv0 =

∫

Ω0

[

FS : δF
]

dv0,

where in the second one we used P = FS. In the first one all the deformation is into δE,
and therefore we have a quadratic term in the pure strain a. Differently, in the second
one, part of the deformation is “hidden” into P which in fact is double contracted with
a linear local measure of deformation δF. For this reason it is not possible to explicit a
small-strain hypothesis when using the internal work in term of P.
Anyway we have demonstrated in section 3.2.3 that the two beam internal work expres-
sions, material and spatial, are fully equivalent so here and in the following we will refer
to the material one. We remark that the linearization procedure gets quite different using
material rather than spatial work, since in the second expression every vector is multiplied
by Λ. However in section 3.4 we will show explicitly that, in the small-strain hypothesis
and after the introduction of constitutive equations, the two forms are not only equivalent
but formally equal.
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3.3.2 Constitutive equations

Hypotheses and three-dimensional equations

We assume the three-dimensional linear elastic constitutive equation, S3 = S3(E
∗

3), as

S3 = CE∗

3 where C = diag[2G, 2G,E], (3.3.6)

which by components takes form

S13(= S31) = 2GE∗

13; S23(= S32) = 2GE∗

23; S33 = EE∗

33,

where E is the Young’s modulus and G is the shear modulus. Note that this relation does
not refer to components S11, S22, S12 = S21, since they do not appear into the principle
of virtual work. Moreover it is imposed on the approximated form of the Green-Lagrange
strain tensor E∗, so it holds only in the context of small-strains.

These kind of constitutive equations, which are standard for an elastic beam in small
displacements, completely neglects the effects of strain Eij in directions k 6= i, i.e. the
stress tensor components depend only on the strain components in the same direction and
the Poisson coefficient, ν, doesn’t appear in the law. All of this is in agreement with the
kinematic hypothesis of no section deformability.

Note that the constitutive equation is posed on three-dimensional stress and strain
tensors, which is unusual in large displacement beam theories6, and not on the beam
stress-couple resultants,

Since E∗ = sym[a ⊗ E3], E∗

3 can be easily computed as

E∗

3 =
1

2
(a ⊗ E3 + E3 ⊗ a)E3 = Na, where N = diag[

1

2
,
1

2
, 1].

By substituting the previous equation in the constitutive equation (3.3.6), the latter be-
comes

S3 = Da where D = CN = diag[G,G,E]. (3.3.7)

Integration of 3d constitutive equations over the cross-section

We are interested in analyzing the assumed expressions of material stress and couple
resultants, f∗r and m∗

r, when the integration over the reference area section is carried
out using the constitutive equation (3.3.7). The integration is done with respect to the
centroidal reference system.

Consider the stress resultant f∗r =
∫

A0
S3 da0 and the constitutive law S3 = Da with

D constant. Substituting the latter into the stress resultant expression and recalling that
a = γr + κr, f∗r can be given as

f∗r =

∫

A0

Dγrda0 +

∫

A0

Dκrda0,

6In [25] can be found a three-dimensional approach for the constitutive law of a large displacements
beam
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where κr = ωr × XαEα with ωr = ωr(X3). The second integral vanishes because it is
linear in the area coordinate Xα; hence, since γr is independent on the area coordinate,
the resultant stress f∗r is integrated as

f∗r = A0Dγr = Cfγr, where Cf = diag[A0G,A0G,A0E], (3.3.8)

where A0 is the area of the cross-section.
Consider the couple resultant m∗

r =
∫

A0
XαEα ×S3 da0. Substituting the constitutive

law into the expression, here again we can split the integral into two integrals

m∗

r =

∫

A0

XαEα × Dγr da0 +

∫

A0

XαEα × Dκr da0.

Since γr is independent on the area coordinate, the first integral vanishes because linear
in the area coordinate Xα. Using the expression of κr, m∗

r can therefore be given as

m∗

r =

∫

A0

XαEα × D[ωr ×XβEβ]da0.

The integration follows. For notation simplicity, let us pose ωr = g. Since XαEα =
{X1,X2, 0}, the cross product g ×XαEα becomes

g ×XαEα = −g3X2E1 + g3X1E2 + (g1X2 − g2X1)E3 =







−g3X2

g3X1

g1X2 − g2X1







.

The argument of m∗

r integral can be explicitly computed as

XαEα×D[g×XαEα] = G(X2
2+X2

1 )g3E3+EX
2
2g1E1−EX1X2g1E2+EX

2
1g2E2−EX1X2g2E1.

In matrix notation, the previous equation becomes

XαEα×D[g×XαEα] = Mg, where M =





EX2
2 −EX1X2 0

−EX1X2 EX2
1 0

0 0 G(X2
2 +X2

1 )



 .

Then, reintroducing ωr in place of g, m∗

r can be integrated using the following equation

m∗

r =

∫

A0

Mωr da0 =

∫

A0

M da0 ωr,

where we have used the independence of ωr from the area. The integration leads to the
equation

m∗

r = Cmωr, where Cm =





EJ1 −EJ12 0
−EJ21 EJ2 0

0 0 GJt



 . (3.3.9)

The constitutive equations in term of small-strain material stress and couple beam
resultants, f∗r and m∗

r, are here summarized:

f∗r = Cfγr , where Cf = diag[A0G,A0G,A0E]; (3.3.10)
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m∗

r = Cmωr where Cm =





EJ1 −EJ12 0
−EJ21 EJ2 0

0 0 GJt



 (3.3.11)

where A0 is the area section and J1, J2, J12 = J21, Jt are the moments of inertia, defined
in table (3.3.2). These equations assume the matrix form

{

f∗r
m∗

r

}

= C

{

γr

ωr

}

where C =

[

Cf 0
0 Cm

]

(3.3.12)

Comments about the relation between the linearity of constitutive equations
and the small-strain hypothesis

Since in literature it is not clear the relation holding between the hypotheses of linear
elastic constitutive equation and of small-strains, we comment here on the subject with
the help of our formulation.

First of all the small strain hypothesis, as we have defined it, is an hypothesis in the
structure of the Green-Lagrange strain tensor. Generally this hypothesis is not related
with the one of a linear elastic relation between three-dimensional full nonlinear stress and
strain tensors. It means that we can state a linear elastic relation between for example S
and E and impose them on the finite-strain beam principle of virtual work. Clearly we
will obtain a linear elastic theory in finite strain.7

Different is the case when a linear elastic constitutive relation is imposed between
the three-dimensional small-strain approximated strain tensor, E∗, and the stress tensor,
S. We have demonstrated that this procedure entails a linear elastic constitutive relation
between the beam stress and strain resultants. Therefore if we obtain equilibrium equations
in term of stress and strain resultants without imposing a small-strain hypothesis, as in
section (3.2), and then we postulate a linear elastic relation between the same resultants
we are entailing under the counter the small-strain hypothesis and reducing the general
finite-strain to a small-strain theory.

This fact do not appear clearly in literature. Most of authors do not pay attention
to the subject. Simo in [23] and [24] calls oddly his theory “finite-strain” even thought
he postulates a linear elastic relation between beam stress and strain resultants. Anyway
in a later work [25] Simo leaves the terminology “finite-strain” for geometrically exact
beam theory. In that work he presents a justification of the linear elastic relation between
resultants starting from a linear elastic relation between approximated forms of σ and E.

7Clearly it can be pointed out that these hypotheses have few physical meaning, but it not of our
interest now

J1 J2 J12 = J21 Jt
∫

A0
X2

2da0

∫

A0
X2

1da0

∫

A0
X1X2da0

∫

A0
X2

2 +X2
1da0

Table 3.3.1: Moments of inertia
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3.4 Finite-deformation small-strain model: solution equa-
tions

In this section we are going to recover the final and complete form of the principle of virtual
work in the finite-deformation small-strain hypothesis. With reference to the internal work,
we introduce in it the constitutive equations and the explicit expressions of strain variations
in both direct and indirect forms. Moreover, we state explicitly the external virtual work,
introducing in it the expression of the displacement field variation using both direct and
indirect forms for rotation variations. For the complete principle of virtual work using
the direct form we recover the strong equilibrium equations and compare them with those
presented by Simo in [23].

Having already proved the equivalence between the beam internal material and spatial
work, we refer to the material one. Therefore, the equilibrium equation we are going to
consider is

δL = δLint − δLext = 0 ∀ δφ0,wδ (direct form)

or ∀ δφ0, δθ (indirect form)

where

δLint =

∫

L0

[

δγr · f
∗

r + δωr ·m
∗

r

]

dl0 with

{

f∗r
m∗

r

}

= C

{

γr

ωr

}

and

δLext =

∫

Ω0

[

b0 · δu
]

dv0 +

∫

∂Ω0

[

t̄n0
· δu

]

da0.

The external boundary virtual work
∫

∂Ω0

[

t̄n0
· δu

]

da0 is given in section (1.3) as

∫

∂Ω0

[

t̄n0
· δu

]

da0 =

∫

∂Ω0

[

P̄n0 · δu
]

da0,

where n0 is the unit vector normal to the boundary region in the reference configuration.
In the case of our beam model, the boundary regions are the cross-sections A0 = A |X3=0

and AL = A |X3=L and the beam lateral surface. The only boundary region we consider is
A0
⋃

AL, since we assume the beam lateral surface to be unloaded. Therefore in this case

n0 = −E3 for A0,

n0 = E3 for AL. (3.4.1)

.

3.4.1 Direct form

Internal virtual work. The direct variations of γr and ωr have been already computed
in section (3.1.3) as

δγr = ΛT [δφ0,3 − wδ × φ0,3],

δωr = ΛTwδ,3
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In order to rearrange them into a matrix form we introduce the [6×6] matrices Ξ, I,3 and
Π, defined as

Ξ =

[

I,3 0
−[φ0,3×] I,3

]

with I,3 =
d(·)

dX3





1 0 0
0 1 0
0 0 1



 (3.4.2)

Π =

[

Λ 0
0 Λ

]

. (3.4.3)

The matrix operator I,3 always works on right-multiplied vectors. Noting that

ΞT =

[

I,3 [φ0,3×]

0 I,3

]

,

since (−[φ0,3×])T = [φ0,3×] (it is a skew tensor), it is easy to show that the vector

{δγr, δωr}
T can be written as the matrix product

{

δγr

δωr

}

= ΠTΞT

{

δφ0

wδ

}

. (3.4.4)

Recalling again the constitutive equation
{

f∗r
m∗

r

}

= C

{

γr

ωr

}

,

the internal virtual work , δLint, can be recast in the matrix form

δLint =

∫

L0

{

δγr

δωr

}

·

{

f∗r
m∗

r

}

dl0 =

=

∫

L0

ΠTΞT

{

δφ0

wδ

}

·C

{

γr

ωr

}

dlo0,

which in compact notation becomes

δLint =

∫

L0

{

δφ0

wδ

}T

ΞΠC

{

γr

ωr

}

dl0 . (3.4.5)

External virtual work. To compute the external virtual work we need the displacement
field variation, δu, which has not yet been presented. Recalling the expression of the
displacement field u, (3.1.6),

u = φ0 +XαΛEα −XIEI ,

taking its direct linearization we get

δu = δφ0 +XαδΛEα

= δφ0 +XαWδΛEα.
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Introducing the axial vector of Wδ, wδ, and substituting the equality ΛEα = tα, the
displacement variation δu in the direct form becomes

δu = δφ0 + wδ ×Xαtα. (3.4.6)

Substituting this expression into the external virtual body force work
∫

Ω0

[

b0 · δu
]

dv0 we

obtain
∫

Ω0

[

b0 · δu
]

dv0 =

∫

Ω0

[

b0 · δφ0 + b0 ·
(

wδ ×Xαtα

)]

dv0 =

=

∫

Ω0

[

b0 · δφ0 + wδ ·
(

Xαtα × b0

)]

dv0,

where in the last equality we have used the mixed product rule. Considering that δφ0 and
wδ are independent of the area section, the integral over the reference beam volume can
be split into one over the surface reference cross-section and one along the reference beam
axis as

∫

Ω0

[

b0 · δu
]

dv0 =

∫

L0

[

δφ0 ·

∫

A0

(b0) da0 + wδ ·

∫

A0

(Xαtα × b0) da0

]

dl0.

Defining the cross-section body stress and couple resultants f̂ and m̂ as

f̂ ≡

∫

A0

b0 da0, (3.4.7)

m̂ ≡

∫

A0

(Xαtα × b0) da0, (3.4.8)

the external virtual body force work finally becomes

∫

Ω0

[

b0 · δu
]

dv0 =

∫

L0

[

f̂ · δφ0 + m̂ · wδ

]

dl0 . (3.4.9)

Note that the external resultants are valued in the current configuration, even if integrated
on the reference area section, as the moment radius tα clearly shows. This is in full
agreement with the three-dimensional continuum theory.

Substituting the definition of n0 and the displacement virtual variation δu, (3.4.6),

into the external boundary virtual work
∫

∂Ω0

[

t̄n0
· δu

]

da0 we obtain

∫

∂Ω0

[

t̄n0
· δu

]

da0 =

∫

∂Ω0

[

P̄n0 · δu
]

da0 =

=

∫

AL

[

P̄3 · δu
]

da0 −

∫

A0

[

P̄3 · δu
]

da0 =

=

∫

AL

[

P̄3 · δφ0 + (Xαtα × P̄3) ·wδ

]

da0 − ...

...−

∫

A0

[

P̄3 · δφ0 + (Xαtα × P̄3) · wδ

]

da0, (3.4.10)
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where in the last step we have used the mixed product rule. Defining the boundary stress
and couple resultants f̄0, m̄0, f̄L and m̄L

m̄0 =

∫

A0

[Xαtα × P̄3] da0, f̄0 =

∫

A0

[P̄3] da0, (3.4.11)

m̄L =

∫

AL

[Xαtα × P̄3] da0, f̄L =

∫

AL

[P̄3] da0, (3.4.12)

(3.4.13)

the boundary virtual work takes the form

∫

∂Ω0

[

t̄n0
· δu

]

da0 =
(

f̄L · δφ0(L) + m̄L ·wδ(L)
)

−
(

f̄0 · δφ0(0) + m̄0 · wδ(0)
)

.

(3.4.14)
Using equations (3.4.9) and (3.4.14) the external work δLext in the direct form can be
computed. Note that the external work is not affected by the small-strain hypothesis,
even though it is presented in the small-strain context.

With both internal and external virtual works, the finite-displacement small-strain
direct weak equilibrium can be computed.

Strong form of equilibrium; Simo equations.

The internal virtual work (3.4.21) can be rearranged with some manipulation in the form

δLint =

∫

L0

ΞT

{

δφ0

wδ

}

·ΠC

{

γr

ωr

}

dl0

=

∫

L0

ΞT

{

δφ0

wδ

}

·

{

f∗

m∗

}

dl0,

where f∗ = Λf∗r and m∗ = Λm∗

r . Introducing the expression of ΞT , the internal work
becomes

δLint =

∫

L0

[

m∗ · wδ,3 + f∗ · (δφ0,3 − wδ × φ0,3)
]

dl0, (3.4.15)

and hence, recollecting internal and external work, the complete principle of virtual work
in the direct form is

δL =

∫

L0

[

m∗ ·wδ,3 + f∗ ·
[

δφ0,3 −wδ × φ0,3

]]

dl0 −

−

∫

L0

[

f̂ · δφ0 + m̂ ·wδ

]

dl0 −

−
(

f̄(L) · δφ0(L) + m̄(L) · wδ(L)
)

+
(

f̄(0) · δφ0(0) + m̄(0) · wδ(0)
)

= 0 ∀δφ0,wδ.
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Integrating by parts the addend
∫

L0
(f∗ · δφ0,3) dl0 and

∫

L0
(m∗ · wδ,3) dl0 of the internal

work, we obtain

∫

L0

f∗ · δφ0,3 dl0 = −

∫

L0

[

f∗,3 · δφ0

]

dl0 +
[

f∗ · δφ0

]

X3∈[0,L]
∫

L0

m∗ ·wδ,3 dl0 = −

∫

L0

[

m∗

,3 ·wδ

]

dl0 +
[

m∗ ·wδ

]

X3∈[0,L]
.

Introducing these equations into the virtual work and collecting the virtual variations, we
finally get

δLint = −

∫

L0

[(

m∗

,3 + (φ0,3 × f∗) + m̂
)

·wδ +
(

f∗,3 + f̂
)

· δφ0

]

dl0 +

+(f(0) + f̄(0)) · δφ0(0) + (m(0) + m̄(0)) ·wδ(0) +

+(f(L) − f̄(L)) · δφ0(L) + (m(L) − m̂(L)) · wδ(L) = 0 ∀ δφ0,wδ.

(3.4.16)

From the Fundamental Lemma of variational calculus the strong equilibrium equations and
the Neumann boundary conditions, it follows that

m∗

,3 + φ0,3 × f∗ + m̂ = 0, (3.4.17)

f∗,3 + f̂ = 0, (3.4.18)

f(0) + f̄(0) = 0 m(0) + m̄(0) = 0

f(L) − f̄(L) = 0 m(L) − m̂(L) = 0 (3.4.19)

The first one differential equation is the rotational equilibrium and the second one is the
translational equilibrium. These equations are not exactly those of Simo in [23], as for
Simo the stress and couple resultants are

f =

∫

A0

P3da0, m =

∫

A0

[Xαtα × P3]da0,

while in our equations they are

f∗ = Λ

∫

A0

S3da0, m∗ = Λ

∫

A0

[XαEα × S3]da0.

The reason of the difference is that we derived the differential equilibrium from a virtual
work on which small-strain hypotheses have already been imposed. If we perform the
same computation starting from the finite-strain virtual work (equation (3.2.14)) we get
exactly Simo’s equations. We pointed out this fact in order to emphasize that Simo in [23]
deals with finite-strain equilibrium equations but then he does not impose explicitly the
small-strain hypothesis while he imposes it covertly, by postulating a linear elastic relation
between stress and couple resultants.
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3.4.2 Indirect form

Internal virtual work. The indirect variations of γr and ωr have been already com-
puted in section (3.1.3) as

δγr = ΥδΛT (φ0,3)δθ + ΛT δφ0,3,

δωr = ΥδTT (θ,3)δθ + TT δθ,3.

It is easy to rearrange them in matrix form as

{

δγr

δωr

}

=

[

ΛT ΥδΛT (φ0,3) 0

0 ΥδTT (θ,3) TT

]





I,3 0
0 I
0 I,3





{

δφ0

δθ

}

. (3.4.20)

Recalling again the constitutive equation

{

f∗r
m∗

r

}

= C

{

γr

ωr

}

,

the internal virtual work , δLint, can be recast in matrix form as

δLint =

∫

L0

{

δγr

δωr

}

·

{

f∗r
m∗

r

}

dl0 =

=

∫

L0

[

ΛT ΥδΛT (φ0,3) 0

0 ΥδTT (θ,3) TT

]





I,3 0
0 I
0 I,3





{

δφ0

δθ

}

·C

{

γr

ωr

}

dl0,

which in compact notation becomes

δLint =

∫

L0

{

δφ0

δθ

}T [
I,3 0 0
0 I I,3

] [

ΛT ΥδΛT (φ0,3) 0

0 ΥδTT (θ,3) TT

]T

C

{

γr

ωr

}

dl0 . (3.4.21)

External virtual work. The external virtual work using indirect form for rotation
variation can be quickly evaluated. Recalling from section (2.2.1) that

wδ = T(θ)δθ,

we have just to substitute this expression into the linearization of displacement, δu, and
make exactly the same calculations as for the direct case. It appears clearly that the
external indirect work is equal to the direct one changing in the final expression wδ with
T(θ)δθ.
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3.5 Linearization of virtual work which uses direct variation
of rotation

The virtual work equations for the finite-deformation small-strain beam model are highly
nonlinear in the deformation functions, φ0 and Λ. For this reason to solve them we will
employ a Newton-Rapson’s approach, which needs the equation linearization. Since we
are going to implement only the virtual work which uses direct variation of rotation, we
deal with linearization only of this one. For further information on linearization of virtual
work which uses indirect variation of rotation, references [11, 12, 15, 21] can be consulted.
For our case of linearization, some information can be found also in [24].

Denoting by L[δL(φ̌0, Λ̌)] the linear part of the virtual work δL(φ0,Λ) at the config-
uration (φ̌0, Λ̌), by definition we have

L[δL(φ̌0, Λ̌)] = δL(φ̌0, Λ̌) + ∆[δL(φ̌0, Λ̌)], (3.5.1)

where

• δL(φ̌0, Λ̌) is the work evaluated at point (φ̌0, Λ̌) and supplies the unbalanced force
at that point, yielding the so-called residual vector;

• ∆[δL(φ̌0, Λ̌)] is the work part linearly depending of configuration increments, yield-
ing the so-called tangent stiffness matrix.

We recall that the functional we are going to linearize (direct variation form of rotation)
is

δL = δLint − δLext = 0 ∀ δφ0,wδ,

where

δLint =

∫

L0

[

{

δφ0

wδ

}T

ΞΠC

{

γr

ωr

}

]

dl0

and

δLext =

∫

L0

[

{

δφ0

wδ

}T {
f̂
m̂

}

]

dl0 + δLbound.

Internal work linearization. Looking at the expression of the internal work δLint, we
see that in order to compute its linearization ∆[δLint] we need to evaluate the linearization
of Ξ, Π and

{

γr ωr

}

, respectively ∆Ξ, ∆Π and ∆ {γr,ωr}.
8 In analogy with variation

procedure, we trivially have that ∆φ0 = ∆φ0, obtained from the directional derivative of
φ0ε = φ0 + ε∆φ0, while, for the direct form,

∆Λ = W∆Λ, (3.5.2)

8C is constant
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obtained from directional derivative of Λε = exp[εW∆]Λ. In analogy with variations, the
linearization of strain measures, i.e. the incremental strain ∆γr and ∆ωr, are

∆γr = ΛT [∆φ0,3 − w∆ × φ0,3] = ΛT [∆φ0,3 + φ0,3 × w∆]; (3.5.3)

∆ωr = ΛTw∆,3 (3.5.4)

which using the matrices Ξ and Π, can be rearranged in the matrix form

∆

{

γr

ωr

}

= ΠTΞT

{

∆φ0

w∆

}

. (3.5.5)

∆Ξ is computed by directional derivative as

∆Ξ =
d

dε
Ξε







ε=0
with Ξε =

[

I,3 0
−[(φ0,3 + ε∆φ0,3)×] I,3

]

,

and becomes

∆Ξ =

[

0 0
−[∆φ0,3)×] 0

]

. (3.5.6)

∆Π, with Π =

[

Λ 0
0 Λ

]

, is easily computed using equation (3.5.2) as

∆Π =

[

W∆Λ 0
0 W∆Λ

]

. (3.5.7)

So that the linearization of the internal virtual work is

∆[δLint] =

∫

L0

[

{

δφ0

wδ

}T

∆[ΞΠ] C

{

γr

ωr

}

]

dl0 +

∫

L0

[

{

δφ0

wδ

}T

ΞΠC ∆

{

γr

ωr

}

]

dl0. (3.5.8)

The second addend yields the so-called material part of the stiffness matrix, since it is the
linearization of internal stress and couple resultants, given in term of strain resultants by
the constitutive relation . The first addend instead yields the so-called geometric part of
the stiffness matrix, since it is the linearization of virtual strain variations δγr and δωr.

Let us consider the second addend. Substituting into it the linearization of strain
measures (3.5.5) we obtain

∫

L0

[

{

δφ0

wδ

}T

ΞΠC ∆

{

γr

ωr

}

]

dl0 =

∫

L0

[

{

δφ0

wδ

}T

ΞΠCΠTΞT

{

∆φ0

w∆

}

]

dl0 =

=

∫

L0

[

{

δφ0

wδ

}T

S

{

∆φ0

w∆

}

]

dl0, (3.5.9)

where
S = ΞΠCΠTΞT (3.5.10)

is the material part of the tangent matrix. Note that the matrix is symmetric and it has
the typical structure of constitutive linear elastic models.
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Let us now consider the first addend of (3.5.8). The term ∆[ΞΠ] can be evaluated
using the expressions of ∆Ξ and ∆Π, respectively (3.5.6) and (3.5.7), as

∆[ΞΠ] = ∆[Ξ]Π + Ξ∆[Π] =

[

0 0
−[∆φ0,3)×] 0

]

Π + Ξ

[

W∆Λ 0
0 W∆Λ

]

.

By substitution, the integral becomes

∫

L0

{

δφ0

wδ

}T

∆[ΞΠ]C

{

γr

ωr

}

dl0 =

=

∫

L0

{

δφ0

wδ

}T
(

[

0 0
−[∆φ0,3×] 0

]

Π + Ξ

[

W∆Λ 0
0 W∆Λ

]

)

C

{

γr

ωr

}

dl0 =

=

∫

L0

{

δφ0

wδ

}T
(

{

0
−[∆φ0,3×]ΛCfγr

}

+ Ξ

{

W∆ΛCfγr

W∆ΛCmωr

}

)

dl0 =

=

∫

L0

{

δφ0

wδ

}T
(

{

0
−[∆φ0,3×]f

}

+ Ξ

{

W∆f
W∆m

}

)

dl0 =

=

∫

L0

{

δφ0

wδ

}T
(

{

0
−∆φ0,3 × f

}

+ Ξ

{

w∆ × f
w∆ × m

}

)

dl0 =

=

∫

L0

{

δφ0

wδ

}T
(

{

0
f × ∆φ0,3

}

− Ξ

{

f ×w∆

m× w∆

}

)

dl0 =

=

∫

L0

{

δφ0

wδ

}T
(

[

0 0
f× 0

]{

∆φ0,3

0

}

− Ξ

[

0 [f×]
0 [m×]

]{

0
w∆

}

)

dl0 =

=

∫

L0

{

δφ0

wδ

}T
(

[

0 0
(f×)I,3 0

]{

∆φ0

0

}

−

[

0 I,3[f×]
0 −[φ0,3×][f×] + I,3[m×]

]{

0
w∆

}

)

dl0 =

=

∫

L0

{

δφ0

wδ

}T [
0 −I,3[f×]

(f×)I,3 [φ0,3×][f×] − I,3[m×]

]{

∆φ0

w∆

}

dl0 =

=

∫

L0

{

δφ0

wδ

}T

T

{

∆φ0

w∆

}

dl0 (3.5.11)

where T =

[

0 −I,3[f×]
(f×)I,3 [φ0,3×][f×] − I,3[m×]

]

. (3.5.12)

The matrix T is the geometric part of the tangent matrix.
Finally recollecting the first and second integral of equation (3.5.8), the linearization

of the internal work takes the compact form

∆[δLint] =

∫

L0

{

δφ0

wδ

}T

K

{

∆φ0

w∆

}

dl0, (3.5.13)
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with

K = S + T tangent matrix (3.5.14)

S = ΞΠCΠTΞT material part (3.5.15)

T =

[

0 −I,3[f×]
(f×)I,3 f ⊗ φ0,3 − (f · φ0,3)I − I,3[m×]

]

geometric part,

(3.5.16)

where we have used in T the equality [φ0,3×][f×] = f⊗φ0,3−(f ·φ0,3)I. We recall that
in small-displacement beam theories, i.e. in geometrically linear theories, the geometric
tangent is zero, i.e. T = 0. The reason is that in small-displacement theories the strain
variations depend on the displacement variations and not directly on displacements, as
the “geometrically linear” terminology states.

External work linearization The expression of the external work is

δLext =

∫

L0

[

{

δφ0

wδ

}T {
f̂
m̂

}

]

dl0 + δLboun,

with

m̂ ≡

∫

A0

[Xαtα × b̂]da0 f̂ ≡

∫

A0

[b0]da0.

We assume that m̂ = 0. Since f̂ is independent of the kinematic functions φ0 and Λ, it
follows that

∆[δLext] =

∫

L0

[

{

δφ0

wδ

}T

∆

{

f̂
m̂

}

]

dl0 + ∆[δLboun] = 0. (3.5.17)

Linear part of the virtual work. Collecting our results, the linear part of the virtual
work δL(φ0,Λ) at the configuration (φ̌0, Λ̌)

L[δL(φ̌0, Λ̌)] = δL(φ̌0, Λ̌) + ∆[δL(φ̌0, Λ̌)]

becomes

L[δL(φ̌0, Λ̌)] =

∫

L0

[

{

δφ0

wδ

}T

Ξ̌Π̌C

{

γ̌r

ω̌r

}

]

dl0 − δLext +

∫

L0

{

δφ0

wδ

}T

Ǩ

{

∆φ0

w∆

}

dl0.

(3.5.18)
The linearization of the virtual work which uses the indirect form of rotation linearization
is not computed in this work. We remarck that in such a case the direction of linearization
would be ∆θ, since the equation depends on the rotation vector field θ.
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Chapter 4

Finite Element approach for the
finite-deformation small strain
model

The one-dimensional equilibrium equations of the finite-deformation small-strain model
are solved by a Finite Element (FE) approach. Hence, as usual, we subdivide the beam in
elements connected by nodes, i.e. we discretize the beam axis as [0, L] =

⋃numel
e=1 Ih

e where
Ih
e denotes a typical element with length h > 0 and “numel” is the total number of ele-

ments. Then, approximating the independent model functions as the linear combination
of interpolating shape functions N(X3) weighted by their nodal values, we transform the
integral-differential problem into an algebraic problem. A Newton-Raphson’s procedure is
adopted to solve the algebraic system since the nonlinearity of the equations with respect
to the beam configuration functions.

The point of interest for a finite-deformation theory is how to deal with finite rotation
approximation and updating procedures. For our model, both of them depend on which
form of equilibrium equations we work with (those which uses the direct variation of ro-
tation or those which uses the indirect one). Next section is devoted to a brief discussion
of this topic. In the other two sections, we specifically focus on our finite element, which
results from the approximation of the equilibrium which uses the direct variation of ro-
tation. We first provide the formulation of the element and then the results of four tests
widely investigated in the literature (see [6, 11, 24, 27]).

4.1 Approximation and updating procedures for rotations

First of all it must be pointed out which are the rotational measures in the case of direct or
indirect linearized equilibrium equations. Considering the first one (see equation (3.5.18)),
the searched measures are

Λ, wδ, w∆,

83



84 Finite Element approach for the finite-deformation small strain model

where Λ is the actual rotation and wδ and w∆ are, respectively, the rotational virtual
variation direction and the rotational incremental linearization direction.

Instead, considering the indirect form the searched measures are

Λ(θ), δθ, ∆θ,

where Λ is the actual rotation evaluated through the rotation vector θ and δθ and ∆θ are,
respectively, the virtual variation direction and the incremental linearization direction of
rotation vector.

As usual, when we deal with linearization of weak form of equilibrium, the virtual
variation directions and the incremental linearization directions are approximated. Con-
sequently, considering first the case of indirect variation and linearization, δθ and ∆θ are
approximated. For this reason the nodal incremental values computed within a Newton-
Raphson’s iteration are the nodal values of the approximated function ∆θ, i.e. ∆θI .
Observe now that the tangent space on which the direction of linearization ∆θ lays never
changes with the point of linearization θ, because the tangent space and space of lin-
earization point always coincide since both are linear spaces. For this reason, within
Newton-Raphson’s iterations we can directly superimpose the nodal value increments and
consequently construct the vector of the new nodal point of linearization θi+1 as

θi+1 = θi + ∆θi+1 where θi = θi−1 + ∆θi...., θ1 = θ0 + ∆θ1,

always remaining into the linear space of θ, see figure 4.1. The nodal values of the updated
total rotation vector θi+1

I are then interpolated within the element to obtain the elementary
rotation vector θi+1

e as

θi+1
e =

nnodel
∑

J=1

NJ(X3)θ
i+1
J .

The updated elementary rotation Λi+1
e is then computed by the exponential map of the

skew tensor Θi+1
e = [θi+1

e ×] as
Λi+1

e = exp[Θi+1
e ],

which means that we pass from the linear space of θ to the manifold Gorth+ through
the exponential map (see figure 4.1). The update is fully consistent with the indirect
linearization procedure adopted to evaluate the virtual variations into the principle of
virtual work and its second linearization.
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Figure 4.1: Updating indirect procedure
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Let us consider now the case of direct linearization. The approximated functions are
wδ and w∆ and consequently the nodal incremental values computed within a Newton-
Raphson’s iteration are the nodal values of w∆, i.e. w∆I . In this case the tangent space
of w∆, TΛGorth+, changes every time that the point of linearization Λ changes, because
the tangent space and the differentiable rotation manifold coincide only locally, see figure
4.2. For this reason, within Newton-Raphson’s iterations we cannot directly superimpose
the nodal values increments w∆I .

Figure 4.2: Updating direct procedure
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Instead, we have to interpolate within the element the nodal increments w∆
i+1
J located

at the actual linearization point Λi, obtaining the elementary increment w∆
i+1
e as

w∆
i+1
e =

nnodel
∑

J=1

NJ(X3)w∆
i+1
J .

Then, we have to pass from the local tangent space TΛGorth+ to the rotation manifold
through the exponential map, exp[W∆

i+1
e ] where W∆

i+1
e = [w∆

i+1
e ×], and finally super-

impose the new rotation on the elementary actual one

Λi+1
e = exp[w∆

i+1
e ]Λi

e.

So, the updated elementary rotation Λi+1
e is computed (see figure 4.2). The update is fully

consistent with the linearization procedure adopted to evaluate the virtual variations into
the principle of virtual work and its linearization in the case of direct formulation.

The main difference between the updates is that in the indirect case the updating
is done into a linear space while in the direct case it is done on the rotation manifold.
For this reason in the first case we need to store only the nodal values of the last total
rotation vector θi+1

I while in the second case we must store for each element the last
elementary rotation Λi

e in order to reconstruct the updated elementary rotation Λi+1
e .

In this sense the procedure adopted in case of indirect linearization of rotation is called
path-independent with respect to the rotation, while the other procedure is called path-
dependent with respect to the rotation.

At this point it would seem computationally convenient to use the direct procedure.
Anyway, the direct form of equilibrium suffers from the singularity of the tensor T(θ) for
‖ θ ‖= 2nπ where n is an integer, as indicated in section (2.2.1). Moreover the tangent
operator of the direct form result to be ill-conditioned well before the singularity value.
For these reasons we choose to implement the indirect equilibrium form.

4.2 The finite element formulation

The linearized equilibrium equation we approximate is the direct equilibrium form (3.5.18)

L[δL(φ̌0, Λ̌)] =

∫

L0

{

δφ0

wδ

}T

Ξ̌

{

f̌∗

m̌∗

}

dl0 − δLext +

∫

L0

{

δφ0

wδ

}t

Ǩ

{

∆φ0

w∆

}

dl0. (4.2.1)

Discretization and approximation. Let us consider the standard finite element dis-
cretization introduced above. According to the FE approach, the linear equilibrium
L[δL(φ̌0, Λ̌)] is discretized and approximated as

L[δL(φ̌0, Λ̌)] =

numel
∑

e=1

Le[δL(φ̌0e, Λ̌e)] (4.2.2)
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where the subscript e indicates the approximated continuum function of a to a typical
element Ie, numel is the total number of elements and Le[δL] is the elementary approxi-
mated linear work. We perform the calculation on an element basis and we approximate
the virtual variations δφ0 and wδ and the increments ∆φ0 and w∆ as follows

δφ0e =

nnodel
∑

I=1

NI(X3)δφ0I , wδe =

nnodel
∑

I=1

NI(X3)wδI ,

∆φ0e =
nnodel
∑

I=1

NI(X3)∆φ0I , w∆e =
nnodel
∑

I=1

NI(X3)w∆I , (4.2.3)

where

• nnodel is the number of element nodes, i.e. 2 in this implementation;

• NI(X3) represents the shape function associated with node I, which is linear in this
implementation;

• δφ0I , wδI , ∆φ0I and w∆I are the nodal virtual and incremental displacements and
rotations of the element at node I.

Substituting the approximation into the linearized continuum equilibrium, we can take
out of the integral the nodal values of the approximated quantities and hence obtain the
approximated elementary work as

Le[δL(φ̌0e, Λ̌e)] =

{

δφ0I

wδI

}T

F̌intIe − δLexte +

{

δφ0I

wδI

}T

ǨIJe

{

∆φ0J

w∆J

}

. (4.2.4)

FintIe and KIJe represent the nodal elementary contribution respectively to the global
internal force vector and to the global tangent matrix. We use the subscript e for them
to indicate that they depend on continuum approximated functions of the element. Their
dimensions are respectively [6 × 1] and [6 × 6]. The internal force, Finte, and the tangent
matrix, Ke, for the whole element have dimensions respectively [12 × 1] and [12 × 12] in
this implementation since we employ two node elements. The next paragraph is devoted
to compute such quantities.
The external work is just indicated in (4.2.4) since in this implementation the external
forces are not computed but directly assigned as external nodal values.

Elementary internal force and tangent matrix computation. Table 4.2 schemat-
ically summarizes all the relations needed to compute the elementary internal force and
tangent matrix.
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F̌intIe =

∫

L0e

[

Ξ̌Ie

{

f̌∗e

m̌∗
e

}

]

dl0e and ǨIJe =

∫

L0e

ŠIJe + ŤIJedl0e (4.2.5)

ŠIJe = Ξ̌IeΠ̌eCΠ̌
T
e Ξ̌

T
Ie (4.2.6)

ŤIJe =

[

0 −NI,3I[f̌
∗

e×]NJ

NII[f̌
∗

e×]NJ,3 NI [f̌
∗

e ⊗ φ̌0,3e − (f̌∗e · φ̌0,3e)I]NJ −NI,3I[m̌
∗

e×]NJ

]

(4.2.7)

Π̌e =

[

Λ̌e 0

0 Λ̌e

]

and Ξ̌Ie =

[

NI,3I 0

−NI [φ̌0e,3×] NI,3I

]

(4.2.8)

{

f̌∗e
m̌∗

e

}

= Π̌eCΠ̌
T
e

{

γ̌e

ω̌e

}

(4.2.9)

γ̌e = φ̌0,3e − Λ̌eE3 (4.2.10)

Table 4.2.1: Computation of elementary internal force and tangent matrix
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We see that three approximated functions are needed to carry out the computation,
i.e.

Λ̌e, φ̌0,3e, ω̌e.

The check states that the measures are evaluated in a point. In context of the Newton-
Raphson’s iterations, it means that they are the new values at iteration i+1. To evaluate
them we use the elementary updating procedures of the direct approach. For the rotation
we have

Λi+1
e = exp[W∆e]Λ

i
e . (4.2.11)

The computation of updated spin vector ωi+1
e is carried out consistently with its direct

linearization form. We now compute Ωi+1
e = [ωi+1

e ×] (in intermediate computational steps
we omit the subscript e for simplicity) as

Ωi+1 = Λi+1
,3 (Λi+1)T =

= (exp[W∆]Λi),3(exp[W∆]Λi)T =

= (exp,3[W∆]Λi + exp[W∆]Λi
,3)(Λ

i)T exp[−W∆] =

= exp,3[W∆]exp[−W∆] + exp[W∆]Ωiexp[−W∆].

Simo proved in [24] that the axial vector β of the skew tensor exp,3[W∆]exp[−W∆] is

β =
sinw∆

w∆
w∆,3 +

(

1−
sinw∆

w∆

)(

w∆ ·w∆,3

w∆

)

w∆

w∆
+

1

2

(

sin 1
2w∆

1
2w∆

)2

w∆ ×w∆,3, (4.2.12)

where w∆ =‖ w∆ ‖. We proved that this axial vector can be equivalently given as

β = T(w∆)w∆,3,

where T(w∆) is the tensor defined in (2.2.28), where Θ is substituted with W∆. By
substitution of β into the updating formula, Ωi+1

e becomes

Ωi+1
e = [βe×] + exp[W∆e]Ω

i
eexp[−W∆e] . (4.2.13)

The derivative of axis displacement is then updated by

φi+1
0,3e = ∆φ0,3e + φi

0,3e . (4.2.14)

The approximated elementary functions φi
0,3e, Ωi

e and Λi
e are stored from the previous

iteration. Their initial values are evaluated from the initial values of φ0 and Λ

φ0 = X3E3 Λ = I

and consequently they are

φ0,3e = E3, Λe = I, ωe = 0 initial values (4.2.15)
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The other quantities which constitute the updating formulae, ∆φ0,3e, w∆ and w∆,3 are
interpolated as

∆φ0,3e =

nnodel
∑

I=1

N,3I(X3)∆φ0I (4.2.16)

w∆e =

nnodel
∑

I=1

NI(X3)w∆I , w∆,3e =

nnodel
∑

I=1

N,3I(X3)w∆I . (4.2.17)

The nodal values come from the global nodal increment vector, solution of the (i + 1)th

Newton-Raphson’s residual equation. Passing from latter vector to the local one of the
element, as usual we need to rotate it from the global reference system to the elementary
one. To compute the rotation matrix, the position of the local reference system with
respect to the global one has to be defined. For this reason we have assigned to each
element an auxiliary node such that the first axis of the local system is defined by the
vector connecting the first node of the element to this auxiliary node. The third axis of
the system is oriented as the reference beam axis from the first to the second node and the
second axis is defined by the cross product of the other two. The local system is consistent
with that adopted in the definition of kinematics.

Integrations are performed by Gauss integrations. To avoid locking problems we have
used a global reduced integration, i.e. we have adopted one Gauss point to evaluate every
integral.

It must be pointed out that we choose to update φ0 with a step-by-step updating as
done for the rotation, even though this procedure is not necessary because it is a vectorial
space. We do so for code structure harmony.

Newton-Raphson’s residual equation. The elementary internal force vector, Finte,
and the tangent matrix, Ke, are valued in the local element coordinate system. Since the
linearized equilibrium (L[δL] = 0) is solved with respect to the global system of the whole
structure, the basis change from local to global system is done on Finte and Ke coordinates
as

RT Finte = Finteg and RT KeR = Keg, (4.2.18)

where the rotation matrix R controls the change of coordinate from the global system to
the local one. Then the assembling procedure

numel
∑

e=1

Finteg = Fint and

numel
∑

e=1

Keg = K (4.2.19)

gives us the nodal global internal force vector Fint and tangent matrix K.
The linearized virtual work (4.2.1) can now be stated in the global form

L[δL] =

{

δφ0

wδ

}t

n

(

Fint − Fext + K

{

∆φ0

w∆

}

n

)

= 0 ∀ {δφ0,wδ}n , (4.2.20)
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where “n” is the number of structural nodes, which leads to the incremental nodal solution

−K−1Res =

{

∆φ0

w∆

}

n

with Res = Fint −Fext. (4.2.21)

Above, Res is the global residual vector or out-of-balance force vector.
The new configuration (φi+1

0 ,Λi+1,ωi+1) is an equilibrium configuration if Res = 0.
The convergence condition in the actual implementation is

resrel < tol

where resrel is the ratio between the norm of residual vector at the actual and at the first
Newton-Raphson’s iteration, while “tol” is a fixed tolerance.
Finally, box 4.2.2 summarizes the iteration and updating procedures.



4.2 The finite element formulation 93

Iteration i

Computation of the increment vector

−K−1Resi =

{

∆φi+1
0Ig

δwi+1
Ig

}

I=nnod

Iteration i+1

Within each element

Extraction of the increments relative to the element nodes

from the structural increment vector
{

∆φi+1
0Ig

∆wi+1
Ig

}

I=nnod

→

{

∆φi+1
0Jg

∆wi+1
Jg

}

J=nnodel

Rotation from the global reference system to the local one

Calculation of approximated continuum element increments and their derivative

by interpolation on Gauss point Xh

∆φi+1
0 =

∑nnodel
1 NJ∆φi+1

0J , ∆φi+1
0,3 =

∑nnodel
1 NJ,3∆φ

i+1
0J

wi+1
∆ =

∑nnodel
1 NJ∆wi+1

J , ∆wi+1
0,3 =

∑nnodel
1 NJ,3∆wi+1

J

Call of kinematic quantities stored for the element from previous iteration

φi
0, Λi

Updating of kinematical quantities

φi+1
0,3 = φi

0,3 + ∆φi+1
0,3

Λi+1 = exp[Wi
∆]Λi

Calculation of approximated continuum element strain and stress resultants

γi+1, ωi+1, f∗i+1, m∗i+1

Calculation of elementary internal force vector and tangent matrix

f i+1
int,el, Ki+1

el

Integration along reference axis length

f i+1
int,el =

∑

hwghLef
i+1
int,el(Xh)

Ki+1
el =

∑

hwghLeK
i+1
el (Xh)

where wgh is Gauss weight and Le the reference element length

Rotation of the internal force vector and tangent matrix from the local

reference system to the global one

Outside the element

Assembling procedure

Calculation of residual vector

If no convergence, calculation of the next increment vector for iteration i+ 2

Iteration i+2

Table 4.2.2: Small-strain finite-deformation beam model using the direct form of lineariza-
tion: Newton-Raphson’s and updating procedures
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4.3 Four tests for the Finite-Deformation Small-Strain ele-
ment

In order to check the reliability of our finite-deformation small-strain element (FD-SS), we
develop four significative tests and we compare our element results with those obtained by
the element framef3d.f of FEAP. FEAP is an open source finite element analysis program
developed by R. Taylor at University of California, Berkeley. The element framef3d.f has
been programmed by A. Ibrahimbegovic and M. Al Mikdad in 1996 and subsequently
modified by E. Kasper and R. Taylor in 1998. It uses the rotation vector parametrization
of rotation, and consequently the form of variation and linearization we indicated as indi-
rect. Our element instead works with the equations which use the direct linearization of
rotation. Both employ two node elements, with linear shape function.

In all tests we consider an elastic isotropic material for which we assign the Young’s
modulus, E, the Poisson’s ratio, ν, and calculate the shear modulus G as G = E

2(1=ν) .
We consider a cross-section for which we assign the height of the section along first and
second axes of the reference system, respectively h1 and h2; the area, A; the moments
of inertia around first and second axes of reference system, respectively J1 and J2; the
torsional moment of inertia, Jt. . The performed tests are

• a three-dimensional problems without buckling, indicated as Cantilever 45◦ bend

• a planar problem without buckling, indicated as Cantilever roll-up

• a three-dimensional problem with buckling, indicated as Clamped beam under lateral
buckling load

• a planar problem with buckling, indicated as end loaded column, i.e. the Elastica

The planar problems are of interest since we found in literature analytical solutions. More-
over we perform tests with and without buckling to check the response of the program
with and without passing through the critical buckling point.
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4.3.1 Three-dimensional problem without buckling: Cantilever 45
◦ bend

This test aims at studying the equilibrium configuration of a clamped curved beam loaded
by a concentrated tip force, P (see figure 4.3).
The bend has a radius of 10 [m] and an angle of 45◦, for a total beam length of 15.70796
[m]. The real curve of the axis is approximated by 8 linear elements of length 0.98135.
Each element approximates a subtended arch of length 0.3125π [m]. Beam material and
geometric section properties are summarized below.
The load P as a maximum value of 50 [KN] and is applied in 60 load steps.

Figure 4.3: Cantilever 45◦ bend test: prob-
lem geometry, reference system and applied
load.

Material properties
E=1e7[KN\ m2],
G=0.5e7[KN\ m2], ν=0.

Cross-section proper-
ties
h1=0.1[m], h2=0.1[m],
A=0.01[m2],
J1=0.14/12[m4],
J2=0.14/12[m4],
Jt = 0.1406 · 0.14 [m4].

Analysis data
numel=8, Le=0.98135[m],
tol =10−8,
load step number = 60.

The structure under investigation evidently experiences all modes of deformation: bend-
ing, shear, extension and torsion. For this reason a lot of References dealing with finite-
rotations have performed this test, as for example [11, 24, 27]. In the following we compare
FD-SS and FEAP analysis results, both graphically and numerically. The convergence of
the two elements are compared in Table 4.3.1.
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Displacements at final equilibrium configuration
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FD-SS -5.2543E+00 -2.6650E+00 7.0699E+00

FEAP -5.2543E+00 -2.6650E+00 7.0699E+00

Figure 4.4: Cantilever 45◦ bend Test. FD-SS and FEAP results comparison: end node
beam displacement (u) in x direction versus end applied load (top left); end node beam
displacement (v) in y direction versus end applied load (top right); end node beam dis-
placement (w) in z direction versus end applied load (bottom left). Triangles and squares
represent the convergence point for each load step. Beam deformed configuration at each
load step (bottom right). Table of displacement numerical values at equilibrium configu-
ration.
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Load step Total iterations Residual final norm

FD-SS 1 10 1.341303E-011

2 10 1.778115E-011

3 9 1.418029E-011

... ... ...
15 5 3.559326E-009

... ... ...
60 5 1.443747E-011

FEAP 1 9 6.49E-10

2 10 1.72E-10

3 8 5.36E-07

... ... ...
15 6 2.11E-10

... ... ...
60 4 2.06E-08

Table 4.3.1: Cantilever 45◦ bend test. Table of convergence: comparison of FD-SS and
FEAP.

The results are very good. Both displacements and convergence path of FD-SS agree
with those of FEAP. Analyzing the evolution of the residual norm through the iterations
of each step we noticed that, curiously, both FD-SS and FEAP increase the residual norm
passing from the first iteration to the second. This increment is higher in the first steps,
where in fact the elements need more iteration to converge. Unfortunately at the moment
we do not have an explanation for this behaviour. In Table 4.3.2 the evolution of the
residual norm through iterations is shown for the first step, for both FD-SS and FEAP.

FD-SS FEAP

Iteration residual norm residual norm

1 8.333333E-01 8.3333333E-01

2 4.865321E+03 4.8652374E+03

3 3.277604E+01 3.2765924E+01

4 2.212159E+01 4.7668544E+00

5 4.143674E+00 7.5874085E-01

... ... ...

9 1.347692E-07 6.4944294E-10

10 1.341303E-11 ...

Table 4.3.2: Cantilever 45◦ bend test. Residual norm evolution through the first step:
FD-SS and FEAP comparison.
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4.3.2 Planar problem without buckling: Cantilever roll-up

This test aims at studying the equilibrium configuration of a clamped beam loaded by a
concentrated tip moment, m (see figure 4.5).
The beam has length L 10 [m] and is discretized by 10 elements of 1 [m]. Beam material
and geometric section properties are summarized below.
The load has a maximum value of 41.664π [KN] and it is applied both in 6 load steps and
in 20 load steps.

Figure 4.5: Cantilever roll-up test: problem
geometry , reference system and applied load.

Material properties
E=2e5[KN\ m2],
G=7.6923e4[KN\ m2],
ν=0.3.

Cross-section proper-
ties
h1=0.5[m], h2=0.1[m],
A=0.05[m2],
J1=4.1667e-5[m4 ],
J2=1.041667e-3[m4 ],
Jt = 5e− 4 [m4].

Analysis data
numel=10, Le=1[m],
tol=10−8,
load step number : 6 and
20

This problem is a pure bending problem. According to the classical Euler formula for this
case, the curvature of the beam deformed axis is constant along the beam and therefore the
exact solution of the beam deformed shape is a part of a circle. The analytical expression
of displacements, u and v, and rotation β at beam end (X = L) are1

β(L) =
mL

EJ
, u(L) = L−

l

β
tan

β

2
(1 + cos β), v(L) =

l

β
tan

β

2
sin β.

For the chosen moment value m = 41.664π [KN] and the adopted material properties and
geometry, the tip analytical displacements and rotation are summarized in Table 4.3.3.

u[m] v[m] β[rad]
-10.0 E+00 0.0 E+00 2π E+00

Table 4.3.3: Cantilever roll-up test: analytical displacements in direction x (u) and y (v)
and rotation β of beam tip for the assigned moment, geometry and material properties

1for further information on the analytical solution see [11]
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A lot of authors who implemented a finite deformation model performed this test (see for
example [11, 24, 27]).

In the following we compare FD-SS and FEAP analysis results, both graphically and
numerically, using 20 load steps. The deformed axis of beam for each load step is plotted
in Figure 4.6. We note that 6 is the minimum number of load steps needed by FD-SS and
FEAP to converge. The convergence of the two elements are compared in Tables 4.3.4
and 4.3.5 using both 20 and 6 load steps.
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FEAP -1.0000E+01 1.3806E-15 6.2832E+00

Figure 4.6: Cantilever roll-up test. FD-SS and FEAP results comparison using 20 load
steps: end node beam displacement (u) in x direction versus end applied moment m (top
left); end node beam displacement (v) in y direction versus end applied moment m (top
right); beam deformed configuration at each load step (center); displacements and rotation
of beam tip at the equilibrium configuration (bottom).
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Load step Total iterations Residual final norm

FD-SS 1 6 5.548187E-009

2 6 5.566500E-009

... ... ...

6 6 7.481233E-009

FEAP 1 6 5.57E-09

2 6 5.58E-09

... ... ...

20 6 7.50E-09

Table 4.3.4: Cantilever roll-up test. Table of convergence: comparison of FD-SS and
FEAP using 20 load steps

Load step Total iterations Residual final norm

FD-SS 1 15 7.700860E-011

2 15 7.973869E-011

... ... ...

6 15 1.094259E-010

FEAP 1 15 8.53E-11

2 15 8.80E-11

... ... ...

6 15 1.08E-10

Table 4.3.5: Cantilever roll-up test. Table of convergence: comparison of FD-SS and
FEAP using 6 load steps
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4.3.3 Three-dimensional problem with buckling: Clamped beam under
lateral buckling load

This test aims at studying the equilibrium configuration of a clamped beam loaded by two
concentrated tip forces: a perturbation load Pz = 0.01[KN ] and a load Py = 10[KN ],
(see figure 4.10). The latter acts in direction of the beam height, while the perturbation
load acts in the direction of the beam thickness. The beam height is 0.5 [m], the thickness
is 0.1 [m] and the length is 10[m]. These load and geometry conditions are set up such that
the beam experiences a lateral buckling or bending-torsional buckling. The beam axis is
discretized by 10 elements of 1 [m]. Beam material and geometric section properties are
summarized below.

Figure 4.7: Clamped beam lateral buckling
test: problem geometry, reference system and
applied loads.

Material properties
E=2e5[KN\ m2],
G=0.76923e5[KN\ m2],
ν=0.3.

Cross-section proper-
ties
hy=0.5[m], hz=0.1[m],
A=0.05[m2],
Jy=4.1667e-5[m4 ],
Jz=1.0416e-3[m4],
Jt = 5.0e − 4 [m4].

Analysis data
numel=10, Le=1[m],
tol=10−8,
load step number: 100 and
400.

This problem has been investigated in [11, 24, 27]. In the following we compare FD-SS
and FEAP analysis results, both graphically and numerically, for the cases of 100 and 400
load steps.
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Figure 4.8: Clamped beam, lateral buckling test. FD-SS results for 100 load-steps: end
node beam displacement (u) in x direction versus end applied load Py (top left); end node
beam displacement (v) in y direction versus end applied load Py (top right); end node
beam displacement (w) in z direction versus end applied load Py (bottom left). Triangles
represent the convergence point for each load step. Beam deformed configuration at each
load step (bottom right). Note that in this case FEAP element does not converge. FD-SS
passes through the first critical load, located at 0.9 [KN] and shows buckling at the second
critical load of structure. The element uses 14 and 12 iterations respectively at steps 9
and 10, to pass through the first critical load.
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Figure 4.9: Clamped beam, lateral buckling test. FD-SS and FEAP results for 400 load-
steps: end node beam displacement (u) in x direction versus end applied load Py (top
left); end node beam displacement (v) in y direction versus end applied load Py (top
right); end node beam displacement (w) in z direction versus end applied load Py (bottom
left); particular of displacement (w) at critical point(bottom right). Triangles represents
the convergence point for each load step. Deformed beam configuration for each load step
(bottom center). Results of two element fully agree.
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Load step Total iterations Residual final norm

FD-SS 1 4 1.092390E-011

2 4 1.715679E-010

... ... ...
35 13 1.589177E-012

36 12 2.252431E-012

37 11 2.041948E-012

... ... ...
400 4 3.171766E-012

FEAP 1 4 2.31E-11

2 4 1.76E-10

... ... ...
35 12 3.59E-11

36 14 1.26E-11

37 10 1.29E-08

... ... ...
400 4 1.88E-11

Table 4.3.6: Clamped beam lateral buckling test. Table of convergence: comparison FD-SS
and FEAP using 400 loadsteps.

u[m] v[m] w[m]

FD-SS -8.3015E+00 -8.0286E+00 2.7802E+00

FEAP -8.3015E+00 -8.0287E+00 2.7802E+00

Table 4.3.7: Displacement at final equilibrium configuration

It must be pointed out that both FD-SS and FEAP have some convergence problem if
a small number of load step is employed. For 100 load steps FD-SS behaves better than
FEAP since the latter does not converge while the former converge to the second critical
load. For 200 loadsteps FD-SS does not converge in the step of the critical point in the
maximum number of iterations (20) and therefore the solution is not accurate as in the
case of 400 load steps. Using 300 load steps the analysis fails since the global tangent
matrix result to be close to singular at critical point. FEAP instead from 300 load-step
converges. We can conclude that FD-SS and FEAP do not suffer of convergence problem
when the load-steps are sufficiently small when passing through the critical point.
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4.3.4 Planar problem with buckling: end loaded column, i.e. the Elas-
tica

This test aims at studying the equilibrium configuration of an end loaded column, (see
figure 4.10). The end load is indicated as Px. A perturbed load, Py, acts orthogonally to
the axis in order to numerically force the axial buckling of the column. The problem is
known as Elastica and was first studied by Euler. In 1859 Kirchhoff obtained an analytical
solution making use of simplified hypothesis and calculated it by elliptic integrals. Since
we compare results of FD-SS with this solution, we present below the hypotheses and the
final solution. In appendix it can be found the full development of the analytical solution.

For the FE analysis, the beam axis is discretized by 10 elements of 1 [m]. Beam ma-
terial and geometrical section properties are summarized below.

Figure 4.10: End loaded column test: prob-
lem geometry, reference system and applied
loads.

Material properties
E=2e5[KN\ m2],
G=0.76923e5[KN\ m2],
ν=0.3.

Cross-section proper-
ties
hy=0.1[m], hz=0.1[m],
A=0.01[m2],
J1=0.14/12[m4],
J2=0.14/12[m4],
Jt = 0.1406 ∗ 0.14 [m4].

Analysis data
numel=10, Le=1[m],
tol=10−8,
load step number: 100 and
400

In the following we present two analysis: one carried out using 100 load-steps and Py=-
0.4[KN] and one carried out using 400 load-steps and Py=-0.6[KN]. Both of them are
compared with analytical solution. The latter is found by the equations in Table 4.3.8, for
an assigned tip rotation θl which range from 0 [rad] to π [rad]. As shown in the graphics
the result of FD-SS fully agree with the analytical ones.
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Hypotheses

• the column is inextensible

• the curvature of the column axis is defined as the derivative of the angle of the
tangent to the axis, θ, with respect to the length s along the column, i.e. there are
not shear effects

• the bending moment is proportional to the local curvature

Top load

P (θl) =
( 2

π
K(c)

)2
P0

Transverse displacement at top column

wl =
2c

K(c)
l

Axial displacement at top column

ul = 2
(

1 −
E(c)

K(c)

)

l

where
θl is the tip column rotation
c = sin(1

2θl) is a constant
K(c) is the complete elliptic integral of the first kind
E(c) is the complete integral of the second kind

P0 =
(

π
2l

)2
EJ is the Euler buckling load

Table 4.3.8: End loaded column: Kirchhoff hypotheses and analytical solution of tip
displacement and load for assigned tip rotation
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Figure 4.11: End loaded column test. FD-SS results for Px=-0.4[KN] and 100 load-
steps compared with analytical solution: end node beam displacement (u) in x direction
versus end applied load Px (top left); end node beam displacement (v) in y direction
versus end applied load Px (top right); beam deformed configuration at each load step
(bottom).The results fully agree. The analytical solution have a longer path than FD-SS
because it is obtained controlling θ.
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Load step Total iterations Residual final norm

FD-SS 1 5 5.989276E-013

2 5 4.126241E-013

... ... ...
10 11 3.124480E-013

11 12 4.021528E-013

12 12 3.065757E-013

... ... ...
100 4 3.315613E-013

Table 4.3.9: End loaded column test: table of convergence for FD-SS.

FD-SS

Iteration residual norm

1 4.000200E-003

2 2.085982E+002

3 6.222225E+000

4 4.251998E-002

5 6.393637E-001

... ...

8 1.373952E-003

9 4.585684E-009

10 8.138703E-011

11 4.021528E-013

Table 4.3.10: End loaded column test. Residual norm evolution of FD-SS through the 11
step (critical point).
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Figure 4.12: End loaded column test. FD-SS results for Px=-0.6[KN] and 400 load-
steps compared with analytical solution: end node beam displacement (u) in x direction
versus end applied load Px (top left); end node beam displacement (v) in y direction versus
end applied load Px (top right).The results fully agree.



Conclusions

In this work we presented a model for the description of deformation and static equilib-
rium of beams with no restriction on either displacements or rotations. We adopted the
beam kinematic hypothesis first proposed by Simo in [23] and computed the associated
three-dimensional deformation and strain beam measures. The introduction of a special
polar decomposition for the deformation gradient allows to find the beam strain resultants
and to express the beam Green-Lagrange strain tensor E in a compact and useful way.

The linerizations of the deformation gradient and of the Green-Lagrange strain tensor
are then used to exploit the two forms of the three dimensional principle of virtual work
defined on the reference beam configuration. For each form we recovered the associated
one dimensional principle. The comparison between them showed that the one dimen-
sional principle of virtual work obtained using the linearization of the Green-Lagrange
strain tensor is the rotated-back expression of the one obtained using the linearization of
the deformation gradient.

The obtained equilibrium equations describe a finite-deformation finite-strain regime.
In order to develop a small strain theory we simplified the Green-Lagrange strain tensor
by neglecting a quadratic term in the beam strain. The identification of this term is made
clear thanks to the adopted special polar decomposition of the deformation gradient. We
showed that postulating a linear elastic relation between the simplified Green-Lagrange
strain and the second Piola-Kirchhoff stress tensors yields a linear elastic relation between
beam strain and stress resultants. A similar proof is developed in [25] while in all other
studied References the same constitutive relations on resultants are only postulated.
The simplification of equilibrium equations using the small strain hypothesis and the
introduction of constitutive one-dimensional relations led to the final finite-deformation
small-strain model equations.

These equations has been expressed for two possible linearizations of the rotation tensor
which defines the cross section orientation. We referred to these linearizations procedures
as direct or indirect. Developing the direct form we recovered exactly the equations pro-
posed by Simo in [23, 24]. Instead, following the indirect form we recovered the equations
given by Ibrahimbegovic in [11] and Ritto-Correa in [21].

For both formulations we schematically presented the finite element approach, pointing
out that, with respect to rotations, the direct form is path-dependent while the indirect
form is path-independent. The direct approach has been then described in detail and im-
plemented. To conclude, numerical results of four significative tests have been presented
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which confirmed the good behaviour of the finite element formulation.
We think that the most important issues of this work are the clear computation of finite-

deformation beam equilibrium equations in the framework of three-dimensional nonlinear
principle of virtual work, the explanation of the small-strain hypothesis and of its role into
the model, the comparison between the direct and indirect linearization produceres and
their associated finite element approaches.

From a computational point of view our future task is the implementation of the in-
direct form of equations. Concerning with the theory of finite-deformation beams, the
achieved knowledge open the doors to developments in the dynamic regime, very interest-
ing for the analysis of dynamic multibody systems, and in the case of three-dimensional
inelastic constitutive relations. Moreover could be of interest to develop the theory for a
modified kinematics able to include description of warping phenomena and section stric-
tion.

We have done a lot of work, but as you see a lot can still be done.
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Appendix A

Proof for the pure stretch tensor A

Figure A.1: Rigid motion of beam

We show that the tensor A of the left extended polar decomposition of the deformation
gradient is a pure stretch tensor, i.e. A = I in the case for a rigid translation and rotation
around the origin. Looking at figure (A.1), the deformation map (3.1.2) takes the form

x ∗ = (X3E3 + u∗

0 +XαEα)Λ∗. (A.0.1)

where Λ∗ is the tensor Λ uniform in X3 and u∗

0 is the axis displacement vector uniform
in X3. We rewrite the equation (A.0.1) in the form

x ∗ = φ∗

0 +XαΛ∗Eα (A.0.2)

φ∗

0 = (X3E3 + u∗

0)Λ
∗ (A.0.3)
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where the vector field in (A.0.3) is the axis current position. From these positions it follows
that

Λ∗

,3 = 0 (A.0.4)

Ω∗ = Λ∗

,3Λ
∗ = 0 (A.0.5)

φ∗

0,3 = Λ∗E3 (A.0.6)

From equations (A.0.5) and(A.0.6) and equations (3.1.14) and (3.1.15) we obtain

γ∗

r = Λ∗TΛ∗E3 − E3 = 0 (A.0.7)

κ∗

r = 0 (A.0.8)

A = I for rigid body motion (A.0.9)

It confirms that A is a measure of pure stretch



Appendix B

Analytical solution for end loaded
column: the Elastica

Figure B.1: End loaded column configuration

The hypothesis in which the analytical solution is calculated are the following

• the column is inextensible

• the curvature of the column axis is defined as the derivative of the angle of the
tangent to the axis, θ, with respect to the length s along the column, i.e. there are
not shear effects

• the bending moment is proportional to the local curvature

Thus, the kinematic and constitutive relations of the theory are

dθ

ds
= κ,

M

EJ
= κ (B.0.1)
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where the bending stiffness EJ is assumed constant.
The moment M(S) at any section is calculated from static as

M(S) = P [wl −w(s)] (B.0.2)

where wl is the transverse displacement at the top of the beam. Differentiation with
respect to the arc-length s gives

dM

ds
= −P

dw

ds
(B.0.3)

The derivative on the RHS is expressed in terms of the angle θ by use of B.0.1, and the
derivative of the LHS follows from the detail in figure B.1 as dw/ds = sinθ. Thus, the
differential equation for finite deflection of an homogeneous elastic column is obtained in
the form

EJ
d2θ

ds2
= −P sinθ (B.0.4)

It is convenient to introduce the parameter

k2 =
P

EJ
(B.0.5)

When introducing the Euler buckling load

P0 =
( π

2l

)2
EJ (B.0.6)

the parameter k2 can be expressed as

k2 =
( π

2l

)2 P

P0
(B.0.7)

In term of the parameter k2 the finite deflection column equation becomes

d2θ

ds2
+ k2sinθ = 0 (B.0.8)

This equation is similar to that governing oscillations of a pendolum under gravity, and in
both cases the linearized equation is obtained by replacing sinθ withθ

To integrate the equation B.0.8 it is necessary to manipulate it. Multiplicate B.0.8 by
dθds and use the following differential relations from right to left into B.0.8

1

2

d

ds
(
dθ

ds
)2 =

d2θ

ds2
dθ

ds
(B.0.9)

2
d

ds

(

sin(
1

2
θ)
)

= 2sin(
1

2
θ)cos(

1

2
θ)

dθ

ds
= sinθ

dθ

ds
(B.0.10)

Then the following integrated form of B.0.8 is obtained

1

4k2
(
dθ

ds
)2 = c2 − sin2(

1

2
θ) (B.0.11)
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where c is an arbitrary constant which depends by boundary condition. For the base
clamped column in B.1, at the loaded end the moment vanishes, and then the curvature,dθds =
0. Substituting the condition into B.0.11, c is found to be

c = sin(
1

2
θl) (B.0.12)

Integration by elliptic integrals Taking the square root of the differential equation
B.0.11 with a positive sign, and thereby considering displacement to the left as shown in
B.1, the equation takes form

dθ
√

c2 − sin2(1
2θ)

= 2kds (B.0.13)

This relation leads to elliptic integrals, when the following substitution is made,

sin(
1

2
θ) = csinφ (B.0.14)

Differentiation of this formula gives

1

2
cos(

1

2
θ)dθ = ccosφdφ (B.0.15)

end substitution into B.0.13 gives

kds =
1
2dθ

ccosφ
=

dφ

ccos(1
2θ)

=
dφ

√

1 − c2sin2φ
(B.0.16)

From B.0.14 and the boundary condition, it follows that φ varies between 0 at s = 0 and
pi
2 at s = l. Thus, the parameter kl can be obtained by integration of B.0.16

kl =

∫ π/2

0

dφ
√

1 − c2sin2φ
(B.0.17)

The integral on the right is called the complete elliptic integral of the first kind, and it is
denoted

K(c) =

∫ π/2

0

dφ
√

1 − c2sin2φ
(B.0.18)

Using the relation eqn:bordo into B.0.17 and B.0.17 the load ratio P/P0 from B.0.7 take
the form

√

P

P0
=

2

π
K[sin(

1

2
θl)] (B.0.19)

in term of the end rotation θl.
The transverse displacement wl of the top of the elastica can be determined from B.0.11
by using that θ0 = 0, whereby the parameter c becomes

c =
1

2k

dθ

ds
=

1

2k

M0

EJ
=
wl

2k

P

EJ
=

1

2
kwl (B.0.20)
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Substitution from B.0.12 and B.0.17 leads to

wl

l
=

2sin(1
2θl)

K[sin(1
2θl)]

(B.0.21)

giving the transverse displacement as function of the rotation θl

The vertical displacement of the top of the elastica is found by integration of the relation

dx

ds
= cosθ (B.0.22)

illustrated in the detail in ??. This differential relation can be integrated in the fol-
lowing way. First cosθ is reduced to half angle by a standard trigonometric relation,

dx = cosθds = [2cos2(
1

2
θ)− 1]ds (B.0.23)

and then ds is substituted from B.0.16, giving

dx+ ds = 2cos2(
1

2
θ)ds =

2

k
cos(

1

2
θ)dφ (B.0.24)

Itegration of this relation over the full length of the elastica gives

(l − ul) + l =
2

k

∫ π/2

0

√

1 − c2sin2φdφ (B.0.25)

where ul denotes the downward displacement of the end of the elastica. The intergal is
called the complete elliptic integral of the second kind, and is denoted

E(c) =

∫ π/2

0

√

1 − c2sin2φdφ (B.0.26)

using the expression B.0.17 for kl, the final form of the axial displacement of the top of
the elastica becomes

ul

l
= 2
(

1 −
E[sin(1

2θl)]

K[sin(1
2θl)]

)

(B.0.27)

which gives the axial displacement of the elastica as a function to the top rotation θl

For the analytical expression of the deformed shape of the elastica, see [17] cap 3.


